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Abstract

Longitudinal data are frequently analyzed using normal mixed effects models. Moreover, the
traditional estimation methods are based on mean regression, which leads to non-robust parameter
estimation for non-normal error distributions. Compared to the conventional mean regression ap-
proach, quantile regression (QR) can characterize the entire conditional distribution of the outcome
variable and is more robust to the presence of outliers and misspecification of the error distribution.
This thesis develops a likelihood-based approach to analyzing QR models for correlated continuous
longitudinal data via the asymmetric Laplace distribution (ALD). Exploiting the nice hierarchical
representation of the ALD, our classical approach follows the stochastic Approximation of the EM
(SAEM) algorithm for deriving exact maximum likelihood (ML) estimates of the fixed-effects and
variance components in linear and nonlinear mixed effects models. We evaluate the finite sample
performance of the algorithm and the asymptotic properties of the ML estimates through empir-
ical experiments and applications to four real life datasets. The proposed SAEM algorithms are
implemented in the R packages qrLMM() and qrNLMM() respectively.

Keywords: Asymmetric Laplace distribution, Mixed Effects Models, Quantile regression,
SAEM algorithm, Stochastic Approximations.

Resumo

Os dados longitudinais são frequentemente analisados usando modelos de efeitos mistos nor-
mais. Além disso, os métodos de estimação tradicionais baseiam-se em regressão na média da
distribuição considerada, o que leva a estimação de parâmetros não robusta quando a distribuição
do erro não é normal. Em comparação com a abordagem de regressão na média convencional, a
regressão quantílica (RQ) pode caracterizar toda a distribuição condicional da variável de resposta
e é mais robusta na presença de outliers e especificações erradas da distribuição do erro. Esta
tese desenvolve uma abordagem baseada em verossimilhança para analisar modelos de RQ para
dados longitudinais contínuos correlacionados através da distribuição Laplace assimétrica (DLA).
Explorando a conveniente representação hierárquica da DLA, a nossa abordagem clássica segue a
aproximação estocástica do algoritmo EM (SAEM) para derivar estimativas de máxima verossimil-
hança (MV) exatas dos efeitos fixos e componentes de variância em modelos lineares e não lineares
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de efeitos mistos. Nós avaliamos o desempenho do algoritmo em amostras finitas e as propriedades
assintóticas das estimativas de MV através de experimentos empíricos e aplicações para quatro
conjuntos de dados reais. Os algoritmos SAEM propostos são implementados nos pacotes do R
qrLMM() e qrNLMM() respectivamente.

Keywords: Distribuição Laplace assimétrica, Modelos de Efeitos Mistos, Regressão quantílica,
algoritmo SAEM, Aproximações estocásticas.
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Chapter 1

Introduction

Mixed-effects models (MEM) are frequently used to analyze grouped/clustered data (such as
longitudinal data, repeated measures, and multilevel data) because of their potential to handle
within-subject correlations that characterizes grouped data (J. C. Pinheiro and D. M. Bates, 2000).
In adittion, nonlinear mixed-efects models (NLMM) handle with nonlinearities in the relationship
between the observed response and the covariates and random effects. In general, linear models
can lead to highly accurate prediction model if the number of covariates increases, e.g. increasing
the order of a polynomial model. Unfortunately, too many parameters will make interpretation
difficult and good prediction are obtained just within the observed range of the data. On the other
hand, nonlinear models incorporate theoretical considerations of the models unlike linear models
that are based in the relationship between the response and the covariates. Nonlinear models are
also flexible and often mechanistic, based on biological, chemical and physics mechanisms (among
others). They lead to a natural modeling using a known family of nonlinear functions providing
desirable characteristics such as asymptotes, a unique maximum value, monotonicity, positive
range, etc.

Majority of these MEMs model and estimate covariate effects on the response through a mean
regression, controlling for between-cluster heterogeneity via normally-distributed cluster-specific
random effects and random errors. However, this centrality-based inferential framework is often
inadequate when the conditional distribution of the response (conditional on the random terms) is
skewed, multimodal, or affected by atypical observations. In contrast, conditional quantile regres-
sion (QR) methods (Roger Koenker, 2004, 2005) quantifying the entire conditional distribution
of the outcome variable were developed that can provide assessment of covariate effects at any
arbitrary quantiles of the outcome. In addition, QR methods do not impose any distribution as-
sumption on the error, except requiring that the error term has a zero conditional quantile such as
the asymmetric Laplace distribution (ALD). There are another zero-quantile families of distribu-
tions as detailed in Wichitaksorn et al. (2014). Because of its popularity and the flexibility that it
provides, standard QR methods are implementable via available software packages, for example,
the R package quantreg.

Although QR was initially developed under a univariate framework, the abundance of clus-
tered data in recent times lead to its extensions into mixed modeling framework via either the
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distribution-free route (Fu and Y.-G. Wang, 2012; Galvao Jr, 2011; Galvao and Montes-Rojas,
2010; Lipsitz et al., 1997), or the traditional likelihood-based route mostly using the ALD (Geraci
and Bottai, 2007, 2014; Yuan and Yin, 2010). Among the ALD-based models, Geraci and Bottai
(2007) proposed a Monte Carlo EM (MCEM)-based conditional QR model for continuous responses
with a subject-specific random (univariate) intercept to account for within-subject dependence in
the context of longitudinal data. However, due to the limitations of a simple random intercept
model to account for the between-cluster heterogeneity, Geraci and Bottai (2014) extended their
previous Geraci and Bottai (2007) model to a general linear quantile mixed effects regression model
(QR-LMM) with multiple random effects (both intercepts and slopes). However, instead of going
the MCEM route, the estimation of the fixed effects and the covariance components were imple-
mented by using an efficient combination of Gaussian quadrature approximations and non-smooth
optimization algorithms. Yuan and Yin (2010) applied the version of QR of Geraci and Bottai
(2007) to linear mixed effects models (LMM) for longitudinal measurements with missing data. In
other hand, J. Wang (2012) considered QR-NLMMs from a Bayesian perspective. Although the
literature on QR-LMM is now substantial and some results on QR-NLMMs have recently appeared
in the literature, to the best of our knowledge, there seem to be no studies on exact inference for
QR-NLMMs from a likelihood based perspective.

In this work, we proceed via a robust parametric ALD-based QR for linear and nonlinear MEM,
where the full likelihood-based implementation follows a stochastic version of the EM algorithm
(SAEM) proposed by Delyon et al. (1999), for maximum likelihood (ML) estimation in contrast to
the approximations proposed by Geraci and Bottai (2014). The SAEM algorithm has been proved
to be more computationally efficient than the classical MCEM algorithm due to the recycling of
simulations from one iteration to the next in the smoothing phase of the algorithm. Moreover,
as pointed out by Meza et al. (2012) the SAEM algorithm, unlike the MCEM, converges even
in a typically small simulation size. Recently, Kuhn and Lavielle (2005) showed that the SAEM
algorithm is very efficient in computing the ML estimates in mixed effects models. Our empirical
results using the SAEM are more efficient than the proposition of Geraci and Bottai (2014) for
simulated data for LMMs and a likelihood-based model for NLMMs in contrast to the bayesian
modeling proposed by J. Wang (2012). The methods developed are readily implementable via the
R packages qrLMM() and qrNLMM(), illustrating four real data sets.

The rest of the thesis proceeds as follows. Chapter 1 presents some preliminaries, in particular
the connection between QR and ALD and an outline of the EM and SAEM algorithms. Chapter 2
and 3 develops the MCEM and the SAEM algorithms for a general LMM and NLMM respectively,
both outlining the likelihood estimation and standard errors, simulation studies to analyze the
finite sample performance of our proposed methods, application of the SAEM method to two
longitudinal datasets and conclusions. Chapter 4 presents some general concluding remarks as
technical production resulting of this thesis and some conclusions sketching some future research
directions.
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1.1 Preliminaries
In this section, we provide some useful results on the ALD and QR, and introduce the EM and

SAEM algorithms for ML estimation.

1.1.1 Connection between QR and ALD
Following K. Yu and Moyeed (2001), a random variable Y is distributed as an ALD with

location parameter 𝜇, scale parameter 𝜎 > 0 and skewness parameter 𝑝 ∈ (0, 1), if its probability
density function (pdf) is given by

𝑓(𝑦|𝜇, 𝜎, 𝑝) = 𝑝(1 − 𝑝)
𝜎

exp
{︂

−𝜌𝑝
(︂
𝑦 − 𝜇

𝜎

)︂}︂
, (1.1.1)

where 𝜌𝑝(.) is the check (or loss) function defined by 𝜌𝑝(𝑢) = 𝑢(𝑝− I{𝑢 < 0}), with I{.} the usual
indicator function. This distribution is denoted by𝐴𝐿𝐷(𝜇, 𝜎, 𝑝). It is easy to see that𝑊 = 𝜌𝑝(𝑌−𝜇

𝜎
)

follows an exponential distribution with mean 1. Figure 1.1 plots the ALD illustrating how the
the skewness changes with altering choices for 𝑝. For example, when 𝑝 = 0.1, most of the mass is
concentrated around the right tail, while for 𝑝 = 0.5, both tails of the ALD have equal mass and the
distribution resemble the more common double exponential distribution. In contrast to the normal
distribution with a quadratic term in the exponent, the ALD is linear in the exponent term. This
results in a more peaked mode for the ALD together with thicker tails. On the contrary, the normal
distribution has heavier tails compared to the ALD. Is worth mentioning that we have implemented
in the R package ald(), the probability density function, distribution function, quantile function,
random number generator function, likelihood function, moment generating function and MLE for
a given sample for the ALD defined above.

The ALD abides by the following stochastic representation (Kotz et al., 2001; Kuzobowski and
Podgorski, 2000). Let 𝑈 ∼ exp(𝜎) and 𝑍 ∼ 𝑁(0, 1) be two independent random variables. Then,
𝑌 ∼ 𝐴𝐿𝐷(𝜇, 𝜎, 𝑝) can be represented as

𝑌
𝑑= 𝜇+ 𝜗𝑝𝑈 + 𝜏𝑝

√
𝜎𝑈𝑍, (1.1.2)

where 𝜗𝑝 = 1−2𝑝
𝑝(1−𝑝) and 𝜏 2

𝑝 = 2
𝑝(1−𝑝) , where 𝑑= denotes equality in distribution. This representa-

tion is useful in obtaining the moment generating function (mgf), and formulating the estimation
algorithm. From (1.1.2), the hierarchical representation of the ALD is given as

𝑌 |𝑈 = 𝑢 ∼ 𝑁(𝜇+ 𝜗𝑝𝑢, 𝜏
2
𝑝𝜎𝑢),

𝑈 ∼ exp(𝜎). (1.1.3)

This representation will be useful for the implementation of the EM algorithm. Moreover, since
𝑌 |𝑈 = 𝑢 ∼ 𝑁(𝜇+ 𝜗𝑝𝑢, 𝜏

2
𝑝𝜎𝑢), one can easily derive the pdf of 𝑌 , given by

𝑓(𝑦|𝜇, 𝜎, 𝑝) = 1√
2𝜋

1
𝜏𝑝𝜎

3
2

exp
(︁𝛿(𝑦)
𝛾

)︁
𝐴(𝑦), (1.1.4)
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Figure 1.1: Standard asymmetric Laplace density

where 𝛿(𝑦) = |𝑦−𝜇|
𝜏𝑝

√
𝜎
, 𝛾 =

√︂
1
𝜎
(2 + 𝜗2

𝑝

𝜏2
𝑝
) = 𝜏𝑝

2
√
𝜎

and 𝐴(𝑦) = 2
(︁
𝛿(𝑦)
𝛾

)︁1/2
𝐾1/2(𝛿(𝑦)𝛾), with 𝐾𝜈(.), the

modified Bessel function of the third kind. It easy to see that that the conditional distribution
of 𝑈 , given 𝑌 = 𝑦, is 𝑈 |(𝑌 = 𝑦) ∼ 𝐺𝐼𝐺(1

2 , 𝛿, 𝛾), where 𝐺𝐼𝐺(𝜈, 𝑎, 𝑏) represents the Generalized
Inverse Gaussian (GIG) distribution (Barndorff-Nielsen and Shephard, 2001) with the pdf

ℎ(𝑢|𝜈, 𝑎, 𝑏) = (𝑏/𝑎)𝜈
2𝐾𝜈(𝑎𝑏)

𝑢𝜈−1 exp
{︁

− 1
2(𝑎2/𝑢+ 𝑏2𝑢)

}︁
, 𝑢 > 0, 𝜈 ∈ R, 𝑎, 𝑏 > 0.

The moments of 𝑈 can be expressed as

𝐸[𝑈𝑘] =
(︂
𝑎

𝑏

)︂𝑘 𝐾𝜈+𝑘(𝑎𝑏)
𝐾𝜈(𝑎𝑏)

, 𝑘 ∈ R (1.1.5)

Some useful properties of the Bessel function of the third kind 𝐾𝜆(𝑢) are: (i) 𝐾𝜈(𝑢) = 𝐾−𝜈(𝑢);
(ii) 𝐾𝜈+1(𝑢) = 2𝜈

𝑢
𝐾𝜈(𝑢) +𝐾𝜈−1(𝑢); (iii) for non-negative integer 𝑟, 𝐾𝑟+1/2(𝑢) =

√︁
𝜋
2𝑢 exp(−𝑢)∑︀𝑟

𝑘=0
(𝑟+𝑘)!(2𝑢)−𝑘

(𝑟−𝑘)!𝑘! . A special case is 𝐾1/2(𝑢) =
√︁

𝜋
2𝑢 exp(−𝑢).

