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Abstract

The propose of this study is to correct statistically daily precipitation biases from the re-
gional atmospheric WRF (Weather Research and Forecasting) model outputs in the Antizana
region (Equatorial Andes) during the 2014-2015 period. Therefore, two methodologies of bias
correction are studied: the first one is to model the bias through a Gaussian process model
and the second one is to correct the bias using a spatial and time series adaptation of the
Cumulative Distribution Function transform method. Four Gaussian process models are con-
structed by using common external drifts for this type of studies. The adaptation proposed
to the Cumulative Distribution Function transform method is to correct differentiated time
series and to spatialize the approach by using Voronoi polygons. The two methodologies are
compared using a cross-validation leave-one-out framework in terms of precipitation occur-
rence and intensity criteria. The Gaussian process model shows the best results in most part
of the criteria calculated.

Résumé

L’objectif de cette étude est de corriger statistiquement les biais des précipitations issues
du modèle WRF (Weather Research and Forecasting) dans la région de l’Antizana (Andes
équatoriales), pendant la période 2014-2015. Deux méthodologies de correction des biais sont
étudiées: la première consiste en modéliser le biais par un modèle de processus Gaussien. La
deuxième méthodologie est la correction des biais en utilisant une adaptation spatiale des séries
chronologiques de la méthode "Cumulative Distribution Function transform". On construit
quatre modèles de processus Gaussien en utilisant des dérives externes utilisées communément
pour ce type détudes. L’adaptation proposée est de corriger les séries chronologiques différen-
ciées et de spatialiser la méthode en utilisant des polygones de Voronoi. On utilise finalement
une méthode de "cross-validation leave-one-out" pour comparer les deux methodologies en ter-
mes d’occurrence et d’intensité des précipitations. Le modèle de processus Gaussien montre
les meilleurs résultats dans la plupart des critères calculés.
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Chapter 1

Introduction

The Antisana glacier is located in the Equatorial Andes Cordillera around 50 km of Quito
city, the capital of Ecuador. The Antisana region is characterized by an important water
reserve with around 60% of the drinking water used by Quito city which has a population of
2’234.000 inhabitants (Basantes-Serrano, 2015; Hall et al., 2012).

The glaciers evolution in the Tropical Andes is determined by several factors, the most
important being the precipitation variability (e.g. Favier et al., 2004; Sicart et al., 2011).
Therefore, it is crucial to better understand the precipitation spatio-temporal variability in
this region. The meteorological in-situ stations in the Antisana region are few due to the
complexity of its topography. For this reason, Regional Climate Models (RCMs) are used to
simulate the local climate with high spatio-temporal resolutions. The use of RCM is essential
in the Antisana glacier region considering that its surface is approximately 16.35 km2.

In this study the Weather Research Forecasting (WRF) model is used to simulate the
atmospheric regional climate, including precipitation variables. Several previous studies used
the WRF model in the Andes as for example Mourre (2015), Mourre et al. (2016), Ochoa
et al. (2014), Ochoa et al. (2016), among others. In Mourre (2015) and Ochoa et al. (2014),
WRF simulations are compared to rainfall products derived from satellite products and in-
situ stations. Nevertheless, some authors (e.g. Giovannettone and Barros, 2009; Ochoa et al.,
2014; Mourre et al., 2016) have shown that the WRF model simulates precipitation biases
in the Andes, in terms of intensity (precipitation amounts) and occurrence (rainy/no rainy
days), because of the complex topography. For this reason, it is important to develop bias
correction methods of the simulated precipitation before using it in climate impact studies
(Vrac and Friederichs, 2015). Commonly corrected precipitation gridded products are also
needed as external forcing data for hydrological and glaciological models to understand water
resources and glaciers evolution.

In this project two precipitation bias correction methods are studied, the first one con-
sists in modeling the bias with a Gaussian process based metamodel. This approach is
also known as kriging in geostatistics. The second approach generalizes the quantile-quantile
methodology (Déqué, 2007) and is based on the Cumulative Distribution function trans-
form with singularity stochastic removal approach (hereafter CDF-t) developed by
Vrac et al. (2016). These two methods are explained in more detail in Chapter II. For com-
paring these two methods, Climate Hazards Group InfraRed Precipitation with Station Data
rainfall (CHIRPS) dataset is used.

1.1 In-situ data

We use 26 meteorological in-situ stations, installed by the Instituto Nacional de Metereología
e Hidrologia (INAMHI) in Ecuador, with a complete chronology of daily precipitation [mm
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day−1] during the 2014-2015 period. Figure 1.1 shows a map with the location of the stations.
The majority of them are distributed in Quito, there are two stations in the Amazon Region
(stations number 19 and 25) and one station in the Antisana Region (station number 26).
The study area (Figure 1.1) is divided into three regions corresponding to three regions in
Ecuador: the Pacific Region formed by the stations 2, 22 and 23, the Amazon Region formed
by the stations 19 and 25, and the Andes Region formed by the remaining ones (21 stations).
There is an in-homogeneous stations distribution because the most of them are located in
Andes region (80 % of the stations). Table 1.1 presents a description of the location and total
precipitation during the 2014-2015 period for each meteorological station. The meteorological
stations located in the Amazon Region registered the highest precipitation total values (with
a total precipitation higher than 6.000 mm).

Number Lon. Lat. Obs. WRF 1km

1 -78.53 -0.39 2447 1475
2 -78.78 -0.21 8656 1568
3 -78.54 -0.20 2510 2478
4 -78.30 -0.10 769 659
5 -78.17 -0.06 835 972
6 -78.42 -0.10 831 932
7 -78.32 -0.16 1221 562
8 -78.42 -0.43 2403 1992
9 -78.63 -0.28 2886 1082
10 -78.52 -0.16 2602 2368
11 -78.51 0.00 995 623
12 -78.14 0.05 1763 1835
13 -78.89 -0.70 1694 2105
14 -78.43 -0.56 2695 753
15 -78.63 -0.72 1506 757
16 -78.66 -0.83 962 839
17 -78.70 -0.68 1203 1229
18 -78.23 0.03 1080 1327
19 -77.93 -0.67 8276 2297
20 -78.43 -0.18 1699 948
21 -78.54 -0.09 1824 695
22 -78.90 -0.21 8954 6892
23 -78.82 -0.25 6132 2140
24 -78.66 -0.62 1989 690
25 -77.82 -0.39 6261 1186
26 -78.15 -0.47 2255 2062

Table 1.1: Description of meteorological in-situ stations. Total precipitation during the
2014-2015 period at each meteorological station and total precipitation in [mm] simulated by
WRF at 1 km resolution. The stations belonging to each region are differently colored: blue
stations to the Pacific region, dark black stations belonging to the Amazon region and black
stations to the Andes region.
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Figure 1.1: Region under study map and INAMHI stations. Color circles indicate the total
precipitation from 2014-2015 period.

1.2 WRF simulation

The WRF model is a numerical weather prediction system developed since 1990 by the Na-
tional Oceanic and Atmospheric Administration (NOAA) and the National Center for Atmo-
spheric Research (NCAR). The WRF model can be used to simulate regional climate at high
spatio-temporal resolution (a spatial resolution of 1 km and a time resolution of 1 hour).

The WRF model is used with nested domains, which consists into making simulations
in bigger domain areas containing the region of interest and gradually reduce the resolution,
in order to use the large domain simulation to force the atmospheric border conditions to
simulate the smaller one. Different options of dynamical and physical parametrizations were
tested in a previous study, so for this work it was chosen the WRF simulation with the
parameters that have provided the better precipitation results in the Andes Region.

For this study, a one-way nested WRF simulation is used with four nested domains during
the years 2014-2015. Figure 1.2 shows the four nested domains of the simulation. As we can
see a largest domain was previously simulated to finally obtain the precipitation in the region
of interest with a high spatio-temporal resolution. The largest domain has a resolution of 27
km covering an area of 2403×2943 km2. The next domain has a resolution of 9 km (540×720
km2). The domain of 3 km resolution covers an area of 297×333 km2, and finally, the highest
resolution domain (1 km) covers an area of 147×99 km2. The simulation in the last domain
(hereafter, the WRF simulation) is used as dataset for this study. The data registered in a
meteorological station is associated with the closest 1 km grid of the WRF simulation. The
comparison is not that precise because we are comparing one point (an in-situ station) and 1
km2 but until this moment, this is the highest spatial resolution that can be achieved with a
RCM.

3



Figure 1.2: Four nested domains of the WRF simulation. Mean daily precipitation [mm
day−1] during the 2014-2015 period.

