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Introduction

En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dérivées partielles non
linéaires qui décrivent le mouvement des fluides incompressibles. Il est connu que le probleme d’unicité et
régularité de solutions globales est largement ouvert. Tout au long de ce dernier siecle, diverses techniques
ont été développées pour attaquer ce probleme, par exemple nous avons la théorie de régularité locale qui
consiste a supposer que la solution est localement bornée et donc on pourra obtenir un gain de régularité
de la solution. Autre exemple est la théorie de régularité partielle qu’on va détailler dans les paragraphes
suivants.

L’objectif de ce travail consiste a développer la théorie de régularité partielle sur les équations perturbées
des fluides magnéto-micropolaires. En effet, un fluide magnéto-micropolaire est un type de fluide avec
microstructures avec un champ magnétique qui est décrit par le systeme suivant

Vp+iVAG+ f—div[@®d+aed),

ou u est la vitesse du fluide, 4 le champ magnétique et & représente la vitesse angulaire de rotation des
particules du fluide. Pour plus de détails sur le systéme micropolaire, voir [6]. La perturbation @, est un
champ vectoriel a divergence nulle, qui appartient a Lgx(RS).

En plus, si on considére une solution d’énergie locale finie du systéme magnéto-micropolaire et un point
ou nous avons une controle de petitesse sur le gradient de 1, b et &, alors on peut déduire que cette solution
est holdérienne en temps et espace sur un petit voisinage. Cette derniere affirmation est précisément la
théorie de la régularité partielle, connu aussi comme e-régularité.

Afin d’obtenir ce résultat, on part d’une solution fagble (4, u,d,p) telle que pour un ensemble borné

Q, nous avons que 1,4, € LL2N L%H;(Q) et p € Lfm(Q) Ces deux hypotheses permettent d’obtenir
I'inégalité d’énergie locale qui est déduite dans la Section 1.4. Apres, avec cette inégalité et par un argument
inductif nous avons que la solution (4, @, d, p) appartient & certains espaces de Morrey. Et finalement, en
utilisant des résultats de régularité des équations paraboliques, on obtient que la solution est holdérienne
sur un petit voisinage.
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Abstract

We develop here a particular version of the partial regularity theory for the Magneto-Micropolar equa-
tions (MMP) where a perturbation term is added. These equations are used in some special cases, such
as in the study of the evolution of liquid cristals or polymers, where the classical Navier-Stokes equations
are not an accurate enough model. The incompressible Magneto-Micropolar system is composed of three
coupled equations: the first one is based in the Navier-Stokes system, the second one considers mainly the
magnetic field while the last equation introduces the microrotation field representing the angular velocity
of the rotation of the fluid particles. External forces are considered and a specific perturbation term is
added as it is quite useful in some applications.
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1 Introduction

Micropolar equations were introduced in 1966 by Eringen [6] and were first studied mathematically in 1997
by Galdi & Rionero [§]. Some very recent results concerning the regularity of the solution to this system
were obtained in [9) [I7] (see also the references there in). In this article we will consider a slightly more
general framework by introducing a magnetic field, some external forces and a perturbation term. We will
develop here the e-regularity criterion which was not, to the best of our knowledge, treated before for this
type of problem. The incompressible 3D-Magneto-Micropolar (MMP) system studied in this article is of the
following form

U =AU —(U-VYU+(B-V)B-Vp+iVAG+F —div(Uea+acl),
OB =AB—(U-V)B+ (B-V)U +G,
@ = AG + Vdiv(@) — & — (U - V)& + LV AT,

div(U) = div(F) = div(B) = div
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LU (0,2) = Up(x), B(0,z) = Bo(x), 3(0,2)=Co(z), = €R3and div(Uy) = div(By) = 0.

Here U denotes the fluid velocity field, B is the magnetic field, &J is the field of microrotation representing
the angular velocity of the rotation of the fluid particles and p is the scalar pressure. The quantities F' and
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G represent external forces (assumed divergence free) and they are given as well as the initial data ﬁo, By
and .

The perturbation @ which appears in the first equation above in the term div(ﬁ Qa+axU ) is a given
divergence free vector field and the presence of this particular type of perturbation is mainly inspired by
quantitative studies for the rate of possible blow-up for the Navier-Stokes equations (see in particular the
article [2]), see also the book [16l Section 12.6] for other interesting applications of this type of perturbation.
As pointed out in the Remark below, the assumptions over @ will have some impact in the general set
of hypotheses needed in order to perform our computations.

Now, in order to simplify the computations we introduce the Elsasser formulation, which was initially
used for the Magnetohydrodynamics equations (MHD) see [7]: indeed, by a suitable change of variables we
will obtain a more symmetric problem and if we define 4 = U+ B b=U — B f F+Gand§ g= F— G
then for all z € R3 we can write

It is worth to remark here that as long as we want to perform a generic study for the functions & and l;, this
previous system presents a simpler framework and thus, for the rest of the article we will focus ourselves in

this formulation. We remark also that since div(@) = div(b) = 0, then we can deduce from (1.1) that the
pressure p satisfies the equation

-, -,

2Ap = —div((b- V)@) — div((@ - V)b) — div(div((T +b) ® @+ a ® (@ +

<

)); (1.2)

=,

and we see from this expression that the pressure p is only determined by the couple (i, b) (recall that @ is
given) and we will see how to exploit this relationship later on.

We are interested here in studying some properties of (local) weak solutions of the system (1.1)) and in
order to fix the notation we consider now  a bounded subset of |0, +0o[xR? of the form

Q =Ja,b[xB(zg,r), with 0<a<b< 400, zo € R¥and 0 <7 < +o0. (1.3)

and we will say that (i, b,&) € L L2 N L?HL(Q) satisfies the MMP equations (1.1) in the weak sense if for
all @, ¢,1¢ € D(Q) such that div(F) = div(¢p) = 0, we have

Note that if (#, b, @) are solutions of the previous system, then due to the expression 1' there exists a
pressure p such that (1.1)) is fulfilled in D'.



Based in the classical Navier-Stokes problem, we can study at least two main regularity theories for
the MMP equations: the local regularity theory (also known as the Serrin criterion, see [I8], [21]) and the
e-regularity criterion (also known as the partial regularity theory, based in the seminal work of Caffarelli,
Kohn and Nirenberg [4], see also [10] and [IT}, 12} [13]).

As said previously, in this article we want to develop a particular version of the e-regularity criterion
for the system 1) and we need to impose some assumptions over the functions #, b and & as well as some
hypothesis over pressure p and from now on we will always assume that we have the following controls

i,b,& € LL2 N LAHN(Q),
peLL()NLFINQ),  aell,(Q), &eLXQ), (1.4)
Fige L),

where Q is a subset of R x R3 of the form (1.3)).

Remark 1.1 The conditions over i, l;, @ and f, g are rather classical in the setting of equations arising from
fluid dynamics. Note that the connection between the perturbation term d and the pressure p is explicitly
given in the relationship above, thus if we assume the local integrability condition a € L?’E(Q) (which
appears naturally in some recent results, see [2]), then following our computations we need to impose the

3 5
condition p € L, () N L} LL(Q) for the pressure. Observe that conditions of the form L{LL(Y) for the
pressure were also considered in the setting of the Navier-Stokes equations, see [22]. Finally note that the
(LS )10c information is usually asked in regularity theory, but in this work we only assume it for the variable

& (not for @ nor for b) and this will be crucial to study the term Vdiv(@) which appears in the micropolar
equation . See also Remark below, where alternative and more general assumptions are given for
the variable &.

Remark 1.2 We do not claim here any optimality on the space ngc(Q) related to the perturbation term
and we believe that it is perhaps possible to consider a slightly more general perturbation term by asking
a € L (Q) for m > 5, however, as far as we can see, this will introduce some quite difficult technical
problems and will probably induce some extra hypotheses over the pressure. On the other hand, if we assume
some additional information (say @ € L?HL(SY)), then we can relax the hypotheses on the pressure and work

3
only with p € L}, (Q).
Once this local framework is clear, we can now introduce a special class of weak solutions:

Definition 1.1 (Suitable solutions) Let (@, b,&,p) be a weak solution over Q) for the perturbed magneto-
micropolar equations which satisfies the local hypotheses stated above. We say that (4,b,d,p) is
a suitable solution if the distribution p given by the expression
po= =o(aP + o] + |8%) + A(@? + b + &%) — 20V @ @* + |V @ b + |V @ &%)
. | . .
—div <(|b|2 + 2p)ii + (|i]* + 2p)b + 5(!ﬂ|2 + |b|2)@) + 2Vdiv(@) - & — 2|@|?
- I o
+(VAD) - (u+b)+§(V/\(u+b)) “W+2(f+3) - (+b) (1.5)
+div((T+b) @d+a® (T+0b)) - (T+Db),
is a non-negative locally finite measure on Q.

Remark 1.3 It is worth noting here that the local hypotheses stated in guarantee that each one of the
terms in the previous expression is meaningful.



The main purpose of this article is to prove the following theorem which gives a gain of regularity in space
and time variables for suitable solutions.

Theorem 1.1 Let € be a subset of the form . Let (, 5,(25,])) be a weak solution on ) of the magneto-
micropolar equations . Assume that

1) (4, g,cfﬁ,p,f,g', d) satisfies the conditions ,

2) (i, g,d}',p) is suitable in the sense of Deﬁm'tion

3) we have the following local information on f and §: ]IQJFG M;i’m and 1gg € Mi’n for some indexes
TarTo > 5o with 0 < o < 15.
There exists a positive constant €* which depends only on 1, and T, such that, if for some (tg,xo) € €2, we
have
limsupl// Vi +|Veb?+|Veddds < ¢,
T J Jto—r2 to+r2[x B(zo,r)

r—0

then (@, b, &) is Holder reqular (in the time and space variables) of exponent o in a neighborhood of (to, o)
for some small o in the interval 0 < a < %

Some remarks are in order here.

e Following standard procedures it is possible to construct Leray-type weak solutions for the problem
(1.1). However we are only interested here to study the local behavior (for some points of the subset
Q) of the solutions of such equations.

3
e The hypothesis over the pressure p (i.e. p € L;,(€2)) is useful to give a sense to the quantities div(p)

and div(pl;) that are present in the definition of the measure p given in 1) It is worth noting that
in the setting of the classical Navier-Stokes equation this hypothesis can be removed and a generic
pressure p € D’ can be considered. See [5] for the details.

e Some additional hypothesis over the external forces f and g are stated in Morrey spaces. We will see
in the computations below that this functional framework is particularly well suited to the study of
the regularity for this type of equations.

The plan of the article is the following: in Section [2] we recall some notation and useful facts about
our framework. In Section [3| we establish a first gain of regularity under some particular hypotheses stated
in terms of Morrey spaces. The rest of the article (Sections and @ is devoted to the proof of these
hypotheses.

2 Notation and functional spaces
For 1 < p,q < +oo we characterize the Lebesgue space LP(]0,+oo[, L(R?)) as the set of measurable

1
- o too P
functions f : [0, +00[xR? — R3 such that 1fllpre = </ | f (¢, -)||qut> < 400 with the usual modi-
0

fications when p = 400 or ¢ = +00. We also define the space LP([0, +o0], H*(R3)) with 1 < p < 400 and

S =

— +oo — .
s > 0 as the set of distributions such that ||f||LtpHS = </ Ilf (¢, ~)||Hsdt> < +o0o where H*(R?) is the

0
usual homogeneous Sobolev space. See the books [15] and [16] for details about these functional spaces.

We recall now the notions of parabolic Holder and Morrey spaces and for this we need first to consider
the homogeneous space (R x R, d, ;) where d is the parabolic (quasi)distance given by d((t,z), (s,y)) =



|t — s|% + |z — y| and where p is the usual Lebesgue measure du = dtdz. Associated to this distance, we
define homogeneous (parabolic) Hélder spaces C%(R x R3 R?) where 0 < o < 1 by the usual condition:

. G(t,x) — J(s,y
1Bl = sup APLDZPEW (2.1)

(tax)#(5.) (|t — s[5 4o — y|)

and this formula studies Hélder regularity in both time and space variables. Now, for 1 < p < ¢ < +0o0,
parabolic Morrey spaces M?'? are defined as the set of measurable functions @ : R x R?® — R3 that belong
to the space (LY ,)ioc Such that |8l azpa < 400 where

1Pl ppa = sup ( / / tm|pdxdt> : (2.2)
' 20 ER3 tHER,r>0 t—to|<r? (zo,r

These spaces are generalization of usual Lebesgue spaces, note in particular that we have ./\/lp — f,x' See
[1] for more details on these spaces. We refer the readers to the book [16] for a general theory concerning
the Morrey spaces and Holder continuity applied to the analysis of PDEs from fluid mechanics. Here are
some useful fact concerning Morrey spaces:

Lemma 2.1 (Holder inequalities)

1) If f,7: R x R¥ — R3 are two functions such that f € MR x R3) and § € LS (R x R3), then for
all 1 < p < q < +o0 we have || f - Gl ppa < Cll fll a7 25, -

2) If f, R x R? — R3 are two functions that belong to the space ./\/lpq(R x R3) then we have the
inequality | f - gl 23 < ClF N pepa 1 aeps-

t,x

3) Moregenemlly, let 1 <pg<qg<+4+00,1<p; <q1 <+00 and 1 < py < gg < +00. [f +172_p10
cmd —|— - , then for two measurable functions f G :RxR3 — R3 such that f € ./\/lpl’q1 and g €

./\/lpz’qQ, we have the following Hélder inequality in Morrey spaces || f - Gl pgro-a0 < Hf”Mfl’“ 1l pgp2:92

Lemma 2.2 (Localization) Let Q be a bounded set of R x R3. If we have 1 < pg < p1, 1 <po<qo < q1 <
+00 and if the function f: R x R3 — R3 belongs to the space MR x R3) then we have the following

localization property H]leHMiog;qO < CH]IQfHngl < C’HfHMf}z,qL

3 A parabolic gain of regularity: the first step

The proof of Theorem is essentially based in the following regularity result for parabolic equations which
is stated here in the framework of (parabolic) Morrey spaces:

Proposition 3.1 For 5, T [0, +00[xR3 — R3 two wvector fields, we consider the following equation
87 = AT+ ® + o(D)V,
(3.1)
(0,2) =0,

where o is a smooth function on R\ {0}, homogeneous of ezponenﬂ 1 and o(D) is the Fourier multiplier
operator of symbol o (acting component-wise).

