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Introduction

This is a multidisciplinary work, covering theoretical fields such as probability theory,
stochastic processes, geometry, topology, spatial statistics, mathematical morphology and
image processing. The principal objective is to propose a new method to model, simulate
and characterise two-dimensional random mosaics or tessellations. This new method is
based on Gaussian random fields theory and on mathematical morphology techniques such
as the watershed, the skeleton by influence zone among others.

The aim of obtaining two-dimensional mosaics is to develop a robust method to simulate
human corneal endothelial tessellations close to identical endothelial images coming from
optical microscopy (figure 1).

The cornea (figure 2) is the transparent part of the eyes in contact with the outside
and its role is to refract the light toward the retina. The cornea is made of different layers,
the epithelium in contact with the outside, the Descemet membrane, the stroma and the
endothelium.

The human corneal endothelium is a monolayer of flat hexagonal cells, which do not
regenerate and are responsible for the maintenance of the cornea transparency. During
the first years of life, the human corneal endothelial mosaic is nearly a regular hexagonal
tessellation. But with corneal growth and corneal diseases, the endothelial cells become
less regular in shape and size. Ophthalmologists need to have more knowledge about the
endothelium, and above all about the cell density and morphology, to control in a better
way grafts and disease evolution.

The methodology proposed to simulated such tessellations basically consist on apply-
ing mathematical morphology techniques to simulated two-dimensional Gaussian random
fields. This technique differs to usual ones that creates tessellation through Voronoi dia-
grams generated by a random point process. Such approach can be found in [9].

(a) Optic endothelial
image

(b) Segmented en-
dothelial image

(c) Simulated
image

Figure 1: Real and simulated human corneal endothelial images.
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Figure 2: The human eye.

Context

The global project where this research belongs is the CNRS-ANR1 Project CorImMo 3D:
Imagerie et Morphologie Microscopiques tri-dimensionnelles de l’endothélium cornéen hu-
main (Three-dimensional microscopic imaging and morphology of the human corneal en-
dothelium). This project started in 2012 and the interest is the study and diagnostic of
pathologies of the human endothelium. Here comes the necessity of modelling and simu-
lation this monolayer to a better understanding of its behaviour.

This work was performed at the Center for Biomedical and Healthcare Engineering of
the Ecole Nationale Supérieure des Mines de Saint-Étienne (UMR CNRS 5307).
Partnerships: BiiGC Biologie, Ingénierie et Imagerie de la Greffe de Cornée, and the society
TRIBVN.

Organization of this document

First, basic concepts regarding random fields are presented in the first chapter, then,
mathematical morphology techniques to create tessellations are presented in the second
one. The third chapter study the characterization of these simulated tessellations, including
morphometrical and granulometrical analysis. Finally, with a concluding chapter this
research report is closed.

1CNRS: Centre national de la recherche scientifique. ANR: Agence nationale de la recherche.

P. Guerrero Mines Saint-Étienne



Chapter 1

Random fields

In this chapter, necessary technical definitions about stochastic geometry are introduced.
Particularly, Gaussian random fields are studied, as well as their geometrical characteris-
tics, some covariance functions and their numerical simulation techniques.

Theory and applications of random fields have been developed in [3, 4]. Most important
concepts and results are summarised in [1].

A random field is a stochastic process or a random function, taking values in a Euclidean
space (R in this work, then it is called a real-valued random field), and defined over a
parameter space. A formal definition follows.

Definition 1 Let (Ω,F ,P) be a probability space and T a topological space. A real-valued
random field X is given by

X : T × Ω −→ R
(t, ω) 7−→ X(t, ω)

if for all t ∈ T the map

X(t, .) : Ω −→ R
ω 7−→ X(t, ω)

is measurable.

For simplicity in notation, the dependency on the sample space Ω will be considered
as implied and a random field X(t, w) at location t ∈ T will be simply noted as Xt in this
work.

If the dimension of T isN , the associated random field is therefore called aN−dimensional
random field. A one-dimensional random field is often called a stochastic process. In this
work, we will work with two-dimensional random fields.

1.1 Gaussian random fields

Gaussian random fields have been used as models for many natural phenomena such as
human brain mapping or galaxy density [21], they will be the principal tool to reach the
objective of this work.

5



6 1. Random fields

Figure 1.1: A two-dimensional real-valued Gaussian random field

Some preliminary basic definitions are introduced before defining formally a Gaussian
random field [4].

A real-valued random variable X̂ is said to be Gaussian if it has the density function:

ϕ(x) =
1√
2πσ

exp

(
−(x−m)2

2σ2

)
, ∀x ∈ R

where m ∈ R is the mean of X̂ and σ > 0 its variance.
An Rk-valued random variable X̃ is said to be multivariate Gaussian if for all

(α1, . . . , αk) ∈ Rk, the real-valued variable
∑k

i=1 αiX̃i is Gaussian. In this case, the prob-
ability density is given by:

ϕ(x) =
1

(2π)
d
2 det(C)

1
2

exp

(
−1

2
(x−m)C−1(x−m)′

)
, ∀x ∈ Rk

where m ∈ Rk is the mean vector of X̃ (mj = E{X̃j}), and C its covariance matrix, witch
is a nonnegative definite k × k matrix, with elements cij = E{(X̃i −mi)(X̃j −mj)}.