1.3 CHIRPS satellite product

CHIRPS dataset was created by the U.S. Geological Survay and Climate Hazards Group
scientists and it is a satellite image product that has been recorded since around 30 years ago.
It has a spatial resolution of 5 km. One of the disadvantages of satellite products is that they
are not accurate because they suffer from biases, caused by extreme precipitation which are
underestimated (Climate Hazard Group). Figure 1.3 shows daily mean precipitation recorded
by CHIRPS in the region under study. Due to the scarce number of station, CHIRPS product
is used to evaluate the corrected gridded precipitation products (WRF, CDF-t and Gaussian
Process model).
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Figure 1.3: CHIRPS mean daily precipitation [mm day−1] map in the 2014-2015 period.
Meteorological stations are white colored.

This study is organized as follows: Chapter II describes the different methodologies. Chap-
ter III and Chapter IV present the Gaussian process model and spatial CDF-t approach results,
respectively. An intercomparison between these two methods is presented in Chapter V and
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finally, the conclusions and perspectives are detailed in Chapter VI.
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Chapter 2

The bias correction methods

In this Chapter, the modeling of the bias based on Gaussian processes is described in Section
2.1, the Spatial CDF-t approach is explained in Sections 2.2 and 2.3, and finally the evaluation
criteria to compare gridded precipitation products are described in Section 2.4.

2.1 The Gaussian process model

The Gaussian process model, known as Kriging method in spatial interpolation, takes into
account the spatial statistical structure of an estimated variable; for example, in our case the
variable of interest is the precipitation bias. The method of Kriging in spatial statistics was
investigated by Georges Matheron, who based his investigation in the work of Daniel G. Krige
in 1960. Krige used the method to estimate the distribution of gold in a region based in some
samples from a few boreholes. Several studies have been developed to correct the precipitation
bias based on Gaussian process models; Hanchoowong et al. (2012) developed a bias correction
of radar rainfall based on kriging approach in Thailand, Müller and Thompson (2013) made a
bias adjustment of satellite rainfall in Nepal and they used kriging to interpolate precipitation
from in-situ measures and, Mourre et al. (2016) made a precipitation interpolation based on
kriging using as external drift the WRF simulation. The principal concepts of the Gaussian
process modeling and parameters estimation as described hereafter are based on Marrel et al.
(2008).

Definition 2.1.1. A Gaussian Process is a collection of random variables such that any
finite number of its combination has a joint Gaussian distribution, in other words, it is a
generalization of the Gaussian probability distribution (Rasmussen and Williams, 2005), and
it is fully specified by its mean and covariance function.

Definition 2.1.2. Let d ∈ N∗, a stochastic process (Xt)t∈Rd is stationary if

(Xt1 , ..., Xtn)
D
= (Xt1+k, ..., Xtn+k)

for all n ∈ N t1, ..., tn ∈ Rd, k ∈ N.

Consider that n observations of a phenomenon are taken in R2 (for example, the WRF
bias precipitation registered in a point of the region under study). Each observation y(x)
corresponds to a realization registered in a point x = (x1, x2) ∈ R2. The set of points
where the observations are collected is denoted by xs = (x(1), ..x(n)) with x(1), ..., x(n) ∈ R2

(each x corresponds to a point in the space). The set of observations of the phenomenon is
denoted by ys = (y(1), ..., y(n)) with y(i) = y(x(i)), ∀i = 1, ..., n. The Gaussian process
modeling consists into representing y(x) as a realization of a random function Y (x) that can

6



be decomposed into a deterministic function f(x) and a centered stationary Gaussian
process Z(x). The Gaussian process model is defined as:

Y (x) = f(x) + Z(x). (2.1)
The function f(x) represents the tendency and commonly, it is constructed as a finite

linear combination of k elementary functions (fi i ∈ {0, ..., k}):

f(x) =
k∑
j=0

βjfj(x) = F (x)β

where β = (β0, ..., βk) is the regression parameter vector and F (x) = (f0(x), ..., fk(x)).
In R2 commonly the elementary functions used are: f0(x1, x2) = 1, f1(x1, x2) = x1 and
f2(x1, x2) = x2. The function f(x) allows the addition of an external drift into and this is
advantageous because it allows a nonstationary global modeling framework, in other words
the variable Y does not need to be stationary (see Definition 2.1.2) but the variable Z is
assumed to be stationary.

The Gaussian centered process Z(x) has as covariance function:

Cov(Z(x), Z(u)) = K(x− u) = σ2R(x− u), (2.2)
where x, u ∈ R2, σ2 is the variance of Z and, R is its correlation function. The process Z is
stationary because it is considered that its correlation function only depends on the difference
between x and u.

In this study, we use the Matérn covariance functions because they are stationary and
commonly used in spatial statistics studies due to their flexibility (Paciorek and Schervish,
2006), and they are defined as:

K(x, u) =
1

Γ(ν)2ν−1

[√
2ν

κ
|x− u|

]ν
Kν

(√
2ν

κ
|x− u|

)
, (2.3)

where Kν is the modified Bessel function of second kind of order ν > 0, and κ is a positive
parameter that represents the characteristic length scale (Rasmussen and Williams, 2005).
Let’s suppose Cov(Z(x), Z(u)) = σ2Rθ(x − u) where θ = (ν, κ) is the correlation parameter
vector of 2.3.

Commonly, the observations y(1), ..., y(n) are noisy. For that, an independent centered
Gaussian variable U(x) with variance ε2 = σ2τ is added to the Gaussian process model:

Y (x) = f(x) + Z(x) + U(x). (2.4)
Thus, the covariance function of Y is the following:

Cov(Y (x), Y (u)) = σ2(Rθ(x− u) + τδ(x− u))
where δv = 1{0}.
Under the conditions of a Gaussian Process model (defined by the equation 2.4), Y follows

a multinormal distribution:

p(Y |xs, β, σ, θ, τ) = N (Fsβ,Σs), (2.5)
where Fs = [F (x(1))t, ..., F (x(n))t]t and its covariance matrix Σs = σ2(Rθ(x

(i)−x(j))i,j=1,...,n+
τIn) where In is a n-dimensional identity.

Let’s consider a new point x∗, then the joint probability distribution of (Y, Y (x∗)) is the
following:

7



p(Y, Y (x∗)|xs, x∗, β, σ, θ, τ) = N
[(

Fs
F (x∗)

)
β ,

(
Σs k(x∗)

k(x∗)t σ2(1 + τ)

)]

where
k(x∗) = [Cov(Y, Y (x∗))]t

= σ2[Rθ(x
(1) − x∗) + τδ(x(1) − x∗), ..., Rθ(x(n) − x∗) + τδ(x(n) − x∗)]t.

Then, the conditional distribution of Y (x∗) is Gaussian:

p(Y (x∗)|ys, xs, x∗, β, σ, θ, τ) = N (E[Y (x∗)|ys, xs, x∗, β, θ, τ ],Var[Y (x∗)|ys, xs, x∗, β, σ, θ, τ ])
(2.6)

where

E[Y (x∗)|ys, xs, x∗, β, θ, τ ] = F (x∗)β + k(x∗)tΣ−1s (ys − Fsβ), (2.7)
E[Y (x∗)|ys, xs, x∗, β, θ, τ ] is the predictor of Y (x∗) and the variance is:

Var[Y (x∗)|ys, xs, x∗, β, θ, τ ] = σ2(1 + τ)− k(x∗)tΣ−1s k(x∗), (2.8)
and, the variance corresponds to the mean square error of the predictor.
Finally, the estimation of parameters (β, θ, σ, τ) is developed in order to obtain the mean

(described in 2.7) and the variance (see 2.8) of the Gaussian Process model. The parameters
are estimated by using the maximum likelihood method. The likelihood of Y is:

lY (β, θ, σ, τ) = −n
2 ln(2π)− n

2 ln(σ2)− 1
2 ln(det(Rθ + τIn)) (2.9)

− 1
2σ2 (Y − Fsβ)t(Rθ + τIn)−1(Y − Fsβ)

Given the parameters θ and τ , the maximum likelihood estimator of β is:

β̂ = (F ts(Rθ + τIn)−1Fs)
−1F ts(Rθ + τIn)−1ys,

and the maximum likelihood estimator of σ2 is:

σ̂2 =
1

n
(ys − Fsβ̂)t(Rθ + τIn)−1(ys − Fsβ̂).

