
Laboratory of Multiscale Modeling and
Simulation

Thesis for the Master Degree in M2 Analysis,
Modeling, and Simulation

Simulations of triboelectric charging in gas-solid
fluidized beds with polydisperse particles

Author:
Josue Murillo-Tobar

Supervisor:
PhD. Amine Chadil

Marne-la-Vallée, September 6, 2024

Acknowledgements
My sincere gratitude goes to my professors at Université Paris-Saclay for providing me

with an excellent education. I am particularly grateful to Professor Christophe Chalons,
one of the coordinators of the program, for his constant support and dedication throughout
the master’s program.

My deepest appreciation goes to Diego Chamorro, who has been a significant influence
on improving the level of research in my country, Ecuador. His dedication to advancing
research has motivated me to keep moving forward and never give up on my goals.

My heartfelt thanks go to my parents and brother for their unwavering support and
love. I am also grateful to my friends Adrian, Guido, Alex, Naraya, Danny, David L.,
David H., Ignacio, Jhon, Isabel, Belen, and Geremy for providing me with encouragement
and companionship throughout my journey.

A special thanks goes to Viviana, who has been by my side, supporting me through
every step. Thank you, Viviana, for your constant encouragement and for believing in me.

Thank you all for your support and guidance.

Josue Murillo
Marne-la-Vallée, September 2024

Contents

Acknowledgements I

Table des matières II

Introduction 1

1 Electrostatic charging in industry 2
1.1 Triboelectrification . 2

1.1.1 Principles of electrostatics . 3
1.1.1.1 Charge generation for insulator objects 3
1.1.1.2 Charge transfer modeling . 4

1.2 Modeling and simulation of gas-solid fluidized beds . 4

2 Viscous penalty method with fully coupled solver 6
2.1 Viscous penalty method . 6

2.1.1 Penalty methods for solid behavior and incompressibility 7
2.1.2 Physical characteristics of the equivalent fluid and numeric implementation 8
2.1.3 Eulerian–Lagrangian VOF method for particle tracking 10

2.1.3.1 Computation of Lagrangian particle’s velocity 10
2.1.3.2 Update of the solid fraction . 12

2.2 Fully coupled solver . 12
2.2.1 Time integration of two-phase Navier-Stokes equations 13
2.2.2 Spatial integration of two-phase Navier-Stokes equations 13
2.2.3 Developping a bidimensional fully coupled solver 17

2.3 Numerical treatment of particle’s collisions . 18
2.3.1 Lubrication effect . 19
2.3.2 Solid-solid collision . 19

3 Adaptive mesh refinement 21
3.1 Algorithm description . 21

3.1.1 Grid description . 22
3.1.2 Integration Algorithm . 22

3.1.2.1 Grid generation . 24
3.1.2.2 Data Structure . 24

3.1.3 Error estimator . 25
3.2 Numerical examples . 26

Conclusions 30

Bibliography 35

II

Introduction

This internship project was conducted within the TCM team at the MSME Laboratory, focusing on
modeling and simulating fluid mechanics for industrial applications. One key area of application is gas-
solid fluidization technology, widely used in industries such as petrochemicals, pharmaceuticals, food
processing, and agriculture due to its efficiency in processes like drying, catalytic reactions, and mixing
[28, 60, 72]. This efficiency is largely due to enhanced mass and heat transfer resulting from frequent
interactions between solid particles and the fluidizing gas. However, a significant challenge arises from
the electrostatic charges generated by these interactions, which can disrupt fluidized bed behavior and
damage equipment [35]. Addressing these challenges requires advanced numerical modeling techniques
to accurately capture the complex dynamics of gas-solid flows.

To better understand electrostatic interactions in fluidized bed operations, multi-scale numerical sim-
ulations are crucial. In particular, for modeling charge transfer in insulating particles, particle-resolved
Direct Numerical Simulation (PR-DNS) is essential as it allows tracking the charge distribution on the
particle surface [80]. A valuable method for PR-DNS simulation is the Viscous Penalty Method (VPM)
using a fully coupled solver, which involves penalizing viscosity to ensure the solid-like behavior of par-
ticles within the fluid [79]. However, VPM still requires improvements, especially concerning collision
handling. One promising solution is to incorporate the Adaptive Mesh Refinement (AMR) method.

The introduction AMR is particularly relevant when simulating the collision effects in gas-solid flows,
where localized regions may require finer resolution to accurately capture complex interactions at the
microscopic level. AMR dynamically adjusts the grid resolution, focusing computational resources where
they are most needed, thus minimizing computational cost without losing accuracy [8, 7].

This report is structured as follows: Chapter 1 provides context for the challenges associated with
electrostatic interactions in fluidized beds, introducing essential concepts for modeling these interactions
and the multiscale approach vital to this problem. Chapter 2 offers an overview of the key components
of the Viscous Penalty Method and the fully coupled solver, highlighting the advantages of this approach
in resolving particle-fluid interactions. Finally, Chapter 3 presents the implementation of the Adaptive
Mesh Refinement method in our case study, along with the results of implementing the AMR method for
the one-dimensional case.

1

Chapter 1

Electrostatic charging in industry

In various industries such as petrochemicals, food processing, pharmaceuticals, and agriculture, gas-
solid fluidization technologies are widely employed for processes like drying, catalytic reactions, and
mixing [28, 60, 72]. This broad application is attributed to the high efficiency of mass and heat transfer,
facilitated by the frequent interactions between solid particles and the fluidizing gas, particularly through
collisions between the fluidized particles and between the particles and the walls of the fluidization column.
However, these numerous collisions generate electrostatic charges, which can alter the intended behavior
of the fluidized bed, pose risks to both equipment and operators, and lead to the formation of layers
on the column walls and other surfaces [35]. This buildup often necessitates frequent shutdowns for
cleaning. Additionally, in the pharmaceutical industry, the accumulation of electrostatic charges not only
contributes to this sheeting formation but also increases the risk of dust explosions [4].

According to Mehrani et al.,(2017) [59], the polyethylene industry has faced several challenges related
to the generation of electrostatic charge. One significant issue is the formation of layers along the reactor
walls during the catalytic polymerization of ethylene to produce polyethylene. This problem, known as
"sheeting," occurs due to the accumulation of charge within the fluidized bed, which causes catalytic
particles to adhere to the walls. As a result, the heat generated from the exothermic polymerization
cannot dissipate in these areas, leading to the melting of particles and the formation of layers on the
reactor walls. This problem limits the reactor’s operation to only a few hours before it requires cleaning.
Regarding the research on this phenomenon, Hendrickson (2006) [38] provides a comprehensive literature
review on the electrification in polymer reactors that leads to sheeting. He also discusses various studies
aimed at understanding the underlying mechanisms behind this issue. However, Hendrickson points out
that all these studies were conducted under conditions that do not accurately reflect those in a commercial
polymer reactor. The research was performed using small-scale equipment, with air humidity levels and
particles whose properties differ significantly from those of polymers like polyethylene. Consequently,
Hendrickson concludes that further investigation is needed to better understand the formation of layers
in polymer reactors.

In general, the electrification of fluidized beds has been a subject of study for decades [18]. Despite the
progress made and the numerous solutions proposed, the problem persists, primarily due to the inherent
complexity of both the electrostatic phenomena and the fluidization process. In this chapter, we provide
a brief introduction to some basic concepts in electrostatics that are essential for simulating triboelectric
phenomena in particle-laden flows. Subsequently, we offer a concise overview of the different approaches
for modeling and simulating gas-solid fluidized beds, highlighting their relationship with triboelectric
effects.

1.1 Triboelectrification
Triboelectric charging, also known as contact electrification, occurs when two neutral surfaces are rubbed
together, causing one surface to become positively charged and the other negatively charged, especially if
at least one of the materials is an insulator. Interestingly, this transfer of charge can even occur without
frictional contact [37]. The earliest records of triboelectric phenomena date back to antiquity. Contrary
to popular belief, the first detailed descriptions of electrostatic electricity were made by Plato in his
Timaeus, not by Thales of Miletus, who only briefly mentioned it in one of his philosophical manuscripts
[42]. Despite being known for such a long time, it is remarkable that our scientific understanding of
this phenomenon has not significantly advanced. In this section we describe briefly several concepts
about electrostatics and we emphasize their relevance in to our study subject which is the triboelectric
phenomenon.

2

1.1.1 Principles of electrostatics
In electrostatics, a neutral object can acquire a positive or negative charge through the loss or gain of
electrons or ions. Depending on the interaction between two charged particles, they will either attract
if their charges are opposite or repel if their charges are the same. The strength of this attraction or
repulsion, known as the electrostatic force, is quantified by Coulomb’s law:

Fq =
1

4πε0εr

q1q2
r2

(1.1)

where Fq is the electrostatic force; ε0 is the permittivity of a vacuum; εr is the relative permittivity of
the medium (such as air); r is the distance between two point charges (e.g., two particles); and q1 and q2
are the charges of the two point sources. It is important to note that equation (1.1) considers only two
charges. To calculate the electrostatic force exerted on a charge by multiple surrounding charges, one
must sum the individual forces between the charge and each of the surrounding charges. Another key
concept to consider is the electric field, defined as the electrostatic force per unit charge. The magnitude
of the electric field, considering only a point charge q, is given by

E =
q

4πε0εrr2
(1.2)

1.1.1.1 Charge generation for insulator objects

In general, charging can occur either by contact or by induction. In contact charging, static charge
accumulation happens during sliding, rolling, or impact between two objects [56]. In contrast, induction
charging, also known as image charging, does not require direct contact. It occurs when a charged object
is brought near an uncharged conductive object, causing polarization as electrons are redistributed within
the uncharged object [84]. While induction charging has traditionally been associated with conductive
materials, recent studies have shown that this effect can also occur in insulators if they remain in close
proximity to a charged object for an extended period [1].

The challenge, however, lies in the fact that, unlike conductive materials, charging mechanisms in
insulating materials have not been extensively studied due to their low charge mobility. This limita-
tion confines triboelectric charging to a localized region on the surface of the object, typically within a
microscopic range. The complexity of studying electrostatic effects further increases when dealing with
non-spherical particles, which is often the case with polymers [29].

A commonly used method to demonstrate an object’s tendency for triboelectric charging is known
as the work function. This property essentially describes the amount of thermodynamic work required
to remove an electron from the material’s surface to a neutral point in the vacuum near the surface.
Therefore, a material with a high work function has a greater likelihood of retaining electrons on its
surface. Based on this property, we can define the contact potential difference, which is determined by
the following formula:

VC =
(ϕ1 − ϕ2)

e
, (1.3)

where ϕ1 and ϕ2 are the work functions of the two metals/conductors, and e is the elementary charge. This
contact potential difference arises after the electron flow at the contact interface has reached equilibrium
(see Fig.1.1). On the other hand, the difference found in the numerator of expression (1.3) is known as
the driving force for electron transfer from one surface to another.

Figure 1.1: Electron potential energy for metal-metal contacts [56].

While the work function model is not initially considered applicable to metal-insulator and insulator-
insulator contacts due to the lack of "free electrons" in insulators, experimental evidence has shown that
electron transfer does occur in these types of contacts [22]. Consequently, the "effective" work function
for polymers was determined through metal-polymer contacts [75].

3

1.1.1.2 Charge transfer modeling

The electrostatic charging tendencies of various materials have been thoroughly investigated through
laboratory-scale insulator-metal contact experiments [27], [41], [57]. In addition to differences in effective
work function, other factors influencing charge transfer include contact angle, initial charge, particle size,
temperature, and relative humidity [56]. So far, the effects of these operational conditions have only been
qualitatively analyzed, while material properties and collision characteristics have been incorporated into
charge transfer models to estimate the rate of charge transfer per collision or contact duration.

A commonly used model for charge transfer is the condenser model, which assumes that the contact
area between two surfaces, Sc, can be considered as a capacitor. This model uses the effective work
function difference, Vc, as the fixed driving force to determine the magnitude and direction of charge
transfer on a particle [55]:

∆q = Ce
ϵ0ϵrVc

zc

(
1− qi

q∞

)
Sc (1.4)

In this equation, Ce represents the charging efficiency, ϵ0 is the absolute permittivity, ϵr is the relative
permittivity of the medium, zc is the critical gap, qi is the particle’s initial charge, and q∞ is the charge
saturation point or the maximum charge a particle can hold. This model, along with others, has been
shown to reasonably describe electrostatic charge transfer in insulator-metal contacts, made possible by
the identification of charge saturation points and effective work functions of the materials involved at a
laboratory scale.

In contrast to this type of insulator-metal contact charging, the understanding of insulator-insulator
collisions remains problematic, especially in the case of granular flows. Lacks and Shinbrot (2019) [47]
found that our quantitative understanding of electrostatics is sometimes challenged by the complexity of
granular materials. For instance, the same model cannot be directly applied to granular flows, whether
involving the same or different materials, without modifications. Therefore, it is crucial to conduct
experiments on particle-particle contact charging to better understand the electrostatic properties or
material characteristics responsible for the complex charging behavior between particles. Given the
empirical limitations, conducting numerical simulations is a promising approach due to its clear cost
advantages.