Lie. o(A) = Ao (€) for all A > 0.



Assume that we have & € MG™ and U e MPST with 1 < po < qo < q1 where we have &= = 232,

q0
q% = 1_Ta, and 0 < a < 1. Then the function U equal to 0 for t <0 and to

(t,z) = /t et (B(s,-) + o(D)U(s,-))ds fort >0,
0

is a solution of equation that is Holderian of exponent « in the sense of .

See [16], Proposition 13.4] for a proof of this result, see also [14].

We will apply this proposition to our system but, as we only assume the controls over a
subset €2 of the form , we need to localize our framework and for this we first fix the point (o, zo) €
considered in the hypotheses of Theorem [I.1] and then for a small enough radius 0 < v < 1, we consider the
parabolic ball

Q:(to, 7o) =]to — t%, to + t*[x B(x0, v), (3.2)

such that Qs(tg, xg) C Q (these parabolic balls will be denoted by @, for simplicity). Note here that since
by we have Q =]a, b[x B(zo,r) with 0 < a < b < +00 and zy € R3, then the condition Qs.(to, o) C Q
guarantees the fact that ¢y — t2 > 0 and thus the time interval Jtq — t2, ¢ + t?[ does not contain the origin:
this condition is important in order to obtain a system of the form for which the initial data is such
that ¥(0,2) = 0. Now, we construct an auxiliary non-negative function ¢ : R x R®> — R such that
¢ € C°(R x R?), supp(¢) C] — 15, 15[xB(0, }) and such that ¢ =1 on ] — g4, &z[xB(0, §) and for a fixed
R > 0 such that

iR <, (3.3)

t—to x—xo

we define the localizing function n by n(t,x) = gi)( 5 TR ) (remark that we have supp n C Qr) and
we define the vector U = n(d + b+ @). As we can observe, we have the identity U=1aT+b+d over a
small neighborhood of the point (to,zp) and the support of the variable U is contained in the parabolic
ball Qr(to, o) C Q«(to,xo) C Q. Moreover, this localization forces the property Z](O, ) = 0, we can thus
consider the following problem:

U = AU + B+ VS — div(B),

- (3.4)
U, z) =0,
where the vector B is given by
B = (8tn—A77)(ﬁ+5+cU)—22(6m)(82-(ﬁ+5+c3))—n<(5-ﬁ)ﬁ+(ﬁ-ﬁ)5 (3.5)
i=1
- div R A L - -
+ (Vn) (_A)dw(b®u+u®b+(u+b)®a+a®(u+ )) +n(V Ad) +n(f+9)
. N 1 - 1o .
+ <(ﬁ+b)®d‘+d®(ﬁ+ )) -Vn—(vn)dzv(w)—n<w+2((*+ ) V)cU—l—ZV/\(fH— )>,
the scalar function 3 is given by
S div . (> L, - = L=
B:ndw(w)—n(_A)dw(b®u+u®b—|—(u+b)®a+a®(u+b)), (3.6)
and the tensor B is given by
B=n@® (i+b)+ (d+b) ®a). (3.7)



Indeed, in order to verify that we have the equation (3.4)) with the terms (3.5)), (3.6) and (3.7) above, we
compute 04 and we have

We use now the identity

3
NA(T+b+@) = AW +b+@) — A +b+@) —2> (9m) (@@ + b+ @)

to obtain the expression

which is the first step to obtain an equation of the form (3.4). We need now to organize the expression above
in a suitable manner and for this we need to rewrite three particular terms, indeed, since we have the identities
n(Vp) = V(np) = (Vn)p, ndiv(@®d) = div(n(@®i)) — (@®d)-Vn and nVdiv(@) = V(ndiv(d)) — (Vn)div(J),
we obtain

o = AL?+(8m—An>(ﬁ+5+w>—22(81-17)(@(%5%))—n((l?ﬁ)m(ﬁﬁﬂ?)+2(ﬁn>p

We recall now that, from the expression (1.2) and using the fact that div(@) = div(b) = 0, we have the

-,

following identity for the pressure p = %% div (5@ G+a@b+ (M+b)@i+a® (i+ )) so we can finally

2(=4)

9



write

(=4)
+ ((ﬁ+b)®a+6®(ﬁ+ )>-Vn—(Vn)div(aU)—n(o?—i—2((11’—|—b) V)LU—|—4V/\(U—H))>
- div - = - L ~
+ V(ndw(w)n(_A)dw(b®u+u®b+(u+b)®a+a®(u+b))>

which is 1) as announced with the terms g, £ and B given in 1) 1) and 1) respectively.

Once we have deduce the equation (3.4), in order to obtain the conclusion of the Theorem it is
enough by Lemma [3.1] to verify that we have

Be M'Z?Q;qo and B,B ¢ ME};“,

where 1 < pg < qo < q1 with q% = 2_?0‘, CILI = 1_?0‘ and 0 < a < 1—12 In the next proposition we will prove

that under some extra hypothesis over the quantities 1, E,LU (that will be proven in the next sections) the
terms B, § and B belong to the suitable Morrey spaces mentioned above.

Proposition 3.2 Let R{, Ry be positive numbers such that
0<R< Ry <Ry <4R, (3.9)

where R is fized by the condition above. Let (, I;,(D',p) be a suitable solution for the equations MMP
over Q). Assume that we have the following pointS'

1) L1gs, @, Lo, b, 1gp, wEM?TO for B> 70> 2 (recall that 0 < o < &),

2) 1o, V @i, 19, V@b, 1o, Voo € Myp with L =L 4+ 1

12

8) 1Qp,div(d) € M5’5,

4) 1oy, d, ]lQR2b, 1g,,w € M7, with § > 1 is such that % % <1 =,

5) For all 1 <i,j <3 we have

:0;

]lQR2 (—A) bia]) Mt x

0;0;
( ) Mtx? ]]‘QR ( — (uZaJ) Mtx? and ]lQR

20,
A) 2(-4)

with po < p < +00 and qp < q1 < g < +00.
Ta — 10 Tb 5
6) ]lQR fE/\/lt7 ]lQngEMtfz for 7o, 76 > 5722
If moreover a € Lt,x(Q): then we have that the term B defined in belongs to the Morrey space ./\/lfgt’qo

with 1 < pg < g and % < qo < 3 where q% = Q_Ta with 0 < a < % and the terms 8,B defined in and

, respectively, belong to the Morrey space /\/lff’z’ql with qil = PTO‘

10



Remark 3.1 Note that, since qo = %, T > % and % = % —l—% then we easily obtain qo < 7 < 7.
Moreover, since q1 = —2— we have q; < Tg < 171 Remark also that since 0 < a < % we can set 1—21 > 19 and

1 11—«
5 > T1-

Note that the conclusion of this proposition is exactly the input needed to apply Proposition from which
we will obtain the wished gain of regularity.

Proof of the Proposition In order to prove this proposition, and for the time being, let us take
for granted the assumptions 1) - 6) above and let us prove that the quantities B, 5 and B belong to the
announced Morrey spaces.

e For 5. Wewrite,f0r1<po§gand%<qo<3whereq%:%TaWith0<a<%:

3
1Bl o < 1@ — An)(@+ 5+ @) om0 +23 1@m)(@i(it + 5+ E))] o
s T ~— y L Z:1 y L

(1) (2)

+ n((z?ﬁ)mw 6)5)‘ (3.10)
M
(3)
- d - - L
+ ||( 17)( w dw(b®u+u®b—|—(u+b)®a+a®(u+b))>
(—A) M'ZO q0
()
+ (Y AG) | pgpoo + [In(F + §)||Mgo,qo+H<(U+E)®a+a®(a+*)> ﬁn' .
= a Mo
5 6
(5) (6) o
—d 1 s = ]_ = =,
+  [[(Vn)div(@)|| \poso +{|1 | &G+ (@4 D) - V)E + =V A (i + D)
t,x 2 4 Mp() a0

~~

(®)

For the first term of 1} since we have 1g, @, 1gg, 5, Lgg W€ M?;O for 7y > 5 and since we have

the support property supp (0yn — An) C Qr, it follows by Lemma (as we have 1 < py < % < 3 and
o < 3 < T()) that

@i = An)(@+ B+ D)l o0 < Cllan (@ +5+3) | pqguso < [Lan, (@+5+3) i <+,

where we used the information available in the point 1) of the Proposition

For the second term of (3.10]), using Holder’s inequality in Morrey spaces (see the third point of Lemma
we have [[(90) (D(@+5+@)) [ ygro0 < Lo dinll yypr.|Londi(i+b+ @) g2 where 1+ < o

and q% + q% = L. Since % < qo = % < 3, we have that g2 can be chosen such that ¢o < 7 = 5‘1720

q0
and thus using Lemma (recall that R < Rp) and the point 2) of Proposition we obtain
1(0im) (0 (w + b+ Q)”Mfgﬂo < COllgg, V& (i+b+ @’)HMi,;l < +o0.

For the term (3) of 1} since 1 < pg < % and % < qo < 3, by Lemma (recall that R < Ry < Ry),
by the Holder inequalities in Morrey spaces and using the information of points 2)-4), we have:

H” (@-ya+ @ V) Hw%qo <C HnQR (@-ya+ @ V) HM (3.11)

< O (Iqu,Bllygps Ian, ¥ @l s + Lo, @l ygpsllLan, V @ Bl o ) < +o0,

11



where we have + + L < L but since + = 232 and L = L 4 1 the previous conditions is equivalent
0 T = do 90 5 T 10 ' 5
to % + % < 1_T°‘, which is exactly the condition stated in the point 4) of the Proposition

For the term (4) of (3.10)), due to the symmetry of the information available in the point 5) of the
Proposition it is enough to study the following term for 1 < 4,5 < 3 and due to the support
properties of the function 7, we obtain

‘ 0;0;

(=4)
where we applied Lemma [2.2] with pg < p and qo < q.

0:9;
*(=4)

0;0;

) (-4)

< 400,
Mg

Po-90
M

aiij CH]IQR

CH]lQR

azbj albj

P0-90
M

For the terms (5), (8 ) and (6) of (3.10)) can be treated in the same manner, indeed, by the assumption
2) of Proposition (3.2 we have

[1(FA8) |y < Clllar, Yo ypm <+000  [(F)div(@)] e < Cllay, V& o < +o0,

where we used Lemma with pg < g < 2 and qp < 71 (see Remark . By essentially the same
arguments, using the point 6) of Proposition (and since pg < g < 7 and 74,7y > 5°- = (o) W

have [|n(f + Dl pgpos0 < C(HHQRIfII .t ||]1Q319|| ) < Foo.

z ,z

For the term (7) of (3.10), as we have the same information over @ and b we only need to study (for
1 <i,j,k < 3) the terms of the form [|u;a;0n|| o0 and we have
t,x

lwiajonll oo < CllLaruiajlygpom < CllLQn,will vz 1Tan, asll y2m

A

CllQp,uill g0 LR, a5l poe < o0,

Where we used the Holder 1nequaht in Morrey spaces, Lemma - with 2 < 6 and 7 < 6 by Remark
, the point /) of Proposition and the fact that /\/l LGJ

For the term (9) of (3.10) we easily deduce |[nd]| \poa0 < ClLgy,, 5.r0 < 400 (by Lemma [2.2] since
t,x

Wl g2

po < 3 and qo < 79). Due to the symmetry of the information avallable for the terms 4, b and & and

following the same ideas displayed in (3.11)), we have ||n((@ + b) - V)&|| , ;pr0.90 < +o00. Finally, since by
t,x

t,x
by Lemmawe obtain [[nV A (i +B)|| yposo < C([Tgn, VAT 2 +[Tan, VA em) < +00. We
s T t,x t,x

thus have:

the point 3) of Propositionwe have 1¢,,, VAT and 1gg, VAL € M>™ | and since po < 2 and qo < 71,

- 1= -
Hn <¢U+ (@+b)-V)d+ -V A (*+b))H < +00.
4 Mpo,qo
For . By the expression 1) we have, for 1 < pg < g and q; = & with 0 < a < %,

divdiv (—» - - -

181 \gpo-ar < [[ndiv(@D)]| pyrowar + |17 (0@ U+ URb+ (0 +b)@d+d® (U + )) . (3.12)
t,x t,x (—A) MP() q1

6 12
Since by the point 8) of Proposition we have 1¢, div(&) € M;,° and since po <8 £ and q; < %
(see Remark [3.1)), then, by Lemma [2.2[we have for the first term fo the right-hand side above:

Indiv (@)l o < Cllgm, div(@)| ypon < Clllqy, din(@)]

12



For the second term of the right-hand side of (3.12)), we use the point 5) of Proposition and

due(9 go the symmetry of the information available, it is enough to study, for 1 < 4,5 < 3 the term
”Uﬁ(uibj)HMgo,ql, and we write

0,0,
<C H]IQRQ(_A)(Uibj)

0,0,
<C H]IQRQ(_A)(Uibj)

0;0;
H L) < +00,

A (uib;)

‘ P0,q1 ’ P0o-91 ’ p.q
M M My

where we applied Lemma [2.2] with pg < p and q1 < q.

e For B. By 1D we need to study the quantity |[B|| , po.s1 = [[n(a@® (T+b)+ (T+b) ®@)|| \4p0-m1 , for the
t,x t,x
sake of simplicity we only study ||n@ @ || ,,eo.s1 as the other terms can be treated in the same manner.
t,x
We thus have

73 ® il ygpom < Cllar, @@l g, < Clllon,@lpzs Man, Tl yes,

t,x

where we used the Hoélder inequalities in Morrey spaces with q% = % + %. Since by the point 4) of

Proposition the index 0 > 1 can be chosen big enough such that ¢’ < 6, thus we have by Lemma
Ind ﬁHM;’&’“l < C||]1QR2 C_i”/\/lf;f H]IQRQ ﬁ”mfg < 400,

. 6,6
since M, = L?,a:'

We have proven that B € ./\/lﬁf’om’qO and 3,B € /\/l';?m’ql where 1 < pg < qo < q1 with q% =2 1 _ l-a g
0<a< %, and thus the proof of Proposition is finished. |

4 Local Energy Inequality and Useful estimates

In order to obtain some of the assumptions stated in Proposition [3.2] we will exploit the information given
by the local energy estimate that can be deduced from the structure of the equation . We know from
the work of Scheffer [19, 20] that the use of a special test function is particularly helpful to obtain good
estimates. We will use the following function:

Lemma 4.1 Let 0 < p <1 and 0 <r <. Let ¢ € C3°(R x R3) be defined by the formula

s—t y—=x s—1
¢(S,y):r2w< p2 ) P) >9( 2 )9(4T2+t5)(x_y)7 0<r<g§15 (41)

where w € C°(R x R3) is non-negative function supported on the parabolic ball Q1(0,0) and is equal to 1 on
Q%(0,0) (see formula ), 0 is a non-negative smooth function such that § =1 on ] — o0, 1] and § =0 on

12, +00[ and g.(-) is the usual heat kernel. Then, we have the following points

1) the function ¢ is a bounded non-negative function, and its support is contained in the parabolic ball Q,,,
and for all (s,y) € Qr(t,z) we have the lower bound ¢ > %

2) for all (s,y) € Q,(t,x) with 0 < s < t+r? we have ¢(s,y) < %,
8) for all (s,y) € Q,(t,x) with 0 < s <t +r? we have ﬁqS(s,y) < 7%,
(0, + A)g(s,y)| < C.