Then, taking into account the estimators of β and σ, the predictor Ŷ (x∗) is the following:

Ŷ (x∗)|ys,xs,x∗,σ,θ,τ = F (x∗)β̂ + k(x∗)tΣ−1s (ys − FsB̂)
and its variance is:

Var[Ŷ (x∗)|ys, xs, x∗, σ, θ, τ ] = σ2(1 + τ)− k(x∗)tΣ−1s k(x∗) + u(x∗)(F tsΣ
−1
s Fs)

−1u(x∗)t,
where u(x∗) = F (x∗)− k(x∗)tΣ−1s Fs.
The estimation of β̂ and σ̂2 depends on θ and τ parameters. Thus, replacing the estimation

of β and σ2 on 2.9, the estimation of θ and τ are obtained as the parameters that maximizes
the following function:

(θ̂, τ̂) = arg min
θ,τ

det(Rθ + τIn)
1
n σ̂2. (2.10)

Finding the parameters of 2.10 is a costly optimization problem. For this reason, there
are several algorithms proposed to solve it as for example, the simplex method, Bayesian
methods, among others (Marrel et al., 2008).

This study is based on Gräler et al. (2012). Gaussian process models are developed to
correct daily precipitation biases and the time dimension is not directly considered in the
modeling process. In other words, a Gaussian process model is constructed for each day of
the 2014-2015 period to correct its precipitation bias. Separate daily variograms, as far as
daily evolving ones (see hereafter) have been implemented. It is also possible to estimate

8



the covariance function in R3 but this has not been tested during this internship (see more
details in Gräler et al. (2016)). The strategies to deal with the spatial dimension are hereafter
described.

2.1.1 Some concepts of Kriging in Spatial Statistics

The function K(x − u) defined in 2.2 is known as variogram in Spatial Statistics and it is
usually denoted by γ(h) where h = x− u. The following concepts are needed to explain the
strategies employed to obtain daily precipitation corrections. We decided to model a spatial
variogram with possible daily evolution (see below).

• Nugget: It is defined as:
c0 = lim

|h|→0
γ(h)

And the nugget effect (c0 > 0) is produced when the white noise U (defined in 2.4)
introduces a discontinuity at the origin (Marrel et al., 2008).

• Sill: It is defined as lim|h|→∞ γ(h).

• Range: The distance or lag h at which γ(h) reaches the sill.

Then, to obtain daily precipitation two strategies are used; a separate daily variograms
and a daily evolving variograms strategies based on Gräler et al. (2012). The main ideas of
these two strategies are the following ones:

Separate daily variograms: It is based in using data of each day from bias precipi-
tation to estimate a variogram separately to each day. One of the disadvantages of this
approach is that, it does not take into account information of past days, and temporal
data dependencies could be lost.

Daily evolving variograms: This approach is based in adding information of the
previous day with a certain weight λ ∈ [0, 1] to the estimation of the new one. Hence,
the estimation of a day D variogram is calculated as:

range = λrangeD + (1− λ)rangeD−1

nugget =

(
λ
nuggetD
sillD

+ (1− λ)
nuggetD−1
sillD−1

sillD
)

partial sill = sillD − nugget.
where D − 1 is the previous day of D. Based on the study developed by Mourre et al.
(2016), we use λ = 0.9. In our studies we have implemented both separate and evolving
approaches. Additional tests for finding the best λ should have been done, but it is out
of the scope of this work.

2.2 Cumulative Distribution Function-transform approach

The probabilistic approach "Cumulative Distribution Function-transform" (hereafter CDF-
t) was developed for the correction of punctual daily wind speed and regional downscaling
(e.g. Michelangeli et al., 2009; Vrac and Vaittinada, 2017). The CDF-t method has also been
applied to correct biases of different atmospheric variables as for example; temperature, pre-
cipitation, relative humidity, among others (e.g. Colette et al., 2012; Vrac et al., 2012). Vrac
et al. (2016) proposed a modification of the CDF-t method for bias correction, specifically

9



designed for precipitation, called "Singularity Stochastic Removal" (hereafter SSR). The mo-
tivation for developing an approach specialized for precipitation is because of its particular
property in terms of a large number of zeros (no-precipitation events) in a daily time step.
The principal advantage of this approach is that it is able to correct biases avoiding separating
the correction in terms of occurrence (number of rainy days) and intensity of precipitation
(quantity of precipitation). The SSR approach has been used to correct heat waves over
France in Ouzeau et al. (2016) and also in a multivariate quantile mapping bias correction
context to correct 3-hourly surface meteorological variables from the Canadian Centre for
Climate Modelling and Analysis Regional Climate Model across a North American domain in
Cannon (2017).

Description of the CDF-t method

In our study, the CDF-t method aims at relating cumulative distribution functions (CDFs)
of a climate variable (here the precipitation) from the WRF simulation to the CDF of this
variable from the in-situ observation.

A mathematical transformation T is applied to the CDF of simulated precipitation to
define a new CDF as close as posible to the CDF measured at the station.

Let Fsimh and Fobsh define respectively the CDFs of two variables of interest from the
WRF (subscript sim) and from a given station (subscript obs) over a historical calibration
period (subscript h).

We assume that the transformation T allow us go from Fsimh to Fobsh:

T (Fsimh(x)) = Fobsh(x).
Replacing x by F−1simh(u), u ∈ [0, 1], we obtain:

T (u) = Fobsh(F−1simh(u)),
which provides a simple definition of T . (See Appendix A for more details on the generalized
inverse F−1).

When the observed and the simulated data have CDFs very different from each other, the
domain of Fobsh can be theoretically restricted. For maximizing this domain, the simulated
data {xh,i} are normalized in order to be in [0,Mref ], where Mref = maxi∈{1,..,n} yh,i with
{yh,i} the observed data. The normalized time series for simulated data is:

x̃h,i = xh,i
Mref

MCmod
,

where MCmod = maxi∈{1,...,n} xh,i, it is the maximum value of the simulated time series.
The same process is followed to normalize the simulated data {xf,i} over a projection or
validation time period:

x̃f,i = xf,i
Mref

MCmod
.

Assuming that T is stationary in time, the transformation can be applied to Fsimf, the
CDF of the simulated precipitation over a validation or a future period f , to generate Fobsf,
the CDF of the in situ precipitation for the same period f :

T (Fsimf(x)) = Fobsf(x),
which is equivalent to:

Fobs(x) = Fobsh(F−1simh(Fsimf(x))).
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The Singularity Stochastic Removal Approach

The approach developed by Vrac et al. (2016) is to correct daily punctual precipitation in
terms of occurrence and intensity by replacing the 0 values of the observed and simulated
time series into small random values uniformly distributed. First, a threshold th ∈ R+ is
chosen such that, all the positive values –of the observation and simulation– are greater
than it. Then, each 0 value, in the observation and simulation, is changed by a uniformly
distributed random variable v ∼ U]0,th[. Finally, the adjustment method CDF-t is applied
and the corrected values of the simulated time series that are lower than th are set to 0.

The approach SSR was compared with three commonly used approaches of bias correction
of precipitation: direct approach, threshold adaptation and positive approach. Briefly, the
approach of threshold adaptation consists in finding a threshold th in (mm day−1) such that
Pr(Obs = 0) = Pr(Sim ≤ t). Then all the values of the simulation lower than th are set to
0, and then, an adjustment method, as for example CDF-t is applied. The positive approach
consists in correcting only the positive values of precipitation, so in this case no correction
of the occurrence is done. Finally, the direct approach consists in applying the adjustment
method in the complete time series.

Historically, the CDF-t method has been applied as a downscaling method and to correct
future time series biases. But in this study, we also adapt the method to correct spatial
precipitation data. The main idea is to partition the region into "neighbors sub-regions",
in such a way that every sub-region contains a station. The precipitation biases in these
sub-regions are "supposed" to behave similarly. To correct a simulated time series belonging
to a given sub-region, a transformation T (described in the CDF-t method) is constructed
by using as calibration time series observed-simulated time series at the station located in it.
The strategy used to spacialize the CDF-t is detailed in the next section.

2.3 Spatial CDF-t approach

We propose two adaptations to the CDF-t method with SSR approach, the first adaptation is
on the estimation of the CDFs based on time series, and the second one is the spatialization
of the correction over the region under study using Voronoi polygons. The observed and
simulated time series CDFs estimation is one of the essential steps in CDF-t method. Let
(Xt)t∈N∗ and (Yt)t∈N∗ , be the simulated and observed time series, respectively. A set of
properties to estimate the CDFs have to be satisfied by (Xt)t∈N∗ and (Yt)t∈N∗ . The (Xt)’s
(similar to the (Yt)’s) should be independent and identically distributed random variables.
Tests to identify trends are carried out to obtain stationary time series and, an analysis of
auto-correlation function of each time series is developed in order to have independent data.
First, before proceeding, some basic time series concepts are presented, based on Rubenthales
(2017) and Jacques (2016).