1.1.2 The EM and SAEM algorithms
In models with missing data, the EM algorithm (Dempster et al., 1977) has established itself

as the most popular tool for obtaining the ML estimates of the model parameters. This itera-
tive algorithm maximizes the complete log-likelihood function ℓ𝑐(𝜃; ycom) at each step, converging
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quickly to a stationary point of the observed likelihood (ℓ(𝜃; yobs)) under mild regularity condi-
tions (Vaida, 2005; C. J. Wu, 1983). The EM algorithm proceeds in two simple steps:

E-Step: Replace the observed likelihood by the complete likelihood and compute its conditional
expectation Q(𝜃|̂︀𝜃(𝑘)) = E

{︂
ℓ𝑐(𝜃; ycom)|̂︀𝜃(𝑘)

,yobs

}︂
, where ̂︀𝜃(𝑘) is the estimate of 𝜃 at the k-th

iteration;

M-Step: Maximize Q(𝜃|̂︀𝜃(𝑘)) with respect to 𝜃 obtaining ̂︀𝜃(𝑘+1).

However, in some applications of the EM algorithm, the E-step cannot be obtained analytically
and has to be calculated using simulations. Wei and Tanner (1990) proposed the Monte Carlo EM
(MCEM) algorithm in which the E-step is replaced by a Monte Carlo approximation based on
a large number of independent simulations of the missing data. This simple solution is infact
computationally expensive, given the need to generate a large number of independent simulations
of the missing data for a good approximation. Thus, in order to reduce the amount of required
simulations compared to the MCEM algorithm, the SAEM algorithm proposed by Delyon et al.
(1999) replaces the E-step of the EM algorithm by a stochastic approximation procedure, while
the Maximization step remains unchanged. Besides having good theoretical properties, the SAEM
estimates the population parameters accurately, converging to the global maxima of the ML es-
timates under quite general conditions (Allassonnière et al., 2010; Delyon et al., 1999; Kuhn and
Lavielle, 2004).

At each iteration, the SAEM algorithm successively simulates missing data with the conditional
distribution, and updates the unknown parameters of the model. Thus, at iteration k, the SAEM
algorithm proceeds as follows:

E-Step:

• Simulation: Draw (q(ℓ,𝑘)), ℓ = 1, . . . ,𝑚 from the conditional distribution 𝑓(q|𝜃(𝑘−1),y𝑖).

• Stochastic Approximation: Update the Q(𝜃|̂︀𝜃(𝑘)) function as

Q(𝜃|̂︀𝜃(𝑘)) ≈ Q(𝜃|̂︀𝜃(𝑘−1)) + 𝛿𝑘

[︃
1
𝑚

𝑚∑︁
ℓ=1

ℓ𝑐(𝜃 ; yobs,q(ℓ,𝑘)|̂︀𝜃(𝑘)
,yobs)−Q(𝜃|̂︀𝜃(𝑘−1))

]︃
(1.1.6)

M-Step:

• Maximization: Update ̂︀𝜃(𝑘) as ̂︀𝜃(𝑘+1) = arg max
𝜃

Q(𝜃|̂︀𝜃(𝑘)),

where (q(ℓ,𝑘)) is a sample from the missing values and 𝛿𝑘 is a smoothness parameter (Kuhn and
Lavielle, 2004), i.e., a decreasing sequence of positive numbers such that ∑︀∞

𝑘=1 𝛿𝑘 = ∞ and∑︀∞
𝑘=1 𝛿

2
𝑘 < ∞. Note that, for the SAEM algorithm, the E-Step coincides with the MCEM al-

gorithm, however a small number of simulations 𝑚 (suggested to be 𝑚 ≤ 20) is necessary. This is
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possible because unlike the traditional EM algorithm and its variants, the SAEM algorithm uses not
only the current simulation of the missing data at the iteration k denoted by (q(ℓ,𝑘)), ℓ = 1, . . . ,𝑚
but some or all previous simulations, where this ‘memory’ property is set by the smoothing pa-
rameter 𝛿𝑘.

Note, in equation (1.1.6), if the smoothing parameter 𝛿𝑘 is equal to 1 for all 𝑘, the SAEM
algorithm will have ‘no memory’, and will be equivalent to the MCEM algorithm. The SAEM
with no memory will converge quickly (convergence in distribution) to a solution neighbourhood,
however when the algorithm has memory, it will converge slowly (almost sure convergence) to the
ML solution. We suggested the following choice of the smoothing parameter given as

𝛿𝑘 =
⎧⎨⎩1, for 1 ≤ 𝑘 ≤ 𝑐𝑊

1
𝑘−𝑐𝑊 , for 𝑐𝑊 + 1 ≤ 𝑘 ≤ 𝑊

where 𝑊 is the maximum number of iterations, and 𝑐 a cut point (0 ≤ 𝑐 ≤ 1) which determines
the percentage of initial iterations with no memory. For example, if 𝑐 = 0 the algorithm will
have memory for all iterations, and hence will converge slowly to the ML estimates. If 𝑐 = 1, the
algorithm will have no memory, and so will converge quickly to a solution neighborhood. For the
first case, 𝑊 would need to be large in order to achieve the ML estimates. For the second one, the
algorithm will output a Markov Chain where after applying a burn in and thin, the mean of the
chain observations can be a reasonable estimate.

Iterations
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Figure 1.2: Graphical approach for assessing convergence. Sequences 𝜃𝑖 for 𝑖 = 1, 2 of estimatives
for the fixed effects of a Linear Mixed Model with 𝑊 = 300 and 𝑐 = 1/4.

A number between 0 and 1 (0 < 𝑐 < 1) will assure an initial convergence in distribution to a
solution neighbourhood for the first 𝑐𝑊 iterations and an almost sure convergence for the rest of
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the iterations. Hence, this combination will leads us to a fast algorithm with good estimates. To
implement SAEM, the user must fix several constants matching the number of total iterations 𝑊
and the cut point 𝑐 that defines the starting of the smoothing step of the SAEM algorithm, however
those parameters will vary depending of the model and the data. To determinate those constants,
a graphical approach (see Figure 1.2) is recommended to monitor the convergence of the estimates
for all the parameters, and, if possible, to monitor the difference (relative difference) between
two successive evaluations of the log-likelihood ℓ(𝜃|y𝑜𝑏𝑠), given by ||ℓ(𝜃(𝑘+1)|y𝑜𝑏𝑠) − ℓ(𝜃(𝑘)|y𝑜𝑏𝑠)|| or
||ℓ(𝜃(𝑘+1)|y𝑜𝑏𝑠)/ℓ(𝜃(𝑘)|y𝑜𝑏𝑠) − 1||, respectively.
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Chapter 2

Quantile Regression for Linear Mixed
Models

This chapter develops a likelihood-based approach to analyzing quantile regression (QR) models
for continuous longitudinal data via the asymmetric Laplace distribution (ALD). Compared to the
conventional mean regression approach, QR can characterize the entire conditional distribution of
the outcome variable and is more robust to the presence of outliers and misspecification of the error
distribution. Exploiting the nice hierarchical representation of the ALD, our classical approach
follows the Stochastic Approximation of the EM (SAEM) algorithm for deriving exact maximum
likelihood estimates of the fixed-effects and variance components. We evaluate the finite sample
performance of the algorithm and the asymptotic properties of the ML estimates through empirical
experiments and applications to two real datasets. Our empirical results clearly indicate that the
SAEM estimates outperforms the estimates obtained via the combination of Gaussian quadrature
and non-smooth optimization routines of the Geraci (2014)’s approach in terms of standard errors
and mean square error. The proposed SAEM algorithm is implemented in the R package qrLMM().

2.1 Introduction
Linear mixed-effects models (LMM) are frequently used to analyze grouped/clustered data

(such as longitudinal data, repeated measures, and multilevel data) because of their potential to
handle within-subject correlations that characterizes grouped data (J. C. Pinheiro and D. M. Bates,
2000). Majority of these LMMs model and estimate covariate effects on the response through a
mean regression, controlling for between-cluster heterogeneity via normally-distributed cluster-
specific random effects and random errors. However, this centrality-based inferential framework
is often inadequate when the conditional distribution of the response (conditional on the random
terms) is skewed, multimodal, or affected by atypical observations. In contrast, conditional quantile
regression (QR) methods (Roger Koenker, 2004, 2005) quantifying the entire conditional distri-
bution of the outcome variable were developed that can provide assessment of covariate effects at
any arbitrary quantiles of the outcome. In addition, QR methods do not impose any distribution
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assumption on the error, except requiring that the error term has a zero conditional quantile.
Although QR was initially developed under a univariate framework, the abundance of clustered

data in recent times leads to its extensions into mixed modeling framework (classical, or Bayesian)
via either the distribution-free route (Fu and Y.-G. Wang, 2012; Galvao Jr, 2011; Galvao and
Montes-Rojas, 2010; Lipsitz et al., 1997), or the traditional likelihood-based route mostly using
the ALD (Geraci and Bottai, 2007, 2014; Yuan and Yin, 2010). Among the ALD-based models,
Geraci and Bottai (2007) proposed a Monte Carlo EM (MCEM)-based conditional QR model for
continuous responses with a subject-specific random (univariate) intercept to account for within-
subject dependence in the context of longitudinal data. However, due to the limitations of a simple
random intercept model to account for the between-cluster heterogeneity, Geraci and Bottai (2014)
extended their previous Geraci and Bottai (2007) model to a general linear quantile mixed effects
regression model (QR-LMM) with multiple random effects (both intercepts and slopes). However,
instead of going the MCEM route, the estimation of the fixed effects and the covariance compo-
nents were implemented using an efficient combination of Gaussian quadrature approximations
and non-smooth optimization algorithms.

Although the literature on QR-LMM is now substantial, there are no studies conducting exact
inferences in the context of QR-LMM from a likelihood-based perspective. In this paper, we pro-
ceed to achieve that via a robust parametric ALD-based QR-LMM, where the full likelihood-based
implementation follows a stochastic version of the EM algorithm (SAEM), proposed by Delyon
et al. (1999), for maximum likelihood (ML) estimation in contrast to the approximations proposed
by Geraci and Bottai (2014). The SAEM algorithm has been proved to be more computationally
efficient than the classical MCEM algorithm due to the recycling of simulations from one iteration
to the next in the smoothing phase of the algorithm. Moreover, as pointed out by Meza et al.
(2012) the SAEM algorithm, unlike the MCEM, converges even in a typically small simulation
size. Recently, Kuhn and Lavielle (2005) showed that the SAEM algorithm is very efficient in
computing the ML estimates in mixed effects models. Our empirical results using the SAEM are
more efficient than the proposition of Geraci and Bottai (2014) for simulated data. Furthermore,
application of our method to two longitudinal datasets is illustrated via the R package qrLMM().

2.2 QR for linear mixed models and algorithms
We consider the following general LMM 𝑦𝑖𝑗 = x⊤

𝑖𝑗𝛽 + z𝑖𝑗b𝑖 + 𝜖𝑖𝑗, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛𝑖,
where 𝑦𝑖𝑗 is the 𝑗th measurement of a continuous random variable for the 𝑖th subject, x⊤

𝑖𝑗 are
row vectors of a known design matrix of dimension 𝑁 × 𝑘 corresponding to the 𝑘 × 1 vector of
population-averaged fixed effects 𝛽, z𝑖𝑗 is a 𝑞 × 1 design matrix corresponding to the 𝑞 × 1 vector
of random effects b𝑖, and 𝜖𝑖𝑗 the independent and identically distributed random errors. We define
𝑝th quantile function of the response 𝑦𝑖𝑗 as

𝑄𝑝(𝑦𝑖𝑗|x𝑖𝑗,b𝑖) = x⊤
𝑖𝑗𝛽𝑝 + z𝑖𝑗b𝑖. (2.2.1)

where𝑄𝑝 denotes the inverse of the unknown distribution function 𝐹 , 𝛽𝑝 is the regression coefficient
corresponding to the 𝑝th quantile. As seen in (2.2.1) the 𝑝th quantile is equal to a mixed linear
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predictor. The random effects b𝑖 are distributed as b𝑖
iid∼ N𝑞(0,Ψ), where the dispersion matrix

Ψ = Ψ(𝛼) depends on unknown and reduced parameters 𝛼 (the distinct elements of Ψ), and the
errors 𝜖𝑖𝑗 ∼ 𝐴𝐿𝐷(0, 𝜎). Then, 𝑦𝑖𝑗|b𝑖 independently follows as ALD with the density given by

𝑓(𝑦𝑖𝑗|𝛽𝑝,b𝑖, 𝜎) = 𝑝(1 − 𝑝)
𝜎

exp
{︃

−𝜌𝑝
(︃
𝑦𝑖𝑗 − x⊤

𝑖𝑗𝛽𝑝 − z𝑖𝑗b𝑖
𝜎

)︃}︃
, (2.2.2)

Using a MCEM algorithm, a QR-LMM with random intercepts (𝑞 = 1) was proposed by Geraci
and Bottai (2007). More recently, Geraci and Bottai (2014) extended that setup to accommodate
multiple random effects where the estimation of fixed effects and covariance matrix of the random
effects were accomplished via a combination of Gaussian quadrature approximations and non-
smooth optimization algorithms. Here, we consider a more general correlated random effects
framework with general dispersion matrix Ψ = Ψ(𝛼).