1.2 Modeling and simulation of gas-solid fluidized beds
The rapid progression of computing technology has positioned computational fluid dynamics (CFD) mod-
eling as a crucial tool for the systematic study and enhancement of gas-solid fluidized beds across various
industries, including environmental, chemical, petrochemical, energy, and metallurgical sectors [69, 78].
The primary challenge in modeling industrial-scale fluidized beds lies in the significant scale separation
between the large flow structures and the interactions between particles and the carrier gas, as well as
particle collisions, which impact the overall flow dynamics. Since it is not feasible to resolve all spatial
and temporal scales in a single simulation, gas-solid flow phenomena must be modeled using methods at
different levels of detail [76]. These models are conveniently classified by separately treating the solid and
gaseous phases. For each phase, two approaches are commonly used: Eulerian and Lagrangian. The Eu-
lerian approach describes the phase as a continuum, typically using a Navier-Stokes equation. Conversely,
the Lagrangian approach represents the phase as discrete volume governed by Newton’s second law. By
combining these approaches for each phase, Table 1.1 presents a classification of the most commonly used
models in gas-solid flows. Figure 1.2 complements this by providing a visual illustration of each model.

Name Gas phase Solid phase Scale

1. Two-fluid model Eulerian Eulerian Engineering (1 m)

2. Discrete element model (CFD-DEM) Eulerian (unresolved) Lagrangian Laboratory (0.1 m)

3. Direct numerical simulation (PR-DNS) Eulerian (resolved) Lagrangian Laboratory (0.01 m)

Table 1.1: Classification of the various models used for simulating dense gas-solid flow in the context of
gas-solid flows [76].

The Two-Fluid Model (TFM) is an Euler-Euler framework that treats both phases as continuous
media, making it ideal for describing two-phase flows at relatively large scales. In this model, the conti-
nuity, momentum, and energy equations are solved independently for each phase, incorporating models
for interfacial transfer of certain physical quantities, such as mass, momentum, energy, temperature, etc.,

4

Figure 1.2: Graphical representation of the models listed in Table 1.1. Only models 1 and 2 (the two-
fluid model and the discrete element model) are employed for the simulation of actual gas-fluidized beds.
Model 3 (direct numerical simulation model) is used for small, representative parts of fluidized beds [76].

between the two phases. The fluid dynamics of the granular phase are determined using closures derived
from the kinetic theory of granular flow, which is still an active area of research and development [76].

Despite its computational efficiency, a significant limitation of TFM is its inability to accurately cap-
ture detailed particle-fluid interactions, as well as the complexities of particle-particle and particle-wall
collisions. To address these challenges, smaller-scale modeling can greatly contribute to the develop-
ment and enhancement of continuous, average-based macroscopic models, as these are often employed as
research tools to gain deeper insights into particle-gas interactions within the flow [51].

In discrete element models (CFD-DEM), the Eulerian grid cells are typically at least 10 times larger
than the particle diameter, which simplifies gas-particle interactions by approximating particles as point
sources for mass and heat transfer and as localized regions where momentum is removed from the fluid
phase. This approximation requires the use of empirical correlations for gas-solid interactions, similar
to those used in TFM [76]. In contrast, particle-resolved direct numerical simulations (PR-DNS) use a
grid that is at least 10 times smaller than the particle size, enabling the direct resolution of solid-gas
interactions. This approach allows for high-fidelity microscale simulations, where complex interactions in
gas-solid flows can be accurately captured and studied in detail.

In the context of electrostatic modeling in gas-solid flows, such as fluidized beds in the polyolefin
industry, Euler-Euler simulations are essential for optimizing or designing reactors. These simulations
are based on large-scale models that must incorporate a charge transfer model for insulating particles
(such as polypropylene used in the polyolefin industry). Such large-scale models are developed using CFD-
DEM simulations, which, as we have seen, operate at laboratory scale. At this scale, it is possible to
track pointwise the charge of the particles. There are several studies have investigated the triboelectric
modeling of particle-laden flows at this scale [80], [52], [73]. Among the most notable works on the
electrification of insulating particles is that of Sippola et al. [73], who developed a CFD-DEM model
considering the effective work function difference between materials and the electric field at the contact
point. However, the model showed limitations as the simulation results did not precisely match the
experimental data for all input parameters. This discrepancy could be due to the lack of consideration
of particle polarity, which has been shown to affect particle interactions [50].

To develop mesoscale models, it is necessary to use sub-models that account for such polarity as
well as other electrostatic quantities such as effective work function and electric field. These models are
obtained using PR-DNS simulations at the microscopic scale, where not only the particle charge but
also the charge distribution over the particle surface can be tracked. This is particularly important for
insulating particles, as the surface charge distribution plays a critical role, as discussed earlier.

5

Chapter 2

Viscous penalty method with fully
coupled solver

The purpose of this chapter is to provide a concise overview of a numerical modeling strategy for Direct
Numerical Simulation (DNS) of dense particle flows, known as the viscous penalty method, utilizing a fully
coupled solver. Additionally, it will briefly address the treatment of particle advection and solid collisions,
which are essential for simulating resolved-scale particle flows—i.e., scenarios where the particles and the
fluid share similar characteristic scales. The primary references for this section include [11], [16], [62],
and [79].

2.1 Viscous penalty method
In the numerical simulation of particle-laden flows, two primary strategies are commonly adopted. The
first strategy involves using unstructured body-fitted in order to cover the fluid domain only. This
requires that grids rely on automatic mesh generation as solid particles move through time and space
[79]. This approach, while intuitive, faces significant challenges: it is computationally intensive and
difficult to implement in software, especially for complex fluid-solid interfaces [24]. Examples of this
method include the Arbitrary Lagrangian-Eulerian (ALE) framework [40, 49, 58]. Alternatively, there is
a strategy known as the structured grid approach, which involves maintaining a fixed mesh that includes
both phases without adapting to their interfaces. However, this approach presents a challenge since the
solid-fluid interface cannot be explicitly tracked by the non-conforming mesh, leading to computational
errors near the moving interface [53]. This approach serves as the basis for the Viscous Penalty Method,
which will be explained later, and it is part of a broader category of modeling techniques known as
fictitious domain methods [34, 46].

In our study, we employ a one-fluid model coupled with the Volume of Fluid (VOF) method, which
uses a phase function, C, to distinguish between solid and fluid regions within the flow. The values
of C are used to determine the specific rheological properties (such as density or viscosity) required to
differentiate the solid phase from the fluid phase (see Figure 2.1). By definition, C = 1 corresponds to
the solid phase, C = 0 to the fluid phase, and C = 0.5 to the interface between them.

For modeling incompressible two-phase flows involving a carrier fluid and a solid phase, the following
incompressible Navier-Stokes equations are solved:

∇ · u = 0, (2.1)
∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+ ρg +∇ ·

(
µ
(
∇u+∇tu

))
+ Fsi, (2.2)

where u represents the velocity, p the pressure, t the time, and g the gravity vector. The parameters
ρ and µ denote the density and viscosity of the equivalent fluid, respectively, both of which depend on
the value of C. The term Fsi represents a volumetric force that accounts for solid interactions, activated
during collisions between particles or between particles and walls, ensuring four-way coupling between
the phases. For particle advection, the VOF method first updates particle positions in a Lagrangian
framework and then computes the Eulerian solid fractions in the mesh by projecting the particle shapes
onto the fluid grid (see section § 2.1.3).

Other approaches, such as the ALE framework, involve solving the Navier-Stokes equations for the
fluid phase and the Newton-Euler equations for the particles, then connecting these solutions at the
solid-fluid interface using jump equations (see, for example, [58, 23]). In contrast, our approach implicitly

6

incorporates the jump relations within the one-fluid model (i.e., equations (2.1) and (2.2)), as described
in [43].

Let us remark the similarity between the classical incompressible Navier-Stokes equations and the
one-fluid model. The differences lie in the fact that the latter introduces a volumetric force to account for
collision effects, and both the viscosity µ and density ρ depend on the phase function C. Regarding the
physical constraints that must be applied to the solids, a specific model based on viscosity penalization
is required, which will be presented in the following section.

Figure 2.1: Sketch of fictitious domain approach for a finite size particulate flow. The solid-fluid interface
Σ, the phase function C and the underlying grid are showed [79].

2.1.1 Penalty methods for solid behavior and incompressibility
Once our one-fluid model and the phase function C have been defined, it is natural to inquire about the
specific rheological law needed to ensure, for instance, solid-like behavior (i.e., when C = 1). Additionally,
it should be noted that penalizing the velocity is not feasible in this context, as we are dealing with
problems such as fluidized beds or particle sedimentation, where particle velocities are not known a
priori.

Following the work of Vincent et al. (2014) [79], the approach employed to ensure solid particle
behavior involves decomposing the stress tensor σ of a Newtonian fluid (see [36] and [67]) as follows:

σij = −pδij + λ(∇ · u)δij + 2µDij

where λ and µ represent the compressional and shear viscosities, respectively, and D is the rate-of-
deformation tensor.

To further distinguish the different contributions of viscosity—compression λ, tearing κ, shearing ζ,
and rotation η—we can reformulate the stress tensor as proposed by Caltagirone (2001) [15], as shown
in the following expression:

σ =


−p+ λ∇ · u 0 0

0 −p+ λ∇ · u 0

0 0 −p+ λ∇ · u

+ κ


∂u
∂x 0 0

0 ∂v
∂y 0

0 0 ∂w
∂z



+ ζ


0 ∂u

∂y
∂u
∂z

∂v
∂x 0 ∂v

∂z

∂w
∂x

∂w
∂y 0

− η


0 ∂u

∂y − ∂v
∂x

∂u
∂z − ∂w

∂x

∂v
∂x − ∂u

∂y 0 ∂v
∂z − ∂w

∂y

∂w
∂x − ∂u

∂z
∂w
∂y − ∂v

∂z 0


(2.3)

which can be written in a compact form as

σij = (−p+ λ∇ · u)δij + κΛij + ζΘij − ηΓij . (2.4)

The advantage of this formulation is that by modifying the viscosity coefficients associated with
each term directly within the Navier–Stokes equations for a Newtonian fluid, it becomes possible to
independently control the magnitude of each contribution of viscosity. This allows for more flexible and

7

precise modeling of fluid behavior. Since we are considering that the two fluids are incompressible, we
set λ = 0, and we note that the viscous tress tensor in (2.2) can be expressed as follows

∇ ·
(
µ
(
∇u+∇tu

))
= ∇ · [κΛ(u)] +∇ · [ζΘ(u)]−∇ · [ηΓ(u)]. (2.5)

To impose a solid behavior, we set no tearing, no shearing, and a rotational viscosity consistent with the
surrounding fluid, i.e., κ = 2η, ζ = 2η, and η ≫ 1 in regions where C = 1. Although this configuration is
mathematically equivalent when µ ≫ 1, differences emerge from a discrete perspective. On a staggered
grid, using a single viscosity contribution leads to a rasterization effect (see Fig. 2.2) due to interpola-
tion errors when computing shearing and rotational viscosities. Indeed, The approach of using distinct
viscosity contributions achieves second-order convergence, as demonstrated by Vincent et al. (2014) [79].

In the following section, we will justify the practical consideration of using very high viscosity values,
µ. This is because the property of free deformation proves to be both sufficient and necessary for the
equivalent fluid behavior of the solid.

Figure 2.2: A discrete representation of the direct viscous penalty method (left) and the split viscous
penalty method (right) on staggered grids – pressure points are depicted with red circles, velocities with
arrows, and pure shearing and rotational viscosities with stars. The black line indicates the interface
between a particle and the carrier fluid. [79].

2.1.2 Physical characteristics of the equivalent fluid and numeric implemen-
tation

The behavior of the solid phase is particularly characterized by specific rheological properties that govern
its deformation and interaction with the surrounding fluid. Understanding these properties and their
mathematical representation is crucial for implementing solid constraints and accurately capturing the
dynamics of the fluid-solid interface. In this section, we will justify the rheological properties related to
free deformation in the solid equivalent fluid as defined in our one-fluid formulation. Consider any point
P within the solid equivalent fluid of our domain Ω. For any particle i, whose related solid subdomain is
denoted as Ωi, the velocity u at point P can be described by translation u0 and rotation ω components
as follows:

∀P ∈ Ωi,∃ {w,u0} ∈ Rd × Rd, u(P) = u0 +Xi
BCP ∧ ω (2.6)

where Xi
BC is the barycenter of particle i.

Now we aim to proof that the expression (2.6) is equivalent to the deformation tensor is zero, i.e.

