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Introduction

My internship was held from April 22, 2024, to September 20, 2024, at the "Institut National
de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)". This internship
follows the recent work of [Naveau et al., 2024], who developed the Stochastic Approximation
Expectation Maximization for Variable Selection (SAEMVS) by coupling the SAEM algorithm
with a Bayesian spike-and-slab prior for covariate selection in nonlinear mixed-effects models.

Given the profound challenges that climate change will impose on agricultural systems, in-
formed decisions about plant breeding and crop management become crucial. Climate change
significantly alters how plants interact with their environment, making the identification and
selection of resilient plant varieties essential. The SAEMVS approach, developed in response
to these challenges, utilizes statistical methods that accurately capture plant-environment in-
teractions. This allows for the optimization of breeding strategies to select varieties that not
only thrive in changing climates but also contribute to reducing agriculture’s environmental
footprint [Reynolds et al., 2020]. By employing the SAEM algorithm coupled with a Bayesian
spike-and-slab prior, this method enhances our ability to make precise selections in the increas-
ingly complex scenario of global climate change.

Given the profound challenges that climate change will impose on agricultural systems, it
is crucial to make informed decisions about plant breeding and crop management. Recognizing
how climate change affects agriculture is essential; we need to identify and select plant varieties
that are resilient to these changes. This can be done effectively with statistical methods that
accurately capture plant-environment interactions, allowing us to optimize breeding strategies.

The selection of crop varieties that perform well in agricultural settings depends on the use
of complex nonlinear models, which are computationally intensive to evaluate. Estimating these
models requires multiple iterations, where the nonlinear functions must be repeatedly assessed,
leading to significant computational demands. My internship aimed to tackle this issue by
applying metamodeling techniques to reduce computation time and improve the efficiency of
the SAEMVS procedure, an iterative method [Naveau et al., 2024]. This approach is not based
on new inventions, but rather on the application of established methods and insights gathered
from various scientific articles and references. These metamodeling techniques have already
proven effective in similar models, as demonstrated in the study by [Barbillon et al., 2021] on
the parametric estimation of complex mixed models using a meta-model approach.

During this period, I had the privilege of being supervised by Maud Delattre, a dedicated
research scientist at INRAE within the MaIAGE unit. Her expertise in statistical methodologies,
particularly in Markovian and latent variable models, with applications in life sciences, provided
invaluable guidance throughout my internship. I was also fortunate to be co-supervised by
Marion Naveau, a highly skilled and motivated PhD candidate working under the supervision
of Maud Delattre and Laure Sansonnet (MCF, AgroParisTech). Her research, which focuses on
high-dimensional variable selection in nonlinear mixed-effects models applied to plant breeding,
is a key part of the ANR project Stat4Plant [2021].

The first section of this report introduces the host institution, the biological and statistical
context, and the objectives of the internship. The second section covers the EM algorithm
and its extensions, such as SAEM and MCMC-SAEM, along with relevant stochastic processes,
focusing on Gaussian processes. It also includes metamodeling techniques like Kriging and the
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use of Latin Hypercube Sampling (LHS) for generating training data. The third section of
the report focuses on the coupling of the SAEMVS method with Kriging. It begins with an
overview of the SAEMVS method. The section then explains how Kriging is integrated into the
mixed-effects model framework. By coupling SAEMVS with Kriging, the methodology aims to
significantly reduce computational costs while preserving the accuracy of variable selection. The
fourth section presents a simulation study validating this approach, exploring different Kriging
configurations and comparing their performance. The report concludes with the results from
the simulation study and perspectives.

1 Internship Framework

1.1 The Host Organization: INRAE Research Center at Jouy-en-Josas

INRAE, established in January 2020 through the merger of INRA (Institut National de la
Recherche Agronomique) and IRSTEA (Institut national de Recherche en Sciences et Tech-
nologies pour l’Environnement et l’Agriculture), applies interdisciplinary analysis to advance
scientific research and innovation across a wide range of fields, including climate change, agroe-
cology, and biodiversity.

INRAE is a public scientific and technological institution, under the joint supervision of the
Ministry of Higher Education, Research and Innovation and the Ministry of Agriculture and
Food. The institute comprises 18 research centers. During my internship, I was based at the
Jouy-en-Josas center, chaired by Nathalie Touze.

Figure 1: Organizational Chart of the MaIAGE Unit, INRAE Jouy-en-Josas

The MaIAGE research unit, directed by Béatrice Laroche, brings together experts in math-
ematics, computer science, bioinformatics, and biology to deal with questions related to biology
and agroecology. The unit is divided into five teams, as shown in the organizational chart (Fig-
ure 1). I was part of the Dynenvie team, led by Estelle Kuhn, which focuses on dynamic and
statistical modeling for ecosystems, epidemiology, and agronomy.
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1.2 The ANR Stat4Plant Project

My internship was funded by the Agence Nationale de la Recherche (ANR) as part of the
Stat4Plant [2021] project, led by Estelle Kuhn, a research director at the MaIAGE unit. This
project aims to develop new statistical methods for characterizing plant-environment interac-
tions in the context of climate change. Running from 2021 to 2025, the project brings together
researchers in modeling and applied statistics, known for their interdisciplinary collaborations,
and biologists specializing in genotype-phenotype relationships, from units such as MaIAGE,
MIA Paris-Saclay, INRAE GQE (Quantitative Genetics and Evolution) Le Moulon, Centrale-
Supelec MICS (Mathematics and Informatics for Complexity and Systems), UTC Heudiasyc
(University of Technology of Compiègne, Heuristics and Diagnostics of Complex Systems), and
IJPB (Institut Jean-Pierre Bourgin).

The Stat4Plant [2021] project is structured around four major research axes that bring to-
gether statisticians and biologists. My internship was specifically aligned with the third axis,
which is dedicated to developing methods for high-dimensional variable selection in plant-related
applications. This axis focuses on identifying the most influential genetic covariates from large
datasets, particularly those that affect phenotypic traits either directly or in connection with
critical agricultural events, such as flowering, fruiting, or harvest timing. To improve compu-
tational efficiency, metamodeling is introduced as an interesting and promising approach. My
work specifically contributes to this effort, aiming to enhance the performance and practical
applicability of these variable selection methods in agricultural scenarios.

1.3 Biological Context

Pool of biomass
CHO

H2O 
NO3

-

Seed

Plant architecture Organ weights

Allocation

Figure 2: Stages from seed to mature plant and the allocation of resources necessary for growth
(Image courtesy of Estelle Kuhn)

In plant breeding, one of the main goals is to predict plant development accurately based on
genotype and environmental conditions. Figure 2 illustrates a conceptual model of plant devel-
opment, showing how resources like water (H2O), nitrates (NO3-), and carbohydrates (CHO)
are allocated throughout the plant’s life cycle. Starting from the seed stage, these resources
build biomass, shaping the plant’s architecture and organ weights. The model highlights the
complexity of plant development, where each stage of growth involves detailed biological pro-
cesses (see Figure 2. This complexity underscores the challenges in accurately simulating and
predicting plant growth, as each biological step contributes to the overall development process.
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In this context, it is important to discuss crop models, which are recognized for their in-
herent complexity and the significant computational effort required to simulate detailed stages
of plant growth. These models simulate various biological processes, such as phenological de-
velopment, photosynthesis, and the allocation of dry matter, which depend on both genetic
factors and environmental conditions. For instance, in the study conducted within the frame-
work of the Stat4Plant project, a crop model that predicted the flowering times of 198 varieties
of winter wheat across 10 different environments was employed. This model, which integrates
genetic markers and environmental data, incorporates five sub-models that represent distinct
physiological processes like stem and leaf production, root development, light interception, and
photosynthesis [Weir et al., 1984]. However, due to its detailed nature, evaluating this crop
model is much slower compared to simpler models, such as logistic growth models.

A single iteration of this crop model can take approximately five minutes, while a logistic
model would complete the same iteration in just 1 second. When applying the SAEMVS al-
gorithm, which requires hundreds of iterations and several model evaluations per iteration, the
total computational time can extend beyond 24 hours for one set of simulations. In contrast,
using a logistic model would complete the same task in a matter of minutes. This high com-
putational demand becomes even more challenging when large-scale analyses, like parameter
estimation or sensitivity analysis, require thousands of simulations [Brun et al., 2019].

Moreover, the high dimensionality of genetic data in plant breeding, which often includes
thousands of covariates such as genetic markers or single nucleotide polymorphisms (SNPs),
needs the use of variable selection techniques. These covariates are represented as a large num-
ber of variables in the model, creating a high-dimensional data scenario. Identifying the most
influential genetic factors becomes essential to enhance the model’s predictive accuracy. The
challenge intensifies when the number of covariates exceeds the number of samples, making
effective variable selection both critical and complex. This necessity for precise selection fur-
ther motivates the development and optimization of computational methods in plant breeding
research.

1.4 Internship Objectives

My internship work focuses on integrating metamodeling techniques into the process of variable
selection in nonlinear mixed-effects models within a high-dimensional setting, specifically using
the SAEMVS method. The challenge here lies in the significant computational cost, primarily
due to the iterative nature of the SAEM algorithm, which necessitates multiple evaluations of
a complex and computationally expensive crop model at each step. This is further complicated
by the high dimensionality of genetic data.

The paper by [Barbillon et al., 2021] specifically addressed similar computational challenges,
focusing on parametric inference within complex mixed models. They proposed metamodeling
techniques to approximate the costly regression functions involved, significantly reducing the
computational demands. However, their approach was developed with a focus on parametric
estimation, not variable selection.

A recent study by [Naveau et al., 2024] has made a significant contribution in the area of
variable selection by combining a spike-and-slab prior with the SAEM algorithm. Their approach
offers a more computationally efficient alternative to traditional MCMC methods, showing strong
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performance in both simulated and real datasets, particularly for identifying genetic markers in
plant breeding. Building on this foundation, my work aims to extend these metamodeling
techniques to the domain of high-dimensional variable selection within nonlinear mixed-effects
models. This involves addressing the computational challenges posed by the SAEMVS method
when applied to complex, high-dimensional datasets.

The objective of this internship, proposed by Maud Delattre and Marion Naveau, is to ex-
plore the use of metamodeling to improve the computational efficiency of the SAEMVS method-
ology. Building on the foundations of Naveau’s research on Bayesian variable selection in high-
dimensional nonlinear mixed-effects models, the focus is on developing a coupling between the
Kriging method and the SAEMVS approach.

After studying the relevant literature, I implemented this new coupling in R and validated it
through an intensive simulation study. In doing so, I utilized existing resources and methodolo-
gies from papers on Kriging, specifically incorporating tools such as DiceKriging, DiceEval,
and DiceOptim to support the development and evaluation of the metamodeling approach.

2 Statistical Prerequisites

2.1 Nonlinear Mixed Effects Models (NLME)

Mixed-effects models are studied to combine fixed and random effects in the analysis of repeated
observations on individuals under various conditions, such as temporal or environmental varia-
tions [Lavielle, 2014, Pinheiro and Bates, 2000]. These models are particularly relevant when it
is essential to describe both intra- and inter-individual variation under different conditions.

For example, plant growth variations are monitored in response to various environmental
factors, such as water, sunlight, and temperature. These data allow us to model both the
variability specific to each individual and the variability between individuals. The goal is to
model plant growth under these conditions using a two-level model:

• Global level: A common global growth trend is modeled by a function g, which is
consistent across all individuals.

• Individual level: The parameters that vary between individuals are denoted by φi and
are influenced by both fixed effects (common across all individuals) and random effects
specific to each individual.
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Growth Trajectories of Individuals

Figure 3: Growth trajectories of individuals over time

Figure 3 illustrates the growth trajectories of multiple individuals over time, revealing a
consistent overall trend where most individuals experience rapid initial growth that slows and
plateaus as time progresses. However, there is notable inter-individual variability, with some
individuals growing significantly faster than others, indicating differences in growth rates likely
due to genetic, environmental, or other factors. This variability underscores the complexity of
growth dynamics within the population, even as a common growth pattern is observed.

Statistical Model A non linear mixed-effects model is presented as follows, composed of two
levels defined by Equations (1) and (2). This model accounts for intra-individual variability
through the function g, which depends on the specific profile of the crop model under study
[Lavielle, 2014].

Let n denote the number of individuals, and J the number of observations per individual.
For simplicity, it is assumed that J is constant across all individuals i ∈ {1, . . . , n}. For each
i ∈ {1, . . . , n} and j ∈ {1, . . . , J}, the response of individual i under condition xij , denoted by
yij , is given by:

yij = g(φi, ψ, xij) + ϵij , ϵij
i.i.d.∼ N (0, σ2), (1)

φi = µ+ β⊤Vi + ξi, ξi
i.i.d.∼ Nq(0,Γ). (2)

In this model:

• ψ ∈ Rr denotes the unknown fixed effects parameters common across the population (in
the following simulation case r = 2).

• φi ∈ Rq represents the unobserved individual-specific parameters.
• g is a known function governing intra-individual behavior based on the conditions observed,

depending nonlinearly on the unobserved individual parameter φi and the fixed effects ψ.
• yij ∈ R represents the response of individual i under condition xij .
• σ2 > 0 is the unknown residual variance in the observations.
• µ is the overall intercept.
• β is a matrix of fixed effects related to covariates Vi.
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• ξi is a random variable following a multivariate normal distribution, Nq(0,Γ), accounting
for differences between individuals that are not explained by the observed covariates Vi.

• Vi = (Vi1, . . . , Vip)T represents the p covariates associated with individual i.
• Γ is the covariance matrix characterizing the variability of φi across the population.

Two Levels of Variability

Intra-Individual Variability: This is captured by the error term ϵij in equation (1), repre-
senting random noise around each individual’s response predictions.

Inter-Individual Variability: Equation (2) captures inter-individual variability. This vari-
ability is represented as the sum of two terms: a linear combination of covariates β⊤Vi, which
describes differences between individuals, and a random effect ξi, which accounts for unmeasured
characteristics not explained by the covariates [Lavielle, 2014, Pinheiro and Bates, 2000].

These two levels together provide a comprehensive description of both intra- and inter-
individual variability.

The population parameters are denoted as θ = (µ, β, ψ, σ2,Γ), while φ = (φi)1≤i≤n represents
latent random variables, which are not directly observed. In this model, the individual-specific
parameters φi serve as such latent variables.

In this internship, we are particularly interested in scenarios where the number of covariates p
is significantly larger than the number of observations n. This high-dimensional context (p ≫ n)
makes the problem computationally challenging.

2.2 EM Algorithm and Its Extensions

In this context, where φi are latent variables for all i ∈ {1, . . . , n}, as is common in most
latent variable models, the inference process is typically indirect and not explicit. Consequently,
specialized algorithms are required to perform this inference effectively. This necessity leads us
to the discussion of the EM algorithm and its extensions.

