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Chapter 1

Introduction

The heart is one of the most important organs because it is responsible for transporting blood throughout the
body via the circulatory system, where the opening-closing mechanism plays an important role in ensuring the
unidirectional flow of blood (see Fig. 1). Numerical simulation of heart is an important tool in mathematical
applications, since its results are intended to serve as a support tool for decision making when studying and
understanding this organ and its different pathologies, as well as for the development of implantable devices, but
due to its complexity, such simulations present many difficulties, especially because the opening-closing mechanism
occurs in very short time intervals.
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Figure 1.1:  Cross-section of the human heart. The upper left part of the diagram shows the opening-closing
mechanism of a heart valve. Image from (Anderson 2021).

In particular, the numerical simulation where elastic thin structures such as cardiac valves and incompressible
viscous fluids such as blood interact mechanically is known as Fluid-Structure Interaction (FSI) simulation, which
has become in recent years an essential tool in the mathematical modeling of the heart. In fact, the first 3D
FSI models and simulations of cardiac valves appeared at the beginning of this century (see, e.g., (Hart, Peters,
Schreurs, and Baaijens 2003), (Einstein, Kunzelman, Reinhall, Nicosia, and Cochran 2004)), gradually gaining
great interest in the academic world.

Despite the great advances achieved, the FSI simulation of cardiac hemodynamics continues to be a rather
complex problem, so to overcome such complexity, several simplified alternative models (called reduced models) have
been proposed in the literature (see, e.g., (Astorino, Hamers, Shadden, and Gerbeau 2012), (Boilevin-Kayl 2019),
(Tagliabue, Dede, and Quarteroni 2017), (Fedele, Faggiano, Dede, and Quarteroni 2017)), where the fundamental
idea of these approaches is to understand and describe the valve dynamics, whose main advantage is the reduction
of computational complexity (see (Sainte-Marie, Chapelle, Cimrman, and Sorine 2006)), but without losing the
ability to provide realistic results that allow us to observe the evolution of certain macroscopic quantities such as
ventricular and aortic pressures.



Models commonly considered for describing the dynamics of a valve has a complexity that is more in line with
the available clinical data. For example, if we consider the cardiac valve as a surface immersed in the fluid, it can be
described in a simplified manner by neglecting its dynamics and only considering its open and closed configurations.
In fact, in (Astorino, Hamers, Shadden, and Gerbeau 2012) this type of model is studied, where some physiological
criteria are used to describe the mechanism of opening and closing of the valve. In addition, a number of 2D and
3D numerical simulations are provided, which allow to appreciate the limitations and properties of this model.

However, simpler and more intuitive models can also be considered. For example, problems subject to unilateral
flow constraints involving a nonlinear interface condition written as an inequality and which can even be approximated
if we consider unilateral contact problems coming from deformable body mechanics (see, e.g., (Chouly and Hild
2013b), (Chouly, Hild, and Renard 2014)).

Another types of models that can be adapted to describe the dynamics of a valve come from solid mechanics
and the numerical implementation of contact and impact problems which generally use the finite element method
(FEM) (see (Chouly and Hild 2013a)). There is even a proposal to use a special FEM inspired by Nitsche’s method
(Nitsche 1971) which allows to treat boundary or interface conditions in a weak sense, thanks to a consistent
penalty term.

In particular, we are interested in a model in which, for simplicity, the valve is assumed to be a single interface
immersed in the fluid; on this interface we assume constraints that describe in some way the opening-closing
mechanism of the valve, which are added to the Navier-Stokes equations describing the blood flow. Thus, the
aim of this work is to develop, mathematically study and compare different reduced models that describe valve
hemodynamics and reduce the difficulties mentioned above. For this purpose, we consider our study domain around
the aortic valve: the left ventricle and a section of the aorta (see Fig. 1.2).

Anterior cut-away view of heart

Figure 1.2: Anterior cut-away view of heart. In red, the domain of interest (including the left ventricle, aortic valve
and aorta). Image from (Media 2020).

Finally, we have organized this work in four parts. The first chapter corresponds to the Introduction where we
briefly present the motivations, problems and the state of the art of this type of reduced models.

In Chapter 2, two reduced models of cardiac valves are introduced: RIS model reported by (Astorino, Hamers,
Shadden, and Gerbeau 2012) and a unidirectional flow constraint model. Starting from the ideas proposed by
(Astorino, Hamers, Shadden, and Gerbeau 2012) we wrote a more complete model which also includes a term that
controls the backflow (see (Arbia, Vignon-Clementel, Hsia, and Gerbeau 2016)). In addition, since the algorithms
presented in that work do not consider possible successive changes of the valve status, we include a parameter
that avoids these changes and some non-physical vibrations in the pressure. We also propose a modification of the
previous RIS model in which the status of the valve changes progressively.

One of the major problems of this model is that it can only be expressed as a discrete time scheme because the
changes of state of the valve are performed as long as some physiological criteria are verified. This motivates us to
consider another more intuitive model, described as an inequality constraint that ensures unidirectional blood flow
across the valve, which is numerically solved using a penalty approach. The resulting problem can be expressed as
a time-continuous model, but due to the method used it is not strongly consistent.

In each case, we present their fully-discrete schemes using the conforming stabilized finite element method
with an interface-based stabilization allowing the pressure discontinuities through the interface (see (Tobiska and
Verfurth 1996)).

In Chapter 3, 2D numerical simulations are performed with FreeFem++, in order to highlight the different
properties of these models and to compare them in blood flow regimes. However, as mentioned before, our reduced
models also allow us to obtain important information about some macroscopic quantities (such as ventricular and



aortic pressures) which can be represented in a similar way to a Wiggers diagram (see Fig. 1.3). This diagram
within cardiac physiology helps to represent and visualize the evolution and behavior of the ventricular (blue) and
aortic (red) pressures, and the ventricular volume during a cardiac cycle.
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Figure 1.3: Wiggers diagram. Image from (Wikimedia 2020).