2.2.1 A MCEM algorithm
First, we develop a MCEM algorithm for ML estimation of the parameters in the QR-LMM.

The model exhibits a flexible hierarchical representation, which is useful in deriving the theoret-
ical properties. From (1.1.3), the QR-LMM defined in (2.2.1)-(2.2.2), can be represented in a
hierarchical form as:

y𝑖|b𝑖,u𝑖 ∼ 𝑁𝑛𝑖

(︁
x⊤
𝑖 𝛽𝑝 + z𝑖b𝑖 + 𝜗𝑝u𝑖, 𝜎𝜏 2

𝑝D𝑖

)︁
,

b𝑖 ∼ 𝑁𝑞 (0,Ψ),

u𝑖 ∼
𝑛𝑖∏︁
𝑗=1

exp(𝜎), (2.2.3)

for 𝑖 = 1, . . . , 𝑛, where 𝜗𝑝 and 𝜏 2
𝑝 are as in (1.1.2); D𝑖 represents a diagonal matrix that contains

the vector of missing values u𝑖 = (𝑢𝑖1, . . . , 𝑢𝑖𝑛𝑖
)⊤ and exp(𝜎) denotes the exponential distribution

with mean 𝜎. Let y𝑖𝑐 = (y⊤
𝑖 ,b⊤

𝑖 ,u⊤
𝑖 )⊤, with y𝑖 = (𝑦𝑖1, . . . , 𝑦𝑖𝑛𝑖

)⊤, b𝑖 = (𝑏𝑖1, . . . , 𝑏𝑖𝑞)⊤, u𝑖 =
(𝑢𝑖1, . . . , 𝑢𝑖𝑛𝑖

)⊤and let 𝜃(k) = (𝛽(𝑘)⊤
𝑝 , 𝜎(𝑘),𝛼(k)⊤)⊤, the estimate of 𝜃 at the k-th iteration. Since

b𝑖 and u𝑖 are independent for all 𝑖 = 1, . . . , 𝑛, it follows from (1.1.3) that the complete-data
log-likelihood function is of the form

ℓ𝑐(𝜃; y𝑐) =
𝑛∑︁
𝑖=1

ℓ𝑐(𝜃; y𝑖𝑐),

where

ℓ𝑐(𝜃; y𝑖𝑐) = constant−3
2 𝑛𝑖𝑙𝑜𝑔𝜎 − 1

2 𝑙𝑜𝑔|Ψ|−1
2 b⊤

𝑖 Ψ−1b𝑖−
1
𝜎

u⊤
𝑖 1𝑛𝑖

− 1
2𝜎𝜏 2

𝑝

(y𝑖−x⊤
𝑖 𝛽𝑝−z𝑖b𝑖−𝜗𝑝u𝑖)⊤D−1

𝑖 (y𝑖−x⊤
𝑖 𝛽𝑝−z𝑖b𝑖−𝜗𝑝u𝑖). (2.2.4)

Given the current estimate 𝜃 = 𝜃(𝑘), the E-step calculates the function
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Q(𝜃|̂︀𝜃(𝑘)) = ∑︀𝑛
𝑖=1 Qi(𝜃|̂︀𝜃(𝑘)),

where

Qi(𝜃|̂︀𝜃(𝑘)) = E
{︁
ℓ𝑐(𝜃; y𝑖𝑐)|𝜃(𝑘),y

}︁
(2.2.5)

∝ −3
2 𝑛𝑖𝑙𝑜𝑔𝜎− 1

2𝜎𝜏 2
𝑝

[︂
(y𝑖−x⊤

𝑖 𝛽𝑝)⊤ ̂︂D−1
𝑖

(𝑘)
(y𝑖−x⊤

𝑖 𝛽𝑝)

−2(y𝑖 − x⊤
𝑖 𝛽𝑝) ̂(D−1

𝑖 zb)𝑖
(𝑘)

+ tr
{︂

z𝑖 ̂(bb⊤zD−1
𝑖 )𝑖

(𝑘)
}︂

−2𝜗𝑝(y𝑖−x⊤
𝑖 𝛽𝑝)⊤1𝑛𝑖

+ 2𝜗𝑝(ẑ︀b(𝑘))⊤
𝑖 1𝑛𝑖

+
𝜏 4
𝑝

4
̂︁u𝑖(𝑘)⊤1𝑛𝑖

]︃

−1
2 𝑙𝑜𝑔|Ψ|−1

2 tr
{︂

(̂bb⊤)𝑖
(𝑘)

Ψ−1
}︂
,

where tr(A) indicates the trace of matrix A and 1𝑝 is the vector of ones of dimension 𝑝. The
calculation of these function requires expressions for

̂︁b𝑖(𝑘)
= E

{︁
b𝑖|𝜃(𝑘),y𝑖

}︁
, ̂︁u𝑖(𝑘) = E

{︁
u𝑖|𝜃(𝑘),y𝑖

}︁
,

(̂bb⊤)𝑖
(𝑘)

= E
{︁
b𝑖b⊤

𝑖 |𝜃(𝑘),y𝑖
}︁
, ̂︂D−1

𝑖

(𝑘)
= E

{︁
D−1
𝑖 |𝜃(𝑘),y𝑖

}︁
,

̂(bb⊤zD−1)𝑖
(𝑘)

= E
{︁
b𝑖b⊤

𝑖 z⊤
𝑖 D−1

𝑖 |𝜃(𝑘),y𝑖
}︁
, ̂(D−1zb)𝑖

(𝑘)
= E

{︁
D−1
𝑖 z𝑖b𝑖|𝜃(𝑘),y𝑖

}︁
,

which do not have closed forms. Since the joint distribution of the missing data (b(𝑘)
𝑖 ,u

(𝑘)
𝑖 ) is

unknown and the conditional expectations cannot be computed analytically, for any function 𝑔(.),
the MCEM algorithm approximates the conditional expectations above by their Monte Carlo
approximations

E[ 𝑔 (b𝑖,u𝑖) |𝜃(𝑘),y𝑖] ≈ 1
𝑚

𝑚∑︁
ℓ=1

𝑔(b(ℓ,𝑘)
𝑖 ,u(ℓ,𝑘)

𝑖 ), (2.2.6)

which depend of the simulations of the two latent (missing) variables b(𝑘)
𝑖 and u(𝑘)

𝑖 from the con-
ditional joint density 𝑓(b𝑖,u𝑖|𝜃(𝑘),y𝑖). A Gibbs Sampler can be easily implemented as shown in
Appendix A.4 given that the two full conditional distributions 𝑓(b𝑖|𝜃(𝑘),u𝑖,y𝑖) and 𝑓(u𝑖|𝜃(𝑘),b𝑖,y𝑖)
are known. However, using known properties of conditional expectations, the expected value in
(2.2.6) can be more accurately approximated as

Eb𝑖,u𝑖
[ 𝑔(b𝑖,u𝑖)|𝜃(𝑘),y𝑖] = Eb𝑖

[ Eu𝑖
[ 𝑔(b𝑖,u𝑖)|𝜃(𝑘),b𝑖,y𝑖]|y𝑖 ]

≈ 1
𝑚

𝑚∑︁
ℓ=1

Eu𝑖
[ 𝑔(b(ℓ,𝑘)

𝑖 ,u𝑖)|𝜃(𝑘),b(ℓ,𝑘)
𝑖 ,y𝑖], (2.2.7)

where b(ℓ,𝑘) is a sample from the conditional density 𝑓(b𝑖|𝜃(𝑘),y𝑖). Note that (2.2.7) is a more
accurate approximation once it only depends of one MC approximation, instead two as needed in
(2.2.6).
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Now, to drawn random samples from the full conditional distribution 𝑓(u𝑖|y𝑖,b𝑖), first note that
the vector u𝑖|y𝑖,b𝑖 can be written as u𝑖|y𝑖,b𝑖 = [ u𝑖1|y𝑖1,b𝑖, u𝑖2|y𝑖2,b𝑖, · · · , u𝑖𝑛𝑖

|y𝑖𝑛𝑖
,b𝑖 ]⊤, since

u𝑖𝑗| y𝑖𝑗,b𝑖 is independent of u𝑖𝑘| y𝑖𝑘,b𝑖, for all 𝑗, 𝑘 = 1, 2, . . . , 𝑛𝑖 and 𝑗 ̸= 𝑘. Thus, the distribution
of 𝑓(u𝑖𝑗|y𝑖𝑗,b𝑖) is proportional to

𝑓(u𝑖𝑗|y𝑖𝑗,b𝑖) ∝ 𝜑(y𝑖𝑗|x⊤
𝑖𝑗𝛽𝑝 + z⊤

𝑖𝑗b𝑖 + 𝜗𝑝𝑢𝑖𝑗, 𝜎𝜏
2
𝑝𝑢𝑖𝑗) × exp(𝜎),

which, from Subsection 2.1, leads to u𝑖𝑗|y𝑖𝑗,b𝑖 ∼ 𝐺𝐼𝐺( 1
2 , 𝜒𝑖𝑗, 𝜓), where 𝜒𝑖𝑗 and 𝜓 are given by

𝜒𝑖𝑗 = |𝑦𝑖𝑗−x⊤
𝑖𝑗𝛽𝑝−z⊤

𝑖𝑗b𝑖|

𝜏𝑝
√
𝜎

and 𝜓 = 𝜏𝑝
2
√
𝜎

(2.2.8)

From (1.1.5), and after generating samples from 𝑓(b𝑖|𝜃(𝑘),y𝑖) (see Subsection 2.2.3), the con-
ditional expectation Eu𝑖

[·|𝜃,b𝑖,y𝑖] in (2.2.7) can be computed analytically. Finally, the proposed
MCEM algorithm for estimating the parameters of the QR-LMM can be summarized as follows:

MC E-step: Given 𝜃 = 𝜃(𝑘), for 𝑖 = 1, . . . , 𝑛;
• Simulation Step: For ℓ = 1, . . . ,𝑚, draw b(ℓ,𝑘)

𝑖 from 𝑓(b𝑖|𝜃(𝑘),y𝑖), as described later in
Subsection 2.2.3.

• Monte Carlo approximation: Using (1.1.5) and the simulated sample above, evaluate

E[ 𝑔 (b𝑖,u𝑖) |𝜃(𝑘),y𝑖] ≈ 1
𝑚

𝑚∑︁
ℓ=1

Eu𝑖
[ 𝑔(b(ℓ,𝑘)

𝑖 ,u𝑖)|𝜃(𝑘),b(ℓ,𝑘)
𝑖 ,y𝑖].

M-step: Update ̂︀𝜃(𝑘) by maximizing Q(𝜃|̂︀𝜃(𝑘)) ≈ 1
𝑚

∑︀𝑚
𝑙=1

∑︀𝑛
𝑖=1 ℓ𝑐(𝜃; y𝑖,b(𝑙,𝑘)

𝑖 ,u𝑖) over ̂︀𝜃(𝑘),
which leads to the following estimates:

̂︁𝛽𝑝(𝑘+1) =
[︃
𝑛∑︁
𝑖=1

{︃
1
𝑚

𝑚∑︁
ℓ=1

x𝑖ℰ(D−1
𝑖 )(ℓ,𝑘)x⊤

𝑖

}︃]︃−1

×[︃
𝑛∑︁
𝑖=1

{︃
1
𝑚

𝑚∑︁
ℓ=1

[︁
x𝑖ℰ(D−1

𝑖 )(ℓ,𝑘)
[︁
y𝑖 − z⊤

𝑖 b(ℓ,𝑘)
𝑖 − 𝜗𝑝ℰ(u𝑖)(ℓ,𝑘)

]︁]︁}︃]︃
,

̂︀𝜎(𝑘+1) = 1
3𝑁𝜏 2

𝑝

𝑛∑︁
𝑖=1

{︃
1
𝑚

𝑚∑︁
ℓ=1

[︁
(y𝑖−x⊤

𝑖 𝛽(𝑘+1)
𝑝 − z𝑖b(ℓ,𝑘)

𝑖 )⊤ℰ(D−1)(ℓ,𝑘)(y𝑖−x⊤
𝑖 𝛽(𝑘+1)

𝑝 − z𝑖b(ℓ,𝑘)
𝑖 )

−2𝜗𝑝(y𝑖−x⊤
𝑖 𝛽(𝑘+1)

𝑝 − z𝑖b(ℓ,𝑘)
𝑖 )⊤1𝑛𝑖

+
𝜏 4
𝑝

4 ℰ(u𝑖)(ℓ,𝑘)⊤1𝑛𝑖

]︃}︃
,

̂︁Ψ(𝑘+1) = 1
𝑛

𝑛∑︁
𝑖=1

[︃
1
𝑚

𝑚∑︁
ℓ=1

b(ℓ,𝑘)
𝑖 b(ℓ,𝑘)⊤

𝑖

]︃
,

where 𝑁 = ∑︀𝑛
𝑖=1 𝑛𝑖 and expressions ℰ(u𝑖)(ℓ,𝑘) and ℰ(D−1

𝑖 )(ℓ,𝑘) are defined in Appendix A.2. Note
that for the MC E-step, we need to draw samples b(ℓ,𝑘)

𝑖 , ℓ = 1, . . . ,𝑚, from 𝑓(b𝑖|𝜃(𝑘),y𝑖), where
𝑚 is the number of Monte Carlo simulations to be used, a number suggested to be large enough.
A simulation method to draw samples from 𝑓(b𝑖|𝜃(𝑘),y𝑖), is described in Subsection 2.2.3.
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2.2.2 A SAEM algorithm
As mentioned in Subsection 1.1.2, the SAEM circumvents the cumbersome problem of simu-

lating a large number of missing values at every iteration, leading to a faster and efficient solution
than the MCEM. In summary, the SAEM algorithm proceeds as follows:

E-step: Given 𝜃 = 𝜃(𝑘) for 𝑖 = 1, . . . , 𝑛;

• Simulation step: Draw b(ℓ,𝑘)
𝑖 , ℓ = 1, . . . ,𝑚, from 𝑓(b𝑖|𝜃(𝑘),y𝑖), for 𝑚 ≤ 20.