For notation purposes, we write that X̃ ∼ N (m,C) and X̂ ∼ N (m,σ2) for the one-
dimensional case. The next definition introduces a real-valued Gaussian random field, in
figure 1.1 a realisation of a two-dimensional one is exhibit.

Definition 2 A real-valued Gaussian random field is a random field X such that for all
k ∈ N∗ and for all (t1, · · · , tk) ∈ T k, (Xt1 , · · · , Xtk) is multivariate Gaussian.

P. Guerrero Mines Saint-Étienne



7 1. Random fields

Mean and covariance functions

Let (t, s) be in T × T . The function:

m(t) = E{Xt}

and the positive-definite1 function:

C(t, s) = Cov(Xt, Xs) = E{XtXs} − E{Xt}E{Xs}

are called the mean and covariance functions of X, respectively.
The variance σ2 of X is then defined as:

σ2(t) = C(t, t)

A Gaussian random field is completely determined by the mean and covariance func-
tions. In this work, we will be working with a particular class of Gaussian random fields,
namely stationary and isotropic fields, defined in the next sections. The chose of the co-
variance function is a crucial aspect regarding the properties of the random field. No real
structure is required of the parameter space T .

1.1.1 Symmetries

In this section, some important characteristics of Gaussian random fields are defined, they
are introduced to understand the structure, geometrical and morphometrical properties of
random fields.

Stationarity

Definition 3 A Gaussian random field X is a stationary2 Gaussian random field if its
expectancy is constant:

∀t ∈ T, ∃m ∈ R, m(t) = m

and if its covariance function depends only on the difference between two points of T ,

∀(t, s) ∈ T × T, ∃C : R→ R, C(t, s) = C(t− s)

For stationary random fields, the corresponding covariance function is called stationary
covariance function.

1The positive-definiteness is fundamental. It is proved in [1, p. 6] that the class of covariance functions
coincide with the class of positive definite functions.

2The definition presented here is that of stationarity in wide sense, propriety presented in Gaussian
random fields of this work. For the definition of stationarity in strict sense see [1, 5].

P. Guerrero Mines Saint-Étienne



8 1. Random fields

Isotropy

Metric property is assumed here for the topological space T . Let consider the dimension
of T equal to N , and T equipped with the Euclidean distance d:

∀(t, s) ∈ T × T, d(t, s) =

(
N∑
i=1

(ti − si)2

)1/2

Definition 4 A stationary Gaussian random field X is said to be isotropic3 if the covari-
ance function depends only on the Euclidean metric between two points of T :

∀(t, s) ∈ T × T, C(t, s) = C(d(t, s))

This definition implies that isotropic Gaussian random fields are translation and rota-
tion invariant, they don’t have a privileged direction.

For an isotropic random field, the corresponding covariance function is called isotropic
covariance function. It is a subclass of stationary functions.

1.2 Some isotropic covariance functions

In this section, the two isotropic covariance functions chosen to simulate Gaussian random
fields in this work are presented, namely, the Gaussian and Bessel covariance. They were
chosen due to the smoothness they present. The first one is infinitely differentiable and the
second one, who is parametrized by two positive scalars ν and l4, increase it smoothness as
ν does [1, 14]. This smoothness property will reflect homogeneity in simulated endothelial
cells.

We remind that these isotropic covariance functions depends only on the Euclidean
metric between two points of T , notated as τ = d(t, s).

1.2.1 Gaussian covariance function

The Gaussian covariance function5 (figure 1.2) is given, for all τ ≥ 0, by:

C(τ) = exp

(
− τ

2

2l2

)
where l ≥ 0 is the correlation length. This function is infinitely differentiable, this means
that a Gaussian random field simulated through it has mean-square derivatives of all orders
([1, 14]), and is therefore very smooth.

3Another interesting propriety of Gaussian random fields is the anisotropy, who is defined in [1, 5].
4ν and l define the correlation length and the slope of the covariance function, respectively.
5also called the squared-exponential covariance function.

P. Guerrero Mines Saint-Étienne



9 1. Random fields
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(b) Gaussian random field, l = 5

Figure 1.2: The Gaussian covariance function for different correlation lengths l. and a
realisation of a Gaussian random field with a Gaussian covariance of correlation length
l = 5.

1.2.2 Bessel covariance function of first kind

The Bessel covariance function (figure 1.3) is given, for all τ > 0, by:

C(τ) = 2νΓ(ν + 1)
(τ
l

)−ν
Jν

(τ
l

)
where ν ≥ N−2

2 with N the dimensionality of T , Γ is the Gamma function and Jν is the
modified Bessel function of first kind of order ν given by:

∀x ∈ Rn, Jν(x) =
(x

2

)ν +∞∑
k=0

(−1)k

Γ(k + 1)Γ(ν + k + 1)

(x
2

)2k

The condition ν ≥ N−2
2 is necessary to verify the positive definiteness of the covariance

function [22, p. 366]. The value 1
l , often notes as ω describes the angular frequency of the

function.

