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Notations

a ∧ b minimun between a, b

a ∨ b maximun between a, b.

Ln Lebesgue measure of dimension n.

Hd Hausdorff measure of dimension d.

E Topological closure of E.

∂E Topological boundary of E.

Br (x) Open ball with center in x and radius r (x = 0 can be omited).

ωnr
n volume of the ball of radius r

ap limy→x f (y) approximate limit

apDf(x) approximate differential

Du Distributional derivative of u

Dau absolutely continuous part of derivative

Dsu singular part of derivative

Dju jump part of derivative

Dcu Cantor part of derivative

|Du| total variation of Du

|∂E| perimeter of E

∂∗E reduced boundary of E

∂∗E measure theoretical boundary of E
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Introduction

The Mumford-Shah conjecture says, in dimension 2, that the singular set of a reduced

minimizer of the Mumford-Shah functional is locally a C1 curve, except at a finite number

of points and, the physic point of view of the Mumford-Shah problem is related to image

segmentation. The conjecture was proposed in [23].

This famous problem is about the minimization of the functional

J (K, u) :=

ˆ
Ω\K
|∇u|2 + α (u− g)2 dx+ βHn−1 (K ∩ Ω) ,

where Ω ⊂ Rn, g ∈ L∞ (Ω) and the positive parameters α, β are given; the problem is to

minimize J in the set of the admissible pairs

A :=
{

(K, u);K ⊂ Ω, u ∈ W 1,2
loc (Ω\K)

}
.

To approach to the possible solution of the conjecture, the method is to minimize the

weak formulation of J , i.e., minimize the functional

F (u) :=

ˆ
Ω

|∇u|2 + α(u− g)2dx+ βHn−1(Su),

where Su is the jump set of u ∈ SBV (Ω).

We do not have yet the solution of this conjecture, but some results have been obtained,

simultaneously and independently, by A. Bonnet ([9, 8, 10]), by L. Ambrosio, N. Fusco

and D. Pallara ([6, 4]) and by G. David ([13]). We will follow the work done by L. Am-
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brosio, N. Fusco and D. Pallara, for that reason, is important to study first the theory of

special bounded variation functions.

In the first chapter, we give some basic (more or less) results which come from Mea-

sure Theory and Geometric Measure Theory.

The second chapter is devoted to the basic theory of BV functions, for instance a very

important tool the coarea formula. In this chapter, a lot of proofs of the theorems in this

chapter could be found in [5, 17].

In chapter three, we study the construction of special bounded variation functions (SBV (Ω)).

Almost all of the results of this chapter have their proofs which are based in the work of

L. Ambrosio in [3]. Here, we can find two important results, compactness of SBV (Ω) and

the chain rule in SBV (Ω), which are fundamental to show the existence of minimzers of

Mumford-Shah functional,

In the last chapter, we follow the work of [16] to find a minimizers of the next prob-

lem

min
u=g,u∈SBV (Ω)

ˆ
Ω

|∇u|2dx+Hn−1 (Su), (1)

where g ∈ L∞ (Ω), and Ω is a domain with Lipschitz boundary. Furthermore, we follow

the work of Babadjian and Giacomini (see [7]) with the difference that we are supposing

that we only have Dirichlet condition. Our aim is obtain the existence of minimizers,

quasi-minimizers and some lower bounds properties (i.e., Alfhors-David regularity) and

the essential closely of the jump set in the problem (1).

The last section is devoted to prove the existence of minimizers for the strong formulation

of the Mumford-Shah functional using the existence of minimizers and quasiminimizers

for the weak formulation and a lower density bound (Alfhors regularity) of the jump set.

At the end, there is one annex, which is a basic result of Geometric Measure Theory.
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Chapter 1

Preliminaries

In this chapter, we present some important tools (theorems and definitions) from Geo-

metric Measure Theory and Measure Theory.

Definition 1.1 (Approximate limit). Let f : Rn → Rm. We say that l ∈ Rm is the

approximate limit of f as y → x, written

ap lim
y→x

f (y) = l,

if for each ε > 0,

lim
r→0

Ln (Br (x) ∩ {|f − l| ≥ ε})
Ln (Br (x))

= 0.

Definition 1.2 (Approximate differentiability). Let f : Rn → Rm. We say that f is

approximately differentiable at x ∈ Rn if there exists a linear mapping

L : Rn → Rm

such that

ap lim
y→x

|f (y)− f (x)− L (x− y)|
|x− y|

= 0.

Remark 1.1. In the last definition, if L exists, it is unique and we write it as apDf(x)
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Definition 1.3 (Densities). Let E ⊂ Rn. A point x ∈ Rn is a point of density 1 for E if

lim
r→0

Ln (Br (x) ∩ E)

ωnrn
= 1

and a point of density 0 for E if

lim
r→0

Ln (Br (x) ∩ E)

ωnrn
= 0.

Definition 1.4. Let ϕ : Rn → Rk be a Borel map, and let µ = (µ1, . . . , µp) be a vector

measure with finite total variation in Rn. We canonically define a vector measure ϕ# (u)

in Rk by setting

ϕ# (µ) (F ) = µ
(
ϕ−1 (F )

)
for any Borel set F ⊂ Rk.

Lemma 1.1. Under the assumptions above, the image of ϕ contains a Borel set in which

ϕ# (|µ|) is supported. In addition, if ϕ is one to one the following equality holds

|ϕ (µ)| = ϕ# (|µ|) . (1.1)

Proof. According to Lusin’s Theorem, there exists (Kh) an increasing sequence of compact

subsets of Ω such that the restriction of ϕ to Kh is continuous and |µ| (Ω\Kh)→ 0. Then,

ϕ (Kh) are compact sets whose union covers ϕ# (|µ|)-almost all of Rk. Indeed,

µ
(
φ−1 (Kh)

)
≤ µ (Kh)→ µ (Ω) .

If ϕ is one to one, we only need to prove that

|ϕ# (µ)| (ϕ (Kh)) ≥ ϕ# (|µ|) = |µ| (Kh)

for any h ∈ N. For any ε > 0 we can find mutually disjoint compacts sets Ci ⊂ Kh such
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that
+∞∑
i=1

|µ (Ci)| ≥ |µ| (Kh)− ε.

We have that Di = ϕ (Ci) are mutually disjoint compact subsets of ϕ (Kh) because ϕ is

one to one, hence

|ϕ# (µ)| (ϕ (Kh)) ≥
+∞∑
i=1

|ϕ# (µ) (Di)| =
+∞∑
i=1

|µ (Ci)| ≥ |µ| (Kh)− ε.

By arbitrarily of h and ε, we have the conclusion of this lemma. The inequality |ϕ# (µ)| ≤

ϕ# (|µ|) follows directly by the definition of total variation.

Definition 1.5 (Hausdorff metric of compacts sets). Let K1 and K2 be compact subsets

of Ω. The Hausdorff distance between K1 and K2 is given by

dH (K1, K2) := max

{
sup
x∈K1

dist (x,K2), sup
y∈K2

dist (y,K1)

}
.

Definition 1.6. We say that a sequence (Kn) of compact subsets of Ω converges in the

Hausdorff metric to the compact set K if dH (Kn, K)→ 0.

The following theorem gives us a compactness result, for further reference see [5], Theorem

6.1.

Theorem 1.2 (Blaschke). The collection of all nonempty closed subset of Ω is a compact

metric space, when endowed with the Hausdorff metric.
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Chapter 2

Space BV

In this chapter, we are going to enunciate and proof some important properties of the

space BV.

Definition 2.1. Let Ω ⊂ Rn and u ∈ L1 (Ω). We says that u has bounded variation if

there exists a vector measure Du = (D1u,D2u, . . . , Dnu) with finite total variation in Ω,

such that ˆ
Ω

u
∂ϕ

∂xi
= −

ˆ
Ω

ϕdDiu, ∀ϕ ∈ C1
0 (Ω) .

The space of all bounded variation distributions will be denoted as BV (Ω) .

Let u ∈ BV (Ω), the total variation of Du is

|Du| (Ω) := sup

{
n∑
i=1

ˆ
Ω

u
∂ϕ

∂xi
dx;ϕ ∈ C1

c (Ω) , ‖ϕ‖∞ ≤ 1

}
,

Notation 2.1 ([17]). Let u ∈ BV (Ω). By Lebesgue’s decomposition theorem, we infer

that Du = Dau+Dsu and that Dau << Ln and Dsu ⊥ Ln. We have also that ∇u is the

density of Dau with respect to Ln. Thus, we write

Dau = Ln Du = ∇uLn

12



and then,

Du = ∇uLn +Dsu.

Theorem 2.1. For all f ∈ BVloc (Rn) we have that f is approximately differentiable

Ln-a.e.

Proof. By the Differentiability of BV functions (See Theorem 6.1 in [17]) and the Hölder

inequality, we have that for Ln-a.e x ∈ Rn,

 
Br(x)

|f (y)− f (x)− (∇f (x) , y − x)|dy = o (r) as r →∞. (2.1)

Let x ∈ Rn so that we have the property above. We proceed by contradiction, we suppose

that there exists θ > 0 such that f is not approximate differentiable at x, i.e.,

ap lim sup
y→x

|f (y)− f (x)− (∇f (x) , y − x)|
|y − x|

> θ > 0.

Then, by definition of approximate differentiable, there exist a sequence (rj) such that

rj → 0 and a constant γ > 0 so that

Ln
({
y ∈ Brj (x) ; |f (y)− f (x)− (∇f (x) , y − x)| > θ|y − x|

})
ωnrnj

≥ γ > 0.

Furthermore, by (2.1), there exists σ > 0 such that σrj < rj, σn < γ
2
, σ ∈ [0, 1] and

Ln
({
y ∈ Bσrj (x) ; |f (y)− f (x)− (∇f (x) , y − x)| > θ|y − x|

})
ωnrnj

≥ γ

2
.

Then,

Ln
({
y ∈ Brj (x) \Bσrj (x) ; |f (y)− f (x)− (∇f (x) , y − x)| > θ|y − x|

})
ωnrnj

≥ γ

2

for j ∈ {1, 2, . . .}. Since |y − x| > σrj for any y ∈ B (x, rj) \B (x, σrj), we can see that,

Ln ({y ∈ B (x, rj) ; |f (y)− f (x)− (∇f (x) , y − x)| > θσrj})
ωnrnj

≥ γ

2
, (2.2)
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for j ∈ {1, 2, . . .}. But, by (2.1), the expression on the left hand side of (2.2) is less or

equal to o (rj), and then
o (rj)

ωnrnj
= o (1) rj → 0,

which is a contradiction with (2.2). Then,

ap lim sup
y→x

|f (y)− f (x)− (∇f (x) , y − x)|
|y − x|

= 0.

Remark 2.1. We have shown, in the Theorem 2.1, that apDf (x) = ∇f (x).

For any u ∈ BV (Ω), by the dominated convergence theorem, the fact that u is approxi-

mately differentiable and the last remark, we have

lim
r→0+

1

rn

ˆ
Br(x)

|u (y)− u (x)− (∇u (x) , y − x)|
|y − x|

dy = 0 (2.3)

for Ln-a.e x ∈ Ω.

Definition 2.2. Let E ⊂ Rn such that 1E ∈ BV (Rn). We define the perimeter measure

of E, denoted by |∂E|, to the total variation of D1E, i.e, |∂E| = |D1E|. We say that E

is a set of finite perimeter if |∂E| < +∞.

Remark 2.2. From the Riez Representation theorem, we see that

|∂E| (V ) = sup

{ˆ
V

divϕdx;ϕ ∈ C1
c (V ) and ‖ϕ‖∞ ≤ 1

}

for each open set V ⊂⊂ Ω.

Notation 2.2. For u : Ω→ Rn, and t ∈ Rn, we define the level set of u as

Et := {x ∈ Ω;u (x) > t} .
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The next theorem is one of the most important results for the BV functions, there is

another version for L1
loc functions, for further references see [5], [15] and [17].

