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with microbial ecosystems and more broadly with the environment, within the context of
the agroecological transition. This unit is made up of more than 170-180 scientists, profes-
sors, engineers, technicians and students from both organisations and other technical and
professional organisations and notably IDELE, ALLICE, IFCE, ENVA and University of
Paris. GABI has several field of competences related to animal bio and genetics; which
are quantitative, molecular and population genetics; functional genomics; biostatistics;
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mitochondrial RNA and DNA; analysis of mtDNA variability; mitochondrial functional
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proposed.
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Introduction

Nowadays, the use of deep learning algorithms in different areas has improved and in-
creased considerably. As a proof of that, we can show examples such as: self-driving cars,
natural language processing and speech recognition, computer vision, face detection and
recognition, self-service solutions, machine translation, medical imaging, object identifica-
tion, etc.

In particular, we can notice some useful advances in the area of biology and genetics, for
example the alphafold project [1], which is an actually big challenge in biology and consists
of the idea that a protein’s structure must be determined by its amino acid sequence, that
is, we have to predict the protein’s structure using as input data the information related
to its sequences as well as amino acid residue structure pairs.

The goal of this internship is to apply the methodology of deep learning for genomics se-
lection. In other words, we want to use neural networks models to predict the phenotypes
of dairy traits for animals using their genotyping data (SNP information). However, data
used as input for the different models is given by a matrix representation of SNP infor-
mation, which is too large and therefore, we are also interested in optimizing this matrix
in a new space that let us to get a better representation of it.

On the first chapter, we introduce in detail the research problem of the internship, and
for that, first, we talk about some notions and concepts related to genetics and genome,
which gives us a better understanding about what we are going to work and delay during
this work. Then, we explain the reasons why we are interested in applying deep learning
to genomics selection, where we present an example of an application of deep learning in
biology, which let us understand the predictive power of deep learning models. After, I
introduce the objectives of the study and finally, I describe the state-of-the-art related to
the different models proposed to predict phenotypes from genotyping data in recent years.

On the second chapter, I introduce the baseline model GBLUP (Genomic best linear unbi-
ased prediction) ( [2], [3] and [4]). Then, I present the MLP (Multi-layer Perceptron) [4],
where GBLUP works better than MLP for this predictive task [5]. After, I introduce the
VIME (Value Imputation and Mask Estimation) methodology [6] used to delay with our
objective related to the optimization of the representation of genotyping data. Finally, I
describe the dataset used for our study. Then, I explain the pre-processing of data done
to get it ready for evaluating the performance of different models.

On the third chapter, I start describing the hyper-parameters selection for each proposed
model before the training phase. Then, I evaluate the performance of the different mod-
els through the score of mean squared error (MSE) and I will compare the results ob-
tained among the diverse models. Furthermore, the implementation of the models will
be done in the programming language Python (https://www.python.org/), in particu-
lar, I will be working with TensorFlow (https://www.tensorflow.org/) and scikit-learn
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(https://scikit-learn.org/stable/) packages.

On the last chapter, I discuss the conclusions I have reached on the basis of the results
presented in the previous chapter. Additionally, I give some suggestions and recommen-
dations about what methods and models may be tried or applied, which could let us to
get a better performance regarding to our models proposed in this internship.
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Chapter 1

Introduction to the research
problem

Before starting to talk about the research problematic, we will discuss about some notions
and concepts related to genetics and genome, which will help us familiarize ourselves with
the terms of the problematic we are trying to face in this work.

1.1 Notions of genomics
Briefly, the deoxyribonucleic acid (DNA) is the support for genetic information at the
nuclear and mitochondrial level in eukaryotes. A molecule of DNA is composed by two
long chains of polynucleotides, where each one of these chains consists of 4 types of sub-
units (nucleotides) called adenine (A), cytosine (C), guanine (G) and thymine (T). Several
molecules will bind to it and transcribe this sequence into messenger RNA (called mRNA).
The translation of this new mRNA makes it possible to produce proteins that will perform
the various tasks necessary for the development, functioning and reproduction of living
beings.

A gene is a sequence of nucleotides whose expression, i.e. transcription into mRNA
and translation into protein, affects the characteristics of an organism. There are at least
22000 genes in bovines, representing only 27% of its genome. For an individual or animal,
its genome is defined as the complete set of its information in the DNA. There are several
versions of a gene, each version is called an allele. The genotype of an individual is the
allelic composition of the genes under study. Bovines as humans beings have two copies
of each gene, one from the father, one from the mother, so they have a maximum of two
different alleles at the most.

The phenotype is the set of observable characters of an individual. This term some-
times refers to a single observable character such as size. In cells, DNA is collected as
chromosomes. Each bovine has 30 pairs, from his parents, for a total of 3 billion pairs of
DNA bases.

Simple nucleotide polymorphism: SNP is a variation on a base pair, at a specific locus,
with a allelic frequency greater than 1%. For example: in a given population: For example:
in a given population, on the 1st chromosome at locus N◦20, 80% of the population has
an A while the remaining 20% a G. The least frequent allele (G) has a frequency greater
than 1%, we speak of SNP at this position, the two alleles being A or G.

10



1.2 Problem context
GWAS (Genomic wide association study) is an analysis of the statistical association be-
tween hundreds of thousands of polymorphisms (SNPs) and a phenotypic trait. These
studies, which made a big leap in genetic research, were allowed by the invention of DNA
genotyping microarray. Previously, this type of research was conducted on a small number
of polymorphisms belonging to a small number of genes. For this purpose, they compare
DNA sequences of several individuals with different phenotypes for the same trait. Then,
their interest is to try to understand what influence the region (or regions) of the genome
with a variant associated to the trait under study. Sometimes, the associated genes or
regions have functions that are not yet known, or whose relationship with the phenotype
is not obvious. Therefore, their next step is to study how these genes are involved in the
phenotype.

Genomic prediction aims to predict the phenotype of an individual using their geno-
type information. We can find several applications about it in literature: we can try to
predict the risk of disease in human beings [7]; while in plants and animals, they seek for
the genetic value of the individual [8], that is, the probability of obtaining offspring with
interesting phenotypic traits for breeding, for example.

By the way, deep learning methods are a class of machine learning techniques capable
of identifying highly complex patterns in large dataset [9]. These kinds of models, both
supervised and unsupervised, have found various applications in areas such as biology
and genomics: for example, these models can be used as a fully data-driven refinement of
bioinformatics tools, to predict the effect of non-codding variants or to get richer repre-
sentations to reveal the structure of high-dimensional data [10]. We can also apply deep
learning methods for predicting the sequence specificity of DNA- and RNA-binding pro-
teins and of enhancer and cis-regulatory regions, methylation status, gene expression and
control of splicing [9].
In particular, we are interested in the application of deep learning models for genomic se-
lection because these models can capture non-linear genetic components and make multi-
traits prediction, which can not be approached by classic statistical methods used to solve
this task. Would it then be possible to predict multi-(diary)traits of animals from their
genotype?

1.3 State-of-the-art
The best models of genomic predictions at present are statistical methods such as GBLUP
(Genomic best unbiased linear prediction) and Bayesian approaches, which are very effi-
cient for genomic selection on unique quantitative trait or few traits genetically related.
However, these models can not consider massive and heterogeneous data, non-linear ge-
netic components, and multi-traits prediction.

A multilayer perceptron (MLP) is one of the basic deep learning models, which will be
seen in Chapter 2. This model is an artificial neuronal network which is really suitable for
genomic selection because it can explain non-linear genetic components and make multi-
traits prediction from genotype data.

Montesinos-López et al. [5] made the comparison of 3 deep learning models: MLP,
CNN (convolutional neural network), LCNN (local convolutional neural network) against
3 baseline (or classic) models: GBLUP, BayesA and EGBLUP (extend GBLUP) to analyze
their predictive ability on different traits for the simulated and real Arabidopsis dataset.
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The prediction performance was measured in terms of Pearson’s correlation. The results
showed that there is no clear superiority of deep learning in terms of prediction power
compared to conventional genome-based prediction models. Nevertheless, there is clear
evidence that deep learning algorithms capture non-linear patterns more efficiently than
conventional genome based [5].

van Hilten et al. [11] proposed a new open-source deep learning framework known
as GenNet for predicting phenotypes from genetic data. In this model, interpretable
and memory-efficient neural networks are constructed by incorporating prior biological
knowledge. The effectiveness of GenNet is demonstrated across multiple datasets and for
multiple phenotypes.