• Stochastic approximation: Update the MC approximations for the conditional expecta-
tions by their stochastic approximations, given by

𝑆
(𝑘)
1,𝑖 = 𝑆

(𝑘−1)
1,𝑖 + 𝛿𝑘

[︃
1
𝑚

𝑚∑︁
ℓ=1

[x𝑖ℰ(D−1
𝑖 )(ℓ,𝑘)x⊤

𝑖 ] − 𝑆
(𝑘−1)
1,𝑖

]︃
,

𝑆
(𝑘)
2,𝑖 = 𝑆

(𝑘−1)
2,𝑖 + 𝛿𝑘

[︃
1
𝑚

𝑚∑︁
ℓ=1

[︁
x𝑖ℰ(D−1

𝑖 )(ℓ,𝑘)
[︁
y𝑖 − z⊤

𝑖 b(ℓ,𝑘)
𝑖 − 𝜗𝑝ℰ(u𝑖)(ℓ,𝑘)

]︁]︁
− 𝑆

(𝑘−1)
2,𝑖

]︃
,

𝑆
(𝑘)
3,𝑖 = 𝑆

(𝑘−1)
3,𝑖 + 𝛿𝑘

[︃
1
𝑚

𝑚∑︁
ℓ=1

[︁
(y𝑖−x⊤

𝑖 𝛽(𝑘+1)
𝑝 − z𝑖b(ℓ,𝑘)

𝑖 )⊤ℰ(D−1)(ℓ,𝑘)(y𝑖−x⊤
𝑖 𝛽(𝑘+1)

𝑝 − z𝑖b(ℓ,𝑘)
𝑖 )

−2𝜗𝑝(y𝑖−x⊤
𝑖 𝛽(𝑘+1)

𝑝 − z𝑖b(ℓ,𝑘)
𝑖 )⊤1𝑛𝑖

+
𝜏 4
𝑝

4 ℰ(u𝑖)(ℓ,𝑘)⊤1𝑛𝑖

]︃
− 𝑆

(𝑘−1)
3,𝑖

]︃
,

𝑆
(𝑘)
4,𝑖 = 𝑆

(𝑘−1)
4,𝑖 + 𝛿𝑘

[︃
1
𝑚

𝑚∑︁
ℓ=1

[b(ℓ,𝑘)
𝑖 b(ℓ,𝑘)⊤

𝑖 ] − 𝑆
(𝑘−1)
4,𝑖

]︃
.

M-step: Update ̂︀𝜃(𝑘) by maximizing Q(𝜃|̂︀𝜃(𝑘)) over ̂︀𝜃(𝑘), which leads to the following expres-
sions:

̂︁𝛽𝑝

(𝑘+1) =
[︃
𝑛∑︁
𝑖=1

𝑆
(𝑘)
1,𝑖

]︃−1 𝑛∑︁
𝑖=1

𝑆
(𝑘)
2,𝑖 ,

̂︀𝜎(𝑘+1) = 1
3𝑁𝜏 2

𝑝

𝑛∑︁
𝑖=1

𝑆
(𝑘)
3,𝑖 ,

̂︀Ψ(𝑘+1) = 1
𝑛

𝑛∑︁
𝑖=1

𝑆
(𝑘)
4,𝑖 . (2.2.9)

Given a set of suitable initial values ̂︀𝜃(0) (as detailed Appendix A.1), the SAEM iterates till
convergence at iteration 𝑘 if

max
𝑖

⎧⎨⎩ |̂︀𝜃(𝑘+1)
𝑖 − ̂︀𝜃(𝑘)

𝑖 |
|̂︀𝜃(𝑘)
𝑖 |+𝛿1

⎫⎬⎭ < 𝛿2 (2.2.10)

is satisfied for three consecutive times where 𝛿1 and 𝛿2 are some small values pre established. The
consecutive evalution of (2.2.10) avoids a fake convergence produced by an unlucky Monte Carlo
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simulation. Based on Searle et al. (1992) pag. 269, we use 𝛿1 = 0.001 and 𝛿2 = 0.0001 as suggested
by several researchers.

The proposed criterion above will need an extreme large number of iterations (more than usual)
in order to detect convergence for parameters that are close to the boundary of the parametric
space. In this case for variance components, a parameter value close to zero will inflate the ratio
in (2.2.10) and the convergence will not be attained even though the likelihood was maximized
with few iterations. As proposed by Booth and Hobert (1999) we use also a second convergence
criteria besides to the first one, defined by

max
𝑖

⎧⎨⎩ |̂︀𝜃(𝑘+1)
𝑖 − ̂︀𝜃(𝑘)

𝑖 |√︁̂︂var(𝜃(𝑘)
𝑖 ) + 𝛿1

⎫⎬⎭ < 𝛿2, (2.2.11)

where (2.2.11) evaluates the parameter estimates changes relative to their standard errors leading
to a convergence detection even for bounded parameters. Also the values 𝛿1 and 𝛿2 are some small
values pre established and not necessarily equal to the one for (2.2.10). Based on simulation we
suggest to fix 𝛿1 = 0.0001 and to test different values for 𝛿2 between 0.0001 and 0.0005 when
smaller means more accuracy. We use 𝛿1 = 0.0001 and 𝛿2 = 0.0002 by default which assures us
a high accuracy. This stopping criteria is similar to the one proposed by D. M. Bates and Watts
(1981) for nonlinear least squares.

2.2.3 Missing data simulation method
In order to draw samples from 𝑓(b𝑖|y𝑖,𝜃), we utilize the Metropolis-Hastings (MH) algorithm

(Hastings, 1970; Metropolis et al., 1953), a MCMC algorithm for obtaining a sequence of random
samples from a probability distribution for which direct sampling is not possible. The MH algo-
rithm proceeds as follows:

Given 𝜃 = 𝜃(𝑘), for 𝑖 = 1, . . . , 𝑛;

1. Start with an initial value b(0,𝑘)
𝑖 .

2. Draw b*
𝑖 ∼ ℎ(b*

𝑖 |b
(ℓ−1,𝑘)
𝑖 ) from a proposal distribution with the same support as the objective

distribution 𝑓(b𝑖|𝜃(𝑘),y𝑖).

3. Generate 𝑈 ∼ 𝑈(0, 1).

4. If 𝑈 > min
⎧⎨⎩1 ,

𝑓

(︁
b*

𝑖 |𝜃(𝑘)
,y𝑖

)︁
ℎ

(︁
b(0,𝑘)

𝑖 |b*
𝑖

)︁
𝑓

(︁
b(0,𝑘)

𝑖 |𝜃(𝑘)
,y𝑖

)︁
ℎ

(︁
b*

𝑖 |b(0,𝑘)
𝑖

)︁
⎫⎬⎭, return to the step 2, else b(ℓ,𝑘)

𝑖 = b*
𝑖

5. Repeat steps 2-4 until 𝑚 samples (b(1,𝑘)
𝑖 ,b(2,𝑘)

𝑖 , . . . ,b(𝑚,𝑘)
𝑖 ) are drawn from b𝑖|𝜃(𝑘),y𝑖.

Note that the marginal distribution 𝑓 (b𝑖|y𝑖,𝜃) (omitting 𝜃) can be represented as

𝑓 (b𝑖|y𝑖) ∝ 𝑓 (y𝑖|b𝑖) × 𝑓 (b𝑖) ,
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where b𝑖 ∼ 𝑁𝑞(0,Ψ) and 𝑓 (y𝑖|b𝑖) = ∏︀𝑛𝑖
𝑗=1 𝑓 (𝑦𝑖𝑗|b𝑖), with 𝑦𝑖𝑗|b𝑖 ∼ 𝐴𝐿𝐷

(︁
x⊤
𝑖𝑗𝛽𝑝 + z𝑖𝑗b𝑖, 𝜎, 𝑝

)︁
.

Since the objective function is a product of two distributions (with both support lying in R), a
suitable choice for the proposal density is a multivariate normal distribution with the mean and
variance-covariance matrix that are the stochastic approximations of the conditional expectation
E(b(𝑘−1)

𝑖 |y𝑖) and the conditional variance Var(b(𝑘−1)
𝑖 |y𝑖) respectively, obtained from the last itera-

tion of the SAEM algorithm. This candidate (with possible information about the shape of the
target distribution) leads to better acceptance rate, and consequently a faster algorithm. The re-
sulting chain b(1,𝑘)

𝑖 ,b(2,𝑘)
𝑖 , . . . ,b(𝑚,𝑘)

𝑖 is a MCMC sample from the marginal conditional distribution
𝑓(b𝑖|𝜃(𝑘),y𝑖). Due the dependent nature of these MCMC samples, at least 10 MC simulations are
suggested.

2.3 Estimation of the likelihood and standard errors

2.3.1 Likelihood Estimation
Usual model selection criteria are based in the observed likelihood function. Then, given the

observed data, the likelihood function ℓ𝑜(𝜃|y) of the model defined in (1.1.3) is given by

ℓ𝑜(𝜃|y) =
𝑛∑︁
𝑖=1

log 𝑓(y𝑖|𝜃)) =
𝑛∑︁
𝑖=1

log
∫︁
R𝑞
𝑓(y𝑖|b𝑖; 𝜃) 𝑓(b𝑖; 𝜃) 𝑑b𝑖, (2.3.1)

where the integral can be expressed as an expectation with respect to b𝑖, i.e., 𝐸b𝑖
[𝑓(y𝑖|b𝑖; 𝜃)].

The evaluation of this integral is not available analytically and is often replaced by its MC ap-
proximation involving a large number of simulations. However, alternative importance sampling
(IS) procedures might require a smaller number of simulations than the typical MC procedure.
Following Meza et al. (2012), we can compute this integral using an IS scheme for any continuous
distribution ̂︀𝑓(b𝑖; 𝜃) of b𝑖 having the same support as 𝑓(b𝑖; 𝜃). Rewriting (2.3.1) as

ℓ𝑜(𝜃|y) =
𝑛∑︁
𝑖=1

log
∫︁
R𝑞
𝑓(y𝑖|b𝑖; 𝜃) 𝑓(b𝑖; 𝜃)̂︀𝑓(b𝑖; 𝜃)

̂︀𝑓(b𝑖; 𝜃) 𝑑b𝑖.

we can express it as an expectation with respect to b*
𝑖 , where b*

𝑖 ∼ ̂︀𝑓(b*
𝑖 ; 𝜃). Thus, the likelihood

function can now be expressed as

ℓ𝑜(𝜃|y) ≈
𝑛∑︁
𝑖=1

log
⎧⎨⎩ 1
𝑚

𝑚∑︁
ℓ=1

⎡⎣ 𝑛𝑖∏︁
𝑗=1

[𝑓(𝑦𝑖𝑗|b*(ℓ)
𝑖 ; 𝜃)] 𝑓(b*(ℓ)

𝑖 ; 𝜃)̂︀𝑓(b*(ℓ)
𝑖 ; 𝜃)

⎤⎦⎫⎬⎭ , (2.3.2)

where {b*(ℓ)
𝑖 }, 𝑙 = 1, . . . ,𝑚, is a MC sample from ̂︀𝑓(b*

𝑖 ; 𝜃), and 𝑓(y𝑖|b*(ℓ)
𝑖 ; 𝜃) is expressed as∏︀𝑛𝑖

𝑗=1 𝑓 (𝑦𝑖𝑗|b*(ℓ)
𝑖 ; 𝜃) due to independence. An efficient choice for ̂︀𝑓(b*(ℓ)

𝑖 ; 𝜃) is 𝑓(b𝑖|y𝑖). Therefore,
we use the same proposal distribution discussed in Subsection 2.2.3, and generate samples b*(ℓ)

𝑖 ∼
𝑁𝑞(̂︀𝜇b𝑖

, ̂︀Σb𝑖
), where ̂︀𝜇b𝑖

= E(b(𝑤)
𝑖 |y𝑖) and ̂︀Σb𝑖

= Var(b(𝑤)
𝑖 |y𝑖), which are estimated empirically

during the last few iterations of the SAEM at convergence.
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2.3.2 Standard error approximation
Louis’ missing information principle (Louis, 1982) relates the score function of the incom-

plete data log-likelihood with the complete data log-likelihood through the conditional expectation
∇𝑜(𝜃) = E𝜃[∇𝑐(𝜃; Y𝑐𝑜𝑚|Y𝑜𝑏𝑠)], where ∇𝑜(𝜃) = 𝜕ℓ𝑜(𝜃; Y𝑜𝑏𝑠)/𝜕𝜃 and ∇𝑐(𝜃) = 𝜕ℓ𝑐(𝜃; Y𝑐𝑜𝑚)/𝜕𝜃 are
the score functions for the incomplete and complete data, respectively. As defined in Meilijson
(1989), the empirical information matrix can be computed as

I𝑒(𝜃|y) =
𝑛∑︁
𝑖=1

s(y𝑖|𝜃) s⊤(y𝑖|𝜃) − 1
𝑛

S(y|𝜃) S⊤(y|𝜃), (2.3.3)

where S(y|𝜃) = ∑︀𝑛
𝑖=1 s(y𝑖|𝜃), with s(y𝑖|𝜃) the empirical score function for the 𝑖-th individual.

