
Università degli Studi di Milano
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Abstract

The Bloch space has a long history behind it and is a central object of study in several outstanding
problems remain unresolved. It was introduced by the French mathematician Andre Bloch at the
beginning of the 20-th century and, since then, has undergone a remarkable metamorphosis.
The basic idea was considered the class of holomorphic functions f on the unit disk of C, denoted by
D, with normalisation f ′(0) = 1, such that

(1− |z|2)f ′(z) (0.0.1)

is bounded. Equivalently, the Bloch space, on D, consists on holomorphic functions whose derivative,
on a fixed point z ∈ D, grows no faster than a constant times the reciprocal of the distance from z to
the boundary of D.
One of the outstanding problems concerning the Bloch space, for instance, is to determine exactly
what functions of the Bloch space have the property that the Taylor coefficients approach zero.
Many mathematicians payed attention to this functional space because of its intrinsic interest and
because is the meeting place of several areas of Mathematical Analysis. In particular, the theory of
Bloch space lies at the interface of Complex Analysis and Operator Theory and so it helps us to gain
a deeper understanding of both of them. For instance, we show that the Bloch space is the largest
space with certain natural properties and, thus, providing another justification for studying it.
However, we mention that some of such authors are, for example, L. Ahlfors, J.M. Anderson, J. Clunie,
Ch. Pommerenke, P.L. Duren, B.W. Romberg and A.L. Shields.
During the period from 1925 through 1968 Bloch’s result motivated works of various nature. In fact,
in this period, one group of these mathematicians considered the generalisations of Bloch’s result to
balls in Rn to Cn.
In the same period, another group, of the above mentioned mathematicians, were concentrated on the
function theoretic implications for the case of the unit disc of C. Furthermore, this holomorphic space
plays an important role in classical geometric function theory mainly because of its Mobius invariance.
In fact, equipping the Bloch space, denoted by B, with the following norm

|f(0)|+ sup
z∈D

(1− |z|2)|f ′(z)|,

it turns out that the Bloch space is the maximal Mobius invariant Banach space of holomorphic
functions. Actually, in this thesis we prove that this result holds in the several-variable case too.
In the period from 1969 to the present the Banach space B has been studied and become fairly active.
Some progress has been made in establishing the Banach structure and, hence, the functional analytic
properties of B. In fact, the Banach space point of view has allowed a somewhat broader viewpoint
and, consequently, has given rise to a new set of questions concerning the Bloch space.
During the period from 1970 through the middle of the 90’s many mathematicians, such as for example
J. Arazy, S. Fisher, J. M. Anderson and S. Axler, studied the theory of the Bloch spaces extending
many results to the several-variable case. Namely, for functions defined on the open unit ball of Cn
with values in C. Hence, in higher dimensions, B is defined as the space of holomorphic functions
f : Bn −→ C such that

sup
z∈Bn

|∇(f ◦ ϕz)(0)| <∞,
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where ϕz is the involutive automorphism of Bn. That is

ϕz(w) =
z − <w,z>

|z|2 z −
√

1− |z|2
(
z − <w,z>

|z|2 z
)

1− < w, z >
, z, w ∈ Bn.

<,> denotes the hermitian product of Cn and the complex gradient ∇ is defined as

∇f(z) :=

(
∂f

∂z1
(z), ...,

∂f

∂zn
(z)

)
.

At the beginning of 90’s, the concept of Bloch space was extended for functions defined on the open
unit ball Bn of Cn with values in Cn.
Finally, R.M. Timoney, on his thesis ”Bloch functions in several complex variables”, 1980, made a
study of the Bloch space on bounded symmetric domains in Cn. This work is quite expensive and
deep, it would require material from areas which are not considered in the disc case.

The purpose of this manuscript is to give a wide collection of many results concerning the Bloch
space for functions defined on the open unit ball Bn of Cn having values on C. Namely, we shall
show that many important properties for Bloch functions in one complex variable have analogs for
functions in several complex variables. More is true, we will supply proofs of the major results and
outline proofs of other ideas when they are not central to our interests.
In this thesis we will give an overview of the theory of the Bloch spaces and some applications.
The current thesis is organised as follows. In chapter 1, we first collect all needed ingredients from
Functional and Complex Analysis in several variables. We start with some notation used through this
thesis and the sets that will be used. We will introduce holomorphic functions of several complex vari-
ables and prove the n−dimensional analogues of several theorems well-known from the one-dimensional
case.
We set the stage of many essential concepts for the rest of this thesis such as the Bergman metric, the
Automorphism Group, Differential operators and the invariant Laplacian.
We present a concise review and introduction to the Lebesgue integral in the open unit ball Bn of Cn
and, hence, the Lp spaces. These include the change of variables formula, integral operators and the
basic integral estimate of the kernel functions.
This chapter ends recalling the notion of Subharmonic function and a technique used repeatedly in
this thesis: Complex Interpolation of Banach spaces.

In chapter 2, we introduce the weighted Bergman spaces and concentrate on the general aspects
of these spaces. Most results are concerned with the Banach (or metric) space structure of Bergman
spaces. Our approach here is functional analyitc.
The theory of reproducing kernel Hilbert spaces interacts with many subjects in mathematics. In
this chapter we provide an example of Hilbert space with reproducing kernel: the Bergman space of
square Lebesgue integrable functions, that is still an important field in mathematical research, and
some fruitful applications.
Some further topics related and studied in chapter 2 are, for instance, the characterisation in terms of
derivatives and the atomic decomposition of the Bergman space. This consists on the decomposition
of every function of the Bergman spaces into a very particular and nice family of functions.
We study the Bergman projection that provides the connection between the Lp spaces and the Bergman
spaces. In this chapter we show that the duality of Bergman spaces is also similar to the Lp spaces.
Moreover, the complex interpolation turns out to be similar to the Lp space interpolation illustrated
in chapter 1.

In chapter 3 we will concentrate on the main topic of this thesis: The Bloch space on the open
unit ball Bn. Equipping B by the following seminorm

||f ||B = sup
z∈Bn

|∇(f ◦ ϕz)(0)|,
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we prove various characterisations of it, some functional and topological properties. One of these, that
will be proved, is the lack the of separability.
We will focus in the following point of view: the Bloch space, in some sense, can be thought of as limit
case of the Bergman spaces. In fact, we also show that the image, under the Bergman projection, of
the space of bounded functions is the Bloch space.
In this chapter we study the Bloch space as a companion of Bergman spaces: we prove that the Bloch
space can be identified with the dual space of the Bergman space given by the holomorphic functions
Lebesgue-integrable.
However, the Bloch space is also interesting in its own right. In fact, the Bloch space has been studied
much earlier, in geometric function theory, than the Bergman spaces.
The intimated relation to the Bergman metric is also proved. That is, the Bloch space consists on the
set of holomorphic functions that are Lipschitz from the open unit ball Bn with the Bergman metric
to C with the Euclidean metric.
In chapter 3 we illustrate and give a detailed description of a closed subspace of B: the little Bloch
space B0 defined as

B0 :=

{
f ∈ B | lim

|z|→1−
|∇(f ◦ ϕz)(0)| = 0

}
.

Hence, we investigate and gather some properties that are a direct consequence of such inclusion. For
example, characterisations, convexity and density of polynomials. Special attention is given to the
following aspects: construction of nontrivial functions, for both the Bloch and the little Bloch space,
and connection with other functional spaces.
We also characterise the pointwise multipliers of the Bloch space and the little Bloch space.
Further results studied in this chapter, for both the Bloch and the little Bloch space, are the atomic
decomposition and complex interpolation, where the relation of the Bloch space with the Bergman
space is heavily used.
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Chapter 1

Functional and Complex Analysis in
several variables on Bn

In this chapter we provide all the necessary and fundamental tools to study the holomorphic spaces
of our interest.
We start discussing the n-dimensional complex number space Cn, the open unit ball of Cn and the
polydisc. After that, we introduce the notation used in this thesis. Next, the notion of holomorphic
function in several variables is given in three different ways and the equivalence among them is also
proved. Consequently, we study the main properties and some results of holomorphic functions, most
of them are a natural extension from Complex Analysis in one variable. Then, we study the automor-
phism group on the open unit ball Bn. In particular, we show that every automorphism is described
in terms of a unitary transformation and an involution that interchanges a, where a ∈ Bn, with the
origin.
We will argue about an invariant operator under automorphisms of Bn: the invariant Laplacian.
Regarding the Lebesgue integration, we talk about the most relevant peculiarities that are indispens-
able in our fieldwork. The description of these tools continues setting and exploring many techniques,
such as change of variables formula, the fractional differential and integral operators.
After that, we provide some others instruments like the Bergman metric and Subharmonic functions.
Finally, in the last section, we introduce the notion of complex interpolation and present a version of
the Marcinkiewicz interpolation theorem.
For this chapter the references are: Spaces of Holomorphic Functions in the Unit Ball, Zhu Kehe,
Springer, 2010.
Holomorphic Functions and Integral Representations in Several Complex Variables, R. Michael Runge,
Springer, 1986.
Function Theory of Several Complex Variables, Steven G. Krantz, Pacific Grove, 1992.

1.1 Preliminaries

In this section, we collect some basic notations, facts and terminology, which will be used through-
out this thesis.
R and C denote the field of real and complex numbers; Z and Z+ denote respectively the integers and
nonnegative integers. Finally, N denotes the set of natural numbers.

1.1.1 The space Cn

Fix n ∈ N, we denote by Cn the n-dimensional complex number space. It is defined as the cartesian
product of n copies of C, that is

Cn := {z = (z1, ..., zn), zj ∈ C for 1 ≤ j ≤ n } .
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For the points of Cn, we shall use the notation z = (z1, ..., zn). Arguing as in the case of Rn, the
standard basis of Cn is

e1 = (1, 0, ..., 0), e2 = (0, 1, ..., 0), ... , en = (0, 0, ...0, 1),

while the zero vector is given by 0 = (0, ..., 0).
We write zj = xj + iyj for the decomposition of the coordinates zj into real and imaginary parts.
Hence, the bijection

(z1, ..., zn) ∈ Cn −→ (x1, y1, ..., xn, yn) ∈ R2n (1.1.1)

establishes an R−linear isomorphism between Cn and R2n. This isomorphism is used to introduce a
norm and thus a topology on Cn. Since all norms on R2n are equivalent, all norms on Cn define the
same topology.
The vector space structure of Cn, over the field C, is described as follows: addition and multiplication
by a complex scalar λ are defined coordinate-by-coordinate : z + w = (z1 + w1, ..., zn + wn) and
λz = (λz1, ..., λzn).
The standard Hermitian inner product on Cn is defined by

< z,w >:=
n∑
j=1

zjwj , z, w ∈ Cn,

where wj indicates the complex conjugate of wj . The norm associated is

|z| =
√
< z, z > =

√
|z1|2 + ...+ |zn|2,

which induces the Euclidean metric in the usual way: let z, w ∈ Cn, we have that dist(z, w) = |z−w|.

1.1.2 The open unit ball Bn
Fix a ∈ Cn and r > 0, the open ball centered at the point a of radius r is denoted by B(a, r),

namely
B(a, r) = {z ∈ Cn | |z − a| < r} .

The topological boundary of B(a, r), denoted by ∂B(a, r), is ∂B(a, r) = {z ∈ Cn | |z − a| = r}.
In particular, in these notes, the open unit ball Bn is

Bn = {z ∈ Cn | |z| < 1} .

Through this thesis, we denote the unit sphere in Cn with Sn, which is the boundary of the open unit
ball, that is Sn = {z ∈ Cn | |z| = 1} . As a consequence, we easily can see that Bn = Bn ∪ Sn.
For n = 1, in the remainder of this thesis, we will denote by

D := {z ∈ C | |z| < 1} ,

and by
S := {z ∈ C | |z| = 1} .

Finally, every set Ω ⊆ Cn which is connected and open is said to be a domain.

1.1.3 Differential operators on Cn

Now we introduce the partial differential operators on Cn given by

∂

∂zj
:=

1

2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂zj
:=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
, j = 1, ..., n. (1.1.2)
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The operators introduced in (1.1.2) are also known as Wirtinger derivatives. Moreover, we remark
that these operators are going to be used in the Definition of holomorphic function in several variables.
These operators satisfy the following

∂zk
∂zj

=
∂zk
∂zj

= δkj , k, j = 1, ..., n

∂zk
∂zj

=
∂zk
∂zj

= 0, k, j = 1, ..., n.

Likewise, we have the differentials of the coordinate functions, that is

dzj = dxj + idyj , j = 1, ..., n,

dzj = dxj − idyj , j = 1, ..., n.

Since Cn is isomorphic to R2n, we can impose on Cn in a natural way any of the structures of R2n; for
instance, the Lebesgue measure on R2n becomes a measure on Cn, which will be denoted by dV . The
Lebesgue measure can be explicitely written as dV (z) =

(
1
2i

)n
dz1dz1...dzndzn or, equivalently, using

the above differentials
dV (z) = dx1dy1 . . . dxndyn. (1.1.3)

Actually, (1.1.3) is the form in which we use the Lebesgue measure.

1.1.4 Multi-index notation

Any theory of functions of several variables requires multi-index notation. A multi-index α is an
element of (Z+)

n
. The multi-index notation will be used to simplify formulas involving power series,

polynomials and partial derivatives in several variables. Indeed, if α = (α1, . . . , αn) ∈ (Z+)
n
,

w = (w1, . . . , wn) ∈ Cn, then
wα = wα1

1 · · · wαnn ,

∂α

∂w
=
∂α1

∂w1
· · · ∂

αn

∂wn
,

∂α

∂w
=
∂α1

∂w1
· · · ∂

αn

∂wn
.

Hence, in multi-index notation, a multi-variable power series can be written in the form∑
α∈Nn

cαz
α,

which is an abbreviation for
∞∑

α1=0

· · ·
∞∑

αn=0

cα1,...,αnz
α1
1 . . . zαnn , where cα1,...,αn ∈ C.

For the sake of simplicity, for α ∈ (Z+)n, we will use the following common notation

α! = α1! · · ·αn! and |α| =
n∑
j=1

αj .

Furthermore, if α, β ∈ (Z+)
n
, α ≤ β means that αj ≤ βj for all j.

Finally, the multi-nomial formula is written by

(z1 + ...+ zn)N =
∑
|α|=N

N !

α!
zα.
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1.1.5 Ck functions

Given k ∈ Z+ and an open set Ω ⊆ Cn, let f : Ω −→ C, it is easy to see that f can be considered as
f(z) = u(x1, y1, ..., xn, yn)+iv(x1, y1, ..., xn, yn), where u, v : R2n −→ R. So, when we write f ∈ Ck(Ω),
we mean that u and v are k times continuously differentiable on Ω.
We gather some properties of the Wirtinger derivatives in the next proposition.

Proposition 1.1.1. Let Ω ⊆ Cn a domain, assume that f, g ∈ C1(Ω). Then the following equalities
hold

∂

∂zi
(αf + βg) = α

∂f

∂zi
+ β

∂g

∂zi
,

∂

∂zi
(αf + βg) = α

∂f

∂zi
+ β

∂g

∂zi
, α, β ∈ C, (Linearity).

∂

∂zi
(f · g) =

∂f

∂zi
g +

∂g

∂zi
f,

∂

∂zi
(f · g) =

∂f

∂zi
g +

∂g

∂zi
f, (Product Rule).

∂f

∂zi
=
∂f

∂zi
,

∂f

∂zi
=
∂f

∂zi
, (Conjugation).

1.1.6 Polydiscs and the distinguished boundary

To continue our short introduction, we mention the notion of polydisc and distinguished boundary.
In spite of the fact that the principal topics of this thesis are holomorphic spaces on the open unit ball,
the easiest approach to the most fundamental facts about holomorphic functions, in several complex
variables, is based on polydiscs rather than balls. In fact, for instance, the polydisc is going to be
used for what concerns the extension, to several variables, of the definition of holomorphic function.
Moreover, we will use both the polydisc and the distinguished boundary for the generalisation of the
Cauchy integral formula.
Let’s start with the definition of polydisc.

Definition 1.1.2 (Polydiscs). Fix a = (a1, ..., an) ∈ Cn and r = (r1, ..., rn) an n-tuple of real positive
numbers, the open polydisc is defined as

P (a, r) := {z = (z1, ..., zn) ∈ Cn | |zi − ai| < ri, i = 1, ..., n } = D1(a1, r1)× ...×Dn(an, rn), (1.1.4)

where Dj(aj , rj) = {zj ∈ C | |zj − aj | < rj} for all j = 1, ..., n. The n−tuple r = (r1, ..., rn) is called
multiradius.

In other words, polydiscs in Cn are basically cartesian products of n discs in C. More is true, the
open polydiscs constitute a basis for the collection of open sets in the Cartesian product topology on
Cn and, when n = 1, the polydisc and the ball coincide.
The circle, on C, centered at the point ak ∈ C with radius rk > 0 is denoted by C(ak, rk), that is

C(ak, rk) := {z ∈ C | |z − ak| = rk} .

The boundary of the polydisc is given by the disjoint union

∂P (a, r) =
n⋃
i=1

C(ai, ri)×
n⊗

j=1,j 6=i
Dj(aj , rj)

 ,

where
⊗n

j=1Dj(aj , rj) = D1(a1, r1)× ...×Dn(an, rn).
We introduce the distinguished boundary,

b0P (a, r) := C(a1, r1)× C(a2, r2)× ...× C(an, rn).

In many situations, b0P (a, r) plays the same role as the unit circle in one complex variable. Hence,
according to the previous remark about the boundary of the polydisc, we easily find that

b0P (a, r) ⊂ ∂P (a, r).

This means that b0P (a, r) is strictly smaller than the topological boundary of the polydisc, when
n > 1. In fact, we can notice that b0P is of real dimension n, while the boundary of the polydisc has
dimension (2n− 1).
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1.1.7 Power series

In order to introduce holomorphic functions of several variables, we must first discuss basic facts
about multiple series. That is, formal expressions∑

α∈Nn
bα, bα = bα1,...,αn ∈ C.

Of course, we start defining what we mean by the sum of a multiple series. First of all, if n > 1,
the index set Nn does not carry any natural ordering, so that there is no canonical way to consider∑

α∈Nn bα as a sequence of finite partial sums as in the case n = 1. The ambiguity is avoided if one
considers convergent series, defined as follows.

Definition 1.1.3. The multiple series
∑

α∈Nn bα is called convergent if

sup

{∣∣∣∣∣∑
α∈Λ

bα

∣∣∣∣∣ , Λ finite

}
<∞.

Definition 1.1.4. Let (cα)α∈Nn ∈ C and fix a ∈ Cn, a power series in n complex variables z1, . . . , zn
centered at the point a is a multiple series of the form∑

α∈Nn
cα(z − a)α. (1.1.5)

Definition 1.1.5. Fix z0 ∈ Cn, the above power series is said to be convergent at the point z0 if the
series ∑

α∈Nn
cα(z0 − a)α

converges.

Similarly, we easily deduce the definition of absolute and uniform convergence of a power series in
n complex variables.

Definition 1.1.6. The domain of convergence of the power series is the interior of the set of points
z ∈ Cn for which the series in formula (1.1.5) converges.

1.2 Holomorphic Functions

The objective of this part is to give a formal definition, study the behaviour and list the main
properties of holomorphic functions in several variables. Some of the properties of holomorphic func-
tions, like power series expansion, extend from one to several variables. However, they differ in many
important aspects. For example, in one variable the zero set of a holomorphic function is a discrete
set. The zero set of a holomorphic function in Cn, n ≥ 2, is never isolated: it has 2n − 2 real di-
mension. Another main difference is that there is no analog to the Riemann map theorem in higher
dimensional spaces. Therefore, it is not correct to consider the theory of several complex variables as
a straightforward generalisation of that of one complex variable.

1.2.1 Definition of Holomorphic Function

There are a number of possible ways to define what means for a complex valued function on an
open set, in Cn, to be holomorphic. We begin with the notion of separately holomorphic function.

Definition 1.2.1 (Separately Holomorphic). Let Ω ⊆ Cn be an open set, a function f : Ω −→ C
is said to be holomorphic, in Ω, in each variable separately, if for every j = 1, ..., n and every fixed
z1, ..., zj−1, zj+1, ..., zn the map

ξ −→ f(z1, ..., zj−1, ξ, zj+1, ..., zn)

is holomorphic, in the classical one-variable sense, on the set

{ξ ∈ C | (z1, ..., zj−1, ξ, zj+1, ..., zn) ∈ Ω} .

9



We propose two different plausible definitions of holomorphic functions, which are equivalent to
each other. The first one concerns the well known Cauchy-Riemann equations.

Definition 1.2.2 (Holomorphic Function). Let Ω ⊆ Cn be an open set, a function f : Ω −→ C is called
holomorphic on Ω if f ∈ C1(Ω), namely continuously differentiable, and satisfies the Cauchy-Riemann
equations in each variable separately, that is

∂f

∂zj
(z) = 0, for 1 ≤ j ≤ n and z ∈ Ω. (1.2.1)

Let f be a holomorphic function, according to Definition 1.2.2, and suppose to fix (n−1) variables
z1, .., zj−1, zj+1, ..., zn. We notice that the map

ξ −→ f(z1, .., zj−1, ξ, zj+1, ..., zn)

is continuous differentiable and satisfies the Cauchy Riemann equations. Hence, we deduce that the
map f is holomorphic in each variable separately. In other words, we’ve proved the following result.

Proposition 1.2.3. A holomorphic function, according to Definition 1.2.2, is separately holomorphic.

Remark 1.2.4. Since f can be considered as f(z) = u(x1, y1, ..., xn, yn) + iv(x1, y1, ..., xn, yn), where
u, v : R2n −→ R, using the operators introduced in (1.1.2), the Cauchy-Riemann equations can be
equivalently written in the following form

∂u

∂xj
=

∂v

∂yj
, ∀ j = 1, ..., n,

∂u

∂yj
= − ∂v

∂xj
, ∀ j = 1, ..., n.

(1.2.2)

The extension of the concept of holomorphic function, from one to several variables, is perhaps
most naturally achieved using the basic property : the expansion in power series. We provide another
definition of holomorphic function in several variables as follows.

Definition 1.2.5 (Holomorphic Function). Let Ω ⊆ Cn be an open set, a function f : Ω −→ C is
holomorphic on Ω if for each z0 ∈ Ω there exists (cα)α∈Nn ∈ C, r = r(z0) > 0 and a polydisc P (z0, r),
where P (z0, r) ⊂ Ω, such that f can be written as an absolutely convergent power series on P (z0, r).
That is

f(z) =
∑
α

cα(z − z0)α , ∀ z ∈ P (z0, r), (1.2.3)

and the convergence is uniform on compact subsets of P (z0, r). In other words, every holomorphic
function is locally the sum of a convergent power series.

In the next remark, we talk about homogenous expansion. For this aim, we recall the following
two definitions.

Definition 1.2.6. Let d ∈ N0 and α ∈ Nn, a polynomial of degree d, in Cn, is an expression of the
form

P (z) =
∑
|α|≤d

cαz
α

where cα ∈ C.

Definition 1.2.7. A polynomial P is said to be homogenous of degree d, where d ∈ N0, if

P (λz) = λdP (z), ∀ λ ∈ C, z ∈ Cn.

10



Remark 1.2.8. Assume z0 = 0 in the expansion in equation (1.2.3), putting

fk(z) :=
∑
|α|≤k

cαz
α, k ≥ 0,

hence, we obtain

f(z) =
+∞∑
k=0

fk(z), ∀ z ∈ P (0, r),

which is called homogenous expansion of f . There are several reasons to consider this type of expan-
sion. For example, an advantage is that it is invariant under linear changes of variables: if L is a linear
transformation on Cn, then the composition fk ◦ L is homogenous of degree k. Hence, for a suitable
polydisc P (0, r) such that P (0, r) ⊂ Ω, (f ◦ L)(z) admits the following locally expansion

(f ◦ L)(z) =
+∞∑
k=0

(fk ◦ L)(z), ∀z ∈ P (0, r),

where the convergence is uniform on compact subsets of P (0, r).

Let Ω ⊆ Cn be an open set and a holomorphic function f : Ω −→ C, according to Definition 1.2.5.
Suppose that the coordinates z1, ..., zj−1, zj+1, ..., zn are fixed. Let (c̃j)j∈N0 := (c1,...,j−1,j,j+1,...,n)j∈N0

be; that is, we fix (1, ..., j − 1, j + 1, ..., n) ∈ Nn−1. Then we obtain that the power series in (1.2.3)
can be arranged as a convergent power series in zj − z0

j . This means that the function is holomorphic
in each variable separately on Ω; thus the ordinary complex derivative with respect to one of the
variables zj is well-defined. That is,

Proposition 1.2.9. A holomorphic function of several variables, according to Definition 1.2.5, is
holomorphic in each variable separately.

Actually, considering Proposition 1.2.3 and 1.2.9, we deduce that

Proposition 1.2.10. A holomorphic function, according to both Definitions 1.2.2 and 1.2.5, is holo-
morphic in each variable separately.

1.2.2 The Cauchy integral formula for polydiscs and the Cauchy kernel

For functions that are holomorphic in each variable separately, there is a Cauchy integral repre-
sentation formula which extends the well-known one variable formula. This representation formula is
most easily established on polydiscs.

Theorem 1.2.11 (Cauchy Formula for Polydiscs). Let Ω ⊆ Cn an open set be, let f : Ω −→ C
be a holomorphic function in each variable separately on Ω and a polydisc P (a, r), with multiradius
r = (r1, ..., rn), such that P (a, r) ⊂ Ω. Then, it holds that

f(z) =
1

(2πi)n

∫
C(an,rn)

...

∫
C(a1,r1)

f(ξ1, ..., ξn)

(ξ1 − z1)...(ξn − zn)
dξ1...dξn , ∀ z ∈ P (a, r), (1.2.4)

or equivalently,

f(z) =
1

(2πi)n

∫
b0P (a,r)

f(ξ1, ..., ξn)

(ξ1 − z1)...(ξn − zn)
dξ1...dξn ∀z ∈ P (a, r).

Proof. We prove the theorem by induction over the number of variables n. For n = 1, this is Cauchy’s
integral formula, for the disc, for a holomorphic function of one complex variable. Let’s suppose n > 1,
and that the theorem has been proved for (n − 1) variables. Fix z ∈ P (a, r), we apply the inductive
hyphotesis with respect to (z2, ..., zn) obtaining

f(z) =
1

(2πi)n−1

∫
C(an,rn)

...

∫
C(a2,r2)

f(z1, ..., ξn)

(ξ2 − z2)...(ξn − zn)
dξ2...dξn. (1.2.5)
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Fixing ξ2, ..., ξn, the case n = 1 gives explicitly

f(z1, ξ2, ..., ξn) =
1

(2πi)

∫
C(a1,r1)

f(ξ1, ..., ξn)

(ξ1 − z1)
dξ1, (1.2.6)

we substitute (1.2.6) into (1.2.5) and, since f is measurable, we deduce that the integral makes perfectly
sense as an iterated integral. Then, we immediately obtain the desired result.

Remark 1.2.12. The Cauchy integral formula shows an important and subtle point about holomor-
phic functions in several variables: the value of the function f on P (a, r) is completely determined by
the values of f on the region of integration b0P .

Definition 1.2.13 (Cauchy kernel). The Cauchy kernel is the product that appears in the integrand
of (1.2.4). Moreover, this kernel can be written as an absolutely convergent power series on P (a, r),
where P (a, r) ⊂ Ω. That is,

n∏
j=1

1

(ξj − zj)
=

n∏
j=1

1

(ξj − aj)− (zj − aj)
=
∑
α∈Nn

(z − a)α

(ξ − a)α+1
, ∀ z ∈ P (a, r), ξ ∈ b0P (a, r), (1.2.7)

where α+ 1 = (α1 + 1, ..., αn + 1) and the convergence is uniform on compact subsets of P (a, r).

Remark 1.2.14. In the next section, the Cauchy integral formula for polydiscs will be used to prove
the equivalence between Definitions 1.2.2 and 1.2.5.

1.2.3 Equivalence between Definitions 1.2.2 and 1.2.5

The main object of this subsection is to show that the Definitions 1.2.2 and 1.2.5 are equivalent.
We start proving 1.2.2 =⇒ 1.2.5. Let Ω ⊆ Cn be an open set. A holomorphic function f : Ω −→ C,
according to Definition 1.2.2, is separately holomorphic. Hence, for a polydisc P (a, r) such that
P (a, r) ⊂ Ω, we can apply the Cauchy integral formula, we use the expansion (1.2.7) of the Cauchy
kernel and, thanks to the uniform convergence on compact subsets, we interchange the order of sum-
mation and integration as follows

f(z) =
1

(2πi)n

∫
b0P (a,r)

f(ξ1, ..., ξn)

(ξ1 − z1)...(ξn − zn)
dξ1...dξn

=
1

(2πi)n

∫
b0P (a,r)

f(ξ1, ..., ξn)
∑
α∈Nn

(z − a)α

(ξ − a)α+1
dξ1...dξn

=
∑
α∈Nn

(z − a)α

(2πi)n

∫
b0P (a,r)

f(ξ1, ..., ξn)

(ξ − a)α+1
dξ1...dξn, ∀z ∈ P (a, r).

Hence, it follows immediately that the function f has a locally power series expansion of the form

f(z) =
∑
α

cα(z − a)α, ∀z ∈ P (a, r), (1.2.8)

where

cα(a1, ..., an) =
1

(2πi)n

∫
b0P (a,r)

f(ξ1, ..., ξn)

(ξ1 − a1)α1+1...(ξn − an)αn+1
dξ1...dξn.

This proves that f is holomorphic according to Definition 1.2.5.
We prove that (1.2.5 =⇒ 1.2.2). Let Ω ⊆ Cn be an open set and let f : Ω −→ C be a holomorphic
function according to Definition 1.2.5. Thanks to Proposition 1.2.9, f is holomorphic in each variable
separately and, hence, the Cauchy-Riemann equations in each variable separately are satisfied. Fi-
nally, the locally expansion in power series clearly implies that f ∈ C1(Ω).

After this argument, considering Proposition 1.2.11, as a consequence we have that

Theorem 1.2.15. Every holomorphic function is holomorphic in each variable separately.

Remark 1.2.16. Thanks to Hartogs theorem, we’ll prove that the converse is also true.
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1.2.4 The Hartogs Theorem

We now present Hartogs theorem, which states that a holomorphic function in each variable sepa-
rately is holomorphic according to Definition 1.2.2 or equivalently 1.2.5. We start explaining what we
do in this subsection. Let Ω ⊆ Cn be a domain, suppose that f : Ω −→ C is a holomorphic function in
each variable separately and is bounded on compact subsets. Under these conditions, for a polydisc
P (a, r) such that P (a, r) ⊂ Ω, arguing in the same way that in subsection 1.2.3, we find that f can
be written as an absolutely convergent power series on P (a, r) as follows

f(z) =
∑
α

cα(z − a)α , ∀ z ∈ P (a, r),

where the convergence is uniform on compact subsets of P (a, r). Therefore, in order to prove the
fundamental Hartogs theorem, this means that it suffices to check that if f is holomorphic in each
variable separately, then it is bounded on compact subsets.
This subsection is organised as follows. We begin with the statement of Hartogs Lemma. Afterthat,
we provide the Hartogs Theorem. The proof of Hartogs Lemma is omitted and can be found, for
example, in the book of Joseph L. Taylor, Several Complex Variables with Connections to Algebraic
Geometry and Lie Groups.

Lemma 1.2.17 (Hartogs Lemma). Let f be holomorphic in P (0, r) = D1(0, r1)× ...×Dn(0, rn). Fix
z1, ..., zn−1, let the power series expansion of f in the variable zn be. That is

f(z) =
∑
k

fk(z
′)zkn, (1.2.9)

where the fk are holomorphic in P (0, r′) := D1(0, r1)× ...×Dn−1(0, rn−1). If there exists l > 0, such
that l > rn, so that this series converges in Dn(0, l), for every z′ ∈ P (0, r′), then (1.2.9) converges
uniformly on each compact subset of P (0, r′) × Dn(0, l). Therefore, f extends to be holomorphic on
P (0, r′)×Dn(0, l).

Thanks to this Lemma, we can prove Hartogs theorem.

Theorem 1.2.18 (Hartogs, 1906). Let Ω ⊆ Cn be a domain and f : Ω −→ C holomorphic in each
variable separately. Then f is holomorphic on Ω.

Proof. This theorem is proved by induction on the dimension n. If n = 1, there is nothing to prove.
Suppose that n > 1 and that the theorem is true for dimension (n − 1). Let a ∈ Ω and a polydisc
P (a, r) such that P (a, r) ⊂ Ω. Using the following notation

P (a′, r′) = D1(a1, r1)× ...×Dn−1(an−1, rn−1),

we define
Xk :=

{
zn ∈ Dn(an, rn/2) : |f(z′, zn)| ≤ k,∀z′ ∈ P (a′, r′)

}
.

We notice that, since f(z′, zn) is continuous in zn for each fixed z′, Xk is closed for every k. Using the
induction assumption, f(z′, zn) is also continous in z′ and, for every zn ∈ Dn(an, rn/2), bounded on
P (a′, r′). Hence,

Dn(an, rn/2) ⊂
⋃
k

Xk.

As a consequence of the Baire category theorem, the set Xk contains a Dn(bn, δ), for some k, of some
point bn ∈ Dn(an, rn/2).
Since f is separately holomorphic and uniformly bounded in the polydisc P (a′, r′)×Dn(bn, δ), we can
conclude that f is holomorphic on P (a′, r′)×Dn(bn, δ).
We choose sn > rn/2 so that Dn(bn, sn) ⊂ Dn(an, rn). Then, f(z′, zn) is holomorphic in zn, on
Dn(bn, sn), for every z′ ∈ P (a′, r′). As a consequence, we deduce that the expansion in power series
of f(z′, zn) about (a′, bn) converges, for every fixed point z′ ∈ P (a′, r′), as a power series in zn on
Dn(bn, sn). From Hartogs Lemma, it turns out that f is holomorphic on all of P (a′, r′)×Dn(bn, sn).
By the arbitrariness of a, the proof is completed.
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Finally, in this thesis, we will deal with the following function spaces.

Definition 1.2.19.
H(Bn) = {f : Bn −→ C | f holomorphic }

H∞(Bn) := {f : Bn −→ C | f holomorphic and bounded }

A(Bn) := C
(
Bn
)
∩H(Bn).

C0(Bn) :=
{
f ∈ C(Bn) | f |Sn = 0

}
1.2.5 Consequences of Cauchy Integral Formula

The aim of this subsection is to summarise some elementary properties, for holomorphic functions
of several variables, that are analogous to properties of functions of one variable. Most of them are
deduced from the Cauchy Integral Formula. Since their proof follow the same lines as in the one
variable case, we omit them. However, they can be found, for example, in the book of R. Michael
Runge, Holomorphic Functions and Integral Representation in Several Complex Variables.

Corollary 1.2.20. Suppose f ∈ H(Ω), where Ω ⊆ Cn is a domain. Then f ∈ C∞(Ω). Furthermore,
for any multiindex α, we have that

∂αf

∂z
∈ H(Ω).

Moreover, the mean value property holds. That is, for a polydisc P (a, r), such that P (a, r) ⊂ Bn, we
have

f(a) =
1

(2π)n

∫ 2π

0
...

∫ 2π

0
f(r1exp(it1), ..., rnexp(it1))dt1...dtn

Proof. We basically use the Cauchy integral formula on any closed polydisc which is contained in
Ω. Hence, we can differentiate under the integral sign and the result follows easily. After that, to
prove the pointwise integral formula, we just substitute z = a in (1.2.4) to obtain the desired formula.
Finally, putting z = 0 and a = 0 in (1.2.4), we get the following nice formula

f(0) =
1

(2πi)n

∫
C(0,rn)

...

∫
C(0,r1)

f(ξ1, ..., ξn)

ξ1...ξn
dξ1...dξn

=

∫
rSn

f(ξ)dσ(ξ)

=

∫
Sn
f(rξ)dσ(ξ).

This completes our proof.

Corollary 1.2.21 (Cauchy estimates). Let Ω ⊂ Cn a domain, f ∈ H(Ω) and a polydisc P (a, r), such
that P (a, r) ⊂ Ω. Then, for every α ∈ (Z+)

n
, we have∣∣∣∣∂αf∂z (a)

∣∣∣∣ ≤ α!

rα
sup

z∈b0P (a,r)
|f(z)|. (1.2.10)

Proof. Fixed 0 < ρ < r, applying the Cauchy formula to the polydisc P (a, ρ), so that P (a, ρ) ⊂ P (a, r),
and differentiating under the integral sign, we obtain

∂αf

∂z
(a) =

α!

(2πi)n

∫
b0P (a,ρ)

f(ξ)

(ξ − a)α+1
dξ1...dξn. (1.2.11)
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We perform the following estimation,∣∣∣∣∂αf∂z (a)

∣∣∣∣ ≤ α!

(2π)n

∫
b0P (a,ρ)

|f(ξ)|
|(ξ − a)α+1|

|dξ1 . . . dξn|

= sup
z∈b0P (a,ρ)

|f(z)| α!

(2π)n

∫
C(a1,ρ1)

|dξ1|
ρ1
α1+1

. . .

∫
C(an,ρn)

|dξn|
ρnαn+1

= sup
z∈b0P (a,ρ)

|f(z)| α!

(2π)n
2πρ1

ρ1
α1+1

. . .
2πρn
ρnαn+1

=
α!

ρα
sup

z∈b0P (a,ρ)
|f(z)|.

Hence, taking the limit as ρ approaches r, the result follows.

In order to proceed, we need to recall the following definition.

Definition 1.2.22 (Locally bounded). Let Ω ⊂ Cn a domain be and Γ := {f : Ω −→ C | f ∈ C(Ω)}
a family of functions. We say that Γ is locally bounded if for every z0 ∈ Ω and r > 0 such that
B(z0, r) ⊂ Ω, there exists M > 0 that satisfies

sup
z∈B(z0,r)

|f(z)| ≤M, ∀f ∈ Γ.

Theorem 1.2.23 (Liouville). Asssume that f ∈ H(Cn) is bounded in Cn, then f is constant.

Theorem 1.2.24 (Weierstrass). Let Ω ⊆ Cn be a domain, suppose that (fn(z))n∈N ∈ H(Ω) converges
to a function f uniformly on each compact subset. Then f ∈ H(Ω) and

lim
n→+∞

∂αfn
∂z

=
∂αf

∂z
(1.2.12)

on every compact subset K ⊂ Ω and for any multiindex α.

Proposition 1.2.25. (Montel’s theorem) Let a domain Ω ⊂ Cn be and Γ := {f : Ω −→ C|f ∈ H(Ω)}.
Suppose that Γ is locally bounded, then Γ is normal.

Theorem 1.2.26 (Identity Theorem). Let a domain Ω ⊂ Cn be, if f, g ∈ H(Ω) satisfy f(z) = g(z)
for all points z in a non empty open subset U ⊂ Ω. Then f(z) = g(z) for all points z ∈ Ω.

Theorem 1.2.27 (Maximum Modulus Principle). Let f ∈ H(Ω), where Ω ⊂ Cn is a domain . If there
exists w ∈ Ω such that |f(z)| ≤ |f(w)| for all z in some open neighbourhood of w, then f(z) = f(w)
for all points z ∈ Ω.

1.2.6 Composition of Holomorphic Functions

One of the fundamental properties of holomorphic functions of one complex variable is that the
composition of two holomorphic functions is also holomorphic; we extend this property to functions
of several complex variables as follows. First of all, we give the notion of holomorphicity to functions
of the form F : Cn −→ Cm. Suppose that Ω ⊂ Cn and Ω′ ⊂ Cm are two domains; the variables in Ω
will be written as z = (z1, ..., zn) and variables in Ω′ will be written as w = (w1, ..., wm). Hence, every
map F : Ω −→ Ω′ can be described by m functions

w1 = f1(z1, ..., zn), ..., wm = fm(z1, ..., zn). (1.2.13)

The map F is called a holomorphic map in Ω if the m functions f1, ..., fm are holomorphic functions
in Ω. Equivalently, if every component is holomorphic. Finally, if f(w1, ..., wm) = f(w) is a function
defined in Ω′, the composition f(F (z)) is then a well-defined function in Ω.
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Theorem 1.2.28 (Composition Theorem). If f(w) is a holomorphic function in Ω′ and if
F : Ω ⊆ Cn −→ Ω′ ⊆ Cm is a holomorphic map, then the composition f(F (z)) is holomorphic in Ω.

Proof. Separate fj(z) into their real and imaginary parts by writing fj(z) = uj(z) + ivj(z). Since all
the maps involved are differentiable in the underlying real coordinates, we apply the usual chain rule:

∂f(F (z))

∂zj
=

m∑
k=1

(
∂f

∂wk

∂fk
∂zj

+
∂f

∂wk

∂fk
∂zj

)
. (1.2.14)

If the function f and the map F are both holomorphic, then
∂f

∂wk
= 0 and

∂fk
∂zj

= 0 for all k; hence

∂f(F (z))

∂zj
= 0 for all j. From the Cauchy-Riemann equations and since f(F (z)) ∈ C1(Ω), then follows

that the function f(F (z)) is holomorphic.

1.2.7 Holomorphic maps of the form F : Ω ⊆ Cn −→ Cm.

The purpose of this subsection is to list some properties, for holomorphic functions of the form
F : Ω ⊆ Cn −→ Cm, that will be necessary in the description of the automorphism group of Bn.
We start recalling the following definition.

Definition 1.2.29. A map F : Ω ⊆ Cn −→ Cm, that is written as F = (f1, ..., fm), is called
holomorphic if its components f1, ..., fm are holomorphic functions on Ω.

Remark 1.2.30. Every holomorphic map F : Ω ⊆ Cn −→ Cm admits a locally expansion in power
series: fix a ∈ Ω, there exists a polydisc P (a, r), such that P (a, r) ⊂ Ω, so that F is written as an
absolutely convergent power series on P (a, r). That is, there exists (cα)α∈Nn := (c1

α, ..., c
m
α )α∈Nn ∈ Cm,

where cjα ∈ C and j = 1, ...,m, such that

F (z) =
∑
α

cα(z − a)α :=

(∑
α

c1
α(z − a)α, ...,

∑
α

cmα (z − a)α

)
,∀z ∈ P (a, r).

Moreover, the convergence is uniform on compact subsets of P (a, r).
As a consequence, for holomorphic maps of the form F : Bn −→ Cm and for a polydisc P (0, r), such
that P (0, r) ⊆ Bn, there exists a sequence of vector-valued functions (Fk(z))k∈N :=

(
F 1
k (z), ..., Fmk (z)

)
k∈N,

where the components F jk (z) : Ω −→ C are homogenous polynomials having degree k, such that the
following locally absolutely expansion in power series holds:

F (z) =

+∞∑
k=0

Fk(z) :=

(
+∞∑
k=0

F 1
k (z), ...,

+∞∑
k=0

Fmk (z)

)
,∀z ∈ P (0, r),

where P (0, r) ⊂ Bn. Of course, the convergence is uniform on compact subsets of P (0, r).

Definition 1.2.31. Let F : Ω ⊆ Cn −→ Cm be a holomorphic map, where Ω ⊆ Cn is a domain, the
jacobian matrix of F in z is the complex linear map JCF : Cn −→ Cm that admits this representation:

JCF (z) =

(
∂fi
∂zj

(z)

)
m×n

=


∂f1

∂z1
· · · ∂f1

∂zn
...

. . .
...

∂fm
∂z1

· · · ∂fm
∂zn

 .
We call JCF (z) the complex Jacobian matrix of the holomorphic map F at z.

Remark 1.2.32. When we write JCF (0)z, we mean the matrix multiplication between the matrix
JCF (0) and the column vector z ∈ Cn. Hence, for a polydisc P (0, r) such that P (0, r) ⊂ Ω, the
homogenous expansion of F in P (0, r) begins as follows

F (z) = F (0) + JCF (0)z + ...,∀ z ∈ P (0, r).
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We now consider in more detail the equidimensional case m = n.
From the theory of Complex Analysis of one variable, it is a well-known fact that any holomorphic
map F : Ω1 ⊆ C −→ Ω2 ⊆ C induces a map between domains of R2 using the canonical identification
z = x + iy ≡ (x, y) −→ (u(x, y), v(x, y)) and, thanks to the Cauchy-Riemann equations, its Jacobian
determinant is

det(JR F ) = |F ′|2.
Regarding the several variables case, let F : Ω ⊆ Cn −→ Cn be a holomorphic map, where Ω ⊂ Cn is
a domain, denoting by JCF its jacobian matrix, by detJCF (z) its determinant and by detJRF (z) the
real Jacobian determinant of the induced map. Then, proceeding similarly as in the previous case, we
can prove the following lemma.

Lemma 1.2.33. Let Ω ⊆ Cn be a domain and let F : Ω ⊆ Cn −→ Cn be a holomorphic map. Then

detJRF (z) = |detJCF (z)|2, ∀ z ∈ Ω. (1.2.15)

Proof. After a permutation of the rows and columns, we can write

detJRF = det


∂uk
∂xj

∂uk
∂yj

∂vk
∂xj

∂vk
∂yj

 ,
where each one of the four blocks on the right are real n × n matrices. Consider i times the bottom
blocks and adding it to the top, it turns out that

detJRF = det


∂uk
∂xj

+ i
∂vk
∂xj

∂uk
∂yj

+ i
∂vk
∂yj

∂vk
∂xj

∂vk
∂yj

 .
Using Cauchy-Riemann equations, we obtain

detJRF = det


∂uk
∂xj

+ i
∂vk
∂xj

−∂vk
∂xj

+ i
∂uk
∂xj

∂vk
∂xj

∂uk
∂xj

 .
Now we substract i times the left blocks from the right side, it follows that

detJRF = det


∂uk
∂xj

+ i
∂vk
∂xj

0

∂vk
∂xj

∂uk
∂xj
− i∂vk

∂xj

 .
Then, since

∂fj
∂zj

=
∂fj
∂xj

, where j = 1, ..., n, and recalling that fk = uk − ivk, we find that

detJRF = det


∂fk
∂xj

0

∂vk
∂xj

∂fk
∂xj

 = detJCF detJCF = |detJCF (z)|2,

and we are done.

1.3 The Automorphism Group

In this section, we compute the group of automorphisms of Bn. After a short review about the
unitary mapping in Cn, fixed a ∈ Bn, we construct an automorphism that interchanges a and the
origin 0. Since the set of holomorphic automorphisms of Bn is a group under composition and, hence,
the composition of the previous two maps is an automorphism too, we’ll prove that these are all the
automorphisms of the open unit ball.
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1.3.1 Introduction about Automorphisms

The main purpose of this initial part is a brief review of the biholomorphic maps of Bn onto Bn.
Let’s start giving the definition of biholomorphic map.