2.3.1 Basic time series concepts and tests

Definition 2.3.1. A time series is a set of xt ∈ R with t ∈ {1, ..., n} where t index represents
a time unit, as for example; days, months or years. A time series xt is a finite number of
observations of a stochastic process (Xt)t≥0. In this study, the analyzed time series are
observed or simulated daily precipitation.

Until the moment, tests have been developed to prove a weaker form of stationary known
as second-order stationary, that is defined as follows:

Definition 2.3.2. A stochastic process (Xt)t≥0 is stationary of second order if its expec-
tation value is constant, i. e. it does not depend on t (E(Xt) = µ ∀t) and, its correlation
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function, defined as γ(h) = corr(Xt, Xt+h) ∀t, only depends on the lag h, in other words it
is independent of t.

Definition 2.3.3. Let’s supposeXt = mt+st+εt, wheremt and st are deterministic functions
and εt a random process with E(εt) = 0 and cov(Xt, Xt+h) = 0 if h 6= 0. εt is known as a
white noise. The function m is the trend and s is the T -periodic seasonal component of
Xt. For example, a simple trend case is when m is linear, m = a+ bt.

In other words, in order to obtain stationary time series, its trend and seasonality must
be removed. A commonly used method to remove a times series linear trend and seasonality
is the difference method. The difference method consists in applying an operator ∆T :
(Xt)t∈Z → (Xt−Xt−T )t∈Z over the time series Xt. Then, the time series ∆TXt does not have
linear trend and seasonality. Because, we have the following:

Xt −Xt−T = mt −mt−T + εt − εt−T ,
if we suppose there is a linear trend: mt = at+ b, therefore:

Xt −Xt−T = at+ b− a(t− T )− b+ εt − εt−T
= aT + εt − εt−T

Some tests are made to identify that the time series under study have linear trend, in
other words; the operator ∆ allow us to have time series without trend.

A time series dependence index is its empirical auto-correlation function defined as follows.

Definition 2.3.4. The empirical auto-correlation function (ACF) of a time series xt is
defined by:

ρ̂(h) =
σ̂n(h)

σ̂n(0)

where σ̂(h) = 1
n−h

∑n−h
t=1 (xt − xn)(xt+h − xn) and xn is the time series empiric mean.

Definition 2.3.5. A stochastic process Xt is autoregressive of order p (AR(p)) if it can
be represented as:

Xt = εt +

p∑
j=1

Xt−j (2.11)

with εt a white noise, p ∈ N and ap ∈ R\{0}.

For constructing an independent time series from the original one xt, a lag h such that the
estimated auto-correlation ρ̂(h) is significant has to be found. Then, the sub-time series x′t is
constructed by skipping h positions in xt. For example, if the auto-correlation is significant
until h = 1, only the odd index t are kept x′t = x2t.

Tests to identify trends and stationarity

There are tests to analyze the existence of a linear trend and stationary in a time series:

The Mann-Kendall non-parametric test is used to detect monotonic trends in time
series, the hypothesis tested are: H0 : the data come from a population with independent
realizations and are identically distributed and the alternative hypothesis H1 : the data
follow a monotonic trend (Pohlert, 2016).

The Augmented Dickey Fuller (ADF) test shows if data is stationary, the hypothesis
considered are: H0 : The data is not stationary and H1 : The data is stationary.
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The Kwiatkowski Phillips Schmidt Shin (KPSS) test is used to analyze if data is
stationary, similar to the Augmented Dickey Fuller test, but the hypothesis are: H0 :
The data is stationary and H1 : The data is not stationary.

Following the spatialization strategy is explained and the complete algorithm is described.

2.3.2 The spatial CDF-t approach algorithm

A first approach to spatialize the CDF-t method is to divide the region using a partition
based on Voronoi diagrams. The Voronoi diagrams, also known as Thiessen polygons, have
been widely used in meteorological applications. As for example in Buytaert et al. (2006), a
precipitation spatial interpolation with Thiessen polygons in the south Ecuadorian Andes is
developed. In Ly et al. (2011), a spatial interpolation is carried out in the Ourthe and Ambleve
catchments in Belgium. The method consists in dividing a region into polygons in such a way
that every grid point is contained in the sub-region closest to a station (Aurenhammer and
Klein, 2000; Barbulescu, 2016).

The following is based on Aurenhammer and Klein (2000). Let S be a set of n observations
(with n ≥ 3) and D ⊂ R2 a region. Let p, q ∈ S, then let B(p, q) = {x ∈ D|d(p, x) = d(q, x)},
where d is the Euclidean distance. B(p, q) is the perpendicular line through the center of the
line segment from p to q. B(p, q) separates the halfplane D(p, q) = {x ∈ D|d(p, x) < d(q, x)}.
The Voronoi region of p with respect to S is defined as:

VR(p, S) = ∩q∈S,q 6=pD(p, q).
And finally, the Voronoi diagram of S is the following:

V(S) = ∪p,q∈S,p6=qVR(p, S) ∩VR(q, S)
The set S in our case is composed by the 26 in-situ meteorological stations.

2.3.3 The final procedure

The procedure to spatialize the precipitation bias correction method CDF-t with stochastic
approach is now described. First, the Voronoi diagram with the meteorological stations points
is layout, so n polygons are created. A polygon is represented by an observed and a simulated
time serie, Yt and Xt respectively. Then, each region grid point is assigned to a single polygon.
The grid point also contains a simulated time series Z. Following, a threshold value of 1 mm
day−1 is applied to all data to avoid the recurrent problem of small precipitation values
simulated by the WRF model. Other threshold values were tested but the best results are
obtained with a threshold of 1 mm day−1 in terms of precipitation occurrence, similar to the
result obtained by Mourre et al. (2016).

To obtain the CDFs for constructing the T transformation, new time series ∆Xt, ∆Yt and
∆Zt are created by applying the difference operator ∆. Remember that, ∆Xt = Xt −Xt−1,
and this step is made because these time series have no trend and are stationary according
to the previously tests. To avoid the problem that our time series have a large null values
number, we have adapted the approach of Vrac et al. (2016). The procedure is next recalled:

1. Determine a threshold th > 0 such that all the model and observational differentiated
time series (∆Xt, ∆Yt and ∆Zt) in absolute value that are strictly positive and smaller
than th.

2. Each null value is changed by a value v v U [−th, th] in the observation and simulation
differentiated time series.
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3. The method CDF-t is applied to the new time series to correct ∆Zt. The CDFs are
constructed with the sub series previously defined, with the lag p obtained by the AR(p)
model, but the transformation T is applied to all the time series ∆Zt and the ∆Z ′t
corrected time series is obtained.

Then, the new corrected precipitation variable Z ′t is calculated as:
Z ′t = Zt−1 + ∆Z ′t

where t > 1 and Z ′1 = Z1. The values Z ′t that are smaller than 0 are set to 0 and finally,
a threshold of 1 mm day−1 is used to get the final corrected precipitation. Initially, the
method CDF-t was developed to correct directly precipitation, but the main modification idea
proposed is that we are now correcting the precipitation difference between two consecutive
days (Xt − Xt−1) in order to use data that have the mandatory properties to make a good
CDFs estimation.

2.4 Comparison criteria

To compare the accuracy of the rainfall products created by these two methods (Gaussian
process model and Spatial CDF-t approach), we use a leave-one-out cross-validation
framework. The leave-one-out cross-validation consists of dividing a data set into a training
and testing set recursively, by taking out one observation at each iteration from the data
set. Then, the model is built with the remaining data. Finally, the accuracy is tested over
the testing set –composed by one observation. In the particular case of this application, at
each cross-validation iteration, a station is "removed" from the data set. Then, the model is
built using the remaining stations and validated over the one station that was removed. We
proceed recursively with all the stations.

We have computed several criteria, in terms of occurrence (number of rainy/no rainy days)
and intensity of precipitation (precipitation quantity), to evaluate the approaches accuracy
in a daily basis. The following criteria are commonly used in the literature as for example in
Ochoa et al. (2014); Maussion et al. (2011); Mourre et al. (2016); Vrac et al. (2016).