Here, we will present two test cases: with the first one we intend to compare the results obtained by (Astorino,
Hamers, Shadden, and Gerbeau 2012) with the results obtained from the RIS model proposed in Section 2.2, hoping
that they will be quite close; while in the second one we seek to simulate more realistic conditions with which we
can have a closer idea of the behavior of the ventricular and aortic pressures. Furthermore, in this context, we
seek to observe a physical phenomenon called: blood hammer, which was observed by (Boilevin-Kayl 2019). Blood
hammer is a physical phenomenon characterized by an increase in pressure caused when a moving fluid is forced
to stop or change direction suddenly.

Conclusions and perspectives are drawn in Chapter 4. In terms of prospects, we propose a model subject to the
unilateral boundary conditions that we expect to overcome the limitations of previous models and which is derived
using a Nitsche-based method.



Chapter 2

Reduced models for cardiac valves

In this chapter we study of two reduced order models for cardiac valves that describe the opening-closing mechanism
of the valve. For each one, we first introduce some notions, notations and important considerations for the models,
in Section 2.1. Then, we follow the ideas proposed by (Astorino, Hamers, Shadden, and Gerbeau 2012) to study
the RIS model in Section 2.2 which, due to the physiological criterion used to describe the valve dynamics, can
only be written as a discrete in time scheme and, a priori, has no continuous equivalent. Finally, in Section 2.3 we
propose a model with unidirectional flow constraints on the interface which, unlike the RIS model, can be written
as a continuous model in time.

2.1 Preliminary

We that Q C R?, with d = 2, 3, is a rectangular bounded domain and its boundary is denoted by I' = T'p, UT -, where
I'p and I'y indicate the part of the boundary on which we define homogeneous Dirichlet and non-homogeneous
Neumann boundary conditions, respectively. For the sake of simplicity the leaflets are represented by a single
interface ¥ defined as the intersection between a hyperplane of R? and Q (see Fig. 2.1).
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Figure 2.1: The domain §2 and the immersed surface X.

Thus, we can decompose the domain € in two disjoint connected subdomains ©; and Qs (see Fig. 2.2), which

are separated by X, i.e.,
Q\E:Qlugg and Q1 NQy =0.

Furthermore, we can see the interface ¥ as a part of the boundary of each subdomain €;, ¢ = 1,2, which
are denoted by I'; = I'p, UI'y, U X, and where I'p, U 'y, is the part in common between the boundary I' and
the boundary of each ;. Therefore, I'p, and I'y, denote the part of I'; with homogeneous Dirichlet boundary
conditions and a modification of non-homogeneous Neumann boundary conditions', respectively.
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Figure 2.2: The domain 2 decomposed in two subdomains €2; and 2.

We also denote n; the unit exterior normal on I'; (¢ € {1,2} ). On the interface 3, we will use the unit exterior
normal n = n; as a convention. Thus, for any vector u € R? its normal component on ¥ is defined by u,, = u - n.

IRecall that the non-homogeneous Neumann boundary conditions are defined as o(u,p)n = g on T'y. To this condition we add a
backflow control term as presented in equation (2.5) and which will be detailed in Remark 2.1



2.2 Resistive immersed surfaces model for cardiac valves (RIS)

In this section, we propose to follow ideas of (Astorino, Hamers, Shadden, and Gerbeau 2012) with some additional
considerations such as the introduction of the backflow control term which was introduced in Section 2.2.1. As
mentioned earlier, we consider leaflets as a single immersed surface, which in this case is resistive to the blood flow
and mimics the behavior of a electric diode. This means that we are going to reduce the dynamics of the valve to
only two states: open (where blood flow is allowed to pass) and closed (where blood flow is cut off).

In this way, the idea of RIS model is to describe this opening-closing mechanism of the leaflets, depending on the
velocity and pressure of the blood close to the interface. For this purpose a dissipative term is introduced, which
also ensures the conservation of momentum equation (RIS). This term is a time-dependent resistive parameter,
which is zero when the valve is open and large when the valve is closed.

After that, we devote a section to write the temporal and spatial discretization of the model. Finally, we
present the numerical algorithms linked to the discrete model, which will be implemented for numerical purposes
in Chapter 3.

2.2.1 Problem setting

In order to write our reduced model we assume that blood is an homogeneous incompressible Newtonian fluid,
with constant density p > 0 and constant viscosity pu > 0, governed by the Navier-Stokes equations. So, given
u’ = u’(x): Q — R an initial data, f = f(¢,x): Ry x Q — R? a body force and g = g(t,x): Ry x 'y — R?
the body loads, we consider the Navier-Stokes counterpart problem in a two-domain formulation: find a velocity
u=u(t,x): Ry x Q — R? and a pressure p = p(t,x): Ry x Q — R such that

pou; + p(u; - Viu; —div o(ug,p;) =1 in[0,7] x Q, =12, (2.1)
div u; = 0 in [O,T] X Qi, 1= 1,2,
Wili—o = u! inQ,, i=12,

subject to the following boundary conditions:

u;, =0 on [0,T] xI'p,, i=1,2, (2.4)
o (u;, pi)n; — g[ui nu=g on [0,T] xT,, i=1,2, (2.5)
and interface conditions:
[ul =0 on [0,T] x X, (2.6)
[o(u,p)n] = —Rsu on [0,T] x X,

where o(u,p) = 2ue(u) — pl is the Cauchy stress tensor associated to u and p, with e(u) = 2(Vu+ Vu')
the strain tensor and I the identity tensor in R?. We denote by u; = u|q,, p; = pla,, fi = flo, and g; = g\pNi,
1 =1,2. In addition, the parameter Ry, > 0 describes the dissipation caused by the interface which will be further
specified below and where the terms [u] = u; — uy and [o(u,p)n] = o(uy, p1)n; + 6(uz, p2)ns so defined, denote
the velocity jump and the stress jump across the interface 3, respectively.