Replacing 𝜃 by its ML estimator 𝜃̂ and considering ∇𝑜(𝜃̂) = 0, equation (2.3.3) takes the simple
form

I𝑒(̂︀𝜃|y) =
𝑛∑︁
𝑖=1

s(y𝑖|̂︀𝜃) s⊤(y𝑖|̂︀𝜃). (2.3.4)

At the 𝑘th iteration, the empirical score function for the 𝑖-th subject can be computed as

s(y𝑖|𝜃)(𝑘) = s(y𝑖|𝜃)(𝑘−1) + 𝛿𝑘

[︃
1
𝑚

𝑚∑︁
ℓ=1

s(y𝑖,q(𝑘,ℓ); 𝜃(𝑘)) − s(y𝑖|𝜃)(𝑘−1)
]︃
, (2.3.5)

where q(ℓ,𝑘), ℓ = 1, . . . ,𝑚, are the simulated missing values drawn from the conditional distribution
𝑓(·|`(𝑘−1),y𝑖). Thus, at iteration 𝑘, the observed information matrix can be approximated as
I𝑒(𝜃|y)(𝑘) = ∑︀𝑛

𝑖=1 s(y𝑖|𝜃)(𝑘) s⊤(y𝑖|𝜃)(𝑘), such that at convergence, I−1
𝑒 (̂︀𝜃|y) = (I𝑒(𝜃|y)|

𝜃=̂︀𝜃)−1 is an
estimate of the covariance matrix of the parameter estimates. Expressions for the elements of the
score vector with respect to 𝜃 are given in Appendix A.3.

2.4 Simulation studies
In this section, the finite sample performance of the proposed algorithm and its performance

comparison with the Geraci and Bottai (2014) method is evaluated via simulation studies. These
computational procedures were implemented using the R software (R Core Team, 2014). In par-
ticular, we consider the following linear mixed model:

𝑦𝑖𝑗 = x⊤
𝑖𝑗𝛽 + z𝑖𝑗b𝑖 + 𝜖𝑖𝑗, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 3, (2.4.1)

where the goal is to estimate the fixed effects parameters 𝛽 for a grid of percentiles 𝑝 = {0.05, 0.10, 0.50,
0.90, 0.95}. We simulated a 3 × 3 design matrix x⊤

𝑖𝑗 for the fixed effects 𝛽, where the first column
corresponds to the intercept and the other columns generated from a 𝑁2(0, I2) density, for all
𝑖 = 1, . . . , 𝑛. We also simulated a 3 × 2 design matrix associated with the random effects, with the
columns distributed as 𝑁2(0, I2). The fixed effects parameters were chosen randomly as 𝛽1 = 0.8,
𝛽2 = 0.5 and 𝛽3 = 1, 𝜎 = 0.20, and the matrix Ψ with elements Ψ11 = 0.8, Ψ12 = 0.5 and
Ψ22 = 1. For varying sample sizes of 𝑛 = 50, 100, 200 and 300, we generate 100 data samples for
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each scenario. In addition, we also choose 𝑚 = 20, 𝑐 = 0.2 and 𝑊 = 500 in order to assure a quick
distribution convergence for the first 20% of iterations and a quite a.s. convergence.

For all scenarios, we compute the square root of the mean square error (RMSE), the bias (Bias)
and the Monte carlo standard deviation (MC-Sd) for each parameter over the 100 replicates. They
are defined as

MC-Sd(̂︀𝜃𝑖) =
⎯⎸⎸⎷ 1

99

100∑︁
𝑗=1

(̂︀𝜃𝑖(𝑗) − ̂︀𝜃𝑖)2 and Bias(̂︀𝜃𝑖) = ̂︀𝜃𝑖 − 𝜃𝑖 (2.4.2)

where RMSE(̂︀𝜃𝑖) =
√︁

MC-Sd2(̂︀𝜃𝑖) + Bias2(̂︀𝜃𝑖), the Monte carlo mean ̂︀𝜃𝑖 = 1
100

∑︀100
𝑗=1

̂︀𝜃(𝑗)
𝑖 (MC Mean)

and 𝜃𝑖
(𝑗) is the estimate of 𝜃𝑖 from the 𝑗-th sample, 𝑗 = 1 . . . 100. In addition, we also computed

the average of the standard deviations (IM-Sd) obtained via the observed information matrix
derived in Subsection 4.2 and the 95% coverage probability (MC-CP) as CP(𝜃𝑖) = 1

100
∑︀100
𝑗=1 𝐼(𝜃𝑖 ∈

[𝜃𝑖,𝐿𝐶𝐿, 𝜃𝑖,𝑈𝐶𝐿]), where 𝐼 is the indicator function such that 𝜃𝑖 lies in the interval [𝜃𝑖,𝐿𝐶𝐿, 𝜃𝑖,𝑈𝐶𝐿],
with 𝜃𝑖,𝐿𝐶𝐿 and 𝜃𝑖,𝑈𝐶𝐿 as the estimated lower and upper bounds of the 95% CIs, respectively.

The results are summarized in Figure 2.1. We observe that the 𝐵𝑖𝑎𝑠, 𝑆𝐷 and 𝑅𝑀𝑆𝐸 for
the regression parameters 𝛽1 and 𝛽2 tends to approach zero with increasing sample size (𝑛), re-
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Figure 2.1: Bias, standard deviation and RMSE for 𝛽1 (upper panel) and 𝛽2 (lower panel) for
varying sample sizes over the quantiles 𝑝 = 0.05, 0.10, 0.50, 0.90, 0.95.
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vealing that the ML estimates obtained via the proposed SAEM algorithm are conformable to
the expected asymptotic properties. In addition, Table 2.2 presents the IM-Sd, MC-Sd and MC-
CP for 𝛽1 and 𝛽2 across various quantiles. The estimates of MC-Sd and IM-Sd are very close,
hence we can infer that the asymptotic approximation of the parameter standard errors are re-
liable. Furthermore, as expected, we observe that the MC-CP remains lower for extreme quantiles.

Finally, we compare the performance of SAEM algorithm with the approximate method pro-
posed by Geraci (2014). The Geraci’s algorithm can be implemented using the R package lqmm().
The results are presented in Table 2.1 and Figure A.1 in Appendix A. We observe that the RMSE
from the proposed SAEM algorithm are lower than Geraci method across all scenarios, with the
differences considerably higher for the extreme quantiles. Finally, Figure A.2 (see Appendix A)
compares the differences in SD between the two methods for fixed effects 𝛽1 and 𝛽2 at specified
quantiles reveals that the SD are mostly smaller for the SAEM method. Thus, we conclude that
the SAEM algorithm produces more precise estimates.

RMSE
𝛽0 𝛽1 𝛽2 𝜎

Quantile (%) n SAEM Geraci SAEM Geraci SAEM Geraci SAEM Geraci
5 50 0.249 0.622 0.199 0.311 0.230 0.296 0.024 0.046

100 0.209 0.496 0.134 0.180 0.115 0.165 0.017 0.037
200 0.195 0.303 0.084 0.099 0.090 0.137 0.017 0.029
300 0.163 0.345 0.075 0.100 0.072 0.101 0.012 0.031

10 50 0.159 0.382 0.144 0.187 0.142 0.201 0.023 0.048
100 0.112 0.355 0.094 0.117 0.084 0.130 0.019 0.048
200 0.082 0.231 0.052 0.087 0.061 0.081 0.017 0.036
300 0.073 0.223 0.045 0.072 0.047 0.076 0.011 0.034

50 50 0.063 0.107 0.063 0.090 0.064 0.102 0.025 0.174
100 0.042 0.052 0.040 0.056 0.043 0.070 0.021 0.196
200 0.027 0.053 0.026 0.048 0.028 0.039 0.016 0.164
300 0.024 0.034 0.022 0.022 0.024 0.040 0.012 0.180

90 50 0.160 0.389 0.138 0.159 0.130 0.177 0.025 0.050
100 0.102 0.394 0.089 0.100 0.071 0.126 0.019 0.051
200 0.085 0.240 0.054 0.097 0.062 0.078 0.014 0.038
300 0.065 0.276 0.045 0.066 0.047 0.064 0.011 0.038

95 50 0.255 0.552 0.172 0.255 0.200 0.243 0.020 0.040
100 0.233 0.470 0.156 0.169 0.135 0.161 0.020 0.036
200 0.146 0.423 0.080 0.160 0.105 0.106 0.015 0.038
300 0.157 0.468 0.077 0.113 0.071 0.061 0.014 0.036

Table 2.1: Simulation 1: Root Mean Squared Error (RMSE) for the fixed effects 𝛽0, 𝛽1, 𝛽2 and the
nuisance parameter 𝜎, obtained after fitting the QRLMM and the Geraci (2014) model to simulated data
under various settings of quantiles and sample sizes.
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𝛽1 𝛽2
Quantile (%) MC-Sd IM-Sd MC-CP MC-Sd IM-Sd MC-CP
5 0.073 0.060 90 0.067 0.059 90
10 0.045 0.044 95 0.047 0.044 96
50 0.022 0.024 97 0.024 0.025 96
90 0.045 0.045 92 0.047 0.044 96
95 0.060 0.056 88 0.071 0.056 83

Table 2.2: Monte Carlo standard deviation (MC-Sd), mean standard deviation (IM-Sd) and Monte
Carlo coverage probability (MC-CP) estimates of the fixed effects 𝛽1 and 𝛽2 from fitting the QR-
LMM under various quantiles for sample size 𝑛 = 100.

2.5 Applications
In this section, we illustrate the application of our method to two interesting longitudinal

datasets from the literature via our developed R package qrLMM, currently available for free down-
load from the R CRAN (Comprehensive R Archive Network).

2.5.1 Cholesterol data
The Framingham cholesterol study generated a benchmark dataset (D. Zhang and M. Davidian,

2001) for longitudinal analysis to examine the role of serum cholesterol as a risk factor for the
evolution of cardiovascular disease. We analyze this dataset with the aim of explaining the full
conditional distribution of the serum cholesterol as a function of a set of covariates of interest via
modelling a grid of response quantiles. We fit a LMM model to the data as specified by

𝑌𝑖𝑗 = 𝛽0 + 𝛽1gender𝑖 + 𝛽2age𝑖 + 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝜖𝑖𝑗, (2.5.1)
where 𝑌𝑖𝑗 is the cholesterol level (divided by 100) at the 𝑗th time point for the 𝑖th subject,
𝑡𝑖𝑗 = (𝜏 − 5)/10 where 𝜏 is the time measured in years from the start of the study, age de-
notes the subject’s baseline age, gender is the dichotomous gender (0=female, 1=male), 𝑏0𝑖 and 𝑏1𝑖
the normal random intercept and slope, respectively, for subject 𝑖, and 𝜖𝑖𝑗 the measurement error
term assumed ALD, for 200 randomly selected subjects.

After fitting the QR-LMM over the grid 𝑝 = {0.05, 0.10, . . . , 0.95}, we present a graphical
summary of the results in Figure 2.2. The figure displays the 95% confidence band for the fixed
effects parameters 𝛽0, 𝛽1, 𝛽2, and for the nuisance parameter 𝜎. The solid lines represent the
𝑄0.025 and 𝑄0.975 percentiles, obtained from the estimated standard errors defined in Subsection
2.3.2. The figure reveals that the effect of gender and age become more prominent with increasing
conditional quantiles (𝑝). In addition, although age exhibits a positive influence on the cholesterol
level across all quantiles, the confidence band for gender includes 0 across all quantiles, and hence
its effect is non-significant. The estimated nuisance parameter 𝜎 is symmetric about 𝑝 = 0.5,
taking its maximum value at that point and decreasing for the extreme quantiles. Figure A.3 (see
Appendix A) plots the fitted regression lines for the quantiles 0.10, 0.25, 0.50(mean), 0.75 and 0.90
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by gender. From this figure, it is clear how the extreme quantiles capture the full data variability
and detect some atypical observations. The intercept of the quantile functions look very similar
for both panels because of the non-significance of gender.
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Figure 2.2: Point estimates (center solid line) and 95% confidence intervals for model parameters after
fitting the QR-LMM using the qrLMM package to the Cholesterol data across various quantiles. The
interpolated curves are spline-smoothed.

2.5.2 Orthodontic distance growth data
A second application was developed using a data set form a longitudinal orthodontic study

(J. C. Pinheiro, Liu, et al., 2001; Potthoff and Roy, 1964) performed at the University of North
Carolina Dental School. Here, researchers measured the distance between the pituitary and the
pterygomaxillary fissure (two points that are easily identified on x-ray exposures of the side of the
head) for 27 children (16 boys and 11 girls) every two years from age 8 until age 14. Similar to
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Application 1, we fit the following LMM to the data:

𝑌𝑖𝑗 = 𝛽0 + 𝛽1gender𝑖 + 𝛽2𝑡𝑖𝑗 + 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝜖𝑖𝑗, (2.5.2)
where 𝑌𝑖𝑗 is the distance between the pituitary and the pterygomaxillary fissure (in mm) at the 𝑗th
time for the 𝑖th child, 𝑡𝑖𝑗 is the child’s age at time 𝑗 taking values 8, 10, 12, and 14 years, gender
is a dichotomous variable (0=female, 1=male) for child 𝑖 and 𝜖𝑖𝑗 the random measurement error
term. Initial exploratory plots for 10 random children in the left panel of Figure A.4 in Appendix
A) suggest an increasing distance with respect to age. The individual profiles by gender (right
panel) show differences between distances for boys and girls (distance for boys greater than those
for girls), and hence we could expect a significant gender effect.
Once again, after fitting the QR-LMM over the grid 𝑝 = {0.05, 0.10, . . . , 0.95}, the point estimates

β σ

Figure 2.3: Point estimates (center solid line) and 95% confidence intervals for model parameters after
fitting the QR-LMM using the qrLMM package to the orthodontic growth distance data across various
quantiles. The interpolated curves are spline-smoothed.
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and associated 95% confidence bands for model parameters are presented in Figure 2.3. From
the figure, we infer that the effect of gender and age are significant across all quantiles, with
their effect increasing for higher conditional quantiles. Effect of age is always positive across all
quantiles, with a higher effect at the two extremes. 𝜎 behaves the same as in Application 1.
Figure A.5 (in Appendix A) plots the fitted regression lines for the quantiles 0.10, 0.25, 0.50, 0.75
and 0.90, overlayed with the individual profiles (gray solid lines), by gender. These fits capture the
variability of the individual profiles, and also differ by gender due to its significance in the model.
The R package also produces graphical summaries of point estimates and confidence intervals
(95% by default) across various quantiles, as presented in Figures 2.2 and 2.3. Trace plots showing
convergence of these estimates are presented in Figure A.6 in Appendix A. For example, for the
75th quantile, we can confirm that the convergence parameters for the SAEM algorithm (𝑀 =
10, 𝑐 = 0.25 and 𝑊 = 300) has been set adequately leading to a quick convergence in distribution
within the first 75 iterations, and then converging almost surely to a local maxima in a total of
300 iterations. Sample output from the qrLMM package is provided in Appendix A.6.