Criteria related to the occurrence

A day is considered as a "rainy day" if its daily precipitation value is higher than 1 mm
day−1 –other threshold values were tested but the best performance between model and in-
situ observations was obtained with 1 mm day−1. Then, a dummy variable is created for
each time series to code the variable rainy/no rainy days. To calculate criteria related to
occurrence of rainy day the contingency Table 2.1 is built where the value 1 codes a rainy day
and the value 0 codes a no-rainy day.

In-situ observation
Value 1 0

Simulation 1 A B
0 C D

Table 2.1: Contingency table to evaluate the accuracy of the approaches. The value 1 codes
a rainy day, and 0 codes a no-rainy day.

The criteria related to the occurrence calculated are:
The false alarm rate (FAR) is defined as the wrong number of rainy days simulated over

the total number of rainy days simulated:
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FAR =
B

A+B
.

The probability of detection (POD) is defined as the ratio between the number of rainy
days simulated correctly and the total number of rainy days observed:

POD =
A

A+ C
.

The probability of false detection (PODF) is the ratio between the number of rainy
days incorrectly simulated over the number of no-rainy days of the observation:

PODF =
B

B +D
.

And finally, the Heidke skill score (HSS) is calculated as:

HSS =
S − Sref
1− Sref

where S = A+D
n and Sref = (A+B)(A+C)+(B+D)(C+D)

n2

It could be interpreted as the simulation ability to be better or worst than a random
simulation. A perfect product should have a FAR value of 0, a POD value of 1, a 0 PODF
value and a HSS value of 1 (Maussion et al., 2011).

Criteria related to the intensity

The following criteria are used to evaluate gridded products accuracy in terms of intensity:
theKolmogorov-Smirnov Test (KS) is a non-parametric test to compare two distributions,
the maximal difference between them is calculated. The Spearman correlation coefficient,
the root mean square error (RMSE), and the mean bias are computed. It is important
also to know the percentage of data that is over the percentile 95 of the observation, in the
case of a good precipitation product it should be close to 5%. And finally the predictivity
coefficient Q2, which can be interpreted as the percentage of the predictive ability of the
model. The following is the definition of the criteria:

mean_bias =
1

n

n∑
i=1

(ẑ(xi)− z(xi)),

RMSE =

√√√√ 1

n

n∑
i=1

(ẑ(xi)− z(xi))2,

Q2 = 1−
∑n

i=1(z(xi)− ẑ(xi))2∑n
i=1 (z − z(xi))2

,

where ẑ(xi) is the prediction of the precipitation variable in a cross-validation framework
at the location xi, z(xi) is the observation in the point xi, ẑ and z are the observation and
prediction expectations, respectively.

In this Chapter, we have described the bias correction methodologies applied in this study,
the implementation details are presented in the Chapters III and IV and an intercomparison
between methodologies is developed in Chapter V.
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Chapter 3

Implementation of Gaussian Process
Models to correct WRF precipitation
biases

As mentioned before, the WRF model simulates precipitation biases. Our main objective
in this chapter is to correct statistically WRF daily precipitation bias in the region under
study during the 2014-2015 period. The first methodology implemented is to model WRF
biases through Gaussian Process models, explained in Chapter II. This part of the study is
inspired on the work of previous studies. Lichtenstern (2013) used Gaussian process models to
interpolate temperature in Germany and described a didactic introduction to kriging in spatial
statistics. Mourre et al. (2016) and Ochoa et al. (2014) have made an interpolation based
on Gaussian process of precipitation in the Andes using as external drift WRF simulated
precipitation. Finally, Gräler et al. (2012) elaborated an interpolation of the Particulate
matter PM10 concentrations in Europe during 2009 and the strategies that we use for including
the time are presented.

Traditionally, Gaussian Process modeling has been used to interpolate different atmo-
spheric variables over a region (as for example, precipitation, temperature, among others,
described in the previous studies). In this study, we model the WRF biases defined as the
difference between the WRF simulation value and the observation:

BIAS = WRF simulation−Observation.
Then, we obtain a prediction of the bias in each point of the region (B̂IAS) and we proceed

to calculate the predicted precipitation (P̂recip.) value as:
P̂recip. = WRF simulation− B̂IAS. (3.1)

Before proceeding with the daily bias precipitation correction, a preliminary analysis over
the annual cumulative precipitation registered (2014 and, 2015) are made to understand the
accuracy of the Gaussian process models proposed during each year.

This Chapter is organized as follows: Section 1.1 presents an empirical analysis of the
spatial distribution of the accumulated biases during the 2014 and 2015 periods. Section 1.2
describes the selection of the drifts (f(x) function). In Section 1.3 we study the results of
an annual accumulated precipitation correction and finally, Section 1.4 presents the results of
the daily bias precipitation correction for the 2014-2015 period.

3.1 The spatial distribution of WRF precipitation biases

The spatial bias distribution (our variable of interest Y ) during the 2014 and 2015 periods is
empirically analyzed before proceeding with the Gaussian process modeling. There are tests
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to analyze if the variable Z (obtained from the decomposition of Y into f and Z, described
in Section 2.1) is stationary (see definition 2.1.2) that is an essential property to implement
a Gaussian process model (Fuentes, 2005; Myers, 1989). But further implementation of these
tests is needed, so they are out of the scope of this study.

Figures 3.1 a) and b) show the WRF simulated biases in terms of accumulated precipitation
for the 2014 and 2015 years, respectively. The biases in percentage of 2014 and 2015 periods
are shown in Figure 3.1 c) and d), respectively. The biases are more evident in the Amazon
Region (stations 19 and 25), where an underestimation of precipitation of approximately 3.000
mm year−1 is simulated. The biases of 2014 and 2015 periods are slightly different because
during 2014 period, there is an overestimation of the simulated precipitation in the region
of Quito (North-West of the domain: stations 3, 6 and 18) in contrast to 2015, where an
underestimation is displayed in all the stations.
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Figure 3.1: WRF precipitation biases for the a) 2014 and b) 2015 periods. WRF precipi-
tation biases in percentage for the c) 2014 and d) 2015 periods.

3.2 Selection of the deterministic function f(x)

The variables longitude, latitude and altitude are commonly used as drifts (the f(x) function
described in Section 2.1) in this type of studies. We follow the procedure developed by Hudson
and Wackernagel (1994) to analyze their relevance as external drifts in this context. Figure
3.2 shows the linear relationship between our variable of interest (the bias) and three drifts
(longitude, latitude and altitude) in a bi-annual basis, during the 2014-2015 period. Through
this analysis, we have found that there is a notable difference between the bias amounts in
the three geographic regions of Ecuador (Pacific, Andes and Amazon regions). Notice that,
the bias values are smaller in the Andes region in contrast to the values obtained in the other
two regions. This result is obtained because for this work it was chosen the WRF simulation
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with the parameters that have provided the better precipitation results in the Andes Region.
Figure 3.2 shows that the linear regression between the bias and the altitude is the only

significant (p_value < 0.05). In other words there is a linear significant relationship only
between the altitude and bias.
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Figure 3.2: Correlation diagram of bias with different drifts (which are: longitude, latitude
and altitude). Blue points correspond to the stations belonging to the Pacific region, black
points to the Andes, green points to the Amazon region. The linear regression between the
bias and its external drifts is depicted in red.

3.3 Annual accumulated precipitation correction during the
2014 and 2015 periods

The accuracy of the Gaussian process (hereafter GP) models developed to correct the bias
of the accumulated precipitation using three different drifts (altitude, longitude and latitude)
are studied during the 2014 and 2015 periods, separately. Therefore, the criteria described in
the Section 2.4 are calculated following a cross-validation leave-one-out framework over the
region under study. Four corrected precipitation products are constructed by using the three
drifts previously described:

1. Gaussian process model with drift longitude, latitude and altitude (GP+longitude+latitude+alt).

2. Gaussian process model with drift longitude and latitude (GP+longitude+latitude).

3. Gaussian process model with drift longitude (GP+longitude).

4. Gaussian process model with drift altitude (GP+altitude).

Table 3.1 shows the cross-validation results over the three corrected precipitation gridded
products. In the case of the criteria calculated for the WRF simulation, they are obtained
directly from the registered value simulated in the grid point that corresponds to the station.
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2014 2015
Bias RMSE Correlation Q2 Bias RMSE Correlation Q2

WRF 1.77 2.89 0.59 2.19 3.67 0.65
GP+longitude+latitude+alt. 1.71 2.31 0.71 0.44 1.56 2.14 0.80 0.65

GP+longitude+latitude 1.48 2.14 0.76 0.56 1.31 2.08 0.84 0.71
GP+longitude 1.50 2.14 0.76 0.49 1.32 2.11 0.84 0.64
GP+altitude 1.68 2.30 0.72 0.56 1.72 2.29 0.78 0.70

Table 3.1: Cross-validation leave-one-out results of annual accumulative precipitation for the
three Gaussian Process models proposed with three drifts: longitude, latitude and longitude
and latitude. The criteria are calculated for the 2014 and 2015 periods, separately.

