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Introduction

Sequential data are data in which order matters, for example data from text doc-
uments, DNA sequences. This type of data is present in several areas of science
and engineering, including for example, signal processing and control, bioinformat-
ics, speech recognition, econometrics, among others. There are several tools to model
this type of data, in particular we have the Hidden Markov Models and the Recurrent
Neural Networks.

Artificial neural networks can be seen as a mapping from an input space to an out-
put space with connections between neurons. Recurrent Neural Network (RNN) is a
class of neural networks that has demonstrated its ability to process sequential data
[DiPietro and Hager, 2020, Liu et al., 2019]. RNN has memory, in other words, the
current output is considered as an input for the next output. The most common RNN
are Long Short-Term Memory (LSTM), which makes it easier to remember past data
in memory [Manaswi, 2018], and Gated Recurrent Units (GRU), which are similar to a
LSTM with a forget gate.[Shewalkar et al., 2019]. The principal applications of RNN
are in natural language processing [Thakker et al., 2019], speech recognition [Graves
et al., 2013], music generation [Goel et al., 2014], sentiment classification [Tang et al.,
2015] [Zhang et al., 2016] and machine translation [Liu et al., 2014].

A Markov chain can be used to calculate probabilities for a sequence of observed
events. However, these events may be hidden, ie not directly observable [Keselj,
2009]. For example, in the part-of-speech tagging task, we have a sequence of words
but the objective is to infer the tags from this sequence, in this case the tags are
hidden because they are not observable. One of the models that incorporates both
observed and hidden events, is the hidden Markov model (HMM). HMMs are statisti-
cal models that were proposed by Baum and Petrie [1966] and are used for modeling
sequential data [Fine et al., 1998, Nag et al., 1986]. HMMs are used in different
applications in artificial intelligence [Bengio, 1999] such as speech and handwriting
recognition [Kupiec, 1992, Yamato et al., 1992], part-of-speech tagging [Keselj, 2009].
It has also used in bioinformatics and fault recognition [Boatwright et al., 1985].

Generative models can be used to construct a probability distribution of observa-
tions using latent variables (variables not observed). RNN and HMM can be seen as
generative models [Cappé et al., 2006, Chung et al., 2014, Hopfield, 1982, Rabiner,
1989]. Both models are useful for processing sequential data, however, they have an
important difference: in RNN the latent variables are deterministic, and are obtained
from the current observation and the previous latent variable. On the other hand, in
the HMM the latent variables are random. Due to the similarities between the RNN
and HMM models, Salaün et al. [2019] presented a model that integrates HMM and
RNN which they called Generative Unified Model (GUM).

6



Extended Generative Unified Model Katherine Morales

Salaün et al. [2019] analyzed the Gaussian and linear GUM case, ie where the ob-
jective is to model a sequence of observations in which each observation follows a
Gaussian distribution. In order to make a theoretical comparison between RNN and
HMM models, seen as particular cases of GUM, they define a certain type of equiva-
lence classes. These equivalence classes allow the study of the type of distributions
that can be modeled and the consequences of the construction of the latent variables
in each model. This comparison between the models by using equivalence classes is
what they define as ’modelling power comparison’. One of the results was that the
Guassian and linear GUM subclass allows to model a class of stationary multivariate
Gaussian distributions with a geometric covariance sequence. Furthermore, it was
shown that none of the HMM and RNN sets are included in each other (into the other
one). However, a further analysis could be done with respect to the number of param-
eters, i.e. an even more general model. Therefore, an open question is to analyze the
cost of adding new parameters to this model, in addition to analyzing the non-linear
case.

The purpose of this project is to take as a reference the GUM model proposed by
Salaün et al. [2019] and generalize it, this will be done by adding dependencies be-
tween observed and latent variables of the current time and its immediate past. That
is, two extra parameters will be added to the model. In order to study these new de-
pendencies it is necessary to use tools similar to those applied in [Salaün et al., 2019],
but with the difference that in our case we will use several results in the multivariate
context, taking as a random variable the pair composed of the latent and observed
variables. Since a study will be analyzed from a theoretical point of view, we consider
the linear and Gaussian case.

This project is organized in the following way: in the first chapter, RNN, HMM will
be presented. The second chapter consists of my research work during the internship,
ie. to understand the Generative Unified Model and to present a generalization of this
model called Extendend Generative Unified Model. In this chapter, we present the
structure of each model three particular cases where some parameters are fixed in
order to obtain a simpler expression of the covariance sequence. The results and a
discussion of the results are presented in chapter 3 and the conclusions are presented
in chapter 4.
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Chapter 1

Preliminaries

1.1 Recurrent Neural Network (RNN)

Recurrent Neural Network is a class of artificial neural networks which has been
used to learn from sequential data in different domains. RNN encodes the tempo-
ral context in its connections, which are then capable of capturing the time-varying
dynamics of a system. Moreover, RNN has a variety of application, such as finan-
cial prediction [Giles et al., 1997], predictive head tracking for virtual reality systems
[Saad et al., 1999], among others.

There are more complex variants of RNN such as Long Short-Term Memory (LSTM)
or Gated Recurrent Units (GRU). They have been proposed in order to control the van-
ish gradient problem. RNNs and their variants have been used in many context where
the temporal dependency of the data is an important implicit feature of the model
design. Other applications of RNNs and its variants are learning word embeddings
[Mikolov et al., 2013], audio modeling [Oord et al., 2016], handwrinting recognition
[Graves et al., 2008].

The basic idea of the RNN is that its output, at each time t, depends on previous
inputs and past computations. This dependency allows to develop a memory of previ-
ous events, which is implicitly encoded in its hidden state variables. Furthermore, a
simple RNN can be trained using backpropagation.

RNN can be seen as a generative model [Choe et al., 2017]. In other words, RNNs
can be used to predict the next observation in a data sequence. Assuming a single
layer, RNN is described by a set of parameters θ̄ = (θ̄0, θ̄1, θ̄2). The output of a
hidden state h̄ depends on the previous time, this dependency allows to manage the
memory of the observed sequence. Hence, the update for a hidden state at time t is
fully deterministic and is represented as follows:

h̄t = fθ̄1
(h̄t−1, xt)

xt+1 = gθ̄2
(h̄t) (1.1)

where

• xt: input vector

• h̄t: hidden state

• θ̄1 = (Whh, Wxh, l): parameter matrices and vector.

8
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• f , g: activation functions.

Generally the activation functions are non-linear such as the sigmoid function, the
hyperbolic tangent function (tanh) or the rectified linear unit function (ReLU).

In fact, the distribution of the observations is obtained from hidden units h̄t as
follows:

pθ̄(x0:T) = pθ̄(x0)
T

∏
i=1

pθ̄(xi|x0)

= pθ̄0
(x0)

T

∏
i=1

pθ̄2
(xi|h̄i−1),

where pθ̄0
and pθ̄2

are given parametrized distributions. In addition, the likelihood
pθ̄(x0:T) is computed by construction, it can be calculated by applying a gradient as-
cent method.

1.1.1 Definition of the structure

A new xt+1 can be generated depending on θ̄2 = Whx, ie. Whx h̄t. This step is not
necessarily deterministic. However, one can imagine that the parameters of an spe-
cific distribution of Whx h̄t are set, so that from such distribution a new xt+1 is drawn.
At the beginning, the latent state h̄0 is initially null and an external output x0 is pro-
vided. This input represents the first element of a sequence we want to complete.

An index translation of the hidden units is set, that is, ht = h̄t−1. The RNN structure
is shown in Figure 1.1, the dotted arrow indicates the deterministic transition.