See the book [16, Section 13.9] for a proof of this lemma. See also the Appendix B of [10].

4) moreover, for all (s,y) € Q,(t,x) with 0 < s < t+r? we have

Now, with the help of this function we have the local energy inequality:

13



Proposition 4.1 Let (, 5,(15,p) be a weak solution of the MMP equation over a subset ) of the form
and assume that ¢ is the function given in . Then the local energy inequality for the MMP equation
s given by

L+ R+ e <2 [ [ (9@ + 90 + 19 @ a)el(s,)duds
<T

+2/ / [(div(d (s,z)dzds + 2/ / (s,z)dxds
<T R3 <T ]Rd

< /<T/ (Orp + A)(|)* + |b|2 + &2 (s, z)dxds + /<T /RS (| + 2p) §¢}(s,x)dxds (4.2)
/ / ’b|2+2p (s, dmds+/ V/\w U+b)](8,12)dxd5
<7 JR? <T R3
+2/<T /R3 f (ptl) + g - (be)](s x dxds+2/<T /R3 [div (& ng) )](S,x)‘dxds

+/<T /RS [ (¢(u+b))] 5, ) dxds—k/q /RS{ V) (6(ii + b)) - ](s z)dxds

5 P8 Folls, ads + 5 | _ [ A G+ D) (69 s,

Proof. In order to deduce the local energy inequality announced, we multiply the three first equations of
the system 1) by o, ¢b and ¢ respectively and we integrate in the space variable to obtain

@i+ (¢i0)dz = / <Aﬁ(5-€)aﬁp+§6m+f %dw((u+b)®c‘i+a®(ﬁ ))> (6i0)
R3 R3

aib - (pb)dz = / <A6-(ﬁﬁ)6—ﬁp+;ﬁm+g—dw((mz?)@am@(m*))) (¢b)dz,
R3 R3

0 - (6F)dz = / (Amﬁdz'v@)—a—1((ﬁ+*)-6)w+16A(a+3> - (6@)da
R3 R3 2 4

Recalling that we have the generic identity 9;¢ - (¢¢) = %3,5(]6]2(;5) — %5’]28@ as well as the formulas
1 = 2. 7 = ]_ - —

/ AE-(qﬁé)dmz/ ]5]2A¢dx—/ IV @ & ¢dx and/ [(8~V)d]-(¢d)da::—/ |d|*¢ - Vdx which

R3 2 Jrs R3 R3 2 Jps

are valid for any (smooth) divergence free vector field & we obtain after some integration by parts and after
an integration in the time variable:

/[(]ﬁ\Q—i—\52+\w|2)¢](r,x)da:+2/ /[(WM\MW@BMWwy?)(ﬁ](s,x)dms
R3 <r JR3

+2/ / [(div(&))%¢) (s, x dmds+2/ / (s, z)dxds
s<t JR3 <7 JR3

< [ [@w A0yt + i + (5. s + / / (1 + 2p)B - F](s, ) dads

<7 JR3 <7 JR3

/ / (162 + 2p) @ (s,x dmds+/ (V A@) - [¢(@ + b)|(s, x)dxds
<r JR3 <r R3

+2 /<T /R3 G- (o)) (s, z)dzds — 2/<T /R3 [div(B) (Ve - D)|(s, z)dxds

/ / dzv +h)Ra+a® (i —1—5)) [6(@ + b)) (s, z)dads
<r JR3
/<T /R3 \G12(T + b) - V| (s, 2)dads + = /<T /]R’ |- (¢&) (s, x)dzds,

14



since , band @ are divergence free vector fields, we easily see that the quantity

N
U
-~
[

-
]
=
®
ST
4
S
®
=
+
=

can be rewritten as

for the last line above we will use the identity / [(Z-V)d] - (¢p&)dx = — / [(Z- V) ()] - d dz which is valid
R3 R3
for divergence free vector fields, and using the bilinear structure of the terms, we have

/R3 div (i +5) ©d+ae (@+15) (6 +Dlde = /R [[(a- V(@ +B)] - (6(@ + *))}dx

and we finally obtain

/[(a|2+|B|2+|@|2)¢](T,x)d:c+z/ /[(|ﬁ®a|2+|ﬁ®52+|ﬁ®w|2)¢}<s,x)dxds
R3 <7 JR3

+2/ / [(div(3))2¢](s, = d:cds+2/ / (s,z)dxds
s<t JR3 <r JR3

< [ ] @0+ AR + B + 5] s adods + / / (12 + 20)B - V)5, 2)dds
<7 JR3 <r JR3
/ / [(1b]? + 2p)a (s,x)dxds + / (VA®) @+ b))(s, z)dzds
<r JR3 <r R3
+2 /<T /R3 F- (o) + G- (b)](s,x dxds+2/<T /R3 [div(@)(Ve - )](s,x)’ dxds
—I-/ / [ b)] - (T + l;))] (s,x)| dxds + [ +b)- ﬁ (p(a + l;)) . (1’] (s, z)dxds
<7 JR3
/ / ) - V(s z)dxds + = / [V A (@ +b)] - (¢&)(s, x)dxds,
<7 JR3 <7 R3
and this ends the proof of Proposition |

Once we have obtained this inequality, we will make use of the properties of the test function ¢ given in
Lemma[41]in order to obtain suitable controls that will be used in the next section. Indeed, by introducing
some scaled quantities it would be possible to exploit the previous inequality to deduce by an inductive
argument some stability of this scaled quantities in terms of Morrey spaces.

In this sense we have the following definition.

Definition 4.1 (Scaled Quantities) Let v > 0. For all (t,x) € R x R3, we consider the following scaled
functions:

iy (t,2) = vid(v’t,yz), by(t,z) = yb(v*t,yz), &(t, ) = v&(v*t, vz)
py(t,2) = Vp(Vt ),  fr(tx) = F(YPtyr) and  §,(t,x) = Gt yT).
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Now we define the following invariant quantities with respect of the previous scaling:

1 1 _
Ata)= s o / (s, y)|2dy ar(t,z) = / / ¥ @ (s, ) 2dyds
t—r2<s<t+r2 T J B(z,r) r Qr(t,x)
1 . 1 .
Bi(ta)= swp - / B(s, ) Pdy Bo(t,a) = - / / ¥ @ B(s, y)|2dyds
t—r2<s<t+r2 T JB(z,r) r r(t,x)
1 . 1 - N
Ctio)= sup L / (s, y)2dy () = © / / ¥ @ @(s, y) Pdyds
t—r2<s<t+r2 T JB(z,r) r(t,z)

#(t,x) 2// i(s,y)|3dyds +(t, ) 2// sygdyds
T T r T
Ur(t7x) = 7"72 //T ta) \Q(s,y)]gdyds
// \div(@D) (s, y)|2dyds (7)== // 3(s,y)|*dyds
'r t$ r r
Fita) = [[ (s P ayas G.(t.0) =5 [[ gt dyds
Qr(t,x) rT r(t,z)
- (t,x) - // p(s,y) 2dyds
T T tac

Remark 4.1 From the definition above we easily deduce the identities (T.Ar)% = [l psor2(q,) (rozr)% =
2 -
HﬁHL?H;(QT) and r3PF = IIpll 3 and similar identities for the variables b and &.
t,x T

As announced, we will use these quantities to deduce two main estimates, which are stated in Proposition
and Proposition In the next lemma we prove some useful relationships between some of the previous
terms given above.

Lemma 4.2 For any small 0 < r < 1 such that Q, C 2 and under the general hypotheses stated in ,
there exists an absolut constant C, such that

to\»—A

M <CA+a,)?, G <CB+B)2 and of <CC + )2

Proof. We only detail the proof of the first estimate as the two others follow the same arguments. Thus,
1

by the expression of Ar given in the Definition and Holder’s inequality, we have the estimate \;?
2 ||uHL3 Q) < c-L 7 ||| To . Now, using an interpolation inequality we have the control || (¢,

,Z r

')”L%(BT.) <

|| (¢, )H 12(B,) || (¢, )H 76(p,) and applying the Holder inequality with respect to the time variable, we obtain

2

—

|| For the L?LS norm of @, we use the classical Gagliardo-Nirenberg

I 2 < Nl oo 2 QT)HUHLzLe @)

inequality (see [3]) to obtain [|@| 216, < C (Hﬁ ® 1l 2r2(q,) + "ﬁ‘|L§>oL%(QT)) and using Young’s inequal-

ities we have

3 -
Il < Ol 120, (uvmnw +Hﬁuzm@))sc(uuuwmwvauLng(QH).

Noting that [|@]|zer2(0,) = T?Ar and |V ® Ul 2120, = =2 ar, we finally obtain )\3 < C(A, + ar)% and
Lemma 4.2 is proven. [ |
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4.1 A first estimate

We give now the first general inequality that bounds all the terms given in the Definition

Proposition 4.2 (First Estimate) Under the hypotheses of Theorem for 0 <r < £ <1, we have

r2 2 1
Ar+ By + Cp + ap + Br + e + W + 12, <C S(A, + B, +C)+C%a3(,4p+6p+ﬁp)

p 1 p? 2 1 p? 11 1
—2[3,)2(8 + A, +ozp)+C—73p3(A +ap)5+077,?(.,43+8p2)

NI

2
+ C%Pﬁ (B, + B,)% +

e 1 . 1
+ 0L (A, ant + 6P, + 50 ) + CoW Bl (4.3
1 N\ (PE p\, L 1
+ O (Ap+ap)? +(By + 5))2 2 (a5 +85) x pellaliLs (o)

2 1 1 2 1
P 3 3 1 1 p 12
+ i ((Ap+ )t + (B, + %) + (0, + 8,)3C5.

Remark 4.2 Note that the hypothesis & € Lf‘;c(ﬂ) s crucial at this step. It can be relaxed assuming for
ezample & € LYLL(Q) with %) -1- % — % > 0 where 2= < 19 < & and 0 < a < 15 is the exponent of the
expected Hélder regularity.

Proof. It is worth noting here that the structure of this estimate follows closely the one of the local energy

inequality given in (4.2)) and in order to deduce this control, we will start estimating the terms of the
right-hand side of (4.2)).

e Indeed, by the point 4) of Lemma and using the quantities introduced in Definition we have,
for the first term of the right-hand side of (4.2)):

te? 2 2 tho? 2 2
/ (006 + AG) ([P + B2 + 3] )d:cds</ / (2 + B2 + |@[2)dads
t B,

7"2

p2(A + B, +Cp).

e For the second term of the right-hand side of (4.2]) we have:

t+p? oL t+p? oL t+p? oo
/ / [(|@)? + 2p)b - V] dxds</ / 2(b- Vo) dxds—i—C/ / p|[b||V p|dxds, (4.4)
t B, t B, t—p2 JB,

and we will study the two previous terms separately. For the first term of the right-hand side above
we introduce the quantity (|@|?), as the average

—»2
= a(t, d 4.5
()0 = (Bl fo, 1E 0 (45)

and since b is divergence free, for any test function ¢ compactly supported within B(x, p), we have

/ (]6\2)1;(5‘ V)dz = 0. Then, since the test function ¢ is supported in the parabolic ball Q, (by
B(z,p

Lemma and using Holder’s inequality, it follows that

/tt+p/ Eﬁqbdxds—/tw/ |@? — (|@?),)(b - V)¢dads

t+p2 ) t+p? ) ) -
[ e ey doas < / I = (1)l . 5, Vs,
P
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where we used the fact that |Vl p~ < r% (by the point 3) of Lemma . Thus, by the Poincaré
inequality and using the Holder inequality (in space and time variable), we obtain
C t+p? 5 . C t+p?
S<1n p IV ([i(s, )Pz, 165, ')||L3(Bp)d5§ 2, 1]l 25, IV @ @l 25, 165, )| L3 (5, ds

c, . >
< sldlcerz IV @iz, q,) IBlzs @, <C A2apCp,

; - 1
since by the Deﬁnitionwe have @l zs12(0,) < Cp3 il oo r2(q,) < C’pE.A%, Vel g, < p%aﬁ
- 1 ”
and [0l 3 (q,) < p%CS. Using the second inequality of the Lemma (4.2 we obtain

N

t+p p 1 p 1
/ / V)odrds < O3 ARad (B, +5,)% < CL0F (A, + By + By). (4.6)
¢ B,
and this control ends the study of the first term of the right-hand side of (4.8]). For the second term

of (4.8), we simply write (using the properties of the function ¢ given in Lemma as well as the
quantities given in Definition and Lemma |4.2)):

t+p2 C a2 51 p*. 2 1
/t / Pl oldzds < Slpl, 3 o Bl < S POGIGH < CLPI(B, + 6,5 (47)
With estimates (4.6) and (4.7)), coming back to (4.4) we finally obtain
ot 2 P 3 p* 2 1
/ / (1 +2)8 - Volduds < CL703 (Ap + B, + B,) + CLPI (B, +B,)5 (438)
t B,

The third term of (4.2)) can be treated in a completely symmetric manner and we have the estimate:
tet 2 P> 4 P> 2 1
/t /B (B2 + 2p)it- Foldads < CL 63 (By + Ay + ) + CL3P3 (A, + ).
P

For the fourth term of (4.2) we have
t+p? . t+p? ., t+p? .,
/ (V AD) - (67 + B)]dads = / / (¥ A&) - (¢i0)dads + / / (VA D) - (¢h)dads,
t—p? JB, t B, B,

and due to the symmetry of the information available it is enough to study one of the terms above.
We thus write, by the properties of the function ¢ given in Lemma

t?t C, - C -
/t | @ na)- s < 198Gl 0 00, < TI9 €3l 001z, @
P
C C 1 1 p i3
< ;I|V®wIIL2 @ PNl ez, < (1) 2p(pAp)2 = C7 7 Ap,

where we used the fact that ||@l|;2 (q,) < Cplltl|Lsr2(q,) and the DeﬁnitionH Thus, with the second
term involving (V A @) - (¢b) we finally obtain the estimate:

t+p? - p? L1 1
/ / (VA®) - [¢(if + b)|dads < 077,? (A2 +B3). (4.9)
t B,



For the term related with f, g in 1' we have by the properties of the function ¢ given in Lemma

t+p?

t+p? .
/ / 7 (o) + - (9)deds < € / Fllal + 19118l deds
t B,

*HfH 1 HUH A+ gl 10 H H
0o Qo) L% (Qp) L (Q 5@
Recalling the control ||| 10 < C([[ullpser2(q,) + IV @ uHLz ,)) and since we have the identities
t,x P
- [T P S 4 "
il 20,) = 0243 9 1l 0,y = p25h, P35 = 7] g and pGpTs = I, we
o L (Qp) (Qp)

obtain:

e
10

/fp /B (6T) + 7 (d)b)]dxds<0’0< FIO (A, +a,)b +G9(B +Bp)5>.