1.3 Simulation of Gaussian random fields

Regarding Gaussian random fields modelling and simulation, some theoretical definitions
are needed, they come from [4, 5] and are presented here. Orthogonal expansions are the
essential concept in simulating Gaussian processes. If T is a compact subset or RN (N = 2
in this work), the Karhunen-Loève expansion is then used and, even more particularly, if the
process is stationary, simulations are performed via the spectral representation approach
using the Fourier transform.

1.3.1 Orthogonal and Karhunen-Loève expansions

Orthogonal expansions of Gaussian processes deal with simulating processes defined over a
compact set of any dimension. The basic theory is presented here, and a simpler problem
is studied regarding N−dimensional processes with the Karhunen-Loève expansion.

P. Guerrero Mines Saint-Étienne



10 1. Random fields
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(c) Gaussian random field, l = 4, ν = 1
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(d) Gaussian random field, l = 4, ν = 2

Figure 1.3: The Bessel covariance function for different values of ν and for l = 4 (a), and
realisations of Gaussian random fields with a Bessel covariance with different parameters
(b)-(d).

The basic results of orthogonal expansion is established by theorem 1 [4, p. 69]:

Theorem 1 Let X be a centred Gaussian random field with a continuous covariance
function C, then it has an expansion of the form:

Xt =

+∞∑
n=1

ϕn(t)ξn

where {ξn} are i.i.d6 variables following a Gaussian distribution N (0, 1) and {ϕn} are
functions defined on T depending on the covariance function C of X

The Karhunen-Loève expansion

Let λ1 ≥ λ2 ≥ . . . , and ψ1, ψ2, . . . , be the eigenvalues and normalized eigenfunctions,
respectively, of the covariance function C of the Gaussian random field X. By definition,
they solve the integral equation:

6independent, identically distributed

P. Guerrero Mines Saint-Étienne



11 1. Random fields

∫
T
C(t, s)ψ(t)dt = λψ(s), (1.1)

With the normalisation: ∫
T
ψn(t)ψm(t)dt =

{
1 n = m
0 n 6= m

In the following, T will be considered as a compact subset of RN . The Karhunen-Loève
expansion is a particular N−dimensional class of the orthogonal expansion of Gaussian
processes. It is obtained by setting ϕn =

√
λnψn in the orthogonal expansion.

Consequently, the Karhunen-Loève expansion states that, under the same assumptions
of theorem 1, X has an expansion of the form:

Xt =
+∞∑
n=1

√
λnψn(t)ξn (1.2)

These eigenfunctions mentioned above are the natural expansion of the covariance
function C, according to Mercer’s theorem[11].

Theorem 2 (Mercer) Let C, λn, ψn and T be as above, then C has the expansion:

C(t, s) =
+∞∑
n=1

λnψn(t)ψn(s) ∀(t, s) ∈ T × T

The Karhunen-Loève expansion leads to an eigenvalue problem that is not always easy
to solve. As we work with stationary processes, this problem can be handled using the
Fourier transform, detailed in the following section.

1.3.2 Spectral expansion

For a particularly class of random fields, the stationary ones, the simplest approach to
generate them is using their spectral representation. Here, X is considered as a complex-
valued random field, and the eigenfunctions ψn, solution of 1.1 can be easily established
via complex exponentials. Namely, for any λ ∈ Rn, the function: t 7→ ei<t,λ> satisfies,
with a change of variables u = t− s : ([4, p.73],[5, p.116])

∫
T
C(t, s)ei<t,λ>dt =

∫
T
C(t− s)ei<t,λ>dt

= ei<s,λ>
∫
T
C(u)ei<u,λ>du

= C̃(λ)ei<s,λ>

where C̃(λ) is a possible zero scalar (is in fact the Fourier transform of C evaluated at λ).
Finally, the Karhunen-Loève expansion 1.2 becomes, if the number of C̃(λ) that are

different to 0 is countable:

P. Guerrero Mines Saint-Étienne



12 1. Random fields

Xt =
∑
λ

√
C̃(λ)ei<t,λ>ξλ (1.3)

where {ξλ} are i.i.d complex-valued zero mean Gaussian variables7. Expression 1.3 corre-

sponds to the inverse Fourier transform of the spectral coefficients
√
C̃(λ)ξλ evaluated at

t.
For simulation purposes, the complex-valued Gaussian random field is discretized into

a finite number of points belonging to T , therefore, the sum 1.3 is finite, and, in this work,
only the real part of this random field is taken8.

7A complex-valued random variable ξ1 + iξ2 is said to be Gaussian if the vector of its two components
(ξ1, ξ2) is bivariate Gaussian.

8Actually, we have two realisation of a real-valued Gaussian random field here considering the real and
complex parts of this complex-valued Gausssian random field. If the complex part is taken, we would have
another valid realisation of a real-valued Gaussian random field.

P. Guerrero Mines Saint-Étienne



Chapter 2

Mathematical morphology

This chapter presents some basic tools provided by mathematical morphology and image
processing. These concepts are used to simulate human endothelial tessellations from a
Gaussian random field.