Figure 1.1: Graphical representation of the dependence structure of a Recurrent Neu-
ral Network.
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1.2 Hidden Markov Model (HMM)

Hidden Markov Models are probabilistic models used to analyze sequential data
which have been applied in different areas of the industry. HMM can be seen as an
extension of Markov chains, where the states are not observables, ie. in HMM the
observed variables depend on unobservable hidden states1, which obey the Markov
property, that is the conditional probability of the immediate next stage depends only
on the present state. Moreover, HMM can also be a tool for representing probability
distributions over sequences of observations [Ghahramani, 2002].

Let Xt be the observable variable at time t, this variable can be discrete or con-
tinuous. Generally, it is considered an HMM in which the state space of the hidden
variables is discrete, while the observations can be discrete or continuous (usually
generated from a Gaussian distribution). HMMs can be generalized to a continuous
state space, for example, when the observed and hidden variables follow a Gaussian
distribution.

Discrete state HMMs are used for their simple way of representing probabilities
using matrix algebra [Turin, 2012]. On the other hand, continuous state HMMs are
used in different areas such as image and speech recognition [Jiang, 2011], finance
[Zhang, 2004], etc. In general, a continuous state HMM is more difficult to handle
than discrete state HMM because in the former one deals with integrals instead of
matrices. In the continuous state HMM, there are two types of models: Gaussian and
non-Gaussian HMM. In the Gaussian HMM, one tool used for calculating integrals is
the Kalman Filter. On the non-Gaussian continuous state HMMs, the integrals have to
be calculated numerically using numerical methods. These numerical methods can be
seen as an approximation of the continuous HMM by a discrete state HMM.

There is a generalization of the HMMs known as Markov-switching models [Cappé
et al., 2006]. In these types of models the conditional distribution of the variable ob-
served at time t given its past depends not only on the variable hidden at t but also on
the variable observed at time t− 1.

In this project, we consider the continuous state HMM because we seek to built a
generalize model that allow us to compare the HMM and the RNN.

The distribution of a random observable sequence pθ̄(x0:T) is the marginal distri-
bution of the joint distribution of latent and observable variables (H0:T, X0:T),

pθ̄(h0:T, x0:T) = pθ̄(h0:T)× pθ̄(x0:T|h0:T)

= p(h0)×
T

∏
i=1

p(hi|hi−1)×
T

∏
i=0

p(xi|hi),

where pθ̄1
(hi|hi−1) is the transition probability at time i and pθ̄2

(xi|hi) is the conditional

1A latent variable is also called as hidden variable, hidden state or hidden state variable.
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probability at time i.

1.2.1 Definition of the structure

In this case, the usual structure of an HMM can be seen in Figure 1.2, and will be
the one used in this work.

Figure 1.2: Graphical representation of the dependence structure of a Hidden Markov
Model, where (Xt)t∈N is the observable sequence and (Ht)t∈N is the hidden sequence.

Here, both generative models are considered. These models allow to built a prob-
ability distribution functions of the observations by means of the latent variables. In
the case of the RNN, every latent variable can be obtain in a deterministic way. In
the case of the HMM, the distributions of the observations represent the marginal
distribution of the joint distribution of both the observed and latent variables. The
theoretical analysis is going to presented on the next chapters.
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Chapter 2

Research work

2.1 Generative Unified Model (GUM)

RNN and HMM can be seen as generative models in order to use their similarities
with a perspective of their structure. To obtain the GUM, it is necessary to consider
that in both RNN and HMM, the modelling of the joint distribution of the observations
depends on a sequence of hidden states. It is also necessary to take into account that
in the case of the RNN, a translation of the temporal indices of the hidden units is
carried out. Thus it is possible to see the RNN and the HMM as particular cases of
the GUM.

2.1.1 Definition of the structure

In Figure 2.1, the probabilistic modelM is considered. This model considers two
sequences of random variables (Ht)t∈N and (Xt)t∈N, where the sequence (Ht)t∈N is
called the hidden states sequence and (Xt)t∈N is the observation states sequence.

Figure 2.1: Graphical representation of the dependence structure of a Generative
Unified Model.

2.1.2 Case of study

The objective of the GUM is to present a unified framework that is able to theo-
retically compare the modelling power of RNN and HMM. In particular, it focus on
the case where the observations are realizations of a Gaussian distribution and the
activation functions are lineal.

Let a, b, and c be three real numbers and α, β, and η be three positive values.
Salaün et al. [2019] considered that the evolution of the modelM is described by:

12



Extended Generative Unified Model Katherine Morales

∀t ∈N∗ p(ht|ht−1, xt−1) = N (ht; aht−1 + cxt−1, α)

∀t ∈N p(xt|ht) = N (xt; bht, β)

p(h0) = N (h0; 0, η)

Salaün et al. [2019] considered the following constraint on the distribution of the
observations:

∀t ∈N p(xt) = N (xt; 0, 1)

Therefore, the parameters in the GUM are a, b, c, α, η, and β.

In what follows, it is shown how both the HMM and the RNN can be seen as par-
ticular cases of the GUM. The graphical structures of the three models are sumarized
in Figure 2.2.

Figure 2.2: Conditional dependencies in HMM, RNN, and GUM. RNN and HMM are
particular cases of the GUM. (Source: Salaün et al. [2019])

RNN

For the theoretical study of both models, the linear and Gaussian GUM case is
considered. Thus, it can be seen that the structure defined for the RNN is obtained by
setting the following parameters α = 0 and η = c2 as follows:

∀t ∈N∗ ht = aht−1 + cxt−1

∀t ∈N p(xt|ht) = N (xt; bht, β)

p(h0) = N (h0; 0, c2)

By setting α = 0 in the hypotheses considered in the case of the linear and Gaus-
sian GUM, a deterministic and linear function is obtained to determine xt. Therefore,

13
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RNN is a particular case of GUM as shown in Figure 2.2(a). Note that the dashed
arrows in the RNN are to differentiate that the dependency is deterministic.

HMM

In the same way as above, the HMM can be obtained if c = 0. This means that the
GUM structure, compared to the HMM, adds a dependency from Xt−1 to Ht. In this
way, the hypothesis of the linear and Gaussian case is recovered:

∀t ∈N∗ p(ht|ht−1, xt−1) = N (ht; aht−1, α)

∀t ∈N p(xt|ht) = N (xt; bht, β)

p(h0) = N (h0; 0, η)

Thus, the HMM (Figure 2.2(b)) can be seen as a particular case of the GUM.

2.1.3 Results

The objective of the GUM is to present a unified framework that is able to theo-
retically compare the modelling power of both the RNN and the HMM. In order to do
so, a theoretical study of a simple case was considered: the linear and Gaussian case.
Additionally, the constraint that the distribution of each observation is a standard nor-
mal distribution is considered.

The calculation of p(x0) and p(x1) gives the parameters β = 1− b2η and α = (1−
a2 − 2abc)η − c2 as functions of a, b, c, η. That is, any linear Gaussian GUM under the
constraint that each observation follows a standard normal distribution is described
by these four parameters. On the other hand, ∀T ∈ N∗, p(x0:T) = N (x0:T; OT, ΣT),
where ΣT is the covariance matrix with one in the diagonal and the covariances are
defined as follows:

∀t ∈N, ∀τ ∈N∗, cov(Xt, Xt+τ) = (a + bc)τ−1(bc + ab2η).

Therefore, for any linear and Gaussian GUM under the constraint on the observa-
tions, cov(Xt, Xt+τ) is geometrical i.e. cov(Xt, Xt+τ) = Aτ−1B for some A and B.

14
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2.2 Extended Generative Unified Model (EGUM)

In this section, the Extended Generative Unified Model (EGUM) is presented. A
pairwise Markov Model (Ht, Xt)t∈N is considered, where the sequence (Ht)t∈N rep-
resents the hidden states sequence and (Xt)t∈N is the observation states sequence.
This model is called EGUM because it generalizes the GUM.