In this RIS model, the variation of the resistance Ry is described through the physiological criterion presented
below in Remark 2.3 and plays an important role in the modeling of a cardiac valve, since it allows describing its
dynamics: if the valve resistance is zero (Ry = 0), it means that the valve is open, whereas if the resistance value
(Rx #0) is large enough to prevent blood flow, we say that the valve is closed.

Remark 2.1. Condition (2.5) is a modification of the Neumann boundary condition, which will only be perturbed
in the presence of backflow, i.e., _§[Ui -n;]_w; turns out to be a stabilization term acting only during backflow and
where [u; - n;|_ denotes the negative part of the normal velocity in each subdomain. Several backflow control terms
have been proposed in the literature, in particular, this choice has been widely employed in hemodynamic regimes

(Arbia, Vignon-Clementel, Hsia, and Gerbeau 2016), where energy stability is also ensured. Precisely, this was
shown numerically by (Moghadam, Bazilevs, Hsia, Vignon, Marsden, and of Congenital Hearts Alliance 2011).



Weak formulation

Notation: From now on, we use the standard Lebesgue and Sobolev spaces: L?(Q2), H'(2) and L?(T") endowed
with their usual norms and scalar products that we denote

I llo=1"le2@  I-lia=1" g, and Al =1l
(=0, Gre=0)m@, and  (5)r= ()2
For the vector-valued functional spaces, we use the same notation for their norms:

o =1 lee@e - lho =1l g

Let us introduce the following functional spaces:
M =L*(Q) and V:{VE(Hl(Q))d;v:Oon I‘D},

endowed with their usual norms || - || and [ - [|; o, respectively; and the closed subspace of M,

My =L3(Q) = {qGLQ(Q);/Qq dQO}.

Let (v,q) € V x My with v; = v|q, and ¢; = ¢|q,, ¢ = 1,2. If we multiply equation (2.1) by v;, i = 1,2 and
equation (2.2) by ¢;, i = 1,2, respectively, and integrate in spatial variable in both subdomains we have
P (8tui’vi)Qi +p((w; - v)uiavi)ﬂi — (div U(uiapi)avi)gi = (fiavi)gi )

(le u;, ql)Qz =0.

After that, if in the first equation above, we use Lemma 1 in (Arndt, Braack, and Lube 2016) and the definition
of the Cauchy tensor ¢, and integrate by parts we obtain

1, .
p(Oiui, vi)g +p ((ui V)i + odiv uw”) + 20 (e(wi), €(vi))g, — (i, div Vi), — (o(wi, pi)ni, vi)p, = (£, vi)g, -
K3 (17 k3 T K3 7

So, thanks to the boundary conditions (2.4)-(2.5), the interface conditions (2.6)-(2.7) and adding in ¢ we can
write the system

2
1

Z |:p (Orus, vi)g. +p ((ul -V)u; + Ediv u; ui,vi> +2p (e(wi),e(vi))q,

i Q. A

i=1 ¢

= (pi, div v4) . — (gi + B[ui ~ni],ui,vi) + (Rzui,vi)z] = Z (fi,vi)g.
i 2 I, . i

2
Z (div ui,qi)gi =0.

i=1

Finally, we obtain the weak formulation of our problem : find (u,p) € V. X M such that

p (B, v)g, +p ((u V)u+ %div u u.,v)Q = 2 ([um) 0, V), + 20 (e(0) (V)
(RIS) — (p.div v)g + (Rsu,v)y, = (£,v)q + (8, V), »

(divu,q)o =0,

for all (v,q) € V. x M.

2.2.2 Numerical scheme

In the current section we describe a fully-discretization of (RIS). First, since RIS model includes a dissipative term
depending on time, the time semi-discretization of (RIS) is done with an implicit scheme and using the standard
first order backward differentiation formula. After that, we present a spatial discretization using the conforming
stabilized finite element method with an interface-based stabilization allowing the pressure discontinuities across
the interface X.



Semi-discretization in time

We begin with a semi-discretization in time of the above (RIS) formulation. Precisely, we use the first order
backward differentiation formula to approximate the term d;u. Moreover, in order to linearize the convective term
and the one associated to the control of the backflow, we consider an semi-implicit discretization in time, while for
the dissipative term we use an explicit discretization in time because according to the admissibility criterion given
in Remark 2.3 this term is dependent on the velocity and pressure at the previous time step. Thus, the discrete in
time problem reads: for any k > 1, find (u¥,p*) € V. x M such that

E k-1
P (uu7v> +p ((uk—1 -V)u® + %div uf! uk,v) _P ([u’“_1 -n]_uk,v)
Q Q

ot 2 TN
+2u (e(uk),e(v))Q — (pk,div V)Q + (R’;uk,v)E = (fk,v)Q + (gk,v)FN ,
(div uk7q)g =0,

for all (v,q) € V.x M.

Remark 2.2. In fact, we can see R’g as a penalization parameter associated to the condition u* = 0 on the
interface 3 and it varies according to the criterion chosen to describe the opening-closing mechanism of the valve.
In this way, the criterion consider throughout this section is based on some physiological considerations and depends
on the local blood flow information: on velocity and pressure close to the interface. Due to this dependency, these
physiological conditions cannot be used in practice continuously in time and must be made explicit in time as follows.