2.2.1 EM Algorithm

The Expectation-Maximization (EM) algorithm was originally introduced by [Dempster et al.,
1977] to overcome difficulties in maximizing likelihoods in the presence of latent variables. The
intuition behind the EM algorithm can be illustrated with the "chicken-and-egg" analogy:

1. If we knew the latent variables φ, we could easily compute the complete-data log-likelihood
log pθ(y, φ).

2. If we knew the parameters θ, we could estimate the latent variables φ through their
posterior distribution pθ(φ | y).

However, since the latent variables φ are not observed, we aim to maximize the observed-data
likelihood pθ(y) =

∫
pθ(y, φ)dφ. The goal is to find the maximum likelihood estimate:

θ̂ = arg max
θ∈Θ

log pθ(y).
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The EM algorithm constructs a sequence {θ(k)} converging to a local maximum of
the likelihood function:

1. Initialization: Choose an initial value θ(0) ∈ Θ.
2. Iteration (for k ≥ 0):

(a) E-step: Compute the expected value of the complete-data log-likelihood with respect
to the current estimate of the parameters:

Q(θ | θ(k)) = Eφ|y,θ(k) [log pθ(y, φ)].

(b) M-step: Update the parameter estimates by maximizing Q(θ | θ(k)):

θ(k+1) = argmax
θ∈Θ

Q(θ | θ(k)).

Each iteration of the EM algorithm increases the observed-data log-likelihood log pθ(y), and
the algorithm converges to a local maximum under mild regularity conditions (Section A.1) [Wu,
1983]. It is important to note that the convergence point may depend on the choice of the initial
value θ(0), and different initializations may lead to different local maxima. Therefore, careful
consideration of the initialization strategy is crucial in practice [McLachlan and Krishnan, 2007].
We can also rewrite the likelihood to work with the ELBO dimension as can be seen in Section
A.3.

Convergence theorems of the EM algorithm The convergence of the EM algorithm is
supported by several theoretical results, which are detailed in Annex A.2.

2.2.2 SAEM Algorithm (Stochastic Approximation EM)

The Stochastic Approximation EM (SAEM) algorithm was introduced by [Delyon et al., 1999]
as an extension of the EM algorithm to handle situations where the E-step cannot be computed
explicitly. This is often the case in nonlinear mixed-effects models, as described in Section 2.1.
The SAEM algorithm achieves this by incorporating simulation and stochastic approximation
methods.

Objective: To compute Q(θ | θ(k)) by approximating the conditional expectation of the
complete-data log-likelihood.

The SAEM algorithm replaces the deterministic E-step of the standard EM algorithm with
a stochastic approximation:

1. S-step (Simulation): Generate a realization φ(k) of the latent variables from the condi-
tional distribution pθ(k)(φ | y).

2. SA-step (Stochastic Approximation): Update the approximation of Q(θ | θ(k)) using
the stochastic update rule:

Qk+1(θ) = Qk(θ) + γk
(
log pθ(y, φ(k)) −Qk(θ)

)
,

where γk is a step size sequence satisfying
∑
k γk = ∞ and

∑
k γ

2
k < ∞. The sequence

(γk)k is typically decreasing, converging to 0, and starts at 1.
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3. M-step: Maximize the updated Qk+1(θ) with respect to θ:

θ(k+1) = argmax
θ∈Θ

Qk+1(θ).

The choice of this step size sequence {γk} is crucial for the convergence of the SAEM al-
gorithm. The conditions

∑
k γk = ∞ and

∑
k γ

2
k < ∞ ensure that the algorithm explores the

parameter space sufficiently while the diminishing step size reduces the impact of the stochastic
noise over time.

A common practical choice is to set:

γk =

1 if k ≤ k0,

(k − k0)−α if k > k0,

where k0 is the number of iterations in the initial exploration phase (burn-in), and α ∈ (0.5, 1]
controls the rate at which the step size decreases [Lavielle, 2014].

The SAEM algorithm iteratively updates the parameter estimates by combining stochastic
simulations of the latent variables with stochastic approximations of the expected complete-data
log-likelihood. This approach allows for efficient parameter estimation even when the exact E-
step is computationally infeasible.

Convergence of SAEM The convergence properties of the SAEM algorithm have been stud-
ied extensively. Under suitable regularity conditions, the sequence {θ(k)} generated by the SAEM
algorithm converges almost surely to a critical point of the observed-data log-likelihood function.
Specifically, [Delyon et al., 1999] proved the theorem cited in Annex A.4.

2.2.3 Simplified Version with Exponential Family

To improve computational efficiency, we consider models within the exponential family, which
enables stochastic approximation to be performed on these statistics rather than directly on the
likelihood [Delyon et al., 1999]. In subsequent sections, we will discuss the selection of priors for
the SAEMVS algorithm, specifically Gaussian spike-and-slab priors. These priors allow us to
remain within the exponential family framework, benefiting from its computational advantages.
By choosing priors that are conjugate to the likelihood within the exponential family, we can
simplify the updates in the SAEM algorithm and ensure that the sufficient statistics remain
tractable [Lavielle, 2014].

For models in the exponential family, the joint distribution of the observed data y and the
latent variables φ can be written as:

pθ(y, φ) = exp (−ψ(θ) + ⟨S(y, φ), ϕ(θ)⟩) ,

where S(y, φ) are the sufficient statistics, ϕ(θ) are the natural parameters, and ψ(θ) is the
log-partition function.

The complete-data log-likelihood is then:

log pθ(y, φ) = −ψ(θ) + ⟨S(y, φ), ϕ(θ)⟩ .

Consequently, the Q function in the EM algorithm becomes:

Q
(
θ | θ(k)

)
= −ψ(θ) + ⟨Eθ(k) [S(y, φ) | y] , ϕ(θ)⟩ .
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In this context, it suffices to approximate the expected sufficient statistics Eθ(k) [S(y, φ) | y]
in order to approximate Q(θ | θ(k)). This simplifies the SAEM algorithm, as the stochastic
approximation can focus on the sufficient statistics rather than the entire log-likelihood function.

The convergence of SAEM under the given conditions provides theoretical assurance for its
application in complex models where traditional EM algorithms fail due to intractable E-steps.
By carefully selecting the step size sequence and ensuring the model satisfies the regularity
conditions, we can confidently apply SAEM to obtain reliable parameter estimates.

2.2.4 MCMC-SAEM Algorithm: Coupling with MCMC Procedures

In nonlinear mixed-effects models, where the conditional distribution of the latent variables φ
given the observed data y, i.e., pθ(φ | y), is not available in closed form, the S-step of the SAEM
algorithm becomes infeasible. To address this issue [Kuhn and Lavielle, 2004] proposed coupling
the SAEM algorithm with Markov Chain Monte Carlo (MCMC) methods to simulate the latent
variables.

MCMC Method and Metropolis-Hastings Algorithm

Markov Chain Monte Carlo (MCMC) methods construct a Markov chain (φ(k))k≥0 whose sta-
tionary distribution is the target distribution pθ(φ | y). One of the most commonly used MCMC
algorithms is the Metropolis-Hastings algorithm [Metropolis et al., 1953, Hastings, 1970], which
operates as follows:

1. Proposal Step: Propose a candidate sample φc from a proposal distribution q(φc |
φ(k−1)).

2. Acceptance Probability: Compute the acceptance probability:

α(φ(k−1), φc) = min
(

1, pθ(φc | y)
pθ(φ(k−1) | y) · q(φ

(k−1) | φc)
q(φc | φ(k−1))

)
.

3. Acceptance Step: Generate u ∼ U(0, 1). If u ≤ α(φ(k−1), φc), accept the candidate and
set φ(k) = φc; otherwise, reject the candidate and set φ(k) = φ(k−1).

This method ensures that the Markov chain has pθ(φ | y) as its stationary distribution.
Candidates that increase the target density pθ(φ | y) are always accepted, while others are
accepted with probability α, maintaining detailed balance and ergodicity Robert and Casella
[2004].

By integrating the Metropolis-Hastings algorithm into the SAEM framework, we can ap-
proximate the S-step by generating samples from the conditional distribution pθ(k)(φ | y) using
MCMC methods.

The use of MCMC methods in the S-step allows us to handle complex models where the
conditional distribution of φ is intractable, enabling the SAEM algorithm to be applied more
broadly.

[Kuhn and Lavielle, 2004] established the convergence of the MCMC-SAEM algorithm under
certain regularity conditions. The main idea is that, despite the stochastic nature of the MCMC
procedure, the overall algorithm behaves like a stochastic approximation algorithm, the theorem
is also cited in Annex A.5.
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Practical Considerations In practice, the proposal distribution q(φc | φ(k−1)) is often chosen
to be easy to sample from and to ensure a reasonable acceptance rate. Common choices include:

• Random Walk Proposal: q(φc | φ(k−1)) = N (φ(k−1), σ2I).
• Independent Proposal: q(φc) independent of φ(k−1).
• Another Proposal: q(φc | φ(k−1)) = N (µ(k) + β(k)Vi,Γ(k)).

The number of MCMC iterations M at each SAEM iteration can also be adjusted to balance
computational cost and convergence speed. A single MCMC iteration per SAEM iteration is
often sufficient due to the stochastic approximation nature of the algorithm.

2.3 SAEMVS: Variable Selection in High-Dimensional Nonlinear Mixed-
Effects Models

Variable selection in high-dimensional settings, especially within nonlinear mixed-effects models,
poses significant challenges due to the presence of latent variables and the complex structure of
the data. The SAEMVS method (Stochastic Approximation EM Variable Selection), introduced
by [Naveau et al., 2024], addresses these challenges by combining the Stochastic Approximation
EM (SAEM) algorithm with a Bayesian spike-and-slab prior for variable selection. This approach
extends the EMVS framework proposed by Rockova and George [Ročková and George, 2014] for
linear models to the nonlinear mixed-effects context.

Considering the NLME model defined by (1) and (2) for all 1 ≤ i ≤ n and 1 ≤ j ≤ J ,
we assume that the variabilities are independent and identically distributed (i.i.d.). Under this
assumption, the model can be expressed as follows:

yij
i.i.d.∼ N (g(φi, ψ, xij), σ2),

φi
i.i.d.∼ Nq(µ+ β⊤Vi,Γ).

In such models, identifying the influential covariates that explain the variability between
individuals is crucial. This task translates to determining the non-zero elements of the fixed-
effects matrix β. For each (ℓ,m) ∈ {1, . . . , p} × {1, . . . , q}, the coefficient βℓm represents the
effect of covariate ℓ on the individual-specific parameter φim of the nonlinear model g. A zero
coefficient βℓm = 0 indicates that covariate ℓ has no influence on the m-th individual parameter
across all individuals i, while βℓm ̸= 0 suggests a significant effect.

The objective is to identify the support of β, defined as

S∗ = {(ℓ,m) ∈ {1, . . . , p} × {1, . . . , q} | β∗
ℓm ̸= 0} ,

where β∗ denotes the true fixed-effects matrix. In high-dimensional scenarios where p ≫ n, it
is reasonable to assume sparsity in β∗, meaning that many of the β∗

ℓm are zero.

2.3.1 Details of the SAEMVS Algorithm

To facilitate variable selection, SAEMVS uses a Bayesian approach. [Naveau et al., 2024] in-
troduces binary latent variables δδδ = (δℓ,m)1≤ℓ≤p;1≤m≤q, where δℓm ∈ {0, 1}. Each δℓm indicates
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whether covariate ℓ indicates that the covariate m provides information on the individal param-
eter m. This is formalized by setting δ = (δℓm)1≤ℓ≤p;1≤m≤q are introduced, such as:

∀1 ≤ ℓ ≤ p,∀1 ≤ m ≤ q, δℓm =
{

1 if (ℓ,m) is to be included in model S∗

0 otherwise.

The SAEMVS method proceeds as follows:

1. Introduction of latent variables and priors: Incorporate the latent variables δℓ and
assign spike-and-slab priors on the coefficients βℓ [Mitchell and Beauchamp, 1988],which
serve as a regularization mechanism through the hyperparameters ν0 and ν1.
Specifically, the spike-and-slab prior for each βℓm given δℓm, for all 1 ≤ l ≤ p, 1 ≤ m ≤ q

is defined as:

π(βℓm | δℓm) = N (0, aℓm), where aℓm = (1 − δℓm)ν0 + δℓmν1,

with 0 < ν0 < ν1. Here, ν0 is small, inducing strong shrinkage towards zero (the "spike"),
and ν1 is larger, allowing for non-zero coefficients (the "slab").

2. Bayesian estimation via MCMC-SAEM: Use a Bayesian approach to estimate all
parameters θ, including β and the latent variables δ and other model parameters, by
employing the MCMC-SAEM algorithm to obtain the Maximum A Posteriori (MAP)
estimator θ̂.

3. Variable selection: Perform variable selection by thresholding the estimated coefficients
β̂MAP. Covariates corresponding to non-negligible estimated coefficients are selected, i.e.,
covariates ℓ for which |β̂MAP

ℓm | ≥ sβ are included in the final model, where sβ is a threshold
function.

4. Model selection over hyperparameters: Repeat steps 2 and 3 over a grid of values
for the shrinkage hyperparameter ν0. The optimal value ν̂0 is chosen based on a model
selection criterion such as the extended Bayesian Information Criterion (eBIC).
Specifically, the optimal ν0 is selected by minimizing the eBIC:

ν̂0 = argmin
ν0∈∆

eBIC
(
Ŝν0

)
,

where ∆ denotes the grid of ν0 values, Ŝν0 is the selected model at ν0, and

eBIC
(
Ŝν0

)
= −2 log p

(
y; θ̂MLE

ν0

)
+ peneBIC (ν0) ,

with the penalty term

peneBIC (ν0) = Bν0 logn+ 2 log
(
p

Bν0

)
,

where Bν0 is the number of non-zero coefficients in the model Ŝν0 .

The spike-and-slab prior effectively distinguishes between relevant and irrelevant covariates
by shrinking negligible coefficients towards zero while allowing significant ones to remain. The
figure below illustrates the spike-and-slab distribution:
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Figure 4: Spike-and-Slab Distribution

In this plot, the "spike" at zero represents the prior belief that many coefficients are exactly
zero, while the "slab" allows for coefficients to take on a range of values, capturing the significant
effects.

Employing Gaussian priors within the SAEM algorithm allows the model to remain within
the exponential family, which offers computational benefits. The exponential family structure
facilitates the calculation of sufficient statistics and simplifies the update steps in the SAEM
algorithm, enhancing numerical stability a crucial factor in high-dimensional settings [Lavielle,
2014].

2.3.2 Final Variable Selection

After obtaining the MAP estimates β̂ for each ν0 ∈ ∆, the final set of selected variables Ŝν0 is
determined using a thresholding rule based on the estimated coefficients:

Ŝν0 =
{

(ℓ,m) ∈ {1, . . . , p} × {1, ..., q} | |β̂MAP
ℓm | ≥ sβ

(
ν0, ν1, α̂

MAP
m

)}
, (3)

where sβ is a threshold function depending on ν0, ν1, and the estimated hyperparameters
α̂MAP
m . This step ensures that only covariates with sufficiently large estimated effects are selected.

The following graphical plot was designed by [Naveau et al., 2024] and it is used to illustrate
the regularization process in model selection using the SAEMVS method. It shows how the
coefficients of covariates change as the regularization parameter varies, helping to identify the
most relevant covariates. Additionally, it illustrates how the eBIC criterion selects the optimal
model by balancing model complexity and fit quality.