2.2.1 Definition of the structure

In what follows, the structure of the EGUM is described. The EGUM adds two new
dependencies with respect to the GUM. Figure 2.3 shows the general structure of this
model. Thus, it is given a dependence of the observation in the current time t given
the hidden state at previous time t − 1 and the dependence of the hidden state in t
given the observation at t− 1.

Figure 2.3: Graphical representation of EGUM.

The general pairwise Markov chain structure is described by the following transi-
tions:

H0 ∼ p(h0)

X0 ∼ p(x0|h0)

∀t ∈N∗ Ht+1 ∼ p(ht+1|ht, xt)

∀t ∈N∗ Xt+1 ∼ p(xt+1|ht+1, ht, xt)

This model generalizes the GUM.

2.2.2 Case of study

The aim of this research is to analyze the contribution of adding these new depen-
dencies (see Figure 2.3) from a theoretical point of view. Hence, for this analysis a
simple case is considered: the linear and Gaussian case. Salaün et al. [2019] analyzed
the case in which the RNN, the HMM and the GUM consider that each observation

15



Extended Generative Unified Model Katherine Morales

follows a standard normal distribution. Here, we will consider the same constraint in
order to compare the contribution of this new model with respect to GUM. However,
the probability distribution function of the observations differs only in the covariance
matrix.

Particularly in the linear Gaussian case, the pairwise Markov chain structure is
described by the following transitions:

∀t ∈N∗ p(xt|ht, ht−1, xt−1) = N (xt; bht + eht−1 + f xt−1, β) (2.1)

∀t ∈N∗ p(ht|ht−1, xt−1) = N (ht; aht−1 + cxt−1, α) (2.2)

p(h0) = N (h0; 0, η) (2.3)

p(x0|h0) = N (x0; bh0, β) (2.4)

where the parameters a, b, c, e, f ∈ R and α, β, η ∈ R+.

From these information the evolution of the model (see more detail in Annex A)

can be expressed. Once Zt =

[
Ht
Xt

]
is set, then the transition of the pairwise Zt is

described by:

∀t ∈N∗ p(zt|zt−1) = N
(

ht, xt; Mzt−1, Σzt|zt−1

)
where

M =

[
a c

ba + e bc + f

]
(2.5)

Σzt|zt−1
=

[
α bα

bα β + b2α

]
(2.6)

Additionally, a constraint of stationarity is considered, that is, the distribution of Zt
at each instant t is the same. Hence, the following constraint holds

∀t ∈N p(zt) = N
(

zt;
[

0
0

]
; Σzt

)
, (2.7)

with

Σzt =

[
η γη

γη 1

]
, (2.8)

where γ ∈ R.
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2.2.3 Objective

The objective is to characterize all models for which the probability distribution of
the pair Zt satisfies the constraint in Equation (2.7). First, the probability distribution
function of Z0 is considered:

p(z0) = N
(
z0; µ0; Σz0

)
= N

( [h0
x0

]
;
[

0
0

]
,
[

η γη

γη 1

] )
.

Using the above expression and Proposition 1, the probability distribution function
of Z1 can be obtained as follows

p(z1) =
∫

p(z1|z0)p(z0)dz0

=
∫
N
(
z1; Mz0; Σz1|z0

)
N
(
z0;
−→
0 ; Σz0

)
dz0

= N
(
z1;
−→
0 ; Σz1|z0

+ MΣz0 M>
)

Due to the fact that stationary constraint in Equation (2.7) needs to be satisfied, ie.
that Var(Zt) does not depend on t, it follows that Σz1 = Σz1|z0

+ MΣz0 M>, where for all

t ∈N Σzt =

[
η γη

γη 1

]
. Consequently, the following relation has to be satisfied:

[
η γη

γη 1

]
=

[
α bα

bα β + b2α.

]
+

[
a c

ab + e bc + f

] [
η γη

γη 1

] [
a ab + e
c bc + f

]
From the previous relation the following restrictions on the parameters are ob-

tained:

η = α + aη(a + 2cγ) + c2 (2.9)

γη = bα + (a2b + 2abcγ + ae + a f γ + ceγ)η + (bc2 + c f ) (2.10)

1 = β + b2α + ((ab + e)2 + 2γ(ab + e)(bc + f ))η + (bc + f )2 (2.11)

Inserting Equation (2.9) in (2.10) and (2.11), it follows:

γη = bη + (ae + a f γ + ceγ)η + f c

1 = β + b2η + (e2 + 2ab(e + f γ) + 2eγ(bc + f ))η + 2bc f + f 2
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The following expressions are then gotten for the parameters α and β:

α = (1− a2 − 2acγ)η − c2 (2.12)

β = 1− b2η − 2bη(γ− b)− eη(e + 2 f γ)− f 2 (2.13)

2.2.4 Covariance Matrix

To do the theoretical study, it is necessary to obtain an expression for Cov(Xt, Xt+τ).
In order to do so, one needs to first find an expression for Cov(Zt, Zt+τ). Hence,
Cov(Xt, Xt+τ) is the element in the position (2, 2) of such matrix.

cov(Zt, Zt+τ) = Cov((Ht, Xt), (Ht+t, Xt+τ))

=

[
Cov(Ht, Ht+τ) Cov(Ht, Xt+τ)
Cov(Xt, Ht+τ) Cov(Xt, Xt+τ)

]
Since Zt+1|Zt = zt ∼ N (zt+1; Mzt, Σzt|zt−1

), then Cov(Zt, Zt+τ) is just Σzt(Mτ)>

where M and Σzt are defined in Equation (2.5) and (2.8), respectively.

To be able to make a theoretical comparison, it is assumed that the matrix M is di-
agonalizable. The justification of this assumption is based on the fact that the EGUM is
a more general model, and in the case of the GUM, the RNN and the HMM, the matrix
M is diagonalizable. Hence, it is reasonable to assume that M is also diagonalizable
in this case. Moreover, a more detailed justification will be developed throughout the
rest of the internship.

M can be written as M = PDP−1 since M is a diagonalizable matrix, then Mτ =
PDτP−1, where P, D and P−1 are written as follows:

P =

[
−−a+bc+ f+K

2(ab+e)
a−bc− f+K

2(ab+e)
1 1

]

D =

[1
2(a + bc + f − K) 0

0 1
2(a + bc + f + K)

]
P−1 =

[
− ab+e

K
a−bc− f+K

2K
ab+e

K
−a+bc+ f+K

2K

]

with K =
√
(a + bc + f )2 − 4(a f − ce).
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Since Cov(Zt, Zt+τ) = Σzt(PDτP−1)>, the following expression for Cov(Xt, Xt+τ)
reads

∀t ∈N, ∀τ ∈N∗,

Cov(Xt, Xt+τ) =
(1

2
(a + bc + f − K)

)τ( a− bc− f − 2γη(ab + e) + K
2K

)
−
(1

2
(a + bc + f + K)

)τ( a− bc− f − 2γη(ab + e)− K
2K

)
. (2.14)

Case GUM

If e = f = 0 and γ = b, the result for the GUM model of Salaün et al. [2019] is
obtained, that is, the following covariances holds:

∀t ∈N, ∀τ ∈N∗, cov(Xt, Xt+τ) = (a + bc)τ−1(bc + ab2η).

2.3 Positivity constraints on the covariance parame-

ters

In this seccion, the analysis of three different cases is done: The first case is the
EGUM with parameters f = 0 and γ = b, the second case is the EGUM with param-
eters f = −a − bc and γ = b; and the third case is the GUM. Different cases are
presented because the expression for Cov(Xt, Xt+τ) (Equation (2.14)) is hard to anal-
yse in the general case. Therefore, setting some of the parameters as functions of
the others parameters allows to have a simpler expression for Cov(Xt, Xt+τ) given in
Equation (2.14).