Remark 2.3 (Remark 1, (Astorino, Hamers, Shadden, and Gerbeau 2012)). In the above scheme the following
dissipative interface term appears:

(R’guk,v)zz/ER’guk-vdz,

where R’g depends on the valve status at time k and the velocity u*~1 and pressure p*~—1 at the previous time k — 1
and takes two values according to the following physiological conditions:

1
1. If the valve is subjected to a positive pressure difference: 5P§_1 = @ / plf_l *plzc_l d¥ > 0, then RI% =0,
b))
i.e., there is not resistance on X. This indicates the opening of the valve and blood flows across the valve

unidirectionally in the direction n.

2. If a flow reversal occurs: Qg_l = / u*~!l.n dx <0, then RE £ 0 is large enough, and will be fized later.
b
This means the valve is closed and there is no blood circulation across the valve (u* =0 on X).

However, according to (Astorino, Hamers, Shadden, and Gerbeau 2012), for practical issues in the above
condition 1: instead of calculating the difference of pressures around the interface ¥ as defined before, we consider
the difference of the average pressures of both subdomains

k—1 1 k-1 1

TR M T

Regarding the first statement, the evaluation of d Ps can be used as a test condition for the opening of the valve.

Indeed, we know that while 0 Ps, < 0, the valve is closed; whereas if 0 Ps, = 0, valve is in the process to be opened

provided that there is an increase in §Ps. In this last state the flow across the valve is still zero and it becomes
positive after the opening.

In contrast, if we consider the second statement we see that Qs cannot be used as a condition for the opening

of the valve because the flow is zero as long as the valve is closed and will not change until its opening. From a

physiological point of view the valve is open as long as blood flows in the direction n. So, the closure occurs when

Qs <0.

Precisely, the above physiological conditions will be used in Section 2.2.3 to write an algorithm that allows
switching between open and closed states.

ph=tdo.

Discretization in space

Let 75 be a family of triangulations of the domain 2, where h = jrp@,)_( hr, with hp denoting the diameter of the
€Th

triangle T'. We also assume that the family of triangulations 7}, is regular, i.e., there exists C' > 0 such that for all

TGTh,

hr ¢
PT



where pp denotes the radius of the inscribed circle in T

Moreover, as we wish the velocity approximation to be continuous in €2 and the pressure to be discontinuous
across the interface X, we introduce the following velocity and pressure discrete spaces:

Vi, = {vi € [C(V))?; vi|r € (P1(T))?, YT € T, and vj, = 0 in T'},

and
My, = {qn € Mo; qn|r € Po(T), YT € Tp}.

We also denote &, the set of all interelement boundaries (excluding those on interface X) in Ty, i.e., if E € &,
then F = T1 n TQ, with Tl,TQ € 771

Thus, the discretization in spatial variable by using finite elements reads as follows: find (uﬁ, pﬁ) €V, x My,
such that

k k—1
u, —u 1 .
p (h&h,vh> +p ((uﬁ_l -V)uf + idiv u ! u]f”vh)Q — g ([uﬁ L. n],uﬁ,vh)FN
Q
+2u (e(up).e(va)), = (P div va) o + (Ruuhva) = (£ va) o + (87, Vi)
0,

(div uz, gn)o

for all (vp,qn) € Vi, X My,

A stabilized finite element approximation

In order to stabilize the Petrov-Galerkin method applied to the Navier-Stokes equations, we add to our system the
following term:

_ _ h
S(uf,pk, v an) = Y ST/ (ay™ V) up - (w7 V) vy dQ4a Y l/ [Phlelan] e dE =0, (2.8)
TeTh T Eecé&y rJE
where
1
gT - k—112 2 ’
, Wﬁnuh l2 , 16n
5t2 hZ, h.

a > 0 and [q]g denotes the jump of g across F € &, in a fixed direction.

This stabilization S (uﬁ,pﬁ,vh,qh) is composed of two contributions: a residual based stabilization giving a
L?—control on the convective term, and an interface based stabilization providing L?—control on the jumps of the
pressure (see (Tobiska and Verfurth 1996)).

Hence our fully discrete problem reads: find (uZ, pf) € Vi, x My, such that

u, —u,

k_ k-1
k-1 [ TR T P k=11 _k k
p (&wh)Q +p ((uh -Vuy, + §d1v u,, uh,vh)Q -3 ([Uh,n |-y, Vh>FN +2u (:s(uh),zs(vh))Q

- (plfcmdlv vh)Q + (Rlzc?uliguvh)z - (f}}f7vh)9 - (g}I; Vh)l"N + (le uﬁ, qh)Q + S(uﬁ,pﬁ,vh, qh) = Ov (29)
for all (vp,qn) € Vi, X My,.
Remark 2.4. Regarding the numerical analysis of the above discrete problem, for a scheme similar® to (2.9), its

strong consistency is established in Theorem 3.2 (Tobiska and Verfurth 1996) while its existence and uniqueness
are shown in Remark 3.1 (Tobiska and Verfurth 1996).

2Derived from the Navier-Stokes equations with Dirichlet boundary conditions using a streamline diffusion finite element method.

10



2.2.3 Numerical algorithms

Let’s start by rewriting as an algorithm the time evolution of the resistance magnitude Ry based on the admissibility
criterion given in Remark 2.3. Therefore, we recall that if the valve is closed, it will open if there is a positive
pressure difference 6 Ps;. On the other hand, if the valve is open, it will close if a backflow is detected: Qs < 0.

In fact, Ry takes the values 0 to represent the absence of the interface (the valve is open) and a sufficiently
large value Reritical t0 Tepresent the presence of the interface (it is closed). See Algorithm 1.