2.6 Conclusions
In this work, we developed a likelihood-based inference for QR-LMM with the likelihood func-

tion based on the ALD. The ALD presents a convenient framework for the implementation of
the SAEM algorithm leading to the exact ML estimation of the parameters. The methodology is
illustrated via application to two longitudinal clinical datasets. We believe this work is the first
attempt for exact ML estimation in the context of QR-LMMs, and thus provides an improvement
over the Geraci and Bottai (2014) method. The methods developed are readily implementable via
the R package qrLMM().

Although the QR-LMM considered here has shown great flexibility to quantify the entire condi-
tional distribution of the outcome variable, its robustness against outliers can be seriously affected
by the presence of skewness and thick-tails. Recently, V. H. Lachos et al. (2010) proposed a
remedy to accommodate these using scale mixtures of skew-normal distributions in the random
effects. We conjecture that methodology can be transferred to the QR-LMM framework, and
should yield satisfactory results at the expense of additional complexity in implementation. An
in-depth investigation of such extension is beyond the scope of the present work, but certainly an
interesting topic for future research.
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Chapter 3

Quantile Regression for Nonlinear
Mixed Models

Longitudinal data are frequently analyzed using normal mixed effects models. Moreover, the tra-
ditional estimation methods are based on mean regression, which leads to non-robust parameter
estimation for non-normal error distributions. Compared to the conventional mean regression ap-
proach, quantile regression (QR) can characterize the entire conditional distribution of the outcome
variable and is more robust to the presence of outliers and misspecification of the error distribution.
This work develops a likelihood-based approach to analyzing QR models for correlated continuous
longitudinal data via the asymmetric Laplace distribution (ALD). Exploiting the nice hierarchical
representation of the ALD, our classical approach follows the Stochastic Approximation of the
EM (SAEM) algorithm for deriving exact maximum likelihood estimates of the fixed-effects and
variance components in nonlinear mixed effects models (NLMMs). We evaluate the finite sample
performance of the algorithm and the asymptotic properties of the ML estimates through em-
pirical experiments and applications to two real life datasets. The proposed SAEM algorithm is
implemented in the R package qrNLMM.

3.1 Introduction
Nonlinear mixed-effects models (NLMMs) are frequently used to analyze grouped, clustered,

longitudinal and multilevel data because of their potential to handle, on one hand, nonlinearities
in the relationship between the observed response and the covariates and random effects, and on
the other hand, to take into account within and between-subject correlations presented in this type
of data (J. C. Pinheiro and D. M. Bates, 2000; L. Wu, 2010). Majority of these NLMMs estimate
covariate effects on the response through a mean regression, controlling for between-cluster het-
erogeneity via normally-distributed cluster-specific random effects and random errors. However,
this centrality-based inferential framework is often inadequate when the conditional distribution
of the response (conditional on the random terms) is skewed, multimodal, or affected by atypical
observations. In contrast, conditional quantile regression (QR) methods (Roger Koenker, 2004,
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2005) quantifying the entire conditional distribution of the outcome variable were developed that
can provide assessment of covariate effects at any arbitrary quantiles of the outcome. In addition,
QR methods do not impose any specific distribution assumption on the error, except requiring
that the error term has a zero conditional quantile such as the ALD.

Although QR was initially developed under a univariate framework, the abundance of clus-
tered data in recent times lead to its extensions into mixed modeling framework via either the
distribution-free route (Fu and Y.-G. Wang, 2012; Galvao Jr, 2011; Galvao and Montes-Rojas,
2010; Lipsitz et al., 1997), or the traditional likelihood-based route mostly using the ALD (Geraci
and Bottai, 2007, 2014; Yuan and Yin, 2010). Among the ALD-based models, Geraci and Bottai
(2007) proposed a Monte Carlo EM (MCEM)-based conditional QR model for continuous responses
with a subject-specific random (univariate) intercept to account for within-subject dependence in
the context of longitudinal data. However, due to the limitations of a simple random intercept
model to account for the between-cluster heterogeneity, Geraci and Bottai (2014) extended their
previous Geraci and Bottai (2007) model to a general linear quantile mixed effects regression model
(QR-LMM) with multiple random effects (both intercepts and slopes). However, instead of going
the MCEM route, the estimation of the fixed effects and the covariance components were imple-
mented using an efficient combination of Gaussian quadrature approximations and non-smooth
optimization algorithms. Yuan and Yin (2010) applied the version of QR of Geraci and Bot-
tai (2007) to linear mixed effects models for longitudinal measurements with missing data. J.
Wang (2012) considered QR-NLMMs from a Bayesian perspective and shown that QR-NLMMs
may be a better measure of centrality for skewed or multimodal data and more robust against
nonnormality of the distribution of random errors than the mean regression estimator. Although
some results on QR-NLMMs have recently appeared in the literature, to the best of our knowledge,
there seem to be no studies on exact inference for QR-NLMMs from a likelihood based perspective.

In this work, we proceed to achieve that via a robust parametric ALD-based QR-NLMMs,
where the full likelihood-based implementation follows a stochastic version of the EM algorithm
(SAEM), proposed by Delyon et al. (1999), for maximum likelihood (ML) estimation in contrast
to the bayesian work proposed by J. Wang (2012) for QR-NLMMs. The SAEM algorithm has
been proved to be more computationally efficient than the classical MCEM algorithm due to the
recycling of simulations from one iteration to the next in the smoothing phase of the algorithm.
Moreover, as pointed out by Meza et al. (2012) the SAEM algorithm, unlike the MCEM, con-
verges even in a typically small simulation size. Recently, Kuhn and Lavielle (2005) showed that
the SAEM algorithm is very efficient in computing the ML estimates in mixed effects models. Our
empirical results shows that the ML estimates based on the SAEM algorithm do provide good
asymptotic properties. Furthermore, application of our method to two longitudinal datasets is
illustrated via the R package qrNLMM().
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3.2 QR for nonlinear mixed models and algorithms
We proposed the following general mixed-effects model. Let y𝑖 = (𝑦𝑖1, ..., 𝑦𝑖𝑛𝑖

)⊤ denote the
continuous response for subject 𝑖 and let 𝜂 = (𝜂(𝜑𝑖, 𝑥𝑖1), ..., 𝜂(𝜑𝑖, 𝑥𝑖𝑛𝑖

))⊤ represents a nonlinear
differentiable function of vector-valued mixed-effects random parameters 𝜑𝑖 of dimension 𝑟 and a
matrix of covariates x𝑖 of dimensions 𝑛𝑖 × 𝑟. We define the NLMM as

y𝑖 = 𝜂(𝜑𝑖,x𝑖) + 𝜖𝑖, 𝜑𝑖 = A𝑖𝛽𝑝 + B𝑖b𝑖, (3.2.1)

where A𝑖 and B𝑖 are design matrices of dimensions 𝑟×𝑑 and 𝑟×𝑞, respectively, possibly depending
on elements of x𝑖 and incorporating time varying covariates in fixed or random effects, 𝛽𝑝 is the
regression coefficient corresponding to the 𝑝th quantile, b𝑖 is a 𝑞-dimensional random effects vector
associated to the 𝑖-th subject and and 𝜖𝑖 the independent and identically distributed vector of
random errors. We define 𝑝th quantile function of the response 𝑦𝑖𝑗 as

𝑄𝑝(𝑦𝑖𝑗|x𝑖𝑗,b𝑖) = 𝜂(𝜑𝑖, 𝑥𝑖𝑗) = 𝜂(A𝑖𝛽𝑝 + B𝑖b𝑖, 𝑥𝑖𝑗). (3.2.2)

where 𝑄𝑝 denotes the inverse of the unknown distribution function 𝐹 , the random effects b𝑖 are
distributed as b𝑖

iid∼ N𝑞(0,Ψ), where the dispersion matrix Ψ = Ψ(𝛼) depends on unknown and
reduced parameters 𝛼, and the errors are distributed as 𝜖𝑖𝑗 iid∼ 𝐴𝐿𝐷(0, 𝜎) and both uncorrelated.
Then, 𝑦𝑖𝑗|b𝑖 independently follows as ALD with the density given by

𝑓(𝑦𝑖𝑗|𝛽𝑝,b𝑖, 𝜎) = 𝑝(1 − 𝑝)
𝜎

exp
{︃

−𝜌𝑝
(︃
𝑦𝑖𝑗 − 𝜂(A𝑖𝛽𝑝 + B𝑖b𝑖,x𝑖𝑗)

𝜎

)︃}︃
. (3.2.3)

First, we develop a MCEM algorithm for ML estimation of the parameters in the QR-NLMM.
The model exhibits a flexible hierarchical representation, which is useful in deriving the theoret-
ical properties. From (1.1.3), the QR-NLMM defined in (3.2.2)-(3.2.3), can be represented in a
hierarchical form as:

y𝑖|b𝑖,u𝑖 ∼ 𝑁𝑛𝑖

(︁
𝜂(A𝑖𝛽𝑝 + B𝑖b𝑖,x𝑖) + 𝜗𝑝u𝑖, 𝜎𝜏 2

𝑝D𝑖

)︁
,

b𝑖 ∼ 𝑁𝑞 (0,Ψ),

u𝑖 ∼
𝑛𝑖∏︁
𝑗=1

exp(𝜎), (3.2.4)

for 𝑖 = 1, . . . , 𝑛, where 𝜗𝑝 and 𝜏 2
𝑝 are as in (1.1.2); D𝑖 represents a diagonal matrix that contains

the vector of missing values u𝑖 = (𝑢𝑖1, . . . , 𝑢𝑖𝑛𝑖
)⊤ and exp(𝜎) denotes the exponential distribution

with mean 𝜎. Let y𝑖𝑐 = (y⊤
𝑖 ,b⊤

𝑖 ,u⊤
𝑖 )⊤, with y𝑖 = (𝑦𝑖1, . . . , 𝑦𝑖𝑛𝑖

)⊤, b𝑖 = (𝑏𝑖1, . . . , 𝑏𝑖𝑞)⊤, u𝑖 =
(𝑢𝑖1, . . . , 𝑢𝑖𝑛𝑖

)⊤and let 𝜃(k) = (𝛽(𝑘)⊤
𝑝 , 𝜎(𝑘),𝛼(k)⊤)⊤, the estimate of 𝜃 at the k-th iteration. Since

b𝑖 and u𝑖 are independent for all 𝑖 = 1, . . . , 𝑛, it follows from (1.1.3) that the complete-data
log-likelihood function is of the form

ℓ𝑐(𝜃; y𝑐) =
𝑛∑︁
𝑖=1

ℓ𝑐(𝜃; y𝑖𝑐),
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where

ℓ𝑐(𝜃; y𝑖𝑐) = constant−3
2 𝑛𝑖𝑙𝑜𝑔𝜎 − 1

2 𝑙𝑜𝑔|Ψ|−1
2 b⊤

𝑖 Ψ−1b𝑖−
1
𝜎

u⊤
𝑖 1𝑛𝑖

− 1
2𝜎𝜏 2

𝑝

(y𝑖−𝜂(A𝑖𝛽𝑝 + B𝑖b𝑖,x𝑖)−𝜗𝑝u𝑖)⊤D−1
𝑖 (y𝑖−𝜂(A𝑖𝛽𝑝 + B𝑖b𝑖,x𝑖)−𝜗𝑝u𝑖). (3.2.5)

Since A𝑖, B𝑖 and x𝑖 are known matrices, we will simplify the notation by writing 𝜂(𝛽𝑝,b𝑖) to
represent 𝜂(𝜑𝑖,x𝑖) = 𝜂(A𝑖𝛽𝑝+B𝑖b𝑖,x𝑖). Given the current estimate 𝜃 = 𝜃(𝑘), the E-step calculates
the function

Q(𝜃|̂︀𝜃(𝑘)) = ∑︀𝑛
𝑖=1 Qi(𝜃|̂︀𝜃(𝑘)),

where

Qi(𝜃|̂︀𝜃(𝑘)) = E
{︁
ℓ𝑐(𝜃; y𝑖𝑐)|𝜃(𝑘),y

}︁
(3.2.6)

∝ −3
2 𝑛𝑖𝑙𝑜𝑔𝜎−1

2 𝑙𝑜𝑔|Ψ|−1
2 tr

{︁
(̂bb⊤)𝑖

(𝑘)
Ψ−1

}︁
− 1

2𝜎𝜏 2
𝑝

[︁
y⊤
𝑖
̂︂D−1
𝑖

(𝑘)
y𝑖

− 2𝜗𝑝y⊤
𝑖 1𝑛𝑖

+
𝜏 4
𝑝

4
̂︁u𝑖(𝑘)⊤1𝑛𝑖

− 2y⊤
𝑖 (D̂−1𝜂)(𝑘)