Theorem 2.2 (Coarea formula for BV functions). Let u ∈ BV (Ω). Let U ⊂ Ω. Then,

i) Et has finite perimeter for Ln-a.e t ∈ R,

ii) |Du| (B) =

ˆ +∞

−∞
|∂Et| (B) dt, for all Borel set B ⊂ Ω

iii) Conversely, if f ∈ L1 (Ω) and
ˆ +∞

−∞
|∂Et| (Ω) dt < +∞, then u ∈ BV (Ω).

Definition 2.3. Let E a set of locally finite perimeter in Rn. Let x ∈ Rn. We say

x ∈ ∂∗E, the reduced boundary of E, if

i) |∂E| (B (x, r)) > 0 for all r > 0,

ii) lim
r→0

 
B(x,r)

νEd|∂E| = νE (x) and

iii) |νE (x)| = 1,

where νE (x) = lim
r→0

D1E (Br (x))

|D1E| (Br (x))
.

Let E ⊂ Ω be a set with finite perimeter, writing the polar decomposition of D1E we

have

D1E = νE|∂E|, (2.4)

where νE is defined |∂E|−a.e. in Rn and |νE| = 1 |∂E|-a.e. in Rn.

Definition 2.4 (Locally perimeter set). Let E ⊂ Ω a Borel set such that 1E ∈ BV (Ω).

Then, E has finite perimeter in any open set Ω′ ⊂ Ω. Then, we say that E is a locally

perimeter set in Ω.

Definition 2.5. Let E a set of locally finite perimeter in Rn. Let x ∈ Rn. We say

x ∈ ∂∗E, the measure theoretic boundary of E, if

lim sup
r→0

Ln (B (x, r) ∩ E)

rn
> 0
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and

lim sup
r→0

Ln (B (x, r) \E)

rn
> 0

Theorem 2.3 (Generalized Gauss-Green theorem or De Giorgi’s theorem). Let E ⊂ Rn

a locally finite perimeter set.

i) Then Hn−1 (∂∗E ∩K) <∞ for each compact set K ⊂ Rn.

ii) Furthermore, for Hn−1-a.e x ∈ ∂∗E, there is a unique measure theoretic unit outer

normal νE (x) such that

ˆ
E

divϕdx =

ˆ
∂∗E

(ϕ, νE)dHn−1

for all ϕ ∈ C1
c (Rn,Rn).

Remark 2.3. The measure theoretic unit outer normal νE (x) is the same as (2.4).

By De Giorgi’s theorem 2.3, for any set E such that 1E ∈ BV (Ω), we have

|∂E| = Hn−1 ∂∗E = Hn−1 ∂∗E,

and ∂∗E (or ∂∗E) is Hn−1-rectifiable.

By the last identity above, the Coarea formula, we have 1Et ∈ BV (Ω) for L1-almost every

t ∈ R and

Du (F ) =

ˆ +∞

−∞
D1Et (F ) dt, (2.5)

|Du| (F ) =

ˆ +∞

−∞
|D1Et | (F ) dt =

ˆ +∞

−∞
Hn−1 (∂∗Et ∩ F ) dt (2.6)

for any u ∈ BV (Ω) and any Borel set F ∈ Ω.

Theorem 2.4 (Local approximation by smooth functions [17]). Assume f ∈ BV (Ω).

Then there exist functions (fn)n∈N∗ ⊂ BV (Ω) ∩ C∞ (Ω) such that

1. fk → f in L1 (Ω) and

2. |Dfk| (Ω)→ |Df | (Ω) as k → +∞.
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Definition 2.6. Let u, uh ∈ BV (Ω). We say that (uh) weakly* converges in BV (Ω) to

u if (uh) converges to u in L1 (Ω) and (Duh) weakly* converges to Du in Ω, i.e.,

lim
h→∞

ˆ
Ω

φdDuh =

ˆ
Ω

φdDu,

for all φ ∈ Cc (Ω).
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Chapter 3

Space SBV

We are going to construct the space SBV (Special Bounded Variation). The aim of this

chapter is to prove the compactness theorem (Ambrosio’s theorem) and the chain rule for

the composition of a u ∈ SBV (Ω) and with a C1 Lipschitz function.

We have already seen in the last chapter that for any u ∈ BV (Ω) we have Du = ∇uLn +

Dsu. First, we will study the singular part of Du.

3.1 Decomposition of Du

We will use the method of Ambrosio in [3] which is based in construct the jump set with

the lower and upper approximate limits of a function.

Definition 3.1. The upper and lower approximate limits u+, u− respectively, are defined

by

u+ (x) = inf {t ∈ [−∞,+∞] ; {x ∈ Ω;u (x) > t} has density 0 at x}

u− (x) = sup {t ∈ [−∞,+∞] ; {x ∈ Ω;u (x) < t} has density 0 at x}

Definition 3.2 (Jump set). Let u ∈ BV (Ω). The jump set Su is defined as

Su = {x ∈ Ω;u− (x) < u+ (x)} .
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Observe that if x0 is a Lebesgue point of u, then

u (x0) = u− (x0) = u+ (x0) .

Also, the set of the points that are not Lebesgue points, is Ln-negligible, we have that

Ln (Su) = 0. If x /∈ Su, we denote by

ũ (x) = u− (x) = u+ (x)

the common value.

Theorem 3.1. The set Su is Hn−1-measurable (σ-finite) and rectifiable.

Proof. Let Et the level set of u. By the Coarea formula, Et is a set of finite perimeter in

Rn for L1-a.e. t. Furthermore, we observe that if x ∈ Su and u− (x) < t < u+ (x), then

lim sup
r→0

Ln (B (x, r) ∩ {u > t})
rn

> 0

and

lim sup
r→0

Ln (B (x, r) ∩ {u < t})
rn

> 0.

Hence,

{x ∈ Su;u− (x) < t < u+ (x)} ⊂ ∂∗Et. (3.1)

Choose D ⊂ R a countable, dense set such that Et is of finite perimeter for each t ∈ D.

By the Structure theorem for sets of finite perimeter (See [17] 5.7.3), for each t ∈ D, Hn−1

almost all of ∂∗Et is contained in a countable union of C1-hypersuperfaces.

Now, by (3.1), we have that Su ⊂
⋃
t∈D

∂∗Et. Then, the set Su is Hn−1-measurable (σ-finite)

and rectifiable.

Let x ∈ Rn. Then −∞ < u− (x) ≤ u+ (x) < +∞ for Hn−1-a.e x ∈ Rn. (See the proof in

the Appendix, Theorem 3.2)
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Remark 3.1. We proved above that

{(x, t) ;x ∈ Su and u− (x) < t < u+ (x)} ⊂ {(x, t) ;x ∈ Su and x ∈ ∂∗Et} .

Similarly, we can prove that

{(x, t) ;x ∈ Su and x ∈ ∂∗Et} ⊂ {(x, t) ;x ∈ Su and u− (x) ≤ t ≤ u+ (x)}

By Fubini and Coarea formula (See (2.6)), we deduce that

ˆ
Su

(u+ − u−) dHn−1 =

ˆ
Su

(ˆ u+(x)

u−(x)

1dt

)
dHn−1

=

ˆ
Su×R

1{(x,t);x∈Su,u−(x)≤t≤u+(x)}d
(
L1 ×Hn−1 Su

)
=

ˆ
R

(ˆ
Su

1{(x,t);x∈Su∩∂∗Et}dHn−1

)
dt

=

ˆ
R
Hn−1 (∂∗Et ∩ Su) dt ≤ |Du| (Ω) < +∞. (3.2)

Theorem 3.2 ([17]). Let u ∈ BV (Ω). Then −∞ < u− (x) ≤ u+ (x) < +∞ for Hn−1-a.e

x ∈ Rn.

Proof. Let u ∈ BV (Ω).

Claim 1: Hn−1 ({x;u− (x) = +∞}) = 0 and Hn−1 ({x;u− (x) = −∞}) = 0.

Proof of the Claim 1: We assume that supp (u) is compact. Let Ft = {x ∈ Rn;u− (x) > t}.

Since u+ (x) = u− (x) = u (x) Ln-a.e, we have that Ft = Et Ln-a.e, hence, |∂Et| = |∂Ft|.

By the Coarea formula for BV functions , we have that

ˆ +∞

−∞
|∂Ft| (Rn) dt = |Du| (Rn) < +∞,

and then for a subsequence tj → +∞,

lim inf
tj→∞

∣∣∂Ftj ∣∣ (Rn) = 0. (3.3)
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Since supp (u) is compact, there exists d > 0 such that

Ln (supp (u) ∩B (x, r)) ≤ 1

8
ωnr

n for all x ∈ supp (u) and for all r ≥ d. (3.4)

Let tj > 0. By definition of u− and Ftj ,

lim
r→0

Ln
(
Ftj ∩B (x, r)

)
ωnrn

= 1 for x ∈ Ftj .

Then for each x ∈ Ftj , there exists r > 0 such that

Ln
(
Ftj ∩B (x, r)

)
ωnrn

=
1

4
. (3.5)

According (3.4), we have the same result for r ≤ d.

We apply Vitali’s covering theorem to find disjoint collection (B (xi, ri))i∈N of balls satis-

fying (3.5) for x = xi, r = ri < d such that

Ftj ⊂
∞⋃
n=1

B (xi, 5ri)

Using (3.5) and the Relative Isoperimetric Inequality (See [17] 5.6), we see that

(ωn
4

)n−1
n ≤

c
∣∣∂Ftj ∣∣ (B (xi, ri))

rn−1
i

,

thus

rn−1
i ≤ c

∣∣∂Ftj ∣∣ (B (xi, ri)) .

So, we may calculate

Hn−1
10d

(
Ftj
)
≤

∞∑
i=1

ωn−1 (5ri)
n−1 ≤ c

∞∑
i=1

∣∣∂Ftj ∣∣ (B (xi, ri))

≤ c
∣∣∂Ftj ∣∣ (Rn) .

Since Hn−1
10d ({x;u− (x) = +∞}) = 0, then Hn−1 ({u+ = +∞}). The demonstration of

Hn−1
10d ({x;u− (x) = −∞}) = 0 is similar.
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End of Claim 1

Claim 2: Hn−1 ({x;u+ (x)− u− (x) =∞}) = 0

Proof of Claim 2:

We have shown, in the Theorem 3.1, that the set {(x, t) ;u− (x) < t < u+ (x)} ⊂ Su × R

is σ-finite with respect to Hn−1 × L1 in Rn. Consequently, Fubini’s theorem implies

ˆ +∞

−∞
Hn−1 ({u− (x) < t < u+ (x)}) dt =

ˆ
Rn
u+ (x)− u− (x) dHn−1.

By the fact that {u− (x) < t < u+ (x)} ⊂ ∂∗Et, the Coarea formula and the Structure

theorem of finite perimeter (See [17], Theorem 5.15), we can see that

ˆ +∞

−∞
Hn−1 ({u− (x) < t < u+ (x)}) dt ≤

ˆ +∞

−∞
Hn−1 (∂∗Et) dt

=

ˆ +∞

−∞
|∂Et| (Rn) dt = |Du| (Rn) < +∞.

Consequently, Hn−1 ({x;u+ (x)− u− (x) =∞}) = 0.

End of the Claim 2.

Remark 3.2. If u = 1E for some Borel set E ⊂ Ω, then Su coincides with the essential

boundary (or measure theoretical boundary).

Combining the Theorem 5.1 and the theory developed until (2.6), we have that there

exists a Borel map νu : Su → Sn−1 such that

νEt (x) = νu (x) for Hn−1 − a.e. x ∈ ∂∗Et ∩ Su (3.6)

for any t such that 1Et ∈ BV (Ω).

Definition 3.3. We call jump part of derivative Dju the restriction of Dsu to the jump

set Su. We call Cantor part of derivative Dcu the restriction Dsu to Ω\Su.

Definition 3.4 (SBV space). We say that u ∈ SBV (Ω) if Dcu = 0, or equivalently, if

the singular part of Du is supported in Su.
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Remark 3.3. We have that SBV (Ω) is a proper subset of BV (Ω). On the contrary, we

have that the Cantor function is an element of BV (Ω) but not in SBV (Ω), because, the

distributional derivative of the Devil’s staircase is supported in the Cantor set, which is

also the jump set. Then, the derivative Cantor part Dc of the Devil’s staircase functions

is positive.