Fumeron [12] did his M2 internship at BIGE team with collaboration of IBISC lab-
oratory last year related to the prediction of the phenotypes (sport performance) from
genotyping data of horses. He realized that adding pedigree information to the MLP
model (known as MLP5), it helps to improve a little the model performance regarding to
the model without it. However, the prediction performance of this model does not work
better than baseline models in all phenotypes, which is not enough to guarantee that deep
learning models work better than classical statistical methods.

DeepNull is a new architecture proposed et implemented by Zachary et al. [13], which
combines the non-linear effects of covariates measured by a MLP model and the additive
effects given by a linear model (it can even be a GWAS additive model). DeepNull is
compared against a standard GWAS as baseline model on ten phenotypes from the UK
BioBank, which is measured by the Pearson’s correlation (squared) between true and
predicted value of phenotypes. The results showed that DeepNull improves phenotype
prediction compared to Baseline because of potential covariate interactions or higher order
terms can be easily include in DeepNull, which does not always happen with Baseline
model. So, DeepNull is one of the best deep learning models to predict phenotypes from
genotype data for now.

1.4 Hypothesis
The classical statistical methods for genomic prediction only take into account additive
genetic effects, and as we will see later these models need the calculation of a genetic rela-
tion matrix only if we study several traits at the same time, and which is computationally
expensive. In addition, these models do not allow predictions of multiple phenotypes at
once and are not useful for capturing the nonlinear effects that are present in most cases.
Therefore, the deep learning models to be developed will be under the assumption that
there is the presence of additive genetic effects, and they will also be used for multi-traits
prediction, that is, the estimation of performance for several phenotypes at once.

1.5 Objectives
As I have explained before, the research problem consists of genomic selection for animals,
that is, we want to predict certain phenotypes of animals from their genotyping data by
using deep learning architectures. So, in this work we propose to accomplish the following
objectives:

• Predict the performance for phenotypes (dairy) of animals from their genotyping
data.
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• Optimize the representation of genotyping data (SNP information).

The first objective we propose to achieve is related to the main application of these models
where the dataset used corresponds to the only domestic animals with massive data base of
genotypes and traits of production recorded on a large population of most 100.000 animals.
However, the second one is the most important objective because as we will see later, the
input data is a large matrix, which is computationally expensive and therefore we will
try to optimize this matrix before training (pre-processing) a neural network to make the
best use of the linear and non-linear genetic information contained in the medium to high
density genotyping data.
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Chapter 2

Material and methods

In this section I describe the material and methods used to try to solve and achieve our
objectives, i.e., the algorithms or models and the dataset. First, I describe the dataset
used for evaluating our proposed models. Then, I introduce different models for achieving
our problem. Finally, I explain how the data is divided into training, validation and testing
sets for using the different models and obtaining the results to be seen in the next chapter.

2.1 Dataset
First of all, I must clarify the dataset used in this work is confidential and it was pro-
portioned by GenEval (Genetic Evaluation of farm animals), which is INRAE’s partner.
Therefore, the partial or total distribution of data is prohibited.

2.1.1 Data description

The dataset used for this study consists of information about 113599 Holstein breed female
cows. As genotype data, I have the SNP information, which is described by a large
matrix. For each animal, I have its ID and 53469 joined values, where the ith-value
corresponds to the number of alleles (2) carried by the individual to the ith-variant and
it’s encoded as follows:

• 0 for homozygote 1

• 1 for heterozygote

• 2 for homozygote 2

Additionally, I also have the information on the chromosome and position of the ith-variant
regard to the SNP information. A brief representation of all these data could be appreci-
ated in the annexes.

As phenotype data, I will work with the performance of 35 dairy traits measured by
the variable Yield Deviation, and its construction is detailed in the annexes. Each trait
(encoded by CAR: caractère, trait in English) is described as follows:

• CAR 1 to 5: 5 dairy production traits.

• CAR 6: somatic cell score.

• CAR 7 to 12: 6 fertility traits.

• CAR 13 to 33: 21 dairy morphology traits.

• CAR 34: occurrence of clinical mastitis before the 150th day of lactation.
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• CAR 35: functional longevity.

In addition, I also have the weights associated to the variable Yield Deviation (w_YD)
for each trait, and its construction is also explained in the annexes.
For each animal, I have its ID, status (what type of population it represents) values of the
variables YD and w_YD for each trait.

2.1.2 Data pre-processing

First, I decided to pre-process all available information for the present study to deal with
missing data, inappropriate format of data or wrong data type.

So, I started analyzing whether or not there are missing information regarding to the
variables YD and w_YD for all traits. Then, I computed and observed that for the trait
6 (CAR 6) I have two individuals with missing values for YD and w_YD. Moreover, I
decided to delete these two animals and its values associated for all traits.

For the trait 34 (CAR 34), I observe there are 29294 animals with missing values of both
variables, which corresponds to 25.79% of all individuals. Furthermore, I also saw there
are 4968 animals with missing values of both variables for the trait 35 (CAR 35), and
which corresponds to 4.37% of all population considered for the study.
I therefore decided not to work with these two traits since it is not possible to infer the
missing data by the nature of the information received, i.e., I do not take these two traits
into account for the current study.

On the other hand, I also identified 12 individuals with a few missing typing in the SNP
information. So, I decided to delete all values from the SNP information associated to
these individuals and also that of the two individuals found in the analysis of the phenotype
data.
Afterwards, I try to the separate all joined values (53469 data) for each animal to get a
matrix representation of SNP information available. In the end, I have 113585 animals
with their genotype and phenotype data available for the present work.

2.1.3 Descriptive statistics

Now, I study the behavior of Yield deviation (YD) for traits 1 to 33 in order to identify
which probability distribution the data are fitted to. For this purpose, I calculate the
histogram of YD for each trait, which can be seen in Figures 5.1 to 5.17.
The results show that the distribution of adjusted performance (YD) for traits 7, 8, 10 and
11 is not normally distributed, which is explained by the fact that these traits are binary
traits. In addition, traits 13 and 21 are discrete traits with 5 modalities whose distribution
is not normal (class 3 over-represented in the distribution of raw performance compared to
a normal distribution), which explains a non-normal distribution of adjusted performance
(YD).
The distribution of YD for other traits seems to be normal. I also verified all these
assumptions by a Jarque-Bera test, which confirmed my results.
So, I decide to normalize the variable YD for all traits to have a better appreciation in
terms of numerical value with respect to the analysis of results, which will be seen later
in Chapter 3.
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2.2 Models

2.2.1 Genomic Best Linear Unbiased Prediction (GBLUP)

Genomic best linear unbiased prediction (GBLUP) is a method that utilizes genomic rela-
tionships to estimate the genetic merit of an individual (or animal). To get this purpose, I
use a genomic relationship matrix (GRM), which is estimated from DNA marker informa-
tion. This matrix defines the covariance between individuals based on observed similarity
at the genomic level, rather than on expected similarity based on pedigree, so that more
accurate predictions of merit can be made.

The GBLUP method was introduced by VanRaden [2] and Habier et al. [3]. In practice,
we use the following linear mixed model to compute the GBLUP:

Y = Xβ + Zu + ε, (2.1)

where Y is the vector of response variables (phenotypes) of order n × 1, X is the design
matrix of fixed effects of order n × p, β is the vector of fixed effects of order p × 1, Z is
the design matrix of random effects (allocating records to genetic values) of order n × q,
u is the vector of random effects (or additive genetic effects for an individual) and ε is
a vector of residuals distributed as N (0, R), where R is a variance-covariance matrix of
residual effects of dimension n × n. Furthermore, we have Var(u) = Gσ2

u where G is the
genomic relationship matrix, and σ2

u is the genetic variance for this model.

A solution to estimate jointly parameters β̂ and û from (2.1) is given for solving the
following mixed model equation(

X⊤R−1X X⊤R−1Z
Z⊤R−1X Z⊤R−1Z + σ−2

u G−1

)(
β̂
û

)
=
(

X⊤R−1y
Z⊤R−1y

)
, (2.2)

where the solution obtained from (2.2) for û is known as GBLUP.
So, the key to this method is using a well-estimated matrix G to solve (2.2). To do that,
I present below some methods introduced by VanRaden [2] in his paper to compute the
matrix G and which are illustrated in the book of Montesinos-Lopez et al. [4].