All the three proposed GP models show better results in terms of the criteria calculated
compared to the WRF simulation. But in general, the GP+longitude+latitude model obtains
the best results in all the criteria (bias, RMSE, correlation and Q2). Thus, the GP model
selected to correct the bias precipitation is the GP+longitude+latitude model. Figure 3.3
shows the daily standard deviation of the selected model (GP+longitude+latitude) during
the 2014 and 2015 period. The Amazon stations (numbers 19 and 25) have higher variances
values (3 to 4 mm day−1) than the other stations because one of the problems faced in the
implementation of this methodology is the scarcity of observations and its in-homogeneous
distribution. Notice that, the year 2014 (Figure 3.1 a)) presents biases values bigger than the
biases values of 2015, this result is caused because the year 2015 was a dry year.
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Figure 3.3: Daily standard deviation from the GP+longitude+latitude model for a) 2014
and b) 2015 periods.

3.4 The daily precipitation correction

In this section we proceed with the daily correction following the two strategies described
in Section 2.1.1: the separate daily variograms and the daily evolving variograms. The first
strategy consists into creating a GP model for each day of the period 2014 and 2015. The
second strategy, similar to the first one, consist into fitting a GP model to each day D but
taking into account the parameters of the model of the previous day D− 1 on the estimation.

To analyze the accuracy of the two strategies with GP+longitude+latitude using the sep-
arate variogram or the daily evolving variogram strategies, the mean predictivity coefficients
Q2 for each day of the 2014-2015 period are calculated and Table 3.2 shows the mean Q2
coefficients calculated. The best accuracy is obtained with separate daily variograms because
it obtains a mean accuracy of 11%. Figure 3.4 shows the Q2 daily coefficients evolution along
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the 2014-2015 period.

Q2 Separ. Variog. Daily Evol. Variog.
GP+longitude+latitude 0.11 0.05

Table 3.2: Mean Q2 predictivity coefficient for two daily approaches during the 2014-2015
period.
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Figure 3.4: Daily Q2 evolution from the 2014-2015 period.

Figure 3.5 shows the daily standard deviation evolution of the GP+longitude+latitude
model at three stations located in each of the three geographical regions during the 2014-2015
period. The three stations show standard deviations that vary between 0 and 20 mm day−1.
The time periods where the standard deviation values are higher correspond to rainy periods
and, the other ones corresponds to dry periods in the region.
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Figure 3.5: Standard deviation daily evolution for the prediction from the 2014-2015 period
calculated in three stations: blue line for a Pacific station (number 22), green line for an
Amazon station (number 25) and black line for an Andes (number 26).
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Table 3.3 shows the criteria calculated over the accumulated corrected precipitation during
2014 and 2015 obtained by the GP model with the strategy separate variograms. Almost all
the criteria are similar to the previous results obtained in Table 3.1, the bias criterion is slightly
bigger than the annual correction, the RMSE values are smaller compared to those obtained
in the annual correction and the Q2 values are similar to the previous values obtained. Thus,
the method is coherent in an daily basis and an annual basis correction.

Period BIAS RMSE Corr. Q2

2014 1.52 0.08 0.76 0.56
2015 1.54 0.09 0.80 0.61

Table 3.3: Criteria calculated over the accumulated precipitation quantity during 2014 and
2015 periods obtained from the results of the corrected precipitation by GP strategy separ.
variog.

Finally, Figure 3.6 shows the mean daily precipitation during the 2014-2015 period of two
gridded precipitation products: the WRF simulation and the GP+longitude+latitude model.
The GP+longitude+latitude (hereafter GP) precipitation map has preserved the physical
spatial patterns of the WRF simulation. A detailed comparison between the GP model and
the spatial CDF-t approach is carried out in Chapter V.
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b) GP+longitude+latitude
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Figure 3.6: Mean of daily precipitation [mm day−1] maps during the 2014-2015 period.
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Chapter 4

Implementation of Cumulative
Distribution Function-transform
spatial approach

In previous studies, the CDF-t method has been applied as a downscaling method and to
correct future time series biases (e.g. Michelangeli et al., 2009; Vrac et al., 2016). But in this
study, we try to adapt the method to correct spatial precipitation data. The main idea is to
partition the region into "neighbors sub-regions", in such a way that every sub-region has an
associated observed-simulated time series. The precipitation biases in these sub-regions are
"supposed" to have similar values. To correct a simulated time series belonging to a given
sub-region, a transformation T (described in the CDF-t method) is constructed by using the
observed-simulated time series CDFs associated with the sub-region and the grid point time
series CDFs. In other words, instead of using a future time series as it is originally employed,
we use time series belonging to an other grid of the sub-region assuming that the biases in all
the sub-region grids are similar.

As it was mentioned before, each time series have to be stationary, independent and
identically distributed random variables. Therefore, tests to identify trends are carried out to
obtain stationary time series, and an analysis of auto-correlation function is developed. This
Chapter is organized as follows: in Section 4.1, we analyze the stationarity and independence
of the time series, and the spatial correction is studied in Section 4.2.

4.1 Time series analysis

The Mann-Kendall, ADF, and KPSS tests (described in Chapter II) are applied to observed
and simulated time series. The ADF p_value test is lower than 0.05 in all the time series,
meaning that our data is stationary. But Mann-Kendall test results show that the hypothesis
H0 is rejected, meaning that there is a monotonic trend in the data for almost all the time series
except for four stations and three corresponding grid points in the simulations. The KPSS
test results show that in all the time series the hypothesis H0 is rejected with a significance of
10%, in other words the data is not stationary. So, having this in mind, the operator difference
∆Xt = Xt −Xt−1 must be applied in the time series. We applied the operator difference to
them and then, the Mann-Kendall and KPSS tests are recalculated in the differentiated time
series. The two tests results are drawn in box-plots in Figure 4.1. According to these two tests,
the differentiated time series (Yt − Yt−1 and Xt − Xt−1) are stationary and do not present
monotonic trends. Figure 4.2 show the original time series, their respective differentiated
series and CDFs of an Andes station (station number 26).
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a) Mann-Kendall.
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Figure 4.1: a) Box-plots of Mann-Kendall and b) KPSS p_value results for observed and
simulated time series (Obs: Observed time series Yt, Obs_diff: Yt − Yt−1, Simu: Simulated
time series Xt and Simu_diff: Xt −Xt−1).
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Figure 4.2: Time series treatment for an Andes region station (Antizana station number
26). a) Original (Xt observed in red and Yt simulated in blue) time series. b) Differentiated
series CDFs. c) differentiated observed and d) differentiated simulated time series.

The differentiated time series (∆Xt and ∆Yt) almost accomplish the needed conditions
to obtain CDFs estimations. The remaining condition to be accomplished is independence
and it is obtained by modeling the AR(p) process to identify a lag p until that each of the
time series show a significant dependence pattern. In order to do that, models AR are fitted
over the differentiated time series (∆Xt and ∆Yt). We chose the model that minimize the
Akaike information criterion (AIC). The AIC criterion is a measure of a statistical model
accuracy based on a commitment between accuracy and the model parameters number used.
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The AR models parameter estimation are obtained by using the function auto.arima of the
R package Forecast. Once that the lag p in each time series has been identified, sub time
series are constructed by skipping p positions in the unit time t. Figure 4.3 shows the ACF
functions estimated for the differentiated observed and simulated time series for an Andes
station (number 26). Data majority fits an AR(1) model (in other words, a lag of 1 is
considered) and the higher lag p found is 3 for two time series in the data.
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Figure 4.3: a) Differentiated observed time series ACF estimated and b) differentiated
simulated time series ACF estimated

4.2 Spatial CDF-t approach results

The Voronoi diagram is implemented in the region under study in Figure 4.4. Remark, as
it was mentioned previously, that there is a in-homogeneous stations distribution and this
fact produces that small polygons are constructed around the Andes region while the lack of
stations in the Amazon region, with only two stations, produces bigger polygons. The lack of
stations between the borders of the Amazon and the Andes region produce that the borders
are to marked.
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Figure 4.4: Voronoi diagram of 26 meteorological stations in the study region.
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4.2.1 Spatial correction evaluation