Algorithm 1: update_ resistance
if (closed_ valve == true) then
if(§Pg > 0) then
RZ = 0;
closed_ valve == false;
end
else
if (Qx < 0) then
RZ = Rcritical;

© 00 O Uk Wi

—_
o

11

closed_ valve == true;
end
end

Update of resistance and valve status (open or closed) according to the admissibility criterion considered in
Remark 2.3. (Astorino, Hamers, Shadden, and Gerbeau 2012)

Remark 2.5. In Chapter 3, we also consider a progressive (linear) update for the resistance, i.e., instead of
making a sudden switch from zero to R riticai, we implement a progressive closure where the resistance values
increase linearly from 0 to the critical resistance. Similarly, for the opening of the valve, the resistance decreases
from Reriticar to zero (see Fig. 2.3).

led

Figure 2.3: Time history of the evolution of the resistance magnitude considering sudden (on the top) and

progressive state (on the bottom) switches, where cv and ov denote the status of the valve (closed valve or open
valve)

11



Now, we introduce a routine to check the state of the valve at each time step according to our admissibility
criteria presented in Remark 2.3:

Algorithm 2: status_ valve
if (closed_ valve == true) then
if(§Pg > 0) then
return false;
end
else
if(Qx < 0) then
return false;
end
end
10  return true
(Astorino, Hamers, Shadden, and Gerbeau 2012)

O O UL W N+

Ne

Remark 2.6. The following technical consideration is worth mentioning at this point: in the model proposed by
(Astorino, Hamers, Shadden, and Gerbeau 2012), Algorithm 2 plays an important role in the switch of state, but
in our case, in order to control the time of change from one state to another (open to closed or closed to open),
we prevent a new state change for a fized number of time steps after a state change. For this, a new parameter
is added in the above algorithm which indicates the minimum number of iterations that must occur before a state
change, this allows us to prevent excessive state changes that can be generated with the original algorithm and may
lead to non-realistic oscillations in the status of the valve.

Recall that in this model, we introduce the dissipative interface term that makes the continuous problem
(RIS) nonlinear due to the presence of the parameter Rx and its behavior subject to the physiological criterion
in Remark 2.3 which allows a jump in value when there is a change of state of the valve. Moreover, since the
current state of the valve depending on the local fluid dynamic conditions, and resistance is written in terms of the
velocity and pressure at the previous time step, we have proposed a linear problem discretized in time and space
described in Section 2.2.2. However, this problem introduce a delay in the update of Ry and in the opening-closing
mechanism. In order to remove this delay we consider the following algorithm:

Algorithm 3: time_advancing scheme
At a time t*, (u”, p") = (u¥, pF)
admissible = status_ valve(u®, p¥)
while(admissible == false) do
R% = update_resistance(u”, p") ;
Solve NS with R¥;
admissible = statusivalve(uk“, p
(un’ pn) _ (uk-i-l7 pk-i-l)
end
(Astorino, Hamers, Shadden, and Gerbeau 2012)

k+1)

0 ~J O UL W N+

Note that this strategy is computational cheap because we have to recalculate the Navier-Stokes problem only
when the valve change of state.

2.3 Constraint model for cardiac valves

As mentioned above the resistive term included in the RIS model can be seen as a penalty term, this motivates
to study a little more the penalty method, because unlike the discrete in time scheme written for the RIS model,
this method provides us with a continuous model. However, one of the major limitations of the standard penalty
method is that it is typically not strongly consistent (Kikuchi and Oden 1988).

2.3.1 Problem setting

In this section we propose to consider the Navier-Stokes problem in a two-domain formulation written in Section 2.2.1
subjected to the following unidirectional interface condition:

[u] =0 on [0,T] X &, (2.10)
Uy, >0 on [0,7] x X. (2.11)

12



Remark 2.7. In condition (2.11), u, > 0 corresponds to an inequality constraint that ensures unidirectional flow
in the direction n. Moreover, we use u, instead of Ju,] because we apply the continuity condition (2.10).

Note that the interface conditions are described in terms of inequalities and therefore they cannot be directly
applied to numerical calculations. However, for the inequality constraint u,, > 0, there exists a Lagrange multiplier
A > 0 such that Au,, = 0 (complementary slackness). From which we deduce the following weak formulation : find
(u,p) € V x M such that

p(Osu,v)q +p ((u -V)u+ %div u u,v)Q =5 ([u-n]_u,v)p 424 (e(u),e(v)),

p
2
(CM) — (p,div v)g — %( [—un], 7vn)2 = v)g+ (& V),
(div u,q)o =0,

for all (v,q) € V. x M.

2.3.2 Numerical scheme

Similar to what was done for the RIS model, we combine an implicit temporal discretization with a spatial
discretization using conformal and stable finite elements with an interface-based stabilization. Then, we consider
the following fully discrete problem: for k > 1, find (uf,pk) € Vi, x My, such that

k k—1
u, —u _ 1.. _ _
p (h e ,vh>Q +p ((uﬁ V) + S div g uﬁ,vh)ﬂ - g (lwn =k va) .+ 20 (e(ur) e(vi)

7Uh,n)2 - (f}’f,Vh)Q - (gﬁ’vh)FN + (le uZaqh)Q + S(ulfclvpﬁavhnqh) = 0? (212)

~ (v va) = S ([u],

for all (vp,qn) € Vi, x My,. Where S was defined in (2.8).

Remark 2.8. Let v > 0. Thanks to Theorem 3 in (Zhou and Saito 2016), we know that a similar problem® to
the one described in (2.12) admits one unique solution. In addition, the penalty method is not strongly consistent
so the reader is referred to Section 3.5. in (Kikuchi and Oden 1988).