In Figure (A), the regularization plot visualizes how the estimates of model parameters
change with the regularization parameter ν0. he blue lines represent the values of the components
of β̂MAP associated with relevant covariates, while the black lines correspond to the covariates
with null effects. The red lines indicate the selection thresholds for the covariates. For each ν0,
the selected covariates Ŝν0 are those for which (β̂MAP

ν0 )ℓ lies outside the two red threshold lines.
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Figure 5: (A) SAEMVS Regularisation plot and (B) eBIC criterion

Figure (B) illustrates the eBIC criterion across all values of ν0 in ∆. As desired, the eBIC
reaches its minimum when the correct model is selected. The procedure selects the second value
of ν0 ∈ ∆, which corresponds to ν̂0 ≈ 0.016, and the associated covariates Ŝν̂0 = {1, 2, 3}. In
this simulated scenario, SAEMVS successfully identifies the correct model, which includes only
the first three covariates.

2.3.3 Computational Considerations

Implementing the SAEMVS algorithm involves substantial computational effort, particularly
due to the need to run the SAEM algorithm multiple times over the grid of ν0 values. For
each grid point, the algorithm iteratively evaluates the model g, described below, across all
individuals, which can be computationally expensive, especially when g is complex or when the
sample size n is large.

Moreover, the choice of the grid ∆ for ν0 is critical. An inadequately chosen grid may fail to
capture the optimal ν0, leading to suboptimal variable selection—either by missing important
covariates (underselection) or including irrelevant ones (overselection). Balancing the granularity
of the grid with computational feasibility is thus essential.

The total number of SAEM iterations is determined by two loops. The first loop runs over
ν0 ∈ ∆, where M is the number of values in the grid ∆. For each ν0, the MCMC-SAEM
algorithm performs K iterations to compute the MAP estimate Θ̂MAP

ν0 , resulting in a total
of M × K iterations for the first loop. The second loop processes unique sub-models Ŝν0 ,
where U represents the number of unique sub-models obtained after thresholding. For each
sub-model, the MCMC-SAEM algorithm runs for K ′ iterations to compute the MLE estimate
Θ̂MLE
ν0 , contributing U×K ′ iterations for the second loop. Therefore, the total number of SAEM

iterations is the sum of both loops, given by the formula: M ×K + U ×K ′.
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Total SAEM iter-
ations per ν0: K

Figure 6: Illustration of the computational Workflow of the SAEMVS Algorithm

2.4 Introduction to Metamodeling

Metamodeling, also known as surrogate modeling, is a technique that aims to create simplified
models that approximate the behavior of more complex systems. This approach is especially
valuable when direct simulation or evaluation of the original model is computationally expensive
or time-consuming. The concept of metamodeling can be traced back to the work of George E. P.
Box, whose pioneering efforts in statistics laid the groundwork for many modern metamodeling
methods [Box, 1976].

A metamodel, also known as a surrogate model, black-box model, or emulator, serves as a
"model of a model". These simplified approximations aim to capture the essence of the relation-
ship between the inputs and outputs of a complex model, offering a precise approximation with
lower computational cost [Wang et al., 2014].

In their comparative study, [Wang et al., 2014] concluded that Gaussian Processes (GPs) are
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the most effective method for constructing metamodels when compared to Polynomial Regres-
sion, Regression Trees, Random Forests, Multivariate Adaptive Regression Splines (MARS),
Support Vector Machines (SVM), and Artificial Neural Networks (ANN). The methods were
applied to benchmark problems like the Six-Dimensional Hartman function and a real-world
hydrological modeling problem. Based on these findings, we chose Gaussian Processes for our
metamodeling.

Our work primarily focuses on coupling the SAEMVS method with metamodeling. Kriging,
originally developed in geostatistics, is a method for spatial interpolation and prediction based
on Gaussian Processes. It was introduced by Daniel G. Krige in 1951 [Krige, 1951] and further
formalized by Georges Matheron [Matheron, 1963]. Kriging provides the Best Linear Unbiased
Prediction (BLUP) at unobserved locations based on observations at nearby locations.

Gaussian Process Regression (GPR) is a generalization of Kriging to arbitrary input spaces
and is not limited to spatial data. In fact, GPR and Kriging are mathematically equivalent under
certain assumptions [Rasmussen and Williams, 2006, Cressie, 1990]. Both methods use Gaussian
Processes to model the underlying function and make predictions based on the observed data.

[Sacks et al., 1989] proposed the joint use of Kriging models as metamodels together with
Latin Hypercube (LH) designs as an efficient method for approximating complex functions. In
our work, we employ Gaussian Process Regression, commonly known as Kriging in the field of
computer experiments, to construct metamodels that can approximate such functions. Moreover,
we can have outputs in many cases that are time-dependent. This observation inspires our
approach, where we develop a Kriging model based with both a time-dependent experimental
design and a global design. To achieve this, we employ Latin Hypercube Sampling (LHS) to
construct the design of experiments.

In the context of Stochastic Approximation Expectation-Maximization for Bayesian Variable
Selection (SAEMVS), Kriging can be used as an effective metamodeling technique to approxi-
mate complex objective functions or likelihoods that are otherwise expensive to evaluate directly.

Introduction to Gaussian Processes To fully define a Gaussian Process (GP), it is neces-
sary to specify a mean function µ and a covariance function K.

Definition 1 (Kernel Function). Let Ω ⊂ Rd. A function K : Ω × Ω → R is called a kernel
function if it is symmetric and positive semi-definite (p.s.d.), meaning that for any set of points
x1, . . . , xn ∈ Ω, the matrix K(X,X) is p.s.d.

For the matrix K(X,X) to be p.s.d., it must satisfy the condition:

For all λ = (λ1, . . . , λn)⊤ ∈ Rn : λ⊤K(X,X)λ =
n∑
i=1

n∑
j=1

λiλjK(xi, xj) ≥ 0.

We denote the Gaussian Process as G ∼ GP(µ,K), meaning that

µ : Ω → R,

x 7→ µ(x) = E[G(x)],
and

K : Ω × Ω → R,

(x, y) 7→ K(x, y) = Cov(G(x), G(y)).

That is, for any set of indices x1, . . . , xn ∈ Ω, we have
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
G(x1)

...
G(xn)

 ∼ N



µ(x1)

...
µ(xn)

 ,Σ
 , with Σ = (K(xi, xj))1≤i,j≤n .

In this case, the probability density function of the Gaussian vector is given by

fG(x1),...,G(xn)(z) = 1
(2π)n/2 det(K(X,X))1/2 exp

(
−1

2(z − µ(X))⊤K(X,X)−1(z − µ(X))
)
,

where z = (z1, . . . , zn)⊤ and µ(X) = (µ(x1), . . . , µ(xn))⊤.
To ensure that the Gaussian Process is well-defined, the mean function µ does not require

additional properties. However, the covariance function K must be symmetric and positive
semi-definite, as detailed in the previous definition.

The key advantage of Gaussian Processes is their flexibility, allowing them to model com-
plex functions without requiring a predefined parametric form [Rasmussen and Williams, 2006].
Examples of Kernels are shown in Annex B.

2.5 Gaussian Process Regression

Consider a set of observations y1, . . . , yn at associated locations x1, . . . , xn in a space X, originat-
ing from an unknown function f [Roustant, 2023]. The goal is to build a function (metamodel)
f̂ that interpolates the data, i.e., f̂(xi) = yi for i = 1, . . . , n, or at least approximates the data
when the observations are noisy. Among the various techniques available, we focus on Gaussian
Process Regression (GPR), which offers two primary advantages in the context of metamod-
eling. First, GPR is a probabilistic method, allowing for the quantification of uncertainty in
unexplored regions. Second, it is parameterized by two functions (mean and kernel), providing
flexibility and the ability to incorporate expert knowledge or domain-specific insights.

The origins of GP regression trace back to geostatistics, with foundational work by [Krige,
1951] and later extensions by [Matheron, 1963] in two or three dimensions. Its extension to
higher dimensions emerged in the late 1980s, motivated by the need to analyze large computer
simulations [Sacks et al., 1989]. Understanding the various facets of GP regression is beneficial.
For example, the Universal Kriging variance formula from geostatistics may serve as a good
trade-off for uncertainty quantification, partially accounting for parameter uncertainty without
resorting to time-consuming Bayesian inference.

2.5.1 The Gaussian Process Approach

The concept of GP regression is based on the assumption that the unknown function f is a
realization of a Gaussian Process Y ∼ GP(µ,K). The desired approximation is then obtained
by conditioning on the observations Y (xi) = yi for i = 1, . . . , n. Using the properties of Gaus-
sian vectors, this conditional process remains a GP, with explicit expressions for its mean and
covariance functions. We distinguish two cases:

Noise-Free Observations. The conditional process Y (x) given Y (xi) = yi for i = 1, . . . , n is
a GP with mean mc(x) and covariance Kc(x, x′), given by:
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mc(x) = µ(x) +K(x,X)K(X,X)−1(y − µ(X)),

Kc(x, x′) = K(x, x′) −K(x,X)K(X,X)−1K(X,x′),

where y = (y1, . . . , yn)⊤, µ(X) = (µ(x1), . . . , µ(xn))⊤, K(x,X) = (K(x, x1), . . . ,K(x, xn)),
and K(X,X) = (K(xi, xj))1≤i,j≤n.

mc(x) interpolates the data: mc(xi) = yi, and the uncertainty is zero at the design points:
Kc(xi, xi) = 0. Additionally, Kc(xi, x) = 0 for all x ∈ X. Notably, mc(x) is affine with respect
to the observations y, and Kc(x, x′) does not depend on them.

Noisy Observations. When observations are noisy, we express them as

yi = Y (xi) + ϵi,

where ϵi are mutually independent N (0, σ2) noise terms, independent of Y . The prediction
problem then becomes one of filtering, where we aim to predict the underlying value Y (x)
conditional on the noisy observations y1, . . . , yn. The resulting conditional process Y (x), given
Y (xi) + ϵi = yi for i = 1, . . . , n, is a GP with mean mc(x) and covariance Kc(x, x′), given by:

mc(x) = µ(x) +K(x,X)[K(X,X) + σ2I]−1(y − µ(X)),

Kc(x, x′) = K(x, x′) −K(x,X)[K(X,X) + σ2I]−1K(X,x′),

where I is the identity matrix of appropriate dimension. In this case, mc(x) no longer inter-
polates the data, and the uncertainty at observed locations is not zero, reflecting the presence
of noise.

2.5.2 The Geostatistical Approach: Kriging

Simple Kriging. Simple Kriging assumes that the mean function µ(x) is known and constant
across the domain, i.e., µ(x) = µ. The predictor relies solely on the spatial correlation structure
provided by the covariance function K(x, x′). While this assumption simplifies calculations, it
is often unrealistic in practice.

Universal Kriging. To address the limitations of Simple Kriging, Universal Kriging incor-
porates a trend model into the mean function. We assume that Y (x) has a mean of the form
µ(x) = f(x)⊤λ, where f(x) is a vector of known basis functions, and λ is a vector of unknown
coefficients [Cressie, 1990].

Theorem 1 (Universal Kriging Predictor [Cressie, 1990]). Let Y (x) = f(x)⊤λ + Z(x), where
Z(x) is a zero-mean Gaussian Process with covariance function K(x, x′). The Universal Kriging
predictor Ŷ (x) minimizes the mean squared error E[(Y (x) − Ŷ (x))2] subject to the unbiasedness
condition E[Ŷ (x)] = E[Y (x)]. The predictor and its associated variance are given by:
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Ŷ (x) = f(x)⊤λ̂ +K(x,X)K−1(y − F λ̂),

σ2
UK(x) = K(x, x) −K(x,X)K−1K(X,x)

+ [f(x) −K(x,X)K−1F ]⊤(F⊤K−1F )−1[f(x) −K(x,X)K−1F ],

where F is the design matrix with rows f(xi)⊤, K = K(X,X) is the covariance matrix, and
λ̂ is the generalized least squares estimator:

λ̂ = (F⊤K−1F )−1F⊤K−1y.

Proof. See Cressie [1990, Chapter 3] for a detailed derivation.

These expressions account for the uncertainty in estimating the trend coefficients λ and
provide a more accurate quantification of the prediction variance [Cressie, 1990].

Figure 7: An example of a Kriging metamodel [Lataniotis et al., 2015].

This image from [Lataniotis et al., 2015] represents a Kriging metamodel. The black line
shows the true model, the blue line represents the Kriging mean prediction, and the shaded area
indicates the 95% confidence interval of the Kriging prediction. The Kriging mean closely follows
the true model around the observation points (black dots), and the confidence intervals are
narrow near these points, indicating higher prediction accuracy. However, the intervals widen
in regions with fewer observations, reflecting greater uncertainty in the predictions. Overall,
Kriging effectively interpolates between the known observations while providing a measure of
uncertainty in the unobserved areas.

2.5.3 Hyperparameter Inference

In practical applications, we often consider Gaussian Processes with a linear trend, which can
be written as

Y (x) = µ(x) + Z(x),

where:
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• µ(x) = f(x)⊤λ is a linear trend with known basis functions f(x) and unknown coefficients
λ,

• Z(x) is a zero-mean GP with covariance function K(x, x′;ϕ), where ϕ represents hyperpa-
rameters of the covariance function.

Here, λ and ϕ are vectors of unknown parameters, commonly referred to as hyperparameters.
We now describe a standard approach for estimating these hyperparameters.

Maximum Likelihood Estimation. Maximum Likelihood Estimation (MLE) involves find-
ing the parameters that maximize the likelihood of the observed data. The joint distribution of
the observations y = (y1, . . . , yn)⊤ is multivariate normal:

y ∼ N (Fλ,K(ϕ)),

where F is the design matrix with rows f(xi)⊤, and K(ϕ) = K(X,X;ϕ) is the covariance
matrix computed using the covariance function K(x, x′;ϕ). The log-likelihood function is given
by:

ℓ(λ, ϕ) = −1
2
[
n log(2π) + log detK(ϕ) + (y − Fλ)⊤K(ϕ)−1(y − Fλ)

]
.

The MLEs of λ and ϕ are obtained by maximizing ℓ(λ, ϕ). This optimization problem is
typically solved numerically, as there is no closed-form solution due to the dependence of K(ϕ)
on ϕ [Rasmussen and Williams, 2006].

Remark. While the MLE approach provides point estimates of the hyperparameters, it does
not account for their uncertainty in the predictions. Universal Kriging partially addresses this
issue by incorporating the uncertainty of the trend coefficients λ into the prediction variance.
This method serves as a good trade-off for uncertainty quantification without resorting to com-
putationally intensive Bayesian inference [Stein, 1999, Cressie, 1990].

2.6 Design of Computer Experiments

Designing computer experiments is a critical aspect of studying complex systems where the
function of interest, denoted as f , represents a simulator, a machine learning algorithm, or a
regression function. Unlike traditional physical experiments where data is collected from real-
world observations, computer experiments involve data generated through simulations. This
allows researchers to select the input points where the function f is evaluated, a process com-
monly referred to as Design of Experiments (DoE).