Definition 1.3.1 (Biholomorphic Map). A map F : Bn −→ Bn is said to be bi-holomorphic if the
following hold :
1) F is a bijection.
2) F is holomorphic.
3) F−1 is holomorphic.

Definition 1.3.2 (Automorphism Group). We introduce the following set

Aut(Bn) := {F : Bn −→ Bn | F biholomorphism} .

The afore-mentioned space has the algebraic structure of a group under composition .
As in the one dimensional case, these biholomorphisms will be called automorphisms of Bn.

1.3.2 The unitary mapping

In the current subsection, we study a class of automorphism of Bn: the unitary mappings. First of
all, we start recalling its definition. Secondly, we discuss a crucial property concerning the automor-
phism group: every automorphism that fixes the origin can be identified with an unitary mapping.

Definition 1.3.3 (Unitary mapping). Given an n × n matrix U = (uij), where uij ∈ C, we can
associate a linear map LU : Cn −→ Cn by LU (z) := Uz. The matrix U is called unitary if it preserves
the inner product of Cn, namely

< Uz,Uw >=< z,w > (1.3.1)

for z, w ∈ Cn. Furthermore, LU is said to be a unitary mapping.

Remark 1.3.4. We deduce from (1.3.1) that a unitary mapping is an isometry and, clearly, an
isomorphism. In particular, LU : Bn −→ Bn is an automorphism of the open unit ball Bn.

In the following Lemma, we prove that the automorphisms that fix the origin of Cn coincide exactly
with the unitary transformations.

Lemma 1.3.5. Let ϕ ∈ Aut(Bn), we have that

ϕ is an unitary transformation of Bn ⇐⇒ ϕ(0) = 0.

Proof. (⇐=) Chosen a complex number λ ∈ C(0, 1), we define the following holomorphic map

F (z) := ϕ−1
(
λϕ(λz)

)
, z ∈ Bn.

It turns out that

F (0) = ϕ−1
(
λϕ(λ0)

)
= ϕ−1

(
λϕ(0)

)
= ϕ−1

(
λ0
)

= ϕ−1 (0) = 0.

Furthermore,

JCF (0) =︸︷︷︸
chain rule

JCϕ
−1(λϕ(0))λλJCϕ(0) =︸︷︷︸

|λ|=1

JCϕ
−1(0)JCϕ(0) = (JCϕ(0))−1JCϕ(0) = I,

where I is the identity matrix. If F is the identity map of Bn, we don’t have anything to prove.
Otherwise, we could write F using its homogenous expansion. That is,

F (z) = (f1(z), ..., fn(z)) = z +
+∞∑
k=l

Fk(z) :=

(
z1 +

+∞∑
k=l

F 1
k (z), ..., zn +

+∞∑
k=l

Fnk (z)

)
,∀z ∈ P (0, r),
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where P (0, r) is a polydisc such that P (0, r) ⊂ Bn and F jk are homogenous polynomial of degree k,

for j = 1, ..., n, so that, for l ≥ 2, F jl (z) is not zero on P (0, r) \ {0} for j = 1, ..., n.
Fix j ∈ {1, ..., n} and define

φ(z) := fj(z) ◦ ... ◦ fj(z)︸ ︷︷ ︸
N times

since fj(0) = 0 and f ′j(0) = 1, we deduce that φ(0) = 0 and

φ′(0) = f ′j (fj ◦ .... ◦ fj)︸ ︷︷ ︸
N−1 times

(0)f ′j (fj ◦ .... ◦ fj)︸ ︷︷ ︸
N−2 times

(0) ... f ′j(0) = 1.

Our aim is to prove that φ′′(0) = Nf ′′j (0). Hence, we proceed by induction: for N = 2, we have

φ′′(0) = 2f ′′j (0),

suppose the statement true for N − 1, then

φ′′(0) = ((fj (fj ◦ ... ◦ fj)︸ ︷︷ ︸
N−1

)′)′ |z=0= ((f ′j (fj ◦ ... ◦ fj)︸ ︷︷ ︸
N−1

)(fj ◦ ... ◦ fj︸ ︷︷ ︸
N−1

)′)′ |z=0

= f ′′j (fj ◦ ... ◦ fj)︸ ︷︷ ︸
N−1

((fj ◦ ... ◦ fj︸ ︷︷ ︸
N−1

)′)2 |z=0 + (fj ◦ ... ◦ fj)′′︸ ︷︷ ︸
N−1

f ′j (fj ◦ ... ◦ fj)︸ ︷︷ ︸
N−1

|z=0

= f ′′j (0) + (N − 1)f ′′j (0) = Nf ′′j (0).

Moreover, a similar computation shows that

φ′′′(0) = Nf ′′′j (0) + 2N(f ′′j (0))2.

We give a formula that generalises the previous one,

φ(k)(0) = Nf
(k)
j (0) + (k − 1)N(f

(k−1)
j (0))k−1.

This means that, for a polydisc P (0, r) such that P (0, r) ⊂ Bn, we have the following local expansion

fNj (z) := fj ◦ fj ◦ ... ◦ fj︸ ︷︷ ︸
N times

(z) = zj +NF jl (z) + ..., ∀z ∈ P (0, r),

where the omitted terms consist of polynomials of degree greater than l. Hence, as a consequence, we
compose F with itself N times and we get

FN (z) := F ◦ F ◦ ... ◦ F︸ ︷︷ ︸
N times

(z) = z +NFl(z) + ..., ∀z ∈ P (0, r),

where, again, we omitted polynomials of degree greater than l. Since the following limit

lim
N→+∞

FN (z) =: G(z)

defines a biholomorphism, this implies that in the right part of the previous equality we have

Fj(z) = 0, ∀j ≥ l,

which is a contradiction with that Fl 6= 0. Then, F (z) = z or, equivalently, ϕ(λz) = λϕ(z),∀z ∈ Bn.
In other words, the homogenous expansion of ϕ is just given by the linear term, i.e. ϕ is a linear
transformation. Hence, there exists a n× n matrix U = (uij)ij , where uij ∈ C, such that

ϕ(z) = Uz, ∀z ∈ Bn.
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Since JCϕ(z) = U,∀z ∈ Bn, ϕ maps Bn onto itself and using the change of variables formula we have

|det(U)| = 1.

Our conclusion is that ϕ is a unitary transformation.
(=⇒) Every unitary transformation is an isometry:

0 =︸︷︷︸
z=0

|z|
isometry︷︸︸︷

= |ϕ(z)| =︸︷︷︸
z=0

|ϕ(0)|,

and we obtain ϕ(0) = 0.

1.3.3 The involutive automorphism

We know that for every α in the unit disc of C corresponds an automorphism ϕα of the disc that

interchanges α and 0. Explicitly, ϕα(z) =
α− z
1− αz

. The same can be done in the unit ball Bn of Cn.

In this subsection, we introduce an automorphism on Bn, that acts in the same way. To achieve this
goal, in the next definition, we recall some tools from linear algebra.

Definition 1.3.6. Let a ∈ Bn r {0}, the orthogonal projection from Cn onto the subspace generated
by a, which is indicated by [a], is

Pa(z) :=
< z, a >

|a|2
a, z ∈ Cn.

Qa is the orthogonal projection from Cn onto Cn 	 [a], that is

Qa(z) := z − < z, a >

|a|2
a, z ∈ Cn.

We study another important family of automorphisms. They are usually known as involutive
automorphisms or involutions.

Definition 1.3.7. Let a ∈ Bn r {0}, denoting by sa =
√

1− |a|2, the involutive automorphism is:

ϕa(z) :=
a− Pa(z)− saQa(z)

1− < z, a >
, z ∈ Bn. (1.3.2)

Moreover, if a = 0, we just put ϕa(z) = −z.

Remark 1.3.8. The denominator of this formula does not vanish in Bn: applying the Schwarz in-
equality we find that | < z, a > | ≤ |a||z| < 1. Hence, the map ϕa is holomorphic on Bn.

As a consequence of the following formula, we prove that ϕa maps Bn into Bn.

Lemma 1.3.9. Let a ∈ Bn, we have that

1− |ϕa(z)|2 =

(
1− |a|2

) (
1− |z|2

)
|1− < z, a > |2

, z ∈ Bn. (1.3.3)

where ϕa is the involutive automorphism in (1.3.2).

Proof. Since the case a = 0 is trivial, we can suppose that a 6= 0.
We use the orthogonality between a− Pa(z) and Qa(z) in Cn, with the identities

|a|2|Pa(z)|2 = | < z, a > |2, < Pa(z), a >=< z, a > .
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We easily calculate that:

|a− Pa(z)− saQa|2 =< a− Pa(z)− saQa, a− Pa(z)− saQa >

=< a− Pa, a− Pa − saQa > −sa < Qa, a− Pa− saQa >

=< a− Pa, a− Pa > −sa< a− Pa, Qa >︸ ︷︷ ︸
=0

+s2
a < Qa, Qa > −sa< Qa, a− Pa >︸ ︷︷ ︸

=0

= |a− Pa(z)|2 + (1− |a|2)|Qa(z)|2

= |a|2 − 2Re < Pa(z), a > +|Pa(z)|2 + (1− |a|2)(|z|2 − |Pa(z)|2),

that is
|a− Pa(z)− saQa|2 = |1− < z, a > |2 − (1− |a|2)(1− |z|2)

dividing both sides by |1− < z, a > |2, we find

|a− Pa(z)− saQa|2

|1− < z, a > |2
= 1− (1− |a|2)(1− |z|2)

|1− < z, a > |2

thus

1− |a− Pa(z)− saQa|
2

|1− < z, a > |2
=

(1− |a|2)(1− |z|2)

|1− < z, a > |2
.

Finally, recalling the definition of ϕa, the previous formula turns out to be

1− |ϕa(z)|2 =
(1− |a|2)(1− |z|2)

|1− < z, a > |2
.

Corollary 1.3.10. The map ϕa sends Bn into itself. Moreover, ϕa : ∂Bn −→ ∂Bn.

Proof. From (1.3.3), since z, a ∈ Bn, we obtain

|ϕa(z)|2 = 1− (1− |z|2)(1− |a|2)

|1− < z, a > |2︸ ︷︷ ︸
≥0

≤ 1.

Finally, if z ∈ ∂Bn, then |ϕa(z)| = 1. That is, the map ϕa sends the boundary ∂Bn into itself.

As a consequence of the following result, we’ll prove that ϕa is a bijection and an automorphism.

Proposition 1.3.11 (Involution Property). Fix a ∈ Bn, let ϕa be the involutive automorphism in
(1.3.2). Then, the involution property holds, that is

ϕa ◦ ϕa(z) = z, ∀ z ∈ Bn.

Proof. First of all, we can easily see that

1− < ϕa(z), a >
.
= 1− < a− Pa(z)− saQa(z)

1− < z, a >
, a >

=
1− < z, a > −|a|2+ < Pa(z), a > +sa < Qa(z), a >

1− < z, a >

=
1− |a|2

1− < z, a >
.
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Now

Pa(ϕa(z)) =
< a− Pa(z)− saQa(z), a >

|a|2(1− < z, a >)
a

=
< a− z + z − Pa(z)− saQa(z), a >

|a|2(1− < z, a >)
a

=
< a− z, a >

|a|2(1− < z, a >)
+
< z − Pa(z)− saQa(z), a >

|a|2(1− < z, a >)︸ ︷︷ ︸
=0

=
a

|a|2
|a|2− < z, a >

1− < z, a >

=
a− Pa(z)

1− < z, a >
,

namely,

Pa(ϕa(z)) =
a− Pa(z)

1− < z, a >
.

We easily deduce

Qa(ϕa(z)) = ϕa(z)−
a

|a|2
|a|2− < z, a >

1− < z, a >

=
a− Pa(z)− saQa(z)

1− < z, a >
− a

|a|2
|a|2− < z, a >

1− < z, a >

=
a|a|2− < z, a > a− saz|a|2 + sa < z, a > a− a|a|2 + a < z, a >

|a|2(1− < z, a >)

=
−saz|a|2 + sa < z, a > a

|a|2(1− < z, a >)

= −sa
{

z

(1− < z, a >)
− < z, a > a

|a|2(1− < z, a >)

}

= −sa
Qa(z)

1− < z, a >
,

that is

Qa(ϕa(z)) = −sa
Qa(z)

1− < z, a >
.

Since

1− < ϕa(z), a >=
1− |a|2

1− < z, a >
,
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hence, we find

ϕa ◦ ϕa(z) =
a− Pa(ϕa(z))− saQa(ϕa(z))

1− < ϕa(z), a >

=
a− Pa(ϕa(z))− saQa(ϕa(z))

1− |a|2
(1− < z, a >)

=
a− a < z, a > −a+ Pa(z) + (1− |a|2)Qa(z)

(1− |a|2)

=
−a < z, a > +Pa(z) + (1− |a|2)(z − Pa(z))

(1− |a|2)

=
−a < z, a > +Pa(z) + z − Pa(z)− |a|2z + |a|2Pa(z)

(1− |a|2)

=
−a < z, a > +z − |a|2z+ < z, a > a

(1− |a|2)

=
z − |a|2z
(1− |a|2)

= z,

and we obtain
ϕa ◦ ϕa(z) = z, ∀z ∈ Bn.

Corollary 1.3.12. Fix a ∈ Bn, let ϕa be an involutive automorphism. Then, ϕa is an automorphism
of Bn that exchanges the origin 0 with a.

Proof. Fix w ∈ Bn, our first goal is to prove that there exists z ∈ Bn such that ϕa(z) = w. From the
involution property follows that

ϕa(w) = z,

and, since ϕa sends Bn into itself, we’ve proved that ϕa is surjective. Furthemore, from the involution
property, we deduce that ϕa is invertible on Bn, whose inverse function is ϕa itself and, since ϕa is
holomorphic, this proves that ϕa is an automorphism of Bn. Finally,

ϕa(0) = a, ϕa(a) = 0.

We give an alternative detailed description of the orthogonal projection Pa and, hence, of Qa as
well. Such description will be used to prove two formulas regarding the complex Jacobian matrix of
the involutive automorphism ϕa.
The orthogonal projection from Cn onto the one-dimensional subspace generated by z, denoted by Pz,
can be written as

Pz(w) =
1

|z|2

z1z1 · · · z1zn
...

. . .
...

znz1 · · · znzn


w1

...
wn

 =
< w, z >

|z|2
z. (1.3.4)

Now, we introduce the following auxiliary matrix

A(z) = (zizj)n×n =

z1z1 · · · z1zn
...

. . .
...

znz1 · · · znzn

 , z = (z1, ...zn) ∈ Cn, (1.3.5)
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and, if we identify linear transformations on Cn with n× n matrices via the standard basis of Cn, we
easily obtain that Pz can be written as follows

Pz =
A(z)

|z|2
, z 6= 0. (1.3.6)

Moreover, proceeding similarly, it turns out that

Qz = I − A(z)

|z|2
, z 6= 0. (1.3.7)

In the next Lemma, for a fixed a ∈ Bn, we provide two formulas concerning the complex Jacobian
matrix of the involution automorphism, respectively, in the origin and in a.

Lemma 1.3.13. Let a ∈ Bn, the following formulas hold

JCϕa(0) = −(1− |a|2)Pa −
√

1− |a|2Qa (1.3.8)

and

JCϕa(a) = − Pa
(1− |a|2)

− Qa√
1− |a|2

, (1.3.9)

where ϕa is the involution automorphism in (1.3.2).

Proof. Since, for every z ∈ Bn and a ∈ Bn, we have that | < z, a > | < 1, hence

ϕa(z) = (a− Pa(z)− saQa(z))
∞∑
k=0

< z, a >k

= a+ |a|2 < z, a >

|a|2︸ ︷︷ ︸
=Pa(z)

a− Pa(z)− saQa(z) +O(|z|2)

= a+ (|a|2 − 1)Pa(z)− saQa(z) +O(|z|2),

Hence, since s2
a = 1− |a|2, it turns out that

ϕa(z) = a︸︷︷︸
=ϕa(0)

− s2
aPa(z)− saQa(z)︸ ︷︷ ︸

linear terms

+O(|z|2).

Using the notation introduced above, it follows that

JCϕa(0) = −s2
aPa − saQa.

For what concerns JCϕa(a), our aim is to expand ϕa(z) in power series in a suitable neighborhood
B(a, r), such that B(a, r) ⊂ Bn. First of all,

B(a, r) ⊂ Bn, r ∈ [0, 1− |a|).

This means that

| < z − a, a > | ≤︸︷︷︸
C−S

|z − a||a| ≤︸︷︷︸
z∈B(a,r)

r|a| < (1− |a|)|a| < (1− |a|2),

that is
| < z − a, a > |

(1− |a|2)
< 1.
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Hence, we proceed as follows,

ϕa(z) =
a− <z,a>

|a|2 a− sa
(
z − <z,a>

|a|2 a
)

1− < z − a, a > − < a, a >

=
−<z−a,a>

|a|2 a− sa
(
z − a− <z−a,a>

|a|2 a
)

1− |a|2− < z − a, a >

=
−sa(z − a) + (sa − 1)<z−a,a>|a|2 a

(1− |a|2)
(

1− <z−a,a>
1−|a|2

)

=

(
−sa(z − a) + (sa − 1)

< z − a, a >
|a|2

a

) ∞∑
k=0

< z − a, a >k

(1− |a|2)k+1

=
1

1− |a|2

(
−sa(z − a) + (sa − 1)

< z − a, a >
|a|2

a

){
1

1− |a|2
+
∞∑
k=1

< z − a, a >k

(1− |a|2)k+1

}

=
1

s2
a

(
−sa(z − a) + (sa − 1)

< z − a, a >
|a|2

a

)
+O(|z − a|2)

= − 1

s2
a

< z − a, a >
|a|2

a− 1

sa

(
(z − a)− < z − a, a >

|a|2
a

)
+O(|z − a|2)

which means

ϕa(z) = − 1

s2
a

< z − a, a >
|a|2

a︸ ︷︷ ︸
=Pa(z−a)

− 1

sa

(
(z − a)− < z − a, a >

|a|2
a

)
︸ ︷︷ ︸

=Qa(z−a)

+O(|z − a|2).

Then, we deduce that

JCϕa(a) = −Pa
s2
a

− Qa
sa
.

Lemma 1.3.14. Let a ∈ Bn, we have

detJRϕa(z) =

(
1− |a|2

|1− < z, a > |2

)n+1

, ∀z ∈ Bn, (1.3.10)

where ϕa is the involution automorphism in (1.3.2).

Proof. Let z ∈ Bn, putting w := ϕa(z), we consider the automorphism

LU := ϕw ◦ ϕa ◦ ϕz,

so that LU (0) = 0. Hence, by Lemma 1.3.5, LU is a unitary transformation. Using the involution
property, we can write

ϕa = ϕw ◦ LU ◦ ϕz;
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then, applying the chain rule, we obtain

JCϕa(z) = JCϕw(0)JCLU (z)JCϕz(z)

= JCϕw(0)UJCϕz(z),

where U is a unitary matrix.
From (1.3.8), the linear map JCϕw(0) has a one-dimensional eigenspace with eigenvalue
−(1− |w|2) and an (n− 1)− dimensional eigenspace with eigenvalue −

√
1− |w|2. This means that

det(JCϕw(0)) = −(1− |w|2)(−1)n−1(1− |w|2)1/2(n−1)

= (−1)n(1− |w|2)(n+1)/2.

Similarly, from (1.3.9) we deduce that the linear map JCϕz(z) has a one-dimensional eigenspace with

eigenvalue − 1

(1− |w|2)
and an (n− 1)− dimensional eigenspace with eigenvalue − 1√

1− |w|2
, hence

det(JCϕz(z)) = − 1

(1− |z|2)
(−1)n−1 1

(1− |z|2)1/2(n−1)

=
(−1)n

(1− |z|2)(n+1)/2
.

Now, since |det(U)| = 1 and using Lemma 1.3.9, it turns out that

detJRϕa(z) = |detJCϕa(z)|2

=

(
1− |w|2

1− |z|2

)n+1

=

(
1− |a|2

|1− < z, a > |2

)n+1

,

where we recall that w = ϕa(z).

1.3.4 The characterisation of Aut(Bn)

In the next theorem, we show that all the automorphisms of Bn are obtained from the maps ϕa
and the unitary transformations.

Theorem 1.3.15. Given ϕ ∈ Aut(Bn), then there exist LU , LV , unitary transformations of Cn, and
ϕa, ϕb, involutive automorphisms, such that

ϕ = LUϕa = ϕbLV .

Proof. Let ϕ ∈ Aut(Bn), indicating by a = ϕ−1(0), since Aut(Bn) is a group, the map ψ := ϕ◦ϕa is an
automorphism that satisfies ψ(0) = 0. Applying Lemma 1.3.5, there exists a unitary transformation
LU of Cn such that LU = ϕ ◦ ϕa. Since ϕa is involutive, it turns out that ϕ = LUϕa. To prove the
other equality, we proceed in the same way.

To end this subsection, we prove a formula that will be used, for example, to establish some
asymptotic estimates for certain important integrals operators on the ball and on the sphere.

Corollary 1.3.16. Let ϕ ∈ Aut(Bn), we have

JRϕ(z) =

(
1− |a|2

|1− < z, a > |2

)n+1

, ∀z ∈ Bn, (1.3.11)

where a = ϕ−1(0).
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Proof. There exists a unitary transformation LU and an involutive automorphism ϕa such that

ϕ = LUϕa,

where a = ϕ−1(0). Hence,
JCϕ(z) = UJCϕa(z),

where U is a unitary matrix. Since |det (U)| = 1 and using Lemma 1.3.14, we obtain

det (JRϕ(z)) = |det (JCϕ(z)) |2

= |det (U)||detJCϕa(z)|2

= |detJCϕa(z)|2

= detJRϕa(z)

=

(
1− |a|2

|1− < z, a > |2

)n+1

.

1.3.5 The Operator ∆̃

In Chapter 2, we characterise the weighted Bergman spaces in terms of various derivatives of a
function. Hence, in this subsection, we talk about a fundamental operator that will be necessary.
Let’s explain how this subsection is organised: fix z ∈ Bn and let ϕz be an involutive automorphism,
we introduce an operator which is defined in terms of the ordinary Laplacian and the previous au-
tomorphism ϕz. It is called the invariant Laplacian. After that, we demonstrate that this operator
commutes with the automorphisms of Bn. To conclude, for a twice differentiable function f on Bn, we
get a formula that describes the invariant Laplacian of f in terms of the ordinary partial derivatives.
Of course, we start with the extension, to several variables, of the ordinary Laplacian on Cn:

∆ :=
n∑
k=1

(
∂2

∂x2
k

+
∂2

∂y2
k

) (1.1.2)︷︸︸︷
= 4

n∑
k=1

∂2

∂zk∂zk
. (1.3.12)

Definition 1.3.17 (The invariant Laplacian). Given a twice differentiable function f on Bn and
indicating with ϕz the involutive automorphism, that interchanges the points 0 and z, we define

(∆̃f)(z) := ∆(f ◦ ϕz)(0), z ∈ Bn. (1.3.13)

In this proposition, we prove that this operator is invariant under the automorphisms of Bn.

Proposition 1.3.18. Let f be a twice differentiable function on Bn, then

∆̃(f ◦ ϕ) = (∆̃f) ◦ ϕ, ∀ ϕ ∈ Aut(Bn). (1.3.14)

Proof. Fix an element z ∈ Bn, let ϕ ∈ Aut(Bn) and denote by a = ϕ(z). Hence, the automorphism

LU := ϕa ◦ ϕ ◦ ϕz;

is such that LU (0) = 0. From Lemma 1.3.5, LU is an unitary transformation. Writing
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LU (z) = (L1
U (z), ..., LnU (z)), where LjU : Cn −→ C. Let g ∈ C2(Cn), we have that

∆(g ◦ U)(0) = 4

n∑
i=1

 n∑
j,k=1

(
∂2g

∂zk∂zj
◦ LU (0)

)
∂LjU
∂zi

(0)
∂LkU
∂zi

(0) +

n∑
j=1

(
∂g

∂zj

)
◦ LU (0)

∂2LjU
∂zi∂zi

(0)︸ ︷︷ ︸
=0



= 4

n∑
j,k=1

(
n∑
i=1

(
∂2g

∂zk∂zj
◦ LU (0)

)
∂LjU
∂zi

(0)
∂LkU
∂zi

(0)

)

= 4
n∑

j,k=1

(
∂2g

∂zk∂zj
◦ LU (0)

)( n∑
i=1

∂LjU
∂zi

(0)
∂LkU
∂zi

(0)

)

= 4
n∑

j,k=1

(
∂2g

∂zk∂zj
◦ LU (0)

)
|detJCLU (0)|2

= 4
n∑
k=1

(
∂2g

∂zk∂zk
◦ LU (0)

)
.

That is,
∆(g ◦ U)(0) = ∆(g)(0).

As a consequence, we obtain

∆̃(f ◦ ϕ)(z) = ∆(f ◦ ϕ ◦ ϕz)(0)

= ∆(f ◦ ϕa ◦ LU )(0)

= ∆(f ◦ ϕa)(0)

= ∆̃f(a)

= (∆̃f) ◦ ϕ(z)

that is
∆̃(f ◦ ϕ)(z) = (∆̃f) ◦ ϕ(z).

The invariant Laplacian admits a description using ordinary partial derivatives. This property is
shown in the following proposition.

Proposition 1.3.19. Suppose that f is a twice differentiable function in Bn, then

(∆̃f)(z) = 4(1− |z|2)
n∑
i,j

(δi,j − zizj)
∂2f

∂zi∂zj
(z), ∀z ∈ Bn, (1.3.15)

where δi,j denotes the Kronecker delta.

Proof. Fix z ∈ Bn, we write the involutive automorphism as follows

ϕz(w) = (ϕ1(w), ..., ϕn(w)), w ∈ Bn.
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Applying the chain rule, we get

(∆̃f)(z) = ∆(f ◦ ϕz)(0)

= 4

n∑
i,j=1

∂2f

∂xi∂xj
(x)

n∑
k=1

∂ϕi
∂wk

(0)
∂ϕj
∂wk

(0).

Denoting by sz =
√

1− |z|2, the representation in power series of ϕz is

ϕz(w) = z − szw +
sz

1 + sz
< w, z > z + ... ,

where we omitted all the terms having w−degree 2 or higher. From the above representation, we find

∂ϕi
∂zk

(0) = −szδik +
sz

1 + sz
zkzi ,

∂ϕj
∂wk

(0) = −szδjk +
sz

1 + sz
wkzj .

Finally, after some calculations

n∑
k=1

∂ϕi
∂wk

(0)
∂ϕj
∂wk

(0) =

n∑
k=1

(
−szδik +

sz
1 + sz

zkzi

)(
−szδjk +

sz
1 + sz

zkzj

)

= s2
z

n∑
k=1

(
δik −

zkzi
1 + sz

)(
δjk −

zkzj
1 + sz

)

= s2
z

{
n∑
k=1

δikδjk −
n∑
k=1

δik
zkzj

1 + sz
−

n∑
k=1

δjk
zizk

1 + sz
+

zizj
(1 + sz)2

n∑
k=1

|zk|2
}

= s2
z

{
δij − zizj + zizj

[
1− 2

1 + sz
+

|z|2

(1 + sz)2

]}

= s2
z

{
δij − zizj + zizj

[
1 + s2

z + 2sz − 2− 2sz + |z|2

(1 + sz)2

]}

= s2
z

{
δij − zizj + zizj

[
|z|2 − 1 + s2

z

(1 + sz)2

]}
= s2

z {δij − zizj} ,

where, in the last step, we used s2
z = 1− |z|2. Hence,

n∑
k=1

∂ϕi
∂wk

(0)
∂ϕj
∂wk

(0) = δij − zizj ,

and we are done.

1.4 Weighted Lp spaces

In this thesis, we will be interested in spaces of holomorphic functions, on the open unit ball, for
which the p−th power of the absolute value is Lebesgue integrable with respect to a weighted measure.
The main purpose of this section is to provide a coherent exposition of the most importants objects
concerning the weighted Lebesgue spaces which are necessary in this thesis.
The current section is organised as follows: we fix the weighted Lebesgue measure and collect some
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of its main properties which will have many consequences in the holomorphic spaces studied in this
dissertation.
Then, we present two crucial results regarding the behaviour of some integral operators defined on
Lp: the first describes the asymptotic behaviour of a family of integral transforms, the second one is
about the boundedness of integral operators having positive kernel.
This section ends with a change of variable formula that, as a consequence, defines an invariant
measure under the automorphism group Aut(Bn).

1.4.1 The weighted measure dvα

For sake of simplicity, we denote by dv the normalised standard Lebesgue volume measure on Bn.
In the following definition, we introduce the weighted normalised volume measure on Bn.

Definition 1.4.1. If α > −1, the weighted finite measure on Bn is defined as:

dvα(z) :=

{
Γ(n+ α+ 1)

n!Γ(α+ 1)

}
(1− |z|2)αdv(z) (1.4.1)

so that vα(Bn) = 1 and where Γ denotes the gamma function. Furthermore, we denote by Lp(Bn, dvα),
0 ≤ p <∞, the Lebesgue space of measure equivalence classes of function such that

||f ||p,α :=

(∫
Bn
|f(z)|pdvα(z)

)1/p

<∞. (1.4.2)

We let L∞(Bn, dvα) denote the space of essentially bounded functions on Bn. For f ∈ L∞(Bn, dvα),
we define

||f ||∞,α = ess sup {|f(z)| : z ∈ Bn} .
The space L∞(Bn, dvα) is a Banach space with the above norm.

Remark 1.4.2. If 1 ≤ p <∞, the space Lp(Bn, dvα) is a Banach space with the norm || · ||p,α. When
0 < p < 1, Lp(Bn, dvα) is a complete metric space with the following distance:

ρ(f, g) = ||f − g||pp,α.

In particular, L2(Bn, dvα) is a Hilbert space whose inner product is denoted by <,>α.

Now we show a relevant property for this measure: the invariance under unitary transformation.

Proposition 1.4.3. Let α > −1, then the unitary invariance of dvα holds. That is∫
Bn
f(LU (z))dvα(z) =

∫
Bn
f(z)dvα(z), ∀ f ∈ L1(Bn, dvα), (1.4.3)

for every unitary transformation LU .

Proof. Using the basic properties of the unitary transformation, putting w := Uz, we find:∫
Bn
f(LU (z))dvα(z) =

∫
Bn
f(Uz)

{
Γ(n+ α+ 1)

n!Γ(α+ 1)

}
(1− |z|2)αdv(z)

=

∫
Bn
f(w)

Γ(n+ α+ 1)

n!Γ(α+ 1)
(1− |U−1w|2)|detJCL−1

U (w)|dv(w)

=

∫
Bn
f(w)

Γ(n+ α+ 1)

n!Γ(α+ 1)
(1− |w|2) |det(U−1)|︸ ︷︷ ︸

=1

dv(w)

=

∫
Bn
f(w)dvα(w),

where f ∈ L1(Bn, dvα).
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1.4.2 Lp boundedness of a family of integral operators

Many operator-theoretic problems in the analysis of Bergman spaces involve estimating integral
operators whose kernel is a function of the Bergman kernel. We present two estimates that we will
use to prove the boundedness of some integral operator defined in the Bergman space.
The following theorem states asymptotic estimates, for a family of integral functions whose integration
is performed over the open unit ball. We use the symbol v to indicate that two quantities have the
same behaviour asymptotically. Thus, A v B means that A/B is bounded from above and below by
two positive constants in the limit process in question. For what concerns the proof of this theorem, the
interested reader can find it, for example, in the book of Zhu, Kehe, Spaces of Holomorphic Functions
in the Unit Ball.

Theorem 1.4.4. Let c ∈ R and t > −1, we introduce

Jc,t(z) :=

∫
Bn

(1− |w|2)t

|1− < z,w > |n+1+t+c
dv(z), z ∈ Bn.

Then, Jc,t has the following asymptotic behaviour :
1) If c < 0, then Jc,t is bounded in Bn.
2) If c = 0, then

Jc,t(z) v log
1

1− |z|2
, when |z| → 1−.

3) If c > 0, then

Jc,t(z) v
1

(1− |z|2)c
, when |z| → 1−.

The next theorem is an essential and general result concerning integral operators with non-negative
kernel: Schur’s test. This theorem will be used to describe the boundedness of a class of integral
operators induced by Bergman type kernels on weighted Bergman spaces. The proof is a fairly simple
application of Holder’s inequality.

Theorem 1.4.5. Let (X , dµX ) , (Y, dµY) be measure spaces. Let T be the integral operator given by

Tf(x) :=

∫
Y
K(x, y)f(y)µY(y),

where K is a measurable positive kernel on X×Y. Let 1 < p, q < +∞ be conjugate exponents. Suppose
there exist positive functions φ : Y −→ (0,+∞), ϕ : X −→ (0,+∞) such that

1)

∫
Y
K(x, y)φq(y)dµY(y) ≤ Cϕ(x)q and 2)

∫
X
K(x, y)ϕp(x)dµX (x) ≤ Cφ(y)p,

then T : Lp(Y) −→ Lp(X ) is bounded.

Finally, we are going to need the following integral estimate.

Theorem 1.4.6. Suppose a and α are two real parameters. Define two integral operators T and S by

Tφ(z) := (1− |z|2)a
∫
Bn

φ(w)dvα(w)

(1− < z,w >)n+1+a+α
, φ ∈ Lp(Bn, dvα)

and

Sφ(z) := (1− |z|2)a
∫
Bn

φ(w)dvα(w)

|1− < z,w > |n+1+a+α
, φ ∈ Lp(Bn, dvα).

Then, for −∞ < t <∞ and 1 ≤ p <∞, the following conditions are equivalent:
a) T is bounded on Lp(Bn, dvt).
b) S is bounded on Lp(Bn, dvt).
c) −pa < t+ 1 < p(α+ 1).
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1.4.3 Change of variables formula and Applications

During the study of the weighted Bergman space, we wish to obtain the boundedness of the point
evaluations linear functionals. For this goal, we will need the following change of variable formula.

Proposition 1.4.7. Let α > −1 and f ∈ L1(Bn, dvα), then∫
Bn
f ◦ ϕ(z)dvα(z) =

∫
Bn
f(z)

(1− |a|2)n+1+α

|1− < z, a > |2(n+1+α)
dvα(z), ∀ ϕ ∈ Aut(Bn), (1.4.4)

where a = ϕ(0).

Proof. Every automorphism ϕ ∈ Aut(Bn) can be written as follows

ϕ = ϕaLU ,

where LU is an unitary tranformation, ϕa is a involutive automorphism and a = ϕ(0). Since dvα
is invariant under unitary transformations, assuming that ϕ = ϕa, we have that ϕ−1 = ϕ. Then,
applying Lemma 1.3.14,

∫
Bn
f ◦ ϕ(w)dvα(w)

z=ϕ(w)︷︸︸︷
=

Γ(n+ α+ 1)

n!Γ(α+ 1)

∫
Bn
f(z)(1− |z|2)α

(
1− |a|2

|1− < z, a > |2

)n+1

dv(z).

As a consequence, we have the following formulas. For their proof, the interested reader can find,
for example, in the book of Kehe Zhu, Spaces of Holomorphic Functions in the Unit Ball.

Corollary 1.4.8. If n and k are multi-indexes of nonnegative integers, then

∫
Bn
zmzkdvα(z) =

0, if m 6= k
m!Γ(n+ α+ 1)

Γ(n+ |m|+ α+ 1)
, if m = k.

(1.4.5)

1.5 Differentiation

The purpose of this section is to illustrate the most important notions of differentiation on Bn.
Using these tools, we will characterise the weighted Bergman spaces in terms of various derivatives.
We focus our attention on two different notions of differentiation. We start introducing the notion
of radial derivative and, for a given function f ∈ H(Bn) that admits homogenous expansion in a
neighborhood of the origin, we explicitely compute this type of derivative. Then, we prove a significant
property: a holomorphic function can be obtained from its radial derivative. Finally, we define a family
of invertible operators on the space H(Bn) and collect some fundamental properties.

1.5.1 Notions of differentiation

Definition 1.5.1 (Radial derivative). For a holomorphic function f on Bn, the radial derivative is

Rf(z) =

n∑
k=1

zk
∂f

∂zk
(z). (1.5.1)

The radial derivative will be used to produce equivalent norms on the weighted Bergman space.

Remark 1.5.2. In other words, for a fixed z ∈ Bn, the radial derivative is a particular case of the
directional derivative along the vector z. Hence, the radial derivative can be alternatively defined as

Rf(z) = lim
r→0

f(z + rz)− f(z)

r
, r ∈ R.
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Proposition 1.5.3. Let f ∈ H(Bn), suppose there exists a sequence of homogenous polynomials
(fk(z))k∈N, each one of them having degree k, and a polydisc P (a, r), such that P (a, r) ⊂ Bn, so that

f(z) =
+∞∑
k=0

fk(z) =

+∞∑
k=0

∑
|i|=k

aiz
i, ∀z ∈ P (a, r), (1.5.2)

where the convergence is uniform on compact subsets of P (a, r). Then, we obtain

Rf(z) =

+∞∑
k=1

kfk(z), ∀z ∈ P (a, r).

Proof.

Rf(z) =

+∞∑
j=0

∑
|i|=j

n∑
k=0

zkai1,...,ik
∂

∂zk
zi11 ...z

ik
k ...z

in
n

=

+∞∑
j=0

∑
|i|=j

ai1,...,ikz
i1
1 ...z

ik
k ...z

in
n

=j︷ ︸︸ ︷
n∑
k=0

ik .

In the next proposition, our aim is to prove that we can recover a holomorphic function from its
radial derivative.

Proposition 1.5.4. Let f ∈ H(Bn). Then, the following formula holds∫ 1

0

Rf(tz)

t
dt = f(z)− f(0), ∀z ∈ Bn. (1.5.3)

Proof.

f(z)− f(0) =

∫ 1

0

df

dt
(tz)dt

=

∫ 1

0

n∑
k=1

∂f

∂zk
(tz)zkdt

=

∫ 1

0

1

t

n∑
k=1

∂f

∂zk
(tz)(tzk)dt

=

∫ 1

0

Rf(tz)

t
dt

1.5.2 The operator Rα,t

An important tool in the study of holomorphic function spaces is the notion of fractional differential.
There are numerous types of fractional differential, we introduce one that is intimately related to and
interacts well with the Bergman kernel functions. More is true, the following family of operators yields
an equivalent norm for both spaces of holomorphic functions studied in this thesis.
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Definition 1.5.5. Let α, t ∈ R such that neither n+α nor n+α+t is a negative integer, we introduce
the operator Rα,t as follows

Rα,tf(z) :=

+∞∑
k=0

Γ(n+ 1 + α)Γ(n+ 1 + k + α+ t)

Γ(n+ 1 + α+ t)Γ(n+ 1 + k + α)
fk(z), z ∈ P (0, r), (1.5.4)

where P (0, r) is a polydisc such that P (0, r) ⊂ Bn. Furthermore, the convergence is uniform on
compact subsets of P (0, r).

Proposition 1.5.6. The operator Rα,t sends H(Bn) into itself. Moreover, Rα,t admits inverse oper-
ator Rα,t given by,

Rα,tf(z) :=
+∞∑
k=0

Γ(n+ 1 + α+ t)Γ(n+ 1 + k + α)

Γ(n+ 1 + α)Γ(n+ 1 + k + α+ t)
fk(z), z ∈ P (0, r), (1.5.5)

and the convergence is uniform on compact subsets of P (0, r).

Proof. Assume that the coordinates z1, ..., zj−1, zj+1, ..., zn, in (1.5.4), are given some fixed values
a1, ..., aj−1, aj+1, ..., an. Then, applying the ratio test, the power series is a convergent power series
in zj on D(0, rj). That is, we have proved that Rα,t is holomorphic in each variable separately. By
Hartogs Theorem, we conclude that Rα,t ∈ H(Bn). Furthermore, using the Identity Theorem, we
deduce that Rα,t admits inverse operator. Hence,

Rα,t ◦Rα,tf(z) = Rα,t

(
+∞∑
k=0

Γ(n+ 1 + α)Γ(n+ 1 + k + α+ t)

Γ(n+ 1 + α+ t)Γ(n+ 1 + k + α)
fk(z)

)

=
∞∑
k=0

Γ(n+ 1 + α)Γ(n+ 1 + k + α+ t)

Γ(n+ 1 + α+ t)Γ(n+ 1 + k + α)

Γ(n+ 1 + α+ t)Γ(n+ 1 + k + α)

Γ(n+ 1 + α)Γ(n+ 1 + k + α+ t)
fk(z)

=

∞∑
k=0

fk(z)

Remark 1.5.7. In particular, considering α = −n,

Rtf(z) := R−n,tf(z) =
+∞∑
k=0

Γ(1)Γ(1 + k + t)

Γ(1 + t)Γ(1 + k)
fk(z) =

+∞∑
k=1

ktfk(z).

Definition 1.5.8. The linear operator Rt is called fractional radial derivative.

Proposition 1.5.9. The operator Rt is invertible with inverse given by

Rtf(z) := R−tf(z) =
+∞∑
k=1

k−tfk(z). (1.5.6)

Moreover, if we endow H(Bn) with the topology of uniform convergence on compact subsets, the oper-
ators Rt and Rt are continuous.

If f(z) :=
1

(1− < z,w >)n+1+α
, then the operators Rα,t and Rα,t have the following form.

Proposition 1.5.10. Let α, t ∈ R so that neither n+α nor n+α+ t is a negative integer. Then the
operators Rα,t and Rα,t are the only continuous operators on H(Bn) that satisfy

Rα,t
(

1

(1− < z,w >)n+1+α

)
=

1

(1− < z,w >)n+1+α+t
, ∀ w ∈ Bn, (1.5.7)

and

Rα,t

(
1

(1− < z,w >)n+1+α+t

)
=

1

(1− < z,w >)n+1+α
, ∀w ∈ Bn. (1.5.8)
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Proof. We observe that

1

(1− < z,w >)n+1+α
=
∞∑
k=0

Γ(n+ 1 + k + α)

k!Γ(n+ 1 + α)
< z,w >k︸ ︷︷ ︸

fk(z)

,

hence

Rα,t
(

1

(1− < z,w >)n+1+α

)
=
∞∑
k=0

Γ(n+ 1 + α)Γ(n+ 1 + k + α+ t)

Γ(n+ 1 + α+ t)Γ(n+ 1 + k + α)

Γ(n+ 1 + k + α)

k!Γ(n+ 1 + α)
< z,w >k

=
∞∑
k=0

Γ(n+ 1 + k + α+ t)

k!Γ(n+ 1 + α+ t)
< z,w >k

=
1

(1− < z,w >)n+1+α+t
.

Similarly, we prove (1.5.8.).

We prove a further property that gives an alternative description of Rα,t in terms of polynomials
and standard partial derivatives. This result will be used, in the next chapters, to show that the spaces
of holomorphic functions of our interest can be decomposed into a series of very particular functions.

Proposition 1.5.11. Assume N is a positive integer and α is a real number such that n + α is
not negative integer. Then Rα,N , considered as an operator which acts on H(Bn), is a linear partial
differential operator whose order is N having polynomial coefficients, that is

Rα,Nf(z) =
∑
|m|≤N

pm(z)
∂mf

∂zm
(z) (1.5.9)

where pm are polynomials.

Proof. Fix w ∈ Bn, using the binomial formula,

1

(1− < z,w >)n+1+α+N
=

(1− < z,w > + < z,w >)N

(1− < z,w >)n+1+α+N

=
N∑
k=0

N !

k!(N − k)!

< z,w >k

(1− < z,w >)n+1+α+k
.

Furthermore, for each k, using the multi-nomial formula, we can write

< z,w >k = (z1w1 + ...+ znwn)k

=
∑
|m|=k

k!

m!
zmwm.

Then, there exists a family of constants cm,k such that

N !

k!(N − k)!

< z,w >k

(1− < z,w >)n+1+α+k
=
∑
|m|=k

cm,kz
m ∂m

∂zm
1

(1− < z,w >)n+1+α
,

using Proposition 1.5.11, we obtain

Rα,N
1

(1− < z,w >)n+1+α
=

N∑
k=0

∑
|m|=k

cm,kz
m ∂m

∂zm
1

(1− < z,w >)n+1+α
.
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1.6 The Bergman Metric

In this section, we introduce and collect the basic properties of the Bergman metric. This metric
derives from the Bergman kernel. The current section is organised as follows. First of all, we give the
definition of the Bergman kernel for the open unit ball. Then, we give a detailed description of the
Bergman matrix, so that we will formulate a rigorous definition of the Bergman metric. This section
ends with the notion of the Bergman metric ball that will be used to decompose the open unit ball
and compute the atomic decomposition of the holomorphic spaces of our interest.

Definition 1.6.1. For the open unit ball Bn, we have that the Bergman kernel is given by

K(z, w) =
1

(1− < z,w >)n+1
, z, w ∈ Bn. (1.6.1)

1.6.1 The Bergman matrix

In this paragraph, we discuss the Bergman matrix. We start giving the definition and, then, we
prove that this matrix admits a description in terms of the involutive automorphism, the projections,
Pz and Qz, of Cn. Then, we will have some crucial consequences such as the positivity and the
invertibility of the Bergman matrix. More is true, we show that the invariance under automorphism
holds for the Bergman matrix.

Definition 1.6.2 (Bergman matrix). The Bergman matrix of Bn is the n× n complex matrix

B(z) := (bij(z))ij :=
1

n+ 1


∂2

∂z1∂z1
logK(z, z) · · · ∂2

∂z1∂zn
logK(z, z)

...
. . .

...
∂2

∂zn∂z1
logK(z, z) · · · ∂2

∂zn∂zn
logK(z, z)

 . (1.6.2)

We briefly recall that denoting by

A(z) := (zizj)n×n,

then, fixed z 6= 0, the orthogonal projection Pz from Cn onto the one-dimensional subspace [z] gener-
ated by z can be written as

Pz =
A(z)

|z|2
.

As well as, the orthogonal projection Qz from Cn onto Cn 	 [z] is written as

Qz = I − A(z)

|z|2
.

After this short review, we can provide the following result.

Proposition 1.6.3. For z ∈ Bn, let B(z) be the Bergman matrix. Then the following properties hold:
a) B(z) = [(1− |z|2)I +A(z)]/(1− |z|2)2.
b) B(z)−1 = (1− |z|2)[I −A(z)].
c) B(z) = Pz/(1− |z|2)2 +Qz/(1− |z|2), z 6= 0.
d) det(B(z)) = K(z, z),
where ϕz denotes the involutive automorphism.