1. The first method computes the GRM as

G = XX⊤

p
, (2.3)

where X is the matrix of marker genotypes of dimensions J × p coded by

x =


0 if the SNP is homozygous for the major allele
1 if the SNP is heterozygous
2 if the SNP is homozygous for the other allele

2. The second method is similar to the first one, but first each marker is centered by
twice the minor allele frequency:

G = (X − µE)(X − µE)⊤

2∑p
j=1 pj(1 − pj) , (2.4)

where pj is the minor allele frequency of SNP j = 1, . . . , p and µE the expected value
of matrix X under the Hardy–Weinberg equilibrium [14], from estimates of allelic
frequencies, that is, µE = 1J [2p1, . . . , 2pp]. The term 2∑p

j=1 pj(1−pj) is the sum of
the variance estimates of each marker and makes GRM analogous to the numerator
relationship matrix [2].
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3. In the third method, the GRM should be calculated as follow

G = ZZ⊤

p
, (2.5)

where Z is the matrix of scaled SNP codes and p is the number of SNPs, that is
zij = (xij − 2pj)

√
2pj(1 − pj).

2.2.2 Multilayer Perceptron (MLP)

A multilayer perceptron (MLP) is an artificial neural network (ANN), which is composed
of input layers, (2 or more) hidden layers and output layers where each layer has a specific
number of nodes (or neurons). The MLP is a fully connected feedforward neural network
because current neurons from each layer (starting from the first hidden layer) are con-
nected with all neurons from the previous layer (starting from the input layer) until the
output layer (i.e. fully connected) and the information transmitted from the input layer
through hidden layers to the output layer travels in only one direction, in this case forward
(feedforward).
In Figure 2.1 we provide an example of this type of neural networks to get a better un-
derstanding of the main components used to construct MLP models. In this neuronal
network we have that

• x1, . . . , x8 represent the information received as input for the model.

• w
(1)
j,i , w

(2)
k,j , w

(3)
l,k with i = 1, . . . , 9; j, k = 1, . . . , 3; l = 1, . . . , 4 are the weights that

modifies the received information from the input and can be interpreted as gains
that can attenuate or amplify the values that they wish to propagate toward the
neuron [4].

• w
(1)
j,9 , w

(2)
k,4, w

(3)
l,4 with j, k = 1, . . . , 3; l = 1, . . . , 4 are the weights associated to x9, V1,4

and V2,4, respectively, which are known as the term intercept or bias.

• y1, . . . , y4 are the outputs of the neural network.

Figure 2.1: An example of MLP with eight input variables (x1, ..., x8), four output variables
(y1, y2, y3, y4), and two hidden layers with three neurons each one
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In the following equations, I describe the analytical form of the model given in Figure 2.1
for N outputs neurons, with D inputs neurons, M1 hidden neurons (units) in hidden layer
1 and M2 hidden units in hidden layer 2:

V1,j = g1

(
D∑

i=1
w

(1)
ji xi

)
for j = 1, . . . , M1 (2.6)

V2,k = g2

M1∑
j=1

w
(2)
kj V1,j

 for k = 1, . . . , M2 (2.7)

yl = g3

M2∑
k=1

w
(3)
lk V2,k

 for l = 1, . . . , N (2.8)

where (2.6) gives the output of each of the neurons in the first hidden layer, (2.7) pro-
duces the output of each of the neurons in the second hidden layer, and (2.8) produces the
output of each response variable of interest. The coefficients b1,j , b2,k, and b3,l (or weights
associated to V0,9, V1,4 and V2,4, respectively) are the term intercept for the hidden layers
1, 2, and the output layer, respectively. The weights w

(1)
j,i , w

(2)
k,j , w

(3)
l,k are used to the learn-

ing process of the model, g1, g2 and g3 are the activation functions in hidden layers 1, 2,
and the output layer, respectively.

As we have seen, the activation functions are used to propagate the output of one
layer’s nodes forward to the next layer (up to and including the output layer) [4]. The
most common functions are sigmoid (σ), softmax, tanh and ReLU (rectified linear unit).

σ(z) = 1
1 + e−z

, tanh(z) = e2z − 1
e2z + 1 , ReLU(z) = max(0, z),

softmax(zi) = ezi

1 +∑C
j=1 ezj

, for i = 1, . . . , C.

In neural networks, it’s usually common to use a ReLU function as activation function in
the output of each hidden layer. Depending on the problem or task to solve, we can apply
an identity function (regression problem), sigmoid function (binary classification problem)
or softmax function (multiclass classification problem) for the output layer.
Considering our previous example, the problem to solve is explained as follows: given a
training data (x1, y1, x2, y2, . . . , xm, ym), we want to find the parameters

θ = (w(1)
j,i , w

(2)
k,j , w

(3)
l,k , b1,j , b2,k, b3,l)

that minimizes the empirical loss J(θ) :

J(θ) = 1
m

m∑
i=1

L(ŷi, yi)

where ŷi is the prediction of the model obtained by (2.8) and L is some standard loss
function, in our case L is the Mean Squared Error (MSE):

L(ŷ, y) = 1
2(ŷ − y)2 for y ∈ R.

The training process of the neural network follows the next steps:

• For an initialization of weights value, the loss and predictions are calculated by
forward-propagation.
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• We calculate the gradients of J(θ) with respect to the parameters θ through the
back-propagation algorithm, which let us to compute the chain-rule by storing in-
termediate (and re-use derivatives).

• We apply stochastic gradient descent methods (as gradient descent) to update the
parameters θ using a fixed learning rate.

By the way, during the training phase there could be some problems such as: overfitting
(or high variance), underfitting, vanishing (or exploding) gradient, covariate shift, etc.
Therefore, we suggest some alternatives to deal with these problems:

• To avoid the poor convergence during the updating of parameters, we apply the
first-order method Adam on mini batches of training set.

• To deal with the problem of the fastest the gradient diminishes/vanishes during
backpropagation and therefore the network could stop learning, we initialize the
weights randomly, use a ReLU function as activation function, and apply a dropout
regularization.

• To avoid the covariate shift and allow to learn the network faster, we apply a batch
normalization.

2.2.3 Value Imputation and Mask Estimation (VIME)

Deep learning models via supervised learning on large labeled datasets have showed several
successes in a variety of applications (such as image classification [15], object detection [16],
and language translation [17]). However, the collection of large labeled datasets is really
expensive and even impossible in numerous domains. In these settings, even tough, there
is often an abundance of unlabeled data available - datasets are often collected from a
large population, but target labels are only available for a small group of people [6]. These
datasets offer huge opportunities for self- and semi-supervised learning algorithms, which
can take advantage of the unlabeled data to further improve the performance of a predictive
model. Unfortunately, actual self- and semi-supervised learning algorithms are ineffective
for tabular data because they heavily rely on the spatial or semantic structure of image or
language data. So, I am going to present the systematic self- and semi-supervised learning
framework for tabular data proposed by Yoon et al. [6], which they refer collectively as
VIME (Value Imputation and Mask Estimation).

2.2.3.1 Problem formulation

First, I am going to introduce the general formulation of self- and semi-supervised learning
presented by Yoon et al. [6]. We consider a small labeled dataset Dl = {xi, yi}Nl

i=1 and a
large unlabeled dataset Du = {xi}Nl+Nu

Nl+1 where Nu ≫ Nl, xi ∈ X ⊆ Rd and yi ∈ Y. We
assume every input feature xi in Dl and Du is sampled i.i.d. from a feature distribution
pX , and the labeled data pairs (xi, yi) in Dl are drawn from a joint distribution pX,Y .
When only limited labeled samples from pX,Y are available, a predictive model f : X → Y
solely trained by supervised learning is likely to overfit the training samples since the
empirical supervised loss ∑Nl

i=1 l (f(xi), yi) we minimize deviates significantly from the
expected supervised loss E(x,y)∼pX,Y

[l(f(x), y)] where l(·, ·) is some standard supervised
loss function.

Self supervised learning

In general, self-supervised learning constructs an encoder function e : X → Z that takes a
sample x ∈ X and returns an informative representation z = e(x) ∈ Z. The representation
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z is optimized to solve a pretext task defined with a pseudo-label ys ∈ Ys and a self-
supervised loss function lss.
We define the pretext predictive model as h : Z → Ys, which is trained jointly with the
encoder function e by minimizing the expected self-supervised loss function lss as follows

min
e,h

E(xs,ys)∼pXs,Ys
[lss (ys, (h ◦ e)(xs))] (2.9)

where pXs,Ys is a pretext distribution that generates pseudo-labeled samples (xs, ys) for
training the encoder e and pretext predictive model h.