∀P ∈ Ωi, ∇u+∇Tu = 0 (2.7)

In fact, it is clear that (2.6) implies (2.7). Conversely, let us suppose that the above expression holds.
Then we obtain the following systems:


∂u

∂x
= 0

∂v

∂y
= 0

∂w

∂z
= 0

(2.8)

8



∂u

∂y
= −∂v

∂x
∂v

∂z
= −∂w

∂y
∂w

∂x
= −∂u

∂z

(2.9)

Let us notice that the system (2.8) provide us the different dependecies of the velocity’s component. With
this in mind and the second system (2.9) we obtain the resulting system:

∂u(y, z)

∂y
= −∂v(x, z)

∂x
= ω3(z)

∂v(x, z)

∂z
= −∂w(x, y)

∂y
= ω1(x)

∂w(x, y)

∂x
= −∂u(y, z)

∂z
= ω2(y)

If we assume that the rotation velocity components have sufficient regularity, by the Schwarz theorem, we
find that the second derivatives of the velocity components are constant, i.e. there exists W1,W2,W3 ∈ R
such that 

∂2u(y, z)

∂y∂z
=

∂ω3(z)

∂z
= −∂ω2(y)

∂y
= W1

∂2v(x, z)

∂x∂z
=

∂ω1(x)

∂x
= −∂ω3(z)

∂y
= W2

∂2w(x, y)

∂x∂y
=

∂ω2(y)

∂y
= −∂ω1(x)

∂x
= W3.

(2.10)

This implies that the fonctions ω1, ω2 and ω3 are constant, and finally, by integrating the system’s
equations in (2.10) we get: 

u = u0 + ω3y − ω2z

v = v0 + ω1y − ω3z

w = w0 + ω2y − ω1z.

Therefore, we conclude that the relations (2.6) and (2.7) are equivalent. This equivalence implies that
the solid constraint can be established using ∇u+∇Tu = 0, and this condition is asymptotically satisfied
as µ → +∞. Moreover, it can be verified that ∇u + ∇Tu = 2Λ(u) + 2Θ(u) − Γ(u). Thus, another
equivalent relation of (2.6) and (2.7) is given by:

Λ(u) = 0 and Γ(u) = 2Θ(u). (2.11)

For the numerical implementation, three types of mesh cells are considered, depending on the regions
they occupy within the particle-laden flow. The first and second types consist of mesh cells that are fully
contained within either the solid medium (first type) or the Newtonian fluid (second type). In both cases,
it is crucial that the conditions κ = 2µ, ζ = 2µ, and η = µ are satisfied. For the first type (within the
solid phase), it is particularly important that µ ≫ 1. In practice, for this case, the viscosity µ is typically
chosen to be 1000 to 10,000 times greater than that of the carrier fluid, depending on the computational
cost of the linear solvers (see [79]).

The third type of grid cell is characterized by the fluid-solid interface Σ passing through it. For this
scenario, various methods exist to determine a homogenized viscosity, collectively referred to as numerical
viscous laws. These laws depend on the viscosities of the solid (µs) and the fluid (µf), as well as the
values of the phase functions for both the diagonal (C) and off-diagonal (Cµ) terms of the viscous stress
tensor in (2.3). Here, we present three of the most commonly used viscous laws in the literature:

1) Discontinuous law:
κ = 2 [µfIC<0.5 + µSIC⩾0.5]

ζ = 2
[
µfICµ<0.5 + µSICµ⩾0.5

]
η = µfICµ<0.5 + µSICµ⩾0.5

2) Arithmetic law:
κ = 2 [(1− C)µf + Cµs]

ζ = 2 [(1− Cµ)µf + Cµµs]

η = (1− Cµ)µf + Cµµs

9

3) Harmonic law:

κ = 2

[
µfµs

Cµf + (1− C)µs

]
ζ = 2

[
µfµs

Cµµf + (1− Cµ)µs

]
η =

µfµs

Cµµf + (1− Cµ)µs

where IC is a condition indicator function satisfying IC<0.5 if C < 0.5 or IC>0.5 = 1 if C ≥ 0.5. Now
following the results of Chadil et al. (2019) [16], we will use a viscous law formed by an harmonic average
where Cµ and C is defined by projecting the particle shape with the virtual point procedure (see section
§ 2.1.3.2 for more details). Moreover, for the density computation we will use an arithmetic average over
the whole discretisation grid. This formula is given by

ρ = (1− C)ρf + Cρs

where ρs and ρf are the density values at the solid and fluid medium respectively.
Once established rheological laws that distinguish the solid particles from the carrier fluid, we will

now proceed to explain the process by which particles are advected within our fluid grid in the following
section.

2.1.3 Eulerian–Lagrangian VOF method for particle tracking
The accurate modeling of particle transport and distribution within a fluid flow is a critical aspect of
simulating multiphase flows. In this section, we will describe the process by which finite-sized particles
are transported and how their solid fraction C within the Eulerian flow. Within the general framework,
this step occurs after solving the mass and momentum equations (including particle collision Fsi) using
a method that ensures coupling between velocity and pressure. At this stage, instead of solving the
advection equation to determine the new solid fraction of the particle in the Eulerian cells using the
classical Eulerian VOF approach, the process involves using the Lagrangian velocity of the particle to
update its position. The solid fraction is then calculated by projecting the exact shape of the particle
onto the flow grid. This approach is employed to avoid the shape distortions that would otherwise be
introduced by this conventional method.

Figure 2.3: Position in two dimensions of the reference Lagrangian points (green points) used to interpo-
late the Lagrangian velocity at the barycenter of the particles [79].

2.1.3.1 Computation of Lagrangian particle’s velocity

The process of transporting finite-sized particles begins with calculating the Lagrangian velocity, assuming
that the particle’s center of mass is already known from prior computations. To achieve a more accurate
velocity calculation, reference points within each sphere are used instead of averaging the Eulerian velocity
field over the solid sphere, with four points in two dimensions and six in three dimensions (see [79]).
These points are positioned parallel to the velocity axis at a distance of half the particle’s radius from
the sphere’s center, as shown in Fig. 2.3. The Lagrangian velocity VI,L of the particle is then calculated
by interpolating the velocities at these reference points, whose positions are denoted as Xk

I,L. Here, I
represents the particle index, and k corresponds to the index of the N interpolation points, where N = 4
in 2D or N = 6 in 3D.

10

Figure 2.4: Eulerian velocity kernel (u-components in blue and v-components in red) used in two dimen-
sions to estimate the components of the interpolation Lagrangian velocity points (green point)[79].

The different velocities for interpolating the Lagrangian velocity are obtained through interpolation
using the nearest Eulerian velocity values, as shown in two dimensions in Fig. 2.4. The first step is
to calculate the relative positions X̃ of the interpolation points with respect to the Eulerian velocity
components Xu and the reference points XI,L

k as follows

X̃ =


x̃

ỹ

z̃

 =
XI,L

k −Xu

DXI,L
,

where for a given interpolated Lagrangian velocity component, DXI,L represents the coordinate-wise
distance from the sides of the box formed by the four closest Eulerian velocity positions in two dimensions
(or six positions in three dimensions) for any velocity component. In two dimensions, this could refer to
the horizontal velocity component u or the vertical velocity component v, while in three dimensions, an
additional velocity component exists. This concept is illustrated in two dimensions in Fig. 2.4, where the
four closest points of the two components of the Eulerian velocity (the horizontal component u and the
vertical component v) are connected to a reference point (green node) by blue lines for the u component,
and red lines for the v component.

To determine each Eulerian velocity component at the reference points, we aim to compute the basis
functions Pm, m = 1, . . . , N , for the bilinear interpolation:

V I,L
k,l = P1 + P2x̃+ P3ỹ + P4x̃ỹ in 2D,

V I,L
k,l = P1 + P2x̃+ P3ỹ + P4z̃ + P5x̃ỹ + P6x̃z̃ + P7z̃ỹ + P8x̃ỹz̃ in 3D,

for the lth Lagrangian velocity component, we consider the n = 4 nearest Eulerian velocities for the
two components (u and v) in two dimensions, and the n = 6 nearest Eulerian velocities for the three
components (u, v, and w) in three dimensions. For both cases, we denote these velocities as Vn. Thus,
we obtain:

P1 = V1,

P2 = V2 − V1,

P3 = V4 − V1,

P4 = V1 + V3 − V2 − V4.

in two dimensions and
P1 = V1

P2 = V2 − V1

P3 = V4 − V1

P4 = V5 − V1

P5 = V3 + V1 − V2 − V4

P6 = V6 + V1 − V2 − V5

P7 = V8 + V1 − V4 − V5

P8 = V7 − V6 − V8 + V5

11

in three dimensions. Then we finally obtain the Lagrangian velocity of the particle as follows:

VI,L =

∑
N VI,L

k

N
.

Finally, the next step is to update the position of the particle XI,L by using our Lagrangian velocity
as follows

XI,L,n+1 = XI,L,n +∆tVI,L,n+1/2 (2.12)

with VI,L,n+1 as a second order Lagrangian velocity extrapolation at time (n+ 1)∆t given by

VI,L,n+1/2 =
VI,L,n +VI,L,n+1

2
, where VI,L,n+1 =

∑
N VI,L,n+1

k

N
.

Here, VI,L,n+1
k is defined by extrapolating the position of the particle at time (n + 1)∆t, given by

XI,L,n+1 = XI,L,n +∆tVI,L,n+1.

2.1.3.2 Update of the solid fraction

Once the new position of the particle is determined by calculating the Lagrangian velocity, it is time to
project the shape of the particle at the new position. This is done through a process called virtual testing,
which involves creating a regular grid of test points within the control volume for pressure (where the
function C is defined) and calculating the solid fraction, given that the radius of the solid sphere is known.
For example, in Fig. 2.5, we observe that 100 virtual points are used to determine the solid fraction Cn+1

(we consider the particle’s position at time (n+1)∆t). The green points represent those inside the particle,
while the blue points represent those outside. In this case, the solid fraction is Cn+1 = 92/100 = 0.92.

Figure 2.5: Virtual test method[79].

Additionally, the study by Vincent et al. (2014) [79] has shown that employing 25Ndim virtual points
(where Ndim represents the number of dimensions) ensures that the error in calculating the solid fraction
consistently stays below 0.1%, regardless of the flow grid. This precision is essential for direct numerical
simulations (DNS) of particulate flows, as it permits the use of a limited number of Eulerian cells across
the particle diameter in three-dimensional simulations, making the modeling of realistic scenarios feasible.

2.2 Fully coupled solver
In this section, we provide a concise overview of the method used to generate the matrix system de-
rived from equations (2.1) and (2.2) for the two-dimensional case, along with a brief presentation of the
methodology to solve it. This approach is based on the work of Mohamed El Ouafa (2022) [62], which
also covers the three-dimensional case and provides a detailed explanation of the solver used and matrix
preconditioning. Following this work, an important consideration regarding the boundary conditions is
that we will use a slightly modified version of our initial system:

∂ρu

∂t
+∇ · (ρu⊗ u) + B̄penu (f(u)− u∞) = −∇p+∇ ·

(
µ
(
∇u+∇tu

))
+ ρg + Fsi (2.13)

∇ · u = 0, (2.14)

where

B̄penu =

 αu 0

0 αv

 .

12

In this equation, the term B̄penu (f(u)− u∞) allows to define the boundary conditions [2]. This term
will be detailed later. To begin our time-space discretization, let us first expand the initial two terms of
(2.13) and apply the conservation of mass:

∂(ρu)

∂t
+∇ · (ρu⊗ u) = ρ

∂u

∂t
+∇ · (ρu⊗ u) + u

∂ρ

∂t
+ u∇ · (ρu)− u∇ · (ρu)

= ρ
∂u

∂t
+∇ · (ρu⊗ u)− u∇ · (ρu) + u

(
∂ρ

∂t
+∇ · (ρu)

)
We will therefore work with the following equations:

ρ
∂u

∂t
+∇ · (ρu⊗ u)− u∇ · (ρu) + B̄penu (f(u)− u∞) = −∇p+∇ ·

(
µ
(
∇u+∇tu

))
+ ρg + Fsi (2.15)

∇ · u = 0. (2.16)

2.2.1 Time integration of two-phase Navier-Stokes equations
Since we are treating with time dependent equations, the time step ∆t plays an important role. Here, the
time integration is added by considering Euler schemes of order 1 or 2. Hence, we obtain the following
semi-discret system:

ρn+1

∆t

(
αun+1 − βun + γun−1

)
+∇ · (ρn+1un+1 ⊗ un+1)− un+1∇ · (ρn+1un+1)

+ B̄penu ·
(
f
(
un+1

)
− u∞

)
= −∇pn+1 +∇ ·

(
µ
(
∇un+1 +∇tun+1

))
+ ρn+1ḡ + Fsi, (2.17)

∇ · un+1 = 0, (2.18)

where the parameters α, β et γ are given by the following manner :

- α = 1, β = −1 et γ = 0 : for the Euler’s scheme of first order.

- α = 3/2, β = −2 et γ = 1/2 : for the Adam-bashfort extrapolation.