The following proposition shows that, in some sense, Dsu = Dju + Dcu is the decompo-

sition in absolutely continuous and singular part od Ds with respect to Hn−1.

Proposition 3.3 ([3]). Let u ∈ BV (Ω). Then, the jump part of derivative is absolutely

continuous with respect to Hn−1 and

Dju = (u+ − u−) νuHn−1 Su (3.7)

where νu (x) is the unit vector in (3.6). Moreover, the Cantor part of derivative is orthog-

onal with respect to Hn−1, i.e.

Hn−1 (F ) < +∞ =⇒ |Dcu| (F ) = 0

for any Borel Set F ⊂ Ω.

Proof. Let u ∈ BV (Ω). We already proved that

{(x, t) ;x ∈ Su, u− (x) < t < u+ (x)} ⊂ {(x, t) ;x ∈ Su;Su ∩ ∂∗Et}

⊂ {(x, t) ;u− (x) ≤ t ≤ u+ (x)} .

Hence, we infer that Ln ({t ∈ R;x ∈ ∂∗Et}) = u+ (x)− u− (x).

Let F ⊂ Su be any Borel set. Using the coarea formula, the definition and decomposition
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of Du, (2.5), (3.2), (3.6) and the Fubini-Tonelli theorem, we obtain that

Dju (F ) = Du (F ) =

ˆ +∞

−∞
D1Et (F ) dt =

ˆ +∞

−∞

ˆ
F∩∂∗Et

νu (x) dHn−1 (x) dt

=

ˆ
F

(ˆ +∞

−∞
1{t∈R;x∈∂∗Et}

)
νu (x) dHn−1 =

ˆ
F

(u+ − u−) νudHn−1 (x).

And then, we can conclude (3.7).

Now, we are going to study the Cantor derivative part. Let F ⊂ Ω\Su be a Borel set with

Hn−1 (F ) < +∞. Since Ln (F ) = 0 and by the coarea formula (2.6), we have

|Dc|u (F ) = |D|u (F ) =

ˆ +∞

−∞
Hn−1 (F ∩ ∂∗Et) dt.

By the fact that F ⊂ Ω\Su

F ∩ ∂∗Et ⊂ {x ∈ F ;u− (x) ≤ t ≤ u+ (x)} = {x ∈ F ; ũ (x) = t} .

And there are only countably many t ∈ R such that

Hn−1 ({y ∈ F ; ũ (x) = t}) > 0,

it follows that |Dc|u = 0.

By the last proposition, for any u ∈ BV (Ω), we have

Du = Dau+Dju+Dcu = ∇uLn + (u+ − u−) νuHn−1 Su +Dcu. (3.8)

And the measures in the right hand side are mutually singular.
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3.2 Chain rule

Let u ∈ BV (Ω) and ψ ∈ C1
c (R). The aim of this section is to obtain a chain rule, in the

distributional sense, for D (ψ (u)). With the definition of SBV (Ω), the interest of this

section is to give a chain rule for ∇ψ (u), Djψ (u) and Dcψ (u) in terms of ∇u, Dju and

Dcu.

Proposition 3.4. Let u ∈ BV (Ω) and ψ ∈ C1
c (R), then v = ψ (u) ∈ BV (Ω) and

Djv = (ψ (u+)− ψ (u−)) νuHn−1 Su, (3.9)

∇v = ψ′ (u)∇u, Dcv = ψ′ (ũ)Dcu. (3.10)

Proof. Claim 1: Any function ψ ∈ C1
c (R) can be written as the difference of two Lipschitz

functions ψ1, ψ2 ∈ C1 (R) such that ψi ≥ 1, i = 1, 2.

Proof of the Claim 1: Let ψ ∈ C1
c (R). We know that m := minψ′ ≤ 0, and we

define ψ2 Lipschitz function such that ψ′2 ≥ 1 − m. The function ψ1 will be defined as

ψ1 = ψ + ψ2. It is easy to see that ψ′1 = ψ′ + ψ′2 ≥ m+ 1−m = 1.

End of the Claim 1.

After this claim, we will make the proof of this proposition for C1, Lipschitz and increasing

functions. Let u ∈ BV (Ω) and ψ ∈ C1, Lipschitz and increasing function. By the

approximation theorem, we can find a sequence (uh) ⊂ C1 (R) converging to u ∈ L1 (Ω)

and such that |Duh| (Ω) converges to |Du| (Ω) as h→ +∞.

Claim 2: vh = ψ (uh) converges to v ∈ L1 (Ω).

Proof of the Claim 2: It is easy to see that

‖vh − v‖1 = ‖ψ (uh)− ψ (u)‖1 ≤ Lip (ψ) ‖uh − u‖1 −−−→
h→∞

0.

End of the Claim 2.
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By the lower semi-continuity of |Duh| (Ω) we have

|Dv| (Ω) ≤ lim inf
h→∞

|Dvh| (Ω) ≤ lim inf
h→∞

|Dψ (uh) (Ω)| ≤ ‖ψ′‖∞ lim inf
h→∞

|Duh| (Ω)

= ‖ψ′‖∞|Du| (Ω)

Using the Claim 2 and the last expression we can conclude that v ∈ BV (Ω).

Furthermore, we can see that ν+ = ψ (u+) and ν− = ψ (u−). Indeed, by monotony and

injectivity of ψ,

ν+ (x) := inf {t ∈ [−∞,+∞] ; {x ∈ Ω; v (x) > t} has 0 density at x}

= inf {t ∈ [−∞,+∞] ; {x ∈ Ω;ψ (u (x)) > t} has 0 density at x}

= inf
{
t ∈ [−∞,+∞] ;

{
x ∈ Ω;u (x) > ψ−1 (t)

}
has 0 density at x

}
= inf {ψ (t) ∈ [−∞,+∞] ; {x ∈ Ω;u (x) > t} has 0 density at x} = ψ (u+ (x)) .

In a similar way, we have the same result for ψ (u− (x)). Once again, as ψ is one to one

increasing function,

Sv = {v− (x) < v+ (x)} = {ψ (u−) < ψ (u+)} = {u− (x) < u+ (x)} = Su.

By (3.6), the exterior normal coincides, i.e. νv = νu. Then, we infer that

Dv Sv = (v+ − v−) νvHn−1 Sv = (ψ (u+)− ψ (u−)) νuHn−1 Su.

By the coaire formula (2.5), we have that for any Borel set F ⊂ Ω\Su

Dv (F ) =

ˆ +∞

−∞
D1{v>t} (F ) dt =

ˆ +∞

−∞
D1{u>ψ−1(t)} (F ) dt =

ˆ +∞

−∞
D1{u>τ} (F )ψ′ (τ) dτ

=

ˆ +∞

−∞

ˆ
F

ψ′ (τ)D1{u>τ}dτ .

Since x ∈ ∂∗ {u > τ} \Su implies ũ (x) = τ , we have that

Dv (F ) =

ˆ +∞

−∞

ˆ
F

ψ′ (ũ)D1{u>τ}dτ = ψ′ (ũ)Dcu (F ) .
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So we have shown the second part of (3.10). Since the sum of Dav and Dcv is the

restriction of Dv to Ω\Su, so (3.10) is equivalent to

Dv Ω\Sv = Dav +Dcv = ∇ (ψ (u))Ln +Dcψ (u) = ψ′ (u)∇uLn +Dc (ψ (u))

= ψ′ (ũ)∇uLn + ψ′ (ũ)Dcu = ψ′ (ũ)Du Ω\Su.

Since the set of points which are not Lebesgue points is Ln-negligible, we have last identity

3.3 Compactness of SBV

We know that BV (Ω) has the compactness property, and this proof of the compactness

is not needed the decomposition of the derivative. This section is devoted to prove a

compactness of SBV using the decomposition of Du and the chain rule (Proposition 3.4),

for any u ∈ BV (Ω).

Let u ∈ BV (Ω), and let ψ ∈ C1
c (R). By the chain rule, the distributional derivative of

ψ (u) is given by

Dψ (u) = ψ′ (u)∇uLn + (ψ (u+)− ψ (u−)) νuHn−1 Su + ψ′ (ũ)Dcu.

In particular for all φ ∈ C1
c (R), is easy to see that

ˆ
Ω

[
∂φ

∂xi
ψ (u) + φψ′ (u)

∂u

∂xi

]
dx = −

ˆ
Ω

φDψ (u) dx+

ˆ
Ω

φψ′ (u)
∂u

∂xi
dx

= −
ˆ

Ω

φψ′ (u)
∂u

∂xi
dx−

ˆ
Su

φ (ψ (u+)− ψ (u−)) νu,idHn−1 (x)

−
ˆ

Ω

φψ′ (ũ) dDcui +

ˆ
Ω

φψ′ (u)
∂u

∂xi
dx

= −
ˆ
Su

φ (ψ (u+)− ψ (u−)) νu,idHn−1 (x)−
ˆ

Ω

φψ′ (ũ) dDcui,

(3.11)
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for any i ∈ {1, . . . , n}. If u ∈ SBV (Ω) and Hn−1 (Su) < +∞, the above formula can be

written as follows

ˆ
Ω

[
∂φ

∂xi
ψ (u) + φψ′ (u)

∂u

∂xi

]
dx =

ˆ
Ω×R

φ (x)ψ (s) dµi (x, s), (3.12)

where denoting by Φ+,Φ− : Ω→ Ω× R the maps

Φ+ (x) = (x, u+ (x)) , Φ− (x) = (x, u− (x)) , (3.13)

and the measure µ = (µ1, . . . , µn) is defined by

µ = Φ+
#

(
νuHn−1 Su

)
− Φ−#

(
νuHn−1 Su

)
. (3.14)

Since the images of Φ+ and Φ− are disjoints (i.e. Φ+ and Φ− are one to one functions),

by Lemma 1.1 and (2.6), we obtain

|µ| =
∣∣Φ+

#

(
νuHn−1 Su

)∣∣+
∣∣Φ−# (νuHn−1 Su

)∣∣ = Φ+
#

(∣∣Hn−1 Su
∣∣)+ Φ−#

(∣∣Hn−1 Su
∣∣)

= Φ+
#

(
Hn−1 Su

)
+ Φ−#

(
Hn−1 Su

)
(3.15)

The useful of the next theorem is very technical, but, it gives another equivalence of SV B

space with (3.12).

Theorem 3.5. Let u ∈ BV (Ω), and let us assume that there exist a ∈ L1 (Ω,Rn) and a

vector measure µ = (µ1, . . . , µn) with finite total variation in Ω× R such that

ˆ
Ω

[
∂φ

∂xi
ψ (u) + φψ′ (u) ai

]
dx =

ˆ
Ω×R

φ (x)ψ (s) dµi (x, s) (3.16)

for any φ ∈ C1
c (Ω), ψ ∈ C1

c (R) and i ∈ {1, . . . , n}. Then, u ∈ SBV (Ω), a = ∇u and

µ = Φ+
#

(
νuHn−1 Su

)
− Φ−#

(
νuHn−1 Su

)
, (3.17)
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with Φ+,Φ− are defined in (3.13). In particular, by (3.15),

2Hn−1 (Su) = |µ| (Ω× R) < +∞.

Proof. Let us assume that (3.16) holds for some a ∈ L1 (Ω,Rn) and some vector measure

µ. We denote by θ the measure π# (|µ|), where π : Ω × R → Ω is the projection to the

first variable. By (3.16), we infer that∣∣∣∣ˆ
Ω

[∇φψ (u) + φψ′ (u) a] dx

∣∣∣∣ ≤ ‖ψ‖∞ ˆ
Ω

φ (x) dθ (x). (3.18)

Let x0 a Lebesgue point of a, such that we have (2.3) and

lim
r→0+

r1−nθ (Br (x0)) = 0, (3.19)

observe that Ln-a.e. points in Ω satisfy the required properties.