The correction is applied to the region under study, and mean of daily precipitation map
results are presented in Figure 4.5. The Voronoi polygon borders are completely marked
in the Amazon region, due to the in-homogeneous distribution of the stations and also, the
strong underestimated precipitation in this region (for example, around 3.000 mm year−1 at
the station 25). In the Pacific Region, the border of the polygon associated to one station
(station 22) is marked because it has recorded higher precipitation values. On the contrary,
the polygons borders around the Andes region are not completely visible in most of the
cases. As it has been seen in Chapter III, the biases values in the Andes region were quietly
similar, so in this region the spatial CDF-t approach shows good results, by conserving the
precipitation physical gradients well simulated by WRF. An homogeneous station distribution
could increase the method accuracy by taking into account other variables in addition to
geometrical properties. A deeper comparison between WRF, spatial CDF-t approach and GP
is carried out in Chapter V.
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b) Daily precipitation correction spatial CDF-t
approach
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Figure 4.5: Mean of daily precipitation [mm day−1] maps during the 2014-2015 period for
a) the WRF simulation and, b) spatial CDF-t approach.
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Chapter 5

Intercomparison between the CDF-t
spatial method and Gaussian process
model

After analyzing separately the implementation of the spatial CDF-t approach and the GP
correction methodologies in this Chapter we proceed to make an intercomparison between
these corrections and the original gridded products of the WRF simulation gridded. This
Chapter is organized as follows: Section 5.1 describes a calibration-evaluation framework
to analyze the accuracy of the modification proposed to the CDF-t method in Chapter IV.
Section 5.2 shows a comparison in terms of criteria related to precipitation occurrence and
intensity. Finally, a spatial graphical comparison between the resulting daily products and
biases maps during the 2014-2015 period using the satellite product CHIRPS, is presented in
Section 5.3.

5.1 Evaluation of the CDF-t in a "future" period

The modification of the method CDF-t method proposed in this study is evaluated in a
calibration-evaluation framework for the 26 stations. To evaluate the modified method accu-
racy, it is calibrated over 01/2014 to 06/2015 and evaluated over 07/2014 to 12/2015. Then,
the criteria related to precipitation occurrence and intensity are calculated to proceed with
the accuracy evaluation.

a) FAR

●
●

●

0.2

0.4

0.6

0.8

WRF CDF−t
 

FA
R

b) POD

0.2

0.4

0.6

WRF CDF−t
 

P
O

D

c) PODF

●

●

●

●

0.00

0.25

0.50

0.75

WRF CDF−t
 

P
O

D
F

d) HSS

●

0.0

0.2

0.4

WRF CDF−t
 

H
S

S

Figure 5.1: Criteria related to precipitation occurrence (rainy/no-rainy events) in a
calibration-evaluation framework (calibration over 01/2015 to 06/2016 and evaluation over
07/2016-12/2016). a) FAR criterion (ideal 0), b) POD criterion (1), c) PODF criterion (0)
and d) HSS criterion (1).

Figure 5.1 shows the results obtained in terms of criteria related to precipitation occur-
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rence. The modified method results are slightly worst than the WRF original simulation in
the majority of these criteria. The criteria related to the precipitation intensity are shown in
Figure 5.2. A major improvement is obtained in the KS and Q95 criteria where almost all the
stations show better results values in comparison to the WRF simulation. This is an expected
result because the correction is carried out over the CDFs. The correlation criterion obtained
by CDF-t of the corrected precipitation is reduced in contrast to the WRF simulation and
in addition, the RMSE is slightly bigger in the corrected precipitation than in the original
simulation.
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Figure 5.2: Criteria related to precipitation intensity in a calibration-evaluation framework
(calibration over 01/2015 to 06/2016 and evaluation over 07/2015-12/2015). a) KS, b) RMSE,
c) Spearman correlation and d) Q95.

Finally, Figure 5.3 shows the simulation, observation and correction CDFs for two stations,
one station located in the Andes region (number 26) and the other one, in the Amazon region
(number 25). We choose this two ones because they have two different biases intensity. The
simulation and observation CDFs in the Andes station are pretty similar in contrast to the
CDFs in the Amazon region where there is a strong underestimation of precipitation. We
can see that in both cases, the corrected precipitation CDFs (red) are closest to the observed
precipitation CDFs (green) than the simulated WRF precipitation CDFs (blue), and that was
the objective of the method. Notice that, the months chose for the evaluation period (07/2014
- 12/2015) belong to a sec "season" in contrast to the period of calibration that has two humid
"seasons" and one sec "season", thus this could affect the accuracy of the evaluation.
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Figure 5.3: Data CDFs of a) an Andes station (number 26) and b) an Amazon station
(number 25).
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5.2 Evaluation of spatial correction methods

We use a cross-validation leave-one-out framework to compare the two correction (spatial
CDF-t and GP) and WRF. The value used in the case of WRF is the one simulated in the
corresponding grid point. The criteria related to precipitation occurrence are shown in Figure
5.4. The spatial CDF-t method shows similar results than WRF in FAR criterion, in contrast
to GP where FAR results are worst than spatial CDF-t and WRF. POD criterion is highly
improved by GP, in comparison to spatial CDF-t and WRF results. On the contrary, PODF
results are worst in GP compared toWRF results. And finally, HSS criteria is worsened in both
methods beside WRF results. In general, CDF-t method obtains, mostly, an improvement
besides GP or at least, it obtains the same results as WRF. In other words CDF-t does not
worsen WRF simulation in these criteria, except for HSS.
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Figure 5.4: Boxplots of criteria related to precipitation occurrence (rainy/no-rainy events)
for three gridded products: WRF, Spatial CDFt and GP, using a cross-validation leave-one-
out framework. a) FAR criterion (ideal value 0), b) POD criterion (1), c) PODF criterion
(0) and d) HSS criterion (1).

The results to criteria related to the precipitation occurrence are shown in Figure 5.5. The
KS, RMSE and Q95 criteria are highly improved with the spatial CDF-t approach in contrast
to GP. But on the contrary, Spearman correlation spatial CDF-t results are worst than WRF
and also, than GP. Overall, GP model have shown better results, in comparison to spatial
CDF-t, in terms of intensity and occurrence criteria.

a) KS

●

●
●

0.0

0.2

0.4

0.6

WRF CDF−t GP
 

K
S

b) RMSE
●

●

●

●

●

●

●

●

●

●

●

5

10

15

WRF CDF−t GP
 

R
M

S
E

c) Spearman

●●

0.0

0.2

0.4

WRF CDF−t GP
 

sp
ea

rm
an

d) Q95

0.00

0.05

0.10

WRF CDF−t GP
 

q_
95

_v
al

Figure 5.5: Boxplots of criteria related to precipitation intensity for three gridded products:
WRF, spatial CDF-t and GP using a cross-validation leave-one-out framework. a) KS, b)
RMSE, c) Spearman correlation and d) Q95.
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5.3 Precipitation gridded products

The mean of daily precipitations maps of the final products of precipitation for the 2014-2015
period (WRF, spatial CDF-t and GP) and in situ measures are presented in Figure 5.7. As it
was pointed before, one of the spatial CDF-t approach disadvantages is that borders between
polygons are too marked where there is a scarce number of stations (as it is the case in the
Amazon region). But one of its advantages is that in sub regions where the stations are
homogeneously distributed (for example, Andes region), the polygons borders are not visible
and, the well simulated WRF spatial properties are preserved. On the contrary, with the GP
model some precipitation spatial properties are lost, as for example, precipitation gradients
in the Antisana glacier.