The theory of Gaussian random fields establishes properties of continuity and deriv-
ability of the processes, according to the properties of the covariance functions. However,
for simulation purposes, the domain T of the Gaussian random field is discretized into a
domain of size 2n × 2n (pixels) where n changes according to the size we desire.

Consequently, in the following a simulated Gaussian random field is considered as
a grey-tone image (it will be coloured with primary colours for clarity) defined over the
integer grid T = {1, . . . , 2n}×{1, . . . , 2n} taking values in R and that their both univariate
and multivariate distributions are all Gaussian. A realisation is illustrated in figure 2.1

2.1 Local maxima and h−maxima

The local maxima and h−maxima locations of a random field will be used as the generators
or markers of the simulated tessellation and are introduced in this section. In the case
of local maxima locations, they represent a set of points to create the associated Voronoi

 

 

−3

−2

−1

0

1

2

3

(a) Grey scale

 

 

−3

−2

−1

0

1

2

3

(b) Primary colour scale

Figure 2.1: A Gaussian random field considered as a grey-tone image (or an intensity
image).
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14 2. Mathematical morphology

diagram, and for the h−maxima sets or germs, they are connected sets used to create the
associated skeleton by influence zone.

All the concepts presented in this section belongs to morphological reconstruction op-
erations, they are summarised in detail in [10, 20].

For a definition of local maxima or minima in terms of mathematical morphology, some
preliminary concepts are needed. In the following, E is considered as an Euclidean space .

The Minkowski addition of two setsM and N belonging to E is formed by adding each
vector in A to each vector in B and is denoted by ⊕:

M ⊕N = {m+ n|m ∈M,n ∈ N} =
⋃

m∈M, n∈N
{m+ n}

Equivalently, the Minkowski subtraction 	 can be defined.
A dilation δS(M) of a set M by a set S of E (called structuring element) is defined as:

δS(M) = M ⊕ S̆

where S̆ = {−s|s ∈ S}.
Finally, a geodesic dilatation δI(M) of a imageM with respect to the image I is defined

as:
δI(M) = inf{δ(M), I}

where δ represents the elementary dilation (a dilation by a structuring element consisting
in a pixel and its neighbours).

Local maxima

A local maximum M of a grey-tone image X (a simulated Gaussian random field in this
work) at elevation r is a connected component of pixels with the value r whose external
boundary pixels have a value strictly greater than r.

Definition 5 M is a local maximum (resp. minimum) at level r if and only if M is
connected and {

∀t ∈M, Xt = r,
∀s /∈ δ(M) \M, Xs < r (resp. Xs > r).

The local maxima locations of a Gausian random field defined over T will be the
generators of a Voronoi diagram (see section 2.2) that will represent a simulated endothelial
tessellation.

Performing endothelial tessellations via Voronoi diagrams associated to local maxima
locations of a Gaussian random field will create significantly small cells related to the mean
cell size of the tessellation. This is due to some points that are too close to each other.
The approach proposed to filter this irrelevant points is gathering them together through
the h−maxima transform of a Gaussian random field.

P. Guerrero Mines Saint-Étienne



15 2. Mathematical morphology

Figure 2.2: h−maxima transform of a Gaussian random field with h = 0.5, and in trans-
parency the original field.

h−maxima

Let h be a positive real number. In order to filter irrelevant information about extrema of
Gaussian random fields, the h−maxima transform suppresses all maxima whose depth is
lower to h, it is defined by performing the geodesic dilation of X − h with respect to X so
many times until stability.

Formally, the h−maxima transform of a Gaussian random field X, illustrated in figure
2.2, can be defined as in [10]:

X(h) = lim
n→+∞

δX ◦ · · · ◦ δX︸ ︷︷ ︸
n times

(X − h)

The extended h−maxima transform of a Gaussian random field X is defined as the
local maxima of the corresponding h−maxima transform (Figures 2.4g and 2.4b). It is
therefore a binary image assigning 1 to pixels belonging to local maxima of the h−maxima
transform and 0 otherwise.

Definition of local and h maxima in terms of continuous paths

An interesting way to define a local maximum, an h−maximum and the link between them
in terms of paths of a topographic surface is presented next, it can be found in [7]. We
need first to define the concept of non-descending path and of a height of a path.

P. Guerrero Mines Saint-Étienne



16 2. Mathematical morphology

Definition 6 Let X be a mean square continuous1 and twice mean square derivable real-
valued Gaussian random field and [a, b] ⊂ R an interval. A continuous path over X between
two points s and t belonging to T : γs,t : [a, b] −→ X such that γs,t(a) = s and γs,t(b) = t,
is a non-descending (resp. descending) path if for all u, u′ ∈ [a, b] such that u < u′, then
γs,t(u) ≤ γs,t(u′) (resp. γs,t(u) ≥ γs,t(u′)). The height of a non-descending or a descending
path γs,t is then:

h(γs,t) = |Xt −Xs|

Next, we give a definition of a local maximum based on the non-descending paths and
their height. This definition is useful to understand the link between a local maximum and
an h−maximum.