For the sixth term of (4.2) we have, by the properties of the function ¢ given in Lemma by the
Holder inequalities and by the Definition

t+p” . C 15
/t | Jiv@)(Fo- )6, )| dwds < Sdiv@)1z 0191120 < 3 PW) 2% 151250
P

from which we obtair%
t+p? N p3 1
/ / |div(@5)(& - V)gldrds < C5Wi |G| L ()
t B, r b
For the seventh term of (4.2]) we need to study the following quantity

/ N /
t B,

By symmetry of the available information over the vector fields # and 5, it is enough to consider the

@)@+ ) (00 + ) (5.2

dzds. (4.10)

t+p?
term / qﬁu)‘ dxds and we write, by the Holder inequalities:
t+p?
L. /B (@ 9y - (6m)| deds < g ) I¥ @120 722 (@)
P
. ~ S 1 = : "
but since we have ||a||ng(Qp) < llallzs () (pap)2 =V ®“‘|L§E(Qp) and since we have ||u||L§,m(Qp) =

1
p%)\g < C’pg(.Ap + ozp)% (by Lemma [4.2)) we obtain:

t+p = 1 1 1
/ / (@~ V)il - (90)| duds < OLab (A, + )bt (o
¢ B,

Performing the same computations for the remaining terms of (4.10) we have

t+p? 3 >

/ / dxds < C’ ( 2+ B5)
t By

1 1 1.

X ((-Ap +ap)2 + (B, + By) 2>p6 HaHL?,x(Q)

@ )+ B (6 + ) (52

2Note that for the term &, a LP LZ-norm can be used here instead of the L{° L-norm. See Remarks and
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t+p? .
e The eighth term of . is / / [ i+b)- )(gzb( +)) - } (s,z)dzds and again, it is enough to
t B,

study the following generic term which contains the term (U . ﬁ) (qbﬂ') - a and we have

t+p . - —
L[| 9 -a] s < 11 0, (990231, 0 + 92,9 © 2 c0,) W0,
P

c .. c, .
<”UHL3 (Qp) ﬁPHUHLng(Q,,)+7”UHL31{;(QP HCLHLG (Qp)

2 1 (C 1 C 1\ L 0> p 1 11,
P+ 0 (Stoan)t + S o) ) il o) < € (5 + ) o (ot ) ol o

where we used the properties of the function ¢ given in Lemma the Definition and the Lemma,
Thus, considering the remaining terms we can write

/tw /B{ (@ + ﬁ)(¢(ﬁ+“)).d]da;ds < C((Ap+ap)é+(5p+ﬁp);) (fi+f) (o 181

1.4
xpsllalirs (-

t+p?
e For the ninth term of 1.} we have to consider the quantity / / [163]2 (i + b) V¢|(s, z)dxds which
tf

has the same structure of the first term of the right-hand side of . and thus, by the same arguments
we obtain

t+p 1 1
/ / ) - Voldads < <? Cp2 V% ((Ap +ap)2 + (B, + Bp)i) .
t B,

t+p?
e The last term of (4.2)) is given by the expression / V A (4 + b)] (¢d)dzds and we remark that
By

it is of the same structure of the term , SO we obtaln
t+p? o p 1 1
/t /B IV A (@ +b) - )+ (90)|dzds < C"—(ap + 5,)2C5.
P

Once we have estimated all these terms, in order to obtain (4.3)) it is enough to gather them: doing so we
obtain an uniform estimate with respect to the radius » and to end the proof we remark that the left-hand
side of the energy inequality is controlled (using the quantities given in Definition 4.1)) by the left-hand side

of (3). m
4.2 A second estimate

The control obtained in the previous section is crucial but it is not enough to our purposes as we need to
obtain a deeper control over the pressure. For this

Lemma 4.3 For some 0 < 0 < % and for a parabolic ball Q, of the form , we have the following
estimate on the pressure

1 = -
< Oos |lall L= 2 @u) I8l 2 1 @1y + Co> (10l 2y + Wl r2a ) Nl e @uy + o2 lPl g .3

Pl 3
|| ||Lt2,z(QU) * t t (@)

Remark 4.3 For the time being we assume the controls of the right-hand side of the previous estimate. We
will see later on, by a suitable change of variables, how to recover the information over the balls Q, C 2.
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Proof. First, we introduce a smooth function 7 : R3 — [0, 1] supported by the ball By such that n = 1
on the ball Bz and n = 0 outside the ball Bs. By a straightforward calculation we have the identity
5 5

—A(np) = —nAp + (An)p — 2 Zf‘:l 0;((0;m)p) and we thus have

H (An)p

(—nAp)
Ipll 3 A

<
L2,(Qs) — H (—=4)

+

(4.11)

CAJ

L4 (Qq)

3
L2

t,x

3
Lt2,a: (QU)

(a) (b) (c)

e For the first term of (4 above, we use the expression of the pressure given in which allows us
to write 2Ap = —dw((b V) i) — div((i@ - V)b) — div(div((G+b) @ d+ad @ (T +b))) and due to the fact
that div(i@) = div(b) = div(@) = 0, we obtain the expression

3 3
- Z 0;0;(uibj) + Z 0;0; ((u; + by)aj + a;(u; + bj)),

ig=1 ig=1
from which one gets
H (—nAp) 10:0; (uib;) H n0;0j ((u; + bi)aj + a;(u; + b;)) (4.12)
(=8) N0~ 52l A i @n) (=4) 1l @)

(a.1) (a.2)

In order to study the term (a.1) above, we introduce the quantity ; ; = w;(b; — (b;)1) where (b;)1

is the average of b; over the ball of radius 1 (recall the definition (4.5)) and since u is divergence
3 3

free we have the identity Z 0;0;(u;b; Z@ 0;4; ;. Noting now that we also have the identity
7.7 1 ,j 1
T}@iajﬂi7j = 8i8j(nili,j) — a,((ajn)uw) — 83((8177)&173) + 2(6,-8]-77)&1',]-, we obtain
Hn&@j(uibj) ‘ 0:0;(nthi ;) ‘ 9i ((9jm)4i,5) (4.13)
3 — 3 .
(—4) LZ,(Qo) (=4) L, (Qo) (—A) Lt%,,(Qa)
9; ((9im)th; ;) LC H (9:0;m) i 5
, 3 :
S RS =4 liek@)
The first term of the right-hand side above is easy to control, indeed denoting by R; = \/% the

usual Riesz transforms on R3, by the boundedness of these operators in Lebesgue spaces and using the
support properties of the auxiliary function 7, we have (recalling that £l; ; = u;(b; — (bj)1)):

[e3

i (ts-) < IRiR; (ki) () 5

L3 (B,) L3
Cllui(t, M 2syllbi () — (bi)llLs sy < CllU®, )2y IV @ bt )l L2(By)

N o) < i) 3

IN

where we used Holder and Poincaré inequalities in the last line. Now taking the L3-norm in the time
variable of the previous inequality we obtain

H 0;0;
(=4)

The second and the third term of the right-hand side of (4.13) are treated in a similar manner., so

we will only consider one of them. Since 0;n vanishes on B3z U B and since B, C B1 C Bz, with
5 5 2 5

nik; ;

1, _» -
3 < Coslldl perz @IV @bz (o) (4.14)
L{4(Qo) 7
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the integral representation of the operator (_‘9—2) we have for the second term of (4.13]) the inequalities

(taking into account only the space variable):

0; 0;
(D ) (- < Co? || ——((5, (¢,
||, <o | gamsaen|
2 Li = Yi ‘ o 20(¢(. .
<cf U (Om)th) (ty) dy <Oyt sy  (415)
{%<|y|<%} |.Z' y| L (B,)

< Co?lluilt, )2y lIbi(t, ) = Ol 2y) < Co®[[@(t, )28 IV © bt )l 28y,
where we used the same ideas as previously. Taking the L>-norm in the time variable, we obtain

0;
(—A) ((aj )Lli,j)

7, o 1, N
3 < Cos il go 2@ 0l 21110y < Co3 il o2 Oll 21, (4-16)
L, (Qo)

(since o5 < o3 as we have 0 < o < %) For the last term of |i we recall that the convolution

kernel associated to the operator (_—1& is %, and thus following the same ideas we have the inequality

((91877)]\[17 1. = >
H(iA)J o= Il o200 IV @ b2z, (@u)- (4.17)
Thus, gathering the estimates (4.14)), (4.16)) and (4.17) and coming back to (4.13) we finally obtain
n0;0;(uib;) 10 -
(@) = 22520 o O sz Pz, (118)
t,z g

We study now the term (a.2) of (4.12). Due to the symmetry of the quantity 79;0; ((u; + b;)a; + a;(u; + b;))
it is enough to treat one term of the form 70;0;(u;a;) for which we use as before the identity 170;0;(u;a;) =
8i8j(n(uiaj)) — 82((8] )(uzaj)) — 3j ((8Z )(uzaj)) + 2(8i8j77)(uiaj) and we have

‘ n9;0;(ua;) ‘ 9;0j(n(uia;)) ‘ 9i((9;m)(uiay))
(—-4A) L%z(QU) B (—4A) L2 () (—4A) Lt%z(QU)
9;((9im)(uia;)) (9;05m)(uia;)
" ‘ (=4) L2.(Q0) i H (=4A) L2.(@.) (4.19)

For the first term of the right-hand side above, introducing the Riesz transforms and using the support
properties of the localizing function n we have:

‘ 905 (n(uia;))

(—4)
now taking the L3-norm in the time variable and applying the Holder inequalities (in space and then
in time) we have

‘ 905 (n(uia;))

(—4)
where in the last estimate we used the local inclusion between Lebesgue spaces. Now, just as before

(when studying (4.13))), the second and the third term of (4.19)) can be treated in a similar manner and
we will just study the second term and we have, following the same ideas displayed in (4.15)):

‘ 9i((95m)(uiaj))
(=4)

L3 (B) - ”RiRj(n(uiaj))HL%(Ba) = HTI(UZ'CLJ')HL%(BQ’

2 o < Clluillzrs@ullaslicsrz @y < Clluill 21 gy llaill Lors @iy (4.20)
t,x o

; < Co?||uiazllpr(py) < 002||ui||L6(Bl)||aj||Lg(Bl) < Co®|luill 1 gy lag | ogsy)s

L2(B,)
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and with an integration in the time variable applying the Holder inequalities it comes

‘ 9i((9jn)(uia;))

(—=4)
For the last term of (4.19) we proceed in a similar manner noting that the convolution kernel associated
to the operator (7—1& is I% and due to the support properties of the localizing function 1 we can write

< Co?||uill 2 g o lasll Lo s 0,)- (4.21)
i (@0 MR @) I L)

’ % L3(B,) < CU2||Uz‘ajHL1(Bo) from which we easily deduce the estimate
HZ—A)] 2 on) < Co||uill s qu laill e s @)- (4.22)
t,x o3

Thus, gathering the estimates (4.20]), (4.21)) and (4.22)) and coming back to the inequality (4.19) we
obtain:

< Co?|||| 21 o 1 Lo 8¢
3 L2HL(Q LYLS(Q1)"
LZ,(Qo) @

Now, considering the terms of the form 70;0;(b;a;) we have

H 10i0;(uia;)
(—=4)

H n0;0; ((w; + b(i)_aij a;(uj + bj))

3 < Co* (Il 211y + 1Bl 2 @) s (@r)- (4:23)
t,0\Wo

With the previous estimates for the terms (a.1) and (a.2) given in (4.18) and (4.23]), respectively, and
coming back to the expression (4.12)) we obtain

=

1., -
A | < Cos|all g r2(@u) bl L2 11 (1)

L?4(Qo) (4.24)
+ CUQ(H'JHLEH;(QQ + ”bHLfHQ},(Ql)) “a||L§Lg(Q1)'

e We can now study the term (b) of (4.11]) and we have (proceeding just like in (4.15)) with the kernel of

(An 2 2 )
the operator = A) and the support properties of 7n): ‘ ‘ 11235, < Co?|pllpy(s,) < Co HpHL%(Bl)
and taking the L3-norm in the time variable it comes
(An)p 2
<Co Hp” (4.25)
H (=4) Lt%x(Qg) 7.(@Q1)
e The last term of (4.11)) can be easily treated by following the same ideas displayed previously and we
obtain 5.((8
|2l <oy (1.26)
(—4) L7, (Qo) L7,(@Q1)

To end the proof of the Lemma, it is enough to use the estimates (4.24)), (4.25)) and (4.26]) in (4.11)) to obtain
the wished inequality. |

Now, using a scaling argument and the control given in the last lemma, we have the following proposition.