2.3.1 Case f = 0 and γ = b

The case of f = 0 and γ = b is analyzed. From Equation (2.9), (2.10) and (2.11),
the following expressions can be obtain:

a + bc = 0

α = η − c2(1− b2η)

β = 1− b2η − e2η

Thus, Equation (2.14) can be easily simplified as follows

∀t ∈N, ∀τ ∈N∗ Cov(Xt, Xt+τ) =


(

K
2

)τ
if τ is even(

K
2

)τ−1
b
(

c(1− b2η) + eη
)

otherwise
(2.15)
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where K =
√

4ce.

Hence, the following Toeplitz covariance matrix1 is analysed (for some even num-
ber k and k < τ − 1)

∀τ ∈N∗, Mτ(A, B)
de f
= T

(
[1, B, A2, A2B, A4, A4B, . . . ]

)

=



1 B . . . Ak Ak−1B . . .
B 1 B . . . Ak . . .
...

. . . . . . . . . . . . . . .
Ak B 1 B . . .
...

. . . . . . . . . . . .
...

. . . Ak−1B Ak . . . B 1


(2.16)

where:

A =
√

ce

B = b
(

c(1− b2η) + eη
)

The objective in this part is to find the values of A and B, for which the previous
Toeplitz matrix defines a covariance matrix. The covariance matrix Cov(X0, X1) =[

1 B
B 1

]
has to be a positive semi-definite matrix, a necessary condition is obtained

when 1 − B2 ≥ 0 ⇐⇒ B ∈ [−1, 1]. Similarly, if Cov(X0, X2) =

[
1 A2

A2 1

]
, then

A ∈ [−1, 1] is another necessary condition.

In fact, A, B ∈ [−1, 1] are necessary conditions for Mτ(A, B) to be covariances
matrices. To obtain sufficient conditions for A and B, it is necessary to apply the
Caratheodory-Toeplitz Theorem (Theorem 1, see more details in Appendix A.1). Con-
sequently, Toeplitz matrices, defined by Equation (2.16), are covariances matrices if

and only if the condition −A2+1
2 ≤ B ≤ A2+1

2 is verified.

Remark: The details of this result can be found in Annex B.

1Observation: the last term of the first row and first column of the matrix depends on whether the
value of τ whether is even or odd.
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2.3.2 Case f = −a− bc and γ = b

Now, the case where f = −a − bc and γ = b is considered. In this case, the
following expressions is gotten:

α = (1− a2 − 2abc)η − c2

β = 1− b2η − eη(e− 2(a + bc)b)− (a + bc)2

0 = −(a + bc)︸ ︷︷ ︸
f

(eη − abη − c)

Without loss of generality, it can be considered f 6= 0 so that c = eη − abη. So that,
expressions for α and β as functions of a, b, e, η are found.

α = 1− a2(1− b2η)− e2η

β = 1− a2(1− b2η)− e2η

Equation (2.14) can then be simplified as follows:

∀t ∈N, ∀τ ∈N∗ Cov(Xt, Xt+τ) =


(

K
2

)τ
if τ is even(

K
2

)τ−1(
bη(ab + e)− a

)
otherwise

(2.17)

where K =
√

4(ce + a2 + abc).

In the same way as in the previous case, the following Toeplitz covariance matrix
is analyzed:

τ ∈N∗, M̂τ(Â, B̂)
de f
= T

(
[1, B̂, Â2, Â2B̂, Â4, Â4B̂, . . . ]

)

=



1 B̂ . . . Âk Âk−1B̂ . . .
B̂ 1 B̂ . . . Âk . . .
...

. . . . . . . . . . . . . . .
Âk B̂ 1 B̂ . . .
...

. . . . . . . . . . . .
...

. . . Âk−1B̂ Âk . . . B̂ 1


(2.18)
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where:

Â =
√

e2η + a2(1− b2η)

B̂ = beη − a(1− b2η)

Since the form of this matrix is the same as the previous case, it can be concluded
that Â, B̂ ∈ [−1, 1] are necessary conditions to satisfies that the Toeplitz matrices de-
fined by Equation (2.18) are covariances matrices. Additionally, this is true if and only

if the condition − Â2+1
2 ≤ B̂ ≤ Â2+1

2 is verified.

Remark: Since the matrix defined in (2.18) is similar to (2.16), the same result
is concluded. This is because the proof in Annex B considers A and B as arbitrary
values.

2.3.3 Case e = f = 0

By setting e = f = 0, the condition γ = b is obtained, then the GUM is recovered.
The equations, presented by Salaün et al. [2019], are also recovered:

β = 1− b2η

α =
(
1− a2 − 2abc

)
η − c2.

An expression for the covariance sequence reads:

∀t ∈N, ∀τ ∈N∗, cov(Xt, Xt+τ) = (a + bc)τ−1(bc + ab2η).

In this case, the covariance matrix is given by

τ ∈N∗, M̄τ(Ā, B̄)
de f
= T

(
[1, B̄, ĀB̄, Ā2B̄, Ā3B̄, . . . , Āτ−2B̄]

)

=



1 B̄ . . . ĀkB̄ . . . Āτ−2B̄
B̄ 1 B̄ . . . . . . Āτ−3B̄
...

. . . . . . . . . . . .
...

ĀkB̄ B̄ 1 B̄
...

...
. . . . . . . . . . . . B̄

Āτ−2B̄ . . . ĀkB̄ . . . B̄ 1


(2.19)

where:

Ā = a + bc

B̄ = bc + ab2η
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This matrix has a different form compared to previous cases. By the way, accord-
ing to the Carathéodory-Toeplitz Theorem and to similar arguments as in the previ-
ous cases, Salaün et al. [2019] concluded that the Toeplitz matrix M̄τ(Ā, B̄) given by
Equation (2.19) is a covariance matrix for all τ ∈ N if and only if Ā ∈ [−1, 1] and
Ā−1

2 ≤ B̄ ≤ Ā+1
2 .

Remark: The details of this result can be found in Section III.B of [Salaün et al.,
2019].

Observation: The analysis of the general case is still in progress because of its
complexity (Appendix C presents the work done so far).
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Chapter 3

Results and discussion

3.1 Results

The main result from the previous chapter is that Cov(Xt, Xt+τ) has a particular
form depending on the set of parameters (case). Three cases were considered: the
first is the one with f = 0 and γ = b, the second one considers f = 0 and γ = b, and
the third case is the GUM, ie. when e = f = 0 and γ = b. In fact, for the three par-
ticular cases, a linear and Gaussian EGUM under the constraint in Equation (2.7) was
considered, and the distributions are Gaussian and stationary with theirs respective
covariance structure.

Now, the objective is to know if any such probability distribution function can be
modeled by some EGUM. For this reason, we take, as a starting point, the idea pre-
sented in [Salaün et al., 2019], that is, to study the inverse mapping of:

φ : θ 7→
(

A = A(θ), B = B(θ)
)
, (3.1)

where θ represent the set of parameters of the model. Additionally, the notations A(θ)
and B(θ) mean that A and B are functions of the parameters θ.

3.1.1 Case f = 0 and γ = b

In this case, the following parameters are considered f = 0, γ = b and a = −bc,
implying that the set of parameters is b, c, e, η since a, f and γ are functions of such
parameters.

Thus, φ can be written as:

φ : (b, c, e, η) 7→
(

A =
√

ce, B = b(c(1− b2η) + eη)
)
. (3.2)

The domain (A, B) have been characterized in order to obtain a covariance matrix.
In fact, The Toeplitz symmetric matrix Mτ(A, B), with first row [1, B, A2, A2B, A4, A4B, . . . ],
is a covariance matrix for all τ ∈N∗ if and only if A ∈ [−1, 1] and −A2+1

2 ≤ B ≤ A2+1
2 .