Definition 7 A point z of X belongs to a local maximum (resp. minimum) if and only
if all non-descending (resp. descending) paths starting from z is of maximal height 0.

Let h be a positive real number. A point z of X belongs to an h−maximum (resp.
h−minimum) if and only if all non-descending (resp. descending) paths starting from z is
of maximal height h.

2.2 Tessellations

A tessellation is the coverage of an open region with open, bounded and non-empty sub-
regions with empty intersection. An example of a tessellation is the Voronoi diagram. A
formal definition is given.

Definition 8 Let T ⊆ RN , N ≥ 2, be an open set. The set of open, bounded, non-empty
and connected subsets {Ti}i=1,...,k, k ∈ N∗, is called a tessellation of T if and only if

∀i ∈ {1, . . . , k}, T̄ = ∪ki=1T̄i and Ti ∩ Tj = ∅, for i 6= j.

The aim is now to obtain tessellations from local maxima or h−maxima transforms
of Gaussian random fields. Two ways to obtain such tessellations are presented: Voronoi
diagrams and Skeletons by influence zone.

2.2.1 Voronoi diagrams

Voronoi diagrams create tessellations from a finite set of points, here, this set are the local
maxima locations of a Gaussian random field. The Voronoi diagram, also named Dirichlet
tessellation, has been introduced by Dirichlet in 1850, and generalised by Voronoi in 1908.
For a good review about Voronoi diagrams, see [6]. In this section, T will be a bounded
subset of R2.

1A random field X indexed by T ⊂ Rn is said to be mean square continuous if ∀(tn)n ∈ T such that
d(tn, t) −→

n→+∞
0, E

[
|Xtn −Xt|2

]
exists and converges to 0 when n→ +∞.
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17 2. Mathematical morphology

(a) Random field (b) Local maxima (c) Voronoi diagram

(d) Random field (e) Local maxima (f) Voronoi diagram

Figure 2.3: Simulation of endothelial tessellations through local maxima of a Gaussian
random field. (a)-(c):With a Gaussian covariance. (d)-(f):With a Bessel covariance.

Definition 9 Let P = {p1, . . . , pk} be a finite set of points belonging to T and d a metric
over the space T (usually the Euclidean metric). The Voronoi cell related to a point pi is
given by:

V or(pi) = {t ∈ T : d(t, pi) < d(t, pj), ∀pj ∈ P, j 6= i}

and the Voronoi diagram associated to P is then:

V or(P) = T ∩

(
k⋃
i=1

V or(pi)

)c

Figure 2.3 illustrates the process of simulating tessellations from local maxima of Gaus-
sian random fields via Voronoi diagrams created using the Euclidean metric. The points
that are located close to each others are easily identifiable. The Voronoi diagram cannot
be used with the h−maxima transform because they are compact and connected sets and
not a set of points any longer. A similar tool than the Voronoi diagram is then needed to
obtain a tessellation from such sets.

2.2.2 Skeleton by influence zone (SKIZ)

A generalisation named skeleton by influence zone or SKIZ (see mathematical details in
[7]) of a Voronoi diagram is used when the generating points are compact and connected
sets called markers.
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(a) Random field (b) h−maxima (c) Distance map (d) Watershed (e) Tessellation

(f) Random field (g) h−maxima (h) Distance map (i) Watershed (j) Tessellation

Figure 2.4: Simulation of endothelial tessellations through extended h−maxima of a Gaus-
sian random field with h = 0.2. (a)-(e):With a Bessel covariance. (f)-(j):With a Gaussian
covariance.

Definition 10 Let M = {M1, . . . ,Mk} ⊂ T a set of markers. The influence zone IZ of
a marker Mi is given by:

IZ(Mi) =
{
t ∈ T : dMi(t) < dMj (t), ∀Mj ∈M, j 6= i

}
where for all set A ⊂ T :

dA : T −→ R+

t 7−→ inf
a∈A

d(a, t)

is the distance transform related to the set A and d is the Euclidean metric in this work.
The skeleton by influence zone of the set of markers M correspond to the boundaries of the
influence zones of all the markers, namely:

SKIZ(M) = T \

(
k⋃
i=1

IZ(Mi)

)

2.2.3 Watershed

In mathematical morphology, the watershed transform, introduced in [7], is used in image
segmentation for grey-scale images considered as topographical surface (figure 2.5). Here,
it is applied on the distance map related to the h−maxima germs of the Gaussian random
field to create tessellations.

The watershed transform is defined here over a topographical surface, because the
concept of topographical distances is employed, defined as:
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19 2. Mathematical morphology

(a) Grey-tone image (b) Topographical surface

Figure 2.5: Topographical representation of a grey-tone image. Local minima in blue and
the catchment basins can be appreciated. The watershed transform corresponds to the set
of points that are in any catchment basin.