We claim that ∇u (x0) = a (x0). Indeed, let B the unit open ball in Rn centered at 0, and

let γ (t) ∈ C1
c (R), ϕ ∈ C1

c (B), inserting

φ (x) = ϕ

(
x− x0

r

)
, ψ (s) = γ

(
s− u (x0)

r

)

in (3.18) and changing variables, we get

ˆ
Br(x0)

(∇φ)ψ (u) dx =
1

r

ˆ
B(x0)

∇ϕ
(
x− x0

r

)
γ

(
u (x)− u (x0)

r

)
dx

=
rn

r

ˆ
B

∇ϕ (y) γ

(
u (x0 + ry)− u (x0)

r

)
dy

= rn−1

ˆ
B

∇ϕγ (ur) dy,

where, ur (y) :=
u (x0 + ry)− u (x0)

r
. We infer also that

ˆ
Br(x0)

φψ′ (u) adx =
1

r

ˆ
Br(x0)

ϕ

(
u (x)− u (x0)

r

)
γ′
(
u (x)− u (x0)

r

)
a (x) dx

= rn−1

ˆ
B

ϕ (y) γ′ (ur (y)) a (x0 + ry) dy = rn−1

ˆ
B

ϕ (y) γ′ (ur) ardy,
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where ar (y) = a (x0 + ry). Then, by (3.18) we obtain∣∣∣∣ˆ
B

[∇ϕγ (ur) + ϕγ′ (ur) ar] dy

∣∣∣∣ ≤ rn−1‖γ‖∞
ˆ
Br(x0)

φ (x) dθ (x).

Using (2.3), we infer that ur converges in L1 (B) to u0 (y) = ∇u (x0) y as r → 0. Passing

to the limit as r → 0 and using (3.19), we get

ˆ
B

[∇ϕγ (u0) + ϕγ′ (u0) a (x0)] dy = 0.

On the other hand, since, Dγ (u0) = γ′ (u0)∇u (x0)Ln,

ˆ
B

[∇ϕγ (u0) + ϕγ′ (u0)∇u (x0)] dy = 0.

Hence, differentiating the two expressions above, we have

[a (x0)−∇u (x0)]

ˆ
B

ϕγ (u0) dy = 0.

Since, γ and ϕ are arbitrary we conclude that a (x0)) = ∇u (x0). Furthermore, since the

set of all points x0 ∈ Ω such that (3.19) is σ-finite with respect to Hn−1 (See [15] and

[25]), it follows that the equality a = ∇u holds Ln-a.e in Ω.

Now, we are going to prove that Dcu = 0. Indeed, let us fix ψ ∈ C1
c (R) and φ ∈ C1

c (Ω).

By (3.11) and (3.18) and taking account that a = ∇u, we obtain∣∣∣∣ˆ
Su

φ (ψ (u+)− ψ (u−)) νudHn−1 −
ˆ

Ω

φψ′ (ũ) dDcu

∣∣∣∣ ≤ ‖ψ‖∞ ˆ
Ω

φdθ.

The inequality above does not contain derivatives of φ, hence, it holds for any Borel

function φ. Since, Hn−1 Su and Dcu are mutually singular, we have∣∣∣∣ˆ
Ω

φψ′ (ũ) dDcu

∣∣∣∣ ≤ ‖ψ‖∞ ˆ
Ω

φdθ.

In particular, if φ = 1F signψ
′ (ũ), where F ⊂ Ω\Su Borel set so that the triangle inequal-
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ity becomes equality, we obtain∣∣∣∣ˆ
F

ψ′ (ũ) dDcu

∣∣∣∣ =

ˆ
F

|ψ′ (ũ)|dDcu ≤ ‖ψ‖∞θ (F ) . (3.20)

Choosing ψ1
ε = sin

(
t

ε

)
and ψ2

ε = cos

(
t

ε

)
, we have that

1

ε

ˆ
F

∣∣∣∣cos

(
ũ

ε

)∣∣∣∣dDcu ≤
∥∥ψ1

ε

∥∥θ (F ) = θ (F )

and
1

ε

ˆ
F

∣∣∣∣sin( ũε
)∣∣∣∣dDcu ≤

∥∥ψ2
ε

∥∥θ (F ) = θ (F )

By the fact that 1 ≤ |sin t|+ |cos t|, we infer that

1

ε

(ˆ
F

dDcu

)
≤ 1

ε

(ˆ
F

∣∣∣∣cos

(
ũ

ε

)∣∣∣∣dDcu+

ˆ
F

∣∣∣∣sin( ũε
)∣∣∣∣dDcu

)
≤ 2θ (F ) .

Then, ˆ
F

|Dcu| ≤ 2εθ (F ) .

As F is arbitrarily, taking ε → 0, we have then, |Dcu| = 0, and it implies that Dcu = 0.

Now, we can conclude that u ∈ SBV (Ω).

We are going to obtain (3.18). Comparing (3.15) and (3.16) with a = ∇u

ˆ
Ω×R

φ (x)ψ (s) dµ (x, s) =

ˆ
Su

φ [ψ (u+)− ψ (u−)] νudHn−1, (3.21)

for all ψ ∈ C1
c (R). Even more, the equality above holds for any bounded Borel function

φ. Let S ⊂ Su be a Borel set such that Hn−1 (S) < +∞ and

τS := Φ+
#

(
νuHn−1 S

)
− Φ−#

(
νuHn−1 S

)
.

For any Borel set F ⊂ S, doing the same process to obtain (3.9) and (3.15), we have

ˆ
Ω×R

1F (x)ψ (s) dµ (x, s) =

ˆ
Ω×R

1F (x)ψ (s) dτS (x, )
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for any ψ ∈ C1
c (R). Since, F and ψ are arbitrary, we obtain

µ S × R = τS (3.22)

Similar arguments used in (3.15) gives

2Hn−1 (S) = 2Hn−1 (Su ∩ S)

= Hn−1
(
Su ∩ (Φ+)

−1
(S × R)

)
+Hn−1

(
Su ∩ (Φ−)

−1
(S × R)

)
= |τS| (S × R) ≤ |µ| (Ω× R) . (3.23)

Letting S → Su (in the sense of Hausdorff metric) in (3.22) and (3.23), we infer

2Hn−1 (Su) ≤ lim inf
S→Su

Hn−1 (S) ≤ |µ| (Ω× R) < +∞

and

µ Su × R = Φ+
#

(
νuHn−1 Su

)
− Φ−#

(
νuHn−1 Su

)
.

On the other hand, (3.21) implies that µ ((Ω\Su)× R) = 0, hence (3.17) follows.

The last theorem, is a important tool to show the compactness of SBV (Ω). This method

was developed by L.Ambrosio in [3]).

Theorem 3.6 (Compactness of SBV (Ω)). Let φ : [0,+∞)→ [0,+) be a convex function

such that

lim
t→+∞

φ (t)

t
= +∞.

Let (uh) ⊂ SBV (Ω) be a sequence such that

‖uh‖∞ +

ˆ
Ω

φ (|∇uh|) dx+Hn−1 (Suh) ≤ c,

for some constant c independent of h. Then, there exist a sub-sequence vk = uhk converging

to v ∈ SBV (Ω) in the L1
loc (Ω) topology. Moreover, ∇vk weakly converges to ∇v in
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L1 (Ω,Rn) as k → +∞ and

Hn−1 (Sv) ≤ lim inf
k→+∞

Hn−1 (Svk).

Proof. Using the same process to obtain (3.12), we can find a vector measure µh in Ω×R

such that

ˆ
Ω

[
∂φ

∂xi
ψ (uh) + φψ′ (uh)

∂uh
∂xi

]
dx = −

ˆ
Ω×R

φ (x)ψ (s) dµh,i (x, s)

for any i ∈ {1, . . . , }, any ψ ∈ C1
c (R) and any ψ ∈ C1

c (R). By (3.14), we have also

|µh| (Ω× R) = 2Hn−1 (Suh) . (3.24)

Suppose for simplicity that
´

Ω
|∇uh|dx ≤ c. Since,

|Duh| (Ω) ≤
ˆ

Ω

|∇uh|+ 2‖uh‖∞H
n−1 (Suh) ,

by Theorem 3.23 in [5], we can assume, up to a subsequence vk = uhk converges in L1
loc (Ω)

to v ∈ BV (Ω). Now we will prove that v ∈ SBV (Ω)

Possibly, extracting a further subsequence, we can assume that the measures σk = µhk

weakly* converges in Ω × R to σ and ∇vk weakly converges in L1 (Ω,Rn) to a (where a

is defined as before).

Since ψ′ is bounded and continuous and ∇vk are equi-integrable, we can pass to the limit

as k → +∞ in

ˆ
Ω

[
∂φ

∂xi
ψ (vk) + φψ′ (vk)

∂vk
∂xi

]
dx = −

ˆ
Ω×R

φ (x)ψ (s) dσk,i (x, s)

to obtain ˆ
Ω

[
∂φ

∂xi
ψ (v) + φψ′ (v) ai

]
dx = −

ˆ
Ω×R

φ (x)ψ (s) dσi (x, s).

By the last theorem, we infer that v ∈ SBV (Ω), a = ∇v and

2Hn−1 (Sv) = |σ| (Ω× R) .
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By (3.24) and the lower semi-continuity of the total variation with respect to weak*

convergence of measures, we get

2Hn−1 (Sv) ≤ lim inf
k→+∞

|σk (Ω× R)| = 2 lim inf
k→+∞

Hn−1 (Svk).

To end this chapter, we introduce the following definition, which is very important to

study minimizers and quasi-minimizers of Mumford-Shah functional.

Definition 3.5. The space SBV p (Ω), for p > 1, is a subset of SBV (Ω) made of all

functions u ∈ SBV (Ω) such that ∇u ∈ Lp (Ω) and Hn−1 (Su) < +∞.

The main interest of this space, is to study coercivity and lower semi-continuous properties

in functional like Mumford-Shah.
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Chapter 4

Some regularity results for the jump set

of minimizers and quasi-minimizers

In this chapter, we are going to study the existence of minimizers and quasi-minimizers

of a functional similar to the Mumford-Shah functional. Also, we are going to see some

regularity (Alfhors-David regularity) to the jumps sets related to the minimizers and

quasi-minimizers.

Let Ω ⊂ Rn (n ≥ 2), with ∂DΩ = ∂Ω the Dirichlet boundary and Ω′ ⊂ Rn such that

1. Ω ⊂ Rn is a bounded open set with Lipschitz boundary,

2. Ω′ is a bounded open set with Ω ⊂ Ω′, Ω′ ∩ ∂Ω = ∂DΩ and diam (Ω′) ≤ 2diam (Ω).

4.1 Existence of Minimizers and quasi-minimizers

For every open set A ⊂ Ω′ and every u ∈ SBV (A), let

F (u,A) :=


ˆ
A

|∇u|2dx+Hn−1 (Su ∩ A) if u = 0 a.e. in A ∩
(
Ω′\Ω

)
,

+∞ otherwise.
(4.1)
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The minimal value is

m (u,A) := inf
{
F (v,A) ; v ∈ SBV 2 (A) , {v 6= u} ⊂⊂ A

}
,

and the deviation from minimality of u on A by setting, if m (u,A) < +∞,

Dev (u,A) := F (u,A)−m (u,A) .

Remark 4.1. The role of Ω′ in the definition of F (u,A) is that of enforcing in a varia-

tional sense the Dirichlet condition on ∂DΩ ∩ A. Indeed, it is immediately seen that

Su ∩ A = (Su ∩ A ∩ Ω) ∪ {x ∈ ∂DΩ ∩ A;u (x) 6= 0} ,

where the value of u on ∂DΩ ∩ A is understood in the sense of traces.

Definition 4.1. Let A ⊂ Ω′ be an open set. We say that u ∈ SBV 2 (A) is a quasi-

minimizer of F (·, A) if there exist constants ω > 0 and s ∈ (0, 1) such that for every ball

Bρ (x) ⊂ A

Dev (u,Bρ (x)) ≤ ωρn−1+s.