Let S be the surface defined by A ∈ [−1, 1] and −A2+1
2 ≤ B ≤ A2+1

2 (See Figure
3.1). In this case, the inverse mapping φ−1 of Equation (3.2) is the application for
which, for some (A, B) ∈ S , is as follows:
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• if 0 < A ≤ B ≤ A2+1
2 ,

φ−1(A, B) =
{( 1√

2η
,

A2√
2η(B−

√
B2 − A2)

,
√

2η(B−
√

B2 − A2), η > 0
)}

⋃{( 1√
2η

,
A2√

2η(B +
√

B2 − A2)
,
√

2η(B +
√

B2 − A2), η > 0
)}

• if 0 < B ≤ A,

φ−1(A, B) =
{(√ B

2Aη
,

A2√
ABη

2

,

√
ABη

2
, η > 0

)}

Consequently, the mapping φ defined by Equation (3.2) is not injective since dif-
ferent EGUMs can have the same observation’s probability distribution. Moreover, it
has not been yet proven whether the the mapping φ is surjective or not. However,
for some (A, B) ∈ S there exists at least one EGUM which yields an observations
probability distribution.

Figure 3.1: The domain (A, B) (yellow) for which Mτ(A, B) is a covariance matrix.

Remark: The details of this result can be found in Annex D.
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3.1.2 Case f = −a− bc and γ = b

Given that f = −a− bc and γ = b, then c = eη − abη. So that, the mapping φ is as
follows:

φ : (a, b, e, η) 7→
(

A =
√

e2η + a2(1− b2η), B = beη − a(1− b2η)
)
, (3.3)

ie. there are four parameters a, b, e and η.

Let M̂τ(A, B) be a Toeplitz symmetric matrix with first row [1, B, A2, A2B, A4, A4B, . . . ]
and Ŝ the surface given by A ∈ [−1, 1] and −A2+1

2 ≤ B ≤ A2+1
2 (See Figure 3.2). In

the previous chapter, it was shown that M̂τ(A, B) is a covariance matrix for all τ ∈N∗

if only if (A, B) ∈ Ŝ .

Then, the inverse mapping associated to Equation (3.3) is as follows:

• if (A, B) ∈ Ŝ ,

φ−1(A, B) =
{( e2η − A2

B− e
√

η
2

,
1√
2η

, e ∈ R, η > 0
)}

⋃{( e2η − A2

B + e
√

η
2

,− 1√
2η

, e ∈ R, η > 0
)}

.

In this case, the mapping in Equation (3.3) is not injective either. Moreover, for
some (A, B) ∈ Ŝ , there exists at least a EGUM provided a pdf of the observations.

Figure 3.2: The domain (A, B) (yellow) for which M̂τ(A, B) is a covariance matrix.

Remark: The details of this result can be found in Annex E.
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3.1.3 Case e = f = 0

By setting e = f = 0, the condition γ = b is obtained and so the GUM is recovered.
In this case, there are four parameters a, b, c, η and the mapping φ is defined as follows:

φ : (a, b, c, η) 7→
(

A = a + bc, B = bc + ab2η
)
. (3.4)

Let S̄ be the parallelogram defined by A ∈ [−1, 1] and A−1
2 ≤ B ≤ A+1

2 and
M̄τ(A, B) a Toeplitz symmetric matrix with a first row [1, B, AB, . . . , Aτ−2B]. M̄τ(A, B)
is a covariance matrix for all τ ∈N∗ if and only if (A, B) belongs to the parallelogram
S̄ (see Figure 3.3).

Figure 3.3: The domain (A, B) (light blue) for which M̄τ(A, B) is a covariance matrix.

Since this case represents a GUM, Proposition 1 of Salaün et al. [2019] is pre-
sented. Hence, for all (A, B) ∈ S̄ the inverse mapping φ−1 of Equation (3.4) is the
application which associates:

• if A ∈ R, B = 0.

φ−1(A, B) =
{(

a, 0, c, η
)

; a ∈ [−1, 1], c ∈ [−
√
(1− a2)η,

√
(1− a2)η], η > 0}⋃{(

a, b,−abη, η
)

; a ∈ [−1, 1], b ∈ [− 1
√

η
,

1
√

η
], η > 0

}

• if A 6= B, B 6= 0,

φ−1(A, B) =
{( A− B

1− b2η
, b,

B− Ab2η

b(1− b2η)
, η
)

; b ∈ [−x2,−x1] ∪ [x1, x2], η > 0
}
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where xj =

√
1+2AB−A2+(−1)j

√
(A2−1)((2B−A)2−1)

2η for j = 1, 2

• if A = B, B 6= 0.

φ−1(A, B) =
{(

0, b,
A
b

, η
)

; b ∈
[
− 1
√

η
,−|A|√

η

]
∪
[ |A|
√

η
,

1
√

η
], η > 0

}
⋃{(

a,
1
√

η
, (A− a)

√
η, η
)

; a ∈ R, η > 0
}

⋃{(
a,− 1
√

η
,−(A− a)

√
η, η
)

; a ∈ R, η > 0
}

Salaün et al. [2019] concluded that this function is not injective. However, the
function is surjective, i.e. for any (A, B) ∈ S̄ there is at least one GUM that allows to
obtain an observations distribution. Additionally, they performed the study of which
distributions pA,B(x0:t) can be obtained by an RNN or HMM, for (A, B) ∈ S̄ .

In Figure 3.4, the blue areas coincide with the value of A and B which can be taken
by the HHM. On the other hand, the orange curves coincide with the value of A and B
which can be taken by the RNN. Therefore, the modeling power of the GUM is larger
than that of the HMM and the RNN. Additionally, the modeling power of the HMM is
larger than thet of the RNN.

Figure 3.4: Modeling powers of RNN, HMM and GUM with regards to A and B. A
distribution can be modeled by an RNN (orange), an HMM (blue), a GUM (light blue).
(Source: Salaün et al. [2019])
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3.2 Discussion

In the three analyzed case from the linear and Gaussian EGUM under the con-
straint given by Equation (2.7), it can be concluded that the pdf of the observations is
Gaussian stationary, and that they only differ in the covariance matrix. The question
is then whether any pdf of the observations with a given covariance matrix can be
modeled by the model we proposed. In this way, the modeling power of each case of
the linear and Gaussian EGUM can be analyzed. In order to answer the above ques-
tion, we have considered and have analyzed the mapping φ : θ

(
A(θ), B(θ)

)
, where θ

represents the set of parameters.

The set of parameters are not the same in all the cases since in order to simplify
the calculations some parameters have to be fixed as functions of others. Now, the
main interest is to study the inverse mapping of φ, in such a way that it allows to know
if given (A, B) some EGUM model can be obtained. (A, B) belongs to a domain which
satisfies that the Toeplitz symmetric matrix (defined in each case) is a covariance ma-
trix.

First, the three analyzed cases have four parameters: in the first case, we have
θ1 = (b, c, e, η), in the second one θ2 = (a, b, e, η), and the third one θ2 = (a, b, c, η).
However, the first case considers f = 0, which implies that the observed variable Xt
at time t is no longer dependent on the observation at time t− 1. In the second case,
all the dependencies between the variables are preserved, since the parameters f , c
and γ are functions of θ2. In the third case, by setting e = f = 0, it is obtained that
γ is equal to b, which means that the GUM is recovered. That means that the depen-
dencies of the observed variable at time t given the observation and the hidden state
at time t− 1 are no longer considered. Therefore, the second model is more general
than the other ones, and has the same number of parameters to estimate.

On the other hand, for the first and second case, the (different) Toeplitz symmetric
matrices are covariance matrices in the same domain (A, B). However, the domain of
GUM is not the same. Figure 3.5 shows that some GUM covariance sequences are not
more covariance sequences in the two other cases and vice versa.
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Figure 3.5: The domain (A, B) of the first and second case (yellow) and of the third
case, GUM (light blue) for which the Toeplitz symmetric matrix are covariance matri-
ces.