Semi-supervised learning

Semi-supervised learning optimizes the predictive model f by minimizing the supervised
loss function jointly with some unsupervised loss function defined over the output space
Y. Formally, semi-supervised learning is formulated as an optimization problem as follows

min
f

E(x,y)∼pX,Y
[l (y, f(x))] + β · Ex∼pX ,x′∼p̃X(x′|x)

[
lu
(
f(x), f(x′)

)]
(2.10)

where lu : Y × Y → R is an unsupervised loss function, and a hyper-parameter β ≥ 0 is
introduced to control the trade-off between the supervised and unsupervised losses. x′ is
a perturbed version of x assumed to be drawn from a conditional distribution p̃X(x′|x).

Now, I am going to present the framework developed by Yoon et al. [6] for self- and
semi-supervised learning, and which are used on this work.

2.2.3.2 Self supervised learning approach

The idea of this framework is to introduce two pretext tasks: feature vector estimation
and mask vector estimation. The goal is to optimize a pretext model to recover an input
sample (a feature vector) from its corrupted variant, at the same time as estimating the
mask vector that has been applied to the sample.

In this framework, the two pretext tasks share a single pretext distribution pXs,Ys . First,
a mask vector generator outputs a binary mask vector m = [m1, . . . , md]⊤ ∈ {0, 1}d

where mj is randomly sampled from a Bernoulli distribution with probability pm (i.e.
pm = ∏d

j=1 Bern(mj |pm)). Then a pretext generator gm : X × {0, 1}d → X takes a
sample x from Du and a mask vector m as input, and generates a masked sample x̃. The
generating process of x̃ is given by

x̃ = gm(x, m) = m ⊙ x̄ + (1 − m) ⊙ x (2.11)

where the j-th feature of x̄ is sampled from the empirical distribution

p̂Xj = 1
Nu

Nl+Nu∑
i=Nl+1

δ(xj = xi,j), (2.12)

and where xi,j is the j-th feature of the i-th sample in Du.
Following the convention of self-supervised learning, the encoder e first transforms the
masked and corrupted sample x̃ to a representation z, then a pretext predictive model
will be introduced to recover the original sample x from z. The resulting sample x̃ may
not contain any information about the missing features and even hard to identify which
features are missing. To solve such a challenging task, we first divide it into two sub-tasks
(pretext tasks):
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1. Mask vector estimation: predict which features have been masked;

2. Feature vector estimation: predict the values of the features that have been cor-
rupted.

Then, a separate pretext predictive model is introduced for each pretext task. Both models
operate on top of the representation z given by the encoder e and try to estimate m and
x collaboratively. The two models and their functions are,

• Mask vector estimator, sm : Z → [0, 1]d , takes z as input and outputs a vector
m̂ to predict which features of x̃ have been replaced by a noisy counterpart (i.e.,
m);

• Feature vector estimator, sr : Z → X , takes z as input and returns x̂, an
estimate of the original sample x.

The encoder e and the pretext predictive models (in this case, the two estimators sm and
sr) are trained jointly in the following optimization problem,

min
e,sm,sr

Ex∼pX ,m∼pm,x̃∼gm(x,m) [lm(m, m̂) + α · lr(x, x̂)] (2.13)

where m = (sm ◦ e)(x̃) and x̂ = (sr ◦ e)(x̃). In addition, we can notice that the self-
supervised loss function lss (given in Equation (2.9)) is decomposed as the sum of two
losses, where the first loss function lm is the sum of the binary cross-entropy losses for
each dimension of the mask vector

lm(m, m̂) = −1
d

 d∑
j=1

mj log [(sm ◦ e)j(x̃)] + (1 − mj) log [1 − (sm ◦ e)j(x̃)]

 , (2.14)

and the second loss function lr is the reconstruction loss, given by

lr(x, x̂) = 1
d

 d∑
j=1

(xj − (sr ◦ e)j(x̃))2

 . (2.15)

The trade-off between the two losses is adjusted by the hyperparameter α. The entire self-
supervised learning framework introduced by Yoon et al. [6] is illustrated in Figure 2.2.

Figure 2.2: Schema of self supervised learning framework

2.2.3.3 Semi-supervised learning approach

Now, I show how the encoder function e from the previous sub-subsection can be used in
semi-supervised learning. Let fe = f ◦ e and ŷ = fe(x). The predictive model f is trained
by minimizing the objective function,

Lfinal = Ls + β · Lu. (2.16)
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The supervised loss Ls is given by

Ls = E(x,y)∼pXY
[ls(y, fe(x))] (2.17)

where ls is the standard supervised loss function, in our case ls is the mean squared error.
The unsupervised (consistency) loss Lu is defined between original samples (x) and their
reconstructions from corrupted and masked samples (x̃),

Lu = Ex∼pX ,m∼pm,x̃∼gm(x,m)
[
(fe(x̃) − fe(x))2

]
(2.18)

This consistency loss is inspired by the idea in consistency regularizer: encouraging the
predictive model f to return the similar output distribution when its inputs are perturbed.
However, the perturbation in this framework is learned through the self-supervised frame-
work while in the previous works, the perturbation is from a manually chosen distribution,
such as rotation.

For a fixed sample x, the inner expectation in Equation (2.18) is taken with respect to pm
and gm(x, m) and could be interpreted as the variance of the predictions of corrupted and
masked samples. β is another hyperparameter to adjust the supervised loss Ls and the
consistency loss Lu. In each iteration of training, for each sample x ∈ Du in the batch,
we create K augmented samples x̃1, . . . , x̃K by repeating the operation in Equation (3)
K times. Every time the sample x ∈ Du is used in a batch, these augmented samples are
recreated. Then, the stochastic approximation of Lu is given as

L̂u = 1
NbK

Nb∑
i=1

K∑
k=1

[
(fe(x̃i,k) − fe(xi))2

]
= 1

NbK

Nb∑
i=1

K∑
k=1

[
(f(z̃i,k) − f(zi))2

]
(2.19)

where Nb is the batch size. During training, the predictive model f is regularized to make
similar predictions on zi and zi,k, k = 1, . . . , K. After training f , the output for a new
test sample xt is given by ŷ = fe(xt). The entire semi-supervised learning framework
introduced by Yoon et al. [6] is illustrated in Figure 2.3.

Figure 2.3: Schema of semi-supervised learning framework

2.3 Training, validation and test sets
As I said before, there are 113585 animals with their genotyping and phenotype data
available for the present work. These 113585 female animals, regarding to the available
phenotype data, were separated into

• a learning population (status = "A")

• a first validation population for selecting the best hyperparameters (status = "B")

• a second validation population (="test") for testing the model chosen with the best
hyperparameters (status = "V")

22



So, I also apply this split to the genotyping data by identifying the animals’ ID from each
status of the phenotype data (training set: "A", validation set: "B", testing set: "V").
According to this division, we get a training data set of 93484 animals, a validation data
set of 10086 animals and a test data set of 10015 animals, which will be used to train,
valid and evaluate the different models.
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Chapter 3

Results and discussion

3.1 Model training
Before starting the training of the models, I must choose the hyper-parameters and pa-
rameters to initialize them. The initial architecture for the MLP and VIME models is
presented below.
I should also clarify that the calculation of YD predictions for each trait by a single-trait
GBLUP model was performed separately and the comparison of its results with the other
models will be shown later.

3.1.1 Hyper-parameters initialization

3.1.1.1 MLP model

The initial architecture of MLP model is described as follow:

• 3 hidden layers: 1000/500/500 neurons, activation function: ReLU function

• Batch Normalization layer

• Dropout layers: 0.3/0.3/0.3 rate.

• Output layer of 33 neurons with Identity function as activation function

• Optimizer Adam with learning rate lr = 10−3. Batch size: 500. Epochs: 100.

• Loss function: Mean Squared Error (MSE)

3.1.1.2 VIME model

For the VIME model, first I take 35000 samples from training dataset as unlabeled samples
and the rest as labeled samples (58484 samples). Then, I introduce the architecture of the
self-supervised framework used to train the encoder:

• Encoder:

– 3 hidden layers: 1000/500/500 neurons, activation function: ReLU
– Batch Normalization layer
– Dropout layer

• Feature estimator:

– 1 hidden layer of 10000 neurons.
– 1 output layer of 53469 neurons.
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– A ReLU function as activation function for the hidden and output layers.