Let us intrduce for δ ≥ 0,

Hδ := {x = (x′, xn) ∈ Rn;xn > −δ} ,

and for every r ≤ 1 and u ∈ W 1,p (Br), let

F0,δ (u,Br) :=


ˆ
Br

|∇u|2dx if u = 0 a.e. in Br\Hδ,

+∞ otherwise.
(4.2)

Remark 4.2. Note that if r < δ, then the functional F0,δ (·, Br) does not see the Dirichlet

condition which therefore becomes irrelevant.
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Definition 4.2 (Local minimizers). Let r > 0. We say that u ∈ W 1,2 (Br) is a local

minimizer of F0,δ (·, Br) if

F0,δ (u,Br) ≤ F0,δ (v,Br)

for every v ∈ W 1,2 (Br) with {u 6= v} ⊂⊂ Br.

The next theorems will be used to show the Alfhors-David regularity of the jump set

related to minimizers and quasi-minimizers of the functional (4.1). For a general proof of

these theorems, we refer the reader to [7].

Theorem 4.1 (Interior gradiend bound). Assume δ > 1
2
. Let u ∈ W 1,2

(
B 1

2

)
be a local

minimizer of F0,δ

(
·, B 1

2

)
. Then

ess sup
B ρ

2

|∇u|2 ≤ 1

ωnρn

ˆ
Bρ

|∇u|2dx for every ρ ≤ 1

2
.

Proof. Let ρ ≤ 1
2
. Let u ∈ W 1,2

(
B 1

2

)
be a local minimizer of F0,δ

(
·, B 1

2

)
. We know that

u is an harminoc function, i.e., ∆u = 0. Then, −∆|∇u|2 ≤ 0 and by the Mean Value

Theorem, we have that

|∇u|2 (x) ≤ 1

ωnρn

ˆ
Bρ

|∇u|2dx.

We conclude

ess sup
B ρ

2

|∇u|2 ≤ 1

ωnρn

ˆ
Bρ

|∇u|2dx.

Theorem 4.2 (Boundary gradient bound). Assume that δ ∈
[
0, 1

2

]
. Let u ∈ W 1,2 (B1)

be a local minimizer of F0,δ (·, B1). Then

ess sup
B ρ

2

|∇u|2 ≤ 2

ωnρn

ˆ
Bρ

|∇u|2dx for every ρ ≤ 1.

The proof of this theorem is easily established using the same proof of the last theorem,

the harmonic reflection principle and the mean value theorem, because, u is harmonic on

B1 ∩Hδ.
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Let A ⊂ Ω′ an open set, we will prove in the next theorem that there exist a minimizer

for the next functional

F (u) :=


ˆ
A

|∇u|2dx+Hn−1 (Su) if u = g a.e. in A ∩
(
Ω′\Ω

)
,

+∞ otherwise.
(4.3)

Theorem 4.3. There exist a minimizer v ∈ SBV 2 (A) for the functional (4.3).

Proof. The idea of this proof is to use the Ambrosio compactness theorem (See Theorem

3.6) to obtain the existence of a minimizer of (4.3).

Let (uh) a minimizing sequence of (4.3) so that

lim
h→+∞

F (uh) = inf
u∈SBV 2(A),u=ga.e.in(Ω′\Ω)∩A

F (u),

where F is defined in (4.1). Let M = ‖g‖∞ and now we set uh = (uh ∧M) ∨ (−M). It

yields that ‖uh‖∞ ≤ M and that |∇uh| ≤ |∇u| Ln-a.e on Ω for all h ∈ N. We can see

that there exists c > 0 such that

ˆ
A

|∇uh|2dx+Hn−1 (Suh) ≤ cM

for all h ∈ N (This arguments is known as the M−truncation). By the Ambrosio Com-

pactness Theorem (Theorem 3.6), we have that there exists a subsequence (uhk)k∈N in

SBV 2 (A) and a function v ∈ SBV 2 (A) such that uhk → v in the L1
loc(Ω)−topology,

∇uhk → ∇v weakly and Hn−1 (Sv) ≤ lim infk→+∞Hn−1 (Shk). Then,

F (v) ≤ lim inf
k→+∞

F (uhk)

and we conclude that v ∈ SBV 2 (A) is a minimizers of the problem (4.3).

Let us consider an open set A ⊂ Ω′, and let u ∈ SBV 2 (A) be a solution of

min

{ˆ
A

|∇v|2dx+

ˆ
Sv

dHn−1 (x); v ∈ SBV 2 (A) , v = g a.e. in
(
Ω′\Ω

)
∩ A

}
, (4.4)
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where g ∈ W 1,∞ (Ω′). With this assumptions, the following energy upper bound estimate

holds:

Lemma 4.4. Let A ⊂ Ω′, g ∈ W 1,∞ (Ω′), and let u ∈ SBV 2 (A) be a solution of (4.4).

There exists a constant c0 > 0 (depending only on n, ‖∇g‖∞, diam (Ω) and the Lipschitz

constant of ∂Ω) such that for any ball Bρ (x) ⊂ A

‖∇u‖2
L2(Bρ(x),Rn) +Hn−1 (Su ∩Bρ (x)) ≤ c0ρ

n−1.

Proof. Let u ∈ SBV 2 (A) be a solution of (4.4). Let us compare u with v := u1A\(Ω∩Bρ(x)).

We can observe that v ∈ SBV 2 (A) with A\ (Ω ∩Bρ (x)) set with Lipschitz boundary

hence it has finite perimeter, indeed,

Dv = ∇vLn + (v+ − v−)νHn−1 Su

= ∇uLn A\ (Ω ∩Bρ (x)) + (u+ − u−)νHn−1 (Su ∩ A\ (Ω ∩Bρ (x)))

= ∇uLn A\ (Ω ∩Bρ (x)) + (u+ − u−)νHn−1 (∂A\ (Ω ∩Bρ (x))).

Dv = 1A\(Ω∩Bρ(x))Du+
(
u∇1A\(Ω∩Bρ(x))

)
Ln. Also, we have that v = g on (Ω′\Ω) ∩ A, in

fact, it is easy to see that
(
Ω′\Ω

)
∩ A ⊂ (Ω\Bρ (x)) ∩ A. Moreover

Sv ∩Bρ (x) ⊂ [∂Bρ (x) ∩ Ω] ∪ [∂DΩ ∩Bρ (x)] .

Now, we have that v is a competitor of u (v = u = g a.e. in Bρ (x) ∩
(
Ω′\Ω

)
, then, by

minimality and the last identity

ˆ
Bρ(x)

|∇u|2dy +Hn−1 (Su ∩Bρ (x)) ≤
ˆ
Bρ(x)

|∇v|2dy +Hn−1
(
Sv ∩Bρ (x)

)
≤ ‖∇g‖p∞ωnρ

n + ωnρ
n−1 +Hn−1 (∂DΩ ∩Bρ (x)) ,

so that the result follows by the Lipschitz regularity of ∂Ω, and the fact that ρ ≤

diam (Ω′) ≤ 2diam (Ω), actually, we have that Hn−1 (∂DΩ) ≤ c1ρ
n−1 where c1 depends on

Lip (∂Ω) and diam (Ω).
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The next result shows the existence of quasi-minimizer of the problem (4.4).

Theorem 4.5. Assume (4.1). Let A ⊂ Ω′, g ∈ W 1,∞ (Ω′), and let u ∈ SBV 2 (A) be a

solution of (4.4). Then the function

û := u− g ∈ SBV 2 (A)

is a quasi-minimizer of F (·, A) for s = 1
2
and ω > 0 wich only depends on n (dimension),

‖∇g‖∞, diam (Ω) and the Lipschitz constant of ∂Ω.

Proof. Since û = u− g and g ∈ W 1,∞ (Ω′), we have that Sû = Su, then û minimizes

v 7→
ˆ
A

|∇v|2dy + 2

ˆ
A

∇v · ∇gdy +

ˆ
a

|∇g|2dy +Hn−1 (Sv ∩ A) ,

for all v ∈ SBV 2 (A) with v = 0 a.e. in
(
Ω′\Ω

)
∩ A. This holds, replacing û + g in

(4.4). Now, we will try to construct the setting of the lemma above. Let Bρ (x) ⊂ A and

v ∈ SBV 2 (A) with {v 6= û} ⊂ Bρ (x). From the previous minimality lemma, we deduce

that

F (û, Bρ (x)) ≤ F (v,Bρ (x)) +

ˆ
Bρ(x)

(∇v −∇û) · ∇gdy. (4.5)

By Cauchy-Schwartz inequality, the definition of û, Minkoski’s inequality and the previous

lemma, we infer that∣∣∣∣∣
ˆ
Bρ(x)

∇û · ∇gdy

∣∣∣∣∣ ≤ ‖∇û‖L2(Bρ(x))‖∇g‖L2(Bρ(x)) ≤ ‖∇u−∇g‖L2(Bρ(x))‖∇g‖L2(Bρ(x))

≤ ‖∇u‖L2(Bρ(x))‖∇g‖L2(Bρ(x)) + ‖∇g‖2
L2(Bρ(x))

≤ c0ρ
n−1
2 ‖∇g‖∞ωnρ

n
2 + ωnρ

n‖∇g‖2
∞ ≤ c1ρ

n−1+ 1
2 , (4.6)

where c1 is a constant which depends on n, ‖∇g‖∞, diam (Ω) and the Lipschitz constant

of ∂Ω. On the other hand, to estimate the other term, we use Young’s inequality to get
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that∣∣∣∣∣
ˆ
Bρ(x)

∇v · ∇gdy

∣∣∣∣∣ ≤
ˆ
Bρ(x)

ε2|∇v|2 +
1

2ε2
|∇g|2dy ≤ c2

(
ε2F (v,Bρ (x)) +

1

2ε2
ρn
)
,

(4.7)

for some constant c2 depending on ‖∇g‖∞ and for ε > 0 to be fixed later. Hence, gathering

(4.5), (4.6) and (4.7), we obtain that

F (û, Bρ (x)) ≤
(
1 + c2ε

2
)
F (v,Bρ (x)) + c1ρ

n−1+ 1
2 + c2ε

−2ρn

Taking the infimum with respect to such v, to have the definition of deviation of mini-

mality, we infer that

Dev (û, Bρ (x)) ≤ c2ε
2F (û, Bρ (x)) + c1ρ

n−1+ 1
2 + c2ε

−2ρn.

As a consequence, using Lemma 4.4, we infer that

Dev (û, Bρ (x)) ≤ c3

(
ε2ρn−1 + ρn−1+ 1

2 + ε−2ρn
)
,

where c3 > 0 depends only on n, ‖∇g‖∞, diam (Ω) and the Lipschitz constant of ∂Ω. If

we choose ε = ρ
1
4 , we finally get that

Dev (û, Bρ (x)) ≤ ωρn−1+ 1
2 ,

for some constant ω > 0 so that û is a quasi-minimizer for F (·, A) with the choice

s = 1
2
.
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4.2 Density lower bound for the jump set of quasi-

minimizers under homogeneous Dirichlet boundary

conditions

The case for the Mumford-Shah functional was studied by De Giorgi, Carreiro and Leaci

in [16], and after, extended to the nonlinear case by Ambrosio, Fusco, Pallara and Fonseca

(See [5, 19]). We are going to develop the density lower bound for the jump set, treated

by Carreiro and Leaci in [12], but, we will do the same as Babadjian and Giacomini in

[7]. Furthermore, our analysis is for balls with possibly intersection ∂Ω but with center

inside Ω. The aim of this section is prove the next theorem.

Theorem 4.6. Assume that Ω satisfies (4.1), and that

∂Ω is of class C1.

Let A ⊂ Ω′ be an open set, and let u ∈ SBV p (A) be a quasi-minimizer of F (·, A) with

constants ω > 0 and s ∈ (0, 1) . Then, there exist ϑ0 > 0 and ρ0 > 0 (depending only on

n, s, ω) such that

Hn−1 (Su ∩Bρ (x)) ≥ ϑ0ρ
n−1,

for all balls Bρ (x) ⊂ A with center x ∈ Su, radius ρ ≤ ρ0.