2.2.2 Spatial integration of two-phase Navier-Stokes equations
After handling the temporal integration, we move on to spatial discretization. For this, we use a staggered
grid where velocity and pressure variables are represented on staggered points (see Fig. 2.6), each with
its own control volume. The main advantage of this grid type is its ability to conserve fluxes, making the
method conservative. Additionally, staggered grids prevent oscillations in the pressure field and allow for
a natural discretization of differential operators. Boundary conditions are managed using ghost nodes
outside the physical domain.

In this section, we present the spatial discretization in two dimensions; however, the procedure can
be generalized to three dimensions. A key consideration in our approach is the use of a first-order Euler
scheme for temporal discretization. Additionally, the finite volume method is employed to ensure the
conservation of mass and momentum within each control volume [33]. This method involves integrating
the conservation equations (see Eqs. (2.17) and (2.18)) over each control volume. We will now focus
on the control volume for the u velocity component, Ωu(i,j)

, followed by the pressure, Ωp(i,j)
. A similar

approach is applied to the v velocity component, yielding the following expressions:

∫
Ωu(i,j)

ρn

∆t

(
un+1 − un

)
dV +

∫
Σu(i,j)

∇ ·
(
ρnun+1

(
un

vn

))
dS −

∫
Ωu(i,j)

un+1∇ · (ρnun) dV

+

∫
Ωu(i,j)

(
1

0

)t

· B̄penu
(
f
(
un+1

)
− u∞

)
dV = −

∫
Ωu(i,j)

∂xp
n+1dV

+

∫
Σu(i,j)

(
1

0

)t

· (∇ ·
(
µ
(
∇un+1 +∇tun+1

))
· n̄) dS +

∫
Ωu(i,j)

(
1

0

)t

· (ρnḡdV + Fsi) dV

(2.19)

∫
Ωp

∇ · un+1dV = 0 (2.20)

13

Figure 2.6: Staggered grid type. Control volumes utilized. The pressure pi,j , elongation viscosity κi,j ,
and color function Ci,j are located at the nodes of the Eulerian grid. The horizontal velocity ui,j is
defined on the left and right faces of the control volume (in green) associated with pi,j , while the vertical
velocity vi,j is defined on the lower and upper sides of the control volume associated with pi,j . Vorticity
Ωi,j and the shear and rotation viscosities ηi,j and ζi,j are positioned at the corners of the control volume
associated with pi,j .

By using the divergence theorem we transform some volume terms from the previous expression into
surface terms as follows:∫

Ωu(i,j)

ρn

∆t

(
un+1 − un

)
dV +

∫
Σu(i,j)

(
ρnun+1

(
un

vn

))
· n̄ dS −

∫
Ωu(i,j)

un+1∇ · (ρnun) dV

+

∫
Ωu(i,j)

(
1

0

)t

· B̄penu
(
f
(
un+1

)
− u∞

)
dV = −

∫
Ωu(i,j)

∂xp
n+1dV

+

∫
Ωu(i,j)

(
1

0

)t

· (ρnḡdV + Fsi) dV +

∫
Σu(i,j)

(
1

0

)t

·
((
µ
(
∇un+1 +∇tun+1

))
· n̄
)
dS

(2.21)

∫
Ωp

∇ · un+1dV = 0 (2.22)

Now in the following subsections, we are going to discretize each integral term separately.

Convective terms

According to Fig. 2.7, we calculate the surface integral of the convective terms. For the first term, we
obtain the following four contributions corresponding to the four sides of the control volume:∫

Σu(i,j)

(
ρnun+1

(
un

vn

))
· n̄ dS =

∫
right

ρnun+1un dS −
∫

left
ρnun+1un dS

+

∫
up

ρnun+1vn dS −
∫

down
ρnun+1vn dS

The missing values of the Eulerian velocities and densities, at the sides of the control volume are inter-
polated as follows: ∫

right
ρnun+1undS ≈ ρni,j

un+1
i,j + un+1

i+1,j

2

un
i,j + un

i+1,j

2
∆y ,∫

left

ρnun+1undS ≈ ρni−1,j

un+1
i,j + un+1

i−1,j

2

un
i,j + un

i−1,j

2
∆y ,∫

up

ρnun+1vndS ≈ ρn,upi,j

un+1
i,j + un+1

i,j+1

2

vni−1,j+1 + vni,j+1

2
∆x ,∫

down
ρnun+1vndS ≈ ρn,down

i,j

un+1
i,j + un+1

i,j−1

2

vni−1,j + vni,j
2

∆x ,

14

where

ρn,upi,j =
ρn+1
i,j + ρn+1

i−1,j + ρn+1
i,j+1 + ρn+1

i−1,j+1

4
and ρn,down

i,j =
ρn+1
i,j + ρn+1

i−1,j + ρn+1
i,j−1 + ρn+1

i−1,j1

4
.

Figure 2.7: Control volume for the velocity component ui,j . Pressure nodes pi−1,j and pi,j are located on
the left and right sides of the rectangle, where the phase function C and the corresponding fluid densities
ρi−1,j and ρi,j are defined. The densities ρn,down

i,j and ρn,up
i,j are associated with the bottom and top sides,

respectively. The vi,j velocity components are positioned at the corners of the rectangle.

For the second term, we approximate it in order to apply the Divergence theorem, as follows:∫
Ωu(i,j)

un+1∇ · (ρnun) dV ≈ un+1
i,j

∫
Ωu(i,j)

∇ · (ρnun) dV = un+1
i,j

∫
Σu(i,j)

(ρnun) · n̄dV

Now, following the similar procedure explained for the first term above we get:∫
right

ρnundS ≈ ρni,j
un
i,j + un

i+1,j

2
∆y ,∫

left

ρnundS ≈ ρni−1,j

un
i,j + un

i−1,j

2
∆y ,∫

up

ρnvndS ≈ ρn,upi,j

vni−1,j+1 + vni,j+1

2
∆x ,∫

down

ρnvndS ≈ ρn,down
i,j

vni−1,j + vni,j
2

∆x ,

where

ρn,upi,j =
ρni,j + ρni−1,j + ρni,j+1 + ρni−1,j+1

4
and ρn,down

i,j =
ρni,j + ρni−1,j + ρni,j−1 + ρni−1,j−1

4
.

Viscous terms

Let us recall, the strain tensor for two dimensions is given by

(
∇un+1 +∇tun+1

)
= κ

 ∂u
∂x 0

0 ∂v
∂y

+ ζ

 0 ∂u
∂y

∂v
∂x 0

− η

 0 ∂u
∂y − ∂v

∂x

∂v
∂x − ∂u

∂y 0

 (2.23)

with κ = 2µ as the tearing viscosity, ζ = 2µ as the shear viscosity, and η = µ as the rotational viscosity.
Using the expression (2.23) in its surface integral form given by (2.21), we will separately consider the
discretization of the integral for each of the three components that constitute viscosity.

1. The tearing viscosity term is written as∫
Ωu(i,j)

∂

∂x

(
κ
∂u

∂x

)
dV =

∫
Σu(i,j)

(
κ
∂u

∂x

)
dS ≈

[
κ
∂u

∂x
∆y

]fx
bx

≈

(
κi,j

un+1
i+1,j − un+1

i,j

∆x
− κi−1,j

un+1
i,j − un+1

i−1,j

∆x

)
∆y,

where bx (fx) denotes the back (front) face in the x direction.

15

2. The shearing viscosity term is expressed as∫
Ωu(i,j)

∂

∂y

(
ζ
∂u

∂y

)
dV =

∫
Σu

(
ζ
∂u

∂y

)
dS ≈

[
ζ
∂u

∂y
∆x

]fy
by

≈

(
ζi,j+1

un+1
i,j+1 − un+1

i,j

∆y
− ζi,j

un+1
i,j − un+1

i,j−1

∆y

)
∆x,

where by (fy) denotes the back (front) face in the y direction.

3. The rotation term is written as∫
Σu(i,j)

∂

∂y

(
−η

∂u

∂y
+ η

∂v

∂x

)
dV ≈

[
−η

∂u

∂y
+ η

∂v

∂x

]fy
by

∆x

≈

(
−ηi,j+1

un+1
i,j+1 − un+1

i,j

∆y
+ ηi,j+1

vn+1
i,j+1 − vn+1

i−1,j+1

∆x

)
∆x

+

(
ηi,j

un+1
i,j − un+1

i,j−1

∆y
− ηi,j

vn+1
i,j − vn+1

i−1,j

∆x

)
∆x.

(a) (b) (c)

Figure 2.8: Control volume for the horizontal velocity component u, illustrating the locations of tearing
viscosity (a), shearing viscosity (b), and rotational viscosity (c). The back and front faces in the x and
y directions are also depicted, based on the requirements for discretizing the integrals of each viscosity
component. The locations of the values for each component of the Eulerian velocity are also shown.

Calculation of the pressure gradient and velocity divergence terms

To calculate the pressure gradient, we follow a similar procedure as for the tearing viscosity term, using
diagram (a) of Figure 2.8.∫

Σu(i,j)

pn+1nx dS ≈
[
pn+1∆y

]fx
bx

≈
(
pn+1
i,j − pn+1

i−1,j

)
∆y .

On the other hand, to calculate the velocity divergence un+1 = (un+1, vn+1), it is approximated at the
center of the cells (Fig. 2.9, diagram (b)) by∫

Ωp

∇ · un+1dV =

∫
Σp

un+1 · n̄dS ≈
(
un+1
i+1,j − un+1

i,j

)
∆y +

(
vn+1
i,j+1 − vn+1

i,j

)
∆x .

Regarding the vertical velocity component, v, a similar procedure is followed as was done for the u
component to calculate the values of each integral.

Boundary conditions

Another important aspect to consider in our fictitious domain modeling method is the treatment of
boundary conditions, for which we have employed the penalization method [2]. This method provides a

16

(a) (b)

Figure 2.9: Control volume for the u velocity component, showing the locations of pressure and Eulerian
velocity components (a). Control volume for pressure, showing the Eulerian velocity components (b).

way to impose various types of boundary conditions, such as Dirichlet or Neumann. The implementation
of this method involves using a control term in the momentum balance equation:

NS
(
un+1

)
+ B̄penu ·

(
f
(
un+1

)
− u∞

)
= 0

with

B̄penu =

 αu 0

0 αv


The second-order tensor B̄penu defines the boundary conditions [2], where its diagonal elements approach
infinity at the boundaries and are zero within the fluid domain. Moreover, f(un+1) represents a discrete
function of un+1 and vn+1, expressed as a linear combination of the resolved velocities un+1

i,j and vn+1
i,j :

f(un+1) = a0u
n+1
i,j + a1u

n+1
i−1,j + a2u

n+1
i+1,j + a3u

n+1
i,j−1 + a4u

n+1
i,j+1,

f(vn+1) = a0v
n+1
i,j + a1v

n+1
i−1,j + a2v

n+1
i+1,j + a3v

n+1
i,j−1 + a4v

n+1
i,j+1.

The implementation of Dirichlet boundary conditions, applied for instance to the left boundary (see
Fig. 2.10), is controlled by the coefficients ai, which are defined as follows: a0 = a2 = 1

2 and a1 = a3 =
a4 = 0. Thus, the discrete momentum equation at the left boundary becomes:

NS
(
un+1
i,j

)
+ αu

(
1

2
un+1
0,j +

1

2
un+1
1,j − u∞ 1

2 ,j

)
= 0

with u∞ 1
2 ,j

= 0. To impose homogeneous Neumann boundary conditions, the coefficients are set to
a0 = −1, a2 = 1, and a1 = a3 = a4 = 0. The resulting discrete equation is written as:

NS
(
un+1
i,j

)
+ αu

(
−un+1

0,j + un+1
1,j − u∞ 1

2 ,j

)
= 0,

with u∞ 1
2 ,j

= 0.
Similarly, this procedure can be extended to the other boundaries of our physical domain. The reader
may refer to the thesis of Mohamed El Ouafa (2022) [62], where a table is provided with the various
coefficient values corresponding to the function f for Dirichlet or Neumann boundary conditions.

2.2.3 Developping a bidimensional fully coupled solver
After the finite volume discretization carried out in the previous sections, we generally obtain a non-
symmetric linear system as follows:  Fu BT

p

Bu 0

(un+1

pn+1

)
=

(
f

0

)
(2.24)

where Fu = M
(ρ)
u +N

(ρ)
u + L

(µ)
u , and:

17

Figure 2.10: Treatment of boundary conditions on the left edge in 2D

- Buu
n+1 ≈

∫
Ωi,j

∇ · un+1 dV is the discrete divergence operator.

- BT
p p

n+1 ≈
∫
Ωi,j

∇pn+1 dV is the discrete pressure gradient operator.

- M
(ρ)
u un+1 ≈

∫
Ωi,j

(
ρn+1

∆t un+1 + B̄penuf
(
un+1

))
dV is the mass matrix.

- L
(µ)
u un+1 ≈ −

∫
Σi,j

(
∇un+1 +∇tun+1

)
· n̄ dS is the viscous stress operator.

- N
(ρ)
u un+1 ≈

∫
Σi,j

ρun+1un · n̄ dS −
∫
Ωu(i,j)

un∇ ·
(
ρn+1un+1

)
dV is the discrete convective term.