Proof. a) By the fact that

K(z, z) =
1

(1− |z|2)n+1
,

it follows that
logK(z, z) = −(n+ 1) log(1− |z|2),
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hence
∂

∂zj
logK(z, z) = (n+ 1)

zj
1− |z|2

, for j = 1, ..., n.

For what concerns the second mixed partial derivatives, we find:

∂2

∂zi∂zj
logK(z, z) = (n+ 1)

(1− |z|2)δij + zizj
(1− |z|2)2

, for i, j = 1, ..., n.

Then, the Bergman matrix can be written as

B(z) =
(1− |z|2)I +A(z)

(1− |z|2)2
.

b) Furthermore, since A2(z) = |z|2A(z), after some lines of calculations the following identity holds

(I −A(z))((1− |z|2)I +A(z)) = (1− |z|2)I,

so that
B(z)−1 = (1− |z|2)(I −A(z)).

c) Using a)

B(z) =
I

(1− |z|2)
− Pz

(1− |z|2)
+

Pz
(1− |z|2)

+
A(z)

(1− |z|2)2

=
Qz

(1− |z|2)
+
Pz −

=A(z)︷ ︸︸ ︷
|z|2Pz +A(z)

(1− |z|2)2

=
Qz

(1− |z|2)
+

Pz
(1− |z|2)2

.

d) Since

JCϕz(z) = −

(
Pz

1− |z|2
+

Qz√
1− |z|2

)
,

and
P 2
z = Pz, Q2

z = Qz, PzQz = 0,

where ϕz is a involutive automorphism. We get

(JCϕz(z))
2 =

Pz
(1− |z|2)2

+
Qz

(1− |z|2)

=
I − |z|2I + |z|2Pz

(1− |z|2)

=
1

(1− |z|2)2
((1− |z|2)I + |z|2Pz).

Recalling that A(z) = |z|2Pz, we obtain

B(z) = (JCϕz(z))
2.
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Since JCϕz(z) is self-adjoint and using Lemma 1.3.14, it turns out that

det(B(z)) = |det(JCϕz(z))|2

= detJRϕz(z)

(
1− |z|2

|1− < z, z > |2

)n+1

=

(
1− |z|2

(1− |z|2)2

)n+1

.

We immediately deduce the following corollary.

Corollary 1.6.4. The Bergman matrix B(z) is positive and invertible.

In the next proposition, we prove that the Bergman matrix is invariant under automorphisms.

Proposition 1.6.5 (Invariance under automorphism). The Bergman matrix B(z) satisfies

B(z) = (JCϕ(z))B(ϕ(z))JCϕ(z), ∀ z ∈ Bn, ∀ ϕ ∈ Aut(Bn). (1.6.3)

Proof. Assume that ϕ = ϕa, where ϕa is an involutive automorphism, for some a ∈ Bn. Hence, using
(1.3.3) and (1.3.11), the Bergman kernel satisfies

K(z, z) = |det(JCϕ(z))|2K(ϕ(z), ϕ(z)), ∀z ∈ Bn.

We obtain
logK(z, z) = log |det(JCϕ(z))|2 + logK(ϕ(z), ϕ(z)),

but since

log |det(JCϕ(z))|2 = log(det(JCϕ(z))det(JCϕ(z))) = log(det(JCϕ(z))) + log(det(JCϕ(z))).

Now

∂2

∂zi∂zj
log |det(JCϕ(z))|2 = (n+ 1)

∂

∂zi

∂

∂zj
log

(
1− |a|2

|1− < z, a > |2

)

= (n+ 1)
∂

∂zi

∂

∂zj

{
log
(
1− |a|2

)
− log

(
|1− < z, a > |2

)}
= −(n+ 1)

∂

∂zi

∂

∂zj

{
log
(
|1− < z, a > |2

)}
= aj(n+ 1)

∂

∂zi

(1−< z, a >)

|1− < z, a > |2

= aj(n+ 1)
∂

∂zi

1

1− < z, a >

= 0.

Writing the automorphism as follows

ϕ(z) = (ϕ1(z), ..., ϕn(z)), z ∈ Bn,
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applying the chain rule, we find that :

∂

∂zj
logK(z, z) =

∂

∂zj
log |JCϕ(z)|2 +

n∑
k=1

∂

∂ϕk
logK(ϕ(z), ϕ(z))

∂ϕk
∂zj

.

Applying ∂2

∂zi
and the chain rule, we obtain

∂2

∂zi∂zj
logK(z, z) =

n∑
k=1

∂ϕk
∂zj

n∑
m=1

∂2

∂ϕk∂ϕm
logK(ϕ(z), ϕ(z))

(
∂ϕm
∂zi

)
, ∀ i, j = 1, ..., n.

Finally, let ϕ ∈ Aut(Bn) be, then we can find an involutive automorphism ϕa and a unitary transfor-
mation LU such that ϕ = LUϕa. Hence, arguing in the same way we complete the proof.

1.6.2 The Bergman metric

For a rigorous definition of the Bergman metric, we need to introduce some tools. Fix z, w ∈ Bn,
given a smooth curve γ : [0, 1] −→ Bn, so that γ(0) = z and γ(1) = w, we define

l(γ) :=

∫ 1

0

 n∑
i,j=1

bij(γ(t))γ′i(t)γ
′
j(t)

 1
2

dt =

∫ 1

0
< B(γ(t))γ′(t), γ′(t) >

1
2 dt (1.6.4)

and call

Cz,w := { γ : [0, 1] −→ Bn | γ piecewise smooth curve s.t. γ(0) = z, γ(1) = w } .

Remark 1.6.6. Using point c) in Proposition 1.6.3, we deduce

< B(γ(t))γ′(t), γ′(t) >=
|γ′(t)|2 − |γ′(t)|2|γ(t)|2 + | < γ(t), γ′(t) > |2

(1− |γ(t)|2)2
.

Now, applying Cauchy-Schwarz, we get

|γ′(t)|2 − |γ′(t)|2|γ(t)|2 + | < γ(t), γ′(t) > |2

(1− |γ(t)|2)2
≤ |γ′(t)|2

(1− |γ(t)|2)2
.

Furthermore, we obtain an estimate from below as follows

|γ′(t)|2 − |γ′(t)|2|γ(t)|2 + | < γ(t), γ′(t) > |2

(1− |γ(t)|2)2
≥ |γ

′(t)|2 − |γ′(t)|2|γ(t)|2

(1− |γ(t)|2)2

=
|γ′(t)|2(1− |γ(t)|2)

(1− |γ(t)|2)2

=
|γ′(t)|2

1− |γ(t)|2
.

In other words, ∫ 1

0

|γ′(t)|√
1− |γ(t)|2

dt ≤ l(γ) ≤
∫ 1

0

|γ′(t)|
1− |γ(t)|2

dt.

As a consequence, we prove that l(γ) is bounded. Assume without loss of generality that γ(0) = 0
and

Re(< γ(t), γ′(t) >) ≥ 0, ∀ t ∈ [0, 1],
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then, integrating by parts, it turns out that∫ 1

0

|γ′(t)|dt
1− |γ(t)|2

≤

{
t

1− |γ(t)|2

∣∣∣∣t=1

t=0

+

∫ 1

0
t
2Re(< γ(t), γ′(t) >)

(1− |γ(t)|2)2
dt

}
sup
t∈[0,1]

|γ′(t)|

≤
{

1

1− |γ(1)|2
+

∫ 1

0

2Re(< γ(t), γ′(t) >)

(1− |γ(t)|2)2
dt

}
sup
t∈[0,1]

|γ′(t)|

=

{
|γ(1)|2 + 1

1− |γ(1)|2

}
sup
t∈[0,1]

|γ′(t)|,

that is

l(γ) ≤
{
|γ(1)|2 + 1

1− |γ(1)|2

}
sup
t∈[0,1]

|γ′(t)|.

Finally, since
√

1− |γ(t)|2 ≤ 1, we find that

l(γ) ≥
∫ 1

0
|γ′(t)|dt.

Definition 1.6.7 (Bergman metric). The Bergman metric is

β(z, w) := inf
γ∈Cz,w

l(γ). (1.6.5)

Remark 1.6.8. It is clear that Remark 1.6.6 implies that β : Bn × Bn −→ [0,+∞) is a finite metric.

We focus on a crucial property: the Bergman metric is invariant under automorphisms.

Proposition 1.6.9. Let β be the Bergman metric, the following property holds:

β(ϕ(z), ϕ(w)) = β(z, w),∀ z, w ∈ Bn, (1.6.6)

where ϕ ∈ Aut(Bn).

Proof. Using Proposition 1.6.5 we have that

β(ϕ(z), ϕ(w)) = inf
ϕ(γ)∈Cz,w

∫ 1

0
< B(ϕ(γ(t)))JCϕ(γ(t))γ′(t), JCϕ(γ(t))γ′(t) >

1
2 dt

= inf
ϕ(γ)∈Cz,w

∫ 1

0
< JCϕ(γ(t))∗B(ϕ(γ(t)))JCϕ(γ(t))γ′(t), γ′(t) >

1
2 dt

= inf
γ∈Cz,w

∫ 1

0
< B(γ(t))γ′(t), γ′(t >

1
2 dt = β(z, w),

To conclude this subsection, we provide a formula that describes the Bergman metric in terms of
the involutive automorphism of Bn.

Proposition 1.6.10. Given ϕz an involutive automorphism that interchanges 0 and z, where z ∈ Bn.
Then

β(z, w) =
1

2
log

1 + |ϕz(w)|
1− |ϕz(w)|

(1.6.7)

where z, w ∈ Bn.
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Proof. Since the Bergman metric is invariant under automorphism, we prove the result for w = 0.
Fixed z ∈ Bn and let γ : [0, 1] −→ Bn be a smooth curve such that

γ(0) = 0 and γ(1) = z.

Moreover, we assume that γ(t) is regular, that is

γ′(t) 6= 0, ∀t ∈ [0, 1].

Under these conditions, α(t) := |γ(t)| is smooth on [0, 1]. Denoting by

γ(t) = (γ1(t), ..., γn(t)),

we have that

α′(t) =
Re < γ′(t), γ(t) >

|γ(t)|
.

Since |γ(t)|2 =< γ(t), γ(t) >= α(t)2, we differentiate α(t)2 to obtain

2α(t)α′(t) = 2|γ(t)|Re < γ′(t), γ(t) >

|γ(t)|

= 2Re < γ′(t), γ(t) >

= 2Re < Pγ(t)γ
′(t), γ(t) >,

where Pγ(t) denotes the orthogonal projection from Cn onto the one-dimensional subspace spanned by
γ(t). We apply Cauchy-Schwarz inequality to the previous result and it turns out that

|2α(t)α′(t)| = |2Re < Pγ(t)γ
′(t), γ(t) > |

≤ 2| < Pγ(t)γ
′(t), γ(t) > |

≤ 2|Pγ(t)γ
′(t)||γ(t)|

= 2|Pγ(t)γ
′(t)|α(t),

namely
|α′(t)| ≤ |Pγ(t)γ

′(t)|, t ∈ [0, 1].

According to Remark 1.6.6.,

< B(γ(t))γ′(t), γ′(t) > =
|γ′(t)|2

(1− |γ(t)|2)2

=
|Pγ(t)γ

′(t)|2 + |Qγ(t)γ
′(t)|2

(1− |γ(t)|2)2

≥
|Pγ(t)γ

′(t)|2

(1− |γ(t)|2)2
,
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Hence,

l(γ) ≥
∫ 1

0

|Pγ(t)γ
′(t)|

1− |γ(t)|2

≥
∣∣∣∣∫ 1

0

α′(t)dt

1− α2(t)

∣∣∣∣
≥
∫ 1

0

α′(t)dt

1− α2(t)

=︸︷︷︸
s:=α(t)

∫ |z|
0

ds

1− s2

=
1

2
log

1 + |z|
1− |z|

.

In other words,

l(γ) ≥ 1

2
log

1 + |z|
1− |z|

.

Finally, considering the curve γ(t) = tz, t ∈ [0, 1], we verify that the equality holds. This means that

β(0, z) =
1

2
log

1 + |z|
1− |z|

,

and we are done.

Remark 1.6.11. Recalling that the inverse hyperbolic tangent function, denoted by artanh(x), is

artanh(x) =
1

2
log

1 + x

1− x
,

defined when |x| < 1. Hence, we easily deduce that equation 1.6.8 can be written as

|ϕz(w)| = tanh(β(z, w)).

1.6.3 The Bergman metric ball

After the introduction of the Bergman metric, we give the definition of Bergman metric ball and
collect some properties. The Bergman metric ball will be used, for instance, to prove a local estimate
of |f(z)|, from above, in terms of the norm of the Bergman weighted space.

Definition 1.6.12 (Bergman metric ball). Fix z ∈ Bn and r > 0, the Bergman metric ball centered
at z with radius r is

D(z, r) = {w ∈ Bn | β(z, w) < r} . (1.6.8)

Moreover, the volume of the Bergman metric ball is denoted by vB(D(z, r)).

In the next Lemma, we explicitely calculate the volume of the Bergman metric ball.

Lemma 1.6.13. Fix z ∈ Bn and r > 0, we have

vB(D(z, r)) =
R2n(1− |z|2)n+1

(1−R2|z|2)n+1
, (1.6.9)

where R = tanh(r).
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Proof. The invariance of the Bergman metric under automorphism of Bn says that

D(z, r) = ϕz(D(0, r)).

Furthermore,

v(ϕz(D(0, r))) =

∫
D(0,R)

ϕz(w)dv(w)

Hence, using the change of variables formula of Proposition 1.4.7, we find

vB(D(z, r)) =

∫
ϕz(D(0,r))

dvB(w)

=

∫
D(0,R)

ϕz(w)dv(w)

=

∫
D(0,R)

(1− |z|2)n+1dv(w)

|1− < z,w > |2(n+1)

= (1− |z|2)n+1

∫
Bn

R2ndv(w)

|1− < Rz,w > |2(n+1)

=
R2n(1− |z|2)n+1

(1−R2|z|2)n+1
,

where in the last equality we used the following identity∫
Bn

(1−R2|z|2)n+1

|1− < Rz,w > |2(n+1)
dv(w) =

n!

πn
v(Bn) = 1.

Corollary 1.6.14. Let r > 0 be, there exists constants cr > 0 and Cr > 0 such that

cr(1− |z|2)n+1 ≤ vB(D(z, r)) ≤ Cr(1− |z|2)n+1, ∀z ∈ Bn. (1.6.10)

In order to proceed, we recall that

vα(D(z, r)) :=
Γ(n+ α+ 1)

n!Γ(α+ 1)

∫
D(z,r)

(1− |z|2)αdv(z), α > −1.

Hence, for every α we have the following asymptotic estimate of vα(D(z, r)).

Lemma 1.6.15. For every couple of real positive numbers r and α, there exist two positive constants
C and c such that the following asymptotic estimate of vα holds

c(1− |z|2)n+α+1 ≤ vα(D(z, r)) ≤ C(1− |z|2)n+1+α, (1.6.11)

for all z ∈ Bn.

Proof. Again, using Proposition 1.4.5, denoting by R := tanh(r) and making some change of variables:

vα(D(z, r)) =
Γ(n+ α+ 1)

n!Γ(α+ 1)

∫
D(z,r)

(1− |z|2)dv(z)

=
Γ(n+ α+ 1)

n!Γ(α+ 1)

∫
|w|<R

(1− |z|2)n+1+α(1− |w|2)α

|1− < z,w > |2(n+1+α)
dv(w).

Finally, observing that we can find two positive constants, denoted by c and C, such that

c ≤ Γ(n+ α+ 1)

n!Γ(α+ 1)

(1− |w|2)α

|1− < z,w > |2(n+1+α)
≤ C,

for all z ∈ Bn and |w| < R, we obtain the desired result.
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1.7 Subharmonic Functions

The aim of this section is to collect some results about subharmonic function. Many results of this
subsection are obtained in the real variable case. Hence, the open unit ball Bn can be thought as in
the real Euclidean space R2n.
For technical reason, it is convenient to include the definition of upper semicontinuous functions.
Formally, such definition can be stated as follows.

Definition 1.7.1 (Upper semi-continuous function). A function f : Bn −→ [−∞,+∞) is said to be
upper semi-continuous if

lim sup
z→z0

f(z) ≤ f(z0), ∀ z0 ∈ Bn. (1.7.1)

We introduce the notion of subharmonic function. We point out that the normalised surface
measure on Sn is denoted by dσ.

Definition 1.7.2 (Subharmonic Function). An upper semi-continous function f : Bn −→ [−∞,+∞)
is said to be subharmonic if the following holds

f(a) ≤
∫
Sn
f(a+ rζ)dσ(ζ), ∀a ∈ Bn, r ∈ [0, 1− |a|). (1.7.2)

Remark 1.7.3. Intuitively, for a fixed point a ∈ Bn, a subharmonic function f , on a, is no greater
than the average of the values of f in a circle around a.

In the next theorem, we establish an equivalent criteria to recover subharmonic functions.

Theorem 1.7.4. Given an upper semi-continuous function f : Bn −→ [−∞,+∞), the following
conditions are equivalent:
a) f is subharmonic in Bn.
b) For every point a in Bn, there exists ε ∈ (0, 1− |a|) that satisfies

f(a) ≤
∫
Sn
f(a+ rζ)dσ(ζ), ∀ r ∈ [0, ε). (1.7.3)

We wish to understand how fast a function of the weighted Bergman space can grow near the
boundary of Bn. To achieve this goal, the next corollary will be crucial.

Corollary 1.7.5. 1) If α > −1 and given a subharmonic function f in Bn, then

f(a) ≤
∫
Bn
f(a+ rz)dvα(z), ∀a ∈ Bn, r ∈ [0, 1− |a|). (1.7.4)

2) Let f ∈ H(Bn) and p ∈ R+, then both log |f | and |f |p are subharmonic in Bn.

Proof. 1) The definition of subharmonic function means that

f(a) ≤
∫
Sn
f(a+ rζ)dσ(ζ), a ∈ Bn, r ∈ [0, 1− |a|).

Then, integrating in polar coordinates, we obtain the desired result.
2) Fix a ∈ Bn, if f(a) = 0, using the mean value property for harmonic functions, we have

log |f(a)| ≤
∫
Sn

log |f(a+ rζ)|dσ(ζ).

As well as

|f(a)|p ≤
∫
Sn
|f(a+ rζ)|pdσ(ζ), r ∈ [0, 1− |a|).
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If f(a) 6= 0, there exists a positive number ε < 1− |a| such that

f(z) 6= 0, ∀z ∈ U := {z ∈ Bn | |z − a| < ε} .

Since analytic branches of log f(z) and f(z)p can be defined on U and using the harmonicity of
log |f(z)| on U , the next holds

log |f(a)| =
∫
Sn

log |f(a+ rζ)|dσ(ζ), r ∈ [0, ε).

Similarly, using the mean value property for holomorphic functions, we get

f(a)p =

∫
Sn
f(a+ rζ)pdσ(ζ), r ∈ [0, ε),

and, considering the modulus on both sides of the equality, we easily find

|f(a)|p ≤
∫
Sn
|f(a+ rζ)|pdσ(ζ), r ∈ [0, ε).

Finally, by point b) of the previous Theorem, we conclude that both functions log |f(z)| and |f(z)|p
are subharmonic in Bn.

1.8 Complex Interpolation of Banach Spaces

In this section, we talk about a fundamental tool in Analysis: Interpolation of Banach spaces.
Roughly speaking, the Interpolation of Banach spaces consists on the construction of many Banach
space that lie ”in between” two other Banach spaces. There are two major methods for constructing
interpolation of Banach spaces: the complex method and the real method. We discuss the complex
method, because it proceeds by exploiting the powerful tools of Complex Analysis. We start extending
the definition of holomorphic function with values in a Banach space. Then, we introduce the notion
of complex interpolation. Besides, the Definition of compatible Banach spaces is also given. After that
we state a theorem concerning the construction of complex interpolation spaces. We conclude this
section giving an example, perhaps the most important, of complex interpolation spaces. We omit the
proof of all these results because they are just tools that we will use in the description of the Function
spaces studied in this manuscript. Furthermore, the proof of these results requires techniques which
are much different from those in the rest of this thesis.
However, a standard reference for the theory of Complex Interpolation is J. Bergh and J. Lofstrom,
Interpolation Spaces-An Introduction, Springer-Verlag, Berlin, 1976. Another possible reference can
be, for example, J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1982.

In the framework of Banach spaces, we meet at least two different definitions concerning holomorphic
functions: strongly and weakly holomorphic functions. In this section we will essentially restrict our-
selves to the first one and it will be called holomorphic function. However, these two definitions of
holomorphy turn out to be equivalent.

Definition 1.8.1. Let X be a Banach space and Ω ⊂ C an open subset. Let f : Ω −→ X be a
function. f is called holomorphic in Ω if there exists

lim
z→z0

f(z)− f(z0)

z − z0
=: f ′(z0) ∈ X, ∀z0 ∈ Ω.

In order to introduce the complex method of interpolation, we give the following definition.

Definition 1.8.2 (Compatible Banach spaces). Given two Banach spaces X0 and X1, we say that
they are compatible if there exists a Hausdorff topological linear space X such that both of them are
continuously embedded in X.
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Using the above notation, the embedding of X0 and X1 in X allows to consider the two linear
subspaces X0 ∩X1 and X1 +X2 of X.

Proposition 1.8.3. Equip X0 ∩X1 and X0 +X1 with the following norms:

||x||X0∩X1 := max (||x||X0 , ||x||X1) and ||x||X0+X1 := inf {||x0||X0 + ||x1||X1 : x = x0 + x1, x0 ∈ X0, x1 ∈ X1} .

Hence, we get that (X0 ∩X1, || · ||X0∩X1) and (X1 +X2, || · ||X0+X1) are Banach spaces.

In this section, the open strip is S := {z ∈ C | 0 < Re(z) < 1} .
Definition 1.8.4. Given a compatible pair of Banach spaces X0 and X1, let F(X0, X1) the space of
all functions f from S into X0 +X1 with the following properties:
a) f is bounded and continuous on S.
b) f is holomorphic in S.
c) f(iy) ∈ X0 , ∀y ∈ R.
d) f(1 + iy) ∈ X1, ∀y ∈ R.

F(X0, X1) is clearly a vector space. We endow F(X0, X1) with the norm

||f ||F := max

(
sup
y∈R
||f(iy)||X0 , sup

y∈R
||f(1 + iy)||X1

)
.

Moreover, F becomes a Banach space with the above norm.

Definition 1.8.5. Given 0 ≤ θ ≤ 1, let Xθ be the space of vectors x in X0 +X1 such that x = f(θ)
for some f in F(X0, X1). We norm Xθ with

||x||Xθ := inf {||f ||F : x = f(θ)} .

We obtain that

Proposition 1.8.6. Xθ := (Xθ, || · ||Xθ) is a Banach space.

Definition 1.8.7 (Complex Interpolation). The space Xθ is called the complex interpolation space
between X0 and X1.

Remark 1.8.8. In other words, Complex Interpolation studies the family of spaces Xθ that are
intermediate spaces between X0 and X1 in the sense that

X0 ∩X1 ⊂ Xθ ⊂ X0 +X1,

where the two inclusions maps are continuous. Moreover, to emphasise the fact that Xθ depends on
both X0 and X1, we write

Xθ = [X0, X1]θ.

The complex method of interpolation spaces is functorial in the sense of the following theorem.

Theorem 1.8.9. Assume X0 and X1 are compatible, Y0 and Y1 are compatible. Fix θ ∈ (0, 1), suppose
there exists a linear operator T : X0 + X1 −→ Y0 + Y1 that maps X0 boundedly Y0, with norm M0,
and X1 boundedly into Y1, with norm M1. Under these conditions T maps [X0, X1]θ boundedly into
[Y0, Y1]θ ,with norm at most M1−θ

0 M θ
1 .

Finally, we give one of the most important examples of complex interpolation spaces. This in-
terpolation concerns Lp spaces (over any measure space). We don’t prove this result. However, the
idea used in the proof follows the same lines as in the proof of the Riesz-Thorin theorem. Of course,
interpolation can also be performed for many other normed vector spaces than the Lebesgue spaces,
but we will just concentrate on Lebesgue spaces in this section to focus the discussion. That is, for
example, determine the complex interpolation space of the holomorphic spaces studied later.

Theorem 1.8.10. Let (X,µ) be a measure space and 1 ≤ p0 < p1 ≤ ∞, then

[Lp0(X), Lp1(X)]θ = Lp(X), 0 < θ < 1, (1.8.1)

with equals norms, where
1

p
=

1− θ
p0

+
θ

p1
.
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Chapter 2

Weighted Bergman spaces

In this chapter we study the weighted Bergman spaces, induced by radial weights. The current
chapter is organised as follows. We start introducing the weighted Bergman spaces. Then, we provide
an integral representation formula that, in the theory of Bergman spaces, will be proved to be very
useful in many different situations. We will concentrate on the general aspects and basic properties
of these spaces such as, for example, completeness, density of polynomials and invariance under auto-
morphism. Hence, to prove these facts, we provide a pair of tools: the first one asserts that functions
in a Bergman space cannot grow too rapidly near the boundary and the second one establishes a local
estimate, from above, of the partial derivative in terms of a suitable constant and the norm of the
function itself.
In the current chapter, after a briefly review of some definitions, notations, and some basic properties
of Hilbert spaces with reproducing kernels, we discuss a concrete example: the space of all holomorphic
functions on the ball which are square integrable with respect to the volume measure dvα, for α > −1.
In this chapter, we introduce one of the most important operators acting on holomorphic spaces: the
Bergman projection, which is the integral operator induced by the Bergman kernel. After collect some
basic properties, we will find necessary and sufficient conditions for which such operator is bounded.
Then, we discuss a crucial consequence of the boundedness of the Bergman projections: the descrip-
tion of the dual space of the weighted Bergman space.
We present a new notion of derivative: invariant gradient and, so that, we will obtain a characterisa-
tion of the weighted Bergman space in terms of this type of derivative, the radial derivative and the
holomorphic gradient respectively.
After that, we study the atomic decomposition of Bergman spaces: we introduce a family of functions
that are called atoms, whose construction is based on some sharp estimates about Bergman metric
and Bergman kernel functions in the unit ball Bn, and show that every function in the Bergman space
can be decomposed into a series of them.
Finally, we conclude this chapter with the complex interpolation of the weighted Bergman spaces.
For this chapter the main references are:
P. L. Duren, A. Schuster. Bergman Spaces. The American Mathematical Society, 2004.
K. Zhu. Spaces of Holomorphic Functions in the Unit Ball. Springer, 2005.

2.1 The Bergman Space Ap
α

The definition of Bergman space is given as follows.

Definition 2.1.1 (Weighted Bergman Space). Given α > −1 and 0 < p < +∞, the weighted Bergman
space, on the open unit ball Bn, is defined as

Apα := Lp(Bn, dvα) ∩H(Bn). (2.1.1)

In other words, the weighted Bergman space Apα consists of all holomorphic functions f on Bn for
which

||f ||p,α :=

{∫
Bn
|f(z)|pdvα(z)

}1/p

< +∞.
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When 1 ≤ p < +∞, the space Apα, equipped with || · ||p,α, is a norm space. If 0 < p < 1, the
triangle inequality fails, but the inequality

||f + g||pp,α ≤ ||f ||pp,α + ||g||pp,α

is often an adequate substitute. Hence, for 0 < p < 1, the space Apα is a metric space where the metric
is defined as

d(f, g) := ||f − g||pp,α.
Finally, for p = +∞, A∞α denotes the space of essentially bounded holomorphic functions in Bn. This
space is endowed with the following norm

||f ||∞ = ess sup { |f(z)| : z ∈ Bn} .

However, regardless of what p is, we are going to call || · ||p,α the norm of Apα.

Remark 2.1.2. The assumption that α > −1 is crucial. In fact, the space Lp(Bn, dvα) does not
contain any holomorphic function other than 0 when α ≤ −1. If α = 0, we use Ap to denote the
ordinary unweighted Bergman spaces. Moreover, since H(Bn) is a complex vector space, we deduce
that Apα is a linear and convex subspace of Lp(Bn, dvα), for every 0 < p ≤ ∞.
By the definition, if p < q, we trivially notice that

Aqα ⊂ Apα.

In the next Lemma, we establish an integral representation formula in H(Bn). In this thesis, such
formula will be used in a large number of proofs. We remark that the only assumption that we use is
the holomorphicity of f .

Lemma 2.1.3. Let α > −1 and f ∈ H(Bn), the following formula holds

f(z) =

∫
Bn

f(w)dvα(w)

(1− < z,w >)n+1+α
, (2.1.2)

for all z ∈ Bn.

Proof. Since f ∈ H(Bn), by the mean value property, we have that

f(0) =

∫
Sn
f(rξ)dσ(ξ), 0 ≤ r < 1.

Then, multiplying to both sides by 2nr2n−1(1 − r2)αdr, integrate in polar coordinates, it turns out
that

f(0)

∫ 1

0
2nr2n−1(1− r2)αdr = f(0)

n!Γ(α+ 1)

Γ(n+ α+ 1)

=

∫ 1

0
2nr2n−1(1− r2)αdr

∫
Sn
f(rξ)dσ(ξ)

=

∫
Bn
f(w)(1− |w|2)αdv(w)

That is

f(0) =

∫
Bn
f(w)dvα(w).

Hence, replacing f by f ◦ ϕz, making an obvious change of variables, we obtain

f(z) = (1− |z|2)n+1+α

∫
Bn

f(w)dvα(w)

(1− < w, z >)n+1+α(1− < z,w >)n+1+α
.

Finally, fixing z ∈ Bn and replacing f by the function L(w) := (1− < w, z >)n+1+αf(w), we get the
wished result.
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In the next Theorem, we provide a pointwise estimate, for a function f ∈ Apα, in terms of the
Lp−norm. As a consequence, we will know more about how fast a function in Apα grows near the
boundary of Bn.

Theorem 2.1.4. Let 0 < p <∞ and α > −1, the following estimate holds

|f(z)| ≤ ||f ||p,α
(1− |z|2)(n+1+α)/p

, z ∈ Bn, (2.1.3)

where f ∈ Apα.

Proof. We first assume that z = 0. The holomorphicity of f , on Bn, implies that |f |p is subharmonic.
Hence, using point 1) in Corollary 1.7.5 and Holder inequality, we find

|f(0)|p ≤
∫
Bn
|f(w)|pdvα(w)

In general, for any f ∈ H(Bn) and z ∈ Bn, we introduce the holomorphic map

F (w) := f ◦ ϕz(w)
(1− |z|2)(n+1+α)/p

(1− < w, z >)2(n+1+α)/p
, w ∈ Bn.

Applying Proposition 1.4.7 and putting f(w) := f ◦ ϕz(w), we have

||F ||pp,α =

∫
Bn
|F (w)|pdvα(w)

=

∫
Bn
|f ◦ ϕz(w)|p (1− |z|2)(n+1+α)

|1− < w, z > |2(n+1+α)
dvα(w)

=

∫
Bn
|f ◦ ϕz ◦ ϕz(w)|pdvα(w)

= ||f ||pp,α

That is, the norm of F agrees with that of f . Moreover,

|f(z)(1− |z|2)(n+1+α)/p| = |F (0)| ≤ ||F ||p,α = ||f ||p,α,

and we are done.

Basically, we proved that, for every function f ∈ Apα, point-evaluations are bounded. Moreover,
this fact will be treated during the description of the dual space of Apα.

Remark 2.1.5. A consequence of the previous estimate is that the convergence of a sequence of
holomorphic functions, with respect to the Lp−norm, implies the uniform convergence on compact
subsets and so, by Weirstrass theorem, the limit function is clearly holomorphic. As a prove, let
0 < ρ < 1 and f ∈ Apα, inequality (2.1.3) shows that

sup
|z|≤ρ
|f(z)| ≤ ||f ||p,α

(1− ρ2)(n+1+α)/p
.

Another important consequence of Theorem 2.1.4 should be noted. If a sequence of functions
(fn)n∈N ∈ Apα is bounded in norm, then it is locally bounded. So, by Montel’s theorem, it constitutes
a normal family; some subsequence converges locally uniformly on Bn to a function of Apα.

In order to prove that, when 1 ≤ p < ∞, Apα is a Banach space and, for 0 < p < 1, a complete
metric space we need the following important result. Actually, this is a sort of generalisation, on
compact sets {z ∈ Cn | |z| ≤ r} where r ∈ (0, 1), of Theorem 2.1.4. More is true, this result will be
used, for example, to treat the Bergman space A2

α, the description of the dual space of Apα and the
characterisation in terms of derivatives of it.
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Lemma 2.1.6. Let p > 0, α > −1, 0 < r < 1 and m = (m1, ...,mn) a multi-index of nonnegative
integers. Then, there exists C := C(z, r, n,m, α) > 0 such that∣∣∣∣∂mf∂zm

(z)

∣∣∣∣ ≤ C||f ||p,α, (2.1.4)

for all f ∈ Apα and |z| ≤ r.

Proof. We start assuming m = 0 and, in this case, we just apply Theorem 2.1.4 or Remark 2.1.5.
After that, for m = 1, fix δ ∈ (r, 1), using Lemma 2.1.3, we get

f(δz) =

∫
Bn

f(δw)dvα(w)

(1− < z,w >)n+α+1
, z ∈ Bn.

Then, replacing δz by z, we find

f(z) =

∫
|w|<δ

f(w)dvα(w)

(1− < z
δ ,

w
δ >)n+α+1

, |z| < δ.

Since∣∣∣∣∣
∫
|w|<δ

∂

∂z

f(w)dvα(w)

(1− < z,w >)n+α+1

∣∣∣∣∣ =

∫
|w|<δ

∞∑
m=1

Γ(n+ |m|+ α+ 1)

(m− 1)!Γ(n+ α+ 1)

|z|m−1

δm−1

|w|m

δm
|f(w)|dvα(w)

<︸︷︷︸
|w|<δ

∫
|w|<δ

∞∑
m=1

Γ(n+ |m|+ α+ 1)

(m− 1)!Γ(n+ α+ 1)

|z|m−1

δm−1
|f(w)|dvα(w)

=
1

(1− | zδ |)2(n+α+1)

∫
|w|<δ

|f(w)|dvα(w)

≤ δ2(n+α)+1

(δ − |z|)2(n+α+1)
sup {|f(w)| : |w| ≤ δ} .

This means that, for |z| ≤ δ, we have

ϕ(w) :=
∂

∂z

f(w)

(1− < z,w >)n+α+1
∈ L1(Bn, dvα).

Hence, applying the dominated convergence theorem, differentiating under the integral sign and using
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Theorem 2.1.4: ∣∣∣∣∂f∂z (z)

∣∣∣∣ =

∣∣∣∣∣ ∂∂z
∫
|w|<δ

f(w)dvα(w)

(1− < z,w >)n+α+1

∣∣∣∣∣
=

∣∣∣∣∣
∫
|w|<δ

∂

∂z

f(w)dvα(w)

(1− < z,w >)n+α+1

∣∣∣∣∣
=

∣∣∣∣∣
∫
|w|<δ

∂

∂z

∞∑
m=0

Γ(n+ |m|+ α+ 1)

m!Γ(n+ α+ 1)
zmwmf(w)dvα(w)

∣∣∣∣∣
<

∫
|w|<δ

∞∑
m=1

Γ(n+ |m|+ α+ 1)

(m− 1)!Γ(n+ α+ 1)

|z|m−1

δm−1
|f(w)|dvα(w)

≤ δ2(n+α)+1

(δ − |z|)2(n+α+1)
sup {|f(w)| : |w| ≤ δ}

≤︸︷︷︸
Theorem 2.1.4

δ2(n+α)+1

(δ − |z|)2(n+α+1)

||f ||p,α
(1− |δ|2)(n+1+α)/p

In other words, considering the limit when δ approachs to r, we have∣∣∣∣∂f∂z (z)

∣∣∣∣ ≤ r2(n+α)+1

(r − |z|)2(n+α+1)

||f ||p,α
(1− r2)(n+1+α)/p

Proceeding similarly, for any multiindex m, we easily find∣∣∣∣∂mf∂zm
(z)

∣∣∣∣ ≤ r(m+1)(n+α)+1

(r − |z|)(m+1)(n+α+1)

||f ||p,α
(1− r2)(n+1+α)/p

, |z| ≤ r,

and we are done.

As a consequence of all these tools, we have the following Corollary that contains the most impor-
tant result of this section.

Corollary 2.1.7. Let p > 0 and α > −1, the weighted Bergman space Apα is closed in Lp(Bn, dvα).
Hence, for 1 ≤ p ≤ ∞, the weighted Bergman space Apα, with topology inherited from Lp(Bn, dvα), is
a Banach space and is a complete metric space when 0 < p < 1.

Proof. Let {fn(z)}n∈N ∈ A
p
α, where 0 < p < +∞, such that

lim
n→∞

||fn − f ||p,α = 0,

for some f ∈ Lp(Bn, dvα). Since {fn(z)}n∈N is a Cauchy sequence in Apα, by Theorem 2.1.4, we have
that {fn(z)}n∈N is uniformly Cauchy on each set {z ∈ Bn : |z| < r}, for 0 < r < 1, and must converge
to a holomorphic function in such set. By the arbitrariness of r, the sequence {fn(z)}n∈N converges to
a holomorphic function g(z) on Bn. Finally, by the uniqueness of pointwise limits in Hausdorff spaces,
we must have f(z) = g(z) for almost all z ∈ Bn. We’ve proved that f ∈ H(Bn) and, hence, f ∈ Apα.
Similarly, for p = +∞, we prove that A∞α is closed in L∞(Bn, dvα) and hence is a Banach space.

In many applications, we need to approximate a general function in the Bergman space Apα by
a sequence of nice functions. The following result gives two commonly used ways of doing this: fix
f ∈ Apα, we prove that f can be approximated in Apα norm by its dilations and polynomials.

Proposition 2.1.8. Let p > 0 and α > −1. Then, polynomials are dense in Apα.
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Proof. For 0 < r < 1, let f ∈ Apα and denoting by fr(z) := f(rz). Hence, we obtain that {fr}r∈(0,1)

are bounded and {fr}r∈(0,1) ∈ A
p
α. Our aim is to show that

lim
r→1−

||fr − f ||p,α = 0.

We have

||fr − f ||pp,α =

∫
|z|≤1−ε

|f(z)− f(rz)|pdvα(z) +

∫
1−ε<|z|<1

|f(z)− f(rz)|pdvα(z)

=: A+B.

For every 0 < ε < 1 fixed, since {fr}r∈(0,1) converge uniformly to f on compact subsets, it follows that

A→ 0 as |z| → 1−. Moreover,∫
1−ε<|z|<1

|f(rz)|pdvα(z) ≤
∫

1−ε<|z|<1
|f(z)|pdvα(z).

Therefore, using the absolute continuity of the Lebesgue integral, we find

B ≤
∫

1−ε<|z|<1
|f(rz)|pdvα(z) +

∫
1−ε<|z|<1

|f(z)|pdvα(z)

≤ 2

∫
1−ε<|z|<1

|f(z)|pdvα(z)

≤ δ

for ε small enough. By the arbitrariness of δ, we deduce

lim
r→1−

||fr − f ||p,α = 0.

Now, fixed r ∈ (0, 1), we can approximate {fr}r∈(0,1) uniformly by polynomials basically using the

expansion in homogenous power series. That is, if f(rz) =
∑∞

k=0 ak(zr)
k, we define the sequence of

polynomials as fNr (z) :=
∑N

k=0 ak(rz)
k. Then, an immediate application of the dominated convergence

theorem implies that {fr}r∈(0,1) can be approximated in the norm topology of Apα by polynomials.
Finally, using the triangle inequality and the same notation used above

||f − fNr ||p,α ≤ ||f − fr||p,α + ||fr − fNr ||p,α,

and we easily obtain the desired result.

Remark 2.1.9. It is easy to see that the estimate given in Theorem 2.1.4 is optimal, namely, the
exponent (n + α + 1)/p can’t be improved. However, as a consequence of Proposition 2.1.6, using
polynomials approximations and following the same lines as in the previous proof, we can show that

lim
|z|→1−

(1− |z|2)(n+α+1)/pf(z) = 0, (2.1.5)

whenever f ∈ Apα, p ∈ (0,+∞) and α > −1.

Proof. For a holomorphic polynomial f(z) =
∑N

j=0 ajz
j we have that

lim
|z|→1−

(1− |z|2)(n+α+1)/p|f(z)| = lim
|z|→1−

(1− |z|2)(n+α+1)/p

∣∣∣∣∣∣
N∑
j=0

ajz
j

∣∣∣∣∣∣
<︸︷︷︸
|z|<1

lim
|z|→1−

(1− |z|2)(n+α+1)/p
N∑
j=0

|aj |︸ ︷︷ ︸
<+∞

= 0.
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Namely, in this case, (2.1.5) holds. Now, fix f ∈ Apα and r ∈ (0, 1), by the fact that {fr}r∈(0,1) can be
approximated uniformly by polynomials, we deduce

lim
|z|→1−

(1− |z|2)(n+α+1)/pf(rz) = 0.

Finally, for any f ∈ Apα, since
lim
r→1−

||f − fr||p,α = 0,

using the triangle inequality and Theorem 2.1.4, it turns out that

lim
|z|→1−

(1− |z|2)(n+α+1)/p|f(z)| ≤ lim
|z|→1−

(1− |z|2)(n+α+1)/p|f(z)− fr(z)|+ lim
|z|→1−

(1− |z|2)(n+α+1)/p|fr(z)|

≤ lim
|z|→1−

||f − fr||p,α + 0 < ε,

for r large enough. This completes the proof.

Proposition 2.1.8 states that given f ∈ Apα, one can find a sequence of polynomials that approach
f in norm. Actually, we can improve this result, for p > 1, by showing that f can be approximated
by the most natural choice of polynomials: the partial sums of its homogenous expansion series. To
this end, we will need the following instruments.
For any holomorphic function f , we define tha partial sum operator SN : H(Bn) −→ H(Bn) as follows

SNf(z) =

N∑
n=0

anz
n,

where f(z) =
∞∑
n=0

anz
n is the homogenous expansion of f .

Lemma 2.1.10. Let (X, || · ||) be a Banach space of holomorphic functions on the open unit ball such
that polynomials are dense. Then

lim
N→∞

||SNf − f || = 0,∀f ∈ X ⇐⇒ sup
N≥1
||SN || <∞.

This Lemma is not proved. However, the interested reader can find all the details of this result
on, for example, Bergman Spaces by Peter L. Duren and Alexander Schuster.
In the next theorem we study the approximation in norm by its Taylor polynomials. In fact, in the
next theorem we show that this is possible if 1 < p < +∞.

Theorem 2.1.11. Let 1 < p < ∞. If f ∈ Apα, then the partial sums of its Taylor series converge in
norm to f .

Proof. (Hint) We just observe that we can find a constant C > 0 such that

||SNf ||pp,α ≤ C||f ||pp,α, N ∈ N,

applying Lemma 2.1.10, the result follows easily.

Remark 2.1.12. The fact that the above theorem fails when p = 1 can be shown, for α = 0, by

considering functions of the form f(z) :=
(1− |a|2)

(1− < z, a >)3
, where a ∈ Bn.

We end this section by proving that the map defined as Tϕ : f −→ f ◦ ϕ, where ϕ ∈ Aut(Bn),
sends the Bergman space Apα into itself, for 0 < p < +∞.
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Proposition 2.1.13. Let f ∈ Apα and ϕ ∈ Aut(Bn), then

f ◦ ϕ ∈ Apα,

where α > −1 and 0 < p < +∞.

Proof. First of all, it is clear that f ◦ ϕ ∈ H(Bn). Then, for 0 < p <∞, using the change of variables
formula of Proposition 1.4.7 , we obtain∫

Bn
|f ◦ ϕ(z)|pdvα(z) =

∫
Bn
|f(z)|p (1− |a|2)n+1+α

|1− < z, a > |2(n+1+α)
dvα(z)

≤
∫
Bn
|f(z)|p (1− |a|2)n+1+α

(1− |a|)2(n+1+α)
dvα(z)

=
(1 + |a|)n+1+α

(1− |a|)n+1+α

∫
Bn
|f(z)|pdvα(z),

where a = ϕ(0).

Remark 2.1.14. In Proposition 2.1.13, we had the linear operator

T (f) := f ◦ ϕ,

and we proved that

||f ◦ ϕ||p,α ≤
(1 + |a|)(n+1+α)/p

(1− |a|)(n+1+α)/p
||f ||p,α,

where a = ϕ(0). Moreover, we easily notice that the following estimate from below holds:

||f ◦ ϕ||p,α ≥
(1− |a|)(n+1+α)/p

(1 + |a|)(n+1+α)/p
||f ||p,α

Denoting by L(Apα, A
p
α) the space of linear operators from Apα to itself and

||T ||L(Apα,A
p
α) := sup

||f ||p,α=1
||f ◦ ϕ||p,α, we find that

(1− |a|)(n+1+α)/p

(1 + |a|)(n+1+α)/p
≤ ||T ||L(Apα,A

p
α) ≤

(1 + |a|)(n+1+α)/p

(1− |a|)(n+1+α)/p
.

Remark 2.1.15 (Uniformly convexity of Apα for 1 < p <∞). It is known that the spaces Lp(Bn, dvα)
are uniformly convex for 1 < p <∞, but not for p = 1 or p =∞. Since every subspace of a uniformly
convex space must have the same property, each of the Bergman spaces Apα, with 1 < p < ∞, is
uniformly convex.

2.1.1 The space A2
α

In this section we concentrate on the case p = 2. We start recalling the most important facts
about Hilbert spaces with reproducing kernel. In this short review, we suppose to deal with spaces of
functions defined on Bn but, of course, this theory can be generalised on any domain of Cn. We remark
that all these results are provided without proofs. After such review, we will have the necessary tools
to prove that A2

α is a Hilbert space with reproducing kernel defining a canonical inner product on
A2
α and, so that, the associated reproducing kernel will be calculated in closed form. Hence, we will

discuss about some properties of the kernel previously computed such as, for example, the invariance
under Aut(Bn).
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Let H := (H, <,>H) be a Hilbert space of functions, where <,>H denotes the inner product, de-
fined on a set Bn and suppose that the point evaluations are bounded linear functionals on H, that
is, for each z ∈ Bn, there exists a constant Cz > 0 such that for all H we have

|f(z)| ≤ Cz||f ||H. (2.1.6)

Such inequality implies that the linear functional

Lz(f) := f(z), f ∈ H,

is bounded. Applying Riesz-Fisher theorem, there exists kz ∈ H such that, for all f ∈ H we have

< f, kz >H= f(z).

Definition 2.1.16. We define a kernel function K : Bn × Bn −→ C by setting

K(z, w) = kz(w). (2.1.7)

The kernel K is called the reproducing kernel for H.