• Mask estimator:

– 1 hidden layer of 10000 neurons with ReLU function as activation function.
– 1 output layer of 53469 neurons with Sigmoid function as activation function.

• Optimizer Adam with learning rate lr = 10−3. Batch size: 500. Epochs: 30.

• α = 1

• pm = 0.2

For the semi self-supervised framework, we use the encoder architecture already trained
on the self-supervised framework with 35000 unlabeled samples.
Initially, I remove the part of the calculation of consistency loss (lu) with respect to unla-
beled samples on the semi-supervised framework for now. This model will be called VIME
(only supervised).
Therefore, I want to compare the prediction performance by including or not including
the unsupervised part on the semi-supervised framework.

The semi self-supervised framework for VIME (only supervised) is described as

• Predictor:

– 1 output layer of 33 neurons with Identity function as activation function

• Supervised loss (ls) is given by MSE.

• Optimizer Adam with learning rate lr = 10−3. Batch size: 500. Epochs: 20.

The semi self-supervised framework for VIME complete is similar to VIME (only super-
vised) and is described as

• Predictor:

– 1 output layer of 33 neurons with Identity function as activation function

• K = 3

• β = 1

• Optimizer Adam with learning rate lr = 10−3. Batch size: 500. Epochs: 15.

3.1.2 Learning curves

After having fixed the initial parameters and hyper-parameters of each model, I proceed
to perform the training in each of them according to the algorithms described previously.
During each epoch, I compute the training loss (with respect to training set) and valida-
tion loss (with respect to validation set) for later graphical use later.
In the next figures, we can see the behavior of loss function (training and validation losses)
according to the number of epochs for each model.

As we can see in Figure 3.1, for the MLP model, the training loss decreases as the
number of epochs passes, which does not happen with the validation loss, which descends
rapidly but then presents a growing trend. This therefore leads to an overfitting problem.
In Figure 3.2, we have that for the VIME (only supervised) model, the training and
validation losses decrease as the number of epochs passes, which does not lead to an
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overfitting problem since the model has a good performance on the training and validation
sets. We can see a similar behavior for the VIME model in Figure 3.3.

Figure 3.1: Learning curves for MLP initial model

Figure 3.2: Learning curves for VIME (only supervised) initial model

Figure 3.3: Learning curves for VIME initial model
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3.2 Model performance
As we have seen before, there is an overfitting problem during the training of MLP model,
but not with VIME (only supervised) and VIME models. So, I will try to reduce this
problem for MLP model through the search of best hyper-parameters. I will also search
the best hyper-parameters for VIME (only supervised) and VIME models to improve the
results obtained previously. The performance of the different models will be measured
by the mean squared error (MSE) calculated between true and predicted values on the
validation set.

3.2.1 Hyper-parameters tuning

For MLP model, I vary the learning rate lr ∈ {10−2, 10−3, 10−4, 10−5}. As we can see in
Figure 5.18, the performance with lr = 10−4 improves a little with respect to the initial
model. So, I decide to fix the value for the learning rate as lr = 10−4. Then, I try to change
the rate for dropout layers, where I got that is better to work with the same dropout lay-
ers: 0.3/0.3/0.3 rate. Besides, I decreased the number of epochs to 15 for training. So,
the best MLP model is the one that has a learning rate lr = 10−4 and dropout layers:
0.3/0.3/0.3 rate.

For the VIME (only supervised) model, I fix the hyper-parameters α = 1, pm = 0.2
and I vary the learning rate lr ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6}. As we can see
in Figure 5.19, the best performance is obtained with l̂r = 10−3. Then, I fix l̂r =
10−3, α = 1 and I vary pm ∈ {0.2, 0.4, 0.5, 0.6, 0.7, 0.9}, where the best performance
is obtained with p̂m = 0.2 in Figure 5.20. Finally, I fix l̂r = 10−3, p̂m = 0.2 and I
vary α = {0.1, 0.5, 1, 1.5, 3, 5, 7, 10}, where the best performance is obtained with α̂ = 1
in Figure 5.21, although there is a small difference with α = 5, which is not signifi-
cant. Therefore, the best hyper-parameters for the VIME (only supervised) model are
l̂r = 10−3, p̂m = 0.2, α̂ = 1 that match the initial hyper-parameters.

On the other hand, I fix the hyper-parameters α = 1, pm = 0.2, β = 1, K = 3 on
the VIME model, and I vary the learning rate lr ∈ {10−1, 10−2, 10−3, 10−4}. As we
can see in Figure 5.22, the best performance is obtained with l̂r = 10−3. Then, I fix
l̂r = 10−3, α = 1, β = 1, K = 3 and I vary pm ∈ {0.2, 0.5, 0.8}, where the best performance
is obtained with p̂m = 0.2 in Figure 5.23. After, I fix l̂r = 10−3, p̂m = 0.2, β = 1, K = 3
and I vary α ∈ {0.5, 1, 2, 3, 5}, where the best performance is obtained with α̂ = 3 in
Figure 5.24. Now, I fix l̂r = 10−3, p̂m = 0.2, α̂ = 3, K = 3 and I vary β ∈ {0.5, 1, 2, 3, 5},
where the best performance is obtained with β̂ = 0.5 in Figure 5.25. Finally, I fix l̂r =
10−3, p̂m = 0.2, α̂ = 3, β̂ = 0.5 and I vary K ∈ {1, 3, 5}, where the best performance is
obtained with K̂ = 5 in Figure 5.26. Therefore, the best hyper-parameters for the VIME
model are l̂r = 10−3, p̂m = 0.2, α̂ = 3, β̂ = 0.5 and K̂ = 5.

3.2.2 Improvement of learning curves

After having chosen the best hyper-parameters of each model, I proceed to perform again
the training in each one of them, and I also calculate the training loss and validation loss.
In the next Figures, we can see the new behavior of loss function (training and validation
losses) according to the number of epochs for each model.
I must stress that there is no graph of the improved learning curves for the VIME (only
supervised) model, as the hyper-parameters selected are the same as those initially chosen.

As we can see in Figure 3.4, for the MLP model, the training loss decreases as the
number of epochs passes, which happens slowly with the validation loss because it de-

27



scends rapidly but then it presents a slow descent. It seems that there is no an overfitting
problem, and this was one of the best models I could find.

In Figure 3.5, we have that the learning of the VIME model with the best hyper-
parameters improves a little with respect to the initial model, and besides, there is no
overfitting problem.

Figure 3.4: Learning curves for MLP model with best hyper-parameters

Figure 3.5: Learning curves for VIME model with best hyper-parameters

3.3 Model comparison
After finding the best hyper-parameters for each model, I proceed to evaluate the perfor-
mance of each model as a function of the number of training data, that is, it is expected
that as the amount of data for the training is increased, the performance of the model
is better. To do this, I will take the training set into 10 partitions: 5000, 10000, 15000,
20000, 25000, 30000, 35000, 40000, 45000 and 58484 data since I use 35000 samples from
training set to train the encoder of the self-supervised framework.
For each of these partitions, I will train the model according to the current partition of
training set, and I compute the MSE between true and predicted values on the testing set.
I repeat these calculations 10 times for MLP and VIME (only supervised).
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For the VIME model, I repeat these calculations 4 times due to long execution times.
Then, I choose 4 values from MSE calculated for MLP and VIME (only supervised) when
comparing these models with VIME.

3.3.1 MSE analysis

The following figures show the mean and standard deviation of the MSE calculated on the
testing set as a function of the number of training data for each model.
In Figure 3.6 we can see MLP has a slightly better performance than slightly. We also
have a similar behavior in Figure 3.7 where VIME has a slightly worse performance than
MLP. Besides, we notice that the deviation standard of MSE for MLP at the beginning is
bigger with respect to the other two models.
Figure 3.8 shows that VIME has a better performance than VIME (only supervised) and
therefore, VIME also has the best performance of the three models. Besides, the deviation
standard of MSE for VIME is smaller than that of VIME (only supervised).