- f ≈
∫
Ωi,j

(
ρn

∆tu
n + B̄penuu∞ + Fsi

)
dV is the right-hand side associated with velocity.

The system (2.24) can be rewritten in the reduced form Ax = b, consisting of N equations with N
unknowns and coefficients in R. The matrix A is a square, sparse matrix with only 11 non-zero diagonals
(see [62] for more details). Given this structure, iterative solvers are recommended as they are particu-
larly effective in optimizing memory usage and reducing computational cost. For our specific problem,
which involves flows laden with finite-sized particles, the BiCGSTAB(2) conjugate gradient method [25]
has proven advantageous due to its strong performance in solving large, sparse, and nonsymmetric lin-
ear systems efficiently. Moreover, it is essential to combine the BiCGSTAB(2) algorithm with a matrix
preconditioner to enhance the convergence of the iterative solver and mitigate potential numerical insta-
bilities. In this case, the Pressure Convective-Diffusion (PCD) preconditioner was applied to the Schur
component, while the block Gauss-Seidel preconditioner was used for the convection-diffusion-reaction
operator (further details can be found in [62]).

2.3 Numerical treatment of particle’s collisions
In this section, we will outline the process used to model particle-particle and particle-wall collisions,
which is crucial in systems with both high and low solid fractions, such as those found in fluidized beds.
This aspect is particularly important because it aims to achieve fully resolved numerical simulations and
to prevent non-physical particle adhesion.

To manage particle interactions, a common method to prevent collisions is to define an exponential
repulsive force [20] or a mass-damping force [34]. However, these methods do not account for the increased
resistance that occurs when two particles, or a particle and a surface, come very close to each other due to
the compression of a thin fluid film between them. This phenomenon, known as the lubrication effect, is
crucial for modeling flow more realistically. To address lubrication, various approaches can be employed,
including local mesh refinement in regions where lubrication effects need to be resolved. However, the main
drawback of this approach is the high computational cost, especially in three-dimensional simulations. To
address lubrication effects, various approaches exist. One common method involves applying local mesh
refinement in regions where lubrication needs to be resolved. However, this approach is computationally
expensive, especially in three dimensions. The approach used here, as proposed by Breugem (2010) [12],
involves adding an equivalent repulsive force to compensate the unresolved hydrodynamic force when
the distance between the two solids is less than an eulerian cell size. In the following two sections, we
will briefly explain the treatment applied to address lubrication effects, as well as the approach taken for
handling collisions.

18

2.3.1 Lubrication effect
When two solid surfaces are embedded in a viscous fluid, the lubrication effect generates a hydrodynamic
force due to the drainage of the fluid. The following lubrication force for normal or head-on collisions is
considered here:

Fl (ϵi,un) = −6πµfRun [λ (ϵi)− λ (ϵal)] (2.25)

with λ being defined as the amplification factor for the Stokes drag acting on an singles sphere is
given in (2.26), (2.27) for particle-particle and particle-wall interaction, respectively:

λpp =
1

2ϵi
− 9

20
log (ϵi)−

3

56
ϵi log (ϵi) + 1.346 +O(ϵi) (2.26)

λpw =
1

ϵi
− 1

5
log (ϵi)−

1

21
ϵi log (ϵi) + 0.9713 +O(ϵi), (2.27)

where µf is the viscosity of the fluid, un is the normal velocity between the particles interaction, and
ϵi =

∥d∥
R is the dimensionless distance between them. The activation distance ϵal is given by numerical

assumptions explained in [11]. Breugem (2010) [12] extends the force Fl in 2.25 to account for lubrication
corrections in non-normal collisions or with rotating particles.

The approach used to address lubrication effects is illustrated through a scenario where a spherical
particle approaches a wall, as shown in Figure 2.11. The upward arrow indicates the distance between
the particle and the wall, highlighting two critical points. The first, ϵal, corresponds to the mesh cell
size, where the lubrication force rapidly increases due to λ. To control this force, a constant distance ϵ1,
representing the particle’s roughness, is imposed. Below ϵ1, the lubrication force is saturated until the
particles overlap. It is at this point that the collision force is activated, which is based on a damping-mass
force that effectively simulates the rebound effect during collisions (see section § 2.3.2).

Figure 2.11: Multilayer model for hydrodynamic interaction for a head-on collision of a spherical particle
and a wall.

2.3.2 Solid-solid collision
Previously, we discussed how the numerical treatment of lubrication forces can cause particles to overlap
when they come very close, which does not realistically represent their behavior as some deformation is
expected. To more accurately capture the bouncing effect that occurs between particles upon collision,
it is important to consider the physical properties of the collision. It is known that a normal collision
between two solids is characterized by the dry restitution coefficient ed, which represents the amount of
energy absorbed during the collision and is defined as the ratio of the velocity after to the velocity before
the collision. However, when simulating collisions, one must consider that the duration of a collision,
for instance between two approaching particles, can be as short as 10−9 seconds. Given that the time
step in simulations of particle interactions within a flow (such as sedimentation flow or fluidized beds)
typically ranges from 10−6 to 10−2 seconds, it is not feasible to directly simulate these collisions. As a
solution, a repulsive force is often considered to prevent particle overlapping. This method is referred as
the soft-sphere model and its major drawback is that it separates artificially the two interacting surfaces
as soon as they are distant from one grid cell. Hence the collision effect is not accurate modeled and
the restitution coefficient is generally underestimated [21]. In the work of Vincent et al. (2013) [79],

19

a standard approach to smooth spheres is employed by implementing a damping-mass force in place of
the conventional repulsive force. This method explicitly incorporates the restitution coefficient, with the
damping-mass force defined as follows:

Fs = −knδ − βnun,

kn = −
me

(
π2 + [Lned]

2
)

[Nc∆t]
2 , βn = −2me [Lned]

[Nc∆t]
,

where kn is the stiffness of the spring, βn is the damping coefficient of the dashpot, and me character-
izes the mass of solids involved in the collision. For solid-solid interaction, me =

(
m−1

1 +m−1
2

)−1
, and

for particle-wall interaction, me = m. The numerical collision duration corresponds to Nc∆t, which is
generally overestimated. However, a good compromise for achieving accurate collision results is to use
Nc = 8. More details on the numerical implementations can be found in [11].

In the literature, various approaches have been proposed for modeling collisions. The distinctiveness
of the method presented here lies in its implicit handling of collision forces (Fs and Fl), which are directly
incorporated into the momentum equation rather than being addressed during particle tracking. These
forces are integrated into the momentum equation (2.2) by projecting the Lagrangian collision force of
particle I (FI

si = Fs + Fl) as a volumetric force. The Lagrangian forces for a given particle are then
distributed across the Eulerian cells within the particle as

Fsi(M) = FI
si/ (Vp) ,

where M denotes an Eulerian grid point within particle I.
In the study of tribocharging in gas-solid flows, we aim to perform particle-resolved direct numerical

simulations (PR-DNS) at the microscopic level, as we seek to track the charge distribution on the par-
ticle surface. At this scale, lubrication effects can become significant, and the treatment of such forces
presented in section § 2.3.1 is insufficient due to saturation below ϵ1 (see Fig. 2.11), which leads to
an underestimation of the force and causes particle overlap. An alternative approach involves applying
local grid refinement in the collision region, as proposed by Hu (1996) [39]. In the literature, several
solvers with adaptive mesh refinement (AMR) have successfully been implemented, for instance, in the
study of atmospheric boundary layers [77], multiphase flows [31], [54], and flows in complex geometries
[65], [32]. A more recent work by Selçuk et al. (2021) [71] implemented AMR for particle-laden flows
using the fictitious domain approach, similar to our case, and achieved successful validation even for
challenging problems dominated by lubrication forces or involving non-spherical particles. Therefore, in
the next chapter, we will provide an overview of the AMR method and discuss some results from its
implementation.

20

Chapter 3

Adaptive mesh refinement

In numerical simulations, achieving high accuracy while maintaining manageable computational costs is
a significant challenge, especially when dealing with complex phenomena that require varying levels of
detail across different regions of the computational domain. Traditional methods, which apply a uniform
grid resolution, often lead to inefficiencies, either by over-resolving areas of lesser importance or under-
resolving critical regions. To address this, Adaptive Mesh Refinement (AMR) technology represents a
powerful tool for locally enhancing the resolution of a grid, optimizing computational resources while
maintaining accuracy. This approach is particularly useful in fields such as astrophysics, geophysics,
aerospace engineering, and rail transportation, as AMR enables the minimization of computational costs
while accurately capturing critical phenomena of interest.

Research in Adaptive Mesh Refinement (AMR) technologies dates back to the 1980s, with the pio-
neering work of Berger and Oliger, along with Collela [6, 7, 8], who initially introduced a dynamic mesh
refinement method for solving time-dependent hyperbolic partial differential equations (PDEs) across
multiple spatial dimensions on a structured Cartesian grid. This approach, known as the patch-based
method, involves the creation of regular patches that are superimposed to refine the grid in regions of the
domain where resolution is insufficient. The hierarchy of patches in this method consists of overlapping
patches that are progressively nested as the level of refinement increases. In terms of implementation,
a tree data structure was employed, which simplifies the management of the grid and the solution data
generated adaptively [5]. Currently, software libraries utilizing the patch-based approach include Chombo
[19], SAMRAI [82], and Enzo [64].

Following this, two main approaches were developed: Block-Structured AMR and Cell-Based AMR.
The Block-Structured AMR approach, which can be seen as a simplified variant of the patched-based
approach, was initially proposed by Berger [9] and Quirk [68], among others. In this approach, mesh
adaptation is achieved by dividing the entire mesh into multiple blocks, each containing an identical
number of grid cells. The refinement process is applied to these blocks, with data management facilitated
by quadtree/octree data structures. Examples of libraries that implement this method include AMReX
[87] and BoxLib [3].

On the other hand, the Cell-Based approach, introduced by Young et al.[85], also utilizes quadtree/octree
data structures but differs in that the adaptive mesh refinement process is applied selectively to individual
grid cells. This method allows for greater flexibility and precision by refining only the regions where high
resolution is necessary, such as near discontinuities or steep gradients. Unlike patch-based or block-based
methods that refine larger grid regions, the cell-based approach reduces computational costs and mem-
ory usage by minimizing unnecessary refinement. Among the libraries that implement this method are
Basilisk and ART. Among the libraries that implement this method are Basilisk [66] and ART [86].

In this work, we employ a simplified version of the patch-based approach, focusing on the one-
dimensional case, to outline the different stages involved in the adaptive meshing process. Our method-
ology is primarily based on the works of Berger and Oliger (1982) [8] and Berger and Collela (1989) [7],
specifically considering the use of explicit finite difference schemes. Then we present some examples for
the AMR.

3.1 Algorithm description
In this section, we present the main components of our algorithm, which is based on a patch-based
approach, and detail certain simplifications specific to our one-dimensional AMR algorithm. Here, we
consider Python as the programming language for implementing the various algorithms that construct
the AMR framework. To access the code, please visit the following link: Github repository.

21

https://github.com/Josuem312/Adaptive_mesh_refinement

3.1.1 Grid description
Adaptive Mesh Refinement (AMR) relies on the use of hierarchically nested grids for the discretization of
partial differential equations (PDEs). The process starts with the coarsest or base grid, G0, which covers
the entire computational domain and has a mesh spacing denoted by h0. This base grid, G0, may consist of
a union of several overlapping rectangular grids, labeled as G0,j , where j ∈ I. Generally, a grid is defined
as the convex hull of its set of grid points, rather than just the grid points themselves. Consequently,
the intersection of two grids is determined by the intersection of their convex hulls. Moreover, one grid is
said to be contained within another if all its points lie within the convex hull that defines the other grid.

During the algorithm’s execution, refined subgrids are adaptively generated in response to specific
features of the evolving solution, such as the formation of shock fronts or based on error estimates. This
generation process can be recursive, allowing refined subgrids to contain additional levels of refinement
within their boundaries. At this point, it is important to highlight that each grid is not patched into the
coarse grid but rather overlays it. Additionally, each grid is treated independently of the others, with its
own solution, storage, and other resources. As a result, each subgrid can be integrated almost indepen-
dently of the others, except at their boundaries. This approach also enables a flexible implementation of
dynamic subgrids, even when the coarsest grid remains unchanged.

To establish a hierarchical distinction among subgrids based on their refinement level, we define the
concept of a grid level, which indicates the number of coarser grids in which a subgrid is nested. Thus, the
coarsest grid, G0, is at level 0 in the hierarchy. Grids nested within G0 form G1 and are considered to be
at the first level of refinement. Similarly, subgrids within G1 belong to G2, and this pattern continues. In
this way, a sequence of nested grids with increasingly finer discretizations can be found within a portion
of the spatial domain. In practice, to obtain a finer grid, the mesh size hl, l = 0, . . . , lmax − 1 of a coarse
grid is made a multiple of the mesh size hl+1 of the subgrid, such that hl = rhl+1, where r is known as
the refinement ratio.