The primary goal of designing computer experiments is to create a set of input points that
effectively explore the input space X, leading to accurate models or predictions of f while
minimizing the number of costly evaluations. This approach is particularly important when
dealing with expensive-to-evaluate functions, where each simulation run may require significant
computational resources.
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Figure 8: Simple Random Sampling (SRS) and Latin Hypercube Sampling (LHS) in 2D with 100 samples

Simple Random Sampling (SRS) is a basic sampling method in which each point is selected
randomly and independently from the entire space, with each having an equal probability of
being chosen [Fang et al., 2005]. While this method can be straightforward, it often results in
clusters or gaps, as shown on the right plot (red points). In contrast, Latin Hypercube Sampling
(LHS) (left plot, blue points) ensures more uniform coverage by dividing the space into non-
overlapping intervals or strata for each variable, selecting one point from each interval. This
leads to a more even distribution of points across the entire design space, reducing the risk of
leaving areas unsampled, as evident from the comparison of both methods in the figure.

According to Fang et al. [2005], the design of computer experiments can be broadly catego-
rized into static and adaptive strategies. A static strategy involves creating a fixed set of design
points prior to any evaluations, often aiming for a space-filling design that evenly covers the
input space without specific model information. In contrast, an adaptive strategy incrementally
adds design points based on the outcomes of previous evaluations, typically guided by criteria
that seek to optimize specific objectives such as model accuracy, optimization, or uncertainty
reduction.

2.6.1 Space-Filling Designs

Space-filling designs are foundational in computer experiments where the function f is assumed
to be complex and nonlinear, with negligible experimental noise [Fang et al., 2005]. The primary
goal of a space-filling design is to distribute the design points as uniformly as possible across
the input space X, ensuring that no region is left unexplored [Roustant, 2023].

Key properties desirable in space-filling designs include:

• Uniform Coverage: The design should cover the entire domain evenly, enabling com-
prehensive exploration of f .

• Avoidance of Replication: Since the noise in computer experiments is negligible, it is
inefficient to evaluate f multiple times at the same point. Thus, replication should be
avoided.
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• Projection Properties: The design should maintain its space-filling properties even
when projected onto lower-dimensional subspaces, which is important when f depends on
fewer variables than the dimension of X.

While uniform grids might seem a natural choice for space-filling, they often lead to clus-
tering and poor coverage of the input space, especially with a limited number of points. As
an alternative, more sophisticated designs, such as LHS, have been developed to address these
issues.

Figure 9: Histograms comparing Latin Hypercube Sampling (LHS) and Simple Random Sampling (SRS).

The histogram on the left represents the distribution of sample values from the LHS. It
shows a relatively uniform distribution, as expected from LHS, where the sample points are
spread evenly across the range. The frequency for each bin remains fairly constant, with minimal
variation between different intervals.

The histogram on the right shows the distribution of sample values from SRS. In contrast to
LHS, the distribution is less uniform, with noticeable clustering in some bins and gaps in others.
This uneven distribution is characteristic of Simple Random Sampling, where randomness can
result in both under-sampling and over-sampling in different regions of the range.

2.6.2 Latin Hypercube Sampling (LHS)

Given the importance of space-filling designs in computer experiments, we now focus on Latin
Hypercube Sampling (LHS), one of the most widely used techniques in this context. LHS was
introduced to address the limitations of simple random sampling by ensuring a more uniform
and comprehensive coverage of the input space [McKay et al., 1979, Fang et al., 2005].

LHS is a stratified sampling technique that divides each input variable’s range into m equal
intervals, ensuring that each interval is sampled exactly once. Consider a d-dimensional input
space X = [0, 1]d. In fact, the LHS can be defined in terms of the Latin hypercube design [Fang
et al., 2005].

Definition 2 (Latin hypercube design (LHD) [McKay et al., 1979]). A LHD with m runs and d
input variables, denoted by LHD(m, d), is an m× d matrix, in which each column is a random
permutation of {1, 2, ...,m}.

An LHS can be generated by the following algorithm (LHSA). An m-point LHS on X is
constructed as follows:
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1. Independently take d permutations πj(1), . . . , πj(m) of the integers 1, . . . ,m for j =
1, . . . , d, i.e., generate an LHD(m, d).

2. Take md uniform variates U jk ∼ U(0, 1), for k = 1, . . . ,m, j = 1, . . . , d, which are mutually
independent. Let xk = (x1

k, · · · , xdk), where

xjk = πj(k) − U jk
m

, k = 1, . . . ,m, j = 1, . . . , d.

Then, Dm = {x1, . . . , xm} is a Latin Hypercube Sample (LHS) and is denoted by LHS(m, d).

Example 1 (From Fang et al. [2005]). For generating an LHS for m = 8, d = 2, in the first step
we generate two permutations of {1, 2, . . . , 8} as (2, 5, 1, 7, 4, 8, 3, 6) and (5, 8, 3, 6, 1, 4, 7, 2). Then we generate
16 = 8 × 2 random numbers to form an 8 × 2 matrix on the right below:

2 5
5 8
1 3
7 6
4 1
8 4
3 7
6 2


,



0.9501 0.8214
0.2311 0.4447
0.6068 0.6154
0.4860 0.7919
0.8913 0.9218
0.7621 0.7382
0.4565 0.1763
0.0185 0.4057


Now an LHS is given by:

1
8





2 5
5 8
1 3
7 6
4 1
8 4
3 7
6 2


+



0.9501 0.8214
0.2311 0.4447
0.6068 0.6154
0.4860 0.7919
0.8913 0.9218
0.7621 0.7382
0.4565 0.1763
0.0185 0.4057




=



0.1312 0.5223
0.5961 0.9444
0.0491 0.2981
0.8143 0.6510
0.3886 0.0098
0.9047 0.4077
0.3179 0.8530
0.7477 0.1993


.

LHS is particularly advantageous in the context of computer experiments due to its ability
to ensure better coverage of the input space compared to random sampling. This systematic
spread of sample points reduces the likelihood of clustering and ensures that the entire input
space is explored.

Mathematically, LHS reduces the variance in the estimation of integrals, which is critical
when the objective is to approximate an expected value or the average behavior of f . Stein
[1987] showed that for certain classes of functions, the variance of the sample mean using LHS is
lower than that obtained using simple random sampling. Specifically, if f̂ : X → R is a function
with finite second moment, and x1, . . . , xn are points from an LHS, then:

Var
(

1
m

m∑
k=1

f̂(xi)
)

≤ Var
(

1
m

m∑
k=1

f̂(ui)
)
,

where u1, . . . , un are independent and identically distributed random variables over X. This
inequality highlights the efficiency of LHS in reducing uncertainty, especially as the number of
dimensions or sample points increases.

In practice, LHS is widely used in the simulation of complex systems, serving as the basis
for creating surrogate models or emulators [Fang et al., 2005]. By providing a well-distributed
set of input points, LHS enables more accurate predictions of the function’s behavior across the
entire input space, which is essential when the function is expensive to evaluate.
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2.6.3 Connection to Universal Kriging

The design of experiments has a direct impact on the quality of surrogate models like Universal
Kriging. Universal Kriging not only models the spatial correlation through a covariance function
but also includes a trend component to capture global variations in the data [Cressie, 1990].

In Universal Kriging, the choice of design points affects the estimation of both the trend
coefficients and the covariance parameters. A well-designed experiment, such as one based on
LHS, ensures that the input space is adequately sampled, which leads to more accurate estimates
of these parameters and, consequently, better predictions [Fang et al., 2005].

Space-filling designs, especially Latin Hypercube Sampling, provide a systematic way to
cover the input space, ensuring that the surrogate models built upon them can accurately
predict the behavior of the underlying function f . This is particularly beneficial when using
advanced metamodeling techniques like Universal Kriging, where the quality of predictions is
highly dependent on the design of experiments.

3 Coupling of SAEMVS Method and Kriging

To couple the Stochastic Approximation Expectation-Maximization Variable Selection
(SAEMVS) method with Kriging, we replace the computationally expensive evaluations of the
nonlinear function g(φi, xij) with predictions from a metamodel constructed using Kriging. This
approach aims to improve computational efficiency without significantly compromising accuracy.

Consider the statistical model defined in Section 2.1, where n ∈ N represents the number
of individuals, J ∈ N the number of observations per individual, and p ∈ N the number of
covariates. We assume a one-dimensional individual parameter φi and exclude fixed effects ψ.
For each individual i = 1, . . . , n and each observation j = 1, . . . , J , the model is defined as:

yij = g (φi, xij) + εij , εij
i.i.d.∼ N

(
0, σ2) ,

φi = µ+ β⊤Vi + ξi = β̃
⊤Ṽi + ξi, ξi

i.i.d.∼ N
(
0,Γ2) , (4)

where:

• β̃ = (µ,β)⊤ ∈ Rp+1 is the augmented coefficient vector.

• Ṽi = (1, Vi1, . . . , Vip)⊤ ∈ Rp+1 is the augmented covariate vector.

For our following simulation studies we will use the logistic growth model g defined in equa-
tion 5.

g(φi, ψ, tij) = ψ1

1 + exp
(
−φi−xij

ψ2

) (5)

3.1 Metamodel Construction via Kriging

The metamodel ĝ approximates the function g using a Gaussian Process (GP) regression model,
also known as Kriging. To build this metamodel, we create an experimental design using Latin
Hypercube Sampling (LHS) and employ the DiceDesign and DiceKriging packages developed
by Roustant et al. [2012].

The steps for constructing the Kriging metamodel are as follows:
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1. Generate LHS design: Create an LHS design of m points in the input space of (φ, x),
ensuring a good coverage of the domain.

2. Evaluate the true function: Compute g(φi, xij) at the design points to obtain the
responses.

3. Train the kriging model: Use the design points and corresponding responses to train
a Kriging model ĝ, specifying appropriate covariance functions and trend models.

4. Validate the metamodel: Assess the performance of ĝ using metrics such as RMSE,
MAE, and R2, possibly with a validation dataset.

Remarks on the nugget effect: In the construction of the Kriging metamodel, we introduce
a small nugget effect to account for potential observation noise and to ensure numerical stability.
The nugget, initially introduced by [Matheron, 1963], adds a small variance to the diagonal of
the covariance matrix:

K(xi,xj) = K0(xi,xj) + δijτ
2,

where δij is the Kronecker delta and τ2 is the nugget variance. This adjustment prevents the
covariance matrix from becoming bad-conditioned, facilitating its inversion during the Kriging
model training [Stein, 1999, Cressie, 1993].

3.2 Integration into the MCMC-SAEM Algorithm

The integration of the Kriging metamodel into the MCMC-SAEM algorithm is achieved by
replacing the direct evaluations of g(φi, xij) with predictions from ĝ(φi, xij). Specifically, the
metamodel is used in two critical steps:

1. E-Step (Stochastic Approximation): During the simulation of the latent variables φi,
the likelihood computations involving g(φi, xij) are replaced with ĝ(φi, xij).

2. M-Step (Maximization): In updating the parameters µ, β, γ2, and σ2, the sufficient
statistics are computed using ĝ(φi, xij).

By utilizing ĝ within the SAEM algorithm, we reduce the computational burden associated
with evaluating g at each iteration, as Kriging predictions are computationally less expensive.

3.3 Implementation of the SAEMVS procedure with Kriging

The SAEMVS procedure, as developed by [Naveau et al., 2024], is adapted to incorporate the
Kriging metamodel. The key idea is to use ĝ in place of g throughout the procedure, particularly
in the computation of the maximum a posteriori (MAP) estimates and the evaluation of the
extended Bayesian information criterion (eBIC). The implementation of the code in R for the
Kriging by time can be found in Annex C.1 and for the global Kriging in Annex C.1.7.

3.3.1 Model Reduction Step

For each value of the regularization parameter ν0 in a predefined grid ∆, we perform the following
steps:
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1. Compute MAP estimate: Use the MCMC-SAEM algorithm with ĝ to compute the
MAP estimate Θ̂MAP

ν0 of the parameters.
2. Thresholding: Apply a threshold to the estimated coefficients β̂

MAP
ν0 to define the sub-

model Ŝν0 , retaining only the significant covariates.

3.3.2 eBIC Criterion Computation

For each unique sub-model Ŝν0 , we compute the eBIC as follows:

1. Compute MLE Estimate: Use the MCMC-SAEM algorithm with ĝ to compute the
maximum likelihood estimate (MLE) Θ̂MLE

ν0 .
2. Log-Likelihood estimation: Employ importance sampling techniques to estimate the

log-likelihood log p(y; Θ̂MLE
ν0 ) based on ĝ.

3. Compute eBIC: Calculate the eBIC for each sub-model Ŝν0 using the estimated log-
likelihood.

The optimal level of sparsity is determined by selecting the value of ν0 that minimizes the
eBIC. This results in the selection of the sub-model Ŝν̂0 , which balances model fit and complexity.

3.3.3 Summary of the Coupling Procedure

The coupling of the SAEMVS method and Kriging can be summarized as follows:

• Metamodel Construction: Build a Kriging metamodel ĝ to approximate g.

• SAEMVS Algorithm with Metamodel: Use ĝ within the SAEMVS algorithm to
compute MAP and MLE estimates.

• Model Selection: Evaluate models using eBIC computed with ĝ and select the optimal
model.

This approach is claimed to reduce computational costs by avoiding direct evaluations of
g, but only for complex models. Moreover, this has not been numerically verified during my
internship, as there was not enough time to explore the complex crop model or real data.

4 Simulation Study

4.1 Important elements to consider when designing simulations

Kriging has been successfully applied in various fields, such as engineering design and geostatis-
tics, as noted in [Krige, 1951, Sacks et al., 1989]. However, our primary goal was to verify
whether it’s possible to use a metamodel for variable selection without significantly degrading
performance. The key question is: under what conditions can this be achieved?

It is not particularly meaningful to compare computational time in this context because
we are currently working with a very simple case logistic growth regression, where the exact
evaluation of the model is nearly instantaneous. When using the metamodel in this simple
example, we actually end up with larger computational times due to the overhead of handling
large linear combinations. In this simple case, running SAEMVS with the metamodel takes
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more time than using the exact model. Nevertheless, this is not a major problem, as the
simulated model serves to help us understand the behavior of the SAEMVS method coupled
with metamodeling. This is an important preliminary step before moving on to more complex
models, where the real value of the [Naveau et al., 2024] methodology development lies.

4.1.1 Time-Dependent vs. Global Kriging in application to real problems

It is important to clarify why both Time Kriging and Global Kriging approaches were considered
in this study. In practical experimental settings, particularly in biological experiments, time
points at which measurements are collected are often fixed. For instance, we may know in
advance that results will be measured at specific times, such as 5 and 15. In such cases, it would
be unnecessary to try to model or measure the function at a time like 2, because there is no
data available for that point. This is the underlying assumption of Time Kriging: we fix the
time variable and focus the modeling on other variables, such as φ, to see if it improves the
performance of Kriging. This concept is crucial as it directly relates to real-world applications
where time might not be the key variable.

A relevant biological case could illustrate how Time Kriging can be applied to future data
analysis, especially when the "time" variable in the study is qualitative rather than temporal. For
example, in the [Stat4Plant, 2021] project, repetitions occur not over time, but across different
environments. These environments are qualitative variables, such as soil fertilizer types or
environmental conditions. In such cases, it does not make sense to sample beyond the support
defined by the observed environments in the experiment. This highlights the value of using Time
Kriging in scenarios where the variable fixed in the model, while labeled as time, could represent
other qualitative factors.