Newton’s Method

We can note that the above discrete formulation is a nonlinear problem due to the penalty term. So, we will
proceed to approximate its solution by using the Newton’s method. Precisely,we consider F': Vj x M, — R given
by

- - 1. _
—u) l,vh)Qer((uZ I.V)uﬁJridlv uy ! uZ,vh>Q

F((uf, ph))

—~
c
>

=

—
S
>

;1] B uy, Vh) +2u (s(uﬁ),e(vh))Q — (p'ﬁ,div Vh)Q

'n

>

—

—Uu

/N 7 N

o) ovnn) = (vi) = (ghova) |+ (div ufg)a

k k
uh7phavh7qh)’

N 2= NI

+

Thus, for a fixed time k > 1, we look for (uf,pk) such that F((uZ,p’fL)) = 0 applying the following algorithm:

Algorithm 4: Newton’s Algorithm

Take (uZ’O,prL’O) €V}, x M}, an initial datum;

for(j =0, j < Niter; j =7+ 1)
Solve DF ((uy, pi?)) (0, 6py?) = F((uy?, pj));
(w7 = (i py”) + (0w, 0p)7);

end

break H(Jui’j,épfb’j)HQ < €.

S T e W N =

3This problem is derived from the Signorini’s condition of elasticity theory for a model where the blood vessel is a branched pipe
and where artificial boundary conditions are considered on the outflow boundary.
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And where the linear application DF((uZ’j7pr’j)) 1s the differential of F at point (u,]z’j,p;j’j), given by

. . . . L o1 iy .
DF((uZ’J,pZ’J))((Squ’J, 6p’fl’7) :% ((511];;’]7Vh)n +p ((uﬁ L.g -V)éuZ’J + idlv ufl 1.d (Sulfl’J,vh)Q

— g ([uffnl] B 6quL’j,vh)F +2u (6((5quL’j),z-:(Vh))Q — (5p’fl’j,div vh)Q
N
1 . . ) . , .
2 (Hev(-uld) dul o) o + (v Sul n)a -+ S(OuS, 0587 e, an).

Here,

1, if x >0,
Hev(z) =

0, otherwise,

corresponds to the Heaviside function, which is an approximation of the derivate of [ - | 4
Remark 2.9. As it is well known, the penalty method is not consistent (Kikuchi and Oden 1988), then we
propose another model using a Nitsche-based method proposed by (Chouly and Hild 2013a) which will be detailed

in Chapter /. As mentioned, the latter method has been applied to problems involving conditions in the interface
between subdomains, which are treated by a consistent penalty term. This allows us to write a consistent model.
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Chapter 3

Numerical experiments

Throughout this chapter we carry out several numerical simulations the reduced models introduced in the previous
chapter. In Section 3.1 under the same conditions proposed by (Astorino, Hamers, Shadden, and Gerbeau 2012), we
solve the numerical scheme associated with the RIS model using FreeFem++ (see Fig. 3.1) and the results obtained
are compared with their results. In this way, we are able to observe the properties of our models without the aim of
providing physiologically relevant numerical simulations. In Section 3.2, we propose to recreate numerically realistic
conditions under which we will solve and simulate our reduced models hoping to observe the physical phenomenon:
blood hammer. Recall that this phenomenon occurs when a valve closes suddenly producing a pressure wave that
propagates inside the vessel.

Figure 3.1: 2D simulation of an open (top) and closed (bottom) valve using FreeFem++.

3.1 First test case: A comparison with RIS model in (Astorino, Hamers,
Shadden, and Gerbeau 2012)

In this first test case, we consider a simple rigid rectangle with an interface in the middle. The computational
domain is given in Fig. 3.1. For all the test cases, we also consider the following values for the fluid density
p = 1.0 g/ecm? and the fluid viscosity u = 0.035 g/em/s, which are the ones usually set for the blood considered
as a Newtonian fluid. The fluid is assumed to be at rest initially, and a sinusoidal pressure is imposed on the inlet
boundary

o(u,p)n = Slu-n]_u = —2000sin(4mt)n.
On the outlet boundary, we consider the following condition
o(u,p)n — g[u ‘nj_u= —PF,.n,

where P, is given by the Windkessel resistor—capacitor—resistor (RCR) model described by the ODE (see (Vignon-

Clementel 2006)):

= (Rp -‘er)Q-i-Rde 0(27? + P;+ Ry 0%7

where R, is the proximal resistance, Ry is the distal resistance, C' is the capacitance, and Py is the distal pressure.
These parameters are given by R, = 150dyn - s/cm®, Rq = 700dyn - s/cm®, C = 10~3cm® /dyn, and P; = 0.

The simulation is carried out for 1.1s with a time step of 5 x 1073s. A quantitative representation of the
pressure and flow magnitudes across the interface is reported in Fig. 3.3. The blue curve represents the average
pressure in 27 and the red one in Q5. In addition, non-negative flows across the valve correspond to its opening
(ov) and closure (cv) periods.

Then, it is interesting to note that just after the valve closes, a slight increase in pressure is experienced €2;.
This is the result of two combined effects: the sudden closure of the valve, which depends on the model considered,
and the inertia of the fluid. The sudden valve closure and the corresponding discontinuity introduced in the flow
are limitations of the RIS model, and may affect the applicability of the model for very small time-steps.

We can see a slight peak in the flow curve that occurs after the valve closes, such behavior was not observed
in the results obtained by (Astorino, Hamers, Shadden, and Gerbeau 2012), and may be linked to the conditions
considered in the outlet boundary. Moreover, as we can be seen in Fig. 3.3, the results we have obtained are quite
similar and consistent, which is indicative of the good performance of our model.

dP,
P’r‘c’r R; C o
+ Rg i
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Figure 3.2: The computational domain €2 with the resistive immersed surface X.
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Figure 3.3: Average pressures and flow on the resistive immersed surface in the two subdomains, obtained from the
RIS model.