In the one dimensional case, the relationship between grids created at different refinement levels must
be "properly nested", which means that:

(i) A finer grid must start and end at the sides of a cell on the next coarser grid level.

(ii) there must be at least one level l − 1 cell within a level l − 1 grid that separates a level l grid cell
from a level l−2 grid cell in the left, and right directions, unless the cell is adjacent to the domain’s
physical boundary.

It is important to emphasize that, in the one-dimensional case, when considering more than two refined
grids at the same level, these grids do not overlap. Instead, there are two possible scenarios: they either
connect to form a larger grid, or they remain disjoint. For simplicity, in our approach, we do not account
for the process of splitting grids; instead, each level of refinement is composed of only a single grid.

In higher dimensions, the requirement for proper nesting significantly increases the complexity of
generating new refined grids. This complexity arises because a refined grid may be partially enclosed by
two or more different coarser grids (see Fig. 3.1). For a more detailed discussion on this topic, the reader
is referred to the work of Berger & Oliger [8].

Figure 3.1: Example showing a fine grid correctly nested across two coarser grids [7].

3.1.2 Integration Algorithm
In this section, we present the integration algorithm used to solve hyperbolic PDEs. As outlined by
Berger and Oliger [8], the algorithm consists of three main components, which are described below:

(i) The time-stepping process, which employs finite difference methods on each grid.

(ii) Error estimation followed by the generation of new grids.

22

(iii) Specialized inter-grid operations required at each time step during integration, driven by the mesh
refinement process.

A significant portion of the computational effort is devoted to the time integration of the solution.
Each grid is treated as an independent entity and evolves separately from the others, except for the
determination of boundary values. This raises the natural question of how to order the integration of the
grids. To address this, both spatial and temporal refinements are performed using the same refinement
ratio. Specifically:

r =
∆xl−1

∆xl
=

∆tl−1

∆tl
, l = 1, . . . , lmax.

This approach ensures that the mesh ratio, λ, which is the ratio between the time step and the spatial
step, remains constant across all grids. Maintaining a consistent mesh ratio allows us to determine the
order in which the grids should be integrated. For a refinement ratio r, each time step taken on a
level 0 grid requires r time steps for level 1 grids, r2 time steps for level 2 grids, and so on. These
steps are interleaved such that, before advancing a grid to its next time step, all of its subgrids must
be fully integrated up to the same current time level. This is crucial for maintaining consistent solution
information across different grid levels. Furthermore, the fact that the smaller time step of the finer grids
is not applied to the entire domain contributes to the efficiency of the AMR method.

Figure 3.2 illustrates the integration order in a one-dimensional case, assuming a refinement ratio of
r = 2. The figure shows a grid at each level of refinement, with the corresponding time step sizes.

Figure 3.2: Example illustrating the development of spatial and temporal refinement in a one-dimensional
case with a refinement ratio of 2. One grid is shown for each level of refinement, with the corresponding
time step sizes [5].

One of the most critical components of the AMR method is error estimation and the subsequent
regridding process, which is where the majority of the computational load occurs [5]. This component
involves estimating the error at all grid points after a certain number of time steps and then adjusting
the mesh structure accordingly. When a new refined grid is created, its values are initialized through
linear or quadratic interpolation from the coarser grids [10]. Conversely, removing a grid simply involves
reclaiming its storage. An important consideration for hyperbolic equations is the addition of a buffer
zone around refined subgrids to extend the time between regridding processes. However, this involves a
trade-off: a larger buffer zone reduces the frequency of regridding but requires more computational work
to integrate the extra points within the buffer zone.

Finally, another important aspect to address involves communication routines between grids. Here,
we consider two main tasks. The first involves managing the boundary conditions for the refined grids
within the interior of the domain G0. The boundary values are determined using the solution values from
the underlying coarse grids through temporal interpolation to compute the boundary values at the times
of the subgrids. The second task is updating the coarse grid, which is done by injecting the fine grid
solution values onto the coarse grid points whenever a fine grid is nested within a coarse grid and both
are integrated up to the same point in time. This approach is necessary for several reasons. First, if the
coarse grid is not updated, the solution can become so diffused that, over time, further refinement may
appear unnecessary. Second, by keeping a sharp discontinuity on the coarse grid, the region requiring
refinement can be reduced in size. Lastly, this prevents a chain of incorrect values on the coarse grid
from spreading into the buffer zone and contaminating the values that will be used for the boundary
approximation on the fine grid [5].

The mesh refinement algorithm, in its entirety, is outlined in Fig. 1 It can be effectively formulated
as a straightforward recursive procedure.

23

3.1.2.1 Grid generation

The grid generation process in Adaptive Mesh Refinement (AMR) involves identifying grid points that
require refinement based on error estimation or other criteria. Once identified, new grid levels are created
with a specific refinement ratio to enhance resolution in critical areas. To prevent excessive computational
cost and complexity, a maximum level of refinement is set. This limitation ensures that the method
balances accuracy and efficiency, avoiding overly refined grids that could lead to increased computational
demands without proportional gains in precision.

To describe the grid generation more precisely, suppose we are at grid level l. The error is estimated
at each point on the grid, and those points where the error (or another criterion for determining the need
for refinement) exceeds a threshold ϵ are flagged. A subgrid with mesh width hl+1 is then created to
encompass all the flagged points.

In general, when it is necessary to regrid, a new grid level may be introduced, an existing level may
be updated, or an unnecessary level may be removed—even if a grid simply needs to be translated. In
such cases, a refined grid is created and initialized with values from the old grid before it is discarded.

For our specific implementation, the regridding method involves identifying the flagged points and
then considering the leftmost and rightmost points to create a new grid. It is important to note that,
in our case, we have not considered the creation of multiple subgrids at the same level of refinement.
However, to create different grids, we look for a sufficiently large gap between two flagged points, and
this distance is determined by the buffer zone.

Algorithm 1 AMR algorithm

1: procedure Integrate(lev)
2: Repeat rlev times
3: if Regridding time? then
4: Error estimation, grid generation,
5: and creation of buffer zone
6: end if
7: Step ∆tlev on all grids at level lev
8: if (lev + 1) grids exist then
9: begin

10: Integrate (lev + 1)
11: Updating(lev, lev+1)
12: end
13: end if
14: end procedure

3.1.2.2 Data Structure

As outlined by Berger and Oliger [8], a data structure that tracks the relationships between different
grids, as well as manages the storage of the solution, is crucial for the adaptive mesh refinement method.
For our one-dimensional case, where each fine grid must be entirely contained within its coarser grid,
the data structure used is a linked list. In this structure, each grid corresponds to a node, and there is
a clear correspondence between the refined grid (child node) and its parent coarser grid. Consequently,
all grid-to-grid operations, such as updating coarse grids from fine grids and setting internal boundary
values for fine grids, follow an information flow that traverses the links in the linked list.

Additionally, because this tree-like structure can grow or shrink dynamically, some form of dynamic
memory allocation is required, both for the grid information in each node and for the solution storage
associated with each grid.

A grid is primarily characterized by the following pieces of information stored in each node of the
linked list:

1. Level in the linked list.

2. Offspring pointer (if it exists).

3. Parent pointer.

4. Time up to which this grid has been integrated.

5. Solution vector.

24

6. Spatial discretization.

In the more general case, where multiple subgrids may exist at the same level of refinement, the data
structure becomes more complex. For such cases, a tree structure is more appropriate, as it requires ad-
ditional connections between grids originating from the same parent (referred to as siblings) and between
grids from different parents (referred to as neighbors). More information on this can be found in [8].

3.1.3 Error estimator
The error estimation method we employ relies on calculating the local truncation error through Richardson
extrapolation. To introduce this error estimator, we first need to provide some definitions, as outlined
by Oliger & Zhu (1996) [61].

Consider the following problem:

ut = Lu+ f, on Ω× [0, T], (3.1)
u(0) = u0, on Ω, (3.2)
Bu = b, on ∂Ω× [0, T], (3.3)

where Ω ⊂ Rd is a bounded domain in physical space, L is a spatial partial differential operator
defined on Ω, and u ∈ Rn represents the solution function, assumed to form a well-posed initial-boundary
value problem. The discretizations of Ω, ∂Ω, and [0, T] are given by Ωh, ∂Ωh, and [0, T]k, respectively,
with h and k denoting the spatial and temporal step sizes.

Let vh be a grid function defined on Ωh× [0, T]k. To maintain generality and simplicity while avoiding
cumbersome notation, we express our methods in an explicit one-step format as follows:

vh(t+ k) = vh(t) + k(Lhvh(t) + fh(t)) on Ωh × [0, T]k, (3.4)
vh(0) = u0,h on Ωh, (3.5)

where subscripts indicate the projection of functions onto the corresponding grids, as well as the
discretization of operators on these grids. If uh denotes the projection of the exact solution of the system
onto Ωh, then

uh(t+ k) = uh(t) + kLhuh(t) + kfh(t) + kτh, on Ωh × [0, T]k,

where kτh represents the local truncation error. If we denote by Qh the one-step scheme given by
(3.4), the local truncation error can be written as (assuming the solution is sufficiently smooth):

kτh(x, t) = uh(x, t+ k)−Qhuh(x, t)

= k (kp1a(x, t) + hp2b(x, t)) + kO
(
kp1+1 + hp2+1

)
= kτ + kO

(
kp1+1 + hp2+1

)
.

(3.6)

The leading term is denoted by kτ . If u is sufficiently smooth and we take two time steps with the
operator Qh, then, to leading order, the error is 2kτ :

uh(x, t+ 2k)−Q2
huh(x, t) = 2kτ + kO(kp1+1 + hp2+1). (3.7)

Let Q2h be the same difference operator as Qh, but based on grids with widths 2h and 2k. Assume
also that the order of accuracy in time and space is the same, i.e., p1 = p2 = p. Then,

uh(x, t+ 2k)−Q2huh(x, t) = 2k ((2k)pa(x, t) + (2h)pb(x, t)) +O(hp+2),

= 2p+1kτ +O(hp+2).
(3.8)

Subtracting (3.7) from (3.8) and using the expression (3.6), we obtain

τh(x, t) =
Q2

huh(x, t)−Q2huh(x, t)

k(2p+1 − 2)
+O(hp+1).

This provides an estimator of the local truncation error at time t. In words, one can estimate the
pointwise error by taking a large step using mesh widths of 2h and 2k, starting from the solution at time
t. Then, this solution is compared to the one obtained by taking two regular integration steps (see Figure
3.3). Note that this error estimator is also valid for piecewise uniform grids, such as adaptively generated
subgrids.

25

Figure 3.3: Richardson error estimation procedure [8].

The advantage of this procedure lies in the fact that it is not necessary to know the exact form of the
truncation error to apply it, as, for example, one does not need to explicitly know the functions a and b
that involve higher derivatives of the solution [8]. Furthermore, note that this estimator is independent
of the finite difference scheme used.

The restriction that the accuracy in time and space be the same is not a serious limitation. For more
details, refer to Berger [8]. For non-smooth solutions, we can no longer have an accurate error estimate.
However, Richardson estimates still provide a good criterion for refinement, as the estimates will be large
near a singularity.

3.2 Numerical examples
In order to show the results of our adaptive mesh refinement let us consider the well-known transport
equation:

∂u

∂t
+ a

∂u

∂x
= 0, where x ∈ [e, d], t ∈ [0,+∞[. (3.9)

The unique solution, given by its initial condition u0(x) = u(x, 0), x ∈ [e, d], is given as follows

u(x, t) = u0(x− at). (3.10)

Now, we will use the Adaptive Mesh Refinement (AMR) method for different initial conditions to
study the performance of AMR by considering two schemes: the Lax-Wendroff scheme and the Forward
in Time, Backward in Space (FTBS) scheme.

1. Let us consider the following Gaussian initial condition given by:

u0(x) = 0.2 exp(−(x− 4)2) (3.11)

First, we consider a study of the convergence order for these two schemes (Lax-Wendroff anf FTBS)
by varying the spatial resolution for different Courant numbers. This is because, for certain Courant
number cases, the order is not as expected, and we aim to study the error of the AMR without
interference from other factors. This gives us the following graph:

We now present a comparison between the solution graphs obtained with and without Adaptive
Mesh Refinement (AMR). For this analysis, we use initial parameters of e = 0 and d = 10 for the
spatial domain limits, with 80 spatial points and a maximum time of 1.5. The results obtained
under these conditions are as follows:

We observe an improvement in the solution in the graph where AMR is applied (see Fig. 3.5a).
Additionally, we note that the refinement region is quite large, as evidenced by the size of the
subgrid at level 1. Our code does not yet account for cases with multiple subgrids. For other cases
with different Courant numbers, we have chosen not to include their graphs, as the results are very
similar. Now, let us consider the case where the Lax-Wendroff scheme is used.

As expected, since the Lax-Wendroff scheme is second-order accurate in both space and time, the
solution is more precise than with the FTBS scheme, as shown in Fig. 3.6a. The same parameters
were used as in the previous case.