In contrast, Global Kriging models the function across a continuous time space, rather than
being limited to specific time points as in the Time Kriging case. The idea for comparing Time
Kriging and Global Kriging is to determine whether treating time as a continuous variable,
rather than fixing specific time points, has a significant impact on the performance of Kriging.
This comparison is fundamental to the construction of the metamodel and my analysis of its
effectiveness, as each approach has distinct strengths depending on the experimental design.

4.1.2 Design of Experiments using Latin Hypercube Sampling (LHS)

The implementation of the metamodel construction relies on generating training data through
Latin Hypercube Sampling (LHS). This technique ensures that the input space is explored uni-
formly, providing better coverage than simple random sampling [McKay et al., 1979]. The
DiceDesign package is employed for the LHS design, and the metamodel is built using Kriging
with the DiceKriging package [Roustant et al., 2012]. There are two main approaches to how
LHS is applied, depending on whether the Kriging model is global or time-based.

The main distinction between the global and time-based Kriging approaches lies in how the
LHS design is applied to the variables. In the global Kriging approach, both the covariate
φ and the time variable t are sampled simultaneously usign LHS. This ensures that the design
provides a comprehensive representation across both variables. The φ values are then scaled to
the range [0, 1100], and the time values are scaled to [150, 3000], ensuring that the Kriging model
captures the global relationship between φ and t. This global sampling strategy treats time as
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an integral part of the input space, assuming that the relationship between the covariates and
the response variable remains consistent across all time points.

In contrast, the time-based Kriging approach applies LHS independently for each time
point. Instead of sampling φ and t together, as we kwon the time points are fixed, and LHS is
used only for the covariate φ at each specific time (which is also scaled to [150, 3000]. Addition-
ally, stratified sampling is applied to ensure that the data is split into training and test sets in
a way that respects the temporal structure, which is not done in the global approach (because
it use a random sampling).

4.1.3 Kriging Model and metamodeling in SAEMVS

Once the design points and responses are obtained, the Kriging model is trained with several
configurations. For example, the choice of the Mater5/2 kernel is supported in literature by
[Stein, 1999], where it has been demonstrated to offer a good balance between smoothness
and flexibility, especially in cases involving non-differentiable functions or when smoothness
assumptions may not hold. But we also try to run it with Gauss and Exponential kernels.
The model’s predictions at new points are obtained using Universal Kriging (UK) with bias
correction. UK is known for its robustness in situations where the underlying trend is unknown
or not constant [Cressie, 1993].

Kriging serves as a surrogate model during the SAEMVS iterations, replacing the direct
evaluation of g (see equation (5)). This substitution allows for substantial computational savings,
as the model approximates g based on a limited number of evaluations, while still maintaining
high prediction accuracy. The Kriging predictions are used to compute the log-likelihood and
update the sufficient statistics during the S-step of the SAEMVS algorithm (see Section 3.3).
The efficiency gains are further enhanced by utilizing parallelization techniques, which allow for
multiple Kriging models to be evaluated simultaneously, as shown in the code structure using
foreach and doParallel packages [Folashade, 2022, Weston, 2022].

4.1.4 Covariance Structure and Trend:

The choice of covariance function, or kernel, is essential for the performance of the Kriging
model, as it defines the spatial relationships between data points. Using the km function from the
DiceKriging package, we experimented with several kernels, including Gaussian, Exponential,
and Matern 5/2. The Gaussian kernel is known for its ability to model smooth and continuous
processes effectively, while the Matern 5/2 kernel offers flexibility in capturing both smoothness
and irregularities, as highlighted by Stein [1999].

The exponential kernel, unlike the Gaussian, is suited for modeling more abrupt variations
and lacks the smoothness assumptions inherent in the Gaussian kernel. This kernel is char-
acterized by a shorter-range correlation structure, meaning that it places higher emphasis on
nearby points and decays faster with distance, making it appropriate for modeling processes
with rapid changes [Roustant et al., 2012]. However, in our experiments, it performed less effec-
tively in capturing the more gradual variations present in the data, leading to lower accuracy in
predictions.

We also examined the role of the trend function in the Kriging model. Although we tested
more complex polynomial trends, these did not lead to substantial improvements in model
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accuracy. In our case, the relationship between input variables and the response was primarily
captured by the covariance structure. Consequently, a simple constant trend was sufficient, which
reduced computational overhead without compromising the model’s effectiveness. This result
aligns with previous observations where Kriging models often capture the data’s underlying
structure without needing complex trend functions [Roustant et al., 2012]. Thus, while the choice
of covariance function significantly impacted the model’s performance, particularly favoring the
Matern 5/2 kernel, the trend component had minimal effect in our specific case as we will see
in Section 4.3.

4.2 Simulation Design

In this simulation study, we generated 100 datasets to evaluate the performance of the SAEMVS
algorithm coupled with metamodeling via Kriging. Each dataset was created under the following
specifications:

• Number of individuals (n): Each dataset consisted of n ∈ {100, 200} observations.
• Number of covariates (p): We considered p ∈ {500, 2000} covariates, of which only the first three

(β1, β2, β3) are truly influential.
• Model specification: The underlying model for each dataset was defined as in Equation 5.
• True parameter values:

– Intercept (µ): 1200.
– Covariate effects (β):

β = (β1, β2, β3, β4, . . . , βp),

with β1 = 100, β2 = 50, β3 = 20, and βℓ = 0 for ℓ = 4, . . . , p.
– Random effect variance (Γ2): 200 (inter-individual variance of φi).
– Residual variance (σ2): 30.

• Function g(φi, ψ, tij): Defined as

g(φi, ψ, tij) = ψ1

1 + exp
(

− tij − φi

ψ2

) ,
where ψ = (ψ1, ψ2) with ψ1 = 200 and ψ2 = 300.

• Time points (tij): Equally spaced between 150 and 3000, with J = 10 time points for each individual.

The SAEMVS algorithm was initialized with the following parameter values:

• Initial estimates of β:
β(0) = (β(0)

0 , β
(0)
1 , . . . , β(0)

p ),

where
β

(0)
0 = 1400, β

(0)
ℓ = 100 for ℓ = 1, . . . , 10, β

(0)
ℓ = 1 for ℓ = 11, . . . , p.

• Initial residual variance (σ2(0)): 100.
• Initial random effect variance (Γ2(0)): 5000.
• Initial inclusion probability (α(0)): 0.1.
• Initial value for τ : 0.98 (associated with the initialization of Γ2).

The hyperparameters were set as follows:

• Spike parameter (ν0): Explored through a grid during model selection. The value 0.04 is only used for
testing purposes in SAEM.

• Slab parameter (ν1): 12000.
• Prior parameters for Γ2: Shape νΓ = 1, Scale λΓ = 1.
• Prior parameters for σ2: Shape νσ = 1, Scale λσ = 1.
• Prior parameters for inclusion probability α: a = 1, b = p.
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• Prior variance for intercept µ: σ2
µ = 3000.

∆ is the grid of values for ν0, explored as part of a hyperparameter grid search. The values of ∆ are defined
on a logarithmic scale as:

log10(∆) =
{

−2 + k × 4
19 , k ∈ {0, . . . , 19}

}
This grid spans a range from 10−2 to 102, providing 20 different values for ∆ to ensure robustness in model

selection.

These settings were consistent across all simulations to ensure comparability of results and
initial values were selected based on the [Naveau et al., 2024] article.

All simulations were performed using a fixed random seed to ensure reproducibility. The
consistent use of these parameter settings across all datasets allows for a fair comparison of the
SAEMVS algorithm’s performance with and without metamodeling.

Application of SAEMVS-Metamodel

For each of the 100 simulated datasets, the SAEMVS-metamodel procedure was applied across all
configurations of the number of training points (m = 50, 100, 150, 200) and covariance structures
(Matern 5/2, Gaussian or Exponential kernels). The steps followed were:

1. Design of experiments: for each configuration, training points were generated using
LHS with the specified m.

2. Metrics calculation: performance metrics (RMSE, MAE, R2) were computed in order
to evaluate the quality of the metamodel.

3. Kriging model fitting: a Kriging model was fitted using the DiceKriging package with
the chosen covariance function.

4. SAEMVS execution: the SAEMVS algorithm was run using the Kriging metamodel to
approximate g during the iterative estimation process.

4.3 Interpretation of the Results

4.3.1 Analysis of Global Kriging Results

The following graphs illustrate the behavior of variable selection and parameter estimation
based on various simulations conducted during the internship. It is essential to be rigorous in
the conclusions drawn from these simulations and to explain the observed patterns thoroughly,
as this numerical analysis is a central component of the work.

Bar plot of correctly selected models: In Figure 10, we observe the evolution of the
coupling’s ability to correctly select the three non-zero effect variables as the number of points
m increases. The plot shows a clear improvement in selection accuracy as m grows, eventually
approaching the reference result obtained from SAEMVS applied to the true model without
Kriging. This behavior is expected: with more data points, the Kriging metamodel can more
effectively approximate the underlying function g, leading to better variable selection.
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Figure 10: Bar plot of correct selected models for n = 100, p = 500, Γ2 = 200, by global Kriging.

However, what is particularly interesting here is the significant influence of the covariance
kernel used in Kriging on the performance of the selection process. When using the exponential
kernel, the performance is notably poor, as the model struggles to select the correct variables.
This can be attributed to the smoothness properties of the exponential kernel, it lacks the
flexibility needed to adapt to more complex underlying relationships between the variables,
which leads to a loss of accuracy in the selection process.

In contrast, the Gaussian and Matern ν = 5/2 kernels show marked improvements. The
Gaussian kernel, being more flexible than the exponential kernel, allows for better handling of
the spatial correlations in the data, leading to more accurate variable selection. The best results,
however, are achieved using the Matern ν = 5/2 kernel. This is likely because the Matern kernel,
particularly with ν = 5/2, provides a good balance between smoothness and flexibility, making
it more suited to capturing the relationships between the covariates and the response.

This strong dependence of the results on the chosen kernel underscores the importance of
selecting an appropriate covariance function for Kriging. In scenarios where the underlying
function g is complex, choosing a kernel with insufficient flexibility (such as the exponential
kernel) can severely degrade performance. Therefore, kernel selection is a critical step that
directly impacts the effectiveness of the metamodel in aiding variable selection.
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Figure 11:
footnotesize Boxplot of estimation error of parameters βj for j ∈ {1, ..., 6} with n = 100,

p = 500, Γ2 = 200 across coniguration by global Kriging.

Figure 11 displays the estimation error of parameters βj for j ∈ {1, ..., 6} across different
covariance types (exponential, Gaussian, and Matern ν = 5/2) and varying values of m (the
number of data points). This plot complements the earlier analysis of the barplot of correct
selection, as it offers a deeper insight into how parameter estimation accuracy impacts the
overall selection process.

Firstly, it is evident that the choice of covariance kernel (or covariance function) has a direct
impact on both the correct selection of variables and the accuracy of parameter estimates. The
Matern ν = 5/2 kernel (represented in blue) consistently outperforms the other kernels, partic-
ularly the exponential kernel (in purple), which displays large and highly variable estimation
errors across most parameters, particularly for Parameters 1, 2, and 3. This aligns with our pre-
vious observation that the exponential kernel struggles to select the correct variables effectively,
which can be attributed to its poor parameter estimation performance. The Gaussian kernel (in
red) performs better than the exponential, but it still exhibits higher error variability compared
to Matern ν = 5/2, especially for small values of m.

As m increases, we see a clear reduction in estimation error for the Gaussian and Matern
kernels, which leads to improved variable selection accuracy as shown in the barplot of correct
selection. In particular, for Parameters 1 and 2, which show greater variability in the estimation
error, the correct selection of these variables improves significantly with the Matern kernel as
more points are used. This reinforces the idea that accurate parameter estimation is crucial for
the correct selection of influential variables, particularly when their effect sizes are relatively
small.

On the other hand, the exponential kernel shows limited improvement as m increases, with
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consistently large estimation errors and wider interquartile ranges. This suggests that the ex-
ponential kernel is not flexible enough to capture the underlying structure of the data, leading
to both poor parameter estimation and suboptimal variable selection. This is consistent with
the barplot analysis, where we noted that the exponential kernel fails to correctly select the
influential variables, especially when they have weaker effects.

The lower estimation errors for parameters 4, 5, and 6, particularly for the Matern ν = 5/2
kernel, suggest that these parameters are easier to estimate, which is reflected in the better
variable selection for these covariates as seen in the barplot. The stability of the Matern kernel
across different parameter settings reinforces its suitability for Kriging, particularly in cases
where precision in both variable selection and parameter estimation is required.

This boxplot provides strong evidence that the choice of covariance kernel is a critical factor
in both parameter estimation and variable selection accuracy. The Matern ν = 5/2 kernel
shows the best performance, with smaller estimation errors and less variability, leading to better
variable selection outcomes as m increases. The poor performance of the exponential kernel
highlights the need for careful kernel selection, as inadequate choices can result in both large
estimation errors and incorrect variable selection, especially in complex models where some
variables have weaker effects.

It’s important to clarify that these parameter estimates are obtained using the maximum
a posteriori (MAP) method, not maximum likelihood estimation (MLE). SAEMVS relies on
MAP estimates, which take into account prior information, potentially leading to more robust
parameter estimates in the context of sparse data. The MAP method can provide a more stable
solution in variable selection, especially in cases where traditional MLE might struggle due to
limited data or high-dimensional spaces.

Three-variable bar plot: Figure 12 offers insights into the effect of covariates with varying
coefficients. In this experiment, the covariates are not equally prominent, as their coefficients
differ significantly in magnitude. Covariates with larger coefficients carry more information,
making them easier to select. As expected, these high-information covariates are reliably selected
even with a smaller number of points.
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Figure 12: Bar plot of selected non-zero coefficients for n = 100, p = 500, Γ2 = 200, global Kriging.
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Conversely, covariates with smaller coefficients, despite being influential, are harder to detect
with fewer points. This difficulty arises because their contribution to the response is relatively
subtle, making them less distinguishable when the sample size is small. However, as the number
of points increases, the selection process improves significantly, and the model is able to select
these weaker covariates more frequently. We see this in the increasing height of the selection
bars, which approach nearly 100% as m increases. This illustrates that with more data, the
metamodel becomes increasingly reliable in identifying even subtle effects in the covariates.

4.3.2 Analysis of time kriging results

In the Time Kriging approach, the experimental design differs significantly from Global Kriging,
primarily due to how the data is partitioned across time points. For smaller values of m, the
model has fewer training points, which impacts its ability to generalize and make accurate
predictions. For instance, with m = 50, where 80% of the data is used for training and 20%
for testing, each time point j ∈ {1, ..., J} only has around 4 points for training. Naturally, this
limitation severely affects the model’s performance.

Impact of limited training data: As a direct consequence, Time Kriging struggles with
limited training data, particularly for smaller m values. This leads to a worst performance in
the selection of non-null effect variables and higher prediction errors. The model simply doesn’t
have enough data to accurately capture the relationships between the covariates, especially when
these relationships are subtle.
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Figure 13: Bar plot of selected non-zero coefficients for n = 100, p = 500, Γ2 = 200, Time Kriging.