Additionally, the mapping defined in Equation (3.1), is not injective in all cases.
Nevertheless, this function is surjective in the GUM. In the other two cases, it is not
necessarily true, because A is the positive root of an expression which is a function
of the parameters in each case. That is, in the first and second cases it was only con-
sidered the case A ∈ [0, 1]. Despite this factor, in both cases it was demonstrated that
at least one EGUM generates a observations distribution for some (A, B) belonging to
the domain presented in Figure 3.1.
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Chapter 4

Conclusion
In this project, the EGUM has been presented as a model generalization to the

GUM presented in Salaün et al. [2019]. The GUM generalizes both the RNN and the
HMM, since they are particular instances of GUM. In order to compare in a theoretical
way the proposed model, the linear and Gaussian case was considered. In particular,
we considered three specific cases of linear and Gaussian EGUM, one of them be-
ing the GUM. Thus, we demonstrated that the three cases considered can model a
large class of stationary multivariate Gaussian distributions with an specific covari-
ance sequence. However, applying the Carathéodory theorem in the general case
where θ = (a, b, c, d, f , η) is still a wotk in progress because of its difficulty. In fact,
there are four parameters in all considered cases. However, the case f = −a− bc and
γ = b is the more general one since it holds all the dependencies between the hidden
and observable variables.

Bear in mind that at the moment we only have considered the linear and Gaussian
case, during the rest of the internship the general case will be further analyzed, ie.,
the linear and Gaussian EGUM which considers all the parameters. In addition, the
non-linear EGUM case will also be analyzed. The evaluation of this case will be based
on the Stochastic Recurrent Networks (STORNS) presented in Bayer and Osendorfer
[2014] which uses stochastic gradient variational Bayes [Rezende et al., 2014] as an
estimator. Finally, it can be stated that STORNS are particular cases of GUM, there-
fore the extension of STORNS is a natural question.

Regarding the internship, it was a great opportunity to work on a research project
on the field of Probability Theory on a research laboratory. During my internship, I
was able to develop my skills on so many levels. In fact, this experience allowed me
to have a different point of view regarding the use of Recurrent Neural Networks and
Hidden Markov Models.

First of all, on a technical level, I was able to develop my knowledge in Probability
Theory. On a personal level, I became much more comfortable when dealing with a
theoretical projects. Also, I am very grateful to my tutor with whom I keep contant
contact. I have learnt a lot of great thing from him, and moreover, I could share my
opinions to develop this project.

My experience with the CITI Department at Télécom SudParis is a great success
and I’m very satisfied. Additionally, I am very happy that I decided to join their teams
and do my internship with them.
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Chapter 5

Annexes

Annexe A

The transition of (Ht, Xt) is described by:

p(ht, xt|ht−1, xt−1) = N
(

ht, xt;
[

µHt|Ht−1, Xt−1=ht−1, xt−1

µXt|Ht−1, Xt−1=ht−1, xt−1

]
, ; Σht, xt|ht−1, xt−1

)
where

Σht, xt|ht−1, xt−1
=

[
Var(Ht|Ht−1, Xt−1 = ht−1, xt−1) Cov(Ht, Xt|Ht−1, Xt−1 = ht−1, xt−1))

Cov(Ht, Xt|Ht−1, Xt−1 = ht−1, xt−1)) Var(Xt|Ht−1, Xt−1 = ht−1, xt−1))

]

Let a, b, c, e, f be real numbers and α, β, η positive real numbers. We use the
hypothesis (2.2) and (2.4) in order to obtain the following expression:

µHt|ht−1,xt−1
= aht−1 + cxt−1

Var(Ht|Ht−1, Xt−1 = ht−1, xt−1) = α.

Moreover, the distribution of Xt|Zt−1 = zt−1 is deduced from Equation (2.1) and (2.2)
and with help of Proposition 1.

p(xt|ht−1, xt−1) =
∫

p(xt, ht|ht−1, xt−1)dht

=
∫

p(xt|ht, ht−1, xt−1)p(ht|ht−1, xt−1)dht

=
∫
N (xt; bht + eht−1 + f xt−1; β)N (ht; aht−1 + cxt−1; α)dht

= N (xt; (ab + e)ht−1 + (bc + f )xt−1; β + b2α).

Then µzt|zt−1
can be written as the product of a 2× 2 matrix with the vector zt−1:

µzt|zt−1
= Mzt−1

=

[
a c

ab + e bc + f

] [
ht−1
xt−1,

]
and the covariance matrix Σzt|zt−1

is written as follows :

Σzt|zt−1
=

[
α bα

bα β + b2α.

]
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Annex B

We have the following Toeplitz covariance matrix:

T ∈N∗, Στ
de f
= T

(
[1, B, A2, A2B, A4, A4B, . . . ]

)
(5.1)

In order to have the sufficient conditions it’s necessary to apply Theorem 1: Carathéodory-
Toeplitz Theorem.

T ∈N∗, ΣT ≥ 0 ⇐⇒ z ∈ {u ∈ C; |u| < 1},<
(

1 + 2(Bz + A2z2)
∞

∑
τ=0

(A2z2)τ
)
≥ 0

Since

1 + 2(Bz + A2z2 + A2Bz3 + A4z4 + A4Bz5 + . . . )

=1 + 2
[
Bz((A2z2)0 + (A2z2)1 + (A2z2)2 + (A2z2)3 + . . . )

+ A2z2((A2z2)0 + (A2z2)1 + (A2z2)2 + (A2z2)3 + . . . )
]

=1 + 2(Bz + A2z2)
∞

∑
τ=0

(A2z2)τ

For all z ∈ {u ∈ C; |u| < 1}, |A2z2| < 1 then ∑∞
τ=0(A2z2)τ = 1

1−A2z2

<
(

1 + 2(Bz + A2z2)
∞

∑
τ=0

(A2z2)τ
)

(i)
= <

(
1 + 2

Bz + A2z2

1− A2z2

)
= <

(1 + 2Bz + A2z2

1− A2z2

)
(ii)
= <

(1 + 2Breiθ + A2r2e2iθ

1− A2r2e2iθ

)
= <

( (1 + 2Breiθ + A2r2e2iθ)(1− A2r2e−2iθ)

|1− A2r2e2iθ|2
)
≥ 0

⇐⇒ <
(
(1 + 2Breiθ + A2r2e2iθ)(1− A2r2e−2iθ)

)
≥ 0

⇐⇒ 1 + 2Br cos(θ)− 2A2Br3 cos(−θ)− A4r4 ≥ 0
(iii)⇐⇒ 1 + 2Br cos(θ)− 2A2Br3 cos(θ)− A4r4 ≥ 0

⇐⇒ 1 + 2Br cos(θ)(1− A2r2)− A4r4 ≥ 0

We’ve used the following arguments:

(i) |A2z2| < 1 since A ∈ [−1, 1] and |z| < 1

33



Extended Generative Unified Model Katherine Morales

(ii) Writing z = reiθ, for all r ∈ [0, 1) and θ ∈ [−π, π].

(iii) Cosine is an even function.

Therefore, we have to analyze the following expression:

1 + 2Br cos(θ)(1− A2r2)− A4r4 ≥ 0 (5.2)

Cases:

1. Case A = 0: let first consider the case where A = 0, (5.2) is written as: 1 +
2Br cos(θ) ≥ 1− 2|B| ≥ 0 then |B| ≤ 1

2 .

2. Case B = 0: we have the condition |A| ≤ 1, it’s true.

3. Case B > 0:

1 + 2Br cos(θ)(1− A2r2)− A4r4

≥ 1− 2B(1− A2)− A4.