Proposition 4.3 (Second estimate) With the quantities defined in Deﬁm’tion under the hypotheses
of Theorem and for 0 <r < § <1, we have the estimate

1N

2
2 1 1 3 1 1 3 2
P < C((f) A2B2 + (;) (ag + ﬁg) s o, + (;) Pg) (4.27)
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Proof. Set o = % and consider the following functions
po(t,x) = plp°t, px), T,(t,x) = @(p°t, px), by(t,x) =b(p°t,pr) and  a@,(t,x) = @(p’t, px),

thus, by Lemma [£.3] and using the rescaled function above we obtain

1
_10 r\3 _3, 5 _3.7
B3 o <C((5) (0 Haer 2000 2,
2 2
NS 31l -3)ia| +(=) ool
)\ 1l 2@, TP 2 Ibli252 0, )P L@ T \p) P WILE g,)

t,x

2
Now, recalling that, by the Definition (see also Remark we have the notation 737 = Ipll 3 @)
Lt,z Q’"

Jun

-

13 " 14 " 1.3 :
p2 Ap = llillror2(Q,), P20 = lltll241(q,) and p2B87 = [Ibll 241 (q,), thus we can write

rs 2 r\ 3 11 r\ 2 1 1 r\ 2 2
2 ) (5 s ()
p3 p p ’ p

and we obtain (as pf% <pZsince0<p<1)

—
ol

2 2
2 p 1 1 r\ 3 1 1 . r\3
Pr3 S C<<T> Ap2,8p2 + (p) (OépQ +ﬁp2> Ha”L?,x(Qp) + (,0) P >,

which is the desired estimate. |

Do

5 Inductive Argument

Once we have obtained the estimates (4.3) and (4.27)) it is possible to perform an inductive argument in
order to obtain a (local, parabolic) Morrey information over the variables u, b and &.

Proposition 5.1 Let (i, g,cﬁ,p) be a suitable solution of the magneto-micropolar equations over the
subset Q. Under the general assumptions of Theorem[I.1], there exists a positive constant €* which depends
only on T4, Ty, To = min{7,, 7} > % > g with 0 < a < 1—12 and on 19 such that if (to, zo) € Q and

]. - — — -
limsup// V@il +|V®b?+|Vedfdrds < ¢, (5.1)
r Jto—r2,to+72[x B(x0,r)

r—0

then there exists a parabolic neighborhood Qr, of (to,xo) with 0 < Ry < 4R such that

lgnd€MPP, g, be MPP, g, &€ M. (5.2)

t,x

Note that the conclusion of this proposition is exaclty the first hypothesis of the Proposition |3.2
Proof. Recalling that from the global hypothesis of Theorem [I.I] we have a local control over the set €2,
thus as we want to obtain a local information and since we assumed Qg (to, zo) C € and by the definition of

Morrey spaces, we only need to prove that there exists a radius Ry small enough such that for all 0 < r < Ry
and for all (t,x) € Qg, (to,zo) we have the following control

N _3
// i? + B + |3 dyds < Cr*0 7). (5.3)
Qr
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In order to obtain this estimate, we will implement an inductive argument using the averaged quantities
introduced in the Definition .1} Indeed, using the Lemma we can write

M\w

// @? + B + |5 dyds = Ay + G + 04) < Cr2(Ar + Br +Cr + i + Br +72) 2.

Then in order to obtain the control ( - ) for all small 0 < r < Ry, and all point (¢,z) € Qg,, it is enough
to show the estimate:
2(1-2)

07,

AT+BT+Cr+ar+Br+'7r <r
Let us introduce the following quantities:

1 10
Afr = 2(17i) (-A'r + Br + C’r +ar + B’I‘ + Vr + W’f’) and HT =7 HT' (54>
r 0
Note that the introduction of the quantity W, in the first term above is reminiscent from the estimate
(4.3) obtained previously. Thus to prove (5.3)) we only need to show that there exists 0 < k < 1 and some

0 < R; < R such that for all n € N and (¢,z) € Qg,, we have
Apng, < C, (5.5)

and the idea is to use an inductive argument that ensures that we have these estimates above for all radius
of the following type " R; > 0. Remark that due to the definition of the quantity A, given in ([5.4)), we will
also obtain some information over the gradients of u,b and & (see Corollary |5.1 below).

In order to simplify the arguments, we shall need to introduce the following quantities

L . D=L (F g 5.6
ETEES r—?)_j(r+gr)a (5.6)

r 70 Te

Br:(ar+6r+7r+wr)a P, =

for some 7, > 0 such that 2 4 % — T—E’C > 0. Our starting point is the estimate 1) obtained previously:

r2 1
Ar+ B+ Co 4y + By + 7 + Wi + 121, <c (A, +B,+C,)+ &2 o (A, + By + )

(1) (2

p? 1 p2 1 p? 2 1 p? 11 1
+C 17273,0 (Bo + Bp)2 + 75,02 By + Ay + ap) +C 172735 (Ap + )2 +C 7'73 (A5 +B5)
3 (4) 5) (©)
p (£ L 1 e
O (F A+ )t + 6P B+ 50} ) 40 W Bl 1z 0 5.7)
(7) ®)
! AN A WS T N
C{(Ap+ap)? + (By+ Bp)2 2T (ap +85) x pellallLs (o)

o . ) 0
+c c,gfyp ((A,,+ap)a+(5p+ﬁp>é)+c (ap + B,)3C

M\H
bm\»—t

(10) (11)

Multiplying both sides of the inequality 1) by ﬁ, using the formula 1) we obtain in the left-hand
T 70

side
1

21—

)(AT+B7”+CT+aT+/6T+fyT+WT+T2HT’) :AT+HT‘
r 70

Now we will study each term of the right-hand side above multiplied by ﬁ:
r 70
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For the term (1) above we have, using the definition of the quantity A, given in ([5.4):

10

1 <7“2 1 7“2 2(1,i) T\ 70
—— (=M, +B +c>>§ =p A= () A,
r2(17%) p2 4 P 4 2(17@) ,02 4 p 4

r 70

For the term (2) of (5.7), by the definition of A, and B, given in (5.4) and ({5.6]) respectively, we can

write
4— 10

1 102 1 1 p2 1 2(1_%) - p 10
2(1_5)<r ag (A, + B, +5p)>_7a2“_5)<73Bp2p o’A, _<7) AB2

r 0 0 r

For the term (3) of (5.7)), using the expressions of A, and P, given in (5.4) and (5.6 respectively, we
have

L (Zp 2 L PP s0-2)p 12 20-2), (1 _ (P
7“2(1_%) <7. ,PPB(B +BP)2> > 2(1_i)f2(p2 ' P )3(p A )2 — (;> 0P3A2
The term (4) of (5.7)) can be treated in the same manner as the term (2) and we obtain

L (g P\ A B
20-2) (ﬂﬂp (Bp + Ay + ap)) < (;) ApBj.

r

The term (5) of (5.7) can be treated in the same manner as the term (3) and we obtain

1 1 P 4771_—O 2 1
i (Rl rat) < (8) T pial

By the definition of A, and B, given in (5.4) and (5.6 respectively, the term (6) of (5.7) can be

rewritten as follows

L (P ; L (Pgs =213 < (P) 3
i (S o) < it (DB Pa) < (0) T oale)

r° o r

The term (7) of (5.7)) is estimate using the definition of D, given in (5.6):

7 i 3-10 5 _ 5
g (H(rF st schisear]) so ()4t

_35
205

For the term (8) of ([5.7]) we use the definition of B, given in (5.6]) to obtain:

1 pPoL p\ATg Mg 1
s (GWhGlis ) < (£)° o B ISl 0
ro T

Remark 5.1 Note that, followmg Remark if we assume & € LYLL(Q) with 10 —1- % — § >0

10 1043
(which is possible sz’nce s 7> —) then the previous bound is ($)4 0 pTo 7 QB ||w||Lqu Q)

1 1 5y 1 5y 1
Since we have (a% +8;) < CBj, (A, + ozp)% < C’p(1 TO)AE and (B, + BP)% < C’,o(1 TO)Ag, thus for
the term (9) of (5.7) we write
2

1 NP7, P\, 5, b 1
2(150)(("4/3 +a,)2 + (B "‘617)2) <Tg + ) (a5 +85) x pollalrs o) < 20 E
/]” T

N

from which we deduce:



. The term (1 ) of (5.7) is treated as follows: recalling that v, < B, by (5.6) and since we have
1 _5y 1 _5y 1
C,? <pln A A, (A, + ozp)% <o TO)AE and (B, + Bp)% <! TO)AE by li then we can write

410

ey (ki (14 o+ 8, 4801) ) <0 (2)' 7 am)

r

1 1 (1-5) 1
<CBj and Cj <p 7™ A}, then we

D=

e The last term of 1) is easy to estimate as we have (a, + 3,)
have

1 2 1 3—2-° 5 1 1
(_5)<p (ap+ﬁp)%cg) < (2) " puazBy.

Once we have all these estimates for the right-hand side of ((5.7)) we finally obtain the following control

10 410

0 410
AT+HT§C<<T) OAP_'_(/)) ToABz (B) TOP A2
P r r

1Y 4_% P 3_% 5 _5 % % . p 3—% 5 % %
+C <<r> + <7) > pro SA;BpdllLs (o) + (;) poAZB}

r

P\ 2t P\ Lt
+(2) T DA+ (B) T 0 B Il e ). (5.8)

Now, we study the estimate for the pressure (4.27) which is given by the control

2 2
2 P 11 r\ 3 1 1 . r\3 2
ph<o((2)4dei + (1) (a5+ﬂz>||a|ugz(@p>+(p) 7).

and in the same spirit as before, we will introduce the quantity P, = Ja-o ( = ”P given in in the

left-hand side above. To this end, we will first rise the inequality above to the power 5 and then we will
multiply both sides by ﬁ and we have
1 C 3 1 1 3
r 1 1
e e g (A C) o) e (2)9)
T r%(li%) T r%(is) pPMp ) P 4 H HLG (Q) P
We remark now that we have (by the definition of A, given in ({5.4))):

3 3 3
Toop (7) 48l < 55 ()

0

3 15
2

3(1—5 3 P\3 "3y 3
pz( To)(Apo)4 - <;) 270 (A,B,)i.

Note that we also have (by the definition of Bp given in (5.6))

L (Y (h ) s R B
Tz () (4 4 HaHLe (e SC(B) T Bl o)

1
and finally we have by the definition of P, given in 4; e (;) P, = (£)3 %o P,. Then, gathering
’I“2

all these estimates we have
P\P " 2m s (N7 [ g2ognd g
po<c((2)H ampt (&) [H Bl o, m]) 69

Now we fix 0 < k < 1 such that r = xkp. Then, we define a new expression that will help us to set up the

inductive argument
4

O,(t,z) = A(t,s) + Hy(t, s) + @17?*%&(15,3:)) ° (5.10)

We will see how to obtain from (/5.8)) and (5.9) a recursive equation in terms of @, from which we will deduce
(5.5). Indeed, we have the following lemma.
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Lemma 5.1 For all (t,) € Q2r, (to, o), for all0 < r < & and for all p small enough we have the inequality

O, (t,z) < -0O,(t,x) + ¢,

N

where € is a small constant that depends on the information available on the forces f, g and the perturbation

—

a.

Proof. We will use the estimates (5.8) and (5.9) obtained previously. Indeed, introducing the quantity

K= % we easily obtain:

wls

10 _4

10 1
§C’</~$TOAP—|—/V0 A B2+/-$To P3A2
1) (2)
10 _ 10_3 3 5 1 1 10_3 945 _4 1
+ (I{TO + K70 ) pTO 6A2B2 ||a||L6 _|_I</TO 7—0 APQBﬁQ’ +K/TO p 0 7'¢;DpA_p2
R X )

15 15
®,.=A,+H,+ (/170 2 P,)

45

_y4 10 4 1 3 A5 _g
+r70 po "Bld e ) | +C K70 (Apo)4 + k20 " |p20

We will now study each one of the previous terms.

e The first term above can be easily treated as we obviously have A, < @, thus we write

10 10_y 1 10 10_y i
koA, +rk0 "A,Bf <Kk0@®,+rk0 O,Bj.

For the term (2) of (5.11)) we write, by the Young inequalities

)<Iii§_4< nee TO)A + K 10075~

[N
ol

p

Dol

0_, 2 1 10_ 11y 2 11
k0 'PIAZ = k70 4<,@5 Pl x "R A

15 15 S
< kK <Ap + (/@%77)Pp) 3) < KO,

)

10 E74

For the term (3) of (5.11)), we obtain by the Young inequalities (and noting that we have k70 ~ < k70
since 0 < K < 1):

10 0 3\ 5. 5 2 osi= 104 Aa L/ 4 Lo
(570 "+ w70 ) o0 S AFBRlall g ) < Cwm o (A (5B g (o)

IN

IN

10 5 5 . 10_g 5_5 N
Ck70 p7o b@pHaHng(Q)JrCWO p7 °Bplldllzs ()

The term (4) of (5.11]) is treated as follows:

10 5 3 10 5

305 11 0.3 5 3 1. 3 1 =
KB ATBY < B (A (BB, < 87T 0, + 10T B,

e For the term (5) of (5.11)) we simple write:
10 2 5.5 10 3 945 5
kTR D, A < kPt (D2+A,) <k p" 7 7 (D2+@,).