3.2 Second test case: A realistic case
Now, the idea is to recreate the most realistic possible context of a hemodynamic regimen. Thus, we consider 2 as
rectangular domain whose dimensions are 10 cm length and 2 cm width with a interface immersed ¥ on the middle

of this domain (see Fig. 3.2).

10 cm

|
I
I
2 cm l
I
I
L

5 cm 5 cm

Figure 3.4: The domain 2 and its dimensions.

We suppose that the fluid is initially at rest, and an imposed pressure in the inlet
p _
O'(ll,p)l’l - 5[1,1 : n],u = _pinlet(t>n;

where Dines(t) corresponds to the ventricular pressure which varies between 0 dyn/em? and 159 960 dyn/cm?
(systolic pressure). On the outlet, the boundary condition

otu.pin = Sl nlu= - (bed) 47 [ wnar)n

outlet

is imposed, where Poytiet(t) = 106 640 dyn/cm? is a value that corresponds to the diastolic pressure and R =
15 dyn - s/em® is a resistance. Both quantities are prescribed constants that allow to control the pressure on the
outlet.
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The simulations are carried out for a total time of ¢ = 1.1 s with a time-step 1072. The whole computational
domain €2 is made of 8 000 triangles.

Remark 3.1. We recall for the in RIS model, since Ry, corresponds to the interface resistance, it takes the values
0 to represent the absence of the interface (the valve is open) and a sufficiently large value when the interface does
not allow that the flow across the valve (it is closed). Hence, we consider a critical resistance Reriticai large enough
such that the flow across the interface is negligible. As well as in (Astorino, Hamers, Shadden, and Gerbeau 2012),
we will take Reriticar = 108, because in similar simulations using this value it can be ensured that the backflow is no
more than 1% of the total flow.

Results

In the following, by using FreeFem++ to solve the numerical schemes described in Sections 2.2.2 and 2.3.2, we
present the mean pressures obtained in both subdomains (€; and €9) over time, these results correspond to the
ventricular (blue) and aortic (red) pressures, respectively, which are represented at the top of the Wiggers diagram
(see Fig. 1.3).

RIS model: As mentioned in the previous chapter, it is necessary to add a new parameter which indicates the
minimum number of iterations that must occur before a change of the status valve, this helps to prevent successive
state changes and non-realistic oscillations in the status of the valve. Thus, in the first Fig. 3.5, the pressure
calculated through the RIS model presents an unusual small jump due to the sudden valve closure characteristic
of this model and the inertia of the fluid.

160000

140000

120000

100000

80000

60000

20000

20000

0

— Pa,

— Po,

~20000
0.

Figure 3.5: Time history of the average pressures (dyn/cm?) of the two subdomains, obtained from the RIS model.

RIS model with a progressive update resistance: In this case, we consider a progressive change to switch from
one state to another. In order to implement this variation of the above scheme, we add a constant parameter in
Algorithm 1 that allows us to control the number of time steps in which the progressive change of the valve status
is performed. We see that the results obtained have a better behavior as the jumps observed in the original model
(see Fig. 3.5) caused by sudden changes of the valve state are reduced, and now we observe a smoother behavior
both in the closing and in the opening of the valve. (see Fig. 3.6).

Constraint model: In the results obtained when using the model with constraints applying the penalty method
(see Fig. 3.7), as expected a smoother behavior is observed even in open and closed states, where there is no
presence of unusual jumps in pressure.

As we can see, the ventricular (blue) and aortic (red) pressure curves describe a behavior in accordance with
the Wiggers diagram and consistent with cardiac dynamics. For example, in the case of aortic pressure, we can see
a slight peak after valve closure as observed by (Astorino, Hamers, Shadden, and Gerbeau 2012).

Furthermore, we see that the ventricular pressure varies between 0 dyn/cm? and a maximum of 160 000 dyn/cm?
or about 120 mmH g, except for the first model in which after the valve is closed, this pressure takes a negative
value. Likewise, we have that the aortic pressure stays around 100 000 dyn/cm? or approximately 80 mmHg.

Although we see an improvement in the smoothness of the pressure curves when we consider the progressive
RIS model and the constrained model, these results are not conclusive as to whether one model is better than the
other.
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Figure 3.6: Time history of the average pressures (dyn/cm?) of the two subdomains, obtained from the RIS model
with a progressive state switch.
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Figure 3.7: Time history of the average pressures (dyn/cm?) of the two subdomains, obtained from the Constraint
model.

Evidently, the RIS model allows us to obtain a linear scheme that when solved requires a lower computational
cost than when we solve the scheme coming from the constrained model which, as mentioned in the previous
chapter, corresponds to a non-linear problem and for which we use Newton’s algorithm.
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Chapter 4

Conclusions and Perspectives

Because of its simplicity, the two methods considered in this work present some numerical limitations. In the case
of the RIS model, we saw that due to the physiological conditions describing opening-closing mechanism of the
valve, we can describe this model only through a discrete in time scheme. If instead, we apply the penalty method
for our constrained model, it can be described continuously in time. However, penalty method is not consistent
(Kikuchi and Oden 1988). This motivates us to look for other models that do not present such limitations. Thus,
we consider a model with unilateral interface conditions for which we apply a Nitsche-based method which, as we
will see below, can be described continuously in time and is also consistent.