For the proof of this theorem, we will follow closely ([7] and [5] Section 7.1 and 7.2). At

the end of this chapter, we will prove that the jump set is essentially closed.
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4.2.1 Problems on the unit ball

First, we reduce, a similar problem, to the case of unit ball.

Given D ⊂ B1 a Borel set, c > 0, u ∈ SBV (B1) and ρ ≤ 1, let us set

FD (u, c, Bρ) :=


ˆ
Bρ

|∇u|2dx+ cHn−1 (Su ∩Bρ) if u = 0 a.e in D,

+∞ otherwise.

We denote by

mD (u, c, Bρ) := inf
{
FD (u, c, Bρ) ; v ∈ SBV 2 (B1) , {v 6= u} ⊂⊂ Bρ

}
the minimal value, and by DevD (u, c, Bρ) the deviation from minimality of u on Bρ for

FD, defined, if mD (u, c, Bρ) < +∞, by

DevD (u, c, Bρ) = FD (u, c, Bρ)−mD (u, c, Bρ) .

The next theorem gives us a compactness property and it is a variant of [7], Proposition

7.5.

Lemma 4.7. Let Dh ⊂ B1 be a sequence of Borel sets such that for some d0 > 0, we have

|Dh| ≥ d0 for every h ∈ N. Let (vh) ⊂ SBV 2 (B1) be such that

sup
h∈N

ˆ
B1

|∇vh|2dx < +∞, Hn−1 (Svh)→ 0, vh = 0 a.e. in Dh.

Let us define vh = (vh ∧ τ+ (vh, B1)) ∨ τ− (vh, B1), where

τ
− (vh, B1) := inf

{
t ∈ [−∞,+∞] ; |{vh < t}| ≥

[
2γnHn−1 (Svh)

] n
n−1

}
,

τ+ (vh, B1) := inf
{
t ∈ [−∞,+∞] ; |{vh < t}| ≥ |B1| − [2γnHn−1 (Svh)]

n
n−1

} (4.8)

and γn is the dimensional constant of the isoperimetric inequality.

Then there exists h0 ∈ N (depending only on d0 and n) such that vh = 0 a.e. in Dh for any
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h ≥ h0. Moreover there exist a subsequence
(
vhj
)
⊂ (vh) , and a function v ∈ W 1,p (B1)

such that vh → v strongly in L2 (B1), vhj → v a.e. in B1, and

ˆ
Bρ

|∇v|2dx ≤ lim inf
j→+∞

ˆ
Bρ

∣∣∇vhj ∣∣2dx for every ρ ≤ 1.

Before the proof of Lemma 4.7 we state a theorem which is a consequence of Poincaré

inequality for SBV (Ω) (See Theorem 4.14, [5]) and the Ambrosio Compactness Theorem.

Proposition 4.8. Let B ⊂ Rn a ball and (uh) ⊂ SBV (B) be a sequence such that

sup
h∈N

ˆ
B

|∇u|2dx < +∞ lim
h→+∞

Hn−1 (Suh)

and let mh be medians of uh in B, i.e., mh := inf
{
t ∈ [−∞,+∞] ; |{vh > t}| ≤ |B|

2

}
.

Then there exist a subsequence
(
uhj
)
and a function u ∈ W 1,2 (B) such that functions

uhj −mhj converge in L2 (B) to u and

ˆ
B

|∇u|2dx ≤ lim inf
j→+∞

ˆ
B

∣∣∇uhj ∣∣2dx.
As remark, we can see that uhj −mhj converge also in Ln-a.e. in B to u (See Theorem

7.5 and Remark 7.6 in [5])

Proof of Lemma 4.7. First, we will show that vh = 0 a.e. in Dh holds to h large enough.

Since vh = 0 a.e. in Dh, we have that vh = 0, as a consequence of the fact that for h large

enough

τ− (vh, B1) ≤ 0 and τ+ (vh, B1) ≥ 0. (4.9)

Indeed, given ε > 0, since Hn−1 (Svh)→ 0 we have for h ≥ h0 independent of ε

|{vh < ε}| = |{vh < ε} ∩Dh|+ |{vh < ε} ∩Dc
h| ≥ |{vh < ε} ∩Dh|

= |Dh| − |Dh ∩ {vh ≥ ε}| ≥ d0 >
[
2γnHn−1 (Svh)

] n
n−1 .
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The value ε is admissible for the computation of τ− (vh, B1) for h ≥ h0 so that τ− (vh, B1) ≤

ε. Then, we infer that τ− (vh, B1) ≤ 0. Using the fact that

τ+ (vh, B1) ≥ sup
{
t ∈ [−∞,+∞] ; |{vh > t}| ≥

[
2γnHn−1 (Svh)

] n
n−1

}
(4.10)

and proceeding as before with −ε, we can show that −ε is admissible in (4.10) and then

τ+ (vh, B1) ≥ −ε; it implies τ+ (vh, B1) ≥ 0. Thus (4.9) follows. Now in view of Poincare’s

inequality in BV (Ω) (See Theorem 4.14, [5]), denoting by

mh := inf

{
t ∈ [−∞,+∞] ; |{vh > t}| ≤ |B1|

2

}
,

a median for vh, there exists a subsequence
(
vhj
)
and a function v ∈ W 1,2 (B1) such that

vhj −mhj → v strongly in L2 (B1), vhj −mhj → v a.e. in B1, (4.11)

and, applying Ambrosio’s compactness theorem to the truncation at level M (See the

proof of Theorem 4.3) of the previous sequence, and letting M → +∞, we get for every

ρ ≤ 1 ˆ
Bρ

|∇v|2dx ≤ lim inf
j→∞

ˆ
Bρ

∣∣∇vhj ∣∣2dx
The proof is complete if we show that

(
mhj

)
is bounded; since we can consider (up to

extracting a further sequence) v+m as limit function, where m is a limit point for
(
mhj

)
.

Since vh = 0 a.e. in Dh for h ≥ h0, by (4.11), we obtain

lim sup
j→+∞

∣∣mhj

∣∣2∣∣Dhj

∣∣ ≤ ‖v‖2
L2(B1),

and the results follows since
∣∣Dhj

∣∣ ≥ d0.

The following proposition show that the limit of one Sobolev function is a local minimizer

of |·|2. Furthermore, this result is an adaptation of Theorem 7.7 in [5] to the case of

homogeneous Dirichlet boundary condition.

Proposition 4.9. Let fh : Rn−1 → R be a sequence of continuous functions, and let
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Dh := {x = (x′, xn) ∈ B1;xn ≤ fh (x′)}. Assume that (fh) is locally uniformly converging

to the constant function −δ, with δ ∈ (0, 1). Let ch > 0 and vh ∈ SBV 2 (B1) be such that

sup
n∈N

FDh (vh, ch, B1) < +∞,

lim
h→+∞

DevDh (vh, ch.B1) = 0,

lim
h→+∞

Hn−1 (Svh) = 0,

vh → v ∈ W 1,2 (B1) a.e. in B1.

Then v is a local minimizer of F0,δ (·, B1) and

lim
h→+∞

FDh (vh, ch, Bρ) =

ˆ
Bρ

|∇v|2dx for every ρ ∈ (0, 1). (4.12)

Proof. Since ρ 7→ FDh (vh, ch, Bρ) is increasing on [0, 1], by Helly’s theorem we may assume

that up to a subsequence

lim
h→+∞

FDh (vh, ch, Bρ) = α (ρ) for every ρ ∈ [0, 1]

for some increasing function α : [0, 1]→ [0,∞).

By a geometric argument, and the fact that fh → −δ locally uniform, and δ < 1, we can

show that |Dh| ≥ d0 for some constant d0 > 0. Hence, by Lemma 4.7 we have that (for

a not relabeled subsequence) vh → v strongly in L2 (B1), vh = 0 a.e. in Dh for h large

enough, and for all ρ ≤ 1

ˆ
Bρ

|∇v|2dx ≤ lim inf
h→+∞

ˆ
Bρ

|∇vh|2dx. (4.13)

We claim that

lim
h→+∞

FDh (vh, ch, Bρ) = α (ρ) for a.e. ρ ∈ (0, 1), (4.14)

and that

lim
h→+∞

DevDh (vh, ch, Bρ) = 0 for every ρ ∈ (0, 1) (4.15)

Assuming as true (4.14) and (4.15), we are going to show that v ∈ W 1,2 (B1) is a local
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minimizer of the functional F0,δ (·, B1) given in (4.2). Let w ∈ W 1,2 (B1) with {w 6= v} ⊂⊂

B1 and w = 0 a.e. in B1\Hδ. By the Lemma 6.3 in [7], we can find wh ∈ W 1,2 (B1)

satisfying wh = 0 a.e. in Dh, and wh → w strongly in W 1,2 (B1).

Let 0 < ρ′ < ρ < 1 be such that α is continuous at ρ, {w 6= v} ⊂⊂ Bρ′ and (4.14)

holds for both ρ and ρ′. Let η be a cut-off function between Bρ′ and Bρ; comparing vh

with ηwh + (1− η) vh (observe that ηwh + (1− η) vh = 0 a.e. in Dh, then an admissible

competitor), we have the inequality

mDh (vh, ch, Bρ) ≤ FDh (ηwh + (1− η) vh, ch, Bρ)

By the definition of Deviation from minimality, we have

FDh (vh, ch, Bρ) ≤ FDh (ηwh + (1− η) vh, ch, Bρ) +DevDh (vh, ch, Bρ)

=

ˆ
Bρ

|∇ (ηwh + (1− η) vh)|2dx+ chHn−1
(
Sηwh+(1−η)vh ∩Bρ

)
+DevDh (vh, ch, Bρ) .

We know that there exists C > 0 such that |∇η| ≤ C

ρ− ρ′
(See Lemma 7.4 in [5]), then

we infer that

ˆ
Bρ

|∇ (ηwh + (1− η) vh)|2dx ≤
ˆ
Bρ

|η∇wh|2dx+

ˆ
Bρ

|(1− η)∇vh|2dx

+

ˆ
Bρ

|(vh − wh)∇η|2dx

≤
ˆ
Bρ′

|∇wh|2dx+ C

ˆ
Bρ\Bρ′

|∇wh|2dx+ C

ˆ
Bρ\Bρ′

|∇vh|2dx

C

(ρ− ρ′)2

ˆ
Bρ\Bρ′

|vh − wh|2dx,

and

Hn−1
(
Sηwh+(1−η)vh ∩Bρ

)
= Hn−1 (Swh ∩Bρ\Bρ′) +Hn−1 (Svh ∩Bρ\Bρ′)
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Finally, combining the three last expresion, we see that

FDh (vh, ch, Bρ) ≤ F0,δ (wh, Bρ′) +DevDh (vh, ch, Bρ)

+ C [FDh (vh, ch, Bρ\Bρ′) + F0,δ (wh, Bρ\Bρ′)]

+
C

(ρ− ρ′)2

ˆ
Bρ\Bρ′

|vh − wh|2dx.

For h→ +∞, using the fact that ρ′ < ρ, and thanks to (4.14) and (4.15) we obtain that

α (ρ) ≤
ˆ
Bρ′

|∇w|2dx+ C

[
α (ρ)− α (ρ′) +

ˆ
Bρ\Bρ′

|∇w|2dx

]
+

C

(ρ− ρ′)2

ˆ
Bρ\Bρ′

|v − w|2dx.

Since w = v on Bρ\Bρ′ , letting ρ′ → ρ we get

α (ρ) ≤
ˆ
Bρ

|∇w|2dx.

Choosing w = v in the previous relation, from (4.13) and (4.14) we obtain

α (ρ) =

ˆ
Bρ

|∇v|2dx. (4.16)

Hence, F0,δ (v,B1) ≤ F0,δ (w,B1), we conclude the local minimality. Furthermore, by the

equality above, the monotone functions α and ρ 7→
´
Bρ
|∇v|2dx coincides a.e. on (0, 1),

and since the latter is continuous, they coincides everywhere on (0, 1). This finishes the

proof of (4.12).

It remains to prove (4.14) and (4.15) to complete the proof.