Definition 11 Let S be a topographic surface given by a C2 function f . The topographic
distance TDS (see [12] and [13]) between two points p and q belonging to S is given by :

TDS(p, q) = inf
γ∈Γ(p,q)

∫
γ
‖∇f(γ(s))‖ds

where Γ(p, q) is the set of paths between p and q. The topographic distance between a point
p ∈ S and a set A ⊂ S is given by:

TDf (p,A) = min
a∈A

TDf (p, a)

The concept of catchment basins of a local minimum is also needed to define the wa-
tershed transform. Next, a definition of catchment basins and of the watershed transform.

Definition 12 Let {mi}i=1,··· ,k be the minima’s of the function f . The catchment basin
CB of a minimum mi is given by

CB(mi) = {t ∈ T : ∀j 6= i, f(mi) + TDf (mi, t) < f(mj) + TDf (mj)}

The watershed WS of f is then the collections of points that are in the boundaries of the
catchment basins of all local minima of f :

WS(f) = T \

(
k⋃
i=1

CB(mi)

)

SKIZ via the watershed transform

Numerically, the SKIZ can be generated by computing the watershed transform of the dis-
tance map (obtained by calculating the distance transform related to the h−maxima germs
for each pixel of T , figures 2.4c and 2.4h) of the complement of the extended h−maxima
of a Gaussian random field (considering that the extended h−maxima is a binary image),
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20 2. Mathematical morphology

and then looking for the watershed ridge lines (section 2.2.3) of the result. The process is
illustrated in fig 2.4.

SKIZ(M) = WS(δM (T )c)

Criteria to characterize these tessellations and to compare them with segmented corneal
mosaics are presented in the next chapter.
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Chapter 3

Characterization

To determine whether our simulated tessellations are similar to human corneal mosaics, a
characterization is made according to cell properties. A morphometric and a granulometric
analysis are performed in the next sections.

3.1 Morphometry

3.1.1 Definitions

Shape diagrams, introduced in [8, 19] and developed in [15, 16, 17, 18], allow to represent
compact sets according to their morphology. Representations are made by points in the
domain [0, 1]2. Consequently, they provide an overview of the variability and distribution
of shapes of compact sets. The coordinate axes of the points are morphometrical function-
als defined as ratios of geometrical functionals of the considered sets. Most of the following
definitions come from [18].

Geometrical functionals

In this section, human endothelial cells are considered as non-empty compact sets in the
Euclidean 2D space E2. As in [18, 19], the studied geometrical functionals are the area,
the perimeter, the radii of the inscribed and circumscribed circles, and the minimum and
maximum Feret diameters1 of the considered cells, denoted by A, P , r, R, w, d respectively.

These geometrical functionals verify geometrical inequalities [18] for compact sets. Such
inequalities compare two geometrical functionals and determine the extremal compact set
that satisfy the corresponding equality [3]. In this way, we can define the associated mor-
phometrical functionals (Table 3.1).

1The minimum and maximum Feret diameters of a compact set are the minimal and the maximal
orthogonal projections of the set on a line, respectively.
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22 3. Characterization

Table 3.1: Shape functionals for compact sets

Geometrical Geometrical morphometrical Extremal
functionals inequalities functionals set

w, d w ≤ d w/d constant width convex sets
A, d 4A ≤ πd2 4A/πd2 disk
r, P 2πr ≤ P 2πr/P disk
R, P 4R ≤ P 4R/P line segment

Table 3.2: The two shape diagrams chosen

Shape diagram 3−tuplet dependency x−coordinate y−coordinate
D1 (w,A, d) w/d 4A/πd2

D2 (r,R, P ) 2πr/P 4R/P

Morphometrical functionals

The morphometrical functionals are defined as ratios between geometrical functionals in
order for its value to be 1 when its associated inequality becomes an equality, namely, the
extremal set. They do not depend on the global size of the compact set, this is due to
the fact that they have no unit. Their values range in [0, 1]. Finally, they are classified
according their meanings, particularly:

4A/πd2 corresponds to the roundness, 2πr/P to the circularity, w/d to the diameter
constancy and 4R/P to its thinness.

Shape diagrams

For human endothelial cells, shape diagrams are analysed. They are cloud point represen-
tations of compact sets defined with a 3−tuplet of geometrical functionals (g1, g2, g3), or
equivalently, with two morphometrical functionals (m1,m2) valued in [0, 1]2.

Here, m1 is a ratio defined with the geometrical inequality between g1 and g3, while m2

between g2 and g3. Both m1 and m2 use the same geometrical functional as denominator.
A shape diagram D is therefore represented in the plane domain [0, 1]2 where each

endothelial cell of the studied tessellation is mapped onto a point (x, y), whose coordinate
axes are m1 and m2. It allows to study the pleomorphism (shape variability) of the
considered cells.

Mathematically, a shape diagram D is obtained from the following mapping.