Proposition 2.1.17. The kernel K satisfies the following properties:
1) f(z) =< f,K(·, z) >H, ∀f ∈ H and z ∈ Bn.
2) K(w, z) = K(z, w), ∀z, w ∈ Bn.

The following result establishes conditions that characterise the reproducing kernel of H.

Lemma 2.1.18. Let H(z, w) be a function on Bn × Bn such that
1) H(·, w) ∈ H , for all w ∈ Bn fixed;
2) < f,H(·, z) >H= f(z), for all f ∈ H and z ∈ Bn.
Then, H(z, w) coincides with the reproducing kernel K(z, w) of H.

It will also always be the case that, for each compact subset E ⊂ Bn there exists C := CE > 0
such that for all f ∈ H we have

sup
z∈E
|f(z)| ≤ C||f ||H. (2.1.8)

If (2.1.8) holds, then clearly the convergence in H implies the uniform convergence on compact subsets
of Bn.
There is an intriguing formula connecting the Bergman kernel function with the notion of complete
orthonormal system. We will use it to compute the Bergman kernel function for the unit ball.

Proposition 2.1.19. Let H be a Hilbert space of holomorphic functions on Bn for which condition
(2.1.8) holds. Let {ϕj} be an orthonormal basis for H. Then the series

+∞∑
j=1

ϕj(z)ϕj(w)

converges uniformly on compact subsets of Bn × Bn to the reproducing kernel K(z, w) of H.

An interesting consequence of this proposition is the following result that shows that the repro-
ducing kernel K satisfies an extremal property. As a straightforward consequence of this result, we
will calculate, on Section 2.3 of the current chapter, the operator norm of a linear functional defined
on the space A2

α: the point-evaluation linear functional.

Corollary 2.1.20. Let H be a space of holomorphic functions on Bn for which condition (2.1.8) holds
and let K(z, w) be its reproducing kernel. Then

K(z, z) = sup
f∈H,||f ||H=1

|f(z)|2
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After this introduction, we are ready to study an example of Hilbert space with reproducing kernel:
the weighted Bergman space A2

α.

Definition 2.1.21. We call the function

Kα(z, w) := Kα
w(z), z, w ∈ Bn (2.1.9)

the reproducing kernel of A2
α.

In the next theorem we prove the main result of this subsection.

Theorem 2.1.22. Suppose α > −1, the space A2
α is a Hilbert space with reproducing kernel. Fur-

thermore, A2
α can be equipped with an inner product so that the associated reproducing kernel has the

expression

Kα(z, w) =
1

(1− < z,w >)n+1+α
, z, w ∈ Bn. (2.1.10)

Proof. For p > 0 and α > −1, the Bergman spaces Apα are closed subspaces of Lp(Bn, dvα). Since
L2(Bn, dvα) is a Hilbert space, we obtain that A2

α, equipped with the inner product <,>α, is a Hilbert
space as well.
By Theorem 2.1.4, the point evaluations are bounded linear functionals on A2

α. Hence, by the Riesz-
Fisher Theorem, there exists a unique function Kα

w ∈ A2
α such that

f(w) =< f,Kα
w >α=

∫
Bn
f(z)Kα

w(z)dvα(z), f ∈ A2
α, (2.1.11)

that is called the reproducing formula for f in A2
α.

In order to compute Kα(z, w), we proceed as follows. Applying Corollary 1.4.7 and Proposition 2.1.5,
the following functions form an orthonormal basis:

em(z) =

√
Γ(n+ |m|+ α+ 1)

m!Γ(n+ α+ 1)
zm, (2.1.12)

where m runs over all n-tuples of nonnegative integers. Using the multinomial formula and Proposition
2.1.19, it turns out that

Kα(z, w) =
∑
m

em(z)em(w)

=
∑
m

Γ(n+ |m|+ α+ 1)

m!Γ(n+ α+ 1)
zmwm

=
1

(1− < z,w >)n+1+α
.

Moreover,
Kα(z, w) = Kα(w, z).

For any fixed w ∈ Bn, we notice that

φ(z) :=
1

(1− < z,w >)n+1+α
∈ H(Bn),

and, since ∫
Bn
|Kα(z, w)|2dvα(z) =

∑
m,j

em(w)ej(w)< em(z), ej(z) >α︸ ︷︷ ︸
=δm,j

=
∑
m

|em(w)|2

=
1

(1− |w|)2(n+1+α)
<∞.
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Hence,
Kα(z, ·) ∈ A2

α,

for w ∈ Bn fixed. Finally, from Lemma 2.1.3

f(z) =

∫
Bn

f(w)

(1− < z,w >)n+1+α
dvα(w),

in other words, Kα satisfies the reproducing property.

Remark 2.1.23 (Uniqueness of the reproducing kernel). We should emphasise that among functions
in A2

α, the kernel Kα(z, w) is uniquely determined by its reproducing property. This is part of the
Riesz representation theorem: if a function lz(w) = L(z, w) belongs to A2

α and also has the reproducing
property, then f(z) =< f, lz >α and so < f, kz − lz >α= 0 for every f ∈ A2

α. But this fact implies
that kz − lz = 0, so that Kα(z, w) = L(z, w) for all z, w ∈ Bn.

In the next proposition we obtain a characterisation of A2
α in terms of Taylor coefficients.

Proposition 2.1.24. Let f ∈ H(Bn), assume that the homogenous expansion in power series of f is

f(z) =

+∞∑
m=0

amz
m,∀z ∈ Bn.

Then, f ∈ A2
α if and only if the following condition is satisfied∑

m≥0

m!Γ(n+ α+ 1)

Γ(n+ |m|+ α+ 1)
|am|2 <∞. (2.1.13)

Proof. After some computations, we find∫
Bn
|f(z)|2dvα(z) =

∫
Bn

∞∑
k,m=0

akamz
kzmdvα(z)

=
∞∑
m=0

|am|2
∫
Bn
|zm|2dvα(z)

=
∑
m≥0

m!Γ(n+ α+ 1)

Γ(n+ |m|+ α+ 1)
|am|2.

We conclude this section with one of the main features of the Bergman kernel: the invariance
under the group Aut(Bn).

Proposition 2.1.25. Let Kα(z, w) be the Bergman kernel. Then

Kα(z, w) = det(JCϕ(z))Kα(ϕ(z), ϕ(w))det(JCϕ(w)), (2.1.14)

where ϕ ∈ Aut(Bn).
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Proof. Defining H(z, w) := det(JCϕ(z))Kα(ϕ(z), ϕ(w))det(JCϕ(w)), we have

< f(w), H(w, z) >α =

∫
Bn
f(w)det(JCϕ(w))Kα(ϕ(w), ϕ(z))det(JCϕ(z))dvα(w)

= det(JCϕ(z))

∫
Bn

(f ◦ ϕ−1)(ϕ(w))det(JCϕ(w))Kα(ϕ(w), ϕ(z))dvα(w)

= det(JCϕ(z))

∫
Bn

(f ◦ ϕ−1)(ϕ(w))
det(JCϕ(w))

|det(JCϕ(w))|2
Kα(ϕ(w), ϕ(z))dvα(ϕ(w))

= det(JCϕ(z))

∫
Bn

{
(f ◦ ϕ−1)(ϕ(w))

1

det(JCϕ(w))

}
Kα(ϕ(w), ϕ(z))dvα(ϕ(w))

= det(JCϕ(z))f(z)
1

det(JCϕ(z))

= f(z).

Finally, using Lemma 2.1.17, we obtain the desired formula.

2.2 Bergman Type Projections

We verified that Apα is a closed supspace of Lp(Bn, dvα). This implies, in particular, that there
exists an orthogonal projection Pα from L2(Bn, dvα) to A2

α, which is called the Bergman projection.
The boundedness of the Bergman projection on L2(Bn, dvα) is trivial from the general theory of
Hilbert spaces, but its boundedness on Lp(Bn, dvα), for p 6= 2, is not obvious at all. Furthermore,
the Bergman projection is a central object in the study of holomorphic function spaces. In fact, for
example, the boundedness of the Bergman projection on Lp(Bn, dvα) immediately gives the duality
between the Bergman spaces. Hence, understanding its behaviour and estimating its size is therefore
of vital importance on several occasions. We start giving the definition of Bergman projection.

Definition 2.2.1. Let α > −1, we introduce

Pα(f)(z) :=

∫
Bn
f(w)Kα(z, w)dvα(w), f ∈ L2(Bn, dvα). (2.2.1)

Remark 2.2.2. First of all, we prove that Pα(f)(z) is well defined. Using the uniform convergence
on compact subsets of Kα, it turns out that

|Pα(f)(z)| ≤
∫
Bn
|f(w)|

∞∑
k=0

Γ(n+ k + α+ 1)

k!Γ(n+ α+ 1)
| < z,w > |kdvα(w)

<︸︷︷︸
|w|<1

∫
Bn
|f(w)|

∞∑
k=0

Γ(n+ k + α+ 1)

k!Γ(n+ α+ 1)
|z|kdvα(w)

=
1

(1− |z|)n+1+α

∫
Bn
|f(w)|dvα(w)

From Holder inequality, we deduce

|Pα(f)(z)| < 1

(1− |z|)n+1+α
||f ||p,α, z ∈ Bn, 1 ≤ p < +∞.
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For p =∞, we have

|Pα(f)(z)| ≤
∫
Bn
|f(w)||Kα(z, w)|dvα(w)

≤ ||f ||∞,α
∫
Bn
|Kα(z, w)|dvα(w)

≤︸︷︷︸
Holder

||f ||∞,α
(∫

Bn
|Kα(z, w)|2dvα(w)

)1/2

= ||f ||∞,α
1

(1− |z|2)(n+1+α)/2
, z ∈ Bn.

This means that, although the Bergman projection of Pα is originally defined on L2(Bn, dvα), we
clearly extends the domain of Pα to L1(Bn, dvα). In other words, since Lp(Bn, dvα) ⊆ L1(Bn, dvα) for
1 ≤ p ≤ ∞, we can apply Pα to a function in Lp(Bn, dvα) whenever 1 ≤ p ≤ ∞. Moreover, these
inequalities suggest how the behaviour of the Bergman projection is near the boundary of Bn. In fact,
for 1 ≤ p <∞, we prove that

lim
|z|→1−

Pα(f)(z)(1− |z|)n+1+α = 0, f ∈ Lp(Bn, dvα)

Let f(z) := IBn(z) the indicator function be, then

lim
|z|→1−

Pα(f)(z)(1− |z|)n+1+α = lim
|z|→1−

(1− |z|)n+1+α

= 0.

Hence, for any simple function we easily obtain the same result. Finally, fix f ∈ Lp(Bn, dvα) and let
a sequence of simple functions fn(z) be such that

lim
n→+∞

||fn − f ||p,α = 0,

then

lim
|z|→1−

|Pα(f)(z)|(1− |z|)n+1+α ≤ lim
|z|→1−

|Pα(f − fn)(z)|(1− |z|)n+1+α + lim
|z|→1−

|Pα(fn)(z)|(1− |z|)n+1+α

≤ lim
|z|→1−

||f − fn||p,α

< ε,

for n large enough. Similarly, for p = +∞, we show that

lim
|z|→1−

Pα(f)(z)(1− |z|2)(n+1+α)/2 = 0.

Remark 2.2.3. For 0 < p < 1, in general, the Bergman projection is not well-defined. As a prove,
we consider the following counterexample. For sake of simplicity, we suppose that α = 0 and z = 0.
Let the following function be

f(w) :=
1

1− |w|2
∈ Lp(Bn, dv) \ L1(Bn, dv), p ∈ (0, 1).

Hence, under these conditions and using integration in polar coordinates, we get that the Bergman
projection is

P0(f)(0) =

∫
Bn

1

1− |w|2
dv(w) =∞.
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A further property of the Bergman projection is given by

Proposition 2.2.4. Let α > −1, we have that

Pα(f)(z) ∈ H(Bn),

where f ∈ Lp(Bn, dvα) and 1 ≤ p ≤ ∞. Moreover, Pα sends the weighted Bergman space Apα to itself.

Proof.

Pα(f)(z) =

∫
Bn
f(w)Kα(z, w)dvα(w)

=

∫
Bn
f(w)

∞∑
m

Γ(n+ |m|+ α+ 1)

m!Γ(n+ α+ 1)
zmwmdvα(w)

=

∞∑
m

√
Γ(n+ |m|+ α+ 1)

m!Γ(n+ α+ 1)
zm
∫
Bn
f(w)

√
Γ(n+ |m|+ α+ 1)

m!Γ(n+ α+ 1)
wmdvα(w)︸ ︷︷ ︸

:=pm

=
∞∑
m

pmem(z).

The fact that Pα : Apα −→ Apα, for 0 < p < ∞, follows easily from Lemma 2.1.3. This completes the
proof.

In the next Lemma, we prove that the operator Pα maps L2(Bn, dvα) boundedly onto the Bergman
space A2

α.

Lemma 2.2.5. Let α > −1, the Bergman projection is the Hilbert space orthogonal projection of
L2
α(Bn, dvα) onto its closed subspace A2

α.

Proof. Since Pαf(z) ∈ H(Bn), applying Lemma 2.1.3 , we get

Pαf(z) =< Pαf,K
α
z >α .

By the other hand, using Fubini Theorem

< Pαf,K
α
z >α =

∫
Bn
Pαf(w)Kα(z, w)dvα(w)

=

∫
Bn

{∫
Bn
f(x)Kα(w, x)dvα(x)

}
Kα(z, w)dvα(w)

=

∫
Bn
f(x)

{∫
Bn
Kα(z, w)Kα(w, x)dvα(w)

}
dvα(x)

=

∫
Bn
f(x)Kα(z, x)dvα(x)

=< f,Kα
z >α,

that is,
< Pαf,K

α
z >α=< f,Kα

z >α,

where f ∈ L2
α(Bn, dvα) and z ∈ Bn. In other words, we used the reproducing property of Kα to Pαf .

Hence, we deduce that (f −Pf) is orthogonal to Kα
z . Furthermore, the last equality also implies that
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the Bergman projection must be given by integration against the Bergman kernel.
Now, Pαf(z) is well defined for all f ∈ L2

α(Bn, dvα). This fact was proved on Remark 2.2.2.. However,
since Kα ∈ A2

α ⊂ L2(Bn, dvα), using Cauchy-Schwarz we notice that∣∣∣∣∫
Bn
f(w)Kα(z, w)dvα(w)

∣∣∣∣ ≤ ||Kα||2,α||f ||2,α <∞.

Finally, using the notation of Proposition 2.2.4 and Bessel’s inequality, we have∫
Bn
|Pαf(z)|2dvα(z) =

∑
m,j

pmpj < em(z), ej(z) >α

=
∑
m

|pm|2

≤ ||f ||22,α,

we conclude that Pαf(z) ∈ A2
α.

Remark 2.2.6. Alternatively, we can show that Pα is the orthogonal projection proving that
Pα ◦ Pα = Pα and < Pαf, g >α=< f, Pαg >α for f, g ∈ L2

α(Bn, dvα). The former identity follows by
the reproducing property of the Bergman kernel when acting on functions in A2

α, while the latter one
follows from the hermitian symmetry property. Hence, we have

< Pαf, g >α =<
∑
m

< f, em >α em, g >α

=
∑
m

< f, em >α< em, g >α

=< f,
∑
m

< g, em >α em >α

=< f, Pαg >α .

That is, we used the characterisation of orthogonal projections.

Corollary 2.2.7. Let f ∈ L2(Bn, dvα) and ϕ ∈ Aut(Bn). Then

Pα(f ◦ ϕ)(z) ∈ A2
α.

Proof. Under these conditions, it turns out that (f ◦ϕ)(z) ∈ L2(Bn, dvα). Hence, applying the previous
lemma, the wished result is obtained.

Remark 2.2.8. In Lemma 2.2.5 we showed that

||Pα(f)||2,α ≤ ||f ||2,α,

this fact implies that
||Pα||L(L2(Bn,dvα),A2

α) ≤ 1.

Actually, the exact operator norm is one. This can be proved as follows

||Pα(f)||2,α = ||Pα ◦ Pα(f)||2,α

= ||Pα(Pα(f))||2,α

≤ ||Pα||L(L2(Bn,dvα),A2
α)||Pα(f)||2,α
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that is
1 ≤ ||Pα||L(L2(Bn,dvα),A2

α).

The fact that ||Pα||L(L2(Bn,dvα),A2
α) = 1 will be crucial when we discuss the dual space of A2

α.
Furthermore, let ϕ ∈ Aut(Bn), then we have that

||Pα(f ◦ ϕ)||2,α ≤ ||f ◦ ϕ||2,α

≤ (1 + |a|)(n+1+α)/2

(1− |a|)(n+1+α)/2
||f ||2,α,

that is

||Pα(f ◦ ϕ)||2,α ≤
(1 + |a|)(n+1+α)/2

(1− |a|)(n+1+α)/2
||f ||2,α,

where a = ϕ(0).
Finally, we prove that the operator Pα is not injective. It suffices to prove that Ker(Pα) 6= {0}. Let
the function f(z) := zk be, where k ∈ Nn \ {0} . Then

Pα(zk)(z) =

∞∑
m

zm
Γ(n+ |m|+ α+ 1)

m!Γ(n+ α+ 1)

∫
Bn
wm+kdvα(w)

=

∞∑
m

zm
Γ(n+ |m|+ α+ 1)

m!Γ(n+ α+ 1)

∫ 1

0
rk(1− r2)αdr

∫
Sn
ξm+kdσ(ξ)︸ ︷︷ ︸

=0, m+k≥1

= 0.

We remark that we have applied a more general result concerning formulas for images of special classes
of functions under the Bergman projection. The interested reader can find further details on the book
Bergman spaces by Peter Duren and Alexander Schuster, Chapter 2 Lemma 6.

In Chapter 1, we presented some estimates concerning the boundedness of a family of integral op-
erators. These tools are going to be used to understand how the operator Pα acts on other Lp(Bn, dvα)
spaces, for p 6= 2.
As a special case of Theorem 1.4.6, considering the operator T and putting a = 0, in the following
result are given sufficient and necessary conditions for the Bergman projection to be bounded.

Theorem 2.2.9. Let −1 < γ <∞, −1 < α <∞ and 1 ≤ p <∞. Then

Pγ : Lp(Bn, dvα) −→ Apα is bounded ⇐⇒ p(γ + 1) > α+ 1. (2.2.2)

First, considering γ = α and, secondly, p = 1, we find the following corollary.

Corollary 2.2.10. Pγ is a bounded projection from Lp(Bn, dvα) onto Apα if and only if p > 1, and Pα
is a bounded projection from L1(Bn, dvα) onto A1

α if and only if γ > α.

Remark 2.2.11. Note that, for p ≥ 1 and p(γ + 1) > (α + 1), Apα can be thought as the quotient
space induced by the Bergman type projection

Pγ : Lp(Bn, dvα) −→ Apα. (2.2.3)

By the open mapping theorem the quotient norm on Apα is equivalent to the || · ||p,α norm on Apα
because the operator in (2.2.3) is bounded and onto.
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Remark 2.2.12 (Unboundedness of the Bergman projection). Whithout loss of generality we assume
α = γ = 0 and p = 1, we prove that the Bergman projection is not a bounded operator from L1(Bn, dv)
to L1(Bn, dv). If P0 : L1(Bn, dv) −→ L1(Bn, dv) was bounded, P0 : L∞(Bn, dv) −→ L∞(Bn, dv) would
also be bounded. But for fixed ξ ∈ Bn, define the function

gξ(z) = (1− zξ)2|1− zξ|−2.

Then gξ ∈ L∞(Bn, dv) and ||gξ||∞ = 1, while

(P0gξ)(z) =

∫
Bn
|1− ξz|−2dv(z) = 2

∫ 1

0

r

1− r2|ξ|2
dr

is not bounded for ξ ∈ Bn. This shows that P0 does not map L∞(Bn, dv) boundedly to L∞(Bn, dv),
and, hence, that the Bergman projection is not a bounded operator from L1(Bn, dv) to L1(Bn, dv).

2.3 Duality

The aim of this section is to identify the dual space of Apα, when 1 < p < +∞. We will see that the
boundedness of the Bergman projection plays a fundamental role in this representation. For 0 < p ≤ 1,
the dual space structure of Apα is more delicated and involves the Bloch spaces, which are introduced in
the next chapter. In order to proceed, we begin with reviewing some notions from Functional Analysis.

Suppose (X, || · ||X) is a normed vector space over the field C, a linear functional

f : X −→ C

is said to be bounded if there exists a positive constant C such that

|f(x)| ≤ C||x||X (2.3.1)

for all x ∈ X.
The dual space of X, denoted by X∗, is the vector space of all bounded linear functionals on X.
Namely,

X∗ := { f : X −→ C | f bounded linear functional} .

For any bounded linear functional f on X, we use ||f ||X∗ to denote the smallest constant C satisfying
(2.3.1), that is

||f ||X∗ = inf {C ≥ 0 : |f(x)| ≤ C||x||X} ,

or equivalently
||f ||X∗ = sup {|f(x)| | ||x||X = 1} .

Then, it is easy to check that X∗ becomes a Banach space with this norm.
The bidual space, denoted by X∗∗, consists of all continuous linear functionals h : X∗ −→ C. This
space is endowed with the following norm:

||h||X∗∗ = sup {|h(f)| | ||f ||X∗ = 1} .

Each element x ∈ X generates a scalar function J(x) : X∗ −→ C by the formula:

J(x)(f) = f(x), f ∈ X∗,

and J(x) is a continuous linear functional on X∗, that is, J(x) ∈ X∗∗. One obtains in this way a
linear map

J : X −→ X∗∗

called evaluation map. By the Hahn-Banach theorem, J is injective and preserves norms:

||J(x)||X∗∗ = ||x||X ,
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that is, J maps X isometrically onto its image J(X) in X∗∗. Furthermore, the image J(X) is closed
in X∗∗. The space X is called reflexive if it satisfies the following equivalent conditions:

1) the evaluation map J : X −→ X∗∗ is surjective,

2) the evaluation map J : X −→ X∗∗ is an isometric isomorphism of normed spaces,

3) the evaluation J : X −→ X∗∗ is an isomorphism of normed spaces.

Moreover, every closed linear subspace of a reflexive space is reflexive and, if X is Banach space,
the following are equivalent:

1) The space X is reflexive.

2) (James’ theorem) Every continuous linear functional on X attains its norm, that is, there ex-
ists an element x of unit norm such that |f(x)| = ||f ||X∗ .

Let α > −1 and β > −1, it is a well-known fact that, for 1 < p <∞, the dual space of Lp(Bn, dvα) is
isometrically isomorphic to Lq(Bn, dvβ), where

1

p
+

1

q
= 1 and γ =

α

p
+
β

q
,

and the pairing is given by

Fg(f) =

∫
Bn
f(z)g(z)dvγ(z), f ∈ Lp(Bn, dvα), g ∈ Lq(Bn, dvβ).

Essentially the above representation holds for functionals (Apα)∗. Namely, each such functional is
uniquely represented in similar way by a function g ∈ Aqβ, but there is an important difference: for

p 6= 2, the induced isomorphism between (Apα)∗ and Aqβ is no longer an isometry, although the norms
of Fg and g are equivalent in the sense that they are bounded by constant multiples of each other.

Besides, recalling that, by Theorem 2.1.4, the point evaluation, at any z ∈ Bn, is a bounded lin-
ear functional on Apα and, hence, (Apα)∗ is a nontrivial Banach space for all p > 0 and all α > −1.
Now, we can prove the main goal of this section.

Theorem 2.3.1. Let α > −1, β > −1, 1 < p, q <∞ such that

1

p
+

1

q
= 1 and γ =

α

p
+
β

q
.

Then, the following identification holds
(Apα)∗ = Aqβ (2.3.2)

under the integral pairing

Fg(f) =< f, g >γ=

∫
Bn
f(z)g(z)dvγ(z), (2.3.3)

where f ∈ Apα, g ∈ Aqβ. Furthermore, the identification of (2.3.2) holds so that the norms of Fg and g
are equivalent. In other words,

C1||Fg||(Apα)
∗ ≤ ||g||q,β ≤ C2||Fg||(Apα)

∗ ,

for some positive constants C1 and C2.
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Proof. First of all, we show that the weighted measure dvγ(z) is well-defined:

γ =
α

p
+
β

q

> −1

p
− 1

q

= −1.

We start proving Aqβ ⊆ (Apα)
∗
. Let g ∈ Aqβ and f ∈ Apα, we define the linear functional

Fg(f) :=< f, g >γ=

∫
Bn

(1− |z|2)α/pf(z)(1− |z|2)β/qg(z)dv(z)

hence, applying Holder’s inequality, we find

|Fg(f)| ≤ ||f ||p,α||g||q,β,

that is
||Fg||(Apα)

∗ ≤ ||g||q,β,

in other words, Fg ∈ (Apα)
∗
. To show that g is unique, assuming without loss of generality that

g(z) =
∑
k

akz
k, ∀z ∈ Bn,

then

Fg(z
m) =

∑
k

ak

∫
Bn
zmzkdvγ(z)

= am

∫
Bn
|zm|2dvγ(z)

= am
m!Γ(n+ γ + 1)

Γ(n+ |m|+ γ + 1)
.

Thus, if Fg1(zm) = Fg2(zm) for all m, since polynomials are dense on every Bergman space, then, we
deduce g1 = g2.
Conversely, for what concerns (Apα)

∗ ⊆ Aqβ, let F ∈ (Apα)
∗
, by the Hahn-Banach theorem, F extends to

a bounded linear functional on Lp(Bn, dvα) with the same norm. So that, by the duality of Lp spaces,
there exists h ∈ Lq(Bn, dvα) such that

F (f) =

∫
Bn
f(z)h(z)dvα(z),

where f ∈ Lp(Bn, dvα). Let

H(z) :=
cα
cγ

(1− |z|2)(α−β)/qh(z), z ∈ Bn.

Then, ∫
Bn
|H(z)|qdvβ(z) =

cqα
cqγ

∫
Bn

(1− |z|2)α−β|h(z)|qdvβ(z)

=
cqα
cqγ

∫
Bn
|h(z)|qdvα(z) <∞,
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that is, H ∈ Lq(Bn, dvβ) and∫
Bn
f(z)H(z)dvγ(z)

cα
cγ

=

∫
Bn
f(z)(1− |z|2)(α−β)/qh(z)(1− |z|2)

α
p

+β
q dv(z)

=

∫
Bn
f(z)h(z)dvα(z)

= F (f), f ∈ Apα.

Moreover, since the following conditions hold

α > −1 ⇐⇒ q(γ + 1) > β + 1 and β > −1 ⇐⇒ p(γ + 1) > α+ 1.

Hence, as a consequence of Theorem 2.2.6, both projections Pγ : Lp(Bn, dvα) −→ Apα and
Pγ : Lq(Bn, dvβ) −→ Aqβ are bounded. Finally, denoting by g := Pγ(H), we have that g ∈ Aqβ and

F (f) =< f,H >γ

=< Pγ(f), H >γ

=< f, Pγ(H) >γ

=< f, g >γ ,

that is
F (f) =< f, g >γ , ∀f ∈ Apα.

Now, since ||F ||(Aqβ)∗ = ||H||q,β, we get

||g||q,β = ||Pγ(H)||q,β

≤ ||Pγ ||L(Lq(Bn,dvβ),Aqβ)||H||q,β

= ||Pγ ||L(Lq(Bn,dvβ),Aqβ)||F ||(Aqβ)∗ ,

namely, the above identification holds with equivalent norms.
Finally, if p = q = 2, from Remark 2.2.8, we know that

||Pγ ||L(L2(Bn,dvβ),A2
β) = 1,

hence, in such case, we obtain
||g||q,β ≤ ||F ||(Aqβ)∗ ≤ ||g||q,β,

that is,
||g||q,β = ||F ||(Aqβ)∗ .

In other words,
(A2

α)∗ = A2
β,

is an isometric isomorphism. This completes the proof.

Remark 2.3.2. It is evident from the previous proof that the representation of the dual space of Apα
depends heavily on the boundedness of the Bergman projection. The proof does not extend to A1

α

because, if p = 1, the Bergman projection is bounded if and only if we have that both γ > α and
γ > β hold. But, under such conditions, we would have that

γ > α⇒ β > α
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and
γ > β ⇒ α > β,

which is clearly a contradiction.

In particular, choosing α = β, we find

Corollary 2.3.3. Let α > −1, 1 < p, q <∞ such that

1

p
+

1

q
= 1.

Then, the following identification holds with equivalent norms

(Apα)∗ = Aqα

under the integral pairing
< f, g >α, f ∈ Apα, g ∈ Aqα.

Moreover,
(Apα)∗∗ = Apα. (2.3.4)

That is, for 1 < p <∞, the Bergman spaces Apα are reflexive.

Remark 2.3.4. Actually, (2.3.4) can be alternatively proved as follows. For 1 < p < ∞, the space
Lp(Bn, dvα) is reflexive. Since Apα ⊂ Lp(Bn, dvα) is a closed subspace, we deduce that the weighted
Bergman spaces Apα are reflexive, for 1 < p <∞. Hence, as a consequence, by James Theorem every
linear functional of (Apα)∗ attains its norm.

Remark 2.3.5 (Point evaluation Linear Functional). From Theorem 2.1.4, for any f ∈ Apα and
0 < p <∞, we had that

|f(z)| ≤ ||f ||p,α
(1− |z|2)(n+1+α)/p

.

Hence, the linear functional given by the point evaluation, denoted by Lz(f) := f(z), satisfies

||Lz||(Apα)∗ ≤
1

(1− |z|2)(n+1+α)/p
, 0 < p < +∞.

For p = 2 we are able to exactly calculate this norm. In fact, applying the extremal property of
Corollary 2.1.20, it turns out that

||Lz||(A2
α)∗ =

1

(1− |z|2)(n+1+α)/2
.

Finally, we can find the element where Lz attains its norm as follows: let a point w ∈ Bn, the function

f(z) := a
Kα(z, w)√
Kα(w,w)

, |a| = 1,

is such that

||f ||2,α =
1√

Kα(w,w)
||Kα(z, w)||2,α

=

√
Kα(w,w)√
Kα(w,w)

= 1.
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Hence, choosing w = z, we find

|f(z)| = Kα(z, z)√
Kα(z, z)

=
√
Kα(z, z)

=
1

(1− |z|2)(n+1+α)/2
.

We give a further example of linear functional on Lp(Bn, dvα), for 1 ≤ p ≤ ∞, and the behaviour
of its norm operator: the Bergman projection Pα.

Example 2.3.6. In Remark 2.2.2, we proved that

|Pα(f)(z)| < ||f ||p,α
(1− |z|)n+1+α

, z ∈ Bn, 1 ≤ p <∞.

Hence, fixed z ∈ Bn, the linear operator

Pα(·)(z) : f ∈ Lp(Bn, dvα) −→ Pα(f)(z) ∈ C

satisfies

||Pα||(Lp(Bn,dvα))∗ <
1

(1− |z|)n+1+α
, z ∈ Bn, 1 ≤ p <∞.

Finally, for p =∞, we have

||Pα||(L∞(Bn,dvα))∗ <
1

(1− |z|2)(n+1+α)/2
.

Remark 2.3.7 (Uniformly convexity and Strictly convexity). For 0 < p ≤ 1, assume that Apα is not
reflexive. This fact will be proved in the next chapter. Hence, from Milman-Pettis theorem, the space
Apα is not uniformly convex. However Apα, for 0 < p ≤ 1 is strictly convex. This last assertion can be
verified as follows. Suppose f, g ∈ A1

α, so that ||f ||1,α = ||g||1,α = 1, and ||f + g||1,α = 1. Then

||f + g||1,α = ||f ||1,α + ||g||1,α,

this is possible only if f(z) = λg(z), where λ(z) > 0 at every point z where f(z)g(z) 6= 0. But
λ = f/g is a meromorphic function, so the requirement that λ(z) > 0 forces it to be constant. Thus
f(z) = cg(z) for some constant c > 0. But now it follows c = 1, since ||f ||1,α = ||g||1,α = 1. Thus
f = g, which proves that A1

α is strictly convex. Finally, using the same approach, we can also show
that the Bergman space Apα, for 0 < p < 1, are strictly convex.

2.4 Characterisation in terms of derivatives

We begin the current section recalling the notion of holomorphic gradient and introduce the in-
variant gradient. After that, we obtain a result that compares the various derivatives that we use for a
holomorphic function and, as a consequence, show that the holomorphic gradient admits an estimate
from above and below in terms of the invariant gradient and the radial derivative respectively. The
invariance, under the action of Aut(Bn), of the invariant gradient is also proved. Then, we provide
an embedding lemma for Bergman spaces. Finally, the main goal of this section will be proved: we
establish various characterisations of Apα in terms of higher order derivatives and, hence, obtain some
straightforward consequence as well.

In this section, and throughout this thesis, we will write

∇f(z) =

(
∂f

∂z1
(z), ...,

∂f

∂zn
(z)

)
(2.4.1)
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and call |∇f(z)| the holomorphic gradient of f at z. Similarly,

∇̃f(z) = ∇(f ◦ ϕz)(0), (2.4.2)

where ϕz is the involutive automorphism. |∇̃f(z)| will be called the invariant gradient of f at z.

The following formula provides the bridge between the objects mentioned above and the radial deriva-
tive.

Lemma 2.4.1. Let f ∈ H(Bn), then the following formula holds

|∇̃f(z)|2 = (1− |z|2)(|∇f(z)|2 − |Rf(z)|2), ∀z ∈ Bn (2.4.3)

Proof. Writing

f(z) = u(x1, y1, ..., xn, yn) + iv(x1, y1, ..., xn, yn), where u, v : Bn −→ R,

so that we get
|f |2 = u(x1, y1, ..., xn, yn)2 + v(x1, y1, ..., xn, yn)2.

After some computations, we find

∂xj |f |2 = 2u(x, y)∂xju(x, y) + 2v(x, y)∂xjv(x, y), j = 1, ..., n,

as well as
∂yj |f |2 = 2u(x, y)∂yju(x, y) + 2v(x, y)∂yjv(x, y), j = 1, ..., n.

Hence,

∂xjxj |f |2 = 2
(
∂xju(x, y)

)2
+ 2u(x, y)∂xjxju(x, y) + 2

(
∂xjv(x, y)

)2
+ 2v(x, y)∂xjxjv(x, y), j = 1, ..., n,

∂yjyj |f |2 = 2
(
∂yju(x, y)

)2
+ 2u(x, y)∂yjyju(x, y) + 2

(
∂yjv(x, y)

)2
+ 2v(x, y)∂yjyjv(x, y), j = 1, ..., n.

Since, as a consequence of the Cauchy-Riemann equations in several variables, u and v are harmonic
functions, we deduce that

∆(|f |2)(0) =
n∑
j=1

(
∂xjxj |f |2 + ∂yjyj |f |2

)
= 2u(0, 0) ∆u(0, 0)︸ ︷︷ ︸

=0

+2v(0, 0) ∆v(0, 0)︸ ︷︷ ︸
=0

+2 |∇u|2︸ ︷︷ ︸
=|∇f(0)|2

+2 |∇v|2︸ ︷︷ ︸
=|∇f(0)|2

= 4|∇f(0)|2,

that is
∆(|f |2)(0) = 4|∇f(0)|2.

Moreover, using the definition of invariant Laplacian and (2.4.2), the above equality implies

∆̃(|f |2)(0) = ∆(|f |2 ◦ ϕ0)(0)

= ∆(|f |2)(0)

= 4|∇f(0)|2

= 4|∇̃f(0)|2,
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by the other hand,

4|∇̃f(z)|2 = 4|∇̃(f ◦ ϕz)(0)|2

= ∆̃(|f ◦ ϕz|2)(0)

= ∆̃(|f |2)(z),

that is
4|∇̃f(z)|2 = ∆̃(|f |2)(z). (2.4.4)

Since, using the conjugation properties of Wirtinger operators, we have

|Rf(z)|2 =

∣∣∣∣∣
n∑
i=1

zk
∂f

∂zi
(z)

∣∣∣∣∣
2

=<
n∑
i=1

zk
∂f

∂zi
(z),

n∑
j=1

zj
∂f

∂zj
(z) >

=

n∑
j,i=1

< zi
∂f

∂zi
(z), zj

∂f

∂zj
(z) >

=

n∑
j,i=1

zi
∂f

∂zi
(z)zj

∂f

∂zj
(z)

=
n∑

j,i=1

zi
∂f

∂zi
(z)zj

∂f

∂zj
(z)

=
n∑

j,i=1

zizj
∂|f |2

∂zi∂zj
(z),

that is

|Rf(z)|2 =
n∑

j,i=1

zizj
∂|f |2

∂zi∂zj
(z).

To conclude, we use Proposition 1.3.19. as follows

∆̃(|f |2)(z) = 4(1− |z|2)
n∑

i,j=1

(δi,j − zizj)
∂2|f |2

∂zi∂zj
(z)

= 4(1− |z|2)

 n∑
i,j=1

δi,j
∂2|f |2

∂zi∂zj
(z)−

n∑
i,j=1

zizj
∂2|f |2

∂zi∂zj
(z)



= 4(1− |z|2)

 n∑
j=1

∂2|f |2

∂zj∂zj
(z)− |Rf(z)|2


= 4(1− |z|2)

(
|∇f(z)|2 − |Rf(z)|2

)
,

namely,
∆̃(|f |2)(z) = 4(1− |z|2)

(
|∇f(z)|2 − |Rf(z)|2

)
.

Finally, we substitute this last equality in (2.4.4) and the wished result is obtained.

70



Remark 2.4.2. In the former proof we used the following property

∂f

∂zi
(z)

∂f

∂zj
(z) =

∂2|f |2

∂zi∂zj
(z),

where f is any holomorphic function. As a prove, using Cauchy-Riemann equations (that is (1.2.1)),
the conjugation properties of Wirtinger operators and the product rule, we find

∂2|f |2

∂zi∂zj
(z) =

∂

∂zj

∂(ff)

∂zi
(z)

=
∂

∂zj

{
f(z)

∂f

∂zi
(z) + f(z)

∂f

∂zi
(z)

}

=
∂

∂zj

{
f(z)

∂f

∂zi
(z)

}

=
∂f

∂zj
(z)

∂f

∂zi
(z) + f(z)

∂

∂zi

∂f

∂zj
(z)

=
∂f

∂zj
(z)

∂f

∂zi
(z).

By the fact that the invariant Laplacian is invariant under the action of the automorphism group,
we have the following important corollary.

Corollary 2.4.3. |∇̃f | is Möbius invariant, that is

|∇̃(f ◦ ϕ)(z)| = |(∇̃f) ◦ ϕ(z)|, ∀f ∈ H(Bn), (2.4.5)

where ϕ ∈ Aut(Bn).

Proof. Since
4|∇̃f(z)|2 = ∆̃(|f |2)(z),

this fact implies

4|(∇̃f) ◦ ϕ(z)|2 = ∆̃(|f |2)(ϕ(z))

= ∆̃(|f ◦ ϕ|2)(z)

= 4|∇̃(f ◦ ϕ)(z)|2,

and this completes our proof.

A fundamental tool, that follows from the previous lemma, will be the following chain of inequal-
ities.

Lemma 2.4.4. Let f ∈ H(Bn), then

(1− |z|2)|Rf(z)| ≤ (1− |z|2)|∇f(z)| ≤ |∇̃f(z)|, ∀ z ∈ Bn (2.4.6)
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Proof.

|Rf(z)|=̇

∣∣∣∣∣
n∑
k=1

zk
∂f

∂zk

∣∣∣∣∣
≤︸︷︷︸

Cauchy−Schwarz

{
n∑
k=1

|zk|2
}1/2{ n∑

k=1

∣∣∣∣ ∂f∂zk
∣∣∣∣2
}1/2

= |z||∇f(z)| ≤ |∇f(z)|,

that is,
|Rf(z)| ≤ |∇f(z)|,

and, multiplying both sides by (1− |z|2), we clearly get the first inequality. For the second inequality,
using Lemma 2.4.1 and |Rf(z)| ≤ |z||∇f(z)|, it turns out that

|∇̃f(z)| =
√

(1− |z|2)(|∇f(z)|2 − |Rf(z)|2)

≥
√

(1− |z|2)(|∇f(z)|2 − |z|2|∇f(z)|2)

= (1− |z|2)|∇f(z)|.

The next lemma is a key estimate for the study of Bergman spaces, when 0 < p ≤ 1. It will be
needed several times later in this thesis.

Lemma 2.4.5. Given 0 < p ≤ 1 and α > −1, then∫
Bn
|f(z)|(1− |z|2)(n+1+α)/p−(n+1)dv(z) ≤ n!Γ(α+ 1)

Γ(n+ α+ 1)
||f ||p,α, ∀ f ∈ Apα. (2.4.7)

Proof. Writing
|f(z)| = |f(z)|p|f(z)|1−p,

denoting by cα,n :=
n!Γ(α+ 1)

Γ(n+ α+ 1)
and applying Theorem 2.1.4 to |f(z)|1−p, we get

∫
Bn
|f(z)|(1− |z|2)(n+1+α)/p−(n+1)dv(z) =

∫
Bn
|f(z)|p|f(z)|1−p(1− |z|2)(n+1+α)/p−(n+1)dv(z)

≤
∫
Bn
|f(z)|p

(
||f ||p,α

(1− |z|2)(n+1+α)/p

)1−p
(1− |z|2)(n+1+α)/p−(n+1)dv(z)

= cα,n||f ||1−pp,α

∫
Bn
|f(z)|p Γ(n+ α+ 1)

n!Γ(α+ 1)
(1− |z|2)αdv(z)︸ ︷︷ ︸

dvα(z)

= cα,n||f ||p,α,

and we are done.

Remark 2.4.6. As a further consequence of Theorem 2.1.4, we notice that the exponent

β :=
n+ 1 + α

p
− (n+ 1) is the best possible one. Moreover, the previous result should be considered

as an embedding of the Bergman space Apβ into A1
α, for 0 < p ≤ 1.
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Remark 2.4.7. Since, for 0 < p < 1,

γ :=
n+ 1 + α

p
− (n+ 1) > −1,

defining the linear functional Φ : Apα −→ C as follows

Φ(f) :=

∫
Bn
f(z)dvγ(z).

Hence, as a consequence of the previous Lemma, we find

||Φ||(Apα)∗ ≤ 1.

Moreover, (2.4.7) can be written as follows

||f ||1,γ ≤ ||f ||p,α, 0 < p ≤ 1,

that is, the continuous embedding of Apβ into A1
α.

If n = 1, we clearly have

Rf(z) = zf ′(z), |∇f(z)| = |f ′(z)|, |∇̃f(z)| = (1− |z|2)|f ′(z)|,

and notice that the functions

(1− |z|2)|Rf(z)|, (1− |z|2)|∇f(z)|, |∇̃f(z)|

have exactly the same boundary behaviour on the unit disk. In higher dimensions, the three functions
above no longer have the same boundary behaviour. However, in the next theorem we show that
when integrated against the weighted volume measures dvα, these differential-based functions not
only exhibit the same behaviour, they also behave the same as the original function f(z). Besides,
this result will be used to illustrate the complex interpolation of the Bloch space.

Theorem 2.4.8. Let α > −1, p > 0 and f ∈ H(Bn), then the following are equivalent:
a) f ∈ Apα
b) |∇̃f(z)| ∈ Lp(Bn, dvα)
c) (1− |z|2)|∇f(z)| ∈ Lp(Bn, dvα)
d) (1− |z|2)|Rf(z)| ∈ Lp(Bn, dvα).

Moreover, the quantities∫
Bn
|∇̃f(z)|pdvα(z) ,

∫
Bn

(1− |z|2)|∇f(z)|pdvα(z) ,

∫
Bn

(1− |z|2)|Rf(z)|pdvα(z),

are all comparable to ∫
Bn
|f(z)|pdvα(z),

whenever f ∈ H(Bn).

Proof. We start proving that b) implies c). From the inequality

(1− |z|2)|∇f(z)| ≤ |∇̃f(z)|

of (2.4.6), multiplying both sides by (1− |z|2)α and then integrating, we easily obtain

||(1− |z|2)∇f ||p,α ≤ ||∇̃f ||p,α.
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c)⇒ d), from the inequality

(1− |z|2)|Rf(z)| ≤ (1− |z|2)|∇f(z)|

of (2.4.6), and, proceeding similarly as in the previous case, we get the desired result.
Now, our aim is to prove that a) implies b). Defining g(w) := f ◦ϕz(w) and choosing β > α, where ϕz
is the involutive automorphism, from Lemma 2.1.6 there exists a constant C1 := C1(z) > 0 such that

|∇g(0)|p ≤ C1

∫
Bn
|g(w)|pdvβ(w)

Hence, using the change of variables formula of Proposition 1.4.7, our result is

|∇̃f(z)|p ≤ C1(1− |z|2)n+1+β

∫
Bn

|f(w)|pdvβ(w)

|1− < z,w > |2(n+1+β)
,

then, integrating both sides respect to dvα(z) and using Fubini’s theorem, we find that∫
Bn
|∇̃f(z)|pdvα(z) ≤ C1

∫
Bn

(1− |z|2)n+1+βdvα(z)

∫
Bn

|f(w)|pdvβ(w)

|1− < z,w > |2(n+1+β)

=︸︷︷︸
Fubini

C1

∫
Bn
|f(w)|pdvβ(w)

∫
Bn

(1− |z|2)n+1+β

|1− < z,w > |2(n+1+β)
dvα(z)

= C1

∫
Bn
|f(w)|pdvβ(w)

∫
Bn

(1− |z|2)n+1+β+α

|1− < z,w > |n+1+(n+1+β+α)+β−αdv(z).

Denoting by t := n+ 1 + α and c := β − α > 0 and applying Theorem 1.4.4, we find∫
Bn
|∇̃f(z)|pdvα(z) ≤ C1

∫
Bn
|f(w)|pdvβ(w)

∫
Bn

(1− |z|2)t

|1− < z,w > |n+1+t+c
dv(z)

≤ C2

∫
Bn
|f(w)|pdvβ(w)(1− |w|2)−(β−α)

= C2

∫
Bn
|f(w)|p(1− |w|2)−(β−α)(1− |w|2)βdv(w)

= C2

∫
Bn
|f(w)|p(1− |w|2)αdv(w)

= C2

∫
Bn
|f(w)|pdvα(w),

that is ∫
Bn
|∇̃f(z)|pdvα(z) ≤ C2

∫
Bn
|f(w)|pdvα(w).