Figure 3.6: Comparison between MLP and VIME (only supervised) by mean and standard
deviation of MSE

Figure 3.7: Comparison between MLP and VIME by mean and standard deviation of MSE
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Figure 3.8: Comparison between VIME (only supervised) and VIME by mean and standard
deviation of MSE

On the other hand, in Table 5.1 we can see the MSE calculated between true and
predicted values on the testing set for each trait and with respect to each model: GBLUP,
MLP, VIME (only supervised) and VIME. Here, we can notice that traits 4, 5, 1, 27 and
19 have the best performance in terms of MSE, while traits 11, 22 and 15 have the worst
performance in terms of MSE.

In Figure 3.9 we can see the boxplot for comparison of MSE between true and predicted
values across different models, where we can notice there is a little difference on the mean of
MSE between models. So, I decided to perform an ANOVA test to contrast this hypothesis,
and the results of this test are shown in Table 3.1. The p value obtained from ANOVA test
is significant (p < 0.05), and therefore, we conclude that there are significant differences
among models.

Figure 3.9: Boxplot for comparison of MSE between true and predicted values across different
models
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sum_sq df F Pr(>F)
0.536754 3.0 8.831117 0.000023
2.593274 128.0 NaN NaN

Table 3.1: ANOVA test for comparison of MSE between true and predicted values across different
models

From ANOVA analysis, we know that model differences are statistically significant in
terms of MSE, but ANOVA does not tell which models are significantly different from each
other. To know the pairs of significant different models, I will perform multiple pairwise
comparison analysis for all unplanned comparison using Tukey’s test, and the results of
this test can be seen in Table 3.2.
Below results from Tukey’s test suggest all pairwise comparisons between GBLUP and
other models reject the null hypothesis of no variation in means (of MSE) between pairs
of models (p < 0.05) and indicates statistical significant differences, that is, GBLUP
performance in terms of MSE differs statistically significant from other models.

group1 group2 Diff Lower Upper q-value p-value
GBLUP MLP 0.096679 0.005457 0.187900 3.901835 0.033244
GBLUP VIME (only supervised) 0.161721 0.070500 0.252943 6.526866 0.001000
GBLUP VIME 0.149606 0.058384 0.240828 6.037914 0.001000
MLP VIME (only supervised) 0.065042 -0.026179 0.156264 2.625031 0.252321
MLP VIME 0.052927 -0.038294 0.144149 2.136079 0.435698
VIME (only supervised) VIME 0.012115 -0.079106 0.103337 0.488952 0.900000

Table 3.2: Tukey’s test for comparison of MSE between true and predicted values across different
models

3.3.2 Performance of prediction by phenotype

In Figures 5.28 to 5.42 we can see the plot and fit of a linear regression between true values
and predicted values of YD obtained on the testing set for each model: MLP, VIME (only
supervised) and VIME, and certain phenotypes chosen (CAR1 to CAR5). I also computed
the value of R2, adjusted R2 and the slope for each linear regression.
In Table 5.2 we can see the value of slope obtained from the linear regression between true
values and predicted values of YD for all traits and each model.

We can see that the best fit of predictions with real values of YD for MLP model is
obtained with traits 4 and 5 where the values of the slope are 0.7755 and 0.7131, respec-
tively, which means the predicted values are strongly correlated with true values on these
traits. We also got R2 = 0.7832 and an adjusted R2 = 0.7831 for trait 4, and we had
R2 = 0.7399 and an adjusted R2 = 0.7398 for trait 5.

For VIME (only supervised) and VIME models, we get the best fit between predictions
and true values of YD with trait 4 (CAR4), where the values of slope are 0.4658 and
0.3548, respectively. We also got a R2 = 0.4081 and an adjusted R2 = 0.408 for VIME
(only supervised) model, and we had R2 = 0.4163 and an adjusted R2 = 0.4162 for VIME
model.
So, I can notice that each model has the best performance on trait 4 with respect to other
dairy phenotypes, which I also observed in the results obtained from Tables 5.1 and 5.3,
that is, the lowest value of MSE and the highest value of Pearson’s correlation are obtained
on trait 4.

3.3.3 Correlation analysis between GBLUP and other models

In Table 5.3 we can see the Pearson’s correlation calculated between true and predicted
values on the testing set for each trait and with respect to each model: GBLUP, MLP,
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VIME (only supervised) and VIME. Here, we can notice that traits 1, 2, 4, 5 and 20 are the
most correlated in terms of Pearson’s correlation because the first four traits are genetic
additives, while traits 7, 10 and 11 are the least correlated.

On the other hand, in Figures 3.10, 3.11 and 3.12 we can see the plot and fit of a
linear regression for correlations between GBLUP and each model: MLP, VIME (only
supervised) and VIME, respectively. I also computed the value of R2, adjusted R2 and
the slope for each linear regression.

We can notice correlations of MLP make a good fit with respect to GBLUP because I
obtained R2 = 0.998 and an adjusted R2 = 0.9979. I also got a slope of 0.9896, which is
the biggest value with respect to the other ones computed.
The correlations of VIME (only supervised) also make a good fit with respect to GBLUP
because I obtained R2 = 0.9377 and an adjusted R2 = 0.9336. I also got a slope of 0.6178.
The correlations of VIME make a good fit with respect to GBLUP because I obtained
R2 = 0.9325 and an adjusted R2 = 0.9280. I also got a slope of 0.6354.
Besides, I notice that traits 4 and 5 are a little far from the regression line with respect
to the VIME (only supervised) and VIME models, but it is not statistically significant.

In Figure 5.27 we can see the boxplot for comparison of Pearson’s correlation between
true and predicted values across different models, where we can notice there is a little
difference on the mean Pearson’s correlation between models. So, I decided to perform an
ANOVA test to contrast this hypothesis, and the results of this test are shown in Table 5.4.
The p value obtained from ANOVA test is significant (p < 0.05), and therefore, we con-
clude that there are significant differences among models.

As we know model differences are statistically significant in terms of Pearson’s correla-
tion. So, I will perform multiple pairwise comparison analysis for all unplanned comparison
using Tukey’s test to identify the pairs of significant different models, and the results of
this test can be seen in Table 5.5.
From Tukey’s test, we know that excepts GBLUP-MLP and VIME (only supervised)-
VIME, all pairwise comparisons for models reject null hypothesis of no variation in means
(of Pearson’s correlation) between pairs of models (p < 0.05) and indicates statistical
significant differences, that is, GBLUP and MLP performance in terms of Pearson’s cor-
relation differs statistically significant from the two VIME models.

Finally, I notice MLP model has the best fit with respect to GBLUP model in terms
of Pearson’s correlation although the training of MLP was not good enough. However,
the performance of VIME model is also good and could be improved if we try to augment
the number of samples on unlabeled samples used to train the encoder architecture and
the semi-supervised learning framework.
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Figure 3.10: Correlation analysis between MLP and GBLUP

Figure 3.11: Correlation analysis between VIME (only supervised) and GBLUP

Figure 3.12: Correlation analysis between VIME and GBLUP
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Chapter 4

Conclusion

Almost all dairy traits (CAR1 to CAR5) perform moderately well because the mean value
of MSE was 0.8049 for GBLUP, 0.9016 for MLP, 0.9666 for VIME (only supervised), and
0.9545 for VIME, which is still a little high. In spite of it, we can assure that the first
objective is met. In addition, we have seen that these traits are the most correlated among
all the traits due to their nature as genetic additives.
We also notice that trait 4 (CAR4) is the best predicted phenotype among MLP and the
two VIME models because it has the lowest value of MSE (0.1779 for GBLUP; 0.3369 for
MLP; 0.6072 for VIME (only supervised); 0.6096 for VIME) among all dairy traits, which
implies this trait is more suitable to represent this group of phenotypes.
On the other hand, we can see the worst predicted phenotypes are traits 7, 10 and 11,
which correspond to fertility traits. These traits had the highest values (near/upper to 1)
of MSE in each model, and this implies that the models presented in this work were not
good enough to capture their effects and make a good estimate of them from the available
genotyping data.

Regarding to the second objective we can note that it is not completely fulfilled since
the MLP model has a better performance than two VIME models proposed to optimize
the genotype data matrix in terms of the MSE. Furthermore, in terms of the Pearson’s
correlation, it seems that the correlations of the MLP model have a slightly better fit
with respect to the correlations of the GBLUP model presented. This leads us to ask
ourselves what would happen if we increased the number of unlabeled data for both self-
and semi-supervised framework approaches training, that is, it is recommended to increase
the amount of data available to have a better performance compared to the one presented
in this work.