Looking at Figure 13, the model’s ability to correctly select non-null coefficients significantly
declines when the available training data is limited. This effect is most pronounced at lower
values of m, where the model has very few points to learn from, leading to a drop in performance.
However, we see that as m increases, the selection improves significantly, even for m = 100.

4.3.3 Comparison between Time Kriging and Global Kriging

When we compare this with Global Kriging, several differences emerge. Global Kriging benefits
from having access to the entire dataset for training, which allows it to perform better, even
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with smaller m values. Time Kriging, on the other hand, suffers from fewer points per time slice.
However, as m increases, Time Kriging begins to show distinct advantages over Global Kriging.
This improvement occurs because Time Kriging fixes the time dimension, allowing the model
to focus entirely on the design over φ, which enhances the accuracy of the variable selection
process.

In Figure 14, the results show that for smaller m, the correct model selection accuracy in
Time Kriging is notably lower than in Global Kriging. However, as m increases, the performance
of Time Kriging not only catches up to Global Kriging but starts to outperform it.
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Figure 14: Bar plot of correct selected models for n = 100, p = 500, Γ2 = 200, Time Kriging.

In Figure 15, for smaller m, the predictive error is relatively high compared to the results
obtained using Global Kriging. But as m increases, the predictive error for Time Kriging reduces
dramatically, reflecting the model’s ability to focus better on the covariates and improve its
parameter estimation capabilities.

Parameter 4 Parameter 5 Parameter 6

Parameter 1 Parameter 2 Parameter 3

50 10
0

15
0

20
0 50 10

0
15

0
20

0 50 10
0

15
0

20
0

−20

0

20

40

−0.050

−0.025

0.000

0.025

0.050

−50

−25

0

25

50

0

25

50

75

100

−100

−50

0

50

−0.050

−0.025

0.000

0.025

0.050

m value

P
re

d
ic

ti
ve

 E
rr

o
r

CovType

gauss

matern5_2

Estimation error of parameters across configurations

Figure 15: Boxplot of estimation error of parameters βj for {j ∈ {1, ...,−} with n = 100, p = 500, Γ2 = 200 by
Time Kriging.
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4.3.4 Impact of RMSE, MAE, and R2 on Variable Selection in Kriging Model

In this part, we analyze the performance of our results using the Gauss kernel with parameters
n = 100, p = 500, Γ2 = 200, and m = 200. We chose the Gauss kernel because it did not
perform as well as the Mater5_2 method to look up the impact of Kriging in SAEMVS.

The results are summarized in Table 1, which reports the RMSE, MAE, R2, and variable se-
lection metrics for various simulated datasets. These metrics provide insights into the predictive
performance of the model and its effectiveness in selecting the correct variables.

Table 1: RMSE, MAE, R2, and Selection Variables in Model Performance for n = 100, p = 500, Γ2 = 200,
m = 50, and Gauss kernel

s RMSE MAE R2 Sens. Spec. Exact
Sel.

Corr.
Inc.

Over
Sel.

Model Sel.
Kriging

SAEMVS
Non-Kriging

31 49.51 39.80 -0.001 1.000 0.994 0 1 1 1, 2, 3, 7, 8, 9 1, 2, 3
41 55.86 44.18 -0.003 0.000 0.994 0 0 0 6, 7, 10 1, 2, 3
57 50.33 40.16 -0.005 0.000 1 0 0 0 9 1, 2, 3
84 49.45 38.96 -0.014 1.000 0.994 0 1 1 1, 2, 3, 5, 7, 10 1, 2, 3
6 55.49 42.62 -0.025 1.000 0.996 0 1 1 1, 2, 3, 5, 10 1, 2, 3
14 53.67 43.29 -0.038 0.667 0.996 0 0 0 1, 2, 5, 8, 9, 10 1, 2, 3
19 62.79 47.58 -0.080 0.000 0.992 0 0 0 8, 10 1, 2, 3
94 45.99 38.87 -0.089 0.333 0.992 0 0 0 1, 5, 6, 7, 10 1, 2, 3
90 59.57 44.57 -0.119 0.333 0.996 0 0 0 1, 4 1, 2, 3
73 0.42 0.08 0.999 1.000 1.000 1 1 0 1, 2, 3 1, 2, 3
80 0.23 0.05 0.999 1.000 1.000 1 1 0 1, 2, 3 1, 2, 3
50 0.17 0.03 0.999 1.000 1.000 1 1 0 1, 2, 3 1, 2, 3
55 0.20 0.04 0.999 1.000 1.000 1 1 0 1, 2, 3 1, 2, 3
74 0.10 0.03 0.999 1.000 1.000 1 1 0 1, 2, 3 1, 2, 3
2 0.08 0.02 0.999 1.000 1.000 1 1 0 1, 2, 3 1, 2, 3
72 0.08 0.01 0.999 0.667 1.000 0 0 0 1, 2 1, 2
65 0.07 0.02 0.999 1.000 1.000 1 1 0 1, 2, 3 1, 2, 3

The metrics presented in the columns: RMSE, MAE, R2, Sensitivity, Specificity, Exact Selec-
tion, Correctly Incorrect, Over Selection, and Model Selection Kriging are the metrics derived
from applying Kriging to SAEMVS. In contrast, the column SAEMVS Non-Kriging reflects the variables
selected by the original SAEMVS method without the use of a metamodel.

The table columns are interpreted as follows:

• s: Index of each simulated dataset.
• RMSE (Root Mean Squared Error): Measures the square root of the average squared difference

between predicted and actual values. Lower values indicate better prediction accuracy.
• MAE (Mean Absolute Error): Represents the average magnitude of prediction errors. As with

RMSE, lower values correspond to more accurate predictions.
• R2 (Coefficient of Determination): Indicates how well the model explains the variability of the

data. Values close to 1 imply a good fit, whereas negative values suggest the model performs worse
than a mean-based predictor.

• Sensitivity (Sens.): Reflects the model’s ability to correctly identify true positives.
• Specificity (Spec.): Captures the model’s capacity to correctly identify true negatives, avoiding

false positives.
• Exact Selection (Exact Sel.): A binary indicator of whether the model successfully selected the

exact correct variables.
• Correctly Incorrect (Corr. Inc.): Denotes whether the correct variables are included in the

model, even if the selection is not exact.
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• Over Selection (Over Sel.): Indicates whether the model has over-selected variables, meaning
more variables than necessary were chosen.

• Model Selection (Model Sel.): Lists the variables selected by the Kriging model.
• SAEMVS Non-Kriging: Variables selected by the SAEMVS method without using Kriging.

Experiments such as s = 31, 41, 57, 84, 6, 14, 19, 94 and s = 90 show high RMSE and MAE
values, alongside negative R2 scores. The negative R2 indicates that these models perform
poorly. Such models consistently fail to select the correct or exact variables, as indicated by zeros
in the "Exact Sel." or "Corr. Inc." columns. In examining this models with poor performance,
we observe that in seeds s = 31, 57, 84, the model overselects variables, this means it includes
irrelevant variables along with some of the correct ones. While these models show high sensitivity
due to selecting true positives, their specificity is reduced because of the inclusion of false
positives. In seeds s = 41, 57, 19, the model incorrectly selects the covariates and does not
select any true values. The failure to select the correct variables evidence the limited utility of
these models with bad metrics in practice.

We also observe that when the Kriging model has good metrics, it behaves the same as the
SAEMVS without Kriging (SAEMVS Real). In experiments with s = 73, 80, 50, 55, 74, 2, 65, the
models exhibit the lowest RMSE and MAE values, along with R2 values close to 1, indicating
a high level of predictive precision. They also successfully select the exact correct variables, as
reflected by ones in the "Exact Sel." and "Corr. Inc." columns as the real SAEMVS.

It is important to note that the model indexed by s = 72 is under-selecting variables,
particularly the third variable, which is known to have the lowest effect. This under-selection
could be attributed to the SAEMVS algorithm nature, which may prune weaker variables.

All this analysis suggest that the incorporation of the Kriging model does not negatively
affect the performance of SAEMVS when the metrics are favorable. Therefore, under optimal
conditions, the model with Kriging can match the performance of the SAEMVS without Kriging
in terms of predictive accuracy and effectiveness in variable selection.

5 Conclusion and Discussion

In this study, we looking to address a fundamental question: Can we use a metamodel to perform
variable selection without degrading the results? Through extensive simulations and analyses,
we explored the integration of Kriging metamodeling into the SAEMVS algorithm for vari-
able selection within nonlinear mixed-effects models. Our findings indicate that metamodeling
can indeed be effectively utilized for variable selection without significant loss of performance,
provided certain conditions are met.

Our simulation results demonstrated that the SAEMVS algorithm, when coupled with Krig-
ing metamodeling, maintains a high level of accuracy in variable selection. Specifically, we
observed that as the number of design points (m) used in the Kriging metamodel increases, the
performance of variable selection approaches that of the SAEMVS algorithm applied directly to
the exact model without metamodeling. This suggests that metamodeling does not inherently
degrade the results of variable selection and can be a viable tool in this context.

The effectiveness of using a metamodel for variable selection is contingent upon several key
conditions:
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Number of Design Points (m)

A sufficient number of design points is critical for the Kriging metamodel to accurately approx-
imate the underlying function g. Our simulations showed that with a small m, the metamodel
struggled to capture the complex relationships between covariates and the response variable,
leading to decreased performance in variable selection. As m increased, the metamodel’s accu-
racy improved, enhancing the variable selection process. Therefore, practitioners should ensure
that an adequate number of design points are included in the experimental design to achieve
reliable results.

An important aspect to consider is the scale of the parameter space over which the Latin
Hypercube Sampling (LHS) was performed in our experiments. We designed our LHS over a
wide interval to ensure comprehensive coverage of the input space. However, in cases where the
parameters of interest lie within smaller intervals, it may be feasible to reduce the number of
design points (m) required for effective metamodeling. A smaller parameter space would inher-
ently require fewer points to achieve adequate coverage, potentially enhancing computational
efficiency without compromising the accuracy of the metamodel. Future work could explore the
impact of parameter space scaling on the performance of the LHS design and determine optimal
strategies for different model complexities and parameter ranges.

Choice of covariance kernel

The selection of the covariance kernel in the Kriging model plays a pivotal role in the metamodel’s
performance. Our findings highlighted that kernels with greater flexibility and smoothness, such
as the Matern ν = 5/2 kernel, outperformed less flexible kernels like the exponential kernel.
The Matern ν = 5/2 kernel provided a better balance between smoothness and adaptability,
allowing the metamodel to capture the intricate patterns in the data more effectively. This
underscores the importance of choosing an appropriate covariance kernel tailored to the specific
characteristics of the data and the underlying function g.

Experimental design considerations

The way in which the Latin Hypercube Sampling (LHS) is applied significantly affects the
metamodel’s performance. We investigated two approaches: Time Kriging and Global Kriging.
In Time Kriging, separate Kriging models are constructed for each fixed time point, which can
be advantageous in experiments where time points are predetermined and fixed. This method
allows for a more focused modeling of covariate effects at specific times. Conversely, Global
Kriging involves building a single Kriging model over both covariates and time, treating time as
a continuous variable. While Global Kriging reduces computational overhead by training only
one model, it may sacrifice some local temporal accuracy, especially in scenarios where temporal
dynamics are complex.

RMSE, MAE, and R2 considerations

The analysis presented underscores the critical relationship between RMSE, MAE, and R2 in
model evaluation. Models with lower RMSE and MAE values consistently outperform those
with higher values, not only in terms of prediction accuracy but also in their ability to select
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the correct variables. The models with the highest R2 values—those closest to 1 are the most
reliable, both in terms of their predictive performance and their capacity to include and identify
the correct variables.

5.1 Key considerations for practitioners

For practitioners, such as biologists seeking to apply this methodology, several considerations
are important. Determining the number of design points (m) is crucial, as the optimal number
depends on factors like model complexity, dimensionality of the covariate space, and computa-
tional resources. A balance should be achieved between sufficient design points to capture the
function g and the feasibility of the metamodeling process. Additionally, selecting an appropri-
ate covariance kernel is key to the Kriging model’s success, though experimenting with other
kernels, such as the Gaussian, may yield better results depending on the data. While meta-
modeling introduces computational overhead, particularly in simpler cases where direct model
evaluation is faster, its potential benefits in more complex, high-dimensional scenarios remain
to be explored, especially in terms of computational savings for variable selection. Ultimately,
selecting models with low RMSE and MAE values, combined with high R2, leads to optimal
performance in the context of Kriging. These models should be prioritized for further analysis
and application in practical scenarios.

5.2 Limitations of the study and future work

It is important to acknowledge the limitations of our study. The simulations were conducted
using a simple logistic growth regression model, where the exact evaluation of the logistic growth
model was computationally trivial. Consequently, the computational benefits of metamodeling
were not realized in this context, and the use of metamodeling actually increased computation
time due to the overhead of constructing the Kriging model. However, this limitation is accept-
able in the scope of our study because the primary objective was to understand the behavior of
the SAEMVS method when coupled with metamodeling in a controlled setting.

Moreover, we did not extend our analysis to real data or more complex models where the
evaluation of g is computationally expensive. In such scenarios, the benefits of metamodeling
are expected to be more pronounced, potentially reducing computation time significantly and
enabling the handling of more complex variable selection problems.

Future research should focus on applying the SAEMVS algorithm with Kriging metamodel-
ing to more complex models and real datasets. This would provide a better understanding of
the practical benefits and challenges of metamodeling in variable selection. Additionally, explor-
ing adaptive methods for selecting the number of design points and optimizing the covariance
kernel selection based on the data characteristics could further enhance the applicability of this
methodology.

To facilitate reproducibility and allow others to replicate our results, the complete and well-
documented code used in this study is publicly available on the Stat4Plant GitHub repository.
The repository includes all scripts, data generation processes, and instructions necessary to
reproduce the simulations and figures presented in this document. Researchers and practitioners
are encouraged to access the code to explore the implementation details, run the simulations,
and adapt the code to their own data and models.
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A EM algorithm and tts extensions

A.1 Mild regularity conditions
The "mild regularity conditions" referred to in the convergence theorems are specific assumptions that ensure the
EM algorithm’s convergence to a stationary point of the observed-data log-likelihood function. These conditions
are typically satisfied in practical applications and are outlined as follows:

1. Closed Parameter Space:

• The parameter space Θ is a closed subset of Rp. This ensures that limit points of sequences within
Θ also belong to Θ.

2. Continuity and Differentiability:

• The observed-data log-likelihood function log pθ(y) is continuous and differentiable with respect to θ
over Θ.

• The complete-data log-likelihood function log pθ(y, φ) is continuous with respect to θ for each (y, φ).

3. Support Condition:

• The support of the conditional distribution pθ(φ | y) does not depend on θ. That is, the set of
possible values for the latent variables φ given the observed data y is the same for all θ ∈ Θ.

4. Well-Defined Expectations:

• The expected value Q(θ | θ(k)) = Eφ|y,θ(k) [log pθ(y, φ)] is well-defined and finite for all θ ∈ Θ and all
iterations k.

5. Monotonicity and Convergence:

• The EM algorithm increases the observed-data log-likelihood at each iteration unless it has already
reached a stationary point.