The term (6) of ((5.11)) needs no particular treatment.
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15

e For the last term of (5.11]), using the fact that (ﬂ%_

(5.10)), we write:

ol

15
7Pp) < ©, by the definition of ®, given in

Wl

45 15 _3
2

45 _ 21 3 =2 _8
K270 2 (A B )Z K 270 0 0

30

3 3 30
B3}, o) +Pp]> < c( e,B, +
40 _ 10 112 10_2
—+Kr 70 BpHaHL?z(QP) + K70 3®p)7
Gathering all these estimates we observe that from (5.11f) we can write
10 10_ 10 3 9,5 5 30 14 0_2
O, <C|k +Kkm B2 +/€+/€TOIOTO GHaHLa —|—/<afo p-' 0 e +Kk0 B,+k0 3]0, (5.12)
10_g 5_5 10_g 5 10 _ 5_5
+ C(FLTO ®pmo “Bpllalls o)+ %pmo B, + k" s trow D2
0_4 10 4 1 40_19 12
R B+ Bl g, ) 513
We claim now that we have, for the term (5.12) above the following control
10 0_y4 1 10 5_5 1o_ 5_5 30 0_2 1
C(K/TO + K70 4Bp2 + K/+ K0 p-ro 6 ||a"L? (Q) + K70 3p2+7-0 Te + K70 14Bp + K70 3> S 5

Indeed, we recall that k = £ < 1 is a fixed small parameter and that 0 < p < 1 is also a small parameter.

Moreover we recall that due to the hypothesis 1 , we have limsupB, < € where € > 0 is also very small.
p—0

1
Then all the terms of the form %, x%p® with a,b > 0 and Kk~ B, or k= °Bj with ¢ > 0 can be made very

10 5 _5
small. Note that the size of the perturbation term, reflected in the quantity 7 p7 °[[d@l|fs (g) can be

easily absorbed as p can be very small (we have T% - 5 >0 as % <71 < u). We remark that since p is
10 _ 5_5

small, we have that the term k7 “p~ 70 7 can also made small as we have 2 —|— = — = > 0. Finally note

that L —0 — 2 > 0 since we have the upper bound 11 >T0 > 125

By essentially the same arguments if p > 0 is small enough, we have the following control for ([5.13]):

10 5 5 10 5 10
g 5 5 0 g 5 10_3 945 5
C (k7 " p7o “Bpllallzs ) +r™ poB,+ k70 p+ D2
, T
10

0_4 10 4 1 40 _19 -
i7" pro T BEIE pe o) + 570 Bgllallzy (q,) <€

where € > 0 can be rnade small (remark that the quantity ||| Lge, (@) can easily be absorbed for p small

enough as we have 22 — 1 > 0 since 79 < 1. Note that the condition & € LPLL(Q) with %) —-1- % 2 > 0
stated in Remark [4.2| will give a similar result. See also Remark [5.1] for this particular point). With these
last observations, then from the inequality 1’1 , we obtain O, < %(—)p + € which is the conclusion
of the Lemma [5.11 [ |

With this lemma at hand, we continue the proof of the Proposition [5.1} Indeed, for any radius p such
that 0 <p <R <1 (and since we have Qr (fg,z0) C ) by the set of hypotheses (1.4) we have the bounds

HUHL"OL2(QP(t0,xO) 6l o2 (@) < —+oo, HV ® U||L2 A(Qulto,zo)) = HV ® UHng ) < +oo (and the same
estimates for b and &) and HpH <pll s < +00. Then, by the Definition we have the
t ac( p(to,xo)) LE@(Q)

uniform bounds sup {pAp, P, PBo, 0Bos 0C o, Py PV, 0 H p, p2Pp} < 400 from which we can deduce by
0<p<R
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the definition of the quantities A,(to, o), H,(to, o) and P,(to,x¢) given in (5.4) and (5.6)), the uniform
bounds

10 10

sup p3_fo A, (to,z0) < 400,  sup p2_fo H,(to, o) < 400,

R R
0<p< 0<p< (5.14>

3145
and  sup p’ 2(HTO)Pp(to,aco)<—i—oo.
0<p<R

Note now, that there exists a 0 < kK < % and a fixed 0 < pg < R small such that, by , the quantities
A,,, H,, and P, are bounded: indeed, recall that we have 7o > 2~ > 5 (where 0 < a < 75) and this
implies that all the powers of p in the expression above are positive. As a consequence of this fact, by -
the quantity @, is itself bounded. Remark also that, if pg is small enough, then the inequality - ) holds
true and we can write @y, (to, z9) < G)po (to,xo) + €. We can iterate this process and we obtain for all
n>1,

n—1

1 .
27@,)0(150,.%0)4-622 ],
=0

and therefore there exists N > 1 such that for all n > N we have @, (to, o) < 4e from which we obtain
(using the definition of ®, given in (5.10))) that

®R"PO (t(), f[f()) S

1 1 1
AHNpO(tQ,x()) < éC, HHNpO(tO,.TJ()) < gC and PHN (to,xo) < 330

This information is centered at the point (¢g, xg), in order to treat the uncentered bound, we can let %%N 00
to be the radius R; we want to find, thus for all points (¢,x) € Qr, we have that Qr, C Q2r, (to, o), which
implies
310
AR, (t,z) <27 70 Agp, (to, 7o) < 8Aag, (to, 70) < 8A, .~ ,(to, z0) < C,

_10
Hg, (t,x) <2 7 Hag, (to, z0) < Hag, (to, 70) < Hyn ,(t0, 20) < C,

and Pg, (t,z) < 25_%(1+%)P231(t0,x0) < 32P2g, (to, z0) < 8P, ,(to,z0) < C. Having obtained these
bounds, by the definition of ®g,, we thus get g, (t,z) < C. Applying Lemma and iterating once more,
we find that the same will be true for kR; and then, for all k"R;, n € N. Since by definition we have
Ainpg, (t,x) < Oynpg, (t,z) we have finally obtained the estimate Axnp, (t,2) < C and the inequality is
proven which implies Proposition |

Corollary 5.1 Under the hypotheses of the Proposition we have

I, Veie M, 1o, Vobe M, 19, VedeMT and lg, div(@) e M;T, (5.15)

t,x

1

_ 1,1
where;—T +:.

Proof. Indeed, from the general notation given in Definition [4.1] we have

(// \V®U\2dyds+// IV @b dyds+// Ve dyds+// |div(D)] dyds> = (ap+Br+7+W;),

and by the definition of A, given in (5.4) we obtain

<// IV ® dyds+// IV @0 dyds—l—// IV @&l dyds+// \div (@ 2dyds> P20 A,

But since the quantity A, is bounded for 0 < r < 1 small enough (by the estimate (5.5))), we can thus write:

. L. S 10 2
[ wetas s [[ 198 [ 19@atas s [| @t < ot = o)
Q’“ T QT Qr
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since we have + = % + % and by the definition of Morrey spaces fiven in 1' this condition expresses the

T

fact that each term of the left-hand side above belongs locally to the Morrey space Mf;l |

Remark 5.2 From the Corollary[5.1], we can easily deduce that

]lQRlﬁ AU € M2’T1 ]lQRlﬁ A EE M2’T1 and ]lQRlﬁ AW € MQ’Tl.

t,x t,x t,x

We have proven the points 1), 2) of the hypotheses of Proposition (recall that the point 6) is given for
free, due to the hypotheses on the external forces) and we still need to prove the points 3), 4) and 5). In
order to achieve this task, we will need different arguments that are displayed in the next section.

6 More estimates

Let 0 < a < 5 be a parameter, we define the parabolic Riesz potential L, of a locally integrable function
f:R xR} — R by

—

o 1
el = [ [ o e (61)

Then, we have the following property

Lemma 6.1 (Adams-Hedberg inequality) If 0 < a < g, 1<p<g<+o0 and fe Mf”;’, then for
A=1- % we have the following boundedness property in Morrey spaces:

122D, 5.5 < 1 FlLagz

See a proof of this fact in the book [16, Corollary 5.1]. We will use this result in the next result to obtain
the hypothesis 4) of the Proposition

Proposition 6.1 Let (i, E,cb',p) be a suitable solution of the system over ). Then for some radius
Ry > 0 such that Ry < Ry, we have (with § + ;10 < iz2):

. 3.6 > 3,6 - 3,6
Lgg,u€ My, 1ggzbe My, and 1g, &€ My,

Proof. For a point (g, zo) C §2 we consider the radii
0<Ry<R<R<R; <4R,

(recall (3.9)) and the associated parabolic balls Qr, C Qr C @ i C Qr, C Qqr. Consider now 6, -
R x R? — R two non-negative functions such that ¢, € C5°(R x R?) and such that

¢=1 over Qg,, supp(¢) C Qpr and =1 over Qp, supp(¥) C Qr,. (6.2)

Since Ry < R < tg, we have ¢(0,-) = 1(0,-) = 0 and we also have the identity ¢1) = ¢.

With the help of these localizing functions we will study the evolution of the variable V= o(i + b+ W)
and we obtain the system
v =AV+N,

—

V(0,z) =0,

(6.3)
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where, following the same computations of (3.8]) we have

Now we will perform some computations over the term qgﬁp that contains the pressure. Indeed, as we have
the identity p = ¢p over @5, then over the smaller ball @ 32 (recalling that ¢ = 1 over Qg, by 1) since

Qr, C Qp), we can write —~A(pp) = —pAp + (AY)p — 228 ) from which we deduce the identity
=1
V(= wAm) - ~ -V, ‘> ) .
) 5 Ezj b= (6.5)

1,7=1

3
) (Z ’(L [818] (uibj + (uz + bi)aj + ai(uj + b]))]) s (66)

and introducing the function 1) inside the derivatives we obtain

=

V wAp

(&@(&uibj) — 0i((059)uib;) — 0; (9 )uib;) + (9;0;) (uib;) (6.7)

2,7=1

+ 3@'33'(%1)(“@' + bi)ag) — 9;((9;4) (us + bi)aj) — 9;((0ih) (ui + bi)az) + (8;0;4) ((u; + bi)ay)
+ 030 (Yai(uj + bs)) — 9((959)ai(uj + b)) — 0;((Bi)as(u; + bs)) + (9:054) (ai(u;j + bj)))-

Now for the first terms of each line above we use the identities (recall that ¢y = ¢):

n - \Y) 8 - V8;0;

¢7(_A) 0;0j(Yuib;) = _¢7 —a) (Yub;) + A  (puib;)
vV ; [ Voo, - Voo, -
¢(—A) 0;0j(Y(u; + bj)aj) = | @, A (¢(u; + bi)a;) + A) (o(ui + bi)a;)

v § _ V8,0,

3 ; 0% =0 4 bV
¢@3i3j(¢ai(uj +b5)) = |9, )| (Vai(u; +bj)) + m((ﬁ(ug +bj)a;),

and with this lengthy and tedious formulation for the first term of 1 , we come back to the term N given
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in (6.4) to obtain

3
N = (06— M) (i +b+@) 2 (8:0)(0:(ti + b+ @)) — ¢((5- V)i + (i - 6)5) (6.8)
(1) =1 @)
(3)
5[ Vo0, V0 s OV o
—{(Zl by | o)+ 3o T But) = 32 E @t + 0ty
’ ’ ’ (6) (7)
) ®)
9.9, B 3 N7
—<aiajw><uibj>})+( 6. T (B 8)as) + 2 B+ b)) — 3 s [ 5(00) s+ )
®) . ~ b (1)
) (10)
+ 00D s + b)) - (@0, (s + )] ) + (|5 (V_af)] (Do + b))+ oy (Bl + b))
(12) (13)
0D (15)
. L
= 3 5 (@t + b))+ 0O+ )~ D38y ey + bm]) n MW
W= (16) (17) (18) o

24
+ 6 (ﬁdw@) - %((m b) - V)@ + iﬁ A (T + *)> =Y N

With this expression of N , we obtain that the solution of the equation lj is given by

¢ 24 24
V= [ AN s s = S V= S [ eI, s,
0 k=1 k=170

and we will study each term of this expression with the following lemma:

Lemma 6.2 Under the general hypotheses of the Theorem [I.1], for all k =1,...,24 we have
]IQR2 ]_}k € M?:g
for some o close to Ty such that 19 < 0.

Proof. Fortunately many of the terms above share a similar structure as we have essentially the same
information over the variables #, b and &. Recall that we have proven so far the estimates {i and ()

e For ﬁl, recalling that e(t_s)AA_fl = g¢_g % A71 where g; is the usual 3D heat kernel, we have

— t —_ _ —
[Lqp, Vilt, )| = ’]lQRQ /0 /RB gt—s(z — y)[(0rp — Ad) (@ + b+ I)|(s,y)dyds

Thus, by the decay properties of the heat kernel as well as the properties of the test function ¢ (see
(6.2), we have

. 1 S 7 o
[Lop, Vi(t,z)| SC’]IQR2// T , ]IQR(u+b+w)(s,y)’ dy ds.
RJRS ([t = s[2 + |z —yl)
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Now, recalling the deﬁn1t1on of the Riesz potential given in and since Qr, C Qi we obtain the
pointwise estimate|lq, Vi(t,z)| < Clg.Lao(|lg,(d + b+ w)])(t x) and taking Morrey Mf;’ norm we
obtain

a2l <Oty F+ Dl
Now, for some 2 < q <5 weset A\=1— % and we define 3 =4 and 0 < 10 < { (remark that a < g).
Thus, by Lemma, and by Lemma [6.1] - we can write:

-

gy L2(l,(@+b+ Dl gz = CliL2([Loq (@ + b+ )

>

a
b
t,x

< 400,

—

< Clgn(@+ 5+ ) < Clgn -+ 5+ D) o0
where in the last estimate we applied again Lemma - 2.2 (noting that a < 3 and ¢ < 79) and we used
the estimates over @, b and & available in (5.2).