If our results have not been able to demonstrate a clear advantage of deep learning
for genomic prediction with respect to classic statistical models, these results interested
the scientists to whom I presented my work. This study will be continued by BIGE, G2B
and MIA-Paris teams after I finish my internship for the purpose of publishing a scientific
article, which will allow to cover and/or apply certain methods or ideas that could not be
carried out in it, such as, for example, try new approaches to optimize the calculation time
of the proposed VIME models or it is necessary to increase the training base to improve
the results.

The use of artificial intelligence in biology is increasing recently. As we have seen in this
work, it is possible to apply self- and semi-supervised learning algorithms for our predictive
task. It is advisable to use this genotype data in other deep learning architectures in order
to, for example, create new artificial genotypes from a trained model to use them later in
predictive tasks.
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Chapter 5

Annexes

Calculation of the variable Yield Deviation and its weight
First, we consider a genetic evaluation model (in this case genomic evaluation SingleStep).
So, we take an example of a trait measured several times in an animal’s life (e.g., quantity
of milk per lactation); and we suppose that the animal i has 3 performances described by
the following equations:

yi,1 = m1,a + m2,b + m3,c + pi + ai + ei,1

yi,2 = m1,a′ + m2,b′ + m3,c′ + pi + ai + ei,2

yi,3 = m1,a′′ + m2,b′′ + m3,c′′ + pi + ai + ei,3

where

• mk : correspond to the identified environmental effects impacting the phenotype.

• pi : it is the permanent environmental effect of the animal i (non-genetic) which has
an identical impact on the 3 performances.

• ai : it is the additive genetic value of the animal i.

• ei,j : residual of the model for the performance j considered

Furthermore, we have the weight of performance j for each animal i given by wi,j with
j = 1, . . . , 3.
Then, we compute the adjusted performances:

yadji,1 = yi,1 − m̂1,a − m̂2,b − m̂3,c − p̂i

yadji,2 = yi,2 − m̂1,a′ − m̂2,b′ − m̂3,c′ − p̂i

yadji,3 = yi,3 − m̂1,a′′ − m̂2,b′′ − m̂3,c′′ − p̂i

Therefore, the variable Yield Deviation for an animal i (YDi) is computed by:

YDi =
∑3

j=1 wi,jyadji,j∑3
j=1 wi,j

.

Otherwise, the weight of Yield Deviation for an animal i (wYDi) is the equivalent num-
ber of performances, calculated from the weights of each performance of i, the size of
contemporary groups, repeatability and heritability of the trait.
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Histogram of YD for all traits (1 to 33)

(a) Trait 1 (b) Trait 2

Figure 5.1: Histogram of YD for traits 1 and 2

(a) Trait 3 (b) Trait 4

Figure 5.2: Histogram of YD for traits 3 and 4

(a) Trait 5 (b) Trait 6

Figure 5.3: Histogram of YD for traits 5 and 6
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(a) Trait 7 (b) Trait 8

Figure 5.4: Histogram of YD for traits 7 and 8

(a) Trait 9 (b) Trait 10

Figure 5.5: Histogram of YD for traits 9 and 10

(a) Trait 11 (b) Trait 12

Figure 5.6: Histogram of YD for traits 11 and 12
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(a) Trait 13 (b) Trait 14

Figure 5.7: Histogram of YD for traits 13 and 14

(a) Trait 15 (b) Trait 16

Figure 5.8: Histogram of YD for traits 15 and 16

(a) Trait 17 (b) Trait 18

Figure 5.9: Histogram of YD for traits 17 and 18
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(a) Trait 19 (b) Trait 20

Figure 5.10: Histogram of YD for traits 19 and 20

(a) Trait 21 (b) Trait 22

Figure 5.11: Histogram of YD for traits 21 and 22

(a) Trait 23 (b) Trait 24

Figure 5.12: Histogram of YD for traits 23 and 24
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(a) Trait 25 (b) Trait 26

Figure 5.13: Histogram of YD for traits 25 and 26

(a) Trait 27 (b) Trait 28

Figure 5.14: Histogram of YD for traits 27 and 28

(a) Trait 29 (b) Trait 30

Figure 5.15: Histogram of YD for traits 29 and 30
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(a) Trait 31 (b) Trait 32

Figure 5.16: Histogram of YD for traits 31 and 32

Figure 5.17: Histogram of YD for trait 33
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Hyper-parameters tuning for MLP

(a) lr = 10−2 (b) lr = 10−4

(c) lr = 10−5

Figure 5.18: Learning curves for MLP across different values of the hyper-parameter learning
rate
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Hyper-parameters tuning for VIME only supervised

Figure 5.19: MSE performance for VIME (only supervised) across different values of the hyper-
parameter learning rate

Figure 5.20: MSE performance for VIME (only supervised) across different values of the hyper-
parameter pm
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Figure 5.21: MSE performance for VIME (only supervised) across different values of the hyper-
parameter α

Hyper-parameters tuning for VIME

Figure 5.22: MSE performance for VIME across different values of the hyper-parameter learning
rate
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Figure 5.23: MSE performance for VIME across different values of the hyper-parameter pm

Figure 5.24: MSE performance for VIME across different values of the hyper-parameter α
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Figure 5.25: MSE performance for VIME across different values of the hyper-parameter β

Figure 5.26: MSE performance for VIME across different values of the hyper-parameter K
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MSE between true and predicted values for each trait

Phenotype GBLUP MLP VIME (only supervised) VIME
CAR1 0.5771 0.6516 0.9161 0.8585
CAR2 0.6159 0.9510 0.9324 0.9003
CAR3 0.6698 1.0075 0.9531 0.8927
CAR4 0.1779 0.3369 0.6072 0.6096
CAR5 0.2063 0.5639 0.8131 0.7554
CAR6 0.8817 0.9496 0.9880 0.9946
CAR7 0.9985 1.0214 1.0144 1.0088
CAR8 0.9860 1.0406 1.0521 1.0263
CAR9 0.9633 1.0112 1.0361 1.0091
CAR10 0.9994 1.0179 1.0110 1.0123
CAR11 0.9942 1.0101 1.0062 1.0046
CAR12 0.9823 1.0227 1.0519 1.0254
CAR13 0.8957 0.9294 0.9882 0.9902
CAR14 0.8542 0.8849 0.9640 0.9615
CAR15 0.7192 1.1183 1.0171 0.9620
CAR16 0.8728 0.9788 1.0069 0.9979
CAR17 0.7175 0.7777 0.9058 0.9093
CAR18 0.8095 0.8443 0.9610 0.9533
CAR19 0.7023 0.7805 0.9440 0.9239
CAR20 0.5866 0.7393 0.9030 0.9131
CAR21 0.9563 0.9723 1.0009 0.9970
CAR22 0.8376 1.0371 1.0244 0.9964
CAR23 0.7551 0.7920 0.9484 0.9590
CAR24 0.9389 0.9687 0.9843 0.9905
CAR25 0.8730 1.0369 1.0227 0.9953
CAR26 0.8868 0.9234 1.0132 0.9997
CAR27 0.7351 0.7774 0.9355 0.9453
CAR28 0.9565 0.9922 1.0039 1.0016
CAR29 0.6909 0.7532 0.9117 0.9371
CAR30 0.9615 1.0065 1.0092 1.0001
CAR31 0.9281 0.9755 0.9919 0.9941
CAR32 0.9580 0.9827 1.0048 1.0008
CAR33 0.8738 0.8967 0.9761 0.9731
Mean 0.8049 0.9016 0.9666 0.9545
Standard deviation 0.2028 0.1618 0.0820 0.0836

Table 5.1: MSE between true and predicted values for each trait
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Slope of linear regression between true and predicted values
for each trait