Note that 1− A2r2 ≥ 0 and A4r4 ≥ 0, then

1 + 2Br cos(θ)(1− A2r2)− A4r4 ≥ 0

⇐⇒ B ≤ A2 + 1
2

4. Case B < 0:

1 + 2Br cos(θ)(1− A2r2)− A4r4

≥ 1 + 2B(1− A2)− A4.

Note that 1− A2r2 ≥ 0 and A4r4 ≥ 0, then

1 + 2Br cos(θ)(1− A2r2)− A4r4 ≥ 0

⇐⇒ B ≥ −A2 + 1
2

34



Extended Generative Unified Model Katherine Morales

Annex C

General case

The expression of the covariance sequence defined in (2.14) can be rewrite as
follows:

∀t ∈N, ∀τ ∈N∗, Cov(Xt, Xt+τ) =Aτ
(

B +
1
2
)
− Cτ

(
B− 1

2
)

where:

A =
a + bc + f − K

2

C =
a + bc + f + K

2

B =
a− bc− f − 2γη(ab + e)

2K

K =
√
(a + bc + f )2 − 4(a f − ce)

We have the following Toeplitz1 covariance matrix, ∀τ ∈N∗

Στ
de f
= T

(
[1, A

(
B +

1
2
)
− C

(
B− 1

2
)
, . . . , Aτ−1(B +

1
2
)
− Cτ−1(B− 1

2
)
]
)

=


1 A

(
B + 1

2

)
− C

(
B− 1

2

)
. . . Aτ−1(B + 1

2

)
− Cτ−1(B− 1

2

)
A
(

B + 1
2

)
− C

(
B− 1

2

)
1 . . .

...
...

...
. . .

...
Aτ−1(B + 1

2

)
− Cτ−1(B− 1

2

)
. . . . . . 1



The objective in this part is to find the values of A, B and C, for which the previous
Toeplitz matrix defines a covariance matrix. From the covariance matrix of (X0, X1)
and (X0, Xτ), necessary conditions on A and B can be obtained. The covariance matrix
of (X0, X1) is as follows:

Cov(X0, X1) =

[
1 A

(
B + 1

2

)
− C

(
B− 1

2

)
A
(

B + 1
2

)
− C

(
B− 1

2

)
1

]
This matrix must be semi-definite matrix, then we obtain a necessary condition.

1More detail in Appendix A
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1−
(

A
(

B +
1
2
)
− C

(
B− 1

2
))2
≥ 0

A
(

B +
1
2
)
− C

(
B− 1

2
)
∈ [−1, 1]

⇐⇒ A + C
2
− B(C− A) ∈ [−1, 1]

Moreover, the condition Aτ+Cτ

2 − B(Cτ − Aτ) ∈ [−1, 1] is obtained from cov(X0, Xτ),

Cov(X0, Xτ) =

[
1 Aτ

(
B + 1

2

)
− Cτ

(
B− 1

2

)
Aτ
(

B + 1
2

)
− Cτ

(
B− 1

2

)
1

]
.

In order to obtain sufficient conditions for A and B, it is necessary to apply Caratheodory-
Toeplitz Theorem. Therefore, we have the following condition:

∀τ ∈N∗, Στ ≥ 0 ⇐⇒ z ∈ {u ∈ C; |u| < 1},

<
(

1 + 2
(

B +
1
2
)

Az
∞

∑
τ=0

(Az)τ − 2
(

B− 1
2
)
Cz

∞

∑
τ=0

(Cz)τ
)
≥ 0

⇐⇒ <
( [1 + 2B(A− C)reiθ − ACr2ei2θ](1− Are−iθ)(1− Cre−iθ)

|1− Areiθ|2|1− Creiθ|2
)
≥ 0

Therefore, it’s necessary to analyze the following expression .

⇐⇒ 1 + A2C2r4 − 2B(A− C)(A + C)r2 + (2B(A− C)− (A + C))rcos(θ)

+ AC(2B(A− C) + (A + C))r3cos(θ) ≥ 0 (5.3)

Calculus:
According to Caratheodory-Toeplitz Theorem:

T ∈N∗, ΣT ≥ 0 ⇐⇒ z ∈ {u ∈ C; |u| < 1},

<
(

1 + 2
(

B +
1
2
)

Az
∞

∑
τ=0

(Az)τ − 2
(

B− 1
2
)
Cz

∞

∑
τ=0

(Cz)τ
)
≥ 0

We assume the following conditions A ∈ [−1, 1] and C ∈ [−1, 1] to ensure conver-
gence.
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From these conditions and z = reiθ, for all r ∈ [0, 1) and θ ∈ [−π, π], we will obtain
the following result:

<
(

1 + 2
(

B +
1
2
)

Az
∞

∑
τ=0

(Az)τ − 2
(

B− 1
2
)
Cz

∞

∑
τ=0

(Cz)τ
)

= <
(

1 +
2
(

B + 1
2

)
Az

1− Az
−

2
(

B− 1
2

)
Cz

1− Cz

)
= <

(1 + 2B(A− C)z− ACz2

(1− Az)(1− Cz)

)
= <

(1 + 2B(A− C)reiθ − ACr2ei2θ

(1− Areiθ)(1− Creiθ)

)
= <

( [1 + 2B(A− C)reiθ − ACr2ei2θ](1− Are−iθ)(1− Cre−iθ)

|1− Areiθ|2|1− Creiθ|2
)

Therefore, it’s necessary to analyze the following expression

<
( [1 + 2B(A− C)reiθ − ACr2ei2θ](1− Are−iθ)(1− Cre−iθ)

|1− Areiθ|2|1− Creiθ|2
)
≥ 0

⇐⇒ 1 + A2C2r4 − 2B(A− C)(A + C)r2 + (2B(A− C)− (A + C))rcos(θ)

+ AC(2B(A− C) + (A + C))r3cos(θ) ≥ 0 (5.4)

Observation: The analysis of this expression is still in progress because of its
complexity.
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Annexe D

The case of f = 0 and γ = b is analyzed. From Equation (2.9), (2.10) and (2.11),
the following expressions can be obtain:

a + bc = 0

α = η − c2(1− b2η)

β = 1− b2η − e2η

In addition, A and B are defined as follows:

A =
√

ce

B = b
(

c(1− b2η) + eη
)

There are constraints on the parameters α and β since they are variances. There-
fore, from previous expressions of α and β the following conditions on the parameters
c and a are obtained:

α ≥ 0 c ∈
[
−
√

η

1− b2η
,
√

η

1− b2η

]
β ≥ 0 e ∈

[
−

√
1− b2η

η
,

√
1− b2η

η

]

Let A and B two fixed values such that A ∈ [−1, 1] and −A2+1
2 ≤ B ≤ A2+1

2 , then:

A =
√

c · e ⇒ c =
A2

e
⇒ c ≥ 0

⇒ e ∈

0,

√
1− b2η

η


We want to holds c ∈

[
0,
√

η

1− b2η

]
, then

A2

e
≤
√

η

1− b2η
⇒ e ≤ A2

√
1− b2η

η

.

Thus, in order to satisfy the condition c ∈
[

0,
√

η

1− b2η

]
, we have that

e ∈
[

A2

√
1− b2η

η
,

√
1− b2η

η

]
and it ensures the existence of c.
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The next step is to replace c in B = b[c(1− b2η) + eη]

eB = bA2(1− b2η) + bηe2

⇐⇒ bηe2 − Be + bA2(1− b2η) = 0

A polynomial in e is obtained, then its discriminant ∆e is equals to B2 − 4b2ηA2(1−
b2η). Since the condition ∆e ≥ 0 have to be satisfied, the following expression is
obtained:

b2η(1− b2η) ≤ B2

4A2 .

Moreover, the condition b ∈
[
− 1
√

η
,

1
√

η

]
is satisfied since the matrix defined in

(2.8) is a covariance matrix, ie. its determinant is non negative. This condition implies

b2η(1− b2η) ∈
[
0, 1

4

]
. In addition, if

B2

4A2 ≥
1
4

, we have that B ≥ A.