Finally, we substitute f − f(0) instead of f :∫
Bn
|∇̃f(z)|pdvα(z) ≤ C2

∫
Bn
|f(z)− f(0)|pdvα(z),

and we obtain the desired result.
We wish to prove that d) implies a). We apply Theorem 2.1.4, choosing β > 0 large enough, to obtain

Rf(z) =

∫
Bn

Rf(w)dvβ(w)

(1− < z,w >)n+1+β
, z ∈ Bn. (2.4.8)
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We observe that

Rf(0) =

n∑
k=1

∂f

∂zi
(0)0

= 0.

Hence, (2.4.8) can be written as

Rf(z) =

∫
Bn
Rf(w)

(
1

(1− < z,w >)n+1+β
− 1

)
dvβ(w)

More is true, using formula (1.5.3), we also have

f(z)− f(0) =

∫ 1

0

Rf(tz)

t
dt

=

∫
Bn
Rf(w)

∫ 1

0

(
1

(1− < tz,w >)n+1+β
− 1

)
dvβ(w)

dt

t
,

that is,

f(z)− f(0) =

∫
Bn
Rf(w)

∫ 1

0

(
1

(1− < tz,w >)n+1+β
− 1

)
dvβ(w)

dt

t
, (2.4.9)

If we define the kernel

H(z, w) =

∫ 1

0

(
1

(1− t < z,w >)n+1+β
− 1

)
dt

t
,

then, (2.4.9) becomes

f(z)− f(0) =

∫
Bn
Rf(w)H(z, w)dvβ(w).

We proceed estimating the kernel H(z, w) as follows

|H(z, w)| =
∣∣∣∣∫ 1

0

(
1− (1− t < z,w >)n+β+1

(1− t < z,w >)n+β+1

)
dt

t

∣∣∣∣
≤ C

∣∣∣∣∫ 1

0

< z,w > dt

(1− t < z,w >)n+β+1

∣∣∣∣
= C

∣∣∣−(1− t < z,w >)−(n+β)|t=1
t=0

∣∣∣
≤ C̃

|1− < z,w > |n+β
,

that is

|H(z, w)| ≤ C̃

|1− < z,w > |n+β
,∀z, w ∈ Bn.

Then, we have that

|f(z)− f(0)| ≤ C̃
∫
Bn

∣∣∣∣ Rf(w)

(1− < z,w >)n+β

∣∣∣∣ (1− |w|2)βdv(w). (2.4.10)

We use this inequality as follows: we consider two cases, the first is regarding 1 ≤ p < ∞. Chosen β
large enough so that

0 < α+ 1 < pβ.
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Then, as a consequence of Theorem 1.4.6, where we put α := β − 1, a = 0, and
φ(w) := |Rf(w)|(1− |w|2), we find∫

Bn
|f(z)− f(0)|pdvα(z) ≤ C̃

∫
Bn

(∫
Bn

{
|Rf(w)|(1− |w|2)

} (1− |w|2)β−1

|1− < z,w > |n+β
dv(w)

)p
dvα(z),

that is, f ∈ Lp(Bn, dvα).
We prove the case 0 < p < 1. We choose β large enough so that

β =
n+ 1 + β′

p
− (n+ 1)

where β′ > α+ p > −1. Hence, using Lemma 2.4.5 and the inequality (2.4.10), where we put α := β′,
we have that

|f(z)− f(0)|p ≤
∫
Bn

∣∣∣∣ Rf(w)

(1− < z,w >)n+β

∣∣∣∣ (1− |w|2)
n+1+β′

p
−(n+1)

dv(w)

≤︸︷︷︸
Lemma 2.4.5

∥∥∥∥ Rf(w)

(1− < z,w >)n+β

∥∥∥∥
p,β′

.

Afterthat, applying Fubini and Theorem 1.4.4 part c), where we put t = α, c := np+pβ−n−1−α > 0,
it turns out that∫

Bn
|f(z)− f(0)|pdvα(z) ≤

∫
Bn
dvα(z)

∫
Bn

∣∣∣∣ Rf(w)

|1− < z,w > |n+β

∣∣∣∣p dvβ′(w)

=

∫
Bn
|Rf(w)|pdvβ′(w)

∫
Bn

(1− |z|2)α

|1− < z,w > |pn+pβ
dv(z)

=

∫
Bn
|Rf(w)|pdvβ′(w)

∫
Bn

(1− |z|2)α

|1− < z,w > |n+1+α+(pn+pβ−n−1−α)
dv(z)

≤︸︷︷︸
Theorem 1.4.4

CJ

∫
Bn
|Rf(w)|pdv(w)(1− |w|2)α+pdv(w)

that is ∫
Bn
|f(z)− f(0)|pdvα(z) ≤ CJ

∫
Bn

(
(1− |z|2)|Rf(z)|

)p
dvα(z).

Finally, it’s easy to notice that this proof produces equivalent norms on Apα in terms of radial derivative,
the holomorphic gradient and the invariant gradient of f .

In the following corollary we provide a criterion, in terms of partial derivatives, to determine
functions of the Bergman spaces.

Corollary 2.4.9. Let α > −1, p > 0, N ∈ N and f ∈ H(Bn). Then

f ∈ Apα ⇐⇒ (1− |z2|)N ∂
mf

∂zm
(z) ∈ Lp(Bn, dvα), |m| = N (2.4.11)

Proof. We start proving (=⇒) by induction. For N = 1, we just apply the equivalence a) and c) of
the last theorem. For N = 2, let f ∈ Apα, using the same equivalence, it turns out that

∂f

∂zi
∈ Apα+p, i = 1, ..., n.
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Hence, we apply the implication a) =⇒ c) to the function
∂f

∂zi
, we obtain that

(1− |z|2)
∂2f

∂zi∂zj
(z) ∈ Lp(Bn, dvα+p), i, j = 1, ..., n.

To prove the general case, that is for any arbitrary N ∈ N, we basically use the same idea.
(⇐=) In this case, we just repeat reversing the same argument.

A further consequence is given by the following corollary.

Corollary 2.4.10. Suppose α > 1, p > 0 and assume that f ∈ Apα. Then the integral∫
Bn
|f(z)|pdvα(z)

is comparable to ∑
|m|≤N

∣∣∣∣∂mf∂zm
(0)

∣∣∣∣+
∑
|m|=N

∫
Bn

∣∣∣∣(1− |z|2)N
∂mf

∂zm
(z)

∣∣∣∣ dvα(z),

whenever f ∈ H(Bn).

2.4.1 Characterisation in terms of Rα,t

The aim of this subsection is to obtain a characterisation of the Bergman space Apα, for every
0 < p <∞, in terms of the operator Rα,t. We start with the following corollary, that follows from the
integral representation formula of (2.1.2)

Corollary 2.4.11. Assume that α > −1, t > 0 and f ∈ H(Bn). If neither n+ α nor n+ α+ t is not
a negative integer, then

Rα,tf(z) = lim
r→1−

∫
Bn

f(rw)dvα(w)

(1− < z,w >)n+1+α+t
, (2.4.12)

and

Rα,tf(z) = lim
r→1−

∫
Bn

f(rw)dvα+t(w)

(1− < z,w >)n+1+α
. (2.4.13)

In particular, the limits above always exist.

Proof. Fixed r ∈ (0, 1), let the dilation function fr(z) = f(rz) be. Applying Lemma 2.1.3, we have

fr(z) =

∫
Bn

fr(w)dvα(w)

(1− < z,w >)n+1+α
, z ∈ Bn.

Now, since

lim
r→1−

fr(w)

(1− < z,w >)n+1+α+t
=

f(w)

(1− < z,w >)n+1+α+t
, ∀ w ∈ Bn,

and ∫
Bn

f(w)dvα(w)

(1− < z,w >)n+1+α+t
=

∫
Bn
f(w)Rα,t

(
1

(1− < z,w >)n+1+α

)
dvα(w)

= Rα,t
∫
Bn

f(w)dvα(w)

(1− < z,w >)n+1+α

= Rα,tf(z).

Hence, we deduce that

lim
r→1−

∫
Bn

fr(w)dvα(w)

(1− < z,w >)n+1+α+t
= Rα,tf(z),

this proves (2.4.12). To show (2.4.13), we proceed similarly.
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Remark 2.4.12. Moreover, we’ve proved the following identity∫
Bn

Rα,tf(w)dvα(w)

(1− < z,w >)n+1+α
=

∫
Bn
f(w)Rα,t

(
1

(1− < z,w >)n+1+α

)
dvα(w),

where f ∈ H(Bn).

In order to prove the main goal of this subsection, we need the following lemma concerning the
image of the Bergman kernel under the action of the operator Rs,t and its inverse operator Rs,t.

Lemma 2.4.13. Suppose neither n + s nor n + s + t is a negative integer. If β = s + N for some
positive integer N , then there exists a one-variable polynomial h(< z,w >) of degree N such that

Rs,t
1

(1− < z,w >)n+1+β
=

h(< z,w >)

(1− < z,w >)n+1+β+t
. (2.4.14)

Furthermore, there exists a polynomial P (z, w) such that

Rs,t
1

(1− < z,w >)n+1+β+t
=

P (z, w)

(1− < z,w >)n+1+β
. (2.4.15)

Proof. Using the definition of Rs,t for β = s+ 1, there exists a positive constant C such that

Rs,t
1

(1− < z,w >)n+1+β
= C

∞∑
k=0

k + n+ 1 + s

k!
Γ(n+ 1 + k + s+ t) < z,w >k

= C
∞∑
k=1

Γ(n+ 1 + k + s+ t)

(k − 1)!
< z,w >k +

+ C

∞∑
k=0

n+ 1 + s

k!
Γ(n+ 1 + k + s+ t) < z,w >k

= C < z,w >
∞∑
k=0

Γ(n+ 1 + k + s+ t)

k!
< z,w >k +

+ C
∞∑
k=0

n+ 1 + s

k!
Γ(n+ 1 + k + s+ t) < z,w >k

=
CΓ(n+ 1 + β + t)

(1− < z,w >)n+1+β+t
+ C

(n+ β)Γ(n+ β + t)

(1− < z,w >)n+β+t

= C
Γ(n+ 1 + β + t) + (n+ β)Γ(n+ β + t)(1− < z,w >)

(1− < z,w >)n+β+t+1
.

Namely, for β = s + 1, (2.4.14) holds. In general, if β = s + N , there exists a positive constant CN
such that

Rs,t
1

(1− < z,w >)n+1+β
= CN

∞∑
k=0

p(k)Γ(n+ 1 + k + s+ t)

k!
< z,w >k,

where p(k) is a polynomial having degree N that can be written as a linear combination of

1, k, k(k − 1), . . . , k(k − 1), . . . , (k −N + 1).
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Hence, to prove (2.4.14), we proceed exactly as in the case N = 1.
To show (2.4.15), using Proposition 1.5.10, Proposition 1.5.11 and the fact that Rs,t and Rs+t,N

commute, it turns out that

Rs,t
1

(1− < z,w >)n+1+β+t
= Rs,tR

s+t,N 1

(1− < z,w >)n+1+s+t

= Rs+t,NRs,t
1

(1− < z,w >)n+1+s+t

= Rs+t,N
1

(1− < z,w >)n+1+s

=
∑
|m|≤N

pm(z)
∂

∂zm
1

(1− < z,w >)n+1+s

where pm(z) is a polynomial. This completes our proof.

Remark 2.4.14. As a consequence of the previous lemma, we can compare the behaviour of Rs,t and
Rβ,t. In fact, there exist a family of constants {Ck}k such that

h(< z,w >) =

N∑
k=0

Ck(1− < z,w >)k.

Then, using Proposition 1.5.10, we find

Rs,t
1

(1− < z,w >)n+1+β
=

N∑
k=0

Ck
1

(1− < z,w >)n+1+β+t−k

=

N∑
k=0

CkRβ+t−k,kR
β,t 1

(1− < z,w >)n+1+β
.

Finally, we differentiate respect to w to obtain

Rs,t = C0R
β,t +

N∑
k=1

CkRβ+t−k,kR
β,t,

where we easily notice that C0 6= 0. For any f ∈ H(Bn), the function Rβ+t−k,kR
β,tf is a k−th integral

of Rβ,tf , for every 1 ≤ k ≤ N , and, hence, is more regular than Rβ,tf . In other words, the behaviour
of Rs,tf and Rβ,tf are often the same. Finally, we estimate h(< z,w >) as follows. Using the above
notatio, Cauchy-Schwartz inequality, we get

|h(< z,w >)| ≤
N∑
k=0

|Ck|2k

and, from (2.4.14) and putting C :=
∑N

k=0 |ak|2k, we easily deduce that∣∣∣∣Rs,t 1

(1− < z,w >)n+1+β

∣∣∣∣ =

∣∣∣∣ h(< z,w >)

(1− < z,w >)n+1+β+t

∣∣∣∣
≤
∣∣∣∣ h(< z,w >)

(1− < z,w >)n+1+β+t

∣∣∣∣
≤ C

|1− < z,w > |n+1+β+t
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We are ready to prove the main goal of this subsection.

Theorem 2.4.15. Assume α > −1, p > 0 and t > 0. If neither n + s nor n + s + t is a negative
integer, then there exists positive constant c and C such that

c

∫
Bn
|f(z)|pdvα(z) ≤

∫
Bn
|(1− |z|2)tRs,tf(z)|pdvα(z) ≤ C

∫
Bn
|f(z)|pdvα(z), (2.4.16)

where f ∈ H(Bn).

Proof. Let β = s+N , where N is a positive integer large enough so that β > −1. Then, we use the
integral representation formula of Lemma 2.1.3, we can write

f(z) =

∫
Bn

f(w)dvβ(w)

(1− < z,w >)n+1+β
, z ∈ Bn.

Applying the operator Rs,t to f , using the previous formula, Remark 2.4.14 and Lemma 2.4.11, we
can find a positive constant C1 such that

|Rs,tf(z)| ≤
∣∣∣∣Rs,t ∫

Bn

f(w)dvβ(w)

(1− < z,w >)n+1+β

∣∣∣∣
≤
∣∣∣∣∫

Bn
Rs,t

f(w)dvβ(w)

(1− < z,w >)n+1+β

∣∣∣∣
=

∣∣∣∣∫
Bn

h(< z,w >)f(w)dvβ(w)

(1− < z,w >)n+1+β+t

∣∣∣∣
≤ C1

∫
Bn

|f(w)|dvβ(w)

|1− < z,w > |n+1+β+t
.

We rewrite

|Rs,tf(z)| ≤ C1

∫
Bn

|f(w)|dvβ(w)

|1− < z,w > |n+1+β+t
, (2.4.17)

that implies

|Rs,tf(z)|(1− |z|2)t ≤ C1(1− |z|2)t
∫
Bn

|f(w)|dvβ(w)

|1− < z,w > |n+1+β+t
, z ∈ Bn.

If p ≥ 1 and N is large enough so that

α+ 1 < p(β + 1),

so that, from Theorem 1.4.6, there exists C2 > 0, independent of f , such that∫
Bn
|(1− |z|2)tRs,tf(z)|pdvα(z) ≤ C2

∫
Bn
|f(z)|pdvα(z).

If 0 < p < 1, we write

β =
n+ 1 + α′

p
− (n+ 1),

where N is assumed large enough such that α′ > α. Using Lemma 2.4.5, (2.4.15) and, again, (2.4.17),
there exists a constant C3 > 0 such that

|Rs,tf(z)|p ≤ Cp1
{∫

Bn

|f(w)|dvβ(w)

|1− < z,w > |n+1+β+t

}p

≤ C3C
p
1

∫
Bn

∣∣∣∣ f(w)

(1− < z,w >)n+1+β+t

∣∣∣∣p dvα′(w)

= C3C
p
1

∫
Bn

|f(w)|p

|1− < z,w > |n+1+α′+tp
dvα′(w)
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After that, multiplyng from both sides by (1 − |z|2)tpdvα(z), integrating and, hence, from Fubini’s
Theorem and Theorem 1.4.4, there exists a positive constant C4, independent of f , such that∫

Bn
(1− |z|2)tp|Rs,tf(z)|pdvα(z) ≤ C3C

p
1

∫
Bn

(1− |z|2)tpdvα(z)

∫
Bn

|f(w)|p

|1− < z,w > |n+1+α′+tp
dvα′(w)

≤ C3C
p
1

∫
Bn
|f(w)|pdvα′(w)

∫
Bn

(1− |z|2)tp

|1− < z,w > |n+1+α′+tp
dvα(z)

≤ C3C
p
1

∫
Bn
|f(w)|pdvα′(w)

∫
Bn

(1− |z|2)tp+α

|1− < z,w > |n+1+α′−α+(tp+α)
dv(z)

≤ C̃C3C
p
1

∫
Bn
|f(w)|p(1− |w|2)α−α

′
dvα′(w)

= C̃C3C
p
1

∫
Bn
|f(w)|pdvα(w).

Next, assuming that the function (1− |z|2)tRs,tf(z) ∈ Lp(Bn) and from Remark 2.4.12, the function

g(z) =
cβ+t

cβ
(1− |z|2)tRβ,tf(z) ∈ Lp(Bn, dvα).

Furthermore, using Corollary 2.4.11, Fubini’s theorem and Lemma 2.1.3, it turns out that

Pβ(g)(z) =

∫
Bn

g(w)

(1− < z,w >)n+1+β
(1− |w|2)βdvβ(w)

=

∫
Bn

cβ+t

cβ
(1− |w|2)tRβ,tf(w)

1

(1− < z,w >)n+1+β
dvβ(w)

=

∫
Bn

cβ+t

cβ
(1− |w|2)t

{
lim
r→1−

∫
Bn

f(rx)dvβ(x)

(1− < w, x >)n+1+β+t

}
1

(1− < z,w >)n+1+β
dvβ(w)

= lim
r→1−

∫
Bn
f(rx)dvβ(x)

∫
Bn

dvβ+t(w)

(1− < w, x >)n+1+β+t(1− < z,w >)n+1+β

= lim
r→1−

∫
Bn

f(rx)dvβ(x)

(1− < z, x >)n+1+β

= f(z).

If 1 ≤ p <∞, from Theorem 2.2.9, we deduce that f ∈ Apα. For 0 < p < 1, writing f = Pβg as

f(z) = C5

∫
Bn

Rβ,tf(w)

(1− < z,w >)n+1+β
(1− |w|2)β+tdvβ(w), z ∈ Bn,

where C5 is a suitable positive constant. We also assume that N is large enough so that

β + t =
n+ 1 + α′

p
− (n+ 1)

for some α′ > 1. Applying Lemma 2.4.5, there exists a positive constant C6 such that

|f(z)|p ≤ C6

∫
Bn

|Rβ,tf(w)|p

|1− < z,w > |(n+1+β)p
dvα′(w),
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for all z ∈ Bn. Now, since

(n+ 1 + β)p = n+ 1 + α′ − pt

= n+ 1 + α+ (α′ − pt− α),

again, assuming that N is large enough so that

α′ − pt− α > 0,

and, finally, using Theorem 1.4.4 and Fubini’s theorem, there exists a positive constant C7 such that∫
Bn
|f(z)|pdvα(z) ≤ C7

∫
Bn

(1− |w|2)pt|Rs,tf(w)|pdvα(w).

We proved (2.4.16).

To conclude this subsection, we give the following trivial corollary.

Corollary 2.4.16. Let p > 0 , α > −1, t > 0 and assume that neither n+s nor n+s+ t is a negative
integer. Let f ∈ H(Bn), then the following are equivalent
1) f ∈ Apα.
2) (1− |z|2)tRs,tf(z) ∈ Lp(Bn, dvα)

2.5 Atomic Decomposition

The purpose of this section is to present a proof of the atomic decomposition for weighted Bergman
spaces. That is, for any f ∈ Apα, we show that f can be described in terms of a linear combination
of a particular family of functions, called atoms, that are defined using the reproducing kernel of the
space A2

α. In some sense, they play the role of an orthonormal basis for this space, although we will
see that they are not mutually orthogonal. Besides, as a consequence of this process, we will deduce
a fundamental topological property of the Bergman space: the lack of local convexity, for 0 < p < 1.

First of all, denoting by β(·, ·) the Bergman metric, we recall that for r > 0 and z ∈ Bn the set

D(z, r) = {w ∈ Bn : β(z, w) < r} (2.5.1)

is the Bergman metric ball at z.
In order to give a constructive proof of the atomic decomposition for Bergman spaces, we need a pair
of estimates. This is the content of the next lemma.

Lemma 2.5.1. For every r > 0 there exists a positive constant Cr such that

C−1
r ≤ 1− |a|2

1− |z|2
≤ Cr (2.5.2)

and

C−1
r ≤ 1− |a|2

|1− < a, z > |
≤ Cr (2.5.3)

for all a, z ∈ Bn such that β(a, z) < r. Furthermore, if r is bounded above, the constant Cr can be
chosen to be indipendent of r.

Proof. Under the above conditions, writing z = ϕa(w) for some w ∈ Bn with β(0, w) < r, applying
Lemma 1.3.9 follows that

1− |z|2 =
(1− |w|2)(1− |a|2)

|1− < a,w > |2
.
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We notice that D(0, r) is actually a Euclidean ball centered at the origin and having radius less than
1. This fact allows us to find a positive constant C such that

C−1 ≤ |1− < a,w > |2

1− |w|2
≤ C, ∀a ∈ Bn, ∀w ∈ D(0, r),

so

C−1 ≤ 1− |a|2

1− |z|2
≤ C

for all a and z with β(a, z) < r. (2.5.2) is proved.
In order to prove (2.5.3), we proceed as follows. Using the involution property of Proposition 1.3.11,
we know that z = ϕa(w) if and only if w = ϕa(z) and, hence, applying Lemma 1.3.9, we get

1− |w|2 =
(1− |a|2)(1− |z|2)

|1− < a, z > |2
.

To conclude, using the boundedness of 1−|w|2, from above and below, and since 1−|a|2 is comparable
to 1− |z|2, the result follows easily.

As a consequence of Lemma 1.6.15 and Lemma 2.5.1 we have the following corollary.

Corollary 2.5.2. Let α ∈ R, r1 > 0, r2 > 0, and r3 > 0. Then there exists a constant C > 0 such
that

C−1 ≤ vα(D(z, r1))

vα(D(w, r2))
≤ C (2.5.4)

for all z, w ∈ Bn with β(z, w) ≤ r3.

Many techniques in Mathematical Analysis involve covering lemmas, namely, ways to decompose
the underlying domain into special nice pieces. In the next Lemma, we provide an example of this
technique.

Lemma 2.5.3. Let R > 0 and M ∈ N, there exists N ∈ N such that every Bergman metric ball of
radius r, where r ≤ R, can be covered by N Bergman metric balls having radius r/M .

Proof. Let a Bergman metric ball D(a, r) be, where 0 < r ≤ R. Put δ = r/M and let {D(ak, δ/2)}Nk=1

be a finite covering of D(a, r), where each ak ∈ D(a, r). Our aim is to obtain an other covering of
D(a, r): put a′1 := a1 and let a′2 be the first of {a2, a3, ...} such that β(a′2, a

′
1) ≥ δ/2. Then, we choose

the first term a′3, after a′2, whose Bergman distance is at least δ/2 from both a′1 and a′2. The covering
obtained at the end of this process, denoted by {D(a′k, δ)}, satisfies

β(a′i, a
′
j) ≥ δ/2, i 6= j.

By the fact that the family of sets {D(a′k, r/4M)} are disjoint and contained in D(a, r+ r/(4M)), the
following inequality holds ∑

k

v
(
D
(
a′k,

r

4M

))
≤ v

(
D
(
a, r +

r

4M

))
Using the previous corollary, there exists a constant C := C(R,M) > 0, that is independent of r, such
that

v
(
D
(
a, r +

r

4M

))
≤ Cv

(
D
(
a′k,

r

4M

))
for every k. Finally, putting N = [C] + 1, the wished result follows easily.

We now present a useful decomposition of the open unit ball into Bergman metric balls.
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Theorem 2.5.4. There exists N ∈ N such that for any 0 < r ≤ 1 we can find a sequence {ak} ∈ Bn
such that the folllowing properties hold:

1) Bn =
⋃
k

D(ak, r).

2) The sets D(ak, r/4) are mutually disjoint.
3) Each point z ∈ Bn belongs to at most N of the sets D(ak, 4r).

Proof. 1) Fix r ∈ (0, 1], following the same lines as in the first part of the previous proof, we can find
a sequence {ak}k ∈ Bn such that

Bn =
⋃
k

D(ak, r)

and that β(ai, aj) ≥ r/2 for all i 6= j.
2) This property follows as a fairly application of the triangle inequality.
3) As a consequence of the previous Lemma, every D(ak, 4r) can be covered by N Bergman metric
balls having radius r/4, where N is independent of r. Hence, assuming by contradiction

z ∈
N+1⋂
i=1

D(aki , 4r)

then aki ∈ D(z, 4r) for 1 ≤ i ≤ N + 1. Let D(zi, r/4), 1 ≤ i ≤ N , be a cover of D(z, 4r). Then at
least one of D(zi, r/4) must contain two of akj , 1 ≤ j ≤ N + 1. Applying the traingle inequality, such
points must have Bergman distance less than r/2, which contradicts the second assumption made on
{ak} during the previous paragraph.

Remark 2.5.5. We notice that we could have proved the result for any fixed radius greater than r/4.

Using the above notation, we give the following definition.

Definition 2.5.6. We will call r the separation constant for the sequence {ak}. Moreover, the sequence
of complex numbers {ak} is called an r−lattice in the Bergman metric.

For the sake of convenience, we collect some elementary facts, on the Bergman metric, about
holomorphic functions in the unit ball Bn and the automorphism group Aut(Bn). In the following
Lemma, for any f ∈ Apα, we prove that the point-evaluation, for a fixed z ∈ Bn, can be estimated from
above by vα(D(z, r)) and the integral of |f |p, respect to dvα, performed on D(z, r) for some r > 0.

Lemma 2.5.7. Assume r > 0, p > 0 and α > −1. Then there exists a constant C > 0 such that

|f(z)|p ≤ C

(1− |z|2)n+1+α

∫
D(z,r)

|f(w)|pdvα(w)

for all f ∈ H(Bn) and all z ∈ Bn.

Proof. From Proposition 1.6.10, D(0, r) is a Euclidean ball centered at the origin with Euclidean
radius R = tanh(r). Then, using the subharmonicity of |f |p and Corollary 1.7.5, it turns out that

|f(0)|p ≤ 1

vα(D(0, r))

∫
D(0,r)

|f(w)|pdvα(w)

where f ∈ H(Bn). We substitute f by f ◦ ϕz and use the change of variables formula of Proposition
1.4.7, we get

|f(z)|p ≤ 1

vα(D(0, r))

∫
D(z,r)

|f(w)|p (1− |z|2)n+1+α

|1− < z,w > |2(n+1+α)
dvα(w)

Finally, applying Lemma 2.5.1, the result is obtained.

The following result is an identity concerning the involutive automorphism. Actually, this is a
generalisation of Lemma 1.3.9 and is not proved.
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Lemma 2.5.8. Suppose a ∈ Bn and let ϕa the involution automorphism be. Then

1− < ϕa(z), ϕa(w) >=
(1− < a, a >)(1− < z,w >)

(1− < z, a >)(1− < a,w >)
, (2.5.5)

for all z, w ∈ Bn.

Fix , u, v ∈ Bn and R > 0 such that u, v ∈ D(0, R). In the next lemma we provide an estimate
from below of the distance, under the Bergman metric, between u and v in terms of the hermitian
inner product of Cn involving z, u and v.

Lemma 2.5.9. Let R > 0 and b ∈ R. Then, for all z, u, and v ∈ Bn so that β(u, v) ≤ R, there exists
constant C > 0 such that ∣∣∣∣(1− < z, u >)b

(1− < z, v >)b
− 1

∣∣∣∣ ≤ Cβ(u, v), (2.5.6)

where β(u, v) is the Bergman metric.

Proof. Since β(u, v) ≤ R, denoting by r := tanh(R) ∈ (0, 1), we can write v = ϕu(w) where |w| ≤ r.
Let z′ = ϕu(z). Hence, as a consequence of Lemma 2.5.1, it turns out that

1− < z, u >=
1− |u|2

1− < z′, u >
,

and

1− < z, v >=
(1− |u|2)(1− < z′, w >)

(1− < z′, u >)(1− < u,w >)
.

Then, using these two equalities, we find

(1− < z, u >)b

(1− < z, v >)b
=

(1− < u,w >)b

(1− < z′, w >)b

and hence
(1− < z, u >)b

(1− < z, v >)b
− 1 =

(1− < u,w >)b − (1− < z′, w >)b

(1− < z′, w >)b
.

By the fact that |z′| < 1 and |w| < r, we get

1− r < |1− < z′, w > | < 2.

Furthermore, because of | < u,w > | < r and | < z′, w > | < r, there exists C1 := C1(r, b) > 0 such
that

|(1− < u,w >)b − (1− < z′, w >)b| ≤ C1| < z′, w > − < u,w > |

≤ 2C1|w|.

Finally, since the Bergman metric is equivalent to the Euclidean metric on the relatively compact set
|w| < r, there exists C2 > 0 such that

|w| ≤ C2β(0, w)

= C2β(0, ϕu(v))

= C2β(u, v)

wher v = ϕu(w) and β(u, v) < R.
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Remark 2.5.10. Putting b = 1 in the previous Lemma, applying the triangle inequality and, then,
repeating the same argument with b = −1, we find that for every R > 0 there exists a constant C > 0
that satisfy

C−1 ≤ |1− < z, u > |
|1− < z, v > |

≤ C (2.5.7)

for every u,v and z ∈ Bn, such that β(u, v) ≤ R.

Lemma 2.5.11. For every k ≥ 1 there exists a Borel set Dk such that the conditions hold

1) D(ak, r/4) ⊂ Dk ⊂ D(ak, r) , ∀k ≥ 1.
2) Dk ∩Dj = ∅ , for k 6= j.

3) Bn =
⋃
k

Dk

Proof. Let k ≥ 1, we define the family of sets

Ek = D(ak, r)−
⋃
j 6=k

D(aj , r/4)

so that Ek satisfies
D(ak, r/4) ⊂ Ek ⊂ D(ak, r)

Furthermore, {Ek}k∈N is a covering for Bn. To prove this fact, we notice that if z ∈ Bn, then
z ∈ D(ak, r) for some k. If z ∈ D(aj , r/4) for some j 6= k, then z ∈ Ej ; otherwise z ∈ Ek.
We construct the Borel sets as follows: let D1 = E1 and inductively define

Dk+1 = Ek+1 −
k⋃
j=1

Dj , k ≥ 1

so that {Dk}k is a disjoint cover of Bn. As a prove, if z ∈ Bn, then z ∈ Ek for some k. If k = 1, then
z ∈ D1. If k > 1, then either we have z ∈ Di for some 1 ≤ i < k, or we have z ∈ Dk.
For each k ≥ 1 we have

Dk ⊂ Ek ⊂ D(ak, r).

We prove that D(ak, r/4) ⊂ Dk. The case k = 1 follows easily from D1 = E1. For k ≥ 1 we proceed
as follows: fix z ∈ D(ak+1, r/4) ⊂ Ek+1. Then z /∈ Ei for any 1 ≤ i ≤ k, which implies that z /∈ Di for
any 1 ≤ i ≤ k. This shows that

z ∈ Ek+1 −
k⋃
i=1

Di = Dk+1,

and we are done.

We wish to improve the partition of the sets {Dk}k in Lemma 2.5.11. To this end, we partition
the set D1 and use automorphisms to carry the partition to {Dk}k>1. In order to proceed, we pick
η a positive radius such that the quotient η/r is small. Then, fix {zk}k=1,..,J ∈ D(0, r). These points
depend on η, in the sense that {D(zj , η)} cover D(0, r) and that {D(zj , η/4)} are disjoint. After that,
following the same lines as in the former proof, we can enlarge every set D(zj , η/4)∩D(0, r) to a Borel
set Ej so that Ej ⊂ D(zj , η) and

D(0, r) =
J⋃
j=1

Ej

is a disjoint union. The automorphisms are used as follows: for k ≥ 1 and 1 ≤ j ≤ J , we define
akj = ϕak(zj) and

Dkj = Dk ∩ ϕak(Ej)
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where akj ∈ D(ak, r) for all k ≥ 1 and 1 ≤ j ≤ J . By the fact that

Dk =

J⋃
j=1

Dkj

is a disjoint union for every k, we get a disjoint decomposition of Bn

Bn =
∞⋃
k=1

J⋃
j=1

Dkj .

We introduce the following two operators on L1(Bn, dvβ) and H(Bn) respectively.

Definition 2.5.12. Fix a real parameter b > n and define β = b− (n+ 1). We define

Tf(z) =

∫
Bn

(1− |w|2)b−(n+1)

|1− < z,w > |b
f(w)dv(w), f ∈ L1(Bn, dvβ) (2.5.8)

and

Sf(z) =
∞∑
k=1

J∑
j=1

vβ(Dkj)f(akj)

(1− < z, akj >)b
(2.5.9)

where f ∈ H(Bn).

Remark 2.5.13. We remark that the operator T depends on the parameter b. Moreover, the operator
S depends on both the parameter b and the partition {Dkj} and hence, as a consequence, depends on
the separation constant r and η.

The following Lemma plays a fundamental role in the atomic decomposition of Bergman spaces.

Lemma 2.5.14. Let any p > 0, α > −1, there exists a constant C > 0, independent of r and η, such
that

|f(z)− Sf(z)| ≤ Cσ
∞∑
k=1

(1− |ak|2)(pb−n−1−α)/p

|1− < z, ak > |b

[∫
D(ak,2r)

|f(w)|pdvα(w)

]1/p

(2.5.10)

for all r ≤ 1, z ∈ Bn, f ∈ H(Bn) and where

σ = η +
tanh(η)

(tanh(r))1−2n(1−1/p)
(2.5.11)

Proof. Using Lemma 2.1.3 and since β > −1, we can write

f(z) =

∫
Bn

f(w)dvβ(w)

(1− < z,w >)b
, z ∈ Bn.

{Dkj} is a partition of Bn, this fact implies

vβ(Bn) =

∞∑
k=1

J∑
j=1

∫
Dkj

dvβ(w)

and, hence, we can write

f(z)− Sf(z) =
∞∑
k=1

J∑
j=1

∫
Dkj

[
f(w)

(1− < z,w >)b
−

f(akj)

(1− < z, akj >)b

]
dvβ(w).

We apply the triangle inequality to obtain that

|f(z)− Sf(z)| ≤ I(z) +H(z),
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where

I(z) =
∞∑
k=1

J∑
j=1

1

|1− < z, akj > |b

∫
Dkj

|f(w)− f(akj)|dvβ(w),

and

H(z) =
∞∑
k=1

J∑
j=1

1

|1− < z, akj > |b

∫
Dkj

∣∣∣∣ (1− < z,w >)b

(1− < z, akj >)b
− 1

∣∣∣∣ |f(w)|dvβ(w)

For sake of simplicity, we will denote

Ikj =

∫
Dkj

|f(w)− f(akj)| dvβ(w),

and, using the change of variables formula of Proposition 1.4.7, we get

Ikj = (1− |akj |2)n+1+β

∫
Ekj

|f ◦ ϕakj (w)− f ◦ ϕakj (0)|
|1− < w, akj > |2(n+1+β)

dvβ(w)

where

Ekj = ϕakj (Dkj)

⊂ ϕakj ◦ ϕak(D(zj , η))

= ϕakj (D(akj , η))

= D(0, η)

We observe that, for w ∈ Ekj , the quantities (1− |w|2)β and |1− < w, akj > | are both bounded from
below and from above. Furthermore, since akj ∈ D(ak, r), we deduce that the quantities 1 − |akj |2
and 1−|ak|2 are comparable. Hence, there exists a constant C > 0, independent of r and η, such that
Ikj can be estimated as follows

Ikj ≤ C(1− |ak|)n+1+β

∫
Ekj

|f ◦ ϕakj (w)− f ◦ ϕakj (0)|dv(w).

We put r′ = tanh(r), η′ = tanh(η), and R = η′/r′. Moreover, since η is much smaller that r, we can
assume R ≤ 1/2.
For any h ∈ H(Bn), using Lemma 2.1.6, there exists a constant C > 0, independent of r, η, k and j,
such that

|∇h(z)| ≤ C
(∫

Bn
|h(w)|pdv(w)

)1/p

, |z| ≤ R.

In particular, defining h(z) = g(r′z), where

g(z) = f ◦ ϕakj (z), z ∈ Bn.

After the most obvious change of variables, we get

r′|∇g(r′z)| ≤ C

(
1

(r′)2n

∫
D(0,r)

|g(w)|pdv(w)

)1/p

, z ∈ Bn,

we can rewrite the above as

|∇g(z)| ≤ C 1

(r′)1+(2n/p)

(∫
D(0,r)

|g(w)|pdv(w)

)1/p

,∀z ∈ D(0, η). (2.5.12)
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Now, for any w ∈ Ekj ⊂ D(0, η), the following identity holds

g(w)− g(0) =

∫ 1

0

(
n∑
i=1

wi
∂g

∂wi
(tw)

)
dt

and clearly implies that

|g(w)− g(0)| ≤ η′ sup {|∇g(u)| : u ∈ D(0, η)} .

Hence, as a consequence, Ikj can be estimated

Ikj ≤ Cη′(1− |ak|)n+1+βv(Ekj) sup {|∇g(u)| : u ∈ D(0, η)} .

We combine the above with (2.5.12) to obtain

Ikj ≤
Cη′

(r′)1+(2n/p)
(1− |ak|2)n+1+βv(Ekj)

(∫
D(0,r)

|g(w)|pdv(w)

)1/p

.

But, by a change of variables, we notice that∫
D(0,r)

|g(w)|pdv(w) =

∫
D(akj ,r)

|f(w)|p
(1− |akj |2)n+1dv(w)

|1− < w, akj > |2(n+1)
.

Since Lemma 2.5.9 says that the quantities 1 − |akj |2 and |1− < w, akj > | are both comparable to
1− |ak|2, where w ∈ D(akj , r), and, by the fact that D(akj , r) ⊂ D(ak, 2r), we have that∫

D(0,r)
|g(w)|pdv(w) ≤ C

(1− |ak|2)n+1

∫
D(ak,2r)

|f(w)|pdv(w).

More is true, since 1− |ak|2 is comparable to 1− |w|2 for w ∈ D(ak, 2r), we find∫
D(0,r)

|g(w)|pdv(w) ≤ C

(1− |ak|2)n+1+α

∫
D(ak,2r)

|f(w)|pdvα(w).

The above inequality combined with the estimate of the previous paragraph gives

Ikj ≤
Cη′

(r′)1+(2n/p)
(1− |ak|2)(pb−n−1−α)/pv(Ekj)

(∫
D(ak,2r)

|f |pdvα

)1/p

.

Since,
J∑
j=1

v(Ekj) ≤ Jv(D(0, η)) = J(η′)2n

and

v(D(0, r)) =
J∑
j=1

v(Ej)

≥
J∑
j=1

v(D(zj , η/4))

≥ CJ(η′)2n

and the last equality follows from Lemma 1.6.13, we get

J∑
j=1

v(Ekj) ≤ Cv(D(0, r)) = C(r′)2n.
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Combining this with the estimate in the previous paragraph, we obtain

J∑
j=1

Ikj ≤
Cη′

(r′)1−2n+(2n/p)
(1− |ak|2)(pb−n−1−α)/p

(∫
D(ak,2r)

|f |pdvα

)1/p

.

From Lemma 2.5.9, for each k ≥ 1 and 1 ≤ j ≤ J , we have that |1− < z, akj > |b is comparable to
|1− < z, ak > |b. Hence

I(z) ≤ Cη′

(r′)1−2n+(2n/p)

∞∑
k=1

(1− |ak|2)(pb−n−1−α)/p

|1− < z, ak > |b

[∫
D(ak,2r)

|f |pdvα

]1/p

.

In order to estimate H(z), for sake of simplicity, we let

Hkj =

∫
Dkj

∣∣∣∣(1− < z, akj >)b

(1− < z,w >)b
− 1

∣∣∣∣ |f(w)|dvβ(w)

where k ≥ 1 and 1 ≤ j ≤ J . Applying Lemma 2.5.9 and (2.5.2) the following estimate

Hkj ≤ Cη(1− |ak|2)β
∫
Dkj

|f(w)|dv(w).

Afterthat, for every w ∈ Dkj , using Lemma 2.5.9 we find

|f(w)| ≤ C

(
1

(1− |ak|2)n+1+α

∫
D(ak,2r)

|f(w)|pdvα(w)

)1/p

.

Hence, we can estimate Hkj :

Hkj ≤ Cη(1− |ak|2)β−(n+1+α)/pv(Dkj)

(∫
D(ak,2r)

|f(w)|pdvα(w)

)1/p

.

Furthermore, since

J∑
j=1

v(Dkj) = v(Dk)

≤ v(D(ak, r))

≤ C(1− |ak|2)n+1,

this implies that

J∑
j=1

Hkj ≤ Cη(1− |ak|2)(pb−n−1−α)/p

(∫
D(ak,2r)

|f(w)|pdvα(w)

)1/p

.

Finally, applying Lemma 2.5.9, |1− < z, akj > |b is comparable to |1− < z, ak > |b and hence

H(z) ≤ Cη
∞∑
k=1

(1− |ak|2)(pb−n−1−α)/p

|1− < z, ak > |b

(∫
D(ak,2r)

|f(w)|pdvα(w)

)1/p

.

and we are done.

We are finally ready to prove the main result of this section: the atomic decomposition of Apα.
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Theorem 2.5.15. Assume p > 0, α > −1 and b > 0 such that

b > nmax

(
1,

1

p

)
+
α+ 1

p
. (2.5.13)

Then, for every f ∈ Apα there exists a sequence {ak}k ∈ Bn such that

f(z) =
∞∑
k=1

ck
(1− |ak|2)(pb−n−1−α)/p

(1− < z, ak >)b
, z ∈ Bn (2.5.14)

where {ck}k ∈ lp and the series converges in the norm topology of Apα.

Proof. Suppose that f(z) is defined as (2.5.14) and {ak}k is an r-lattice in the Bergman metric whose
existence follows from Theorem 2.5.4. Our goal is to prove that f ∈ Apα. To this end, we introduce
the following sequence of functions

fk(z) =
(1− |ak|2)(pb−n−1−α)/p

(1− < z, ak >)b
.

We notice that, if p > 1, we have

pb > pnmax

(
1,

1

p

)
+ α+ 1

= pn+ α+ 1

> n+ α+ 1.

If p ≤ 1, we have

pb > pnmax

(
1,

1

p

)
+ α+ 1

= n+ α+ 1.

In other words, the assumption on b implies that

pb > n+ 1 + α, ∀p > 0.

Hence, applying Theorem 1.4.4, we obtain

{fk(z)}k ∈ A
p
α, ∀k ∈ N.

We consider two cases: if 0 < p ≤ 1, then

||f ||pp,α ≤
∞∑
k=1

|ck|p||fk||pp,α,

since {ck}k ∈ lp and {fk(z)}k ∈ A
p
α , we get f ∈ Apα.

If p > 1. We denote by Dk the family of sets from Lemma 2.5.11 and with IDk the indicator function.
Then, defining

F (z) :=
∞∑
k=1

|ck|vα(Dk)
−1/pIDk(z),
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we obtain

||F ||pp,α =
∞∑
j=1

∫
Dj

∣∣∣∣∣
∞∑
k=1

|ck|vα(Dk)
−1/pIDk(z)

∣∣∣∣∣
p

dvα(z)

=
∞∑
k=1

|ck|pvα(Dk)

∫
Dk

dvα(z)

=

∞∑
k=1

|ck|p <∞.

Since,
p(b− n) > α+ 1, p > 1

By Theorem 1.4.6, the operator on (2.5.8) is bounded on Lp(Bn, dvα). Afterthat, applying the operator
T to F , we get

TF (z) =

∞∑
k=1

|ck|vα(Dk)
−1/p

∫
Dk

(1− |w|2)b−n−1

|1− < z,w > |b
dv(w).

Then, using Lemmas 1.6.15 and 2.5.1, we find

vα(Dk) ∼ (1− |ak|2)n+1+α

and
1− |w|2 ∼ 1− |ak|2, w ∈ Dk.

Furthermore, from (2.5.7) we obtain that |1− < z,w > | and |1− < z, ak > | are comparable for
w ∈ Dk. As a consequence, there exists a constant δ > 0 such that

TF (z) ≥ δ
∞∑
k=1

|ck|
(1− |ak|2)(pb−n−1−α)/p

|1− < z, ak > |b
, ∀z ∈ Bn.

By the triangle inequality

|f(z)| ≤ 1

δ
TF (z), z ∈ Bn.

Now, since F ∈ Lp(Bn, dvα) and T is a bounded operator on Lp(Bn, dvα), it turns out that f ∈ Apα
and exists a positive constant C, independent of f , such that the following estimate holds∫

Bn
|f(z)|pdvα(z) ≤ C

∑
k

|ck|p.

If {ak}k is replaced by
{
akj
}
j
, the previous proof, with some obvious adjustment, still works. We

prove this fact as follows. If

f(z) =

∞∑
k=1

J∑
j=1

ckj
(1− |akj |2)(pb−n−1−α)/p

(1− < z, akj >)b
,

since
1− |akj |

2 ∼ 1− |ak|2 and |1− < z, akj > | ∼ |1− < z, ak > |2,

we find a constant C > 0 such that

|f(z)| ≤ C
∞∑
k=1

dk
(1− |ak|2)(pb−n−1−α)/p

(1− < z, ak >)b
,

92



where

dk =
J∑
j=1

|ckj |.

Using Holder’s inequality,

|dk|p ≤ Jp/q
J∑
j=1

|ckj |p,

hence
∞∑
k=1

|dk|p ≤ Jp/q
∞∑
k=1

J∑
j=1

|ckj |p <∞,

that is, {dk} ∈ lp. This fact, for what was shown previously, clearly implies that f ∈ Apα.
The first part of the proof is completed: we proved that if f is defined by (2.5.14), then f ∈ Apα, using
a sequence {ak}k whose existence is guaranteed by Theorem 2.5.4 or an associated sequence {akj}j
that was constructed on Lemma 2.5.14. We remark that we have not supposed any further condition
about the separation constants r and η.
In the second part of the proof, our aim is to show that if f ∈ Apα, then f must admit a representation
as in (2.5.14). In order to proceed, let an r−lattice {ak}k in the Bergman metric and the η−lattice
{akj}j with the corresponding finer partition {Dkj} of Bn whose construction was explained on Lemma
2.5.14. From such lemma and the first part of this proof, there exists a constant C1 > 0 such that∫

Bn
|f(z)− Sf(z)|pdvα(z) ≤ C1σ

p
∞∑
k=1

∫
D(ak,2r)

|f(z)|pdvα(z)

where σ is as (2.5.11). Since each point of Bn belongs at most N of D(ak, 2r), we have∫
Bn
|f(z)− Sf(z)|pdvα(z) ≤ C1σ

pN

∫
Bn
|f(z)|pdvα(z).