𝑖 + 2𝜗𝑝1⊤
𝑛𝑖
̂︁𝜂𝑖(𝑘) + ̂𝜂⊤

𝑖 D−1
𝑖 𝜂𝑖

(𝑘)]︁
where 𝜂𝑖 = 𝜂(A𝑖𝛽𝑝 + B𝑖b𝑖,x𝑖) for simplicity, tr(A) indicates the trace of matrix A and 1𝑝 is

the vector of ones of dimension 𝑝. The calculation of these function requires expressions for

̂︁𝜂𝑖(𝑘) = E
{︁
𝜂𝑖|𝜃(𝑘),y𝑖

}︁
, ̂︁u𝑖(𝑘) = E

{︁
u𝑖|𝜃(𝑘),y𝑖

}︁
,

(̂bb⊤)𝑖
(𝑘)

= E
{︁
b𝑖b⊤

𝑖 |𝜃(𝑘),y𝑖
}︁
, ̂︂D−1

𝑖

(𝑘)
= E

{︁
D−1
𝑖 |𝜃(𝑘),y𝑖

}︁
,

(D̂−1𝜂)(𝑘)
𝑖 = E

{︁
D−1
𝑖 𝜂𝑖

(𝑘)|𝜃(𝑘),y𝑖
}︁
, ( ̂𝜂⊤D−1𝜂)(𝑘)

𝑖 = E
{︁
𝜂⊤
𝑖 D−1

𝑖 𝜂𝑖|𝜃(𝑘),y𝑖
}︁
,

which do not have closed forms. Since the joint distribution of the missing data (b(𝑘)
𝑖 ,u

(𝑘)
𝑖 ) is

unknown and the conditional expectations cannot be computed analytically, for any function 𝑔(.),
the MCEM algorithm approximates the conditional expectations above by their Monte Carlo
approximations

E[ 𝑔 (b𝑖,u𝑖) |𝜃(𝑘),y𝑖] ≈ 1
𝑚

𝑚∑︁
ℓ=1

𝑔(b(ℓ,𝑘)
𝑖 ,u(ℓ,𝑘)

𝑖 ), (3.2.7)

which depend of the simulations of the two latent (missing) variables b(𝑘)
𝑖 and u(𝑘)

𝑖 from the con-
ditional joint density 𝑓(b𝑖,u𝑖|𝜃(𝑘),y𝑖). Using known properties of conditional expectations, the
expected value in (3.2.7) can be more accurately approximated as

Eb𝑖,u𝑖
[ 𝑔(b𝑖,u𝑖)|𝜃(𝑘),y𝑖] = Eb𝑖

[ Eu𝑖
[ 𝑔(b𝑖,u𝑖)|𝜃(𝑘),b𝑖,y𝑖]|y𝑖 ]

≈ 1
𝑚

𝑚∑︁
ℓ=1

Eu𝑖
[ 𝑔(b(ℓ,𝑘)

𝑖 ,u𝑖)|𝜃(𝑘),b(ℓ,𝑘)
𝑖 ,y𝑖], (3.2.8)
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where b(ℓ,𝑘) is a sample from the conditional density 𝑓(b𝑖|𝜃(𝑘),y𝑖). Note that (3.2.8) is a more
accurate approximation once it only depends of one MC approximation, instead two as needed in
(3.2.7).

Now, to drawn random samples from the full conditional distribution 𝑓(u𝑖|y𝑖,b𝑖), first note that
the vector u𝑖|y𝑖,b𝑖 can be written as u𝑖|y𝑖,b𝑖 = [ u𝑖1|y𝑖1,b𝑖, u𝑖2|y𝑖2,b𝑖, · · · , u𝑖𝑛𝑖

|y𝑖𝑛𝑖
,b𝑖 ]⊤, since

u𝑖𝑗| y𝑖𝑗,b𝑖 is independent of u𝑖𝑘| y𝑖𝑘,b𝑖, for all 𝑗, 𝑘 = 1, 2, . . . , 𝑛𝑖 and 𝑗 ̸= 𝑘. Thus, the distribution
of 𝑓(u𝑖𝑗|y𝑖𝑗,b𝑖) is proportional to

𝑓(u𝑖𝑗|y𝑖𝑗,b𝑖) ∝ 𝜑(y𝑖𝑗|𝜂𝑖𝑗(𝛽𝑝,b𝑖) + 𝜗𝑝𝑢𝑖𝑗, 𝜎𝜏
2
𝑝𝑢𝑖𝑗) × exp(𝜎),

which, from Subsection 2.1, leads to u𝑖𝑗|y𝑖𝑗,b𝑖 ∼ 𝐺𝐼𝐺( 1
2 , 𝜒𝑖𝑗, 𝜓), where 𝜒𝑖𝑗 and 𝜓 are given by

𝜒𝑖𝑗 = |𝑦𝑖𝑗−𝜂𝑖𝑗(𝛽𝑝,b𝑖)|

𝜏𝑝
√
𝜎

and 𝜓 = 𝜏𝑝
2
√
𝜎

(3.2.9)

From (1.1.5), and after generating samples from 𝑓(b𝑖|𝜃(𝑘),y𝑖) (see Subsection 3.2.2), the con-
ditional expectation Eu𝑖

[·|𝜃,b𝑖,y𝑖] in (3.2.8) can be computed analytically. Finally, the proposed
MCEM algorithm for estimating the parameters of the QR-NLMM can be summarized as follows:

MC E-step: Given 𝜃 = 𝜃(𝑘), for 𝑖 = 1, . . . , 𝑛;

• Simulation Step: For ℓ = 1, . . . ,𝑚, draw b(ℓ,𝑘)
𝑖 from 𝑓(b𝑖|𝜃(𝑘),y𝑖), as described later in

Subsection 3.2.2.

• Monte Carlo approximation: Using (1.1.5) and the simulated sample above, evaluate

E[ 𝑔 (b𝑖,u𝑖) |𝜃(𝑘),y𝑖] ≈ 1
𝑚

𝑚∑︁
ℓ=1

Eu𝑖
[ 𝑔(b(ℓ,𝑘)

𝑖 ,u𝑖)|𝜃(𝑘),b(ℓ,𝑘)
𝑖 ,y𝑖].

M-step: Update ̂︀𝜃(𝑘) by maximizing Q(𝜃|̂︀𝜃(𝑘)) ≈ 1
𝑚

∑︀𝑚
𝑙=1

∑︀𝑛
𝑖=1 ℓ𝑐(𝜃; y𝑖,b(𝑙,𝑘)

𝑖 ,u𝑖) over ̂︀𝜃(𝑘), which
leads to the following estimates:

̂︁𝛽𝑝(𝑘+1) = ̂︁𝛽𝑝(𝑘) +
[︃
𝑛∑︁
𝑖=1

{︃
1
𝑚

𝑚∑︁
ℓ=1

J(𝑘)⊤

𝑖 ℰ(D−1
𝑖 )(ℓ,𝑘)J(𝑘)

𝑖

}︃]︃−1

×[︃
𝑛∑︁
𝑖=1

{︃
1
𝑚

𝑚∑︁
ℓ=1

[︁
2J(𝑘)⊤

𝑖 ℰ(D−1
𝑖 )(ℓ,𝑘)

[︁
y𝑖 − 𝜂(̂︁𝛽𝑝(𝑘)

,b(ℓ,𝑘)
𝑖 ) − 𝜗𝑝ℰ(u𝑖)(ℓ,𝑘)

]︁]︁}︃]︃
,

̂︀𝜎(𝑘+1) = 1
3𝑁𝜏 2

𝑝

𝑛∑︁
𝑖=1

{︃
1
𝑚

𝑚∑︁
ℓ=1

[︁
(y𝑖−𝜂(̂︁𝛽𝑝(𝑘+1)

,b(ℓ,𝑘)
𝑖 ))⊤ℰ(D−1)(ℓ,𝑘)(y𝑖𝜂(̂︁𝛽𝑝(𝑘+1)

,b(ℓ,𝑘)
𝑖 ))

−2𝜗𝑝(y𝑖𝜂(̂︁𝛽𝑝(𝑘+1)
,b(ℓ,𝑘)

𝑖 ))⊤1𝑛𝑖
+
𝜏 4
𝑝

4 ℰ(u𝑖)(ℓ,𝑘)⊤1𝑛𝑖

]︃}︃
and

̂︁Ψ(𝑘+1) = 1
𝑛

𝑛∑︁
𝑖=1

[︃
1
𝑚

𝑚∑︁
ℓ=1

b(ℓ,𝑘)
𝑖 b(ℓ,𝑘)⊤

𝑖

]︃
,
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where J𝑖 = 𝜕𝜂(𝛽𝑝,b𝑖)/𝜕𝛽⊤
𝑝 , 𝑁 = ∑︀𝑛

𝑖=1 𝑛𝑖 and expressions ℰ(u𝑖)(ℓ,𝑘) and ℰ(D−1
𝑖 )(ℓ,𝑘) are defined in

Appendix B.2. Note that for the MC E-step, we need to draw samples b(ℓ,𝑘)
𝑖 , ℓ = 1, . . . ,𝑚, from

𝑓(b𝑖|𝜃(𝑘),y𝑖), where 𝑚 is the number of Monte Carlo simulations to be used, a number suggested
to be large enough. A simulation method to draw samples from 𝑓(b𝑖|𝜃(𝑘),y𝑖), is described in
Subsection 3.2.2.

3.2.1 A SAEM algorithm
As mentioned in Subsection 1.1.2, the SAEM circumvents the cumbersome problem of simu-

lating a large number of missing values at every iteration, leading to a more efficient solution than
the MCEM. In summary, the SAEM algorithm proceeds as follows:

E-step: Given 𝜃 = 𝜃(𝑘) for 𝑖 = 1, . . . , 𝑛;

• Stochastic approximation: Update the MC approximations for the conditional expecta-
tions by their stochastic approximations, given by

𝑆
(𝑘)
1,𝑖 = 𝑆

(𝑘−1)
1,𝑖 + 𝛿𝑘

[︃
1
𝑚

𝑚∑︁
ℓ=1

J(𝑘)⊤

𝑖 ℰ(D−1
𝑖 )(ℓ,𝑘)J(𝑘)

𝑖 − 𝑆
(𝑘−1)
1,𝑖

]︃
,

𝑆
(𝑘)
2,𝑖 = 𝑆

(𝑘−1)
2,𝑖 + 𝛿𝑘

[︃
1
𝑚

𝑚∑︁
ℓ=1

[︁
2J(𝑘)⊤

𝑖 ℰ(D−1
𝑖 )(ℓ,𝑘)

[︁
y𝑖 − 𝜂(̂︁𝛽𝑝(𝑘)

,b(ℓ,𝑘)
𝑖 ) − 𝜗𝑝ℰ(u𝑖)(ℓ,𝑘)

]︁]︁
− 𝑆

(𝑘−1)
2,𝑖

]︃
,

𝑆
(𝑘)
3,𝑖 = 𝑆

(𝑘−1)
3,𝑖 + 𝛿𝑘

{︃
1
𝑚

𝑚∑︁
ℓ=1

[︁
(y𝑖 − 𝜂(̂︁𝛽𝑝(𝑘+1)

,b(ℓ,𝑘)
𝑖 ))⊤ℰ(D−1)(ℓ,𝑘)(y𝑖−𝜂(̂︁𝛽𝑝(𝑘+1)

,b(ℓ,𝑘)
𝑖 ))

−2𝜗𝑝(y𝑖 − 𝜂(̂︁𝛽𝑝(𝑘+1)
,b(ℓ,𝑘)

𝑖 ))⊤1𝑛𝑖
+
𝜏 4
𝑝

4 ℰ(u𝑖)(ℓ,𝑘)⊤1𝑛𝑖

]︃
− 𝑆

(𝑘−1)
3,𝑖

]︃
and

𝑆
(𝑘)
4,𝑖 = 𝑆

(𝑘−1)
4,𝑖 + 𝛿𝑘

[︃
1
𝑚

𝑚∑︁
ℓ=1

[b(ℓ,𝑘)
𝑖 b(ℓ,𝑘)⊤

𝑖 ] − 𝑆
(𝑘−1)
4,𝑖

]︃
.

M-step: Update ̂︀𝜃(𝑘) by maximizing Q(𝜃|̂︀𝜃(𝑘)) over ̂︀𝜃(𝑘), which leads to the following expressions:

̂︁𝛽𝑝

(𝑘+1) = ̂︁𝛽𝑝

(𝑘) +
[︃
𝑛∑︁
𝑖=1

𝑆
(𝑘)
1,𝑖

]︃−1 𝑛∑︁
𝑖=1

𝑆
(𝑘)
2,𝑖 ,

̂︀𝜎(𝑘+1) = 1
3𝑁𝜏 2

𝑝

𝑛∑︁
𝑖=1

𝑆
(𝑘)
3,𝑖 ,

̂︀Ψ(𝑘+1) = 1
𝑛

𝑛∑︁
𝑖=1

𝑆
(𝑘)
4,𝑖 . (3.2.10)

Note that the ̂︁𝛽𝑝(𝑘+1) term is updated iteratively at each stage via Newton-Raphson since it does
not have a closed-form expression. Finally, given a set of suitable initial values ̂︀𝜃(0) (see Appendix
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B), the SAEM iterates till convergence at iteration 𝑘 using the same stopping criterion defined in
Chapter 2 for the Linear Model. Likelihood and Standard Error Estimation are also computed
using importance sampling and the empirical information matrix as in subsection 2.3.