Concerning numerical simulations presented in Section 3.2, it was not possible to observe the phenomenon called
blood hammer, which can generate strong vibrations when closing and opening the valve. However, we suspect
that this physical phenomenon may be linked to a more complex model where the velocity of the structure is also
taken into account (see (Boilevin-Kayl 2019)).

Perspectives: Nitsche-based method
Now, we briefly describe a Nitsche-based method. Thus, the first thing we do is to adapt the ideas proposed by

(Chouly and Hild 2013a), which were written for an elasticity problem, for a hemodynamic regime.
Precisely, instead of using the interface conditions of the RIS model or the constraint model, we consider the
following unilateral (Signorini’s type) interface conditions on :
Up 20,
[on(u,p)] >0,
[on(a,p)] un =0,
[o¢(u)] =0,
where o, (u,p) = (6(u,p)n) - n denotes the normal component of the vector a(u, p)n while o¢(u) denotes its
tangential component, i.e., o¢(u) = o(u,p)n — o, (u, p)n.

~ o~~~
= e
N N

)
)
)
)

Remark 4.1. The unilateral Signorini’s type boundary conditions describe the interaction without friction between
the interface and the fluid on . These ones are used instead of the interface conditions considered in the previous
sections. More precisely, (4.1)-(4.3) are nonlinear conditions describing unilateral contact on 3, whereas (4.4)
corresponds to the frictionless condition.

Remark 4.2. Note that the term [o,(u,p)n] can be seen as the Lagrange multiplier associated to the condition
Up, > 0, whereas (4.3) would be the complementary slackness.

Analogously to what was done for the RIS model in Section 2.2.1, we can deduce the variational formulation
of the Navier-Stokes counterpart problem in a two-domain formulation subject to the unilateral Signorini’s type
constraint (4.1)-(4.4). Additionally, we can rewrite this formulation, making use of Proposition 4.1. Thus, our
problem reads: find (u,p) € V x M such that

1
p(0pa,v)y +p ((u -Viu+ §div uu, v) — 5 ([u-n]_u,v)r  +2u(e(u),e(v))q
Q

NI

(NM) —(p,div v)g — l}? ([;[[Un(u,p)]] — un] N ,vn> . =, v)g+ (8 V)r,

(le u, Q)Q = 07
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for all (v,q) € V. x M and 7o > 0.

Numerical scheme: As for the model with unidirectional flow constraints, the discrete scheme deduced above
corresponds to a nonlinear problem whose solution will be approximated using Newton’s method. Fully-discrete
problem reads as follows: for k > 1, we look for (uﬁ,p’fb) € 'V, x My, such that

1
L (uf — u,]2717vh)Q +ol @ V)uf + Sdivub Tt ub v, ) - L [uﬁ;}} uf, vy
5t 2 o 2 - .
. Yo [ | P 4.5
2 (euf) ) — (i vl = (| loaob sl = oha| conn) = (8w, 7
+

P
- (gﬁ,vh)m + (div uf, qn)a + S(uf, pf, Vi qn) =0,

for all (vp,qn) € Vi, x My,

Moreover, let 79 > 0 enough small, the well-posedness of a discrete formulation similar to the one in (4.5) is
shown in Theorem 3.4. in (Chouly, Hild, and Renard 2014), while the consistency of this method is dealt with
in Lemma 3.1. in (Chouly, Hild, and Renard 2014).

With regard to the numerical results that one can obtain with the latter model, we expect to improve their
accuracy and to reduce the occurrence of some physical phenomena that can occur due to the sudden change of the
valve state and that may disturb the results. However, when considering stress jumps in our interface condition
Proposition 4.1, the computational cost can also increase.
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Appendix A: The Nitsche-based method

Notation: We introduce the notation [ - |1 for the positive part of a € R, which is defined as follows

a, if a > 0,

[a]4+ =
0, otherwise,

and it verifies: a < [a]; and [a]ya = [a]3, for all @ € R.
Remark 4.3. Another useful property of [ - |+ that we will invoke later is the following:
([a]l+ — [b]4+)(a —b) > 0, for all a, b e R.
Indeed,

(la]+ — bl )(a —b) = [a].+a + [+ — [bl+a — [a]+b
(a2 + B3 — 2+ [al+
(la) - [o1)* > 0.

Y

Proposition 4.1. Let vy > 0. The conditions (4.1)-(4.3) on X are equivalents to write

_E E opua —Uu
o)l = 37 | Solontwpl = |

Proof. Let u smooth enough defined in 2 verifying (4.1)-(4.3). We can study the condition (4.2) in two cases:
If [or.(u, p)] = 0: by condition (4.1) we know that u,, > 0, which implies [~u,], = 0. Then,

0 == E [_un]Jr = [[U’ﬂ(uap)ﬂ'

h

If [on(u,p)] > 0: from condition (4.3) we can deduce u,, = 0. Then,

% { %[[on(u,p)]] L = [on(u,p)].

because v9 > 0.

On the other hand, let u smooth enough defined in 2 such that

Yo | h
o)) = 32 | Sloap] — | (46)

Since %[[on(u,p)]] — Uy, } > 0 and 9 > 0, we have [o,(u,p)] > 0, i.e., (4.2) holds. Thanks to this condition,
+

from equation (4.6), if [0, (u,p)] = 0 we can deduce that [—u,], = 0, which implies u, > 0. Moreover,
[on (u, p)]un = 0. So, (4.1) and (4.3) are verified.

h
If [o,(u,p)] > 0, from equation (4.6) we have [ 7[[0'71(11,}))]] — Up, } > 0. Hence,
0 +

h h h
o) = [ "l p)] = L = Lfou )] ~ v

from where we obtain w,, = 0, which implies that the conditions (4.1) and (4.3) are verified. O
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