• Any limit point θ∗ of the sequence {θ(k)} is a stationary point of the observed-data log-likelihood
function log pθ(y).

6. Differentiability of the Q Function:

• The function Q(θ | θ(k)) is continuous and differentiable with respect to θ for all θ ∈ Θ and k ≥ 0.

These regularity conditions are essential for the proofs of the convergence theorems presented earlier. Specif-
ically, they allow us to apply results from optimization theory to establish that:

• The sequence {θ(k)} generated by the EM algorithm remains within the parameter space Θ.
• The observed-data log-likelihood function log pθ(y) behaves smoothly enough for the algorithm to make

consistent progress toward a stationary point.
• The support condition ensures that the E-step computes expectations over a consistent domain, which is

crucial for the monotonic increase of the likelihood.

Under these conditions, the EM algorithm is guaranteed to converge to a stationary point of the observed-data
log-likelihood function, which may be a local maximum or a saddle point. It is important to note that global
convergence to the absolute maximum of the likelihood function is not guaranteed without additional assumptions
[Wu, 1983].

In practical applications, verifying these regularity conditions involves checking that:

• The parameter estimates remain within a reasonable and predefined range.
• The likelihood functions are well-behaved (continuous and differentiable) with respect to the parameters.
• The latent variables’ support does not change with different parameter values.

A.2 Convergence theorems of the EM algorithm
Theorem 2 (Monotonicity of the likelihood [Dempster et al., 1977]). At each iteration of the EM algorithm, the
observed-data log-likelihood does not decrease:

log pθ(k+1) (y) ≥ log pθ(k) (y).
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Proof. This property follows from the construction of the Q function and the use of Jensen’s inequality in the
E-step. Specifically, the EM algorithm ensures that

log pθ(k+1) (y) − log pθ(k) (y) ≥ Q(θ(k+1) | θ(k)) −Q(θ(k) | θ(k)) ≥ 0.

Theorem 3 (Convergence to stationary points [Wu, 1983]). Under mild regularity conditions, any limit point
θ∗ of the sequence {θ(k)} generated by the EM algorithm is a stationary point of the likelihood function log pθ(y),
meaning:

∇θ log pθ(y)
∣∣
θ=θ∗ = 0.

These theorems provide a theoretical foundation for the convergence behavior of the EM algorithm:

• Monotonicity: Ensures that each iteration does not decrease the likelihood, promoting consistent progress
toward maximizing log pθ(y).

• Convergence to stationary points: Guarantees that the algorithm converges to a point where the
gradient of the likelihood function is zero.

A.3 About the Evidence Lower Bound (ELBO)
An alternative perspective on the EM algorithm involves the Evidence Lower Bound (ELBO), which provides
further insight into the algorithm’s convergence properties and its connection to variational inference.

The observed-data log-likelihood can be decomposed using any distribution q(φ) over the latent variables φ:

log pθ(y) =
∫
q(φ) log pθ(y) dφ

=
∫
q(φ) log

(
pθ(y, φ)
pθ(φ | y)

)
dφ

=
∫
q(φ) [log pθ(y, φ) − log pθ(φ | y)] dφ

=
∫
q(φ) log pθ(y, φ) dφ−

∫
q(φ) log q(φ) dφ︸ ︷︷ ︸

L(q,θ)

+
∫
q(φ) log q(φ)

pθ(φ | y) dφ︸ ︷︷ ︸
KL(q(φ)∥pθ(φ|y))

.

Rewriting, we have:

log pθ(y) = L(q, θ) + KL(q(φ) ∥ pθ(φ | y)),

where:

• L(q, θ) =
∫
q(φ) log pθ(y,φ)

q(φ) dφ is the Evidence Lower Bound (ELBO).
• KL(q(φ) ∥ pθ(φ | y)) is the Kullback-Leibler divergence between q(φ) and the true posterior pθ(φ | y).

Since the KL divergence is always non-negative, the ELBO serves as a lower bound on the observed-data
log-likelihood:

L(q, θ) ≤ log pθ(y).

The EM algorithm can be interpreted as iteratively maximizing the ELBO with respect to q(φ) and θ:

1. E-step (Maximize w.r.t. q(φ)):

q(k+1)(φ) = argmax
q(φ)

L(q, θ(k)) = pθ(k) (φ | y).

In this step, setting q(φ) to the true posterior distribution maximizes the ELBO because it minimizes the
KL divergence (which becomes zero).

2. M-step (Maximize w.r.t. θ):
θ(k+1) = argmax

θ∈Θ
L(q(k+1), θ).

Here, we maximize the ELBO with respect to θ while keeping q(k+1)(φ) fixed.
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By alternately maximizing the ELBO with respect to q(φ) and θ, the EM algorithm ensures that the observed-
data log-likelihood log pθ(y) does not decrease at each iteration.

The increase in the observed-data log-likelihood can be understood through the ELBO:

log pθ(k+1) (y) = L(q(k+1), θ(k+1)) + KL(q(k+1)(φ) ∥ pθ(k+1) (φ | y))

≥ L(q(k+1), θ(k+1))

≥ L(q(k+1), θ(k))

=
∫
pθ(k) (φ | y) log pθ(k) (y, φ)

pθ(k) (φ | y) dφ

= log pθ(k) (y).

This chain of inequalities shows that:

log pθ(k+1) (y) ≥ log pθ(k) (y),

confirming the monotonic increase of the observed-data log-likelihood at each iteration [Neal and Hinton,
1998].

A.4 Convergence of SAEM
Theorem 4 (Convergence of SAEM Delyon et al. [1999]). Assume that:

(a) The complete-data model pθ(y, φ) belongs to the curved exponential family, i.e.,

pθ(y, φ) = h(y, φ) exp (⟨S(y, φ), ϕ(θ)⟩ − ψ(θ)) ,

where S(y, φ) are sufficient statistics, ϕ(θ) are natural parameters, and ψ(θ) is the log-partition function.

(b) The parameter space Θ is an open subset of Rd.

(c) The function ψ(θ) is twice continuously differentiable on Θ.

(d) The sequence of step sizes {γk} satisfies:
∞∑

k=1

γk = ∞,

∞∑
k=1

γ2
k < ∞, 0 < γk ≤ 1.

(e) The observations y are such that the log-likelihood function ℓ(θ) = log pθ(y) is continuous and has isolated
critical points.

Then, the sequence {θ(k)} generated by the SAEM algorithm converges almost surely to a (local) maximum of the
observed-data log-likelihood ℓ(θ).

Sketch of Proof. The proof relies on viewing the SAEM algorithm as a stochastic approximation algorithm for
estimating the maximum likelihood estimator (MLE). The main steps are:

1. Representation as a stochastic approximation: The SAEM update can be written as a stochastic
approximation of the form:

θ(k+1) = θ(k) + γkH(θ(k), S(k)),

where S(k) is a realization of the sufficient statistics at iteration k, and H(θ, S) is a function guiding the
updates.

2. Asymptotic behavior: Under the given conditions, it can be shown that the noise in the stochastic
approximation diminishes appropriately, and the algorithm behaves like a deterministic ordinary differential
equation (ODE) in the limit.

3. Stability and convergence: By applying the Robbins-Monro stochastic approximation theory and the
ODE method [Kushner and Yin, 2003], it can be established that {θ(k)} converges almost surely to a
stationary point of ℓ(θ).

4. Convergence to Local Maximum: Given that the critical points of ℓ(θ) are isolated and that the
algorithm increases the likelihood, the limit point must be a local maximum.

For a detailed proof, see [Delyon et al., 1999].
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A.5 Convergence of MCMC-SAEM
Theorem 5 (Convergence of MCMC-SAEM [Kuhn and Lavielle, 2004]). Assume that:

(a) The conditions of Theorem 4 hold for the SAEM algorithm.

(b) The Markov chain used in the S-step is uniformly ergodic, i.e., there exists a constant ρ ∈ (0, 1) such that
for any initial state φ(0), ∥∥Pn(φ(0), ·) − pθ(k) (φ | y)

∥∥
TV

≤ Cρn,

where Pn is the n-step transition kernel, C is a constant, and ∥ · ∥TV denotes the total variation norm.

Then, the sequence {θ(k)} generated by the MCMC-SAEM algorithm converges almost surely to a (local)
maximum of the observed-data log-likelihood function ℓ(θ).

A detailed proof can be found in [Kuhn and Lavielle, 2004].

B Kernel Functions in the the DiceKriging Package

Table 2: Examples of Kernel Functions in the DiceKriging Package

Kernel Expression Parameters

Gaussian K(x, y) = σ2 exp
(

− ∥x−y∥2

2l2

)
σ2, l

Exponential K(x, y) = σ2 exp
(

− ∥x−y∥
l

)
σ2, l

Matern 3/2 K(x, y) = σ2
(

1 +
√

3 ∥x−y∥
l

)
exp
(

−
√

3 ∥x−y∥
l

)
σ2, l

Matern 5/2 K(x, y) = σ2
(

1 +
√

5 ∥x−y∥
l

+ 5∥x−y∥2

3l2

)
exp
(

−
√

5 ∥x−y∥
l

)
σ2, l

The parameters σ2 and l play crucial roles in defining the behavior of each kernel function. Here, σ2 represents
the variance, controlling the overall variability or amplitude of the Gaussian Process. The length-scale parameter
l determines how quickly the correlation between points decays as the distance ∥x − y∥ increases. A smaller l
implies that the function can vary more rapidly, capturing finer details, whereas a larger l leads to smoother and
more gradual changes [Roustant et al., 2012].

Regarding the types of covariance functions:

• Gaussian Kernel: Also known as the Radial Basis Function (RBF), it is infinitely differentiable, making
it suitable for modeling very smooth functions.

• Exponential Kernel: Less smooth than the Gaussian kernel, it models functions that are continuous but
not differentiable.

• Matern 3/2 Kernel: Provides a balance between smoothness and flexibility, assuming the underlying
function is once differentiable.

• Matern 5/2 Kernel: Allows for twice differentiable functions, offering more flexibility in capturing the
function’s behavior compared to Matern 3/2.

These covariance functions enable Gaussian Processes to model a wide range of function behaviors by adjusting
the smoothness and correlation structure through their parameters.

C SAEMVS with Kriging implementation code in R

C.1 Code for Kriging by time
The following R code sets up and runs simulations for the SAEMVS algorithm with Kriging metamodeling. Below,
we explain each part of the code, describe what it does, and outline the steps involved.
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C.1.1 Initialization and Parameter Setting

Sets the seed based on a command-line argument:

1 s_setparam = as . numeric ( commandArgs ( t r a i l i n gOn l y=TRUE) [ 1 ] ) # Seed
2 s = s_setparam

Defining Parameters for Data Generation

1 n <− 200 # Number o f i n d i v i d u a l s
2 J <− 10 # Number o f r e p e t i t i o n s
3 p <− 2000 # Number o f c o va r i a t e s
4 Gamma2 <− 200 # Inter−ind i v i dua l var i ance o f phi_i
5 sigma2 <− 30 # Res idua l var i ance o f y
6 mu <− 1200 # In t e r c ep t
7 beta <− c (100 , 50 , 20 , rep (0 , p − 3) ) # Covar iate f i x ed e f f e c t s vec to r
8 beta_t i l d e <− c (mu, beta ) # Use fu l r e f o rmu la t i on
9 ps i 1 <− 200 # Parameter o f the func t i on g

10 ps i 2 <− 300 # Parameter o f the func t i on g
11 p s i <− c ( ps i1 , p s i 2 )
12 time_po in t s <− seq (150 , 3000 , l ength . out = J )

The function g is implemented as:

1 g <− func t i on ( phi_i , ps i , t_ i j ) {
2 r e turn ( p s i [ 1 ] / (1 + exp(−( t_i j − phi_i ) / p s i [ 2 ] ) ) )
3 }

Parameters for the SAEMVS algorithm are set:

1 # SAEMVS algor i thm parameters
2 n i t e r <− 500 # Number o f i t e r a t i o n s
3 nburnin <− 350 # Number o f burn−in i t e r a t i o n s
4 niterMH_phi <− 1 # Number o f Metropol i s−Hast ings i t e r a t i o n s f o r phi
5 M <− 20 # Number o f g r id po in t s f o r nu0
6 Delta <− 10^( seq (−2 , 2 , l ength . out = M) ) # Grid o f nu0 va lue s

Kriging Parameters Parameters for the Kriging metamodel are defined:

1 # Krig ing parameters
2 m_va lues <− c (40 , 50 , 100 , 150 , 200) # Number o f des ign po in t s f o r Kr ig ing
3 cov_types <− c ( " gauss " , " matern5_2 " ) # Covariance f unc t i on s to be t e s t ed
4 # Trend formulas f o r Kr ig ing models
5 trend_formulas <− l i s t (
6 l i s t ( formule = ~1 , trend = 1) # Constant trend
7 )
8 trend_formule <− trend_formulas [ [ 1 ] ] $ formule
9 trend <− trend_formulas [ [ 1 ] ] $ trend

C.1.2 Data Simulation

The code simulates the dataset by generating random effects φi, covariate matrix V , and observations yij . Random
effects φi ∼ N (0,Γ2), the covariate matrix V is generated with independent standard normal entries. Finally,
observations yij are generated using the model:

yij = V ⊤
i β + g(φi, ψ, tij) + ϵij , ϵij ∼ N (0, σ2)

C.1.3 Design of Experiments with Latin Hypercube Sampling (LHS)

The code creates a design of experiments using LHS to generate the design points for the Kriging metamodel.
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1 # Function to c r e a t e an LHS des ign f o r a l l t imes
2 c r e a t e_lh s_des ign_f o r_a l l_times <− func t i on (m, time_points , seed = NULL) {
3 i f ( ! i s . nu l l ( seed ) ) {
4 s e t . seed ( seed )
5 }
6 num_po in t s_per_time = m / length ( time_po in t s )
7 # Ensure the t o t a l number o f po in t s matches m
8 t o t a l_po in t s <− length ( time_po in t s ) ∗ num_po in t s_per_time
9 i f (m != t o t a l_po in t s ) {

10 stop ( " Total ␣number␣ o f ␣ po in t s ␣does ␣not␣match␣m. " )
11 }
12 # Create LHS des ign f o r varphi
13 l h s_des ign <− lhsDes ign (n = m, dimension = 1 , seed = seed ) $ des ign
14 l h s_des ign <− data . frame ( varphi = lh s_des ign [ , 1 ] ∗ 1100)
15 # Repeat time po in t s
16 time_va lue s <− rep ( time_points , each = num_po in t s_per_time )
17 # Assoc ia t e time va lue s with the LHS des ign
18 des ign <− data . frame ( varphi = lh s_des ign $varphi , t = time_va lue s )
19 r e turn ( des ign )
20 }

For each m in m_values, the design is created, and responses are computed using the function g.

C.1.4 Training and Validation Sets

The design and responses are split into training and validation sets using stratified sampling based on time points.