Let ṽh and ṽh be the Lebesgue representatives of vh and vh respectively. By definition of

vh and τ± (vh, B1), the coarea formula for Lipschitz functions, the isoperimetric inequality

(See (3.43) in [5]) and the fact that chHn−1 (Svh) is uniformly bounded, we conclude

ch

ˆ 1

0

Hn−1
({
ṽh 6= ṽh

}
∩ ∂Bρ

)
dρ = ch

∣∣∣{ṽh 6= ṽh

}∣∣∣ ≤ [2γnHn−1 (Svh)
] n
n−1 → 0.
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It yields, up to a further subsequence, that

lim
h→+∞

chHn−1
({
ṽh 6= ṽh

}
∩ ∂Bρ

)
= 0 for a.e. ρ ∈ (0, 1).

For ρ < 1, by truncation we deduce that

FDh (vh, ch, Bρ) :=

ˆ
Bρ

|∇vh|2dx+ chHn−1(Svh ∩Bρ)

≤
ˆ
Bρ

|∇vh|2dx+ chHn−1(Svh ∩Bρ) ≤ FDh (vh, ch, Bρ) .

For ρ < ρ′ < 1, comparing vh and vh1Bρ + vh1Bρ′\Bρ (note that the last function vanishes

on Dh, so that is is an admissible competitor), and by the definition of deviation we have

FDh (vh, chBρ) ≤ FDh (vh, chBρ) + chHn−1
({
ṽh 6= ṽh

}
∩ ∂Bρ

)
+DevDh (vh, chBρ′) .

Letting h→ +∞ and combining the two expressions above, we obtain (4.14).

In a similar way, by taking as competitor w1Bρ +vh1Bρ′\Bρ , where w ∈ SBV
2 (Bρ) is such

that {w 6= vh} ⊂⊂ Bρ and w = 0 a.e. in Dh, taking the minimum in the expression above

to obtain the definition of deviation of minimality, we can prove that

DevDh (vh, chBρ) ≤ FDh (vh, chBρ)− FDh (vh, chBρ) + chHn−1
({
ṽh 6= ṽh

}
∩ ∂Bρ

)
+DevDh (vh, chBρ′) .

Letting h → +∞, we deduce that (4.15) holds for a.e. ρ ∈ (0, 1). Since the deviation is

an increasing function of ρ, we infer that (4.15) actually holds for every ρ ∈ (0, 1).

4.2.2 The density lower bound estimate

In order to prove Theorem 4.6, we will need the Decay lemma. First we are going to use

the following geometric fact. We follow the method developed in [7].

Lemma 4.10. Let (xh) be a sequence in Ω ∩ ∂Ω such that xh → x ∈ ∂Ω, and let ρh → 0
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be such that Bρh (xh) ⊂ Ω′ and Bρh (xh)∩∂Ω 6= ∅. Let us re-scale Bρh (xh) to the unit ball

B1 by means of the change of variable x := xh + ρhy with y ∈ B1, and let Dh ⊂ B1 be the

region corresponding to
(
Ω′\Ω

)
∩Bρh (xh).

Then, there exists a coordinate system such that, up to a subsequence,

Dh = {y = (y′, yn) ∈ B1; yn ≤ fh (y′)}

for some fh ∈ C1 (Rn−1) locally uniform converging to a constant −δ ∈ [0, 1].

Proof. Using the fact that ∂Ω is of class C1, we can consider the orthogonal coordinate

system relative to x such that

Ω ∩Br (x) = {x = (x′, xn) ∈ Br (x) ;xn < f (x′)} ,

where r > 0 and f ∈ C1 (Rn−1) is such that f (x′) = xn and ∇f (x′) = 0.

Since xh → x and ρh → 0, then Bρh (xh) ⊂ Br (x) for h large enough. Let us use the

coordinate system in x also for defining the blow up, i.e., the region Dh is then given for

h large by those y = (y′, yn) ∈ B1 such that

(xh)n + ρhyn ≤ f (x′h + ρhy
′)

and we can see immediately that

yn ≤ fh (y′) ≤ f (x′h + ρhy
′)− (xh)n

ρh
.

Let zh = (z′h, (xh)n) ∈ Bρh (xh) ∩ ∂Ω so that we can write, as (zh)n = f (z′h), and

fh (y′) =
f (x′h + ρhy

′)− f (x′h) + f (x′h)− f (z′h) + (zh)n − (xh)n
ρh

.

Since we have |f (x′h)− f (z′h)| ≤ C|x′h − x′h| ≤ Cρh and |(zh)n − (xh)n| ≤ ρh, then up to

a subsequence,
f (x′h)− f (z′h) + (zh)n − (xh)n

ρh
→ c ∈ R.

50



Moreover, the sequence of functions

gh (y) :=
f (x′h + ρhy

′)− f (x′h)

ρh

is uniformly bounded and equicontinuous, by Arzela-Ascoli Theorem, we have that this

sequence converges locally uniformly to zero since

f (x′h + ρhy
′)− f (x′h)

ρh
→ ∇f (x′) · y′ = 0.

Note that we have actually proved that fh → c locally uniformly on Rn−1.

Since fh (0) ≤ 0, we infer that c ≤ 0. On the other hand, since Dh 6= ∅, there exists

ξh = (ξ′h, (xh)n) ∈ B1 with fh (ξ′h) ≥ (ξh)n > −1, which implies c ≥ −1. We can conclude

taking δ = −c.

The following lemma, is a key point to obtain a density lower bound for the jump set

of quasi-minimizers of (4.1). We are going to make little modifications to the method

developed in [7].

Lemma 4.11 (Decay lemma). There exists a constant C1 > 0 (depending only on n)

with the following property: for every τ ∈ (0, 1), there exist ε (τ) > 0, ϑ (τ) > 0 and

r (τ) > 0 such that for every ball Bρ (x) ⊂ Ω′ with x ∈ Ω, ρ ≤ r (τ), and for every

u ∈ SBV 2 (Bρ (x)) satisfying u = 0 a.e. in
(
Ω′\Ω

)
∩Bρ (x) with

Hn−1 (Su ∩Bρ (x)) ≤ ε (τ) ρn−1, Dev (u,Bρ (x)) ≤ ϑ (τ)F (u,Bρ (x)) ,

then we have

F (u,Bτρ (x)) ≤ C1τ
nF (u,Bρ (x)) .

Proof. Suppose the assertion of the lemma is false. For this purpose, we proceed by

contradiction by showing that the result holds true for any choice of

C1 > max

{
4n,

2

ωnρn
(2n + ωn)

}
,
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where 2
ωnρn

is the constant given by Theorem 4.2.

It suffices to assume that τ < 1
4
; indeed, if τ ≥ 1

4
, we can see

C1τ
nF (u,Bρ (x)) ≥ 4n

1

4n
F (u,Bρ (x)) ≥ F (u,Bρ (x)) .

Assume by contradiction that there exist sequences of positive numbers εh, ϑh, rh → 0,

of points xh ∈ Ω ∪ ∂Ω, of radii ρh ≤ rh such that Bρh (xh) ⊂ Ω′, and of functions

uh ∈ SBV 2 (Bρh (xh)) with uh = 0 a.e. in
(
Ω′\Ω

)
∩Bρh (xh), with the properties

Hn−1 (Suh ∩Bρh (xh)) = εhρ
n−1
h ,

Dev (uh, Bρh (xh)) = ϑhF (uh, Bρh (xh)) ,

and

F (uh, Bρh (xh)) > C1τ
nF (uh, Bρh (xh)) .

The following method, the general case, is developed in [5]. We re-scale Bρh to B1 and uh

to vh ∈ SBV 2 (B1) by setting

vh (y) := ρ−
1
2 c

1
2
huh (xh + ρhy)

with

ch :=
ρn−1

F (uh, Bρh (xh))
.

LetDh ⊂ B1 be the set associated to
(
Ω′\Ω

)
∩Bρh (xh) under such re-scaling. IfDh = ∅, by

the Lemma 7.14 in [1] we can deduce the result of the Decay Lemma (because the Dirichlet

boundary condition will not play a role). Then we are going to assume that Dh 6= ∅.

Consequently, since ρh → 0, we can suppose, up to a subsequence, that xh → x ∈ ∂Ω.

Then by Lemma 4.10, up to a further subsequence, we can find a coordinate system in

which

Dh = {x = (x′, xn) ∈ B1;xn ≤ fh (x′)} ,

for some fh ∈ C1 (Rn−1) with fh → −δ locally uniformly, where δ ∈ [0, 1].
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With the notation of the beginning of the Subsection 4.2.1, we get that

FDh (vh, ch, B1) = 1, DevDh (vh, ch, B1) = ϑh, Hn−1 (Svh ∩B1) = εh (4.17)

and

FDh (vh, ch, Bτ ) > C1τ
n. (4.18)

Let δ ∈ [0, 1]. For a consequence of Poincaré inequality in SBV (See [5], Propostion 7.5

and Remark 7.6), there exists v ∈ W 1,2
(
B 1

2

)
such that, if mh is a median of vh in B 1

2
,

up to a subsequence

vh −mh → v a.e. in B 1
2
.

There exists h0 ∈ N such that Dh ∩ B 1
2

= ∅ for all h ≥ h0. In particular, since the

boundary condition disappears, from (4.17) we obtain

F
(
vh, ch, B 1

2

)
≤ 1, Dev

(
vh, ch, B 1

2

)
→ 0, Hn−1

(
Svh ∩B 1

2

)
→ 0.

By Proposition 4.9, v is a local minimizer of F0,δ

(
·, B 1

2

)
and for all ρ < 1

2

ˆ
Bρ

|∇v|2dx = lim
h→+∞

F (vh, ch, Bρ) = lim
h→+∞

FDh (vh, ch, Bρ) ≤ 1. (4.19)

Using the Interior gradient bound (Theorem 4.1) and (4.19), the function v turns out to

be locally Lipschitz on B 1
2
with the estimate

ess sup
B 1

4

|∇v|2 ≤ 1

ωn

ˆ
B 1

2

|∇v|2dx ≤ 1

ωn
.

But, since τ < 1
4

lim
h→+∞

FDh (vh, ch, Bτ ) =

ˆ
Bτ

|∇v|2dx ≤ 2nτn,

which is a contradiction to (4.18), since C1 > 2n.

Now, we study the case when 0 ≤ δ ≤ 1
2
, with this assumption, we have that |Dh| ≥

d0 > 0. By Lemma 4.7 and Proposition 4.9 there exists a local minimizer v ∈ W 1,2 (B1)

of F0,δ (·, B1) such that, up to a subsequence, vh → v a.e. in B1. Furthermore, for every
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ρ ∈ (0, 1) ˆ
Bρ

|∇v|2dx = lim
h→+∞

FDh (vh, ch, Bρ) ≤ 1. (4.20)

Then using the gradient bound given by Theorem 4.2 and (4.20), we have that

ess sup
B 1

4

|∇v|n ≤ 2n

ωnρn

ˆ
B 1

2

|∇v|2dx+ 1 ≤ C ′0

(
2n

ωnρn
+ 1

)
,

Then, we get the contradiction by arguing as in the previous case.

Now, we have all the tools to prove Theorem 4.6.

Proof of Theorem 4.6. We will follow, in our context, the prove given in [7], Theorem 3.4.

Let A ⊂ Ω′ be an open set, and let u ∈ SBV 2 (A) be a quasi-minimizer of F (·, A) with

constants s and ω. For any ball Bρ ⊂ A, we have

F (u,Bρ (x)) ≤ nωnρ
n−1 + ωρn−1+s. (4.21)

Indeed, let ρ′ < ρ, comparing u with u1Bρ(x)\Bρ′ (x), by the quasi-minimality we have

ˆ
Bρ′ (x)

|∇u|2dx+Hn−1
(
Su ∩Bρ′

)
≤ Hn−1

(
Su ∩Bρ′

)
+Dev (u,Bρ (x))

≤ nωnρ
n−1 + ωρn−1+s.

Letting ρ′ → ρ, we conclude (4.21).