2. For this case, let us consider an initial discontinuous solution of the form:

u0(x) =

{
1.0 if x < 1.4,

0 otherwise.

26

(a) Courant number c=0.1 (b) Courant number c=0.2

(c) Courant number c=0.4 (d) Courant number c=0.8

Figure 3.4: Plots of convergence orders of schemes FTBS and Lax Wendroff for different values of Courant
number

(a) AMR solution FTBS, ratio of refinement 8 and
threshhold 10−6 and maximum level of refinement 2.

(b) Solution without AMR FTBS

Figure 3.5: Comparison of the approximated solution using the FTBS scheme with AMR (a) and without
AMR (b), considering a Courant number of 0.1. The two dashed lines represent the refinement subgrid
used to obtain the final solution.

which gives us a Riemann problem. For this case, we will follow a similar procedure to that used
for the previous initial condition and use the same parameters for spatial discretization and final
time.

We will plot the convergence order for the cases with Courant numbers that best match the theo-
retical convergence order (see Fig. 3.7a and 3.7b). Therefore, the values considered will be c = 0.1
and c = 0.2.

In the graphs, we observe that as the spatial discretization resolution increases, the convergence
order plot starts to resemble the theoretical convergence order. Next, we proceed to plot the

27

(a) AMR solution with L-W, ratio of refinement 8 and
threshhold 10−6 and maximum level of refinement 2

(b) Solution without AMR L-W

Figure 3.6: Comparison of the approximated solution using the Law-Wendroff scheme with AMR (a) and
without AMR (b), considering a Courant number of 0.1. The two dashed lines represent the refinement
subgrid used to obtain the final solution.

(a) Courant number c=0.1 (b) Courant number c=0.2

Figure 3.7: Plots of convergence orders of schemes FTBS and Lax Wendroff for different values of Courant
number

solutions with and without Adaptive Mesh Refinement (AMR) for both types of schemes.

Regarding the FTBS scheme (see Fig. 3.9a and Fig. 3.9b), a more accurate solution can be observed
when using AMR. However, with a refinement ratio of 16 and a maximum of 2 refinement levels,
we can still see that the solution is not exact in the region of the discontinuity. A similar result
occurs for the Lax-Wendroff scheme (see Fig. 3.10a and 3.10b), where the exact solution exhibits
an oscillatory behavior when dealing with initial conditions involving discontinuities. On the other
hand, when using AMR, an improvement in the solution is observed, except in the region of the
discontinuity, where a small oscillation can be noticed.

Since oscillations, as shown in Fig. 3.10a, as well as undesired displacements of the solution (see Fig.
3.8), have been encountered when considering different types of examples, we have not considered
conducting an error analysis because our code still has deficiencies that have not yet been resolved.
This deficiencies appeared for example when increasing the level of refinement and also the maximum
level of refinement.

28

Figure 3.8: AMR solution for ratio of refinement 16, and maximum level of refinement 2.

(a) AMR solution FTBS, ratio of refinement 16 and
threshhold 10−6. (b) Solution without AMR FTBS

Figure 3.9: Comparison of the approximated solution using the FTBS scheme with AMR (a) and without
AMR (b), considering a Courant number of 0.1. The two dashed lines represent the refinement subgrid
used to obtain the final solution.

(a) AMR solution with L-W, ratio of refinement 16
and threshhold 10−6. (b) Solution without AMR L-W

Figure 3.10: Comparison of the approximated solution using the Law-Wendroff scheme with AMR (a) and
without AMR (b), considering a Courant number of 0.1. The two dashed lines represent the refinement
subgrid used to obtain the final solution.

29

Conclusions

After a comprehensive literature review on Adaptive Mesh Refinement (AMR), we implemented an adap-
tive mesh refinement method for the one-dimensional case with specific simplifications following the work
of Berger and Oliger (1982) [5]. This was done to demonstrate the practical functioning of this method
and to explore potential improvements in handling collisions, particularly in the context of the viscous
penalty method, which is known for its drawbacks in terms of computational cost and accuracy when
applied to multiphase flows and other fluid dynamics problems.

Our results started with a thorough analysis of the convergence order to identify suitable Courant
numbers, aiming to minimize errors inherent to the two numerical schemes employed: Lax-Wendroff
and Forward in Time, Backward in Space (FTBS). This analysis was necessary because the choice of
Courant number can significantly influence the stability and accuracy of numerical schemes, especially in
the context of AMR where multiple grid levels and time steps interact. Two types of initial conditions
were examined: one involving a Gaussian function and the other dealing with a discontinuity. Through
these cases, we illustrated the capability of the AMR method to refine the grid dynamically in regions
where higher resolution is needed, thus enhancing the accuracy of the approximate solution.

From the graphical results, it is evident that the AMR method significantly enhances the precision
of the approximate solution by allocating computational resources to the most critical regions. However,
some unexpected behaviors were observed, such as oscillations near discontinuities and shifts in the
approximate solutions. Although the root causes of these issues are not fully understood at present,
resolving them is a priority for future work. This will involve refining the method to improve its stability
and accuracy, especially around regions of steep gradients or discontinuities.

Looking ahead, there are several possible extensions to this work. One promising direction is to include
multiple subgrids at the same level of refinement. This would create a more sophisticated algorithm due
to the challenges of grid overlapping and proper synchronization of boundary conditions between grids.
Moreover, extending this approach to higher-dimensional problems could leverage tree data structures to
handle the complexity of grid management more effectively. Another important extension would be to
apply finite volume methods instead of finite difference methods for solving hyperbolic equations. This
approach is generally more robust in handling conservation laws, especially in the presence of shocks or
steep gradients, and could mitigate some of the issues observed with the current implementation.

Overall, the current work provides a foundational understanding and practical insights into AMR
methods, but there is room for significant advancement, particularly in the areas of algorithmic complex-
ity, grid management, and numerical stability. These improvements will be crucial for applying AMR to
more complex, real-world problems, such as fluid dynamics in multiphase flows.

30

Bibliography

[1] F Sharmene Ali, M Adnan Ali, R Ayesha Ali, and Ion I Inculet. Minority charge separation in falling
particles with bipolar charge. Journal of Electrostatics, 45(2):139–155, 1998.

[2] Philippe Angot, Charles-Henri Bruneau, and Pierre Fabrie. A penalization method to take into
account obstacles in incompressible viscous flows. Numerische Mathematik, 81(4):497–520, 1999.

[3] J Bell, A Almgren, V Beckner, M Day, M Lijewski, A Nonaka, and W Zhang. Boxlib user’s guide.
github. com/BoxLib-Codes/BoxLib, 2012.

[4] M Beretta, TR Hörmann, P Hainz, W-K Hsiao, and A Paudel. Investigation into powder tribo-
charging of pharmaceuticals. part i: Process-induced charge via twin-screw feeding. International
Journal of Pharmaceutics, 591:120014, 2020.

[5] Marsha J. Berger. Adaptive mesh refinement for hyperbolic partial differential equations. Technical
Report STAN-CS-82-924, Department of Computer Science, Stanford University, Stanford, CA,
August 1982. Approved for public release; distribution unlimited.

[6] Marsha J Berger. Data structures for adaptive grid generation. SIAM Journal on Scientific and
Statistical Computing, 7(3):904–916, 1986.

[7] Marsha J Berger and Phillip Colella. Local adaptive mesh refinement for shock hydrodynamics.
Journal of computational Physics, 82(1):64–84, 1989.

[8] Marsha J Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. Journal of computational Physics, 53(3):484–512, 1984.

[9] Marsha J Berger and Jeff S Saltzman. Amr on the cm-2. Applied Numerical Mathematics, 14(1-
3):239–253, 1994.

[10] John H Bolstad. An adaptive finite difference method for hyperbolic systems in one space dimension.
1982.

[11] Jorge César Brändle De Motta, W-P Breugem, Bertrand Gazanion, J-L Estivalezes, Stéphane Vin-
cent, and Éric Climent. Numerical modelling of finite-size particle collisions in a viscous fluid. Physics
of Fluids, 25(8), 2013.

[12] Wim-Paul Breugem. A combined soft-sphere collision/immersed boundary method for resolved
simulations of particulate flows. In Fluids Engineering Division Summer Meeting, volume 49484,
pages 2381–2392, 2010.

[13] Carsten Burstedde, Lucas C Wilcox, and Omar Ghattas. p4est: Scalable algorithms for parallel
adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific Computing, 33(3):1103–
1133, 2011.

[14] Rubén M Cabezón, Domingo García-Senz, and Antonio Relaño. A one-parameter family of inter-
polating kernels for smoothed particle hydrodynamics studies. Journal of Computational Physics,
227(19):8523–8540, 2008.

[15] Jean-Paul Caltagirone and Stéphane Vincent. Sur une méthode de pénalisation tensorielle pour
la résolution des équations de navier–stokes. Comptes Rendus de l’Académie des Sciences-Series
IIB-Mechanics, 329(8):607–613, 2001.

[16] Mohamed-Amine Chadil, Stéphane Vincent, and Jean-Luc Estivalezes. Improvement of the viscous
penalty method for particle-resolved simulations. Open Journal of Fluid Dynamics, 9(02):168–192,
2019.

31

[17] Fahad Al-Amin Chowdhury. CFD Simulation of Electrostatic Charging in Gas-Solid Fluidized Beds:
Model Development Through Fundamental Charge Transfer Experiments. Doctor of philosophy in
chemical engineering, University of Ottawa, Ottawa, Canada, 2021.

[18] J Ciborowski and A_ Wlodarski. On electrostatic effects in fluidized beds. Chemical Engineering
Science, 17(1):23–32, 1962.

[19] Phillip Colella, Daniel T Graves, TJ Ligocki, DF Martin, D Modiano, DB Serafini, and
B Van Straalen. Chombo software package for amr applications design document. Available at
the Chombo website: http://seesar. lbl. gov/ANAG/chombo/(September 2008), 2, 2009.

[20] Mathieu Coquerelle and G-H Cottet. A vortex level set method for the two-way coupling of an
incompressible fluid with colliding rigid bodies. Journal of Computational Physics, 227(21):9121–
9137, 2008.

[21] C Crowe, M Sommerfeld, Y Tsuji, and C Crowe. Multiphase flows with droplets and particles crc.
Boca Raton, FL, 1998.

[22] DK Davies. Charge generation on dielectric surfaces. Journal of Physics D: Applied Physics,
2(11):1533, 1969.

[23] Jean-Marc Delhaye. Jump conditions and entropy sources in two-phase systems. local instant for-
mulation. International Journal of Multiphase Flow, 1(3):395–409, 1974.

[24] Cécile Dobrzynski and Pascal Frey. Anisotropic delaunay mesh adaptation for unsteady simulations.
In Proceedings of the 17th international Meshing Roundtable, pages 177–194. Springer, 2008.

[25] Jack J Dongarra, Iain S Duff, Danny C Sorensen, and Henk A Van der Vorst. Numerical linear
algebra for high-performance computers. SIAM, 1998.

[26] Mohamed El Ouafa, Vincent Stéphane, and Vincent Le Chenadec. Navier-stokes solvers for incom-
pressible single-and two-phase flows. Communications in Computational Physics, 2020.

[27] Akihiko Ema, Daisuke Yasuda, Ken-ichiro Tanoue, and Hiroaki Masuda. Tribo-charge and rebound
characteristics of particles impact on inclined or rotating metal target. Powder technology, 135:2–13,
2003.

[28] Liang-Shih Fan. Gas-liquid-solid fluidization engineering. Butterworth-Heinemann, 2013.

[29] Keith M Forward, Daniel J Lacks, and R Mohan Sankaran. Methodology for studying particle–
particle triboelectrification in granular materials. Journal of Electrostatics, 67(2-3):178–183, 2009.

[30] M Fujino, S Ogata, and H Shinohara. The electric potential distribution profile in a naturally charged
fluidized bed and its effects. Int. Chem. Eng.;(United States), 25(1), 1985.

[31] Daniel Fuster, Anne Bagué, Thomas Boeck, Luis Le Moyne, Anthony Leboissetier, Stéphane Popinet,
Pascal Ray, Ruben Scardovelli, and Stéphane Zaleski. Simulation of primary atomization with
an octree adaptive mesh refinement and vof method. International Journal of Multiphase Flow,
35(6):550–565, 2009.

[32] Frederic Gibou, Ronald P Fedkiw, Li-Tien Cheng, and Myungjoo Kang. A second-order-accurate
symmetric discretization of the poisson equation on irregular domains. Journal of Computational
Physics, 176(1):205–227, 2002.

[33] Dimitri Gidaspow. Multiphase flow and fluidization: continuum and kinetic theory descriptions.
Academic press, 1994.

[34] Roland Glowinski, Tsorng-Whay Pan, Todd I Hesla, Daniel D Joseph, and Jácques Periaux. A
fictitious domain approach to the direct numerical simulation of incompressible viscous flow past
moving rigid bodies: application to particulate flow. Journal of computational physics, 169(2):363–
426, 2001.