We set b =
1√
2η

and then b2η(1− b2η) = 1
4 . Thus, the root e1 of the polynomial in e

is given by e1 =
B−
√

B2 − A2

2bη
. e1 needs to be in the interval

[
A2

√
1− b2η

η
,

√
1− b2η

η

]
and it is verified since

e1 ≥ A2

√
1− b2η

η

⇐⇒ B−
√

B2 − A2

2bη
≥ A2

√
1− b2η

η

⇐⇒ A2 − 2B + 1 ≥ 0

⇐⇒ B ≤ A2 + 1
2

it is true

Now, the second root is e2 =
B +
√

B2 − A2

2bη
and it is in the interval

[
A2

√
1− b2η

η
,

√
1− b2η

η

]
:

e2 ≤

√
1− b2η

η

⇐⇒ B +
√

B2 − A2

2bη
≤

√
1− b2η

η

⇐⇒ B ≤ A2 + 1
2

it is true
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Therefore, if 0 ≤ A ≤ B ≤ A2 + 1
2

, we have the following values:

b =
1√
2η

c =
A2√

2η(B−
√

B2 − A2)

e =
√

2η(B−
√

B2 − A2)

If 0 ≤ B ≤ A then B2

4A2 ≤ 1
4 , we can take b such that b2η(1 − b2η) =

B2

4A2 then

e1 =
B

2bη
and e1 ∈

[
A2

√
1− b2η

η
,

√
1− b2η

η

]

e1 ≥ A2

√
1− b2η

η

⇐⇒ B
2bη
≥ A2

√
1− b2η

η

⇐⇒ B ≥ 2A2

√
B2

4A2

⇐⇒ A ≤ 1 it is true

e1 ≤

√
1− b2η

η

⇐⇒ B
2bη
≥

√
1− b2η

η

⇐⇒ B ≥ 2

√
B2

4A2

⇐⇒ A ≤ 1 it is true

Therefore, if A ≥ B ≥ 0, we have the following values:

b =

√
B

2Aη

e =

√
ABη

2

c =
A2√
ABη

2
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Annexe E

If we have the case f = −a− bc and γ = b. Here, it can be considered f 6= 0 so
that c = eη − abη. So that, expressions for α and β as functions of a, b, e, η are found.

α = 1− a2(1− b2η)− e2η

β = 1− a2(1− b2η)− e2η

In addition, A and B are defined as follows:

A =
√

e2η + a2(1− b2η)

B = beη − a(1− b2η)

Let A and B two fixed values such that A ∈ [−1, 1] and −A2+1
2 ≤ B ≤ A2+1

2 . On the
other hand, there are constraints on the parameters α and β since they are variances.
In fact, we take e2η = A2 − a2(1− b2η) the constraints α ≥ 0 and β ≥ 0 are satisfied.

Moreover, the condition b ∈
[
− 1
√

η
,

1
√

η

]
is satisfied since the matrix defined in

(2.8) is a covariance matrix, ie. its determinant is non negative. Therefore, we can

set b = 1√
2η

. Additionally, using A and B defined above, we have b = A2−e2η+aB
aeη thus

a = e2η−A2

B−e
√

η
2
.

In conclusion, we have the following values:

b =
1√
2η

a =
e2η − A2

B− e
√

η
2

A similar analysis can be don for b = − 1√
2η

which gives the following values:

b = − 1√
2η

a =
e2η − A2

B + e
√

η
2
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Appendix A

Review

A.1 Matrices

Definition. Mathematical objects
Scalar: A scalar is a single number
Vector: A vector is an array of numbers
Matrix: A matrix is a 2-D array of numbers.

Definition. Positive definite matrix [Strang and Borre, 1997]
Let A be a n× n symmetric matrix is positive definite if one of the following prop-

erties is satisfied:

• xT Mx > 0 except at x = 0, for x ∈ Rn

• All the eigenvalues are positive.

• All the upper determinants are positive.

• All the pivots are positive.

where the upper left determinants of a n× n matrix are 1 by 1, 2 by 2, n by n.

Definition. Diagonalizable Matrix
A squared matrix A is a diagonalizable matrix if there exists an invertible matrix P

an a diagonal matrix D such that A = PDP−1.

The diagonalization process of a matrix A usually consists of finding its eigenval-
ues and eigenvectors. Diagonalization can be useful to efficiently compute the powers
of a matrix A. If A can be written as A = PDP−1 then Ak = PDkP−1 for k ∈N.

Definition. Toepliz matrix
A Toeplitz matrix is an n× n matrix T =

[
tkj; k, j = 0, 1, . . . , n− 1

]
where tkj = tk−j,

i.e., a matrix of the form:

T =


t0 t1 . . . tn−1
t1 t0 t1 tn−2
...

. . .
...

tn−1 . . . t1 t0


The following theorem allows us to verify if a Toeplitz matrix is a covariance matrix.
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Theorem 1. Carathéodory-Toeplitz Theorem 1

{a0, a1, a2, . . . } is a covariance sequence if and only if S(z) = a0 + 2 ∑+∞
i=1 aizi is a

function of the Carathéodory class, i.e., S(z) has a positive real part for z in the open
unit disk.

A.2 Multivariate Concepts

Definition. Random variable [Beaumont, 2005]
A random variable X is a function on a sample space with two properties:

1. the values are real numbers; and

2. for every real number x, the probability that the value of the function is less than
or equal to x can be calculated.

Definition. Random vector
A random vector is a finite collection on random variables defined on a common

probability space.

A random variable (or vector) is represented by capital letters, for example X, and
its realizations are written in lower case, for example x.

Definition. Expectation Value.
The expected value (mean) of a random vector X = [X1, . . . , Xn] is a vector E[X],

where each element is the expected value of the respective random variable.

µx = E[X] = [E[X1], . . . , E[Xn]]
T

Definition. Covariance matrix.
The covariance matrix of a random vector X = [X1, . . . , Xn] is a n× n matrix, where

the (i, j) element is the convariance between the ith and jth random values.

Σx = E[XXT]−E[X]E[X]T

Definition. Cross-covariance matrix
Let X ∈ Rn and Y ∈ Rp be two random vectors, the covariance matriz is a n× p

matrix.
Cov[XY] = E[XYT]−E[X]E[Y]T

The covariance matrix is a symmetric matrix and a positive semidefinite matrix.

Properties. Let X ∈ Rn and Y ∈ Rp be two random vectors; and a, A, B other vector
and matrices of appropriate dimensions.

• E[aTX] = aTµx

• Cov(AX, BY) = ACov(X, Y)BT

1NIU Department of Mathematical Sciences
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A.3 Gaussian vectors and properties

Definition. A vector random variable X = [X1, . . . , Xn] has a multivariable normal
distribution, X ∼ N (µ, Σ), with mean µ ∈ Rn and covariance matrix Σ ∈ Sn

++, i.e.,
the space of symmetric positive definite n× n matrices; if it has a probability density
function of the form:

N (x; µ, Σ) =
1

(2π)n/2|Σ|1/2 exp
(
− 1

2
(x− µ)TΣ−1(x− µ)

)
.

Remark: N (x; µ, Σ) stands for the Gaussian distribution with mean µ and variance
Σ, taken at point x.

We now present a classic result on Gaussian vector conditioning that will be used
in our derivations [Rao et al., 1973].

Proposition 1. [Rao et al., 1973]
Let x,∈ Rp, y ∈ Rq, Σ1 and Σ2 be p× p and q× q positive definite matrices, respec-

tively, then ∫
N (x; Fy + d, Σ1)N (y; m, Σ2)dy = N (x; Fm + d, Σ1 + FΣ2FT),

where F, d, m and other vectors and matrices, are of appropriate dimensions.
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