Denoting with I the identity operator and choosing η small enough so that C1Nσ
p < 1, then the

operator I − S has norm less than 1. Under these conditions, from standard Functional Analysis, we
deduce that the operator S is invertible on Apα and, as a consequence, f ∈ Apα must be written as

f(z) =
∑
k,j

ckj
(1− |akj |2)(pb−n−1−α)/p

(1− < z, akj >)b
,

where

ckj =
vβ(Djk)g(akj)

(1− |akj |2)(pb−n−1−α)/p

and g = S−1f . Applying Lemma 1.6.15, we find

vβ(Djk) ≤ vβ(Dk) ∼ (1− |ak|2)n+1+β = (1− |ak|2)b.

Then, using the equivalence between 1 − |ak|2 and 1 − |ajk|2, there exists a positive constant C2,
independent on f , such that∑

jk

|cjk|p ≤ C2

∑
jk

(1− |ak|2)n+1+α|g(akj)|p.

We use Lemma 2.5.7 to each g(akj), 1−|ak|2 is comparable to 1−|akj |2 and that D(akj , 2r) ⊂ D(ak, 2r).
Hence, we recover a further constant C3 > 0 such that

∑
kj

|ckj |p ≤ C3J

∞∑
k=1

∫
D(ak,2r)

|g(z)|pdvα(z).
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Finally, since every point of Bn belongs at most N of the sets D(ak, 2r), we have∑
kj

|ckj |p ≤ C3JN

∫
Bn
|g(z)|pdvα(z).

The proof of the theorem is completed.

Remark 2.5.16. In other words, if {ck}k ∈ lp and f is written as in (2.5.14), there exists a positive
constant C, independent of f , such that∫

Bn
|f(z)|pdvα(z) ≤ C

∑
k

|ck|p,

and we also get that f ∈ Apα. Conversely, if f ∈ Apα, we can pick a sequence {ck}k so that f
is represented as (2.5.14). Hence, we find a positive constant C, independent of f , such that the
folllowing inequality holds ∑

k

|ck|p ≤ C
∫
Bn
|f(z)|pdvα(z).

We summarise the above two inequalities as follows∫
Bn
|f(z)|pdvα(z) ∼ inf

{∑
k

|ck|p : f satisfies (2.5.14)

}
. (2.5.15)

Essentially, we proved that the spaces Apα and lp are isometrically isomorphic and, hence, as a
consequence we have the following further property of the Bergman space.

Corollary 2.5.17. Let α > −1 and 0 < p < 1. Then, the Bergman space Apα is not locally convex.
Moreover, let q > p, then the inclusion Aqα ⊂ Apα is compact.

The following two corollaries are concerned with two special cases. First, we assume that p > 1
and b = n+ 1 + α. Then, in the next case, we suppose p = 1 and b = 2(n+ 1 + α).

Corollary 2.5.18. For any α > −1 and p > 1 we can find a sequence {ak}k ∈ Bn such that f ∈ Apα
is represented as follows

f(z) =
∑
k

ck
(1− |ak|2)(n+1+α)/q

(1− < z, ak >)n+1+α
(2.5.16)

where 1/p+ 1/q = 1 and {ck}k ∈ lp.

Corollary 2.5.19. For any α > 1, there exists a sequence {ak}k ∈ Bn such that, for every f ∈ A1
α,

the following representation holds

f(z) =
∑
k

ck
(1− |ak|2)(n+1+α)

(1− < z, ak >)2(n+1+α)
, (2.5.17)

where {ck}k ∈ l1.

To conclude this section, in the following corollary we provide a particular atomic decomposition
in terms of elements of the Bergman space itself.

Corollary 2.5.20. Let α > −1, p > 0 and two real positive numbers r and q such that

1

p
=

1

q
+

1

r
.

Then, under the above conditions, every f ∈ Apα can be decomposed as

f(z) =
∑
k

gk(z)hk(z), z ∈ Bn, (2.5.18)
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where gk ∈ Aqα and hk ∈ Arα. In particular, if 0 < p ≤ 1, we can find a positive constant C, independent
on f , such that the following holds ∑

k

||gk||q,α||hk||r,α ≤ C||f ||p,α. (2.5.19)

Proof. If f(z) 6= 0, ∀z ∈ Bn, we just write

f(z) = f(z)p/qf(z)p/r,

so, putting h(z) := f(z)p/r ∈ Arα and g(z) := f(z)p/q ∈ Aqα, the result follows easily. In general, the
atomic decomposition of f is given by

f(z) =
∑
k

fk(z),

where

fk(z) = ck
(1− |ak|2)b−(n+1+α)/p

(1− < z, ak >)b

that, when ck = 0, is either identically zero or, when ck 6= 0, nonvanishing on Bn. Finally, if ck 6= 0,

the factorization is fk = f
p/q
k f

p/r
k .

2.6 Complex Interpolation

In this section, under the condition 1 ≤ p <∞, we prove that the Bergman spaces Apα interpolates
in the same manner that every Lp(Bn, dvα) space does. We remark that the case p = ∞ will be
discussed in the following chapter.

Theorem 2.6.1. Let α > −1 and 1 ≤ p0 < p1 <∞ such that, we have

1

p
=

1− θ
p0

+
θ

p1
,

for some θ ∈ (0, 1). Then
[Ap0α , A

p1
α ]θ = Apα

with equivalent norms.

Proof. Let f ∈ Apα, for any complex number ζ so that 0 ≤ Re ζ ≤ 1, we define the function

hζ(z) =
f(z)

|f(z)|
|f(z)|p

(
1−ζ
p0

+ ζ
p1

)
, z ∈ Bn.

Pick some β > α and let fζ = Pβ(hζ). We notice that fζ is continuous in the closed strip 0 ≤ Re ζ ≤ 1.
As a consequence of Theorem 2.2.9, for 1 ≤ q < ∞, we obtain that Pβ is a bounded projection from
Lq(Bn, dvα) onto Aqα. Moreover, there exists a positive constant C > 0 such that the following holds

||fζ ||p0p0,α ≤ C||hζ ||
p0
p0,α = C||f ||pp,α

when Re ζ = 0. If Re ζ = 1, we have

||fζ ||p1p1,α ≤ C||hζ ||
p1
p1,α = C||f ||pp,α.

This fact proves that, when ||f ||θ ≤ C||f ||p,α, f = fθ ∈ [Ap0α , A
p1
α ]θ.

Now, we suppose that f ∈ [Ap0α , A
p1
α ]θ. Hence, f is holomorphic and

f ∈ [Lp0(Bn, dvα), Lp1(Bn, dvα)]θ = Lp(Bn, dvα).

In other words, f ∈ Apα. This completes the proof.
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Chapter 3

Bloch spaces

In this chapter we study the Bloch space and the little Bloch space. The Bloch space appears as
the image of the bounded functions under the Bergman projection, but it also plays the role of the
dual space of the Bergman spaces for small exponents (0 < p ≤ 1).
The current chapter is organised as follows. Section 1 deals with the introduction of the Bloch space,
we focus our attention on many different characterisations and some basic properties.
Next, in Section 2, we give a complete description of the little Bloch space and summarise some ele-
mentary properties that can be deduced, as a closed subspace of the Bloch space.
In Section 3 we present a classical method, perhaps the most important, to construct not-trivially
function for both the Bloch space and the little Bloch space. So that, we will give some relevant
applications of it.
The objective of Section 4 is to represent the dual space of Apα, for 0 < p ≤ 1, in terms of the Bloch
space and the dual space of the little Bloch space in terms of A1

α. Of course, we will also mention
some straigthforward consequence of this representation.
The Bloch space is prominent among Mobius invariant function spaces. In fact, in Section 5, we prove
that the Bloch space is the largest possible space of holomorphic functions whose seminorm is invariant
under the action of the automorphism group Aut(Bn).
In Section 6, we give a short description of the pointwise multipliers of the Bloch space and the little
Bloch space. In fact, after recalling some notion and necessary tool, we provide a useful characterisa-
tion of both spaces studied in this chapter.
In section 7, we show that the Bloch space admits an atomic decomposition that turns out to be sim-
ilar to that of the Bergman spaces. This means that the results concerning the atomic decomposition
of the Bergman spaces, obtained in chapter 2, will be crucial.
In Section 8 we illustrate the complex interpolation of the Bloch space and, so that, give much more
evidence that such space behaves like the limit of Apα when p→∞.
For this chapter the main references are:
J. Garnett. Bounded Analytic Functions. Academic Press, New York, 1982.
Miroslav Pavlovic. Decompositions of Lp and Hardy Spaces of Polyharmonic Functions. 1996.
G. Ren, C. Tu. Bloch space in the Unit Ball of Cn. 1992.
K. Zhu. Spaces of Holomorphic Functions in the Unit Ball. Springer, 2005.

3.1 The Bloch space B
This section starts with the definition of the Bloch space, denoted by B. We will concentrate

on different aspects such as invariance under the action of the group Aut(Bn), separability and com-
pleteness. After that, we will prove various characterisations of the Bloch space: in terms of the
holomorphic gradient, the radial derivative, as the image of the bounded functions under the Bergman
projection, higher order derivatives and fractional radial derivatives. In this section we will exhibit
the intrinsic connection between the Bloch space and the Bergman metric. Namely, we will prove that
the Bloch space consists exactly of those holomorphic functions that are Lipschitz from Bn with the
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Bergman metric to C with the Euclidean metric. We discuss the relation between the Bloch space
and the Bergman space Apα, for 0 < p ≤ ∞.

Definition 3.1.1 (Bloch space). The Bloch space, denoted by B, is defined as

B :=

{
f ∈ H(Bn) | ||f ||B := sup

z∈Bn
|∇̃f(z)| <∞

}
. (3.1.1)

The elements of B are called Bloch functions. Finally, we easily notice that B is a complex and convex
vector linear space.

In the following proposition, as a consequence of Corollary 2.4.3, we give an important property
of the Bloch space: the invariance under automorphisms of Bn.

Proposition 3.1.2. The Bloch space B is invariant under the action of Aut(Bn). Moreover,

||f ◦ ϕ||B = ||f ||B, (3.1.2)

for all f ∈ B and all ϕ ∈ Aut(Bn).

Proof. Using Corollary 2.4.3, we find

||f ◦ ϕ||B = sup
z∈Bn

|∇̃(f ◦ ϕ)(z)|

= sup
z∈Bn

|(∇̃f) ◦ ϕ(z)|

= sup
w∈Bn

|(∇̃f)(w)|

= ||f ||B,

and we are done.

Remark 3.1.3. Since || · ||B identifies functions that differ by a constant, we immediately notice that
|| · ||B is not a norm but is a semi-norm. Furthermore, B is the largest possible space of holomorphic
functions whose seminorm is invariant under the action of the automorphism group. This property
will be proved in Section 5.

Our first goal is to define a invariant seminorm on the Bloch space in several equivalent ways. In
order to proceed, we need the following definition.

Definition 3.1.4. Let f ∈ H(Bn), we introduce

Qf (z) = sup
w∈Cn\{0}

{
| < ∇f(z), w > |√
< B(z)w,w >

}
, z ∈ Bn. (3.1.3)

Theorem 3.1.5. Let f ∈ H(Bn) and z ∈ Bn. Then, the following quantities are equal:
a) Qf (z).

b) < B(z)−1∇f(z),∇f(z) >1/2 .

c)

(
∆̃(|f |2)(z)

4

)1/2

.

d) |∇̃f(z)|.
e) [(1− |z|2)(|∇f(z)|2 − |Rf(z)|2)]1/2.
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Proof. From (2.4.4), we obtain that the quantities c) and d) are equal. Then, from Lemma 2.4.1 follows
that d) and e) are the same. We wish to prove that a) and b) are equals. Putting w := B(z)−1/2w in
the definition of Qf (z) and using Cauchy-Schwarz, it turns out that

Qf (z) = sup
w∈Cn\{0}

{
| < ∇f(z), B(z)−1/2w > |

|w|

}

= sup
w∈Cn\{0}

{
| < B(z)−1/2∇f(z), w > |

|w|

}

= |B(z)−1/2∇f(z)|

=< B(z)−1∇f(z),∇f(z) >1/2 .

Finally, to prove that b) and e) are equal, using point b) of Proposition 1.6.3 and the previous equality,
we find that

Qf (z) =< B(z)−1∇f(z),∇f(z) >1/2

=
[
< (1− |z|2)(I −A(z))∇f(z),∇f(z) >

]1/2

=
[
(1− |z|2)(|∇f(z)|2− < A(z)∇f(z),∇f(z) >)

]1/2

=

(1− |z|2)

|∇f(z)|2− <
n∑
i

zi
∂f

∂zi
,

n∑
j

zj
∂f

∂zj
>

1/2

=
[
(1− |z|2)(|∇f(z)|2 − |Rf(z)|2)

]1/2
.

This completes the proof.

Theorem 3.1.6. The Bloch space B is complete.

Proof. Assume that {fk}k is a Cauchy sequence on B such that fk(0) = 0. Since, from Lemma 2.4.4,

(1− |z|2)|∇f(z)| ≤ |∇̃f(z)|.

So, as a consequence,

{
∂fk
∂zi

}
k

is uniformly Cauchy on every compact set of Bn. Hence, from Weier-

strass theorem and the completeness of C, there exists f ∈ H(Bn), with f(0) = 0, such that

lim
k→∞

fk(z) = f(z)

and

lim
k→∞

∂fk
∂zi

(z) =
∂f

∂zi
(z), i = 1, ..., n,

uniformly on every compact set in Bn. By the fact that {fk}k is a Cauchy sequence, for any ε > 0,
there exists N ∈ N such that

||fk − fl||B < ε, k > N, l > N.

So that, applying part e) of the Theorem 3.1.5, we get

(1− |z|2)(|∇(fk − fl)(z)|2 − |R(fk − fl)(z)|2) < ε2, k > N, l > N.
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Finally, considering the limit l→∞ and the supremum over z ∈ Bn, we obtain

||f − fk||B < ε,∀k > N,

and we are done.

Actually, more is true.

Theorem 3.1.7. The Bloch space B can be made into a Banach space by introducing the norm

||f || := |f(0)|+ ||f ||B (3.1.4)

Hence, we easily deduce that the Bloch space, endowed with || · ||, is locally convex and locally bounded.

It is inconvenient, by using the definition, to verify that a certain function belongs to the Bloch
space. Hence, we will give several conditions that are equivalent to but more easily verifiable than the
definition. To this end, we need a pair of tools. We start with the following lemma.

Lemma 3.1.8. Assume β ∈ R and g ∈ L1(Bn, dv). If

f(z) =

∫
Bn

g(w)dv(w)

(1− < z,w >)β
, z ∈ Bn, (3.1.5)

then

|∇̃f(z)| ≤
√

2|β|(1− |z|2)1/2

∫
Bn

|g(w)|dv(w)

|1− < z,w > |β+1/2
, ∀z ∈ Bn.

Proof. If β < 0, it is clear that f ∈ H(Bn). If β ≥ 0, we have

f(z) =

∫
Bn

g(w)dv(w)

(1− < z,w >)β

=

∫
Bn
g(w)

∞∑
k=0

Γ(|k|+ β)

k!Γ(β)
zkwkdv(w)

=
∞∑
k=0

Γ(|k|+ β)

k!Γ(β)
zk
∫
Bn
g(w)wkdv(w),

where we used the uniform convergence of
1

(1− < z,w >)β
on compact subsets. Furthermore

|f(z)| ≤
∫
Bn

|g(w)|dv(w)

|1− < z,w > |β

≤ 1

(1− |z|)β

∫
Bn
|g(w)|dv(w) <∞,

in other words

|f(z)| ≤ 1

(1− |z|)β
||g||1.

Now, fix a ∈ Bn, making the change of variables w → ϕa(w) and using (2.5.5), we obtain that (3.1.5)
becomes as follows

f ◦ ϕa(z) =

∫
Bn

(g ◦ ϕa)(w)

(1− < ϕa(z), ϕa(w) >)β
(1− |a|2)n+1

|1− < w, a > |2(n+1)
dv(w)

=
(1− < z, a >)β

(1− |a|2)β

∫
Bn

(g ◦ ϕa)(w)
(1− |a|2)n+1

|1− < w, a > |2(n+1)

(1− < a,w >)β

(1− < z,w >)β
dv(w),
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so

f ◦ ϕa(z) =
(1− < z, a >)β

(1− |a|2)β

∫
Bn

(g ◦ ϕa)(w)
(1− |a|2)n+1

|1− < w, a > |2(n+1)

(1− < a,w >)β

(1− < z,w >)β
dv(w). (3.1.6)

Then, using the product rule and the dominated convergence theorem, we have

∂(f ◦ ϕa)(z)
∂zj

∣∣∣∣
z=0

=
β(−aj)

(1− |a|2)β

∫
Bn

(g ◦ ϕa)(w)
(1− |a|2)n+1

|1− < w, a > |2(n+1)
(1− < a,w >)βdv(w)+

+
β

(1− |a|2)β

∫
Bn

(g ◦ ϕa)(w)
(1− |a|2)n+1

|1− < w, a > |2(n+1)
wj(1− < a,w >)βdv(w)

=
β

(1− |a|2)β

∫
Bn

(g ◦ ϕa)(w)
(1− |a|2)n+1

|1− < w, a > |2(n+1)
(wj − aj)(1− < a,w >)βdv(w),

that clearly implies

∇̃f(a) =
β

(1− |a|2)β

∫
Bn

(g ◦ ϕa)(w)
(1− |a|2)n+1

|1− < w, a > |2(n+1)
(w − a)(1− < a,w >)βdv(w). (3.1.7)

Again, making the change of variables w → ϕa(w), it turns out that (3.1.7) is written as follows

∇̃f(a) = β

∫
Bn

(ϕa(w)− a)g(w)dv(w)

(1− < a,w >)β
, (3.1.8)

so that

|∇̃f(a)| ≤ |β|
∫
Bn

|(ϕa(w)− a)||g(w)|dv(w)

|1− < a,w > |β

= |β|
∫
Bn

√
(1− |a|2)(|w|2 − | < w, a > |2)

|1− < a,w > |
|g(w)|dv(w)

|1− < a,w > |β

≤ |β|
∫
Bn

√
(1− |a|2)(1− | < w, a > |)(1 + | < w, a > |)

|1− < a,w > |
|g(w)|dv(w)

|1− < a,w > |β

≤ |β|
∫
Bn

√
(1− |a|2)2(1− | < w, a > |)

|1− < a,w > |
|g(w)|dv(w)

|1− < a,w > |β

≤ |β|
√

2

∫
Bn

√
(1− |a|2)

|g(w)|dv(w)

|1− < a,w > |β+1/2
,

and we are done.

The second tool is an identity that establishes the connection between the radial derivative and
the integral representation formula of Lemma 2.1.3.

Proposition 3.1.9. Let f ∈ H(Bn). Then, the following holds

Rf(z) = (n+ 1 + α)

∫
Bn

f(w) < z,w >

(1− < z,w >)n+2+α
dvα(w). (3.1.9)
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Proof.

Rf(z) =

n∑
k=1

∂f

∂zk
(z)zk

=

n∑
k=1

∂

∂zk

{∫
Bn

f(w)

(1− < z,w >)n+1+α
dvα(w)

}
zk

=
n∑
k=1

{∫
Bn

∂

∂zk

f(w)

(1− < z,w >)n+1+α
dvα(w)

}
zk

=
n∑
k=1

(n+ 1 + α)

{∫
Bn

f(w)wk
(1− < z,w >)n+2+α

dvα(w)

}
zk

= (n+ 1 + α)

∫
Bn

f(w) < z,w >

(1− < z,w >)n+2+α
dvα(w)

Now, we are ready to prove the following characterisation of the Bloch space in terms of the
holomorphic gradient and the radial derivative. Furthermore, in this theorem, we prove that the
Bloch space can be considered as the limit case of Apα as p→ +∞.

Theorem 3.1.10. Assume α > −1 and let f ∈ H(Bn). Then, the following are equivalent:
a) f ∈ B.
b) (1− |z|2)|∇f(z)| is bounded in Bn.
c) (1− |z|2)|Rf(z)| is bounded in Bn.
d) There exists g ∈ L∞(Bn) such that f = Pαg.

Proof. From Lemma 2.4.4, we easily obtain that a) implies b) and b) implies c) as well.
We prove that c) implies d) as follows. Let the following function be

g(z) =
cα+1

cα
(1− |z|2)

∫
Bn

f(w)dvα(w)

(1− < z,w >)n+2+α
, z ∈ Bn,

where

cα =
Γ(n+ α+ 1)

n!Γ(α+ 1)
.

Then, using the boundedness of (1− |z|2)|Rf(z)|, the integral representation formula of Lemma 2.1.3
and Proposition 3.1.9, it turns out that

g(z) =
cα+1

cα

{
(1− |z|2)

∫
Bn

1− < z,w >

(1− < z,w >)n+2+α
f(w)dvα(w) + (1− |z|2)

∫
Bn

< z,w >

(1− < z,w >)n+2+α
f(w)dvα(w)

}

=
cα+1

cα

{
(1− |z|2)

∫
Bn

f(w)dvα(w)

(1− < z,w >)n+1+α
+ (1− |z|2)

∫
Bn

< z,w >

(1− < z,w >)n+2+α
f(w)dvα(w)

}

=
cα+1

cα

{
(1− |z|2)f(z) + (1− |z|2)

∫
Bn

< z,w >

(1− < z,w >)n+2+α
f(w)dvα(w)

}

=
cα+1

cα

{
(1− |z|2)f(z) +

(1− |z|2)

(n+ 1 + α)
Rf(z)

}
.
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Now, using (1.5.3) and the fact that (1− |z|2)|∇f(z)| is bounded, we find

|f(z)− f(0)| =
∣∣∣∣∫ 1

0

Rf(tz)

t
dt

∣∣∣∣
=

∣∣∣∣∫ 1

0
< ∇f(tz), z > dt

∣∣∣∣
≤
∫ 1

0
|∇f(tz)|1− t

2|z|2

1− t2|z|2
dt

≤ sup
w∈Bn

(
|∇f(w)|(1− |w|2)

) ∫ 1

0

1

1− t2|z|2
dt

= sup
w∈Bn

(
|∇f(w)|(1− |w|2)

){∫ 1

0

1

2

1

1 + t|z|
dt+

∫ 1

0

1

2

1

1− t|z|
dt

}

= sup
w∈Bn

(
|∇f(w)|(1− |w|2)

){ 1

2|z|

∫ 1

0

|z|
1 + t|z|

dt− 1

2|z|

∫ 1

0

−|z|
1− t|z|

dt

}

= sup
w∈Bn

(
|∇f(w)|(1− |w|2)

) 1

2|z|
log

(
1 + |z|
1− |z|

)
.

This fact shows that f grows at most as fast as log

(
1 + |z|
1− |z|

)
and, since from de l’Hopital theorem

we have that

lim
|z|→1−

(1− |z|2) log

(
1 + |z|
1− |z|

)
= 0,

and by the fact that

lim
|z|→0

1

2|z|
log

(
1 + |z|
1− |z|

)
= lim
|z|→0

1

2|z|
log

(
1 +

2|z|
1− |z|

)

= lim
|z|→0

1

2|z|
2|z|

1− |z|

= 1,

it turns out that

||g||∞,α ≤
cα+1

cα
sup
z∈Bn

{
(1− |z|2)|f(z)|+ (1− |z|2)

(n+ 1 + α)
|Rf(z)|

}

≤ cα+1

cα
sup
z∈Bn

{
sup
w∈Bn

(
|∇f(w)|1− |w|2

) 1

2
(1− |z|2) log

(
1 + |z|
1− |z|

)
+

(1− |z|2)

(n+ 1 + α)
|Rf(z)|

}

<∞.
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In other words g ∈ L∞(Bn). After that, applying Fubini’s theorem, we get

Pαg =

∫
Bn

1

(1− < x, z >)n+α+1
dvα(z)

cα+1

cα
(1− |z|2)

∫
Bn

f(w)dvα(w)

(1− < z,w >)n+2+α

=

∫
Bn

1

(1− < x, z >)n+α+1
dvα+1(z)

∫
Bn

f(w)dvα(w)

(1− < z,w >)n+2+α

=

∫
Bn
f(w)dvα(w)

∫
Bn

1

(1− < x, z >)n+α+1(1− < z,w >)n+2+α
dvα+1(z)

=

∫
Bn
f(w)dvα(w)

∞∑
j=0

∞∑
k=0

xjwk
Γ(|k|+ n+ α+ 2)

k!Γ(n+ 2 + α)

Γ(|j|+ n+ α+ 1)

j!Γ(n+ 1 + α)

∫
Bn
zjzkdvα+1(z)

=

∫
Bn
f(w)dvα(w)

∞∑
k=0

xkwk
Γ(|k|+ n+ α+ 2)

k!Γ(n+ 2 + α)

Γ(|k|+ n+ α+ 1)

k!Γ(n+ 1 + α)

k!Γ(n+ α+ 2)

Γ(n+ |k|+ α+ 2)

=

∫
Bn
f(w)dvα(w)

∞∑
k=0

xkwk
Γ(|k|+ n+ α+ 1)

k!Γ(n+ 1 + α)

=

∫
Bn

f(w)dvα(w)

(1− < x,w >)n+1+α

= f,

We prove that Pαg = f and, hence, that c) implies d).
Finally, we wish to prove that d) implies a). We assume that f = Pαg for some α > −1, where
g ∈ L∞(Bn). First of all, from Proposition 2.2.4, we have that f ∈ H(Bn). Then, from Lemma 3.1.8,
we deduce that there exists a positive constant C such that

|∇̃f(z)| ≤ C||g||∞(1− |z|2)1/2

∫
Bn

(1− |w|2)αdv(w)

|1− < z,w > |n+1+α+1/2
, ∀z ∈ Bn.

As a consequence of Theorem 1.4.4, the integral on the right side of the inequality is bounded in Bn.
In a few words, we obtain that |∇̃f(z)| is bounded in Bn. This completes the proof.

Remark 3.1.11. In other words, the equivalence between point a) and d) says that, for α > −1, the
Bergman projection Pα is a bounded linear operator from L∞(Bn) onto B. More is true: recalling
that, from Remark 2.2.2, we had

lim
|z|→1−

Pα(g)(z)(1− |z|2)(n+1+α)/2 = 0, ∀ g ∈ L∞(Bn).

Hence, as a further consequence of the equivalence between point d) and a) in Theorem 3.1.10, we get
the following boundary behaviour property of Bloch functions:

lim
|z|→1−

f(z)(1− |z|2)(n+1+α)/2 = 0, ∀ f ∈ B.

The Bloch space can also be described in terms of higher order derivatives and, more generally, in
terms of fractional radial derivatives. This is the content of the next theorem.

Theorem 3.1.12. Assume that N is a positive integer, t > 0 and f ∈ H(Bn). If α is a real parameter
such that neither n+α nor n+α+t is a negative integer. Then, the following conditions are equivalent:
1) f ∈ B.
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2) The function (1− |z|2)Rα,tf(z) is bounded in Bn.
3) The family of functions

(1− |z|2)N
∂mf

∂zm
(z), |m| = N,

are bounded in Bn.

Proof. We start proving 1) =⇒ 2). Let f ∈ B, by Theorem 3.1.10, there exists a function g ∈ L∞(Bn)
such that

f(z) =

∫
Bn

g(w)dvβ(w)

(1− < z,w >)n+1+β
, (3.1.10)

where β = α+K and K is a positive integer large enough so that β > −1. From Lemma 2.4.13, there
exists a one-variable polynomial h(< z,w >) and a positive constant cα such that

Rα,tf(z) = cα

∫
Bn

h(< z,w >)g(w)dvβ(w)

(1− < z,w >)n+1+β+t
,

then, applying Theorem 1.4.4, it turns out that

(1− |z|2)t|Rα,tf(z)| = cα(1− |z|2)t
∣∣∣∣∫

Bn

h(< z,w >)g(w)dvβ(w)

(1− < z,w >)n+1+β+t

∣∣∣∣
= cα(1− |z|2)t

∣∣∣∣∫
Bn

h(< z,w >)g(w)(1− |w|2)βdv(w)

(1− < z,w >)n+1+β+t

∣∣∣∣
≤ cα||g||∞,α sup

z,w∈Bn
|h(< z,w >)|(1− |z|2)t

∣∣∣∣∫
Bn

(1− |w|2)βdv(w)

(1− < z,w >)n+1+β+t

∣∣∣∣
≤ cα||g||∞,α sup

z,w∈Bn
|h(< z,w >)|(1− |z|2)tC̃

1

(1− |z|2)t

= cαC̃||g||∞,α sup
z,w∈Bn

|h(< z,w >)|

<∞.

In other words, (1− |z|2)t|Rα,tf(z)| is bounded in Bn.
A similar argument proves that 1) =⇒ 3). In fact, from (3.1.10), since the derivative of a polynomial
is a polynomial too, applying Theorem 1.4.4 and denoting by

C1 := sup
z∈Bn

∣∣∣∣ ∂∂zih(< z,w >)

∣∣∣∣ and C2 := (n+ 1 + β + t) sup
z∈Bn

|h(< z,w >)| ,
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we have that

(1− |z|2)

∣∣∣∣ ∂f∂zi (z)
∣∣∣∣ = cα(1− |z|2)

∣∣∣∣∫
Bn
g(w)

∂

∂zi

h(< z,w >)dvβ(w)

(1− < z,w >)n+1+β

∣∣∣∣
= cα(1− |z|2)

∣∣∣∣∣
∫
Bn
g(w)

{
∂
∂zi
h(< z,w >)

(1− < z,w >)n+1+β
− (n+ 1 + β)h(< z,w >)

(1− < z,w >)n+2+β

}
dvβ(w)

∣∣∣∣∣
≤ cα(1− |z|2)||g||∞,α

∣∣∣∣∣
∫
Bn

{
∂
∂zi
h(< z,w >)

(1− < z,w >)n+1+β
− (n+ 1 + β)h(< z,w >)

(1− < z,w >)n+2+β

}
dvβ(w)

∣∣∣∣∣
≤ cα(1− |z|2)||g||∞,α

∣∣∣∣∣
∫
Bn

{
∂
∂zi
h(< z,w >)

(1− < z,w >)n+1+β
− (n+ 1 + β)h(< z,w >)

(1− < z,w >)n+2+β

}
dvβ(w)

∣∣∣∣∣
≤ cα(1− |z|2)||g||∞,α

{
C1

∣∣∣∣∫
Bn

(1− |z|2)βdv(z)

(1− < z,w >)n+1+β

∣∣∣∣+ C2

∣∣∣∣∫
Bn

(1− |z|2)βdv(z)

(1− < z,w >)n+2+β

∣∣∣∣}

≤ cα(1− |z|2)||g||∞,αC1C̃ + C2Ĉcα||g||∞,α,

that is, (1− |z|2)
∂f

∂zi
(z) is bounded in Bn. Proceeding similarly, we prove that

(1− |z|2)N
∂mf

∂zm
(z), |m| = N,

are all bounded in Bn.
We prove that 2) implies 1). Assuming that the function (1 − |z|2)tRα,tf(z) is bounded in Bn, from
Remark 2.4.14, the function

g(z) :=
cβ+t

cβ
(1− |z|2)tRβ,tf(z)

is also bounded in Bn, where β = α+K. Using Fubini theorem and (2.4.12), we get

Pβ(g)(z) =

∫
Bn

cβ+t

cβ
(1− |w|2)t

Rβ,tf(w)

(1− < z,w >)n+1+β
cβ(1− |w|2)βdv(w)

=

∫
Bn

Rβ,tf(w)

(1− < z,w >)n+1+β
dvβ+t(w)

=

∫
Bn

1

(1− < z,w >)n+1+β
dvβ+t(w) lim

r→1−

∫
Bn

f(rx)dvβ(x)

(1− < w, x >)n+1+β+t

= lim
r→1−

∫
Bn
f(rx)dvβ(x)

∫
Bn

dvβ+t(w)

(1− < z,w >)n+1+β(1− < w, x >)n+1+β+t

= lim
r→1−

∫
Bn

f(rx)dvβ(x)

(1− < z, x >)n+1+β

= f(z).

Hence, from Theorem 3.1.10, we deduce that f ∈ B.
Let’s prove that 1) and 3) are equivalent. Suppose that 3) holds. Then, proceeding by successive
integration, we obtain that

(1− |z|2)
∂f

∂zk
(z), 1 ≤ k ≤ n,

are all bounded in Bn. So, f ∈ B. We conclude that 1) and 3) are equivalent.
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In the following proposition, we provide a description of the Bloch space in terms of derivatives
and the automorphism group Aut(Bn).

Proposition 3.1.13. Suppose m = (m1, · · · ,mn) is any given multi-index of nonnegative integers
with |m| > 0 and let f ∈ H(Bn). Then, f ∈ B if and only if

sup
ϕ∈Aut(Bn)

{∣∣∣∣∂m(f ◦ ϕ)

∂zm
(0)

∣∣∣∣} <∞ (3.1.11)

Proof. Assume that f ∈ B and that m = (m1,m2, ...,mj + 1, ...,mn). From (1.2.11), putting a = 0, it
turns out that∣∣∣∣∂mf∂zm

(0)

∣∣∣∣ =

∣∣∣∣∣m1! . . .mn!

(2πi)n

∫
b0P (0,r)

∂f

∂zj
(ξ)

dξ1...dξn
(ξ1)m1 . . . (ξn)mn

∣∣∣∣∣
=

∣∣∣∣∣m1! . . .mn!

(2πi)n

∫
C(0,r1)

· · ·
∫
C(0,rn)

∂f

∂zj
(ξ)

dξ1...dξn
(ξ1)m1 . . . (ξn)mn

∣∣∣∣∣
=

∣∣∣∣∣m1! . . .mn!

(2πi)n

∫
C(0,r1)

· · ·
∫
C(0,rn)

∂f

∂zj
(ξ)

√
1− |ξ|2√
1− |ξ|2

dξ1...dξn
(ξ1)m1 . . . (ξn)mn

∣∣∣∣∣
≤ sup

z∈Bn

{
(1− |z|2)1/2

∣∣∣∣ ∂f∂zj (z)

∣∣∣∣}
{
m1! . . .mn!

(2π)n

∫
C(0,r1)

· · ·
∫
C(0,rn)

1√
1− |ξ|2

d|ξ1| . . . d|ξn|
|ξ1|m1 . . . |ξn|mn

}

=
m1! . . .mn!√

1− r2(r1)m1−1 . . . (rn)mn−1︸ ︷︷ ︸
=:C

sup
z∈Bn

{
(1− |z|2)1/2

∣∣∣∣ ∂f∂zj (z)

∣∣∣∣}

≤ C||f ||B.

Then, we replace f by f ◦ ϕ and the first implication is proved.
Conversely, suppose that (3.1.11) holds. Hence, choosing m = (1, 0, ..., 0) and ϕ = ϕz, we obtain that
there exists a positive constant C such that∣∣∣∣∂(f ◦ ϕz)

∂z1
(0)

∣∣∣∣ ≤ C1,

and, choosing m = (0, ..., 0, 1︸︷︷︸
j−th

, 0, ..., 0), it turns out that

∣∣∣∣∂(f ◦ ϕz)
∂zj

(0)

∣∣∣∣ ≤ Cj , j = 2, ..., n.

This fact implies that

sup
z∈Bn

|∇(f ◦ ϕz)(0)| = sup
z∈Bn

√√√√ n∑
j=1

∣∣∣∣∂(f ◦ ϕz)
∂zj

(0)

∣∣∣∣2

≤ sup
z∈Bn

√√√√ n∑
j=1

C2
j

<∞.
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In other words,
||f ||B <∞.

The Bloch space can also be characterised in terms of the Bergman metric. In fact, the seminorm
|| · ||B is related to the Bergman metric in a very precise way.

Theorem 3.1.14. Let f ∈ H(Bn), then

||f ||B = sup

{
|f(z)− f(w)|

β(z, w)
: z, w ∈ Bn, z 6= w

}
, (3.1.12)

where β is the Bergman metric on Bn.

Proof. Assumed that ||f ||B <∞. Fixed two points z, w ∈ Bn. Let

γ = γ(t), 0 ≤ t ≤ 1,

be a smooth curve from w to z in the Bergman metric. Then, using (3.1.3), it turns out that

|f(z)− f(w)| =

∣∣∣∣∣
∫ 1

0

(
n∑
k=1

γ′k(t)
∂f

∂zk
(γ(t))

)
dt

∣∣∣∣∣
=

∫ 1

0

∣∣∣∣∣
n∑
k=1

γ′k(t)
∂f

∂zk
(γ(t))

∣∣∣∣∣ dt
=

∫ 1

0
Qf (γ(t))

√
< B(γ(t))γ′(t), γ′(t) >dt

= ||f ||Bβ(z, w).

From this estimate, we obtain

sup

{
|f(z)− f(w)|

β(z, w)
: z, w ∈ Bn, z 6= w

}
≤ ||f ||B, ∀f ∈ H(Bn). (3.1.13)

In order to prove the other inequality, we proceed as follows. Supposing that

C := sup

{
|f(z)− f(w)|

β(z, w)
: z, w ∈ Bn, z 6= w

}
<∞.

Hence, putting w = 0 and using (1.6.7) in (3.1.12), we obtain

|f(z)− f(0)| ≤ C

2
log

(
1 + |z|
1− |z|

)
so that

|f(z)− f(0)|
|z|

≤ C

2|z|
log

(
1 + |z|
1− |z|

)
, ∀z ∈ Bn \ {0} .

Let u any unit vector of Cn be. Then, taking the directional derivative of f at 0 in the u−directional
yields ∣∣∣∣∣

n∑
k=1

uk
∂f

∂zk
(0)

∣∣∣∣∣ ≤ C lim
|z|→0+

1

2|z|
log

(
1 + |z|
1− |z|

)
= C.

This proves that Qf (0) ≤ C. Finally, using the invariance of the Bergman metric under the automor-
phism group, we get

C = sup

{
|f ◦ ϕ(z)− f ◦ ϕ(w)|

β(z, w)
: z, w ∈ Bn, z 6= w

}
, ∀ϕ ∈ Aut(Bn).
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That is,
Qf (z) = Qf◦ϕ(0) ≤ C,∀z ∈ Bn.

We conclude that ||f ||B ≤ C and, hence, (3.1.12) holds.

As a consequence, we have that

Corollary 3.1.15. Let f ∈ H(Bn). Then, f ∈ B if and only if there exists a positive constant C such
that

|f(z)− f(w)| ≤ Cβ(z, w)

for all z and w in Bn.

Remark 3.1.16. Theorem 3.1.14 has some immediate consequences. First, assume that f ∈ B and
w = 0. Then, we obtain

|f(z)| ≤ ||f ||B log

(
1 + |z|
1− |z|

)
+ |f(0)|.

This means that point evaluation is a bounded linear functional on the Bloch space, with a norm that
is uniformly bounded on each compact subset of Bn. This fact, together with the maximum principle,
implies that if a sequence of functions converges in the Bloch norm, then it does so locally uniformly.
After that, we also notice, from (3.1.12), that a Bloch function reduces lengths by a fixed factor from
the hyperbolic metric on Bn to the Euclidean metric on C.
Moreover, we’ve proved one of the important properties of Bloch functions: the growth is controlled
by

log

(
1 + |z|
1− |z|

)
.

Finally, we will show later that such growth rate is actually achieved by the following functions in B,

fw(z) = log

(
1+ < z,w >

1− < z,w >

)
, z ∈ Bn,

where w is any point from Sn.

As a further consequence of Theorem 3.1.14, we provide a characterisation of the Bloch space in
terms of the involutive automorphism.

Corollary 3.1.17. Assume that α > −1, p > 0 and f ∈ H(Bn). Then f ∈ B if and only if there
exists a positive constant C such that∫

Bn
|f ◦ ϕa(z)− f(a)|pdvα(z) ≤ C, a ∈ Bn, (3.1.14)

or equivalently, ∫
Bn
|f(z)− f(a)|p (1− |a|2)n+1+α

|1− < z, a > |2(n+1+α)
dvα(z) ≤ C, a ∈ Bn. (3.1.15)

Proof. First of all, from Proposition 1.4.7, we deduce that (3.1.14) and (3.1.15) are equivalent. Then,
assume that f ∈ B. Hence, by Theorem 3.1.14 or equivalently Corollary 3.1.15, there exists a positive
constant C such that

|f(z)− f(w)| ≤ Cβ(z, w)
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for all z, w ∈ Bn. So, after some computations, using the invariance of the Bergman metric (that is
β(ϕa(z), ϕa(w)) = β(z, w)) and the most obvious change of variables, the above inequality implies∫

Bn
|f ◦ ϕa(z)− f(a)|pdvα(z) ≤ Cp

∫
Bn
β(ϕa(z), a)pdvα(z)

= Cp
∫
Bn
β(z, 0)pdvα(z)

≤ Cp(2π)ncα

∫ 1

0

[
log

(
1 + r

1− r

)]p
(1− r2)α2rdr

= Cp(2π)ncα

∫ ∞
log(2)

xpexp(−x(α+ 1))dx

<∞,

for all a ∈ Bn. So that

sup
a∈Bn

∫
Bn
|f ◦ ϕa(z)− f(a)|pdvα(z) <∞,

and this shows the first implication. Regarding the reverse implication, let any g ∈ H(Bn), from
Lemma 2.1.6, we can find a positive constant C > 0 such that

|∇g(0)|p ≤ C
∫
Bn
|g(z)− g(0)|pdvα(z).

After that, we replace g by f ◦ ϕa to obtain

|∇̃f(a)|p ≤ C
∫
Bn
|f ◦ ϕa(z)− f(a)|pdvα(z)

for all a ∈ Bn, and the wished result follows easily.

Not only can the Bloch seminorm be defined using the Bergman metric, the following result shows
that the Bergman metric can also be recovered from the Bloch seminorm.

Theorem 3.1.18. We have

β(z, w) = sup { |f(z)− f(w)| : ||f ||B ≤ 1} (3.1.16)

for all z and w in Bn.

Proof. Since from Theorem 3.1.14 we have

|f(z)− f(w)| ≤ ||f ||Bβ(z, w),

that clearly implies
sup { |f(z)− f(w)| : ||f ||B ≤ 1} ≤ β(z, w),

for all z and w in Bn.
To complete this proof, we show that there exists a function such that the inverse direction of the
above inequality holds. Assume that z 6= 0 and consider the following function in Bn,

h(w) =
1

2
log

(
|z|+ < w, z >

|z|− < w, z >

)
, w ∈ Bn.

We start proving that ||h||B ≤ 1. First of all, we notice that

h(z) =
1

2
log

(
1 + |z|
1− |z|

)
, h(0) = 0,
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and
∂h

∂wk
(w) =

zk|z|
|z|2− < w, z >2

, 1 ≤ k ≤ n.

Then, defining z′ = z/|z|, using Theorem 3.1.5 point e) and the triangle inequality, we obtain

|∇̃h(w)|2 = (1− |w|2)(|∇h(w)|2 − |Rh(w)|2)

= (1− |w|2)
|z|2(|z|2 − | < w, z > |2)

||z|2− < w, z >2 |2

= (1− |w|2)
(1− | < w, z′ > |2)

|1− < w, z′ >2 |2

≤ |1− < w, z′ >2 | |1− < w, z′ >2 |
|1− < w, z′ >2 |2

= 1,

for all w ∈ Bn. Hence,

β(z, 0) =
1

2
log

(
1 + |z|
1− |z|

)
= |h(z)− h(0)|

= sup {|f(z)− f(0)| : ||f ||B ≤ 1} .

Finally, using the invariance under Aut(Bn), the above implies

β(z, w) ≤ sup {|f(z)− f(w)| : ||f ||B ≤ 1}

for all z and w in Bn. We are done.

We wish to give a higher-dimensional version of the Holland-Walsh characterisation of the Bloch
space. For this result, the main reference is Bloch space in the Unit Ball of Cn, written by Guangbin
Ren and Caifeng Tu.
In order to prove this characterisation, we need the following estimate concerning harmonic functions.
We don’t prove this result. But, the interested reader can find all the details on Decompositions of Lp

and Hardy Spaces of Polyharmonic Functions, written by Miroslav Pavlovic (Journal of Mathematical
Analysis and Applications 216, Article nu. AY975675, 1996).

Lemma 3.1.19. Let f ∈ J := {f ∈ C∞(Bn) : ∆f = 0} and 0 < p <∞. Then, there exists a positive
constant C := C(p, n) such that

|f(x)|p ≤ C

rn

∫
B(x,r)

|f(y)|pdvα(y) (3.1.17)

and

|∇f(x)|prp ≤ C

rn

∫
B(x,r)

|f(y)|pdvα(y) (3.1.18)

Moreover, we need the following facts concerning the Bergman metric ball D(a, δ) and the involu-
tive automorphisms. Again, the reference for their proof is Bloch space in the Unit Ball of Cn, Lemma
2.1, by Guangbin Ren and Caifeng Tu.
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Proposition 3.1.20. For any z, w ∈ Bn, with z 6= w, we have that

1− |ϕz(w)|2

|ϕz(w)|2
=

(1− |z|2)(1− |w|2)

|w − z|2
. (3.1.19)

Furthermore, the following holds

B

(
a,
δ(1− |a|2)

2

)
⊂ D(a, δ) (3.1.20)

and, defining the measure dτ(w) := (1− |w|2)−ndw on Bn, we have

τ(D(a, δ)) = τ(B(0, δ)) = n

∫ δ

0
tn−1(1− t2)−ndt. (3.1.21)

We are ready to prove the following theorem.

Theorem 3.1.21. Let f ∈ H(Bn). Then, f ∈ B if and only if

S(f) := sup
z,w∈Bn,z 6=w

(1− |z|2)1/2(1− |w|2)1/2 |f(z)− f(w)|
|z − w|

<∞. (3.1.22)

Furthermore, the seminorms sup
z∈Bn

(1− |z|2)|∇f(z)| and S(f) are equivalent.