Finally, to compare the precipitation gridded products biases, they are compared to
CHIRPS mean of daily precipitation during the 2014-2015 period. The biases precipitation
maps are shown in Figure 5.6. Remember that CHIRPS, as other satellite products, tends
to underestimate precipitation amounts. We also find this underestimation in Figure 5.6 a)
where the difference between CHIRPS and observations is displayed. In most of the stations,
CHIRPS precipitation is underestimated, except for 6 stations located in the Andes region
where there is a slight overestimation. The CHIRPS biases are stronger in the Amazon and
Pacific regions. The precipitation biases from WRF shows a strong underestimated precipi-
tation in almost all the region, specially in the Amazon and to the western part of the region
of Quito. The spatial CDF-t approach correction shows a decrease of this underestimation
in the Amazon region, but small changes are found in the Andes region, where the biases
are smaller. GP correction also shows a decrease of the WRF underestimation in almost all
region, but also add a positive bias in the Amazon and the Pacific side, close to the borders
of the domain, where no in-situ observations exists. Considering that the satellite product
underestimates precipitation, this positive bias could be seen as most realistic that a negative
one. Therefore, the GP method seems to be more realistic in most part of the Andes, except
in the Amazon region and the Pacific side. However, a deeper study of the satellite biases is
needed to confirm these results.
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Figure 5.6: Mean of daily precipitation biases maps using as reference comparison precipita-
tion from CHIRPS and gridded products: WRF, spatial CDF-t and GP during the 2014-2015
period. (Biases= CHIRPS-gridded product).
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Figure 5.7: Mean of daily precipitation maps [mm day−1] during 2014-2015 period. a)
In-situ measures, b) WRF, c) spatial CDF-t, d) GP, and e) CHIRPS.
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Chapter 6

Conclusions and Perspectives

The aim of this study was to correct the precipitation biases of the WRF simulation in the
Antisana region. Then, the final products of precipitation will be use as external forcing
data for hydrological and glaciological models to understand water resources and glaciers
evolution in the Andes. Therefore, two methodologies of precipitation bias correction were
explored: the first one consisted into model statistically the daily WRF biases (defined as
BIAS = WRF simulation − Observation) through Gaussian Process (GP) models and, the
second one was to corrected the biases by employing a spatial and time series adaptation of
the CDF-t method developed by Michelangeli et al. (2009) and Vrac et al. (2016).

In first place, four GP models were proposed by using four external drifts f(x) (generally
used in this type of studies: latitude, longitude and altitude) to model the annual accumulated
bias during the years 2014 and 2015. The accuracy of the GP models was tested in a cross-
validation leave-one-out framework. The best model was GP with drift longitude and latitude
because it got the best results in the criteria calculated (Bias, RMSE, Correlation and Q2)
during both years. Then, we explored the variance of the predictions, and the results show
higher values in the Amazon Region where there is a non-homogeneous distribution and a
scar number of station.

We chose the GP+longitude+latitude model to correct the daily precipitation. There-
fore, we followed two strategies commonly used in the literature to obtain a daily correction:
separating daily variograms and daily evolving variograms. The first strategy consists into
creating a GP model for each day of the years 2014 and 2015. The second strategy, similar
to the first one, consists into fitting a GP model to each day D but taking into account the
parameters of the model of the previous day D − 1 on the estimation. The separate daily
variograms obtained the best Q2 mean result during the 2014-2015 period, thus we chose this
one to correct the daily precipitation biases by the GP model.

One of the limitations of the current methods of bias correction of precipitation is the
treatment of null values (no rainy days). As for example, the threshold adaptation method
consists into finding a threshold t, such that simulation and observation have the same number
of null values. Another example is the positive approach method where only the positive
values of precipitation are corrected. Therefore, the SSR method developed by Vrac et al.
(2016) allows to correct the precipitation in terms of occurrence and intensity without making
subcases (dividing the correction into rainy periods and no rainy periods).

We employed the SSR method with a time series adaptation in order to obtain the CDFs
estimation and a spatial adaptation to obtain the correction in the region. We proceeded as
follows: first a threshold of 1 mm day−1 was applied to all the time series in order to solve
the problem of small WRF precipitation and measurement errors in the observations (other
threshold values were tested in a previous study but the value of 1 mm day−1 gives the best
results). Then, we applied the differential operator (∆Xt : Xt−Xt−1) over all the time series
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(observed, simulated and to be corrected) in order to obtain time series without linear trend.
Because the results of the Mann-Kendall test showed that these new time series do not have
linear trend. Then, an AR(p) model is identified for each time series in order to recognize the
lag p until that the time series are dependent, and sub series are constructed by skipping p
positions. Next, we used the SSR approach over the differentiated time series (∆Xt) and to
recover the precipitation in a day t. We calculated the sum between the WRF simulation in
the day t− 1 in the corrected differentiated time series at the "period" t. Finally, a threshold
of value 1 mm day−1 was used over the corrected time series.

The CDF-t method with the modification proposed was applied in a calibration-evaluation
framework for the 26 stations. The method was calibrated over 01/2014 to 06/2015 and
evaluated over 07/2014 to 12/2015. Then, the results between the WRF simulation and
CDF-t modified method have shown that in terms of occurrence, the results of CDF-t were
worsen in some criteria but the KS and Q95 criteria values were better in the CDF-t method
with the modification proposed in comparison to the WRF simulation.

The two methodologies were compared in terms of precipitation occurrence (number of
rainy/no-rainy days) and intensity (precipitation amounts) by applying a cross-validation
leave-one-out framework. For comparing them, criteria related to the occurrence (FAR, POD,
PODF and HSS) and criteria related to the intensity were calculated (mean bias, Spearman
correlation, KS, RMSE and Q2 and Q95). In terms of almost all the criteria calculated, the
GP model obtained the best results. The spatial CDF-t approach obtained the best results in
terms of KS and Q95 that are criteria directly related to the CDFs. This result was expected
because the spatial CDF-t approach correction is carried out over the CDFs.

Finally, the mean precipitation corrected maps obtained from spatial CDF-t and GP
methodologies were compared with the satellite product CHIRPS. Considering that the satel-
lite product underestimates precipitation, the GP method seemed to be more realistic in most
part of the Andes, except in the Amazon region and the Pacific side. However, a deeper study
of the satellite biases is needed to confirm these results.

There is still work to be done in the methodologies here presented to increase its accuracy.
Thus, the perspectives of this study are the following ones: to include in the GP modeling the
time dimension by proceeding as in Gräler et al. (2016). A second one is to analyze deeply
the implementation of stationary tests for a GP model.

For the spatial CDF-t approach, other spatialization strategies should be implemented
that include not only geometrical properties, as it was the case of the Voronoi polygons. For
example, it could improve the results of the spatial CDF-t to construct clusters of the region
under study. One alternative is to use the Functional Clustering Method as in Antoniadis et al.
(2012) where a curve-based clustering is used to reduce the data dimension for constructing a
metamodel for West African monsoon. The Functional Clustering method has the advantage
of taking into account time-point correlations of time series spatial data (Antoniadis et al.,
2012). Therefore, during this study a WRF simulation of 10 years (2005-2015 period) was
made to apply the Functional Clustering Method over the region under study.

As mentioned before, the gridded precipitation corrected products are used as external
forcing data for hydrological and glaciological models. Thus, an evaluation of the results of
the models by using these two products could show the weakness or strength of them.
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Appendix A

The generalized inverse F−1

The following is obtained from Bercu and Chafai (2007). Let F : R → [0, 1] be a cumula-
tive distribution function. F is increasing and right-continuous. The generalized inverse
function of F , also called quantile function, denoted by F−1 is defined as:

F−1(u) = inf{x ∈ R such that F (x) ≥ u}, ∀ 0 < u ≤ 1.

Theorem 1. (The inverse method) If µ is a probability distribution on R with cumulative
distribution function F , and if U is a random variable with uniform distribution over [0, 1],
then the random variable F−1(U) is distributed as µ.

Proof. Let’s prove that for all x ∈ R and 0 < u ≤ 1:
u ≤ F (x)⇐⇒ F−1(u) ≤ x.

If u ≤ F (x), then x ∈ {t ∈ R|F (t) ≥ u} and thus x ≥ F−1(u) by definition of F−1(u).
Now, let’s suppose that F−1(u) ≤ x. As F is an increasing function, we have F (F−1(u)) ≤
F (x). As F is right continuous, we have u ≤ F (F−1(u)) which implies that u ≤ F (x).
Therefore,

P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x) ∀x ∈ R,
The random variable F−1(U) has the same cumulative distribution function F as X,

therefore, it has the same probability distribution as X.

Theorem 2. (Continue distribution functions) If a random variable X has a distribution
function F , then the next properties are equivalent:

1. F is continuous over R.

2. F (X) follows a uniform distribution over [0, 1].

3. F (R) = [0, 1].

Proof. If F is a continuous function, the function F is not necessarily invertible. However, F
is left-and-right continuous, u ≤ F (F−1(u)) ≤ u for all 0 ≤ u ≤ 1, therefore F (F−1(u)) = u.
Then, for all 0 ≤ u ≤ 1:

P(F (X) ≤ u) = P(X ≤ F−1(u)) = F (F−1(u)) = u
and F (X) follows an uniform distribution over [0, 1].
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