D :

{
K(E2) → [0, 1]2

S 7→ (x, y)

where K(E2) denotes the compact sets of E2.
The study is limited to two shape diagrams, D1 and D2 (chosen according to the

results of [15, 16, 17]), who depend on the 3−tuplets of geometrical functionals: (w,A, d)
and (r,R, P ) respectively, defined in table 3.2. A more complete list of shape diagrams is
presented in [18].
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23 3. Characterization

Table 3.3: Morphometrical functionals for regular polygons

w/d 4A/πd2 2πr/P 4R/P

segment 0 0 0 1

triangle
√
3/2

√
3/π

√
3π/9 4

√
3/9

square
√
2/2 2/π π/4

√
2/2

pentagon 1
4
tan 2π

5
sec π

5
5
4π

sec π
5
csc π

5
π
5
cot π

5
2
5
csc π

5

hexagon
√
3/2 3

√
3/2π

√
3π/6 2/3

disk 1 1 1 2/π

3.1.2 Endothelial images

For the two manually segmented endothelial tessellations showed in the previous section,
each of their cells are numbered and mapped onto the diagrams D1 and D2 (figure 3.1).
In accordance with the concept, cells with a remarkable difference in shape with respect
to the others are mapped away from the others (red-colored) in the diagrams.

As reference, the Cartesian position of some regular polygons: the triangle, the square,
the pentagon, the hexagon, the disk and the line segment are located in the presented
diagrams. The values of their morphometrical functionals are analytically calculated (ta-
ble 3.3).

3.1.3 Simulated images

For simulated images obtained from Gaussian random fields with Gaussian and Bessel
covariance, the studied shape diagrams are presented (figure 3.2). Same number of cells
are represented in each shape diagram studied.

To analyse the homogeneity of simulated cells, two statistical criteria are studied, the
root-mean-squared distance (definition 13) of points in the diagram and the Euclidean
distance between the centroids of the diagrams for simulated and for endothelial cells.

Root-mean-squared distance (RMSD)

The root-mean-squared distance characterize the amount of 2D dispersion of points around
the centroid of the diagram. It’s a scalar number that increase if the variability of points
positions is more important, that is to say the RMSD gives an information of the shape
homogeneity according to the diagrams.

Definition 13 Let (x,y) = (x1, y1), . . . , (xN , yN ) be N points in the R2 domain. The
root-mean-squared distance of (x,y) is given by

RMSD(x,y) =
√
σ2
x + σ2

y

Or equivalently, by

RMSD(x,y) =

√√√√ 1

N − 1

N∑
i=1

((xi − x̄)2 + (yi − ȳ)2)

where σx and x̄ are the standard deviation and the mean of the vector x respectively.
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Figure 3.1: Shape diagrams D1 and D2 for two manually segmented endothelial images.
Particular cells whose Cartesian positions are visually more distant from the diagram centre
are colored in red and located in the endothelial images. They have clearly a particularl
morphology with respect to the others. Cartesian position of the triangle, the square, the
pentagon, the hexagon, the disk and the line segment are also located as reference.
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Table 3.4: Root-mean-squared distance (RMSD) and distance between centroids of shape
diagrams of endothelial and simulated cells (δ). Simulated cells are obtained from the
h−maxima transform of Gaussian random fields with Bessel and Gaussian covariance with
h ∈ {0, 0.1, 0.2, 0.3, 0.4}. Highlighted in bold the more interesting results.

h Bessel covariance Gaussian covariance
D1 D2 D1 D2

RMSD δ RMSD δ RMSD δ RMSD δ
0 0.339 0.073 0.17 0.062 0.244 0.102 0.128 0.078
0.1 0.182 0.04 0.095 0.047 0.23 0.091 0.119 0.066
0.2 0.196 0.054 0.105 0.044 0.229 0.09 0.12 0.059
0.3 0.2 0.061 0.109 0.041 0.227 0.083 0.122 0.053
0.4 0.206 0.07 0.114 0.042 0.233 0.097 0.128 0.056

Distance between centroids of diagrams (δ) and results

For corneal endothelial cells, taken from 14 manually segmented optical images, the cen-
troid of the diagrams D1 and D2 are located, and then the Euclidean distance between
them and the centroids of the different simulated cell diagrams δ are calculated. The aim
here is to identify the shape diagram of simulated cells whose centroid is closer to that of
endothelial cells.

Results are presented in table 3.4, for cells obtained from simulations of Gaussian
random fields with different parameters.

3.1.4 Conclusion

As a first conclusion, according to the distance δ between centroids of shape diagrams,
simulated cells obtained from Gaussian random fields with a Bessel covariance are closer
to endothelial cells regarding their morphometrical characteristics than cells simulated with
a Gaussian covariance. In addition, with a Bessel covariance, simulated cells present also
more homogeneity in shape, considering the root-mean-squared distance of shape diagrams.

Analysing the effect of h of the h−maxima transform in the simulations, results with
h > 0.3 are no longer interesting for both covariance functions. Geometrical criteria in the
next section is studied to confirm this results.

3.2 Granulometry

Ophthalmologists are interested not only in the pleomorphism of endothelial cells, they are
also concerned in the polymegathism (size variability) of cells. Consequently, a statistical
study of the subject is performed. To this purpose, the area and perimeter distribution
of endothelial cells are studied and the results are compared to those related to simulated
cells.