Phenotype MLP VIME (only supervised) VIME
CAR1 0.4334 0.2063 0.1493
CAR2 0.4114 0.2169 0.1754
CAR3 0.3448 0.1728 0.1226
CAR4 0.7755 0.4658 0.3548
CAR5 0.7131 0.2640 0.2212
CAR6 0.1301 0.0467 0.0348
CAR7 0.0028 0.0020 0.0015
CAR8 0.0303 0.0117 0.0092
CAR9 0.0414 0.0266 0.0201
CAR10 0.0006 0.0017 -0.0011
CAR11 0.0121 0.0093 0.0052
CAR12 0.0319 0.0135 0.0100
CAR13 0.1068 0.0472 0.0319
CAR14 0.1336 0.0624 0.0483
CAR15 0.2457 0.1099 0.0846
CAR16 0.1056 0.0363 0.0303
CAR17 0.2269 0.1123 0.0854
CAR18 0.1684 0.0674 0.0536
CAR19 0.2553 0.0962 0.0757
CAR20 0.3682 0.1726 0.1305
CAR21 0.0393 0.0239 0.0156
CAR22 0.1427 0.0616 0.0433
CAR23 0.2103 0.0760 0.0509
CAR24 0.0550 0.0314 0.0209
CAR25 0.1156 0.0680 0.0550
CAR26 0.1171 0.0360 0.0290
CAR27 0.2428 0.1011 0.0799
CAR28 0.0724 0.0381 0.0280
CAR29 0.2696 0.1055 0.0702
CAR30 0.0431 0.0230 0.0188
CAR31 0.0642 0.0310 0.0224
CAR32 0.0396 0.0192 0.0148
CAR33 0.1226 0.0456 0.0341
Mean 0.1840 0.0849 0.0644
Standard deviation 0.1876 0.0954 0.0740

Table 5.2: Slope of linear regression between true and predicted values for each trait
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Pearson’s correlation between true and predicted values for
each trait

Phenotype GBLUP MLP VIME (only supervised) VIME
CAR1 0.6503 0.6384 0.3991 0.4068
CAR2 0.6198 0.6059 0.4225 0.4227
CAR3 0.5747 0.5551 0.3848 0.3706
CAR4 0.9067 0.8850 0.6388 0.6452
CAR5 0.8909 0.8602 0.4618 0.4981
CAR6 0.3441 0.3277 0.1639 0.1488
CAR7 0.0405 0.0191 0.0162 0.0144
CAR8 0.1185 0.1098 0.0614 0.0590
CAR9 0.1918 0.1667 0.1043 0.1022
CAR10 0.0261 0.0044 0.0145 -0.0114
CAR11 0.0770 0.0655 0.0591 0.0433
CAR12 0.1333 0.1223 0.0725 0.0644
CAR13 0.3231 0.3040 0.1713 0.1484
CAR14 0.3820 0.3481 0.2113 0.2104
CAR15 0.5300 0.5078 0.2732 0.2561
CAR16 0.3567 0.3246 0.1307 0.1323
CAR17 0.5316 0.4904 0.3157 0.3043
CAR18 0.4365 0.4013 0.2191 0.2204
CAR19 0.5457 0.5107 0.2784 0.2832
CAR20 0.6430 0.6147 0.3880 0.3560
CAR21 0.2094 0.1782 0.1133 0.1002
CAR22 0.4031 0.3777 0.1947 0.1645
CAR23 0.4950 0.4560 0.2405 0.2063
CAR24 0.2474 0.2085 0.1445 0.1165
CAR25 0.3565 0.3255 0.2027 0.1941
CAR26 0.3365 0.3155 0.1383 0.1363
CAR27 0.5148 0.4859 0.2883 0.2749
CAR28 0.2089 0.2087 0.1442 0.1328
CAR29 0.5560 0.5203 0.3076 0.2540
CAR30 0.1964 0.1726 0.1090 0.1028
CAR31 0.2684 0.2323 0.1403 0.1194
CAR32 0.2051 0.1706 0.0931 0.0850
CAR33 0.3554 0.3254 0.1795 0.1676
Mean 0.3841 0.3588 0.2146 0.2039
Standard deviation 0.2217 0.2196 0.1414 0.1459

Table 5.3: Pearson’s correlation between true and predicted values for each trait
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Comparison of Pearson’s correlation between true and pre-
dicted values across different models

Figure 5.27: Box plot for comparison of Pearson’s correlation between true and predicted values
across different models

sum_sq df F Pr(>F)
0.880141 3.0 8.465218 0.000036
4.436118 128.0 NaN NaN

Table 5.4: ANOVA test for comparison of Pearson’s correlation between true and predicted values
across different models

group1 group2 Diff Lower Upper q-value p-value
GBLUP MLP 0.025342 -0.093967 0.144652 0.782003 0.900000
GBLUP VIME (only supervised) 0.169473 0.050163 0.288782 5.229501 0.001807
GBLUP VIME 0.180170 0.060860 0.299479 5.559582 0.001000
MLP VIME (only supervised) 0.144130 0.024821 0.263440 4.447498 0.010986
MLP VIME 0.154827 0.035518 0.274137 4.777579 0.005287
VIME (only supervised) VIME 0.010697 -0.108613 0.130006 0.330082 0.900000

Table 5.5: Tukey’s test for comparison of Pearson’s correlation between true and predicted values
across different models
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MLP prediction by phenotype

Figure 5.28: True vs predicted values of YD obtained by MLP model for trait 1

Figure 5.29: True vs predicted values of YD obtained by MLP model for trait 2

Figure 5.30: True vs predicted values of YD obtained by MLP model for trait 3
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Figure 5.31: True vs predicted values of YD obtained by MLP model for trait 4

Figure 5.32: True vs predicted values of YD obtained by MLP model for trait 5
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VIME (only supervised) prediction by phenotype

Figure 5.33: True vs predicted values of YD obtained by VIME (only supervised) model for trait
1

Figure 5.34: True vs predicted values of YD obtained by VIME (only supervised) model for trait
2
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Figure 5.35: True vs predicted values of YD obtained by VIME (only supervised) model for trait
3

Figure 5.36: True vs predicted values of YD obtained by VIME (only supervised) model for trait
4

Figure 5.37: True vs predicted values of YD obtained by VIME (only supervised) model for trait
5
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VIME prediction by phenotype

Figure 5.38: True vs predicted values of YD obtained by VIME model for trait 1

Figure 5.39: True vs predicted values of YD obtained by VIME model for trait 2

Figure 5.40: True vs predicted values of YD obtained by VIME model for trait 3
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Figure 5.41: True vs predicted values of YD obtained by VIME model for trait 4

Figure 5.42: True vs predicted values of YD obtained by VIME model for trait 5
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Appendix A

Glossary of genetics terminology

allele The different, alternative forms of a gene that can exist at a single locus (see
dominance).
Dominant: An allele that expresses its phenotypic effect even when heterozygous
with a recessive allele; if A is dominant over a, then AA (homo-) and Aa (heterozygot)
have the same pheno(wild)type.
Recessive: An allele whose phenotypic effect is not expressed, a mutant (e.g.: aa)
.

amino acid A peptide; the basic building block of proteins (polypeptides + a C2O2H +
H2N tail).

DNA (deoxyribonucleic acid) A double chain of linked nucleotides (having deoxyribose
as their sugars); the fundamental substance of which genes are composed (see scan
at end).

gene The fundamental physical and functional unit of heredity, which carries information
from one generation to the next; a segment of DNA, composed of a transcribed region
and a regulatory sequence that makes possible transcription .

genome The entire complement of genetic material in a chromosome set.

genotype The specific allelic composition of a cell-either of the entire or, more commonly,
for a certain gene or set of genes; genetic characteristics (makeup) that determine
the structure and function of an organism.

heritability It is a statistic used in the fields of breeding and genetics that estimates
the degree of variation in a phenotypic trait in a population that is due to genetic
variation between individuals in that population.

heterozygote (Gk. heteros, different) Has two different alleles of a gene; one trait can
be visible (dominant) while the other can be hidden (recessive), or visible both
(codominant or incomplete dominant).

homozygote (Gk. homo, same) Has two identical alleles of a gene either AA (dominant)
or aa (recessive).

locus The particular physical location on the chromosome of which the gene for a given
trait occurs.
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mRNA (messenger RNA) An RNA molecule transcribed from the DNA of a gene, and
from which a protein is translated by the action of ribosomes (constituting for 5%
of total RNA)..

pedigree An ordered diagram of a family’s relevant genetic features.

phenotype The physical appearance (makeup) of an organism controlled by its genes
interacting with the environment; product of genotype.

RNA (ribonucleic acid) A single stranded nucleic acid similar to DNA but having ribose
as its sugar and uracil rather than thymine as one of the bases.

SNP (single nucleotide polymorphism) A DNA sequence variation that occurs when a
single nucleotide (adenine, thymine, cytosine, or guanine) in the genome sequence is
altered and the particular alteration is present in at least 1% of the population.
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