[35] Robert O Hagerty, Michael E Muhle, Agapios K Agapiou, Chi-I Kuo, Mark G Goode, F David
Hussein, Richard B Pannell, and John F Szul. Method for controlling sheeting in gas phase reactors,
July 26 2011. US Patent 7,985,811.

[36] John Happel and Howard Brenner. Low Reynolds number hydrodynamics: with special applications
to particulate media, volume 1. Springer Science & Business Media, 2012.

32

[37] Wallace Russell Harper. Contact and frictional electrification. (No Title), 1967.

[38] Gregory Hendrickson. Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting.
Chemical Engineering Science, 61(4):1041–1064, 2006.

[39] Howard H Hu. Direct simulation of flows of solid-liquid mixtures. International Journal of Multiphase
Flow, 22(2):335–352, 1996.

[40] Howard H Hu, Neelesh A Patankar, and MY1836522 Zhu. Direct numerical simulations of fluid–
solid systems using the arbitrary lagrangian–eulerian technique. Journal of Computational Physics,
169(2):427–462, 2001.

[41] Takayuki Itakura, Hiroaki Masuda, Chiyo Ohtsuka, and Shuji Matsusaka. The contact potential
difference of powder and the tribo-charge. Journal of Electrostatics, 38(3):213–226, 1996.

[42] Paul Iversen and Daniel J Lacks. A life of its own: The tenuous connection between thales of miletus
and the study of electrostatic charging. Journal of Electrostatics, 70(3):309–311, 2012.

[43] Isao Kataoka. Local instant formulation of two-phase flow. International Journal of Multiphase
Flow, 12(5):745–758, 1986.

[44] Isao Kataoka, Mamoru Ishii, and Akimi Serizawa. Local formulation and measurements of interfacial
area concentration in two-phase flow. International Journal of Multiphase Flow, 12(4):505–529, 1986.

[45] Tobias Kempe and Jochen Fröhlich. Collision modelling for the interface-resolved simulation of
spherical particles in viscous fluids. Journal of Fluid Mechanics, 709:445–489, 2012.

[46] Khodor Khadra, Philippe Angot, Sacha Parneix, and Jean-Paul Caltagirone. Fictitious domain
approach for numerical modelling of navier–stokes equations. International journal for numerical
methods in fluids, 34(8):651–684, 2000.

[47] Daniel J Lacks and Troy Shinbrot. Long-standing and unresolved issues in triboelectric charging.
Nature Reviews Chemistry, 3(8):465–476, 2019.

[48] JC Laurentie, P Traoré, and L Dascalescu. Discrete element modeling of triboelectric charging of
insulating materials in vibrated granular beds. Journal of Electrostatics, 71(6):951–957, 2013.

[49] Chun Hean Lee, Antonio J Gil, Paulo R Refachinho de Campos, Javier Bonet, Tadas Jaugielavičius,
Shreyas Joshi, and Clare Wood. A novel arbitrary lagrangian eulerian smooth particle hydrodynamics
algorithm for nonlinear solid dynamics. Computer Methods in Applied Mechanics and Engineering,
427:117055, 2024.

[50] Victor Lee, Scott R Waitukaitis, Marc Z Miskin, and Heinrich M Jaeger. Direct observation of
particle interactions and clustering in charged granular streams. Nature Physics, 11(9):733–737,
2015.

[51] Paola Lettieri and Luca Mazzei. Challenges and issues on the cfd modeling of fluidized beds: a
review. The Journal of Computational Multiphase Flows, 1(2):83–131, 2009.

[52] Hongwei Li, Lei Wang, Changhe Du, and Wenpeng Hong. Cfd-dem investigation into flow charac-
teristics in mixed pulsed fluidized bed under electrostatic effects. Particuology, 66:100–112, 2022.

[53] Yi Liang, Cheng Wang, and Pengtao Sun. An interface-fitted fictitious domain finite element method
for the simulation of neutrally buoyant particles in plane shear flow. Fluids, 8(8):229, 2023.

[54] Frank Losasso, Frédéric Gibou, and Ron Fedkiw. Simulating water and smoke with an octree data
structure. In Acm siggraph 2004 papers, pages 457–462. ACM Transactions on Graphics (TOG),
2004.

[55] Shuji Matsusaka, Mojtaba Ghadiri, and Hiroaki Masuda. Electrification of an elastic sphere by
repeated impacts on a metal plate. Journal of Physics D: Applied Physics, 33(18):2311, 2000.

[56] Shuji Matsusaka, H Maruyama, Tatsushi Matsuyama, and Mojtaba Ghadiri. Triboelectric charging
of powders: A review. Chemical Engineering Science, 65(22):5781–5807, 2010.

[57] Tatsushi Matsusyama and Hideo Yamamoto. Impact charging of particulate materials. Chemical
Engineering Science, 61(7):2230–2238, 2006.

33

[58] Bertrand Maury. Direct simulations of 2d fluid-particle flows in biperiodic domains. Journal of
computational physics, 156(2):325–351, 1999.

[59] Poupak Mehrani, Matti Murtomaa, and Daniel J Lacks. An overview of advances in understanding
electrostatic charge buildup in gas-solid fluidized beds. Journal of Electrostatics, 87:64–78, 2017.

[60] AW Nienow. Fluidised bed granulation and coating: applications to materials, agriculture and
biotechnology. Chemical Engineering Communications, 139(1):233–253, 1995.

[61] Joseph Oliger and Xiaolei Zhu. Stability and error estimation for component adaptive grid methods.
Applied numerical mathematics, 20(4):407–426, 1996.

[62] Mohamed El Ouafa. Développement d’un solveur tout-couplé parallèle 3D pour la simulation des
écoulements diphasiques incompressibles à forts rapports de viscosités et de masses volumiques. PhD
thesis, Université Gustave Eiffel, Paris, France, December 2022. Thèse de doctorat en Mécanique,
soutenue publiquement le 15 Décembre 2022.

[63] Bo Ouyang, Li-Tao Zhu, and Zheng-Hong Luo. Data-driven modeling of mesoscale solids stress
closures for filtered two-fluid model in gas–particle flows. AIChE Journal, 67(7):e17290, 2021.

[64] Brian W O’shea, Greg Bryan, James Bordner, Michael L Norman, Tom Abel, Robert Harkness,
and Alexei Kritsuk. Introducing enzo, an amr cosmology application. In Adaptive Mesh Refinement-
Theory and Applications: Proceedings of the Chicago Workshop on Adaptive Mesh Refinement Meth-
ods, Sept. 3–5, 2003, pages 341–349. Springer, 2005.

[65] Stéphane Popinet. Gerris: a tree-based adaptive solver for the incompressible euler equations in
complex geometries. Journal of computational physics, 190(2):572–600, 2003.

[66] Stéphane Popinet. Quadtree-adaptive tsunami modelling. Ocean Dynamics, 61:1261–1285, 2011.

[67] Constantine Pozrikidis. Introduction to theoretical and computational fluid dynamics. Oxford uni-
versity press, 2011.

[68] James J Quirk and Ulf R Hanebutte. A parallel adaptive mesh refinement algorithm. Technical
report, Institute for computer applications in science and engineering, 1993.

[69] Vivek V Ranade. Computational flow modeling for chemical reactor engineering. Elsevier, 2001.

[70] Stefanie Rauchenzauner and Simon Schneiderbauer. A dynamic anisotropic spatially-averaged two-
fluid model for moderately dense gas-particle flows. International Journal of Multiphase Flow,
126:103237, 2020.

[71] Can Selçuk, Arthur R Ghigo, Stéphane Popinet, and Anthony Wachs. A fictitious domain method
with distributed lagrange multipliers on adaptive quad/octrees for the direct numerical simulation
of particle-laden flows. Journal of Computational Physics, 430:109954, 2021.

[72] NC Shilton and K Niranjan. Fluidization and its applications to food processing. Food structure,
12(2):8, 1993.

[73] Petteri Sippola, Jari Kolehmainen, Ali Ozel, Xiaoyu Liu, Pentti Saarenrinne, and Sankaran Sun-
daresan. Experimental and numerical study of wall layer development in a tribocharged fluidized
bed. Journal of Fluid Mechanics, 849:860–884, 2018.

[74] Kai Sotthewes, Han JGE Gardeniers, Gert Desmet, and Ignaas SM Jimidar. Triboelectric charging
of particles, an ongoing matter: From the early onset of planet formation to assembling crystals.
ACS omega, 7(46):41828–41839, 2022.

[75] Ken-ichiro Tanoue and Hiroaki Masuda. Electrostatic separation. In Powder Technology Handbook,
Fourth Edition, pages 455–460. CRC Press, 2019.

[76] Martin Anton van der Hoef, M van Sint Annaland, NG Deen, and JAM Kuipers. Numerical sim-
ulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech.,
40(1):47–70, 2008.

[77] J Antoon Van Hooft, Stéphane Popinet, Chiel C Van Heerwaarden, Steven JA Van der Linden,
Stephan R De Roode, and Bas JH Van de Wiel. Towards adaptive grids for atmospheric boundary-
layer simulations. Boundary-layer meteorology, 167:421–443, 2018.

34

[78] Henk Kaarle Versteeg. An introduction to computational fluid dynamics the finite volume method,
2/E. Pearson Education India, 2007.

[79] Stéphane Vincent, Jorge César Brändle De Motta, Arthur Sarthou, Jean-Luc Estivalezes, Olivier
Simonin, and Eric Climent. A lagrangian vof tensorial penalty method for the dns of resolved
particle-laden flows. Journal of Computational Physics, 256:582–614, 2014.

[80] Chunlei Wang, Guodong Liu, Zhanhu Zhai, Xinyao Guo, and Yao Wu. Cfd-dem study on the
interaction between triboelectric charging and fluidization of particles in gas-solid fluidized beds.
Powder Technology, 419:118340, 2023.

[81] Meurig W Williams. Triboelectric charging of insulating polymers–some new perspectives. Aip
Advances, 2(1), 2012.

[82] Andrew M Wissink, Richard D Hornung, Scott R Kohn, Steve S Smith, and Noah Elliott. Large
scale parallel structured amr calculations using the samrai framework. In Proceedings of the 2001
ACM/IEEE conference on Supercomputing, pages 6–6, 2001.

[83] Ying Wu, Daoyin Liu, Jinding Hu, Jiliang Ma, and Xiaoping Chen. Comparative study of two fluid
model and dense discrete phase model for simulations of gas–solid hydrodynamics in circulating
fluidized beds. Particuology, 55:108–117, 2021.

[84] Yishui Wu, GS Peter Castle, and Ion I Inculet. Induction charging of granular materials in an electric
field. IEEE transactions on industry applications, 41(5):1350–1357, 2005.

[85] David P Young, Robin G Melvin, Michael B Bieterman, Forrester T Johnson, Satish S Samant, and
John E Bussoletti. A locally refined rectangular grid finite element method: application to compu-
tational fluid dynamics and computational physics. Journal of Computational Physics, 92(1):1–66,
1991.

[86] Yongen Yu, Douglas H Rudd, Zhiling Lan, Nickolay Y Gnedin, Andrey Kravtsov, and Jingjin Wu.
Improving parallel io performance of cell-based amr cosmology applications. In 2012 IEEE 26th
International Parallel and Distributed Processing Symposium, pages 933–944. IEEE, 2012.

[87] Weiqun Zhang, Ann Almgren, Vince Beckner, John Bell, Johannes Blaschke, Cy Chan, Marcus Day,
Brian Friesen, Kevin Gott, Daniel Graves, et al. Amrex: a framework for block-structured adaptive
mesh refinement. The Journal of Open Source Software, 4(37):1370, 2019.

35

	043c5e10843996dd671c7584e42bb2b4fee84cc0792644dd4a6867d305ea7990.pdf
	82106ff0fce490eab9de422d2c2221627eec01ef5725a54697473edf28677c40.pdf
	043c5e10843996dd671c7584e42bb2b4fee84cc0792644dd4a6867d305ea7990.pdf
	Table des matières
	Introduction
	Electrostatic charging in industry
	Triboelectrification
	Principles of electrostatics
	Charge generation for insulator objects
	Charge transfer modeling

	Modeling and simulation of gas-solid fluidized beds

	Viscous penalty method with fully coupled solver
	Viscous penalty method
	Penalty methods for solid behavior and incompressibility
	Physical characteristics of the equivalent fluid and numeric implementation
	Eulerian–Lagrangian VOF method for particle tracking
	Computation of Lagrangian particle's velocity
	Update of the solid fraction

	Fully coupled solver
	Time integration of two-phase Navier-Stokes equations
	Spatial integration of two-phase Navier-Stokes equations
	Developping a bidimensional fully coupled solver

	Numerical treatment of particle's collisions
	Lubrication effect
	Solid-solid collision

	Adaptive mesh refinement
	Algorithm description
	Grid description
	Integration Algorithm
	Grid generation
	Data Structure

	Error estimator

	Numerical examples

	Conclusions
	Bibliography