—

For Vy we write (8;0)(8;(i + b+ @)) = 9;((8;0) (7 + b + &)) — (02¢)(i@ + b+ &) and we have

w

|]1QR VQ t, (E

/ =229, ((90) (@ + b+ 3))ds
i=1 (6.9)

t
+'1QR2 /0 =2 (92¢) (@ + b+ J)ds

Remark that the second term of the right-hand side of (6.9)) can be treated in the same manner as the
term V) so we will only study the first term: by the propertles of the heat kernel and by the definition
of the Riesz potential £ (see (6.1))), we obtain

t t
4y = ‘n% | e ra @b+ B+ )| - \ﬂ% | [ 0w a = @)@+ 5+ @) p)dyds

Lo, (i + b+ &)(s,)] -
< Clg, //RJ T s < Oy, (£1([10, 5+ S)D) ()

Taking the Morrey M?g norm we obtain [|Az| .0 < CllLgy, (L1([Lg, (@ + b+ ) pg3.0- Now, for
) t,x t,x
some 4 < g < 5 we define A =1 — %, noting that 3 < % and 0 < 10 < %, by Lemma we can write

120n, (€110 (@ +B+ DD pge < ClEr(Log(@+F+@NI, 3.4 < Cllg(@+5+3)] 0

)HMi’;O < +OO’

—

Cllqy, (@+5+3

IN

from which we deduce that ||1¢,, 92\|M3,a < +00.
t,x

For the term 173 we have

Lo, Vst z)| = 'n% /Ot/ngt_s(x—y) [¢ ((5ﬁ)ﬁ+(ﬁﬁ)b)} (s, y)dyds

AN
Q
iy
Q
P
)
[\
~
=
Q
VN
=
<l
S
+
=
<
=
N—
=
&

from which we deduce

110n, Bl gz < CH11QR2£2 (11045 ¥) *\)H +CH]1QR2£2 (111@,(@-6)51)(’ (6.10)
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As we have completely symmetric information on « and b it is enough the study one of these terms
and we will treat the first one. We set now % <qg< % and A=1-— 2—5q. Since 3 < 5% and 79 < 0 < %,
applying Lemma [2.2] and Lemma [6.1] we have

-

[100,22 (180, G- 9131) |, < 100,22 (10, - D101 .5 = C[[10,6- D1, .

Recall that we have % < 79 < 0 < 10 and by the Holder inequality in Morrey spaces (see Lemma

we obtain

—

Hmh@-ﬁm

ST

< anl g fon 7 ] <0
t,x t,

6
H 509
M,

where % = i +2 i = 34— L Note that the Condition % < 19 < 0 < 10 and the relationship % = % —1—%

are compatlble Wlth the fact that 32 < ¢ < 2 Applying exactly the same ideas in the second term of
6.10) we obtain [[1q,, V3”mf;g < +oo.

The term Vy is the most technical one. Indeed, we write

[[6, T22] (@uibs) (s, ) 3 ]
ton i< 3 o //R ‘t = g > tan,l (H¢ (V_M)]wm )

)

ij=1 - 3‘2 + |z —y|)3 ij=1
and taking the ./\/lt -norm we have [[1qp V4HM3J < Z” 1 H]IQR2£2 (‘ [(5, N } (Yusb; D HM“' If
t,x
we set 1 = T% —1—% and A\ = 1 — ZI then we have 3 < ﬁ and o0 < ¥ = 131(;0 and by Lemmaand
Lemma we obtain:
V8,0 [ Yoo -
1gn, Lo ( P, N (Yuib; )H < Clllgg, L2 (' ¢, (—A§ (Yuibj) >H .
MEE L MY
Voo, -
(_A) M%,q
- t,x

We will study this norm and by the definition of Morrey spaces (12.2)), if we introduce a threshold

t= R_QRQ, we have
3
2 = 2
5, V20 )| < s L [ |6 T2 | dac
(* ) Mt%;:q 0(<t,:f<) r (1-35) Qr(t,2) (—
5 (6.11)
1 - V@B
4+ sup ———— / o, b dxdt.
) 21730 Jo, ) (=8) (Wuibs)
<7

Now, we study the second term of the right-hand side above, which is easy to handle as we have v < r
and we can write

Nlw

3
2

V8;0;
(—A

V9,0,
(=4)

b, (1/Jul i) dxdt < C b,

(wuz )

Y

),
sup ————
(L) CRxE? 0= Jo, 7

njo

Lt,z

and since ¢ is a regular function and = Aa) is a Calderon-Zydmund operator, by the Calderén commu-

V&@]

tator theorem (see the book [15]), we have that the operator [qz_b, is bounded in the space Lt’z
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and we can write (using the support properties of 1 given in (6.2)) and the information given in (5.2))):

where in the last line we used Holder inequalities in Morrey spaces and we applied Lemma,

=

vV 8,0;

¢,

< Cl[duib; H < Cl[1Qpg, wibjl|
L2, o

3
2

3
M,

< CH]IQR1 HHME?’;” H]IQRII)HM?:;’ < CH]IQRI ﬁ”va;O H]IQRlbqu*;O < +o0,

The first term of the right-hand side of (6.11) requires some extra computations: indeed, as we are
interested to obtain information over the parabolic ball Q,(t,Z) we can write for some 0 < r < t:

V9,0,
(=4)

- V88

6. 2| (i) = 10, |3 (V_a a) (Lo, duiby) + 1o, | (1~ 1y, )duiby), (6.12)

3
and as before we will study the L7, norm of these two terms. For the first quantity in the right-hand
side of (6.12)), by the Calderén commutator theorem, by the definition of Morrey spaces and by the
Holder inequalities we have

[55, Vi0; ] (L, Yuibj)

(NI

IN

5(1—-2 5
Cll1g,, buib; ||2 < 0r"" 7)1, wibj|?

3.3
Mg

(=4)

3
tm
Lg

— Ry Md: 0 Ry M 07’

3
1 _ Vaa 2 3 5 3

sup ———— , 1g,,Yu dedt < Cl|1g, Ul||? 5. [[1o,. b||? 5. < +oo.

w /Q ot |6 | () 800,71 . 10, I .

o<r<r

We study now the second term of the right-hand side of (6.12)) and for this we consider the following

operator:
_ V8,0; .
Tf’_> <]]'Q'r [¢7 _A]] (H_]}‘QQT‘)SO> f?

and by the properties of the convolution kernel of the operator (_—1& we obtain

I-1 1 T2 — &
T(f)(x)] < Clo, (x) / (= 10,) W), WIS WII6E) — 6],

R3 |9'3—l/|4

Recalling that 0 < r < ¢t = R 2R2 support properties of the test function ¢ (see ), the
integral above is meaningful if |z — y| > r and thus we can write

3

_ V90, 2 g ylor 2
1o, |6 ont | (@=1au)buny)| | <C[1a, [ - 10, )00, (bl
a) e o~ 1] 3

t,x B

2 , s

<C / 1 u;b; 3 dy < Cr72|1p, u;bjl? ,

( pten bl ) o utylly
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with this estimate at hand and using the definition of Morrey spaces, we can write

/(Qr (t,z)

3
2

_ V8,0;

3 3
(1= 1qu)duity)| drdt < Crir™ W 1gu uibi|” 4 -

70
2

1o,

t,x

5(1-2 3
< O |1, wibjl® 4
AALw

_3 _3
where in the last inequality we used the fact that % =24 %, which implies r= 3207 5) = 50-gg),

Thus we finally obtain "

(S]]

)
(=4)

g, |, (I — Ly, )uib))

1 3 3
sup ———— dadt < C|1g, 4l|? 5. [|1os. b||? 5. < +oo.
w o | n, [,

o<r<e

We have proven that all the term in (6.11)) are bounded and we can conclude that ||]1QR2 94HM3,U < +oo.
t,x

For the quantity )75, based in the expression we write

[RiR;(¢uib;) (s, y)|
1o, Vst )] < 0;1 QR2/43 ’t_shi’x_y’) dds<0;1]lQR L1 (IRiR; (Guiby)]) (¢, ),

0;
VvV=A
4To+5

where we used the decaying properties of the heat kernel (recall that R; = are the Riesz trans-

forms). Now taking the Morrey M? 7 norm and by Lemma (with v =
that £ >3 and 1 > ¢ which is compatible with the Condltlon T < 0) we have

, p =3, q= T such

3
Ton, Vsllaee < €Y IMop, L1 (IRiR;(uiby)]) |

0%
i,j=1 Mie
Then by Lemma ﬂ with A =1— TO—/2 (recall == < 79 < 10 so that v > 2)) and by the boundedness
of Riesz transforms in Morrey spaces we obtaln
11Qr, L1 (IRiR;(Puibs)|) HM?ﬁ < ClLy (|RiR(duiby)]) | i < CHRz‘RJ‘(GBUibj)HMtg,@

< ||]lQR1ulb ” 30 < C||]1QR UHM3 TOH]IQRIbHM?’ r < +00.

IL‘

The quantities V6 and V7 based in the corresponding terms of can be treated in a very snmlar
fashion since their inner structure is essentially the same. We thus only treat here the term Vs and
following the same ideas we have

For 2 < ¢ < 2, define A =1 — —, we thus have 3 < % and 0 < 10 < {. Then, by Lemmaand
Lemma [6.1] we can write

PV,
(—=4A)

OV (06 uib (5.y)|
\t—s\2+|x—y|>

(954))usb;

‘]IQR Vﬁ‘ <C Z ]IQRQ //

t,j=1

3
dyds = C Z L1gp, Lo (

ij=1

Wa
-A)

( g@b)u@

SHoee
Q

M



but since the operator ‘WA is bounded in Morrey spaces and since 2 < ¢ < < 20 one has by Lemma

2
2| and by the Holder inequalities

<Z>V8

@yuidi| < C[1gnubs H 30 < ClLapubyll 3.9 < ClLan, @l ysro lam, Bl o ro:
5.9 t ,T ,T
t,x

from which we deduce |[1q, Vs|| e < too. The same computations can be performed to obtain that
t,x
H]IQR2V7||M§,: < +o00.

The quantity Vs based in is treated in the following manner: we first write

o (e )

Weset 1 <v < 2,21/<q< Sv and)\—l—— thus we have 3 < ¥ anda<10<%,then, by Lemma
2] and by Lemma [6.1] we can write

—

|><l

3
||1QRQV8||M?’»;’ <C Z d’

,j=1

(9:05) (uib;)

(=4)

3,0
My

% v
1gg, <£2 ¢( A) (9:059) (uib; )Hm“ Cll1gg, (Ez <Z>( A) (9:059) (uqb )>‘M§i§
<C q}i(a»ad)(ub-) <C @i(aad;)(u»b) <C @i(aa'@(%b') (6.13)
> (—A) 1Uj A o= (—A) 1Uj 1Yj sy T (—A) 10U 105 .
Me M, 2 Ly Lge

5v
where in the last estimate we used the space inclusion LYL2° C M:; 2. Let us focus now in the L*°

norm above (i.e. without considering the time variable). Remark that due to the support properties
of the auxiliary function v given in 1) we have supp(0;0;¢) = Qr, \ Qj and recall by || we have
supp ¢ = Qp where R < R < Ry, thus by the properties of the kernel of the operator (_%) we can
write
I v/ _
|¢_A)(6i8j¢)(uibj)

o| [ 2 mtanoan 10, 0)(000) it )|
R

s |z —yl?

IN

C (6.14)

L, >k -
/R 3 %1% (@)L @, (1) (Di050) (uiby) (- y)dy|

and the previous expression is nothing but the convolution between the function (9;9;1)(u;b;) and a

L*°-function, thus we have

I v/ _ _

‘cb_(ai@jw(uibj)(t N < CllG05) (wibs)(E, )l 12 < CllLgpg, (uibs) (£, )| Lv, (6.15)
LOO

A)

and taking the L”-norm in the time variable we obtain

R ] ) B}
H¢_A(3i3j¢)(ufibj) < Cllgeuibjlizy, < Cllgr, @l yprolLQr, bll y2mo < +o00,

(=4)

LyLg

where we used the fact that 1 < v < % < 3 and we applied Hélder’s inequality. Gathering together
all these estimates we obtain [|1gy, 178”/\43»” < +00.
t,x

The terms 99, ce ,918 are studied in the following lemma.
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Lemma 6.3
1) The quantities Vo and Vi4 based in the corresponding terms of can be treated in the same way
as the term Vy.
2) The terms 1_}10 and ]_}15 are controlled as ]75.
3) The terms ]_)11, ]_)12, ]716 and ]717 are controlled as ]76.
4) The terms 1_}13 and 1_}18 are controlled as 1_}8.

Proof. Followmg the estimates given previously for the terms V4, V5, V6 and Vg, all the terms

Vo, -, Vig can be controlled by the quantities [P uHMs 0, H]]‘QRlb”M?’ o or [[L1gg, aHM . It s
enough to observe that we have ||]lQR1aHMi,;O < CH]IQRI(IHM?’,S = ||a||Lge () < Foosince 123 < 70 < 6,
which is possible if 0 < a < 1—12 |
The quantity Vg based in (6.8) can be treated in the same way as the term Vs. Indeed, by the same argu-
- Y
ments displayed to deduce (6.13)), we can write (recall that 1 < v < 3): 1Lgp, Violl yp0 <C qu()
t,x —

and if we study the L°°-norm in the space variable of this term, by the same ideas used in - -
we obtain H(;5 = (( ((Ay)p)(t, )’ . < O[(AY)p(t, | < Cl1qg,p(t,)llLv- Thus, taking the L”-norm

in the time variable we have

=

(=4)

<l

N

[1@s, Visllpr < € ((A)p)

< Cltgg,pllzy, < Clllgp,pl 3 < +oo.
LZL%O t,x

The study of the quantity 920 follows almost the same lines as the terms 1_}8 and ]79. However instead

of we have
va

1 R
z—y|>(R—R -
<c| [ EEER G, (@)1, 000 @D 1)y

and thus we can write:

Vo,
(=4)

¢

((9:%)p) < +o00.