1 l h s_des ign $unique_id <− seq_along ( l h s_des ign $ t )
2 s e t . seed ( s )
3 s p l i t_data <− s t r a t i f i e d ( l h s_design , group = " t " , s i z e = 0 . 8 , bothSets = TRUE)
4 t r a i n_des ign <− s p l i t_data$SAMP1
5 t e s t_des ign <− s p l i t_data$SAMP2
6 # Generate r e sponse s f o r t r a i n i n g and t e s t s e t s
7 t r a i n_response <− sapply ( 1 : nrow ( t r a i n_des ign ) , f unc t i on ( i ) {
8 g ( t r a i n_des ign $ varphi [ i ] , ps i , t r a i n_des ign $ t [ i ] )
9 })

10 t e s t_response <− sapply ( 1 : nrow ( t e s t_des ign ) , f unc t i on ( i ) {
11 g ( t e s t_des ign $ varphi [ i ] , ps i , t e s t_des ign $ t [ i ] )
12 })

An additional validation set is generated with a new seed.

C.1.5 Kriging Model Training and Prediction

For each covariance type and trend formula, Kriging models are trained for each unique time point.

1 f o r ( covtype in cov_types ) {
2 f o r ( k in seq_along ( trend_formulas ) ) {
3 # I n i t i a l i z e l i s t s f o r s t o r i n g p r e d i c t i o n s and models
4 p r ed i c t i o n s_t e s t <− c ( )
5 p r ed i c t i o n s_va l <− c ( )
6 trend_formula <− trend_formulas [ [ k ] ]
7 models_by_model_J <− l i s t ( )
8

9 # Loop over unique time po in t s
10 f o r ( j in seq_along ( unique_times ) ) {
11 time <− unique_times [ j ]
12 # Se l e c t t r a i n i n g data f o r cur rent time po int
13 t r a i n_des ign_time <− subset ( t r a i n_design , t == time , s e l e c t = varphi )
14 i n d i c e s_t r a i n_des ign_time <− as . numeric ( u n l i s t ( subset ( t r a i n_design , t == time ,

s e l e c t = unique_id ) ) )
15 t r a i n_response_time <− lh s_response [ i n d i c e s_t r a i n_des ign_time ]
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16

17 # Train Krig ing model
18 s e t . seed (m + s )
19 model <− km(
20 formula = trend_formula $ formule ,
21 des ign = t r a i n_des ign_time ,
22 covtype = covtype ,
23 re sponse = t r a i n_response_time ,
24 nugget = 1e−8
25 )
26

27 models_by_model_J [ [ j ] ] <− model
28

29 # Pred i c t i on s on t e s t and va l i d a t i o n s e t s
30 t e s t_des ign_temp <− subset ( t e s t_des ign , t == time , s e l e c t = varphi )
31 p r ed i c t i o n s_t e s t <− c ( p r e d i c t i o n s_te s t ,
32 p r ed i c t (model , newdata = t e s t_des ign_temp ,
33 type = "UK" , b i a s . c o r r e c t = TRUE)$mean)
34

35 va l_des ign_temp <− subset ( va l_des ign , t == time , s e l e c t = varphi )
36 p r ed i c t i o n s_va l <− c ( p r e d i c t i o n s_val ,
37 p r ed i c t (model , newdata = va l_des ign_temp ,
38 type = "UK" , b i a s . c o r r e c t = TRUE)$mean)
39 }
40 }
41 }

C.1.6 SAEMVS with Kriging

The SAEMVS algorithm is run using the Kriging metamodel instead of directly evaluating g.

1 # Load the Krig ing model
2 k r i g i n g_model <− get_model_by_t r i p l e t ( charg ing_models $models , m_va lues [ 1 ] ,
3 cov_types [ 1 ] , trend_formule )
4 # I n i t i a l i z e parameters f o r SAEMVS
5 b e t a t i l d e_i n i t <− c (1400 , rep (100 , 10) , rep (1 , p − 10) ) # I n i t i a l beta_t i l d e
6 sigma2_i n i t <− 100
7 Gamma2_i n i t <− 5000
8 alpha_i n i t <− 0 .1
9 tau <− 0.98

10 param_i n i t <− l i s t (
11 beta_t i l d e = b e t a t i l d e_i n i t , alpha = alpha_in i t , Gamma2 = Gamma2_in i t ,
12 sigma2 = sigma2_i n i t
13 )
14 # Hyperparameters
15 nu0 <− 0.04
16 nu1 <− 12000
17 nu_Gamma <− 1
18 lb_Gamma <− 1
19 nu_sigma <− 1
20 lb_sigma <− 1
21 a <− 1
22 b <− p
23 sigma2_mu <− 3000^2
24 hyperparam <− l i s t (
25 nu0 = nu0 , nu1 = nu1 , nu_Gamma = nu_Gamma, lb_Gamma = lb_Gamma,
26 nu_sigma = nu_sigma ,
27 lb_sigma = lb_sigma ,
28 a = a , b = b , sigma2_mu = sigma2_mu, p s i = ps i , tau = tau
29 )
30 # Run the SAEMVS algor i thm with Krig ing
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31 r e s u l t s_Mod_s e l e c t <− Model_s e l e c t i o n_Krig ing ( Delta , n i t e r , nburnin , niterMH_phi , data$Y,
data$t , data$ id , V_t i l d e , param_in i t , hyperparam , s , k r i g i n g_model )

C.1.7 Global Kriging Metamodel Construction

In the global Kriging approach, we model the function g as a function of both φi and tij simultaneously, rather
than building separate models for each time point.

Design of Experiments with Latin Hypercube Sampling We use Latin Hypercube Sampling
(LHS) to create the design points for the Kriging metamodel:

1 f o r (m in m_va lues ) {
2 s e t . seed ( s )
3 # Use LHS f o r t r a i n i n g data
4 l h s_des ign <− lhsDes ign (n = m, dimension = 2 , seed = s ) $ des ign
5 l h s_des ign <− data . frame ( varphi = lh s_des ign [ , 1 ] ∗ 1100 ,
6 t = lh s_des ign [ , 2 ] ∗ (3000 − 150) + 150)
7 l h s_response <− numeric (m)
8 f o r ( i in 1 :m) {
9 l h s_response [ i ] <− g ( l h s_des ign $ varphi [ i ] , ps i , l h s_des ign $ t [ i ] )

10 }

Here, we sample φi and tij jointly over their ranges.

Splitting Data into Training and Test Sets The data is divided into training and test sets:

1 # Sp l i t data in to t r a i n i n g and t e s t s e t s
2 t r a i n_i nd i c e s <− sample ( 1 :m, s i z e = 0 .8 ∗ m)
3 t e s t_i nd i c e s <− s e t d i f f ( 1 :m, t r a i n_i nd i c e s )
4 t r a i n_des ign <− lh s_des ign [ t r a i n_ind i c e s , ]
5 t r a i n_response <− lh s_response [ t r a i n_i nd i c e s ]
6 t e s t_des ign <− lh s_des ign [ t e s t_ind i c e s , ]
7 t e s t_response <− lh s_response [ t e s t_i nd i c e s ]

Generating Validation Data An additional LHS design is created for validation:

1 # Generate v a l i d a t i o n data
2 m_val <− m
3 l h s_va l_des ign <− lhsDes ign (n = m_val , dimension = 2 , seed = s + 2) $ des ign
4 va l_des ign <− data . frame ( varphi = lh s_va l_des ign [ , 1 ] ∗ 1100 ,
5 t = lh s_va l_des ign [ , 2 ] ∗ (3000 − 150) + 150)
6

7 va l_response <− numeric (m_val )
8 f o r ( i in 1 :m_val ) {
9 va l_response [ i ] <− g ( va l_des ign $ varphi [ i ] , ps i , va l_des ign $ t [ i ] )

10 }

Training Kriging Models For each covariance type and trend formula, a Kriging model is trained using
the training data:

1 f o r ( covtype in cov_types ) {
2 f o r ( i i in seq_along ( trend_formulas ) ) {
3 trend_ i i <− trend_formulas [ [ i i ] ]
4 trend_formula <− trend_ i i $ formule
5 trend_trend <− trend_ i i $ trend
6 s e t . seed (m + s )
7 # Fit Krig ing model
8 model <− km( formula = trend_formula , des ign = t r a i n_design ,
9 covtype = covtype , re sponse = t r a i n_response , nugget = 1e−6)
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Running the SAEMVS Algorithm The SAEMVS algorithm is executed:

1 # Run the SAEMVS algor i thm with Krig ing
2 r e s u l t s_Mod_s e l e c t <− Model_s e l e c t i o n_Krig ing ( Delta , n i t e r , nburnin , niterMH_phi , data$Y,

data$t , data$ id , V_t i l d e , param_in i t , hyperparam , s , m_va lue s [ 1 ] , cov_types [ 1 ] ,
trend , k r i g i n g_model )

D Comparison of kriging predictions instead of using the real
model

In this section, we focus on the specific differences in how the Kriging predictions replace the function g(φi, ψ, tij)
in the SAEMVS procedure across the three scripts. We provide detailed explanations and highlight the changes
in the code that implement this replacement.

D.1 Original Implementation in Functions_SAEMVS.R

In the original script, the function g is defined and used directly in the SAEMVS algorithm.

1 g <− func t i on ( phi_i , ps i , t_ i j ) {
2 r e turn ( p s i [ 1 ] / (1 + exp(−( t_i j − phi_i ) / p s i [ 2 ] ) ) )
3 }

Within the SAEM_MAP function, g is called directly to compute the model predictions during the Metropolis-
Hastings step and the calculation of sufficient statistics.

Metropolis-Hastings Step

1 # S−step : Metropo l i s Hast ings with in Gibbs
2 f o r ( i in 1 : n ) {
3 f o r ( r in 1 : niterMH_phi ) {
4 phi_c i = rnorm (1 , mean = Vbetak [ i ] , sd = sq r t (Gamma2[ k ] ) )
5 l o g r a t i o = sum(dnorm( y i [ , i ] , mean = g ( phi_c i , ps i , t i [ , i ] ) , sd = sq r t ( sigma2 [ k ] ) , l og

= TRUE) ) −
6 sum(dnorm( y i [ , i ] , mean = g ( phi_t i l d e [ i , r ] , ps i , t i [ , i ] ) , sd = sq r t ( sigma2 [

k ] ) , l og = TRUE) )
7 }
8 }

Updating Sufficient Statistics

1 # SA−step : updating o f s u f f i c i e n t s t a t i s t i c s
2 f o r ( i in 1 : n ) {
3 mco [ i , ] = ( y i [ , i ] − g ( phi [ i , k + 1 ] , ps i , t i [ , i ] ) ) ^2
4 }

In both cases, g is evaluated directly for each individual and time point.

D.2 Modification in the original script for the global kriging
In this case, g is approximated using a Kriging metamodel that depends on both φ and t. The Kriging predictions
replace direct evaluations of g.

Definition of Kriging Prediction Function A new function predict_f_kriging is defined to com-
pute the Kriging predictions:

1 p r ed i c t_f_k r i g i n g <− func t i on ( varphi , t , k r i g i n g_model ) {
2 newdata <− cbind ( varphi , t ) # Combine varphi and t in to a matrix
3 p r ed i c t ( k r i g i n g_model , newdata = newdata , type = ’UK’ ) $mean
4 }

This function takes φ and t as inputs and returns the predicted value from the Kriging model.
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Replacement in Metropolis-Hastings Step In the SAEM_MAP_Kriging function, the direct evalua-
tions of g are replaced with predict_f_kriging:

1 # S−step : Metropo l i s Hast ings with in Gibbs
2 f o r ( i in 1 : n ) {
3 f o r ( r in 1 : niterMH_phi ) {
4 phi_c i = rnorm (1 , mean = Vbetak [ i ] , sd = sq r t (Gamma2[ k ] ) )
5 l o g r a t i o = sum(dnorm( y i [ , i ] , mean = pr ed i c t_f_k r i g i n g ( phi_c i , t i [ , i ] , k r i g i n g_model

) ,
6 sd = sq r t ( sigma2 [ k ] ) , l og = TRUE) ) −
7 sum(dnorm( y i [ , i ] , mean = pr ed i c t_f_k r i g i n g ( phi_t i l d e [ i , r ] , t i [ , i ] ,

k r i g i n g_model ) ,
8 sd = sq r t ( sigma2 [ k ] ) , l og = TRUE) )
9 }

10 }

Similarly, when updating the sufficient statistics:

1 # SA−step : updating o f s u f f i c i e n t s t a t i s t i c s
2 f o r ( i in 1 : n ) {
3 mco [ i , ] = ( y i [ , i ] − p r ed i c t_f_k r i g i n g ( phi [ i , k + 1 ] , t i [ , i ] , k r i g i n g_model ) ) ^2
4 }

The residuals are computed using the Kriging predictions instead of direct evaluations of g.

D.3 Modification in the original script for the time kriging
In this script, time-dependent Kriging models are used. A separate Kriging model is trained for each time point,
and the Kriging predictions depend only on φ.

A new function predict_f_kriging_temps is defined:

1 p r ed i c t_f_k r i g i n g_temps <− func t i on ( varphi , k r i g i n g_model ) {
2 newdata <− data . frame ( varphi = varphi )
3 p r ed i c t i o n <− pred i c t ( k r i g i n g_model , newdata = newdata , type = ’UK’ , b i a s . c o r r e c t =

TRUE)
4 r e turn ( p r ed i c t i o n $mean)
5 }

This function takes φ and a Kriging model corresponding to a specific time point and returns the predicted
value.

Replacement in Metropolis-Hastings Step In the SAEM_MAP function, the Kriging predictions
replace g during the Metropolis-Hastings step. Since there are separate Kriging models for each time point, we
loop over the observations:

1 # S−step : Metropo l i s Hast ings with in Gibbs
2 f o r ( i in 1 : n ) {
3 f o r ( r in 1 : niterMH_phi ) {
4 phi_c i = rnorm (1 , mean = Vbetak [ i ] , sd = sq r t (Gamma2[ k ] ) )
5 l o g r a t i o = sum( sapply ( 1 : J , f unc t i on ( j ) {
6 dnorm( y i [ j , i ] ,
7 mean = pr ed i c t_f_k r i g i n g_temps ( phi_c i , k r i g i n g_model [ [ j ] ] ) ,
8 sd = sq r t ( sigma2 [ k ] ) , l og = TRUE)
9 }) ) − sum( sapply ( 1 : J , f unc t i on ( j ) {

10 dnorm( y i [ j , i ] ,
11 mean = pr ed i c t_f_k r i g i n g_temps ( phi_t i l d e [ i , r ] , k r i g i n g_model [ [ j ] ] ) ,
12 sd = sq r t ( sigma2 [ k ] ) , l og = TRUE)
13 }) )
14 }
15 }

For each observation j, we use the corresponding Kriging model kriging_model[[j]] to predict the mean
response given φi.
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Replacement in Updating Sufficient Statistics When updating the sufficient statistics:

1 # SA−step : updating o f s u f f i c i e n t s t a t i s t i c s
2 f o r ( i in 1 : n ) {
3 mco [ i , ] = sapply ( 1 : J , f unc t i on ( j ) {
4 ( y i [ j , i ] − p r ed i c t_f_k r i g i n g_temps ( phi [ i , k + 1 ] , k r i g i n g_model [ [ j ] ] ) ) ^2
5 })
6 }

The residuals for each observation are computed using the Kriging predictions from the corresponding time-
specific model.
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