Proof. We start assuming f ∈ B. Then, for any z, w ∈ Bn, applying Cauchy-Schwarz, the convexity
of Bn and using Lemma 2.4.4, we have

|f(z)− f(w)| =
∣∣∣∣∫ 1

0

df

dt
(tz + (1− t)w)dt

∣∣∣∣
=

∣∣∣∣∣
n∑
k=1

(zk − wk)
∫ 1

0

∂f

∂zk
(tz + (1− t)w)dt

∣∣∣∣∣
≤

√√√√ n∑
k=1

|zk − wk|2

√√√√ n∑
k=1

(∫ 1

0

∣∣∣∣ ∂f∂zk (tz + (1− t)w)

∣∣∣∣ dt)2

≤ |z − w|
√
n

∫ 1

0
|(∇f)(tz + (1− t)w)|dt

≤ |z − w|
√
n||f ||B

∫ 1

0

dt

1− |tz + (1− t)w|2

≤ |z − w|
√
n||f ||B

∫ 1

0

dt

1− |tz + (1− t)w|

≤ |z − w|
√
n||f ||B

∫ 1

0

dt√
(1− t)(1− |w|)

√
t(1− |z|)

=
|z − w|

√
n||f ||Bπ

(1− |w|)1/2(1− |z|)1/2
,

that implies

(1− |z|2)1/2(1− |w|2)1/2 |f(z)− f(w)|
|z − w|

≤ π
√
n||f ||B. (3.1.23)
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This proves the necessity.
Conversely, assume that f ∈ H(Bn) satisfies (3.1.22). We show that f ∈ B as follows. Fix δ ∈ (0, 1)
and, since f is harmonic, we can apply Lemma 3.1.19, so that there exists a positive constant such
that

(1− |z|2)|∇f(z)| ≤ C
∫
B(z,δ(1−|z|2)/2)

|f(w)|dτ(w),

for every z ∈ Bn. Combining this result with (3.1.20), we have

(1− |z|2)|∇f(z)| ≤ C
∫
D(z,δ)

|f(w)|dτ(w), ∀z ∈ Bn.

Hence, fixing z ∈ Bn, replacing f by f − f(z) and applying (3.1.21), it turns out that

(1− |z|2)|∇f(z)| ≤ C
∫
D(z,δ)

|f(w)− f(z)|dτ(w)

≤ sup
w∈D(z,δ)

|f(w)− f(z)|τ(D(z, δ))

≤ sup
w∈D(z,δ),w 6=z

|f(w)− f(z)|.

But, since for every w ∈ D(z, δ) we have |ϕz(w)| ≤ δ. This fact implies
√

1− δ2

δ
≤
√

1− |ϕz(w)|2
|ϕz(w)|

.

Hence, from (3.1.19), it follows that
√

1− δ2

δ
≤
√

(1− |z|2)
√

(1− |w|2)

|w − z|
, ∀ w ∈ D(z, δ).

From,

(1− |z|2)|∇f(z)| ≤ C sup
w∈D(z,δ),z 6=w

(1− |z|2)1/2(1− |w|2)1/2 |f(z)− f(w)|
|z − w|

, (3.1.24)

we easily obtain that

sup
z∈Bn

(1− |z|2)|∇f(z)| ≤ C sup
z∈Bn

sup
w∈D(z,δ),z 6=w

(1− |z|2)1/2(1− |w|2)1/2 |f(z)− f(w)|
|z − w|

≤ C sup
z,w∈Bn,z 6=w

(1− |z|2)1/2(1− |w|2)1/2 |f(z)− f(w)|
|z − w|

.

This fact implies that f ∈ B. Finally, we notice that the two seminorms of the Bloch space B,
supz∈Bn(1− |z|2)|∇f(z)| and S(f), are equivalent. This completes the proof of Theorem 3.1.21.

Remark 3.1.22. In the former proof, we used that

1− |tz + (1− t)w| ≥
√

(1− t)(1− |w|)
√
t(1− |z|). (3.1.25)

In fact, using the triangle inequality, we have

|tz + (1− t)w| ≤ t|z|+ (1− t)|w|,

so that,

1− |tz + (1− t)w| ≥ 1− t|z| − (1− t)|w|

= (1− t)(1− |w|)︸ ︷︷ ︸
>0

+ t(1− |z|)︸ ︷︷ ︸
>0

.

113



Thus, for any 0 < t < 1 and z, w ∈ Bn, it turns out that

1− |tz + (1− t)w| ≥ (1− t)(1− |w|) and 1− |tz + (1− t)w| ≥ t(1− |z|),

that clearly implies
1− |tz + (1− t)w| ≥

√
(1− t)(1− |w|)

√
t(1− |z|).

So, (3.1.25) is proved.

The next results are related to the relation between the Bloch space and the Bergman spaces Apα,
for 0 < p ≤ ∞. In the following proposition, we start showing that any bounded holomorphic function
on Bn is in the Bloch space.

Proposition 3.1.23. Let α > −1, then A∞α ⊂ B. Moreover, the following inequality holds

||f ||B ≤ ||f ||∞,α, ∀ f ∈ A∞α .

In order to prove this result, we need a generalisation of the Schwarz-Pick Lemma, in several
variables, for holomorphic functions defined on Bn. This is the content of the next proposition.

Proposition 3.1.24. Let f ∈ H(Bn) such that |f(z)| ≤ 1, for all z ∈ Bn. Then

n∑
j=0

(1− |zj |2)

∣∣∣∣ ∂f∂zj (z)

∣∣∣∣ ≤ 1− |f(z)|2, (3.1.26)

for any z = (z1, ..., zn) ∈ Bn.

Proof. We write z = (z1, z2, ..., zj , ..., zn), wj = (z1, z2, ..., zj + hj , ..., zn) ∈ Bn, for some {hj}j ∈ D. So
that taking the limit hj → 0, for j = 1, ..., n, and applying the Schwarz-Pick Lemma to

n∑
j=1

∣∣∣∣∣ [f(z)− f(wj)][1− zj(zj + hj)]

(1− f(z)f(wj))hj

∣∣∣∣∣ ≤ 1,

we obtain

n∑
j=1

(1− |zj |2)

|1− |f(z)|2|

∣∣∣∣ ∂f∂zj (z)

∣∣∣∣ ≤ 1,

and the wished result follows easily.

We are ready to prove Proposition 3.1.23.

Proof. We assume, without loss of generality, that ||f ||∞,α = 1. So, putting z = (z1, 0, ..., 0) ∈ Bn and
considering f as function of z1, we apply the Schwarz-Pick Lemma to∣∣∣∣∣ f(z)− f(0)

1− f(0)f(z)

∣∣∣∣∣ ≤ |z1| ,

we get ∣∣∣∣ ∂f∂z1
(0)

∣∣∣∣ ≤ 1− |f(0)|2

≤ 1.

Similarly, ∣∣∣∣ ∂f∂zj (0)

∣∣∣∣ ≤ 1, j = 1, ..., n.
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Then, put 0 = (0, 0, ..., 0, 0) ∈ Bn in (3.1.26), we easily obtain

|∇f(0)|2 =

n∑
j=0

∣∣∣∣ ∂f∂zj (0)

∣∣∣∣2

≤
n∑
j=0

∣∣∣∣ ∂f∂zj (0)

∣∣∣∣
≤ 1.

So that, replacing f by f ◦ ϕz, it turns out

sup
z∈Bn

|∇̃f(z)| ≤ ||f ||∞,α.

The proof is completed.

Remark 3.1.25. The containment A∞α ⊂ B is proper. In fact, the function f(z) = Log(1− z), where
Log denotes the principal branch of the logarithm, is an example of a function of the Bloch space B
that is not bounded. We prove this fact, in the one-dimensional case, as follows. A simple computation
shows that

||f ||α,∞ =

∣∣∣∣∣
∞∑
n=1

1

n

∣∣∣∣∣
=∞.

Then, using point b) of Theorem 3.1.12, we find

sup
z∈Bn

(1− |z|2)|f ′(z)| ≤ sup
z∈Bn

(1− |z|2)
1

(1− |z|)

= sup
z∈Bn

(1 + |z|)

= 2.

A further consequence of the characterisation of the seminorm || · ||B in terms of the Bergman
metric is that the Bloch space belongs to every Bergman space Apα, for 0 < p <∞. This is proved in
the next corollary.

Corollary 3.1.26. The Bloch space B satisfies

B ⊂ Apα, (3.1.27)

for 0 < p <∞ and α > −1.
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Proof. Using (3.1.12), with w = 0, and after some computations, we find∫
Bn
|f(z)|pcα(1− |z|2)αdv(z) ≤

∫
Bn
|f(z)− f(0)|p(1− |z|2)αcαdv(z) + |f(0)|p

≤ cα
∫
Sn
dσ

∫ 1

0
|f(z)− f(0)|p(1− r2)α2nr2n−1dr + |f(0)|p

≤ cαCn||f ||pB
∫ 1

0

[
log

(
1 + r

1− r

)]p
(1− r2)α2rdr + |f(0)|p

≤ cα2 max {1, 2α}Cn||f ||pB
∫ 1

0

[
log

(
1 + r

1− r

)]p
(1− r)αdr + |f(0)|p

≤ 2cα max {1, 2α}Cn||f ||pB
∫ 1

0

[
log

(
2

1− r

)]p
(1− r)αdr + |f(0)|p

= 2α+2cα max {1, 2α}Cn||f ||pB
∫ ∞
log(2)

xpexp(−x(α+ 1))dx+ |f(0)|p

<∞,

where, in the last step, the change of variables is given by

x = log

(
2

1− r

)
.

Remark 3.1.27. We remark that the containment of (3.1.27) is proper. For example the function

f(z) = (Log(1− z))2

is not a member of the Bloch space, while it is in Apα, for 0 < p <∞. This fact is proved as follows:

sup
z∈Bn

(1− |z|2)|∇f(z)| = 2 sup
z∈Bn

(1− |z|2)
|Log(1− z)||z|
|1− z|

= 2 sup
z∈Bn

(1 + |z|)|Log(1− z)||z|

= 4 sup
z∈Bn

|Log(1− z)|

= +∞.

This shows that f /∈ B. After that,∫
Bn
|Log(1− z)|2p(1− |z|2)αcαdv(z) ≤

∫
Bn

(log(|1 + |z|))2p(1− |z|2)αcαdv(z)

≤ log(2).

We conclude that f ∈ Apα, for 0 < p < +∞.

In the next result we prove a fundamental and curious property of the Bloch space B.
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Proposition 3.1.28. The Bloch space B is not separable.

Proof. Fix w = rexp(it) = r1exp(it1)...rnexp(itn) ∈ C, such that
∑n

j=1 r
2
j = 1, we start considering

the following set of holomorphic functions,

E :=

{
ft(z) =

r(exp(it)

2
log

(
1 +

∑n
j=1 zjrjexp(−itj)

1−
∑n

j=1 zjrjexp(−itj)

)
: t ∈ [0, 2π)n

}
.

Clearly, E is uncountable. Moreover,

∂ft
∂zj

(z) =
rexp(−it) rjexp(−itj)(

1−
(∑n

j=1 zjrjexp(−itj)
)2
)

so that

|∇ft(z)|2 =
1∣∣∣∣1− (∑n

j=1 zjrjexp(−itj)
)2
∣∣∣∣2

and |Rft(z)|2 =
|
∑n

j=1 zjrjexp(−itj)|2∣∣∣∣1− (∑n
j=1 zjrjexp(−itj)

)2
∣∣∣∣2
.

Then, following the same lines as in the proof of Theorem 3.1.21, it turns out that

||ft||B ≤ 1.

This fact shows that ft ∈ B, ∀ t ∈ [0, 2π)n and, in particular,

E ⊂ B.

Now we demonstrate that the elements of E are always at a distance greater than ε , for some ε > 0.
For this goal, let t, s ∈ [0, 2π)n such that t 6= s. Denoting by z = |z|exp(it) ∈ Bn, we have

|∇̃(ft − fs)(z)|2 = (1− |z|2)(|∇(ft − fs)(z)|2 − |R(ft − fs)(z)|2)

= (1− |z|2)


∑n

j=1 r
2
j |exp(−itj)− exp(−isj)|2∣∣∣∣1− (∑n

j=1 zjrjexp(−itj)
)2
∣∣∣∣2
−
|
∑n

j=1 zjrj(exp(−itj)− exp(−isj))|2∣∣∣∣1− (∑n
j=1 zjrjexp(−itj)

)2
∣∣∣∣2



= (1− |z|2)

2− 2
∑n

j=1 r
2
jRe(exp(i(tj − sj)))∣∣∣∣1− |z|2 (∑n

j=1 rj

)2
∣∣∣∣2

−
|z|2|

∑n
j=1 rj(1− exp(i(tj − sj)))|2∣∣∣∣1− |z|2 (∑n

j=1 rj

)2
∣∣∣∣2



to obtain

sup
z∈Bn

|∇̃(ft − fs)(z)|2 = sup
z∈Bn

(1− |z|2)
2− 2

∑n
j=1 r

2
jRe(exp(i(tj − sj)))∣∣∣∣1− |z|2 (∑n

j=1 rj

)2
∣∣∣∣2

≥ sup
z∈Bn

2− 2
n∑
j=1

r2
jRe(exp(i(tj − sj)))


= 2.
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that clearly implies
sup
z∈Bn

|∇̃(ft − fs)(z)|2 ≥ 2.

In particular, the open balls B(ft,
1
2) are disjoint and uncountable in number. Now assume there is

any dense subset of B, say S, then for all ft ∈ E, there exists x ∈ S such that ||x − ft||B < 1
2 which

implies that x ∈ B(ft,
1
2). Hence, if we allow elements of S to these open balls, it follows that as

the set S is uncountable. So, any dense subset in B cannot be countable. In other words, B is not
separable.

Concerning topological properties of the Bloch space, in the following proposition we prove the
lack of strictly convexity.

Proposition 3.1.29. The Bloch space B, equipped with the norm ||f || = |f(0)|+ ||f ||B, is not strictly
convex.

Proof. We prove that
||f + g|| = ||f ||+ ||g||, f 6= 0, g 6= 0,

doesn’t implie f = cg, c > 0. Assume, without loss of generality, that f(0) = 0 and choose
g(z) = λ, λ ∈ C, we obtain

||f + g|| = |λ|+ sup
z∈Bn

(1− |z|2)(|∇f(z)|2 − |R(f)(z)|2).

By the other hand,

||f ||+ ||g|| = |λ|+ sup
z∈Bn

(1− |z|2)(|∇f(z)|2 − |R(f)(z)|2),

and this completes the proof.

We conclude this section with the following remark. We prove that, if f, g ∈ B, then, in general,
it is not true that f ◦ g ∈ B. This fact, for sake of simplicity, is proved in the one-dimensional case.

Remark 3.1.30. Let g(z) = Log(1 − z) and f(z) = z2. Then, as proved in Remark 3.1.25, we have
that

||g||B ≤ 2 and ||f ||B = 2.

That is,
f, g ∈ B.

But, as proved in Remark 3.1.27, we have that

||f ◦ g(z)||B = ||(Log(1− z))2||B

= 4 sup
z∈Bn

|Log(1− z)|

=∞.

That is, f ◦ g /∈ B.

3.2 The Little Bloch Space B0

We proved in the previous section that the Bloch space is not separable. In this section we discuss
a separable subspace of the Bloch space: the little Bloch space. This section is organised as follows.
We start giving its formal definition. Then, we collect some fundamental properties that follow from
the fact that the little Bloch space is a closed subspace of the Bloch space: completeness, boundedness
of point evaluation and boundary behaviour. We show a peculiar property of the little Bloch space:
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density of polynomials. We study the connection with other functional spaces such as A(Bn), the
family of Bergman spaces Apα, for 0 < p ≤ ∞, and, of course, the Bloch space itself. We give the
little Bloch version of many characterisations that have been proved for the Bloch space: in terms of
the holomorphic gradient, radial derivative, image of the Bergman projection of C0(Bn), higher order
derivatives, fractional derivatives, on both C0(Bn) and C(Bn), in terms of the bergman metric and,
conversely, we show that the Bergman metric can be recovered from the Bloch seminorm. Finally, as
a further characterisation, we provide the little Bloch version of Theorem 3.1.21 that was proved by
Guangbin Ren and Caifeng Tu in 1996.

Definition 3.2.1. The little Bloch space, denoted by B0, is defined as

B0 :=

{
f ∈ B | lim

|z|→1−
|∇̃f(z)| = 0

}
(3.2.1)

Moreover, B0 is equipped with the Bloch seminorm || · ||B.

Remark 3.2.2. Since |∇̃f(z)| is continuous in Bn, (3.2.1) implies that

|∇̃f(z)| ∈ C0(Bn).

More is true, as a consequence of point e) in Theorem 3.1.5, we have

Corollary 3.2.3. Suppose f is holomorphic in a neighborhood of Bn. Then

f ∈ B0. (3.2.2)

Proof. Basically, the fact that f is holomorphic in a neighborhood of Bn guarantees that

lim
|z|→1−

(
|∇f(z)|2 − |Rf(z)|2

)
<∞,

so that

lim
|z|→1−

|∇̃f(z)| = lim
|z|→1−

(
(1− |z|2)

∣∣|∇f(z)|2 − |Rf(z)|2
∣∣)1/2

= 0.

Proposition 3.2.4. B0 is a closed subspace of B. Furthermore, the set of polynomials is dense in B0

with respect to the Bloch seminorm.

Proof. Let fn ∈ B0 such that
lim
|z|→1−

|∇̃(fn − f)(z)| = 0,

then, from the completeness of B, we easily deduce that f ∈ B. Then,

lim
|z|→1−

|∇̃f(z)| ≤ lim
|z|→1−

|∇̃(f − fn)(z)|+ lim
|z|→1−

|∇̃fn(z)|

= 0.

In other words, f ∈ B0. After that, let f ∈ B0 and fr(z) := f(rz), where r ∈ [0, 1), the dilation
function of f . Hence, we easily obtain f, fr ∈ B and, clearly, (f − fr)(z) ∈ B. So, using point e) of
Theorem 3.1.5 (or equivalently Lemma 2.4.1), it turns out that

lim
r→1−

||f − fr||B = lim
r→1−

sup
z∈Bn

(
(1− |z|2)

(
|∇(f − fr)(z)|2 − |R(f − fr)|2

))1/2
= sup

z∈Bn
lim
r→1−

(
(1− |z|2)

(
|∇(f − fr)(z)|2 − |R(f − fr)|2

))1/2
= 0.
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Now, in Proposition 2.1.8 we proved that each fr can be uniformly approximated by polynomials
and using the fact that the sup-norm in Bn dominates the Bloch seminorm, we get a sequence of
polynomials fNr , choosing N large enough, such that

lim
r→1−

||f − fNr ||B ≤ lim
r→1−

||f − fr||B + lim
r→1−

||fr − fNr ||B

≤
(

lim
r→1−

||f − fr||α,∞ + lim
r→1−

||fr − fNr ||α,∞
)

< ε.

By the arbytrariness of ε, the desired result follows.

Remark 3.2.5. In other words, the little Bloch space is the closure of the polynomials with respect to
the Bloch seminorm. Hence, since B0 is a closed subspace of B, B0, endowed with || · ||B, is a complete
space. So, the little Bloch space is invariant under the action of the group of automorphisms of Bn.
Moreover, the little Bloch space, endowed with the norm || · ||, inherits, from the Bloch space, the
following properties: local convexity and local boundedness.
However, we remark that, in spite of the polynomials density, there exist functions f in B0 such that
f cannot be approximated by their Taylor polynomials in the seminorm topology of B. This fact will
be proved when we talk about duality. That is, Section 3.4.

The following result is the Little Bloch version of Theorem 3.1.10: we provide a characterisation
of the Little Bloch space in terms of the holomorphic gradient, the radial derivative and as the image
of the space C0(Bn) under the Bergman projection.

Theorem 3.2.6. Assume that α > −1 and f ∈ H(Bn). Then, the following conditions hold
a) f ∈ B0.
b) (1− |z|2)|∇f(z)| belongs to C0(Bn).
c) (1− |z|2)|Rf(z)| is bounded in C0(Bn).
d) There exists g ∈ C0(Bn) such that f = Pαg.

Proof. Again, from Lemma 2.4.4, we easily obtain that a) implies b) and b) implies c) as well. To
prove that c) implies d), following the same lines as in the proof of Theorem 3.1.10, we consider the
function

g(z) =
cα+1

cα

[
(1− |z|2)f(z) +

(1− |z|2)Rf(z)

n+ 1 + α

]
or equivalently

g(z) =
cα+1

cα
(1− |z|2)

∫
Bn

f(w)dvα(w)

(1− < z,w >)n+2+α
, z ∈ Bn,

where f ∈ B and, as proved, f = Pαg. Then, since every function of B grows at most logarithmically
near Sn, we have that

lim
|z|→1−

|g(z)| ≤ cα+1

cα

[
lim
|z|→1−

(1− |z|2)|f(z)|+ lim
|z|→1−

(1− |z|2)|Rf(z)|
n+ 1 + α

]

≤ cα+1

cα

[
lim
|z|→1−

(1− |z|2)||f ||B log

(
1 + |z|
1− |z|

)
+ lim
|z|→1−

|f(0)|(1− |z|2)

]

= 0.

That is, g ∈ C0(Bn).
Finally, we wish to prove that d) implies a). If d) holds, there exists g ∈ C0(Bn) ⊂ C(Bn). Hence,
by the Stone-Weierstrass approximation theorem, we can approximate g uniformly on Bn by a finite
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linear combination of functions of the form h(z) = zmzm
′
. We compute the Bergman projection of

h(z) as follows. If m > m′, we have

Pαh(z) =

∫
Bn

wmwm
′
dvα(w)

(1− < z,w >)n+1+α

=
∞∑
k=0

Γ(|k|+ n+ α+ 1)

k!Γ(n+ 1 + α)
zk
∫
Bn
wmwm

′+kdvα(w)

= zm−m
′ Γ(|m−m′|+ n+ α+ 1)

(m−m′)!Γ(n+ 1 + α)

m!Γ(n+ α+ 1)

Γ(n+ |m|+ α+ 1)

=
m−m′ + 1

m+ 1
zm−m

′
.

Otherwise, if m > m′, it turns out
Pαh(z) = 0.

Hence, Pαh is a holomorphic polynomial. So, we get

Pαh ∈ B0,

and, by the fact that Pα maps L∞(Bn) boundedly into the Bloch space and the little Bloch space is
closed in B, we obtain

f = Pαg ∈ B0.

Remark 3.2.7. A straightforward consequence of the Proposition 3.2.4 and Remark 3.1.11 is that

lim
|z|→1−

f(z)(1− |z|2)(n+1+α)/2 = 0, ∀f ∈ B0. (3.2.3)

In the study of the little Bloch space, the space C0(Bn) can be replaced by the space C(Bn). This
is proved in the following theorem.

Theorem 3.2.8. Assume that α > −1 and f ∈ H(Bn). Then, the following conditions hold
a) f ∈ B0.
b) |∇̃f(z)| belongs to C(Bn).
c) (1− |z|2)|∇f(z)| belongs to C(Bn).
d) (1− |z|2)|Rf(z)| is bounded in C(Bn).
e) There exists g ∈ C(Bn)) such that f = Pαg.

Proof. It’s clear that a) implies b). From Lemma 2.4.4, we easily obtain that b) implies c) and c)
implies d). Following the same construction used in the proof of Theorem 3.2.6 and Theorem 3.1.10,
we obtain that d) implies e). Finally, to prove that e) implies a), we follow the same lines as in the
proof of Theorem 3.2.6. This completes our proof.

Remark 3.2.9. We recall that
A(Bn) := C

(
Bn
)
∩H(Bn),

and, hence, the previous theorem implies that the following inclusion holds

A(Bn) ⊂ B0.
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Remark 3.2.10. The containment B0 ⊂ B is proper. To prove this fact, we show that, for every
point w ∈ Sn, the function f(z) = log(1− < z,w >) belongs to the Bloch space, but not to the little
Bloch space. Since

∂f

∂zj
(z) =

−wj
(1− < z,w >)

,

it turns out that

[(1− |z|2)(|∇f(z)|2 − |Rf(z)|2)]1/2 =

[
(1− |z|2)

(
1

|1− < z,w > |2
− | < z,w > |2

|1− < z,w > |2

)]1/2

=

[
(1− |z|2)

(
1− | < z,w > |2

|1− < z,w > |2

)]1/2

≤
[
(1− |z|2)

(
1 + | < z,w > |
1− | < z,w > |

)]1/2

.

That implies,
sup
z∈Bn

[(1− |z|2)(|∇f(z)|2 − |Rf(z)|2)]1/2 ≤ 2.

That is, f ∈ B.
By the other hand, choosing z and w such that they are linear dipendent, namely z = rw for some
r ∈ (0, 1). We obtain

lim
|z|→1−

[(1− |z|2)(|∇f(z)|2 − |Rf(z)|2)]1/2 = lim
|z|→1−

[
(1− |z|2)

(
1

|1− < z,w > |2
− | < z,w > |2

|1− < z,w > |2

)]1/2

= lim
|z|→1−

[
(1− |z|2)

(
1− | < z,w > |2

|1− < z,w > |2

)]1/2

= lim
r→1−

[
(1− r2)

(
1− r2

(1− r)2

)]1/2

= lim
r→1−

(1 + r)

= 2.

This means that f /∈ B0.
We conclude this remark observing that the above process has another interesting consequence. In
fact, we prove that if f, g ∈ B0, then it doesn’t implie that f ◦ g ∈ B0. For sake of simplicity, we prove
this fact in the bidemensional case. Fix w ∈ Sn and define the following two functions

f(z) = log(z + 2) and g(z) = −1− < z,w > .

Hence,

lim
|z|→1−

(1− |z|2)(|∇f(z)|2 − |Rf(z)|2) = lim
|z|→1−

(1− |z|2)

(
|z|2

|z + 2|2
− 2|z1z2|
|z + 2|2

)

≤ lim
|z|→1−

(1− |z|2)

(
1

(2− |z|)2

)

= 0.
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Similarly,

lim
|z|→1−

(1− |z|2)(|∇g(z)|2 − |Rg(z)|2) = lim
|z|→1−

(1− |z|2)
(
|w|2 − | < z,w > |2

)
≤ lim
|z|→1−

(1− |z|2)2|w|2

= 0.

That is f, g ∈ B0. But, the composition is

(f ◦ g)(z) = log(1− < z,w >) /∈ B0.

In the following theorem, we provide a characterisation of the Bloch space in terms of higher order
derivatives and fractional derivatives. In some sense, this is the analog version of Theorem 3.1.12 for
the space B0.

Theorem 3.2.11. Assume that N is a positive integer, t > 0 and f ∈ H(Bn). If α is a real parameter
such that neither n+α nor n+α+t is a negative integer. Then, the following conditions are equivalent:
1) f ∈ B0.
2) The function (1− |z|2)Rα,tf(z) is in C0(Bn).
3) The function (1− |z|2)Rα,tf(z) is in C(Bn).
4) The family of functions

(1− |z|2)N
∂mf

∂zm
(z) ∈ C0(Bn),

for every multi-index m such that |m| = N .
5) The family of functions

(1− |z|2)N
∂mf

∂zm
(z) ∈ C(Bn),

for every multi-index m such that |m| = N .

Proof. Essentially, this proof follows the same lines as in the proof of Theorem 3.1.12.

The next result is the little Bloch version of Theorem 3.1.21. The main reference is Bloch space
in the Unit Ball of Cn, written by Guangbin Ren and Caifeng Tu.

Theorem 3.2.12. Let f ∈ H(Bn). Then, f ∈ B0 if and only if

lim
|z|→1−

sup
w∈Bn,z 6=w

(1− |z|2)1/2(1− |w|2)1/2 |f(z)− f(w)|
|z − w|

= 0. (3.2.4)

Proof. We start assuming that f ∈ B0. Let fr(z) := f(rz), r ∈ (0, 1). We apply (3.1.23) to obtain the
following first estimate,

(1− |z|2)1/2(1− |w|2)1/2 |(f − fr)(z)− (f − fr)(w)|
|z − w|

≤ C||f − fr||B.

The second estimate is

(1− |z|2)1/2(1− |w|2)1/2 |fr(z)− fr(w)|
|z − w|

=
r(1− |z|2)1/2(1− |w|2)1/2

(1− |rz|2)1/2(1− |rw|2)1/2
(1− |rz|2)1/2(1− |rw|2)1/2 |f(rz)− f(rw)|

|rz − rw|︸ ︷︷ ︸
≤C||f ||B

≤ C r(1− |z|
2)1/2(1− |w|2)1/2

(1− r2)1/2(1− r2)1/2
||f ||B

= C
r(1− |z|2)1/2

(1− r2)
||f ||B
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Hence, by the triangle inequality and using the above estimates, we thus find

lim
|z|→1−

(1− |z|2)1/2(1− |w|2)1/2 |f(z)− f(w)|
|z − w|

≤ lim
|z|→1−

C
r(1− |z|2)1/2

(1− r2)
||f ||B + C||f − fr||B

≤ Cε.

By the arbitrariness of ε, the result follows easily.
Conversely, suppose f ∈ H(Bn) such that (3.2.4) holds. To prove that f ∈ B0, we proceed as follows.
(3.2.4) implies that for any ε > 0, there exists δ ∈ (0, 1) such that

sup
w∈Bn,z 6=w

(1− |z|2)1/2(1− |w|2)1/2 |f(z)− f(w)|
|z − w|

< ε,

whenever |z| > δ. In particular,

sup
w∈D(z,δ),z 6=w

(1− |z|2)1/2(1− |w|2)1/2 |f(z)− f(w)|
|z − w|

< ε,

whenever |z| > δ. Combining the above with (3.1.24), we find

(1− |z|2)|∇f(z)| < Cε

for any |z| > δ. In other words,
lim
|z|→1−

(1− |z|2)|∇f(z)| = 0.

This completes the proof.

Remark 3.2.13. It is clear that the pointwise estimate of Remark 3.1.16 holds for function of the
little Bloch space too. That is

|f(z)| ≤ ||f ||B log

(
1 + |z|
1− |z|

)
+ |f(0)|,

where f ∈ B0.

The next corollary is a significant consequence of the density of polynomials on B0 and the previous
remark.

Corollary 3.2.14. Let f ∈ B0. Then, the following limit holds

lim
|z|→1−

f(z)

log
1

1− |z|2
= 0. (3.2.5)

Proof. Let fN (z) =
N∑
k=0

akz
k a holomorphic polynomial be, we obtain that

lim
|z|→1−

|fN (z)|

log
1

1− |z|2
≤ lim
|z|→1−

∑N
k=0 |ak|

log
1

1− |z|2

= 0.
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That is, (3.2.4) holds for holomorphic polynomials. Then, from Proposition 3.2.4, we consider a
sequence of polynomials {fN (z)}N∈N that converges, with respect to the Bloch seminorm, to f so that

lim
|z|→1−

|f(z)|

log
1

1− |z|2
≤ lim
|z|→1−

|f(z)− fN (z)|

log
1

1− |z|2
+ lim
|z|→1−

|fN (z)|

log
1

1− |z|2

≤ lim
|z|→1−

||f − fN ||B log

(
1 + |z|
1− |z|

)
log

1

1− |z|2
+ lim
|z|→1−

∑N
k=0 |ak|

log
1

1− |z|2

< ε,

choosing N large enough. By the arbitrariness of ε, the desired result follows easily.

The following theorem is the little Bloch version of Theorem 3.1.18. That is, in the little Bloch
space, we show that the Bergman metric can also be recovered from the Bloch seminorm.

Theorem 3.2.15. We have

β(z, w) = sup { |f(z)− f(w)| : ||f ||B ≤ 1, f ∈ B0} (3.2.6)

for all z and w in Bn.

Proof. Essentially, this proof is the same as that of Theorem 3.1.18. The only difference is that we
use the family of functions

hr(z) =
1

2
log

(
|w|+ r < z,w >

|w| − r < z,w >

)
, z ∈ Bn,

where w ∈ Bn \ {0} is fixed and r ∈ (0, 1), instead of

h(z) =
1

2
log

(
|w|+ < z,w >

|w|− < z,w >

)
.

Since we notice that

lim
|z|→1−

|∇̃hr(z)|2 = lim
|z|→1−

(1− |z|2)
[
r2|∇h(rz)|2 − |Rh(rz)|2

]︸ ︷︷ ︸
<+∞, r∈(0,1)

= 0,

so that we obtain
hr ∈ B0.

Moreover,

|∇̃hr(z)|2 = (1− |z|2)
[
r2|∇h(rz)|2 − |Rh(rz)|2

]︸ ︷︷ ︸
<+∞, r∈(0,1)

≤ (1− |z|2)
[
|∇h(rz)|2 − |Rh(rz)|2

]
= |∇̃h(rz)|2.
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Hence, from Theorem 3.1.18, we get

||hr||B ≤ ||h||B

≤ 1

and
|hr(z)− hr(0)| ≤ sup {|f(z)− f(0)| : f ∈ B0, ||f ||B ≤ 1} .

Letting r → 1−, it turns out

β(z, 0) ≤ sup {|f(z)− f(0)| : f ∈ B0, ||f ||B ≤ 1} .

Finally, the reversed inequality follows from Theorem 3.1.18 and we obtain the desired result.

In terms of characterisations, we give the analog version of Corollary 3.1.17 for the little Bloch
space.

Corollary 3.2.16. Assume that α > −1, p > 0 and f ∈ H(Bn). Then f ∈ B0 if and only if

lim
|a|→1−

∫
Bn
|f ◦ ϕa(z)− f(a)|pdvα(z) = 0 (3.2.7)

or equivalently,

lim
|a|→1−

∫
Bn
|f(z)− f(a)|p (1− |a|2)n+1+α

|1− < z, a > |2(n+1+α)
dvα(z) = 0. (3.2.8)

Proof. From Proposition 1.4.7, we know that (3.2.7) and (3.2.8) are equivalent. To prove that if
f ∈ B0, then (3.2.7) holds, we follow the same approach used in the proof of Corollary 3.1.17 to obtain∫

Bn
|f(z)− f(a)|p (1− |a|2)n+1+α

|1− < z, a > |2(n+1+α)
dvα(z) <∞,∀a ∈ Bn,

that means

|f(z)− f(a)|p (1− |a|2)n+1+α

|1− < z, a > |2(n+1+α)
∈ L1(Bn, dvα) ∀a ∈ Bn.

So that, applying the dominated convergence theorem, we easily find the wished result.
Conversely, assume that (3.2.7) holds, following the same lines as in proof of Corollary 3.1.17, it turns
out that

|∇̃f(a)| ≤
∫
Bn
|f(z)− f(a)|p (1− |a|2)n+1+α

|1− < z, a > |2(n+1+α)
dvα(z),∀a ∈ Bn.

and taking the limit |a| → 1−, to both sides, we complete the proof.

As a consequence of Proposition 3.1.28, since B0 ⊂ B is a closed subspace, we have the following

Corollary 3.2.17. The little Bloch space B0 is not strictly convex.

Proof. We just consider the same counter example of Proposition 3.1.28.

In the previous section we proved that B ⊂ Apα, for 0 < p <∞. Hence, since B0 ⊂ B, we have the
following trivial corollary.

Corollary 3.2.18. Let, α > −1. Then, the following containment holds

B0 ⊂ Apα, (3.2.9)

for 0 < p <∞.

A fundamental question about B0 is whether there is a connection between B0 and A∞α . It turns out
that neither B0 is contained in A∞α nor is A∞α contained in B0. We start with the following example.

126



Example 3.2.19. The function

f(z) := exp

(
z + 1

1− z

)
is in A∞α but not in B0.
For sake of simplicity, we consider the one-dimensional case. To prove that f ∈ A∞α , we just observe
that

|f(z)| ≤ |f(z)|Sn |

=

∣∣∣∣exp

(
z + 1

1− z
1− z
1− z

)∣∣∣∣
=

∣∣∣∣exp

(
2iIm(z)

2− 2Re(z)

)∣∣∣∣
= 1.

That is, ||f ||α,∞ ≤ 1 and, hence, f ∈ A∞α .
Then, in order to prove that

lim
|z|→1−

f ′(z)(1− |z|2) 6= 0,

we just consider tha above limit along the real line R. It turns out that

lim
r∈R, r→1−

(1− r2)|f ′(r)| = lim
r∈R, r→1−

(1− r2)
2

(1− r)2
exp

(
r + 1

1− r

)

= 2 lim
r∈R, r→1−

1 + r

1− r
exp

(
r + 1

1− r

)
= +∞.

To show an unbounded function of B0, first it is necessary to introduce some notions. This will be
discussed in the next section.

3.3 Construction of non-trivial functions in B and B0.

Goal of this part is to describe a method that is often used to construct non-trivial functions in
the Bloch space, or the little Bloch space, of Bn. A crucial consequence will be the construction of
unbounded functions that belong to the little Bloch space.

First we observe that if m is any integer such that 1 ≤ m ≤ n, and if f is a function in the Bloch
space, or the little Bloch space, on Bn. Then, the function

ϕ(z1, ..., zm) := f(z1, ..., zm, ..., zn)

belongs to the Bloch, or the little Bloch space, of Bm. This property follows from condition b), or c),
in Theorems 3.1.10 and 3.2.6 respectively. In particular, functions in the Bloch space, or little Bloch
space, of the unit disk D can be lifted to functions in the Bloch, or little Bloch space, of Bn. Hence,
we explain this contruction in the one dimensional case and, so that, will easily deduce the extension
to several variables.
In order to proceed, we need to recall the notion of lacunary series.
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Definition 3.3.1 (Lacunary series). Consider an increasing sequence of positive integers {λn}n∈N.
Denote by {λ′n}n∈N the increasing sequence consisting of the positive integers not contained in {λn}n∈N.
Both sequences are assumed to be infinite. The zero coefficients in the series∑

n

aλnx
λn =

∑
m

cmx
m, (3.3.1)

where

cm =

{
aλn , when m = λn,

0, when m = λ′n,
(3.3.2)

are called lacunae. A series of the form (3.3.1) is called a lacunary series and the sequence {λn}n∈N is
called a gap sequence.

Remark 3.3.2. First of all, we notice that a lacunary series is an holomorphic function that cannot
be analytically continued anywhere outside the radius of convergence within which it is defined. More
is true, the monotonically increasing sequence of positive natural numbers {λn}n specifies the powers
of z which are in the power series for f(z).

Let’s take a look to a simple example.

Example 3.3.3. Consider the following lacunary function,

f(z) =
∞∑
n=0

z2n .

Comparing f with the geometric series, we prove that f is absolutely convergent on D and uniformly
convergent on every compact subset of D and, hence, f ∈ H(D). However, f has a singularity at
every point on S, and cannot be analytically continued outside of D. In fact, it is clear that f has a
singularity at z = 1. But since,

f(z2) = f(z)− z, f(z4) = f(z2)− z2, , f(z8) = f(z4)− z4 ... ,

we deduce that f has a singularity at a point z when z2 = 1, and also when z4 = 1. So, proceeding
by induction, f must have a singularity at each of the 2n-th roots of unity for all natural numbers n.
Such set is dense on S, and, by continuous extension, every point on S must be a singularity of f .

A further tool that we need is given by the following identity.

Proposition 3.3.4. Let f ∈ H(D), assume that the Taylor series of f is

f(z) =
∞∑
k=0

akz
k, ∀z ∈ D.

Then, we have that

ak+1 = (k + 2)

∫
D

(1− |z|2)f ′(z)zkdA(z) (3.3.3)

Proof. To prove this result, we can use two different approachs. We show both of them. The first one
is a direct computation and proceeds as follows. First of all, from the Taylor expansion, we have

f ′(z) =
∞∑
k=1

kakz
k−1

=

∞∑
k=0

(k + 1)ak+1z
k.
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So that, using the uniform convergence on compact subsets of f and Corollary 1.4.8, it turns out that

(k + 2)

∫
D

(1− |z|2)f ′(z)zkdA(z) =
(k + 2)

2

∞∑
j=0

(j + 1)aj+1

∫
D

2(1− |z|2)zjzkdA(z)

= ak+1
(k + 2)(k + 1)

2

k!Γ(3)

Γ(k + 3)

= ak+1
(k + 2)(k + 1)

2

k!2!

(k + 2)!

= ak+1.

The second approach follows from the Cauchy integral formula. In fact, using Corollary 1.2.21 (actually
equation (1.2.11)) where we replace f by its derivative f ′, we have

ak+1(k + 1) =
1

k!

dk

dkz
f ′(z)

∣∣∣∣
z=0

=
1

2πi

∫
C(0,r)

f ′(ξ)

ξk+1
dξ

=
1

2π

∫ 2π

0

f ′(rexp(iθ))

rkexp(ikθ)
dθ.

After that, multiplying to both sides by 2r2k+1(1 − r2)dr and integrating in polar coordinates, we
obtain

(k + 1)
k!Γ(2)

Γ(k + 1 + 2)
ak+1 =

1

2π

∫ 2π

0

f ′(rexp(iθ))

rkexp(ikθ)
dθ

∫ 1

0
2r(1− r2)dr ⇐⇒

(k + 1)
k!

(k + 2)!
ak+1 =

1

2π

∫ 2π

0
f ′(rexp(iθ))rkexp(−ikθ)dθ

∫ 1

0
2r(1− r2)dr ⇐⇒

(k + 1)k!

(k + 2)(k + 1)k!
ak+1 =

∫
D

(1− |z|2)f ′(z)zkdA(z) ⇐⇒

ak+1 = (k + 2)

∫
D

(1− |z|2)f ′(z)zkdA(z).

This completes the proof.

We are ready to prove the following result concerning a classical way of constructing non-trivial
Bloch functions in the unit disk D using lacunary series.

Theorem 3.3.5. Assume {nk}k is a series a positive integers such that

nk+1 ≥ λnk, ∀k ≥ 1, (3.3.4)

where λ is a constant greater than 1. Let f ∈ H(D) whose Taylor series is

f(z) =

∞∑
k=1

akz
nk , z ∈ D. (3.3.5)

Then,
f ∈ B ⇐⇒ {ak}k is bounded.

Furthermore,
f ∈ B0 ⇐⇒ lim

k→∞
ak = 0.
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Proof. Suppose f ∈ B. Using (3.3.3), we find

|ak+1| = (k + 2)

∣∣∣∣∫
D

(1− |z|2)f ′(z)zkdA(z)

∣∣∣∣
≤ (k + 2)||f ||B

∣∣∣∣∫
D
zkdA(z)

∣∣∣∣
= (k + 2)||f ||B

∫ 2π

0
dθ

∫ 1

0
rk+1dr

= 2π||f ||B.

In other words,
|ak+1| ≤ 2π||f ||B, ∀k ≥ 0,

that clearly means that the sequence {ak}k is bounded.
Conversely, assume that {ak}k is bounded. So, there exists a positive (finite) constant M that satisfies

|ak| ≤M, ∀ k ≥ 1,

and nk as in (3.3.4). Then, we choose C =
λ

λ− 1
so that 1 < C <∞ and

C(nk+1 − nk) =
λ

λ− 1
(nk+1 − nk)

=
λnk+1

λ− 1
− λnk
λ− 1

≥ λnk+1

λ− 1
− nk+1

λ− 1

= nk+1.

That is,
nk+1 ≤ C(nk+1 − nk).

So that,

nk+1|z|nk+1−1 ≤ C(nk+1 − nk)|z|nk+1−1

≤ C(|z|nk + · · ·+ |z|nk+1−1),

for all k ≥ 1. In particular,
n1|z|n1−1 ≤ C(1 + |z|+ · · · |z|n1−1).

Thus,

|f ′(z)| ≤M
∞∑
k=1

nk|z|nk−1

≤MC

∞∑
l=0

|z|l

=
MC

1− |z|
,
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for all z ∈ D. Hence, f ∈ B.
If f ∈ B0, for every ε > 0 there exists 0 < δ < 1 such that

|f ′(z)|(1− |z|2) < ε, 1− δ < |z| < 1.

Using this fact and (3.3.3), ak+1 can be estimated as follows:

|ak+1| =≤ (k + 2)

∣∣∣∣∣
∫

0<|z|<1−δ
(1− |z|2)f ′(z)zkdA(z)

∣∣∣∣∣+ (k + 2)

∣∣∣∣∣
∫

1−δ<|z|<1
(1− |z|2)f ′(z)zkdA(z)

∣∣∣∣∣
≤ (k + 2)||f ||B

∫ 2π

0
dθ

∫ 1−δ

0
rk+1dr + ε(k + 2)

∫ 2π

0
dθ

∫ 1

1−δ
rk+1dr

= ||f ||B2π(1− δ)k+2 + ε2π(1− (1− δ)k+2).

That is,
|ak+1| ≤ ||f ||B2π(1− δ)k+2 + ε2π(1− (1− δ)k+2).

Hence, taking the limit k →∞, the above implies

lim
k→+∞

|ak+1| ≤ ε2π,

and, by the arbitrariness of ε, we deduce

lim
k→+∞

|ak+1| = 0.

To prove that f ∈ B0, assuming that f is defined by a lacunary series whose coefficients tend to 0 and
proceeding in the same manner as above we find the wished result.

As a consequence, we can easily extend this method to several variables. In particular, as a further
consequence of the former construction, we can prove that the little Bloch space B0 is not contained
in A∞α . This is the content of the next example that, again for sake of simplicity, we treat in the
one-dimensional case.

Example 3.3.6. Let the following function be,

f(z) =
∞∑
k=1

z2k

√
k
,

where, using the notation of Theorem 3.3.5, ak =
1√
k

and nk = 2k. We have that

lim
k→+∞

ak = 0 and nk+1 ≥ λnk, λ ≥ 1.

Hence, we obtain that f ∈ B0. Then, arguing as well as in Example 3.3.3, f has a singularity at every
point on S, and cannot be analytically continued outside of D. In other words, f /∈ A∞α .

3.4 Duality

In this section we proceed to identify the dual space of Apα, when 0 < p ≤ 1. Furthermore, we shall
also find that A1

α is the dual of the little bloch space. After the discussion of these representations,
we will obtain some fundamental consequences for the spaces B, B0 and Apα, for 0 < p ≤ 1: lack of
reflexivity, uniform convexity and norm convergence of Taylor series.
We will think of the Bloch space as a Banach space and will use norms, but not semi-norms, on it.
That is, we will consider the Bloch space B and the little Bloch space B0 endowed with

||f || := ||f ||B + |f(0)|.
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In spite of the fact that Apα is not a Banach space when 0 < p < 1, we can consider its dual space. In
fact, we define the dual space of Apα for 0 < p < 1 in exactly the same way as we do for p ≥ 1. Thus
the dual space of Apα consists of all linear functionals F : Apα → C such that

|F (f)| ≤ C||f ||p,α, f ∈ Apα,

where C is a positive constant depending on F . Moreover, when we write ||F ||(Apα)∗ , we mean

||F ||(Apα)∗ = sup {F (f) | f ∈ Apα, ||f ||p,α = 1} .

We start identifying the dual space of Apα, when 0 < p ≤ 1.

Theorem 3.4.1. Assume α > −1, 0 < p ≤ 1 and

β =
n+ 1 + α

p
− (n+ 1).

Then, we can identify the dual space of Apα with B, with equivalent norms, under the integral pairing

< f, g >β= lim
r→1−

∫
Bn
f(rz)g(z)dvβ(z), f ∈ Apα, g ∈ B. (3.4.1)

In particular, the limit in (3.4.1) always exist.