3.2.1 Endothelial images

In order to have a good reference sample to compare with the simulated cells, the area
and perimeter of 14 manually segmented optical images are calculated. But they are not
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Figure 3.2: Effect of h in shape diagrams. Diagrams D1 and D2 for simulated cells with a
Bessel covariance in the first and second columns respectively. The same for cells simulated
with a Gaussian covariance in the two last columns. +: Centroid of diagram of endothelial
cells presented as reference, +: centroid of the current diagram of simulated cells. 2760
cells represented in each diagram.
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Figure 3.3: Geometrical functionals of the endothelial image presenting the lowest CV of
cell areas among 14 optical images. These distributions are the reference to be compared
with simulated cells in the next section.

considered as a single vector, due to the different characteristics that each donor could
present. Consequently, only one image will be chosen as reference, and this image is not
chosen randomly. The coefficient of variation (CV) of corneal endothelial cell areas, defined
as the ratio of the standard deviation to the mean of cell areas, is therefore used. CV is
also used to analyse endothelial morphometry in [2].

To have the most homogeneous distribution in cell size, the lowest CV of endothelial
cell areas is selected. This endothelial image has already been studied in previous sections
(figure 3.1b), which CV value is 0.289. Maximum CV value is 0.445 and the mean is 0.346.
Its area and perimeter distribution is presented in figure 3.3.

3.2.2 Simulated images

The simulated cells depend strictly on the choice of h in the h−maxima transform. For
each h, the analysis is performed with about 5×105 simulated cells from Gaussian random
fields (figure 3.4). Results confirm the interest of working with the extended h−maxima
germs instead of the regional maxima points of the random field to create the tessellations.
With the extended h−maxima germs, the number of significantly small cells in relation to
the mean is reduced. This is in accordance with the spatial distribution and shape analysis
of previous sections.

To compare area distributions, the Kolmogorov-Smirnof and theWilcoxon-Mann-Whitney
nonparametric tests are used. Kolmogorov-Smirnov ks statistic and Wilcoxon-Mann-
Whitney z statistic are calculated between area distributions. Results are presented in
table 3.5, and suggest again that tessellations obtained from Gaussian random fields with
a Bessel covariance are closer to a human corneal endothelium with a value of h between
0.1 and 0.2.
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Figure 3.4: Effect of h in geometrical functionals. Cells obtained from Gaussian random
fields with: (a)-(f): Bessel covariance. (g)-(l): Gaussian covariance. h = 0 corresponds to
local maxima of a random field.
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29 3. Characterization

Table 3.5: Kolmogorov-Smirnov ks statistic and Wilcoxon-Mann-Whitney z statistic. Sim-
ulated cells are obtained from the h−maxima transform of Gaussian random fields with
Bessel and Gaussian covariance with h ∈ {0, 0.1, 0.2, 0.3, 0.4}. Highlighted in bold the
more interesting results.

h Bessel covariance Gaussian covariance
ks z ks z

0 0.242 -16.534 0.058 0.098
0.1 0.209 -16.933 0.177 13.073
0.2 0.039 0.279 0.138 9.173
0.3 0.26 19.693 0.195 14.015
0.4 0.336 25.397 0.28 21.007
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Chapter 4

Concluding discussion and
perspectives

Random fields is a very exhaustive (interesting and useful in many applications) domain.
In this work, some alternatives and variations of them are studied, nevertheless, perspec-
tives are infinite. We worked mainly with Gaussian random fields, we therefore propose
as alternative working with non-Gaussian random fields, or even with Gaussian-related
random fields (t−student, chi-squared, etc.).

We also worked with the h−maxima transform regarding mathematical morphology,
there are many others tools in this field that could be interesting to look at, namely the
top-hat, global and local thresholding, etc.

Regarding the characterisation of cells, criteria about shape diagrams were introduced,
a perspective work to compare two shape diagrams is considering a distance between them
like the Hausdorff or the Fréchet distance.

Results and more perspectives

Random simulated human corneal endothelial tessellations presents satisfactory morpho-
metrical and granulometrical properties. Usual techniques consists on Voronoi diagrams
created from random points processes, such as centroidal Voronoi tessellation or latin hy-
percube sampling. The originality of this work consists in creating such diagrams not from a
point process, but from a set of compact connected sets or germs obtained from a function
as generators of the diagram who is then called skeleton by influence zone. These germs
are obtained from the h−maxima transform of a Gaussian random field and a fundamental
step of this method is to find an optimal value for this h.

We have locate an optimal interval, between 0.1 and 0.3 and an analytic analysis is
now been researched to precise, if it exist, an optimal value for h.

Spatial repartition of local maxima of a Gaussian random field is a not developed area
in this days. It is therefore motivating to continue working in probability theory regarding
random fields, their geometrical properties and their extrema repartition.

The project CorImMo 3D is also interested in modelling three-dimensional images of
the human corneal endothelium, a generalisation of the method presented in this work is
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31 4. Concluding discussion and perspectives

therefore proposed as a perspective.
Finally, we will submit a paper in SIAM Journal on Imaging Sciences presenting this

work and results. The title of the paper is: Modeling, simulation and characterisation of
2D spatial mosaics by means of random fields. It will be submitted in October 2014.
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