110, Vool g0 < < Cll1gy,ply, < Clligy ol

LYLe

3
L2
t

For the term Vs based in 1@} can be treated in the same manner as Vo and we easily obtain
L@, Varll pgs.0 < 400

The study of the quantity 922 is easy to handle, indeed, we have
R? ( It—SI2 + Iw—yl)

and taking the Morrey M?Z norm we obtain |1y, ﬁggHMg,a < O|lgg,L2(1gp, I+ GD Il pg3.05 then if
. t,z

t
Lgp, Voo| < ’]1QR2/0 =20(f + §)ds| <

< Clgg, Lo(Lg,, |f + 3¢ @),

we set & < ¢ <3 2 and A = 1 — % we thus have 3 < 1)\ and 0 < 10 < {. Now by Lemmaand
Lemmawe have ||1QR252<1Qerf+g|>||Msa < Cllea(tan, 1F+901 4.4 < Ol 7+ 1,
but since q < 2 < 2_a < T, Tp, Dy Lemma we obtain "
0, |7+ 010 < € (11, I, s + M, ) < 405,
t,z z z

thus, gathering all the estimates above we have H]IQR2 VQQHMS,U < +00.
t,x
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e For the quantity Vas of we first note that the quantity ¢div((@+b) @ @+ @ @ (@ + b)) can be
decomposed as ¢0;(ujay) with 1 < ,7,k < 3 (and other similar terms with b; instead of u;) and thus
we have:

t B t _
o, [ [ aeele - o0 al(sndnds| < [1r, [ [ e = Ewale s

t
#[1an, [ [ et~ 00O (o]

and by the same arguments as in the previous lines we obtain

R

<Ol qn, £1/Topusan] [y
Mt:z ' (616)

+ Lqn, Lol Lagusarll e )

For the first term of the right-hand side above we set p = 2, ¢ = TOO and \ = 3300 +5TTO Note that g >3

and § > o (if 0 > 79 > 5 is close enough to 79) and thus, by the Lemma 2(and by Lemma we have
HﬂQRQﬁll]lQRUjaleMgg < CllLi[Lgpujar|] < C\IﬂQRUjakHMf;g = Cllag, vjaxll 5 s and by

P
PPN
t,x

2,

t,x
the Hélder inequalities in the Morrey spaces we obtain [|1¢, uja;,c||/\/12766+47OO < [[Lgg, ujHMf”go gy, ak”Mf;ﬁ =
t,x

H]IQRlujHMf’ZOHakHLgI(Q) < Ho0.

For the second term of the right-hand side of ( ,we fix pg=2and A\ = % and we have § > 3 and
4 > 0. Thus, by the same arguments as above we can write

IN

1LQr, L2/ ujar!ll o Clialoguarl 2.4 < CltQpusarlags = Cllor, ujarllve

t,z
< Cllgg, ujakl 2 S 1@, ujll w370 llarllzg @) < +oo-
M y

t,x

N

Applying these estimates to all the terms of the form ¢d;(ujay) and $9;(bjax) we finally obtain that
112, Vesll 00 < +o0.

e For the last term ﬁ24 given by the corresponding quantity in , we have

—,

R =
|]lQR2V24| ‘]IQR2// gi—s(z —y (de( J) — & —5((u—{— )V)

%6 (a+52> ’ (6.17)

~~ ~~

(a) Q) (c)

=

and we will study each of the previous term separately. Indeed, for the term (a) above, proceeding in
a similar fashion as in (6.9)), we have (for 1 <1i < 3):

o, [ [ aale — 0 {00din(@).v)duds

< Clgy, (£1(11g,div(@)))(t 2) + Lo([Loudiv(@)])(t,2)).

Then, we only weed to study the quantities in the right-hand side above: |[1q, [,1(|]lQRdiv(cU)])HM3,g

t,x
and H]].QR2£Q(‘]1QRCZ'Z'U( )|)HM3U For the first term we fix p = 2, ¢ = 1 and X\ = 3, we thus have
2 >3and { =10 > o and by Lemma 2l and by Lemma we have H]lQRzﬁl(]lQRdw( ))HMSU <

CHﬁl(\ﬂQRdW( DI bt S < Cllggdiv(@) | pps < CH]lQRdW( I pe

(and by the Corollary and its conclusion (5.15))). For the second term we set p,g = 2 and \ =

271 < +o0, since 1p > 19 > D
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1 and by the same arguments we have 1Lqp, Lo(|Lgydiv(d )|)||Mda < C||£2(|]IQRdiv(*)|)H
C|1gydiv(d )||M22 < C|1gdiv(d)

\~a

q

4 S
||M2 < 400 and thus the term (a) is bounded in the Morrey
space Mt,x

For the term (b) we proceed just as for the term Vi and we have

t —
HHQRQ/O /RB Ot—s(- — y)[0J] (s, y)dyds y

< Ol L2110, 3 o

Setting p, ¢ = 2 and A = g, we have || 1o, L2(/10,@|)l| 2o < CllL2(/1q, )|
Cll1gyd| 370 < 400 (since we have )
t,x

Due to the symmetric information available for the variables , b and @ it is easy to see that the term

¢) of (6.17) can be treated as the term Vs while the term (d) of (6.17) can be studied as V.
With all these remarks we finally obtain that |1, Vaal| .0 < +o0.
t,x

ot SCOQBl e <
; ,

»T

With all these estimates Lemma is now proven. |

End of the proof of Proposition We have proven that 1¢,, (4 + b+ W) € Mf;’ for 79 < o with
o very close to 19 (say o = 79 + €). But this is not enough to ensure the condition % + T—lo < 1_?0‘ stated in
Proposition[6.1] In order to obtain this relationship, we will iterate the uments above. Indeed, considering

the information 1, (4 + b+ W) € ./\/l3 T0F€ and reapplying Lemma (6.2, we will obtain ]IQR2 (4 + b+ W) €
/\/l3 71 where Ry < Re and 07 = 0 + € = 79 + 2¢ and we can repeat these argurnents until obtaining
]IQB?2 (T+b+3) € Mt where 0, = 79+ (n+ 1)e such that - + 1 < @ with Ry < Ry. As we can see, at
each iteration we have to consider smaller parabolic balls and Wlthout fear of confusion we can set § = o,
with the corresponding radius to be Ry. We thus have 1¢, @ € M?g and 1@325 € Mf;f with % + 710 < e
and the proof of Proposition is finished.

ot
H

Remark 6.1 Note that by iteration the value of 6 can be made big enough.

We have obtained the hypotheses 1), 2), 4) of the Proposition and with these results at hand we will
now study the hypothesis 5).

Corollary 6.1 Consider the general hypotheses of Theorem . Then, for Re such that Ry < R1 < R
and for 1 <i,j < 3 we have

0;0; 0;0; 0;0;

]lQR ( A)( ) Mtw? ]lQRzﬁ(uiaj) Mta:? and ]lQR ( A)(b a]) Mtw’

with po < p < +00 andq1§q<+oowher61§p0§g(md5<q1=%<%wzth0<a<12

3
0;0;
Proof. Recall that from (1.2) we have the expression p = Z 2(173) (uibj + (u; + bi)a; + a;(uj +bj)),
ij=1

which corresponds with the terms that we want to study and consequently we only need to prove that we
have Lgg,p € Mfg Thus introducing suitable localizing functions ¢ and 1 as in 1’ and following the
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computations made in (6.5)), and (6.7) we have

"Cay 22 A)
3 QE B B
- 3 (aawm )+ (D:0;5) (uiby) —[0u((B;8)usby) + 5((De)uiby)] (6.18)
= (i) (i) (iid)
(B s+ b3)az) + (0:075) (s + b)az) —[0:((D0) (s + bi)a )5 (06t5) (s + bi)ay)

~~

(%) (i7) (i)

+ 0i0;(Pai(uj + b)) + (8:0;0) (ai(uj + bs)) —[0:((59)ai(uj + by)) + 8;((8i)as (u; + bj))])
X ) 59

11
5 . . 6

and we will prove that each one of these terms belong to the space ./\/lt (we are considering here p = 2

and q = H) Fortunately, many terms of share a common structure.

e For the term of the form (i) we write:

H 2:0;( @Z)uz ;)

it < CllﬂQnguiijMtgﬁ < C|’]]'QR2uiHMf:g/||]1QR2ijM?:£’ < o0,

where we used the boundedness of the Riesz transforms in Morrey spaces as well as the Holder inequal-
ities (and we considered ¢’ = 11 which is possible by Remark [6.1). We consider now the terms of the

form ﬁ@iﬁj(&uiaj) and we write by the same arguments as above

H — 5 0i0; (Puiay)

< (|1 U; A
M?% = H Qr, Y ]HME;

s

y < Ol uill yypo 1LQn, a3ll yyoe < +00,

where §" = 66.

e For the terms of the form (i7), we first have

Mt%;% < CH( i)(aaﬂzj)(uz ;) Mt%% < CH( i)(aajw)(ul ;)

,T

hfiﬁ@@wﬂw%>

11 ?

L Ly

11 11
where we used the space inclusion L L°° C Mf’ "2 . Following the same ideas displayed in formulas

- -, due to the support properties of the auxiliary functions we obtain

—— (0:9) (uiby)

iy SMan il < Oltan, 5 100, Bl 3 g < +oc

as by interpolation we have HuH 2 g < HuHLOOL2 2(9) ||uHL2L6 Q)" The terms of the form 5 A) (8 0j¢) (uia;)

73

@

are treated in exactly the same fashlon as we have ||d|| 2 g < C||aHLg @)
L @

¢ L (Q)

e The term of the form (éi7) can be studied in exactly the same manner as the terms of the form (ii).
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e For the term (iv), by the same arguments we obtain

=

e The term (v) can be treated in the same manner as the previous point.

6 11
M3 H LZLL
t

x

%Lgo < CHHQRQPHL:;L < ClLgg,pl 5 < +oo.

t

5
Remark 6.2 The condition p € L? LL(Q) is needed here in order to treat these two previous terms. If
we have some additional information over the perturbation term (e.g. @ € L?H(Q)) then these terms

3
can be controlled by the information p € L{,(Q).

1

6 11
We have proven so far that all the terms of (6.18) can be controlled in the Morrey space M/ ? and this
ends the proof of the Corollary [ |

=

In order to obtain Proposition (and thus Theorem we only need to verify the hypothesis 3) i.e.

6 15

1qp,div(@) € M7, . Recall that in the Corollary |5.1{ we have obtained that 1¢, div(d) € M? 71 but this
is not enough to our purposes. In order to treat thls condition we have:

6 15

Proposition 6.2 Under the general hypotheses of Theorem we have 1q,, div(@d) € MZ:’F.

Proof. We first apply the divergence operator in the equation satisfied by & (see ) to obtain
1 oo
Odiv (&) = 2Adiv(&) — div(J) — idiv(((ﬁ—i— b) - V)ad).

Considering the localizing function ¢ as in (6.2) if we define W = &dzv(d}) we obtain the system W =
2AW + W with W(0, -) = 0 where W = (0:¢p — 2A¢ — ¢)div(W) — 4ZZ 10:0)(9idiv(5)) — Fodiv((T - V)@D),
and we have

3

t _ 1 - -
W(t, z) = / 2(t=s) <(at¢ 206 — §)div(@D) =4 (9,0)(Didiv()) —5 ¢div (@ V)3) >ds (6.19)
0 — N
(W) =1 (W2) (Ws)
6 15
Now we will prove that each one of these term belong to My, ? . Indeed:

e For the first term W; we write, following the same arguments as in :

5,15 < C(H]IQRQ'CI(UIQRQDHM%% + H]lQRQ,Cg(]]lQRcU\)HMf 15 ). (6.20)

H]IQRQ)/Vlth iy

,T t,x

For the first term above we set p = %, q= % and \ = 1—10 and by Lemma we obtain

en, L1(ep@DIl | o1 < Clllqn, L1(1Lex D] s
t T

For the second term of 1) we fix p = g, q= %2 and \ = % thus by Lemma we have

H]IQR2£2(|]1QR“7DHM§,% < ”]IQRQc?(’]lQR‘DDH

< C”nQleHM%% < CH]IQle‘|Mf’;O < +o0.

t,x

Mt%% < CH]IQRl(BHMt%;Lf < CH]IQMQHM?ZO < +o00.

e For the term W, of (6.19) we write for all 1 <14 < 3:

[ s = ) [(0:0)0i0(3) 5.1y s]n% | [, dsate = wl@8)ain@) s, s

Hian, [ [ oede @@ s lduds). (620
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The last term above can be studied just as YW, while for the first term of the right-hand side of (6.21))

we write:

Hn% / t [ gl wl@id)ain(@) s, s

15 .

o1 < C||Lan, L2110, div@))|

8.
M;,a; Mtd,:c
Taking again p = g, q= % and A = %, applying Lemma we obtain
[10r, L2(apdiv@)], 5.5 < Clltgn,div@)l 2 < Map 0@y < 400 (622)

6
55
M,

x

Now, we study the last term of (6.19)). For 1 < i < 3 we write

t —_ —
< [tar, [ [ 20dlo— )él(a 9)a)duds

~~

(a)

‘ﬂQRQ /0 t /R L Bs(z — Y)¢di[(@ - V&) dyds

+[1s, | [ ala = @ Dy

)

and we remark that in order to study the last term above it is enough to consider, for 1 <[, 5,k < 3,
the quantities

t t
o, [ [ dacde @ ueists| |ty [ [ oo - 0000 wn)nds

(0) (c)

Following the computations performed above, we have for the term (a):

< OllLqp, L2(ILq, (@ - V)J))|

1

3]

)

o

6
E =)
2 M

,T

§
:
M

and fixing p = g, q= 1(}%‘;0 and A = 110(2:3100, by Lemma we have

I, L2t (@93 g 1 < Cla, @ Dl ¢ tug < Clayilpullla, Vol e < +oc,

t,x

6
MP,
where we used the Hélder inequalities for Morrey spaces and Lemma in the last estimate.

For the term (b), we write

Jtar, [ [ 5ec ~ 000w

pr < CH]lQRQ52(\]1623%%!)\%?;%,

x

and applying the same arguments as in ((6.22]) we have

H]lQRQ52(I1QEUjWk\)\IMtg,15 < Cllgpuwsl

2

< C|1g,u;w
g s 11qQsu; kHMt%;o

< Ol g [ L, Dl g3 < +o0.

For the term (c), by the same ideas displayed in the study of first term of (6.20)) we have:

15 < CH]]'QRZ El(‘]lQEujkaH

L VR < g ujwsll
t 5T
<

t -
[0, [ [ et~ (@08 ) )

CH]IQRijkHM 10 = CH]]‘QR1 ﬁHMf’vg”]lQleHMf:g < +oo.

3
5
t,x
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2

6
We have thus proven that all the terms of (6.19) belong to the Morrey space My, *: the proof of the
Proposition [6.2] is complete. |

We have now all the hypotheses of the Proposition and thus Theorem follows. [

Acknowledgements. We would like to thank Jiao He for fruitful discussions.
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