Proof. Let g ∈ B, from Theorem 3.1.10, point d), there exists a function h ∈ L∞(Bn) such that

g(z) =

∫
Bn

h(w)dvβ(w)

(1− < z,w >)n+1+β
, z ∈ Bn, (3.4.2)

so that, there exists a positive constant C, independent of g, such that

||h||∞ ≤ C||g||.

Hence, thanks to this estimate, we can exchange the limit with the integral in (3.4.1) and, then, using
Fubini’s theorem, the reproducing formula of Lemma 2.1.3 and Lemma 2.4.5, it turns out that the
integral pairing of (3.4.1) can be written as follows

| < f, g >β | =
∣∣∣∣ lim
r→1−

∫
Bn
f(rz)g(z)dvβ(z)

∣∣∣∣
=

∣∣∣∣∣
∫
Bn
f(z)dvβ(z)

∫
Bn

h(w)dvβ(w)

(1− < z,w >)n+1+β

∣∣∣∣∣
=

∣∣∣∣∣
∫
Bn
f(z)dvβ(z)

∫
Bn

h(w)dvβ(w)

(1− < w, z >)n+1+β

∣∣∣∣∣
=

∣∣∣∣∫
Bn
h(w)dvβ(w)

∫
Bn

f(z)dvβ(z)

(1− < w, z >)n+1+β

∣∣∣∣
=

∣∣∣∣cβ ∫
Bn
f(w)h(w)(1− |w|2)

n+1+α
p
−(n+1)

dv(w)

∣∣∣∣
≤ ||h||∞

∣∣∣∣cβ ∫
Bn
f(w)(1− |w|2)

n+1+α
p
−(n+1)

dv(w)

∣∣∣∣
≤ C||g||||f ||p,α
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That is, g induces a bounded linear functional on Apα under the integral pairing <,>β.
Conversely, let F ∈ (Apα)∗ and f ∈ Apα, then

fr(z) =

∫
Bn

fr(w)dvβ(w)

(1− < z,w >)n+1+β
, r ∈ (0, 1),

so that, using the homogeneous expansion of the kernel function, we find

F (fr(z)) = F

(∫
Bn

fr(w)dvβ(w)

(1− < z,w >)n+1+β

)

=

∫
Bn
fr(w)F

(
1

(1− < z,w >)n+1+β

)
︸ ︷︷ ︸

:=g(w)

dvβ(w)

=

∫
Bn
fr(w)g(w)dvβ(w)

=< fr, g >β

So, our aim to show that g ∈ B. We proceed as follows. It is clear that g ∈ H(Bn). Then, interchanging
the differentiation and the application of F , justified by using the homogeneous expansion of the kernel
function, and the fact that F is bounded on Apα, we find∣∣∣∣∣∂g(w)

∂wi

∣∣∣∣∣ =

∣∣∣∣F ( ∂

∂zi

1

(1− < z,w >)n+1+β

)∣∣∣∣
= (n+ 1 + β)

∣∣∣∣F ( wi
(1− < z,w >)n+2+β

)∣∣∣∣
≤ (n+ 1 + β)||F ||(Apα)∗

[∫
Bn

dvα(z)

|1− < z,w > |p(n+2+β)

]1/p

≤ (n+ 1 + β)||F ||(Apα)∗

[∫
Bn

(1− |z|2)αdv(z)

|1− < z,w > |n+1+p+α

]1/p

≤ C(n+ 1 + β)||F ||(Apα)∗
1

(1− |w|2)
,

so that, we have

sup
w∈Bn

(1− |w|2)|∇g(w)|2 ≤ sup
w∈Bn

(1− |w|2)(n+ 1 + β)
√
nC||F ||(Apα)∗

1

(1− |w|2)

= (n+ 1 + β)
√
nC||F ||(Apα)∗

<∞.

Hence, using point e) in Theorem 3.1.10, we get g ∈ B. This completes our proof.

Putting p = 1 in the above result, we obtain the following.

Corollary 3.4.2. Let α > −1. Then, we can identify the dual space of A1
α with B, with equivalent

norms, under the integral pairing

< f, g >α= lim
r→1−

∫
Bn
f(rz)g(z)dvα(z), f ∈ A1

α, g ∈ B. (3.4.3)

In particular, the limit in (3.4.3) always exist.
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We proceed identifying the dual of the little Bloch space B0. After that, we will see some remarkable
consequence of this result and the previous theorem.

Theorem 3.4.3. Assume α > −1. Then, the dual space of B0 can be identified with A1
α, with

equivalent norms, under the integral pairing

< f, g >α= lim
r→1−

∫
Bn
f(z)g(rz)dvα(z), f ∈ B0, g ∈ A1

α. (3.4.4)

In particular, the limit above always exists.

Proof. Let f ∈ B0. From point d) in Theorem 3.2.6, or equivalently point e) in Theorem 3.2.8, there
exists h ∈ C0(Bn) such that

Pαh(z) = f(z), z ∈ Bn.

Moreover, h can be chosen so that there exists a positive constant C, independent of f , such that

||h||∞ ≤ C||f ||B. (3.4.5)

Let g ∈ A1
α and gr(z) = g(rz), where r ∈ (0, 1) and z ∈ Bn, the dilation function be. Then, defining

< f, gr >α=

∫
Bn
h(w)gr(w)dvα(w),

so that, using Holder’s inequality and (3.4.5), it turns out

| < f, gr >α | ≤ ||h||∞||g||α,1

≤ C||f ||B||g||α,1.

In other words, we have proved that every function g ∈ A1
α induces a bounded linear functional on B0

via the integral pairing <,>α.
Next, our aim is to show that every bounded linear functional on B0 arises from a function in A1

α via
the integral pairing <,>α. In order to proceed, we fix a sufficiently large positive parameter b and
consider the operator T defined by

Tf(z) =
cb+α
cα

(1− |z|2)b
∫
Bn

f(w)dvα(w)

(1− < z,w >)n+1+α+b
.

Now, let f ∈ B0, using (3.4.5) and Theorem 1.4.4, we have that there exists a positive constant C
such that

|Tf(z)| ≤ cb+α
cα

(1− |z|2)bC||f ||
∫
Bn

dvα(w)

|1− < z,w > |n+1+α+b

≤ cb+α
cα

(1− |z|2)b||f ||C 1

(1− |z|2)b

=
cb+αC||f ||

cα
.

That is, Tf ∈ L∞(Bn) and, hence, T : B0 −→ L∞(Bn) is a bounded operator. On the other hand,
follows the same lines as in the proof of Theorem 3.1.10, it turns out that

Pα(Tf)(z) = f(z),∀f ∈ B0, z ∈ Bn.

Hence, there exists a positive constant C, independent of f , such that

||f || ≤ C||Tf ||∞.

134



We conclude that T is an embedding of B into L∞(Bn).
If f is a polynomial, then, follows the same lines as in Theorem 3.2.6, we easly check that Tf is
(1 − |z|2)b times a polynomial, which is a function in C0(Bn). By the fact that C0(Bn) is closed in
L∞(Bn), we get that T is an embedding of B0 into C0(Bn). Denoting by

T (B0) = X,

then, X is a closed subspace of C0(Bn).
Now, let F ∈ (B0)∗, then F ◦ T−1 ∈ (X)∗. Using the Hahn-Banach theorem, we extend continuously
F ◦ T−1 to the whole space C0(Bn). After that, we apply the classical Riesz representation theorem
for C0(Bn). So, we obtain a finite complex Borel measure µ on Bn such that

F ◦ T−1(f) =

∫
Bn
f(z)dµ(z), f ∈ X,

or equivalently,

F (f) =

∫
Bn
Tf(z)dµ(z), f ∈ B0. (3.4.6)

If f is a polynomial, using Fubini’s theorem, (3.4.6) can be written as

F (f) =

∫
Bn

cb+α
cα

(1− |z|2)bdµ(z)

∫
Bn

f(w)dvα(w)

(1− < z,w >)n+1+α+b

=

∫
Bn
f(w)

{
cb+α
cα

∫
Bn

(1− |z|2)bdµ(z)

(1− < z,w >)n+1+α+b

}
dvα(w)

=

∫
Bn
f(w)

{
cb+α
cα

∫
Bn

(1− |z|2)bdµ(z)

(1− < w, z >)n+1+α+b

}
dvα(w)

=

∫
Bn
f(w)g(w)dvα(w).

By Theorem 1.4.6, we deduce that g ∈ A1
α. Finally, since polynomials are dense in the little Bloch

space B0, we complete the proof.

Remark 3.4.4. As a consequence of Theorem 3.4.1 and Theorem 3.4.3, we have

(B0)∗∗ = (A1
α)∗

= B

⊃ B0.

In other words, the little Bloch space B0 is not reflexive. After that, if we assume that the Bloch
space is reflexive, since B0 ⊂ B is a closed subspace, we would have that the little Bloch space B0 is
reflexive. That is a contradiction. So, the Bloch space B is not reflexive. Finally, it is a well-known
fact that, for a Banach space X, X is reflexive if and only if its dual X∗ is reflexive. Hence, we apply
this result putting X = B0, so that X∗ = Apα is not reflexive. We summarise all these results in the
following corollary.

Corollary 3.4.5. The Bloch space B, the little Bloch space B0 and the Bergman spaces Apα, for α > −1
and 0 < p ≤ 1, are not reflexive.

A further consequence, from Milman-Pettis theorem, is

Corollary 3.4.6. The Bloch space B, the little Bloch space B0 and the Bergman spaces Apα, for α > −1
and 0 < p ≤ 1, are not uniformly convex.
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In Theorem 2.1.11, we showed that there exist functions in A1
α whose Taylor series do not converge

in norm. We recall that an example, not proved, of such functions is

fa(z) =
1− |a|2

(1− az)3
.

Hence, as a consequence of Theorem 3.4.3, we have the following corollary.

Corollary 3.4.7. There exist functions in the little Bloch space B0 whose Taylor series do not converge
in norm.

We just give a hint of the proof. All the details can be found on, for example, Duality of Bloch
Spaces and Norm Convergence of Taylor Series, written by Kehe Zhu.

Proof. For sake of simplicity, we consider the one-dimensional case and α = 0. It suffices to show that
the operators

SN :
∞∑
k=0

bkz
k −→

N∑
k=0

bkz
k

are not uniformly bounded on A1
α. That is, there is no constant C > 0 such that

||SN ||1 ≤ C,∀n ≥ 1.

From Theorem 1.4.4, there exists a positive constant C such that

||f ||1 ≤ C, ∀a ∈ D.

After that, since the Taylor expansion of fa is given by

fa(z)(1− |a|2)
∞∑
k=0

(k + 1)(k + 2)akzk,

so that, SNfa can be written as follows

SNfa(z) = (1− |a|2)

−(n+ 2)(n+ 3)(az)n+1

1− az︸ ︷︷ ︸
:=A1(z)

+
2(n+ 3)(az)n+2

(1− az)2︸ ︷︷ ︸
:=A2(z)

+
(1− az)n+3

(1− az)3︸ ︷︷ ︸
:=A3(z)

 .
After some computations, it turns out that there exist two positive finite constants C1, C2 such that

||A3(z)||1 ≤ C1 and ||A2(z)||1.

But, concerning the function A1(z), using polar coordinates, Theorem 1.4.4 and integrting by parts,
we find that, respect to with || · ||1, is unbounded as a function of n and a. In fact,

||A1||1 = (n+ 2)(n+ 3)(1− |a|2)|a|n+1

∫
D

|z|n+1dA(z)

|1− az|

= (n+ 2)(n+ 3)(1− |a|2)|a|n+1 1

π

∫ 1

0
rn+2dr

∫ 2π

0

dt

|1− r|a|eit|

≥ c(n+ 2)(n+ 3)(1− |a|2)|a|n+1 1

π

∫ 1

0
rn+2 log

(
1

1− r|a|

)
dr

= c(n+ 2)(1− |a|2)|a|n+1 log

(
1

1− r|a|

)
− c(n+ 2)(1 + |a|)|a|n+2

n+ 4
.

Finally, the second term above is bounded in a and n, but the first term tends to ∞ if a = n/n + 1
and n→ +∞. This finishes the proof.
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3.5 Maximality

In this section we show that the Bloch space B is the largest Mobius-invariant linear space of
holomorphic functions that can be equipped with a Mobius-invariant seminorm in such a way that
there is at least one nonzero bounded linear functional on the space. One simple consequence of the
main result is that there are no nontrivial Mobius-invariant closed subspaces of H(Bn) equipped with
the topology of uniform convergence on compact subsets. We start with the following definition.

Definition 3.5.1 (Mobius invariant Banach space). Let X := (X, || · ||X) a seminormed linear space
of holomorphic functions in Bn. We say that X is a Mobius invariant Banach space if the following
property holds

||f ◦ ϕ||X = ||f ||X , f ∈ X, ϕ ∈ Aut(Bn). (3.5.1)

Remark 3.5.2. We will suppose that X is already complete in the semi-norm. In fact, if necessary,
we can consider its completion. Moreover, the map

φ(θ1, ..., θn) := f(|z1|exp(iθ1), ..., |zn|exp(iθn)), (3.5.2)

is assumed to be a continuous function from [0, 2π]n to X.

In order to prove the main result of this section, we will need the following Lemma.

Lemma 3.5.3. Assume that X is a Mobius invariant Banach space such that contains nonconstant
functions. Then, all the polynomials are contained in X.

Proof. Let f ∈ X a nonconstant function. Suppose the Taylor expansion of f is

f(z) =

∞∑
m=0

amz
m, ∀z ∈ Bn. (3.5.3)

Hence, there exists some nonzero multi-index m such that

am 6= 0.

We fix such index m = (m1, ...,mn). Let F be the following function,

F (z) =
1

(2π)n

∫ 2π

0
· · ·
∫ 2π

0
f(|z1|exp(iθ1), ..., |zn|exp(iθn))exp(−i(m1θ1 + · · ·+mnθn))dθ1 . . . dθn.

So that, by a direct computation, we obtain

F (z) =
1

(2π)n

∫ 2π

0
· · ·
∫ 2π

0
f(|z1|exp(iθ1), ..., |zn|exp(iθn))exp(−i(m1θ1 + · · ·+mnθn))dθ1 . . . dθn

= am
1

(2π)n

∫ 2π

0
zm1

1 dθ1· · ·
∫ 2π

0
zmnn dθn

= amz
m.

In other words, F (z) = amz
m. Furthermore, using the fact that X is Mobius invariant, we get

||F ||X ≤ ||f ||X .

Hence, X contains the monomial zm.
Then, considering the composition between zm with all the possible unitary transformations and so,
using the Mobius invariance of X, X contains all homogeneous polynomials of degree |m|. As a
consequence, in particular, for every ϕ ∈ Aut(Bn), it turns out that

z
|m|
1 ◦ ϕ ∈ X.
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Choose ϕ = ϕa, where a = (λ, 0, ..., 0) with |λ| < 1. We obtain,

z
|m|
1 ◦ ϕ =

(
λ− z1

1− λz1

)|m|
. (3.5.4)

For every nonnegative integer l, we can find some λ such that the Taylor coefficient of zl1 of the function
in (3.5.4) is nonzero. Following the same approach used in the first paragraph of this proof, we find

zl1 ∈ X,∀ l ≥ 0.

Combining this with the remarks in the previous paragraph, we conclude that X contains all polyno-
mials.

We now show that the Bloch space is maximal among Mobius invariant Banach spaces. Then, we
discuss some related consequence.

Theorem 3.5.4. Assume X is a Mobius invariant Banach space in Bn. If there exists a nonzero
bounded linear functional L on X. Then,

X ⊂ B.

Moreover, there exists a positive constant C such that

||f ||B ≤ C||f ||X , ∀f ∈ X. (3.5.5)

Finally, if L is such that L(1) 6= 0. Then,

X ⊂ A∞α (Bn), (3.5.6)

and there exists a positive constant C such that

||f ||∞ ≤ C||f ||X , ∀f ∈ X. (3.5.7)

Proof. Let L be a nonzero bounded linear functional on X. That is,

|L(f)| ≤ C||f ||X , f ∈ X.

We start supposing L(1) 6= 0. Since the mean value property, in the origin, is given by

f(0) =
1

(2π)n

∫ 2π

0
· · ·
∫ 2π

0
f(z)dt1 . . . dtn,

so that, applying L to both sides, we obtain

f(0)L(1) =
1

(2π)n

∫ 2π

0
· · ·
∫ 2π

0
L(f(z))dt1 . . . dtn.

Hence, from the boundedness of L on X, it follows that

|f(0)||L(1)| ≤ C||f ||X .

Then, we replace f by f ◦ ϕz so that, using the Mobius invariance of X, we get

|f(z)||L(1)| ≤ C||f ||X , ∀z ∈ Bn.

We proved that f ∈ A∞α (Bn) and, clearly, that

||f ||∞ ≤
C

|L(1)|
||f ||X .

After that, we assume L(1) = 0 and X contains a non constant function. Hence, from Lemma 3.5.3,
X must contain all the polynomials. Our aim is to show that there exists some ϕ ∈ Aut(Bn) such
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that the linear functional Lϕ(f) := L(f ◦ ϕ) satisfies Lϕ(z1) 6= 0. To prove this fact, we proceed as
follows. Let r ∈ (0, 1) and a = (r, 0, ..., 0). We consider the following involutive automorphism

ϕa(z) =

(
r − z1

1− rz1
,

√
1− r2z2

1rz1
, . . . ,−

√
1− r2zn
1− rz1

)
, (3.5.8)

so that

z1 ◦ ϕa(z) =
r − z1

1− rz1

= r + (r2 − 1)
∞∑
k=1

rk−1zk1 .

That is,

z1 ◦ ϕa(z) = r + (r2 − 1)
∞∑
k=1

rk−1zk1 . (3.5.9)

Arguing by contradiction, assume that L(z1) = 0, ∀ϕ ∈ Aut(Bn), and applying L to (3.5.9) we find

0 = Lϕa(z1)

= L(z1 ◦ ϕa)

= L(1)r + (r2 − 1)

∞∑
k=1

rk−1L(zk1 ).

So that, we deduce
∞∑
k=1

rk−1L(zk1 ) = 0,∀ r ∈ (0, 1),

and it follows that
L(zk1 ) = 0, ∀k ≥ 1.

Then, replacing L by Lϕ, it turns out

Lϕ(zk1 ) = 0, ∀k ≥ 1.

This fact implies that
L(zm) = 0, ∀m = (m1, . . . ,mn) s.t. |m| > 0.

Combining this with L(1) = 0, we find
L = 0,

on H(Bn). That is, a contradiction. This means that we can assume L(z1) 6= 0. For f ∈ X, let the
following function be

F (f) =
1

2π

∫ 2π

0
L(f(|z|exp(it)))exp(−it)dt.

Using the fact that L is continuous on X, we get

|F (f)| ≤ C||f ||X , f ∈ X.
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On the other hand, expanding f in homogenous series and using its uniform convergence on compact
subsets, it turns out

F (f) =
1

(2π)n

∫ 2π

0
L

 ∞∑
j=0

1

j!

∂jf

∂zj
(0)|z1|j1 . . . |zn|jnexp(ijt)

 exp(−it)dt

=
1

(2π)n

∞∑
j=0

1

j!

∂jf

∂zj
(0)L

(
|z1|j1 . . . |zn|jn

) ∫ 2π

0
exp(it(j − 1))dt

=

n∑
k=0

L (|zk|)
∂f

∂zk
(0).

That is, F (f) can be written as follows

F (f) =
n∑
k=0

L (|zk|)
∂f

∂zk
(0). (3.5.10)

After that, denoting by w = (w1, ..., wn) a unit vector of Cn, there exists a positive constant δ such
that (3.5.10) can be written as

F (f) = δ < ∇f(0), w > . (3.5.11)

Furthermore, for every 1 ≤ k ≤ n, we can find a unitary matrix Uk such that

Uk(w) = ek,

where {e1, . . . , en} is the standard orthonormal basis of Cn. Hence, after some computations

F (f ◦ Uk) = δ < ∇(f ◦ Uk)(0), w >

= δ < Uk∇(f)(0), w >

= δ < ∇f(0), Ukw >

= δ
∂f

∂zk
(0).

Namely,

F (f ◦ Uk) = δ
∂f

∂zk
(0),∀f ∈ X. (3.5.12)

We replace f by f ◦ϕ, where ϕ ∈ Aut(Bn), so that, for 1 ≤ k ≤ n, (3.5.12) can be estimated as follows∣∣∣∣ ∂f∂zk (0)

∣∣∣∣ ≤ |F (f ◦ ϕ ◦ Uk)|
δ

(0)

≤ C

δ
||f ◦ ϕ ◦ Uk||X

=
C

δ
||f ||X .

Therefore, we obtain

|∇̃f(z)| ≤ nC
δ
||f ||X ,∀f ∈ X, z ∈ Bn.

We have proved that
f ∈ B and ||f ||B ≤ C ′||f ||X ,

for some positive constant C ′.
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In the remainder of this section, we denote the seminorms of the Mobius invariant Banach space
X and the Bloch space, respectively, by

p(f) := ||f ||, and pB(f) := ||f ||B, ∀f ∈ X.

Corollary 3.5.5. Assume that X is a Mobius invariant Banach space in Bn that satisfies the same
conditions of Theorem 3.5.4. Then, the kernel p−1(0) is contained in the set of constant functions.

Proof. We just observe that the kernel of pB is given by the constant functions.

Corollary 3.5.6. Let H(Bn) equipped with the topology of uniform convergence on compact subsets
of Bn. Then, the only closed Mobius-invariant subspaces of H(Bn) are {0}, H(Bn), and the constant
functions.

Proof. Let E be a closed Mobius-invariant subspace of H(Bn) with E 6= H(Bn). Then, there exists a
nonzero continuous linear functional L, with L(f) = 0 for all f ∈ E. Let f ∈ H(Bn), we set

p(f) = sup {L(f ◦ ϕ) | ϕ ∈ Aut(Bn)} .

After that, we define
X := {f ∈ H(Bn) | p(f) <∞} .

Then, since (X, p) satisfies the hyphoteses of Theorem 3.5.4, by Corollary 3.5.5 p−1(0) is contained in
the constant functions. Besides, let f ∈ E, then

p(f) = sup {L(f ◦ ϕ) | ϕ ∈ Aut(Bn)}

= L(f)

= 0.

In other words, we have that
E ⊆ p−1(0) ⊆ X.

Thus, E is contained in the set of constant functions. That is, E is either {0} or the constant functions,
as required.

3.6 Pointwise Multipliers

The aim of this section is to characterise the pointwise multipliers of the Bloch space and the
little Bloch space. The pointwise multipliers of the Bloch space and the little Bloch space were first
characterised by Arazy in the case of the open unit disc of C and later rediscovered by Kehe Zhu in
the case of Bn. This section is organised as follows. We start recalling the definition of Pointwise
Multipliers. After that, we provide a crucial tool: we prove that the pointwise multipliers of every
Banach space of holomorphic functions in Bn, such that every point evaluation is a bounded linear
functional, can be embedded into A∞α . As a consequence, we apply this result to the Bloch space B
and the little Bloch space B0. Then, we illustrate the goal of this section: let f ∈ H(Bn), we show
that f is a pointwise multiplier of the Bloch space, and the little Bloch space, if and only if both f
and (1− |z|2)|∇f(z)| log 1

1−|z|2 are bounded in Bn.

Formally, the definition of Pointwise Multipliers is

Definition 3.6.1 (Pointwise Multipliers). Let X a space of functions. A function f is called a
pointwise multiplier of a space X if for every g ∈ X the pointwise product fg also belongs to X.
In this section, we denote a pointwise multiplier f of a space X by

fX ⊂ X.
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Throughout this section, we endow B with the following norm

||f || = |f(0)|+ sup
z∈Bn

|∇f(z)|, f ∈ B. (3.6.1)

In order to proceed, we need the following Lemma.

Lemma 3.6.2. Let X be a Banach space of holomorphic functions in Bn. Assume that X contains
the constant functions and that every point evaluation is a bounded linear functional on X. Then,
every pointwise multiplier of X is in A∞α .

Proof. Let f be a pointwise multiplier of X. Since X contains the constant function, we obtain that
f ∈ X. After that, we define the linear operator of multiplication by f as

Mf (g)(z) = f(z)g(z), g ∈ X.

Since every point evaluation is a bounded linear functional on X, we have that

|Mf (g)(z)| = |f(z)||g(z)|

≤ ||f || ||g||.

We deduce that Mf (g) is bounded.
Consequently, we denote by ez the point evaluation at z, where z ∈ Bn and, hence, by assumption,
ez ∈ X∗. So that, considering the action of the bounded linear operator on X∗ given by the adjoint
operator of Mf (g)(z), denoted by M∗f (g), it turns out that

M∗f (ez)(g) = ez(Mf (g))

= f(z)g(z)

= f(z)ez(g).

In other words,
M∗f (ez)(g) = f(z)ez(g),

that implies

|f(z)| =
|M∗f (ez)(g)|
|ez(g)|

≤ ||M∗f ||.

This proves that
|f(z)| ≤ ||M∗f ||, ∀z ∈ Bn,

and we are done.

As a consequence of this result, putting X = B or X = B0, we have the following corollary.

Corollary 3.6.3. Assume that f is a pointwise multiplier of B, or B0. Then, f is bounded in Bn.

We are ready to prove the main result of this section: the characterisation of the pointwise multi-
pliers of the Bloch space and the little Bloch space.

Theorem 3.6.4. Let f ∈ H(Bn). Then, the following conditions are equivalent:
a) fB ⊂ B.
b) fB0 ⊂ B0.
c) f ∈ A∞α and the function

(1− |z|2)|∇f(z)| log
1

1− |z|2

is bounded in Bn.
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Proof. We start proving a) =⇒ c). If fB ⊂ B, from the previous corollary, we have that f ∈ A∞α and,
hence, there exists a positive constant C > 0 such that

||fg|| ≤ C||g||, ∀g ∈ B. (3.6.2)

After that, since the Leibniz rule is

g∇f = ∇(fg)− f∇g.

So that, assuming without loss of generality that g(0) = 0 and usin Theorem 3.1.18 (actually (3.1.16)),
we have that

(1− |z|2)|∇f(z)|1
2

log
1

1− |z|2
≤ (1− |z|2)|∇f(z)|1

2
log

1 + |z|
1− |z|

= (1− |z|2)|∇f(z)|1
2
β(z, 0)

=
1

2
(1− |z|2)|∇f(z)| sup { |g(z)| | ||g|| ≤ 1}

≤ |f(z)|(1− |z|
2)

2
sup { |∇g(z)| | ||g|| ≤ 1}+

(1− |z|2)

2
sup { |∇(fg)(z)| | ||g|| ≤ 1}

≤ 1

2
(||g|| ||f ||∞,α + ||fg||)

≤ 1

2
(||f ||∞,α + C) .

In other words,

(1− |z|2)|∇f(z)| log
1

1− |z|2
≤ ||f ||∞,α + C,∀z ∈ Bn,

and the implication a) =⇒ c) is proved.
To prove that b) =⇒ c), we follow the same lines as in the previous implication but, instead of Theorem
3.1.18, we use Theorem 3.2.15.
Next, we wish to prove that c) implies a). So, assume that c) holds. Since f ∈ A∞α and g ∈ B, we
proceed with the following estimate,

(1− |z|2)

2
|∇(fg)(z)| ≤ 1

2
(1− |z|2)|f(z)||∇g(z)|+ (1− |z|2)|g(z)||∇f(z)|

≤ 1

2
||f ||∞,α||g||+ ||g||

1

2
log

(
1 + |z|
1− |z|

)
(1− |z|2)|∇f(z)|

≤ 1

2
||f ||∞,α||g||+ ||g||

1

2
log

(
1

1− |z|2

)
(1− |z|2)|∇f(z)|

<∞, ∀z ∈ Bn.

That is fg ∈ B.
Finally, to prove that c) implies that a), we proceed as follows. Recalling (3.2.5) of Corollary 3.2.14,
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we have that

lim
|z|→1−

(1− |z|2)

2
|∇(fg)(z)| ≤ lim

|z|→1−

1

2
(1− |z|2)|f(z)||∇g(z)|+ 1

2
lim
|z|→1−

(1− |z|2)|g(z)||∇f(z)|

≤ 1

2
||f ||∞,α lim

|z|→1−
(1− |z|2)|∇g(z)|+ 1

2
lim
|z|→1−

(1− |z|2)|g(z)||∇f(z)|

=
1

2
lim
|z|→1−

(1− |z|2)|g(z)||∇f(z)|

≤ ε(1− |z|2) log

(
1

1− |z|2

)
|∇f(z)|

≤ εC.

By the arbitrariness of ε, we deduce

lim
|z|→1−

(1− |z|2)|∇(fg)(z)| = 0,

that is,
fg ∈ B0.

We conclude this section with the following remark. We prove that, if f, g ∈ B, then, in general,
it is not true that fg ∈ B. For sake of simplicity, this fact is proved in the one-dimensional case.

Remark 3.6.5. Let f = g = Log(1− z). Then,

sup
z∈Bn

(1− |z|2)|∇(fg)(z)| = 2 sup
z∈Bn

(1− |z|2)|f(z)||f ′(z)|

≥ 2(1− |z|2)|f ′(z)| sup
z∈Bn

|f(z)|

=
2(1− |z|2)|z|
|1− z|

∣∣∣∣∣
∞∑
n=1

1

n

∣∣∣∣∣
≥ 2|1− z||z|

∣∣∣∣∣
∞∑
n=1

1

n

∣∣∣∣∣
=∞.

That is, fg /∈ B. Moreover,

||f ||∞,α =

∣∣∣∣∣
∞∑
n=1

1

n

∣∣∣∣∣
=∞.

Namely, we proved, with a counterexample, that if condition c) doesn’t hold then condition a) fails.
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3.7 Atomic Decomposition of B and B0

The aim of this section is to prove that the Bloch space admits an atomic decomposition. We
showed that the Bloch space B is identified as the dual space of the Bergman space A1

α, for α > −1.
Hence, it turns out that this decomposition is similar to that of the Bergman spaces. This section is
organised as follows. We start recalling some tools, notions and a pair of operators, actually intro-
duced in Section 2.5, that are necessary. Then, we provide a lemma that describes the action of the
operators, previously introduced, in the Bloch space B. Such lemma will be crucial for the most im-
potant result of this section. That is, the atomic decomposition of the Bloch space and, consequently,
the little Bloch space.

We begin by recalling some facts studied in Section 2.5. Fix a parameter b > n and consider a
sequence {ak}k that satisfies the condition of Theorem 2.5.4. According to Lemma 2.5.11, we proved
that such sequence induces a partition, denoted by {Dk}k, of Bn. Moreover, after Lemma 2.5.11,
we described a further partition of each Dk, denoted by Dk1, ..., DkJ , into a finite number of disjoint
pieces.
Denoting by α = b − (n + 1), we are going to use the following two operators that act, respectively,
on L1(Bn, dvα) and H(Bn).

Definition 3.7.1. Let f ∈ L1(Bn, dvα), we introduce

Tf(z) =

∫
Bn

(1− |w|2)b−n−1

|1− < z,w > |b
f(w)dv(w).

Then, let f ∈ H(Bn), we define

Sf(z) =
∞∑
k=1

J∑
j=1

vα(Dkj)f(akj)

(1− < z, akj >)b
,

where {akj} is the refinement lattice, in the Bergman metric, of {ak}.

The following Lemma is a particular case of Lemma 2.5.14 and, of course, plays a fundamental
role in the atomic decomposition of the Bloch space and the little Bloch space as well.

Lemma 3.7.2. There exists a constant C > 0, independent of the separation constant r, for {ak},
and the separation constant η, for {akj}, such that

|f(z)− Sf(z)| ≤ CσT (|f |)(z), (3.7.1)

for all r ≤ 1, z ∈ Bn, f ∈ H(Bn) and where

σ = η +
tanh(η)

tanh(r)
. (3.7.2)

Proof. Putting p = 0 and α = 0 in Lemma 2.5.14, so that we get

|f(z)− Sf(z)| ≤ Cσ
∞∑
k=1

(1− |ak|2)b−(n+1)

|1− < z, ak > |b

∫
D(ak,2r)

|f(w)|dv(w).

After that, using (2.5.7), we can find a positive constant C1 such that

|f(z)− Sf(z)| ≤ C1σ
∞∑
k=1

∫
D(ak,2r)

(1− |w|2)b−(n+1)

|1− < z,w > |b
|f(w)|dv(w). (3.7.3)

By the fact that each point z of Bn belongs at most N of D(ak, 2r), (3.7.3) must implie that

|f(z)− Sf(z)| ≤ C1σN

∫
Bn

(1− |w|2)b−(n+1)

|1− < z,w > |b
|f(w)|dv(w),

and we are done.
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We can prove the main result of this section: the atomic decomposition of the Bloch space B.

Theorem 3.7.3. For every b > n there exists a sequence {ak}k ⊂ Bn such that every function f of
the Bloch space B can be decomposed as follows

f(z) =
∞∑
k=1

ck
(1− |ak|2)b

(1− < z, ak >)b
, (3.7.4)

where {ck}k ∈ l∞. Furthermore, since B is identified as the dual space of A1
α, for α = b − n − 1, the

series on (3.7.4) converges in the weak-star topology of B.

Proof. Let f defined by (3.7.4) and let {ak}k be a sequence that satisfies the conditions of Theorem
2.5.15. In the first part of the proof we show that f ∈ B. To this end, we start proving that the series
(3.7.4) converges uniformly on compact subsets of Bn, whenever {ck}k is bounded, as follows. From
Lemma 1.6.15, Lemma 2.5.1 and Corollary 2.5.2, there exists a positive constant C1 such that

∞∑
k=1

|ck|(1− |ak|2)b ≤ C1

∞∑
k=1

∫
D(ak,r/4)

(1− |z|2)αdv(z)

< C

∫
Bn

(1− |z|2)αdv(z)

<∞.

Moreover, assuming that {ck}k is bounded. Applying Theorem 1.4.4, we have that there exists a
positive constant C2 such that

||f ||1,α =

∞∑
k=1

|ck|(1− |ak|2)b
∫
Bn

dvα(z)

|1− < z, ak > |b

≤ C2

∞∑
k=1

|ck|(1− |ak|2)b log

(
2

1− |ak|2

)
.

Then, from the estimate in the previous paragraph, it follows that for any b′ ∈ (n, b) there exists a
positive constant C3 such that

∞∑
k=1

|ck|(1− |ak|2)b
∫
Bn

dvα(z)

|1− < z, ak > |b
≤ C3

∞∑
k=1

|ck|(1− |ak|2)b
′

<∞.

In other words, we proved that (3.7.4) converges in the norm topology of A1
α. To conclude this first

part, we wish to prove that f induces a bounded linear functional on A1
α under the integral pairing

given by

< g, f >α=

∫
Bn
g(z)f(z)dvα(z), (3.7.5)

where g ∈ A∞α . Replacing (3.7.4) in (3.7.5), using the fact that (3.7.4) converges uniformly on compact
subsets and the reproducing formula of Lemma 2.1.3, we obtain

< g, f >α =

∫
Bn
g(z)f(z)dvα(z)

=

∞∑
k=1

ck(1− |ak|2)b
∫
Bn
g(z)

1

(1− < ak, z >)α+n+1
dvα(z)

=

∞∑
k=1

ck(1− |ak|2)bg(ak).
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So, the integral pairing is well defined. Hence, using Lemma 1.6.15 and Lemma 2.5.7, there exists a
positive constant C4 such that the above inner product can be estimated as follows,

| < g, f >α | ≤
∞∑
k=1

∫
D(ak,r/4)

|g(z)||f(z)|dvα(z)

≤
∞∑
k=1

∫
D(ak,r/4)

|g(z)|

{∫
D(ak,r/4)

|f(w)|dvα(w)

}
︸ ︷︷ ︸
≤supD(ak,r/4)

|f(w)|vα(D(ak,r/4))

1

(1− |z2|)α+n+1
dvα(z)

≤
∞∑
k=1

[
sup

D(ak,r/4)
|f(w)|vα(D(ak, r/4))

]∫
D(ak,r/4)

|g(z)| 1

(1− |z2|)α+n+1
dvα(z)

≤ sup
k

{
sup

D(ak,r/4)
|f(w)|

} ∞∑
k=1

∫
D(ak,r/4)

|g(z)|
{
vα(D(ak, r/4))

(1− |z2|)α+n+1

}
︸ ︷︷ ︸

Lemma 1.6.15

dvα(z)

≤ C4 sup
k

{
sup

D(ak,r/4)
|f(w)|

}
︸ ︷︷ ︸

=:Ĉ

∞∑
k=1

∫
D(ak,r/4)

|g(z)|dvα(z)

= Ĉ||g||1,α.

That is, using the fact that A∞α is dense in A1
α, we’ve proved that f induces a bounded linear functional

on A1
α. Hence, as a consequence of Theorem 3.4.1, f must be a Bloch function.

Furthermore, with some obvious minor adjustments, if the sequence {ak}k is replaced by the more
dense sequence {akj}kj , then, the previous argument still works.
We wish to prove the other half of the theorem. Namely, if f ∈ B, then f must consist of the form of
(3.7.4). To this end, we need to introduce the following space of holomorphic fuctions

X :=

{
f ∈ H(Bn) | ||f ||X := sup

z∈Bn
(1− |z|2)|f(z)| <∞

}
.

X, equipped with || · ||X defined above, is a Banach space. After that, let S and T be as in Definition
3.7.1. If f ∈ X, replacing b by b+ 1 in Lemma 3.7.2, then, we must have that there exists a positive
constant C5, independent of the separation constant r for {ak}k and the separation constant η for
{akj}kj , such that

|f(z)− Sf(z)| ≤ C5σ

∫
Bn

(1− |w|2)b−n|f(w)|dv(w)

|1− < z,w > |b+1
,∀z ∈ Bn.
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Moreover, from Theorem 1.4.4 there exists a positive constant C6 such that

||f − Sf ||X = sup
z∈Bn

(1− |z|2)|f(z)− Sf(z)|

≤ C5σ sup
z∈Bn

(1− |z|2)

∫
Bn

(1− |w|2)b−n|f(w)|dv(w)

|1− < z,w > |b+1

≤ C5σ sup
z∈Bn

(1− |z|2)

∫
Bn

{
sup
w∈Bn

|f(w)|(1− |w|2)

}
(1− |w|2)b−n−1dv(w)

|1− < z,w > |b+1

= C5σ||f ||X sup
z∈Bn

(1− |z|2)

∫
Bn

(1− |w|2)b−n−1dv(w)

|1− < z,w > |n+1+(b−n−1)+1︸ ︷︷ ︸
≤(1−|z|2)−1

≤ C5C6σ||f ||X .

We’ve proved that
||f − Sf ||X ≤ C5C6σ||f ||X , f ∈ X.

Assumed that the separation constant η and r are so that C6σ < 1, then, denoting by I the identity
operator, the operator I − S has norm less than 1 on X. So, the operator S is invertible on X.
Let f ∈ B, putting α = b− (n+ 1), we define the holomorphic function

g(z) = Rα,1f(z), z ∈ Bn.

By the fact that Rα,1f is a differential operator of order 1 having polynomial coefficients, we obtain

g ∈ X.

Since S is invertible, defining h = S−1g ∈ X, g admits the following representation

g(z) =
∞∑
k=1

J∑
j=1

vβ(Dkj)h(akj)

(1− < z, akj >)b+1
, (3.7.6)

where
β = (b+ 1)− (n+ 1) = b− n.

Applying the inverse of Rα,1, denoted by Rα,1, to (3.7.6) so that, from Proposition 1.5.10, we get that
the following representation holds

f(z) = Rα,1g(z)

= Rα,1

∞∑
k=1

J∑
j=1

vβ(Dkj)h(akj)

(1− < z, akj >)b+1

=
∞∑
k=1

J∑
j=1

vβ(Dkj)h(akj)Rα,1

(
1

(1− < z, akj >)b+1

)

=
∞∑
k=1

J∑
j=1

vβ(Dkj)h(akj)

(1− < z, akj >)b

=

∞∑
k=1

J∑
j=1

ckj
(1− |akj |2)b

(1− < z, akj >)b
,
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where

ckj =
vβ(Dkj)h(akj)

(1− |akj |2)b
.

Finally, since h ∈ X and

vβ(Dkj) ≤ vβ(Dk)

∼ (1− |ak|2)n+1+β

= (1− |ak|2)b+1

∼ (1− |akj |2)b+1.

That is
{ckj} ∈ l∞.

This completes the proof.

From the proof of the preceding theorem we obtain the following corollary.

Corollary 3.7.4. The Bloch norm

||f || := |f(0)|+ sup
z∈Bn

|∇(f ◦ ϕz)(0)|,

is comparable to

inf

{
|| {ck} ||∞ : f(z) =

∞∑
k=1

ck
(1− |ak|2)b

(1− < z, ak >)b
,

}
Our nex goal is to obtain the atomic decomposition of the little Bloch space. To this end, with

some adjustments, we adopt the proof of Theorem 3.7.3.

Theorem 3.7.5. For any b > n there exists a sequence {ak} in Bn such that the little Bloch space B0

consists exactly of functions of the form

f(z) =
∞∑
k=1

ck
(1− |ak|2)b

(1− < z, ak >)b
, (3.7.7)

where
lim
k→∞

ck = 0.

Proof. We proceed following the same lines as the proof of Theorem 3.7.3. Assume that f admits the
decomposition of (3.7.7) and, then, we want to prove that f ∈ B0. From Theorem 3.7.3, there exists
a positive constant C > 0 suh that∥∥∥∥∥

∞∑
k=1

ck

(
1− |ak|2

1− < z, ak >

)b∥∥∥∥∥ ≤ C sup
k≥1
|ck|,

where we recall that ‖·‖ is the Bloch norm. If ck → 0, then

lim
N→∞

||f − fN || = 0,

where {fN} denotes the partial sum of f . By the fact that each fN is an element of B0, we deduce
that f ∈ B0 whenever ck → 0.
After that, we prove that every function of B0 must admit the decomposition of (3.7.7). So, we
introduce the following holomorphic functional space:

X0 :=
{
f ∈ H(Bn) | (1− |z|2)f(z) ∈ C0(Bn)

}
,
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and consider the action of the operator S on X0, with paremeter b+1 instead of b. We notice that the
differential operator Rα,1 is an invertible operator from B0 onto X0. Furthermore, when the separation
constant r for {ak} is small enough, S is invertible on X0. Then, from the proof of Theorem 3.7.3,
since f ∈ B0 ⊂ B, f admits the following representation

f(z) =
∞∑
k=1

ck
(1− |ak|2)b

(1− < z, ak >)b
,

where

ckj =
vβ(Dkj)h(akj)

(1− |akj |2)b
, ∀h ∈ X0.

Since,

vβ(Dkj) ≤ vβ(Dk)

∼ (1− |ak|2)b+1,

and 1− |akj |2 is comparable to 1− |ak|2, the condition

lim
k→∞

(1− |akj |2)h(akj) = 0

implies that there exists a finite positive constant C such that

lim
k→∞

ckj ≤ lim
k→∞

vβ(Dkj)h(akj)

(1− |akj |2)b

≤ lim
k→∞

(1− |ak|2)b+1h(akj)

(1− |akj |2)b

≤ C lim
k→∞

(1− |ak|2)b+1h(akj)

(1− |ak|2)b

= C lim
k→∞

(1− |ak|2)h(akj)

= 0.

That is,
lim
k→∞

ckj = 0.

3.8 Complex Interpolation

The Bloch space behaves like the limit of the Bergman space Apα, when p → ∞. In fact, in this
section, we further remark this type of behaviour illustrating the complex interpolation between B
and the weighted Bergman spaces Apα, for α > −1. So that, the fact that B belongs to every Bergman
space is fundamental. We will see that the Bergman projection and the complex interpolation of Lp

spaces will be crucial tools for our aim.

In the following theorem we prove the result concerning the complex interpolation of B with Apα,
for α > −1.
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Theorem 3.8.1. Assume α > −1 and
1

p
=

1− θ
p′

,

where θ ∈ (0, 1) and 1 ≤ p′ < ∞. Then, the Bloch space interpolates with the Bergman spaces as
follows [

Ap
′
α ,B

]
= Apα (3.8.1)

with equivalent norms.

Proof. Fix a real number β so that β > α. According to Theorem 2.2.9, the Bergman projection Pβ
is bounded from Lq(Bn, dvα) onto Aqα, for 1 ≤ q < ∞. Furthermore, from Theorem 3.1., Pβ maps
L∞(Bn) boundedly onto B.
If f ∈ Apα ⊂ Lp(Bn, dvα), we know, from the complex interpolation of Lp spaces, that there exists a
family of functions hζ in

Lp(Bn, dvα) + L∞(Bn) = Lp(Bn, dvα) (3.8.2)

such that the following conditions hold
a) hζ depends on the parameter ζ continuously in 0 ≤ Re ζ ≤ 1 and analytically in 0 < Re ζ < 1.
b) hζ ∈ Lp

′
(Bn, dvα) for Re ζ = 0 and hζ ∈ L∞(Bn) for Re ζ = 1, with

sup
{
||hζ ||p

′

p′,α : Re ζ = 0
}
≤ ||h||pp,α,

and
sup {||h||∞ : Re ζ = 1} ≤ ||h||p,α,

c) f = hθ. Let fζ = Pβhζ . Then fζ ∈ Ap
′
α when Re ζ = 0, fζ ∈ B for Re ζ = 1, and fθ = f .

Appropriate norm estimates also holds for Re ζ = 0 and Reζ = 1. This shows that

f ∈ [Ap
′
α ,B]θ.

Conversely, if f ∈ [Ap
′
α ,B]θ, then there exists a family of functions fζ in

Ap
′
α + B = Ap

′
α ,

where the parameter ζ satisfies 0 ≤ Re ζ ≤ 1, such that

1) fζ depends on the parameter ζ continuously in 0 ≤ Re ζ ≤ 1 and analytically in 0 < Re ζ < 1.

2) ||fζ ||p′,α for all Re ζ = 0 and ||fζ ||B ≤ ||f ||θ for all Re ζ = 1.

3) f = fθ.

Define

hζ(z) =
cβ+1

cβ
(1− |z|2)

(
fζ(z) +

Rfζ(z)

n+ 1 + β

)
,

where 0 ≤ Re ζ ≤ 1. Using Theorem 2.4.8

||hζ ||p′,α ≤ C||fζ ||p′,α, Re ζ = 0,

and by Theorem 2.2.9
||hζ ||∞ ≤ C||fζ ||B, Re ζ = 1.

Using the complex interpolation for Lp spaces , we have

hθ ∈ Lp(Bn, dvα).

Since fθ = Pβhθ, we conclude that
f ∈ Apα.

This completes the proof.
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