El Grupo de Análisis y Ecuaciones en Derivadas Parciales (GANEDP) surge como una necesidad de planificar las actividades de los investigadores ecuatorianos, dentro y fuera del Ecuador, que se desarrollan en el campo del análisis matemático y de las ecuaciones en derivadas parciales. Organizamos conferencias especializadas, visitas de investigación, cursos avanzados, etc. siguiendo los más altos estándares internacionales.
Mail del coordinador general: Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.
Acta de Conformación: aqui (reformado el 1 de mayo 2021) Firmas: aqui
Listamos aquí los artículos científicos producidos por medio de colaboraciones dentro de nuestro grupo de investigación.
Mathematical study of a new Navier-Stokes-alpha model with nonlinear filter equation - Part I
A general Liouville-type theorem for the 3D steady-state Magnetic-Bénard system
Partial regularity and L3 -norm concentration effects around possible blow-up points for the micropolar fluid equations
Mild solutions to the 3D-Boussinesq system with weakened initial temperature
On The Blow-Up For A Kuramoto-Velarde Type Equation
Liouville type theorems for stationary Navier-Stokes equations with Lebesgue spaces of variable exponent
From non-local to local Navier-Stokes equations
On the existence, regularity and uniqueness of Lp-solutions to the steady-state 3D Boussinesq system in the whole space
Lebesgue spaces with variable exponent: some applications to the Navier-Stokes equations.
Some remarks about the stationary Micropolar fluid equations: existence, regularity and uniqueness.
Partial suitable solutions for the micropolar equations and regularity properties.
On an almost sharp Liouville type theorem for fractional Navier-Stokes equations
Some remarks on the regularity of weak solutions for the stationary Ericksen-Leslie and MHD systems
Asymptotic behavior of a generalized Navier-Stokes-Bardina's model and applications to related models
A crypto-regularity result for the micropolar fluids equations.
Some existence and regularity results for a non-local transport-diffusion equation with fractional derivatives in time and space.
On the long-time behavior for a damped Navier-Stokes-Bardina model.
Interior espilon-regularity theory for the solutions of the magneto-micropolar equations with a perturbation term.
Spatial behavior of solutions for a large class of non-local PDE's arising from stratified flows.