Following the notation of Decay lemma, let τ ∈ (0, 1) be such that C1τ
n ≤ τn+1−s and let

σ ∈ (0, 1) be such that C1σ (nωn + 1) ≤ ε (τ). Let us define

ρ0 := min

{
1

ω
,
ε (τ) τnϑ (τ)

ω
,
ε (τ)σn−1ϑ (τ)

ω
, r (σ)s , r (τ)s

} 1
s

, (4.22)

and

ϑ0 := ε (τ) .

Note that ϑ0 and ρ0 are constants depending on n, s and ω.

54



Let suppose that the assertion of this theorem is false. Define the set

I :=

{
x ∈ A; lim sup

ρ→0

1

ωnρn

ˆ
Bρ(x)

|u (y)|
n
n−1dy = +∞

}
,

and assume that we have

Hn−1 (Su ∩Bρ (x)) < ϑ0ρ
n−1

for some x ∈ Su\I, and for some ρ < ρ0 with Bρ (x) ⊂ A. We claim that

F
(
u,Bστhρ (x)

)
≤ ε (τ) τhs

(
στhρ

)n−1 for all h ∈ N. (4.23)

We now proceed by induction to prove (4.23).

Let h = 0, and assume, and assume first that Dev (u,Bρ (x)) ≤ ϑ (τ)F (u,Bρ (x)). Since

we have ρ < r (τ) by our choice (4.22) of ρ0, we deduce from Decay lemma (Lemma 4.11)

and (4.21) that

F (u,Bσρ (x)) ≤ C1σ
nF (u,Bρ (x)) ≤ C1σ

n
[
nωnρ

n−1 + ωρn−1+s
]

≤ C1σ (σρ)n−1 (nωn + 1) ≤ ε (τ) (σρ)n−1 .

On the contrary, ifDev (u,Bρ (x)) > ϑ (τ)F (u,Bρ (x)), then using the definition of quiasi-

minimizers

F (u,Bσρ (x)) ≤ F (u,Bρ (x)) ≤ 1

ϑ (τ)
Dev (u,Bρ (x))

≤ ωρn−1+s

ϑ (τ)
≤ ε (τ) (σρ)n−1 ,

we conclude the validity of (4.23) for h = 0.

We assume that (4.23) holds for some h ∈ N, and let us prove that it still holds for

h+1. We repeat the process as h = 0, if Dev
(
u,Bστhρ (x)

)
≤ ϑ (τ)F

(
u,Bστhρ (x)

)
, since
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στhρ ≤ r (τ), applying the Decay lemma and from the induction hypothesis, we get

F
(
u,Bστh+1ρ (x)

)
≤ C1τ

nF
(
u,Bστhρ (x)

)
≤ ε (τ)C1τ

nτhs
(
στhρ

)n−1

≤ ε (τ) τ (h+1)s
(
στh+1ρ

)n−1
.

On the other hand, if Dev
(
u,Bστhρ (x)

)
> ϑ (τ)F

(
u,Bστhρ (x)

)
, by definition of quasi-

minimizer, we infer

F
(
u,Bστh+1ρ (x)

)
≤ F

(
u,Bστhρ (x)

)
≤ 1

ϑ (τ)
Dev

(
u,Bστhρ (x)

)
≤
ω
(
στhρ

)n−1+s

ϑ (τ)
≤ ε (τ) τ (h+1)s

(
στh+1ρ

)n−1
,

thus, we have the proof of (4.23).

We have as a consequence of (4.23), for every x ∈ Su\I, that

lim
r→0

1

rn−1

(ˆ
Br(x)

|∇u|2dy +Hn−1 (Su ∩Br (x))

)
= 0,

which is a contradiction to Theorem 7.8 in [5]. Then, we have that Theorem 4.6 holds for

any x ∈ Su\I, and by density, for any x ∈ Su\I.

It remains to prove that Su\I = Su. Let x /∈ Su\I. By Lemma 3.75,Hn−1 (I) = 0 and then

it is possible to find a neighborhood U ⊂ A containing x, for which Hn−1 (Su ∩ U) = 0,

and thus (by extension) u ∈ W 1,2 (U) (See (4.2) in [5]).

From the Poincaré inequality and (4.21), for any ball Br (x0) ⊂ U , we have

ˆ
Br(x0)

|u (y)− ux0,r|
2dy ≤ cr2

ˆ
Br(x0)

|∇u|2dy ≤ c′rn+1

where ux0,r is the average of u over Br (x0). Thanks to the Campanato theorem, (see e.g.

Theorem 7.51 in [5]), we infer that u ∈ C0, 1
2

loc (U) which shows that U ⊂ A\Su. Hence,

x /∈ Su, which completes the proof.

Remark 4.3. Let u ∈ SBV 2 (A) be a quasi-minimizer of F (·, A) for A ⊂ Ω′. By an

application of a classical theorem of Geometric Measure Theory (See Theorem 2.53 and
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Section 2,9 in [5]), we have, for Hn−1−a.e. x ∈
(
Ω ∩ A

)
\ Su, that

lim
ρ→0

Hn−1 (Su ∩Bρ (x))

ρn−1
= 0.

We deduce, from the Theorem 4.6, that there exists ρ0, ϑ > 0 so that Hn−1 (Su ∩Brho) > ϑ

for all ρ < ρ0. Combining these two consequences, we can deduce that

Hn−1
((

Ω ∩ A
)
∩
(
Su \ Su

))
= 0, (4.24)

then, the set Su is essentialy closed in
(
Ω ∩ A

)
. This important remark was developed by

De Giorgi in [16].

4.3 Existence of minimizer for the strong formulation

of the Mumford-Shah functional

Let Ω be an open subset of Rn, and g ∈ L∞ (Ω). The Mumford Shah functional is

J (u,K) =

ˆ
Ω\K
|∇u|2 + (u− g)2 dx+Hn−1 (K ∩ Ω) , (4.25)

The aim is to minimize J in the following set,

A =
{

(u,K) ;K ⊂ Ω closed and u ∈ W 1,2
loc (Ω \K)

}
. (4.26)

The problem of minimize J is that K 7→ Hn−1 (K) is not lower-semicontinuous with

respect to the Hausdorff measure, for more references, see Section 6.1 in [5].

The idea of De Giorgi, Carreiro and Leacci to to approach to the solution of this problem

is to solve the weak formulation; in the last two sections, we have proven that there exists

minimizers, quasi-minimizers and we have a regularity over its jump set for the weak

formulation of Mumford-Shah functional.

Now, we are going to see that the pair
(
u, Su

)
given in the Theorem 4.6 is also a strong
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solution.

Theorem 4.12 ([5]). If u ∈ SBVloc (Ω) is a minimizer of F (·,Ω) then the pair
(
u, Su

)
is a minimizer of J , i.e. J

(
u, Su

)
≤ J (v,K) for any closed set K ⊂ Ω and any v ∈

W 1,2
loc (Ω \K).

Proof. First, we can note, as a consequence of Theorem 4.6, that if u is a minimizer of

F (·,Ω), then F (u,Ω) < +∞. It yields that ∇u ∈ L2 (Ω), and we deduce that u ∈

W 1,2
loc

(
Ω \ Su

)
. Let v ∈ W 1,2

loc

(
Ω \ Su

)
such that J (v,K) <∞.

Without loss of generality, we suppose that v is bounded. By the Proposition 4.4 in [5],

we have that v ∈ SBV (Ω) and Hn−1 (Sv \K) = 0. Therefore, by the minimality of u

and using the fact that Su is essentially closed (See 4.24), we have that

J
(
u, Su

)
= F (u,Ω) =

ˆ
Ω

|∇u|2dx+Hn−1 (Su ∩ Ω) ≤
ˆ

Ω

|∇v|2dx+Hn−1 (K ∩ Ω) ≤ J (v,K) .

We conlude from the expresion above the result of the theorem.
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Chapter 5

Annexes

5.1 Annex A

Definition 5.1 ([5], k-dimensional densities). Let µ be a positive Radon measure in a

open set Ω ⊂ Rn and k ≥ 0. The upper and lower k-dimensional densities of µ at x are

respectively defined by

Θ∗k (µ, x) := lim sup
r→0

µ (Br (x))

ωkrk
, Θ∗k (µ, x) := lim inf

r→0

µ (Br (x))

ωkrk
.

We denote Θ (µ, x) the common value of Θ∗k (µ, x) and Θ∗k (µ, x).

Definition 5.2 ([18]). Let A ⊂ Rn and x0 ∈ Rn. We say that ν is an exterior normal

of A at x0 ∈ Rn if and only if ν ∈ Sn−1,

θn [Ln {x; (x− x0, ν) > 0} ∩ A, x0] = 0

and

θn [Ln {x; (x− x0, ν) < 0} \A, x0] = 0.

We define n(A, x0) = ν if ν is an exterior normal of A at x0, n(A, x0) = 0 if there exists

no exterior normal of A at x0.

Remark 5.1. Let A ⊂ Rn and x0 ∈ Rn. If ν1 ad ν2 are exterior normal of A at x0 ∈ Rn,
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then, ν1 = ν2. (See [18], 4.5.5)

Theorem 5.1 ([18]). If f is a real valued Ln−measurable function such that

f−(x) = ap lim inf
z→x

f(z) ∈ R for x ∈ Rn,

f+(x) = ap lim sup
z→x

f(z) ∈ R for x ∈ Rn,

where ap lim inf and ap lim sup are defined in Definition 1.1. Then for Hn−1 almost all

x0 ∈ Sf , there exists ν ∈ Sn−1 such that,

n [{x; f(x) ≥ s} , x0] = ν

for all s ∈ [f− (x0) , f+ (x0)].

Proof. We define Qs = {x; f−(x) ≥ s}. Let ∂∗Qs the reduced boundary of Qs (See Defi-

nition 2.3) and ∂∗Qs the measure theoretic boundary (See Definition 2.5). By the Lemma

5.5 in [17], we have that ∂∗Qs ⊂ ∂∗Qs and Hn−1 (∂∗Qs\∂∗Qs) = 0. Let Σ be a dense

countable subset of R (See [17], pg. 211 or [18] pg. 490).

Let x0 ∈ Sf\
⋃
{∂∗Qr\∂∗Qr; r ∈ Σ}, we see

Hn−1
(⋃
{∂∗Qr\∂∗Qr; r ∈ Σ}

)
= 0.

Fix r, t ∈ Σ such that f−(x0) < r < t < f+(x0). By definition of the measure theoretic

boundary, we can see that x0 ∈ ∂∗Qr ∩ ∂∗Qt.

Now, we are going to show that for Qr and Qt, its exteriors normal coincide. Let

ν1 = n (Qr, x0) ∈ Sn−1, ν2 = n (Qt, x0) ∈ Sn−1.

As a consequence of the Theorem 3.61 (Federer’s theorem) in [5], we can see that θn (Ln Qt, x0) =

1
2

= θn (Ln Qr, x0) and it is easy to see that

Qt ⊂ Qr. (5.1)
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Indeed, as r < t, we have

Qt = {x; f−(x) ≥ t} ⊂ {x; f−(x) ≥ r} = Qr.

Hence, by the definition of f−, we have

θn (Ln Qr\Qt, x0) = 0. (5.2)

We can see that ν1 = n (Qt, x0), indeed, by (5.1) and the fact that ν1 = n (Qr, x0), we

have

θn [Ln {x; (x− x0, ν1) > 0} ∩Qt, x0] ≤ θn [Ln {x; (x− x0, ν1) > 0} ∩Qr, x0] = 0,

and also, by (5.1) and (5.2), we can see that

θn [Ln {x; (x− x0, ν1) < 0} \Qt, x0] ≤ θn [Ln {x; (x− x0, ν1) > 0} \Qr, x0] = 0.

Then, ν1 is an exterior normal to Qt. By the same argument, we can conclude that ν2 is

the exterior normal to Qr and then ν1 = ν2.

For all numbers s such that r < s < t, we have thatQt ⊂ Qs ⊂ Qr and θn (Ln Qs\Qt, x0).

By the argument above, we have that n (Qs, x0) = ν1. By the fact that Qs differs to

{f ≥ s}, we can conclude the result of the theorem.
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