3.2.2 Missing data simulation method
In order to draw samples from 𝑓(b𝑖|y𝑖,𝜃), we utilize the Metropolis-Hastings (MH) algorithm

(Hastings, 1970; Metropolis et al., 1953), a MCMC algorithm for obtaining a sequence of random
samples from a probability distribution for which direct sampling is not possible. The MH algo-
rithm proceeds as follows:

Given 𝜃 = 𝜃(𝑘), for 𝑖 = 1, . . . , 𝑛;

1. Start with an initial value b(0,𝑘)
𝑖 .

2. Draw b*
𝑖 ∼ ℎ(b*

𝑖 |b
(ℓ−1,𝑘)
𝑖 ) from a proposal distribution with the same support as the objective

distribution 𝑓(b𝑖|𝜃(𝑘),y𝑖).

3. Generate 𝑈 ∼ 𝑈(0, 1).

4. If 𝑈 > min
⎧⎨⎩1 ,

𝑓

(︁
b*

𝑖 |𝜃(𝑘)
,y𝑖

)︁
ℎ

(︁
b(0,𝑘)

𝑖 |b*
𝑖

)︁
𝑓

(︁
b(0,𝑘)

𝑖 |𝜃(𝑘)
,y𝑖

)︁
ℎ

(︁
b*

𝑖 |b(0,𝑘)
𝑖

)︁
⎫⎬⎭, return to the step 2, else b(ℓ,𝑘)

𝑖 = b*
𝑖

5. Repeat steps 2-4 until 𝑚 samples (b(1,𝑘)
𝑖 ,b(2,𝑘)

𝑖 , . . . ,b(𝑚,𝑘)
𝑖 ) are drawn from b𝑖|𝜃(𝑘),y𝑖.

Note that the marginal distribution 𝑓 (b𝑖|y𝑖,𝜃) (omitting 𝜃) can be represented as

𝑓 (b𝑖|y𝑖) ∝ 𝑓 (y𝑖|b𝑖) × 𝑓 (b𝑖) ,
where b𝑖 ∼ 𝑁𝑞(0,Ψ) and 𝑓 (y𝑖|b𝑖) = ∏︀𝑛𝑖

𝑗=1 𝑓 (𝑦𝑖𝑗|b𝑖), with 𝑦𝑖𝑗|b𝑖 ∼ 𝐴𝐿𝐷(𝜂(A𝑖𝛽𝑝 + B𝑖b𝑖,x𝑖𝑗), 𝜎, 𝑝).
Since the objective function is a product of two distributions (with both support lying in R), a
suitable choice for the proposal density is a multivariate normal distribution with the mean and
variance-covariance matrix that are the stochastic approximations of the conditional expectation
E(b(𝑘−1)

𝑖 |y𝑖) and the conditional variance Var(b(𝑘−1)
𝑖 |y𝑖) respectively, obtained from the last itera-

tion of the SAEM algorithm. This candidate (with possible information about the shape of the
target distribution) leads to better acceptance rate, and consequently a faster algorithm. The re-
sulting chain b(1,𝑘)

𝑖 ,b(2,𝑘)
𝑖 , . . . ,b(𝑚,𝑘)

𝑖 is a MCMC sample from the marginal conditional distribution
𝑓(b𝑖|`(𝑘),y𝑖). Due the dependent nature of these MCMC samples, at least 10 MC simulations are
suggested.
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3.3 Simulated data
In order to examine the performance of the proposed method, here we present some simulation

studies. The first simulation study shows that the ML estimates based on the SAEM algorithm do
provide good asymptotic properties. The second study investigates the consequences for population
inferences when the normality assumption is inappropriate. We used heavy tailed distribution for
the random error term in order to test the robustness of the proposed method in terms of parameter
recovery.

3.3.1 Asymptotic properties
As in J. Pinheiro and D. Bates (1995), we performed the first simulation study with the following

three parameter nonlinear growth-curve logistic model:

𝑦𝑖𝑗 = 𝛽1 + 𝑏1𝑖

1 + exp (−[𝑡𝑖𝑗 − 𝛽2]/𝛽3)
+ 𝜖𝑖𝑗, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 10, (3.3.1)

where 𝑡𝑖𝑗 = 100, 267, 433, 600, 767, 933, 1100, 1267, 1433, 1600 for all 𝑖. The goal is to estimate the
fixed effects parameters 𝛽’s for a grid of percentiles 𝑝 = {0.50, 0.75, 0.95}. A random effects 𝑏1𝑖
was added to the first growth parameter 𝛽1 and its effect over the growth-curve is shown in Figure
3.3. Parameters interpretation for this model is going to be discussed in the Application Section.
The random effects 𝑏1𝑖 and the error 𝜖𝑖 = (𝜖𝑖1 . . . , 𝜖𝑖10)⊤ are non-correlated been 𝑏1𝑖

iid∼ 𝑁(0, 𝜎2
𝑏 )

and 𝜖𝑖𝑗
iid∼ 𝐴𝐿𝐷(0, 𝜎𝑒, 𝑝). We set 𝛽𝑝 = (𝛽1, 𝛽2, 𝛽3)⊤ = (200, 700, 350)⊤, 𝜎𝑒 = 0.5, 𝜎2

𝑏 = 10. Using
the notation in (3.2.1) the matrices A𝑖 and B𝑖 are given by I3 and (1, 0, 0)⊤ respectively. For
varying sample sizes of 𝑛 = 25, 50, 100 and 200, we generate 100 data samples for each scenario.
In addition, we also choose 𝑚 = 20, 𝑐 = 0.25 and 𝑊 = 500 for the SAEM convergence parameters.

20 30 40 50 60 70

0
5

10
15

20

Inclusion of b1

b1=− 3
b1=− 2
b1=− 1
b1=0
b1=1
b1=2
b1=3

20 30 40 50 60 70

0
5

10
15

20

Inclusion of b2

Time since planting (days)

Le
af

 w
ei

gh
t (

g)

b2=− 6
b2=− 4
b2=− 2
b2=0
b2=2
b2=4
b2=6

20 30 40 50 60 70

0
5

10
15

20

Inclusion of b3

Time since planting (days)

Le
af

 w
ei

gh
t (

g)

b3=− 3
b3=− 2
b3=− 1
b3=0
b3=1
b3=2
b3=3

Figure 4: Result of the s in soybean plants hypothetical example.
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Figure 5: Result of the random effects in first order, one compartment model.

2.3.3. First order one compartment model

For the first order compartment model, consider the inclusion of different random effects
as it follows

Y = D exp[(lKa + b1) + (lKe + b2)− (lCl + b3)]
{exp(−e(lKe+b2)T )− exp[−e(lKa+b1)T ]}

e(lKa+b1) − e(lKe+b2) .

and assume the values (lKa, lKe, lCl)
′ = (0.4,−2.4,−3)>, x = (0, 1, 2, . . . , 30)>. An illustra-

tion of the effect of individually including the random effects b1, b2 and b3 can be observed in
Figure 5. As it can be seen in the graph, including random effects in each fixed-effect param-
eter enables the model to take into accound different variability patterns for the absortion
and elimination of the substance in the body.
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Figure 3.1: Illustration of the effect of including the random effect 𝑏1𝑖 in the first parameter of the
nonlinear growth-curve logistic model.
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For all scenarios, we compute the square root of the mean square error (RMSE), the bias (Bias)
and the Monte carlo standard deviation (MC-Sd) for each parameter over the 100 replicates. They
are defined as

MC-Sd(̂︀𝜃𝑖) =
⎯⎸⎸⎷ 1

99

100∑︁
𝑗=1

(̂︀𝜃𝑖(𝑗) − ̂︀𝜃𝑖)2 and Bias(̂︀𝜃𝑖) = ̂︀𝜃𝑖 − 𝜃𝑖 (3.3.2)

where RMSE(̂︀𝜃𝑖) =
√︁

MC-Sd2(̂︀𝜃𝑖) + Bias2(̂︀𝜃𝑖), the Monte carlo mean ̂︀𝜃𝑖 = 1
100

∑︀100
𝑗=1

̂︀𝜃(𝑗)
𝑖 (MC Mean)

and 𝜃𝑖
(𝑗) is the estimate of 𝜃𝑖 from the 𝑗-th sample, 𝑗 = 1 . . . 100.

Based on Figure 3.2, for the bias we can see patterns of convergence to zero when 𝑛 increases
for both parameters. The values of MC-Sd and RMSE decrease monotonically when 𝑛 is increased
where it is evident that for extreme quantiles estimating, the standard deviation is much higher
while for quantiles 𝑞 = 50 and 𝑞 = 75 are asymptotically equal. The worst scenario seems to
happen while estimating extreme quantiles and maybe a sample size greater than 200 is needed
to obtain a reasonably reduction of bias and SD. However, as a general rule, we can say that
bias and MSE tend to approach to zero when the sample size is increasing, indicating that the
approximates ML estimates based on the proposed SAEM algorithm do provide good asymptotic
properties. The parameter 𝛽1 has been discarded in the graphical analysis because it varies along
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Figure 3.2: Bias, Standard Deviation and RMSE for 𝛽1 (upper panel) and 𝛽2 (lower panel) for
varying sample sizes over the quantiles 𝑝 = 0.50, 0.90, 0.95.
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quantiles so its bias too as seen in Table 3.1. This parameter represents the asymptotic growth so
this parameter is highly susceptible to the quantile to be estimated, however it also provides good
asymptotic properties for its standard deviation. Table 3.1 also show an excellent recovery for the
nuisance parameter 𝜎𝑒, small standard deviations and good asymptotic properties in terms of bias
and SD.

𝛽1 𝛽2 𝛽3 𝜎𝑒
Quantile (%) n MC Mean MC-Sd MC Mean MC-Sd MC Mean MC-Sd MC Mean MC-Sd

50 25 199.75 (2.35) 700.19 (2.00) 350.13 (1.35) 0.503 (0.035)
50 199.79 (1.69) 700.09 (1.29) 350.03 (0.86) 0.498 (0.021)
100 200.16 (1.15) 700.08 (0.92) 350.06 (0.72) 0.497 (0.017)
200 200.03 (0.75) 699.96 (0.64) 349.98 (0.50) 0.499 (0.012)

75 25 203.77 (2.50) 700.18 (2.07) 350.15 (1.56) 0.499 (0.035)
50 203.90 (1.81) 700.20 (1.60) 350.16 (1.11) 0.495 (0.025)
100 204.20 (1.31) 699.83 (1.08) 349.88 (0.74) 0.499 (0.017)
200 204.34 (0.92) 700.00 (0.70) 350.01 (0.49) 0.498 (0.011)

95 25 201.15 (2.79) 700.26 (6.52) 350.14 (3.92) 0.506 (0.035)
50 201.77 (2.15) 700.53 (4.84) 349.74 (2.83) 0.508 (0.024)
100 201.94 (1.56) 700.18 (3.55) 349.73 (2.32) 0.505 (0.015)
200 202.11 (1.08) 700.06 (2.60) 349.98 (1.54) 0.502 (0.012)

Table 3.1: Simulation 1: Results based on 100 simulated samples. Monte carlo mean and standard
deviation (MC Mean and MC-Sd) for the fixed effects 𝛽1. 𝛽2. 𝛽3 and the nuisance parameter 𝜎𝑒.
obtained after fitting the QR-NLMM model under different settings of quantiles and sample sizes.

3.3.2 Robustness study
The goal of this simulation study is to asses the robustness or bias incurred when one assumes

a normal distribution for random effects and the actual distribution belongs to a heavy tailed
distributions. The use of heavy tailed distributions for the random effects will let us to simulate
the presence of outliers leading us to test adequately the performance of the proposed method in
terms of robustness. The design of this simulation study is as in the previous subsection but for
a set of quantiles {0.50, 0.75} and a fixed sample size 𝑛 = 50 we are going to simulate 100 Monte
Carlo samples generating the random effect term from a Student-t distribution with 𝜈 = 4 degrees
of freedom and from a Normal Contaminated distribution (𝜈1 = 0.1, 𝜈2 = {0.1, 0.2, 0, 3}), i.e., with
three scenarios of contamination, 10%, 20% and 30%. All simulations are created by using the
same values of 𝛽𝑝 = (200, 700, 350)⊤, nuisance parameter 𝜎𝑒 = 0.5 and scale parameter 𝜎2

𝑏 = 10
for the respectively random effect distribution.

From Table 3.2 we can see that the proposed model is really robust even for worst scenarios of
contamination. The parameter recovery is highly accurate even for the non-centered quantile 0.75.
For quantile 0.75, the 𝛽1 parameter estimate tends to increase for higher levels of contamination. As
expected, the MC-Sd and consequently the RMSE increase in the presence of outliers. As a general
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Figure 3.3: Illustration of 50 simulated curves from the growth-curve logistic model using different
distributions for the random effect term. From left to right panel, the random effects has been
generated from a Normal, a Student 𝑡4 and a Contaminated Normal(𝜈1 = 0.1,𝜈2 = 0.1), all with
location parameter 𝜇 = 0 and scale parameter 𝜎2

𝑏 = 10.

Fit Quantile 50% Quantile 75%
𝛽1 𝛽2 𝛽3 𝜎𝑒 𝛽1 𝛽2 𝛽3 𝜎𝑒

(200) (700) (350) (0.5) (200) (700) (350) (0.5)
Student-𝑡4 MC Mean 200.22 700.00 349.99 0.501 204.43 700.39 350.18 0.501

Bias 0.22 0.00 -0.01 0.001 4.43 0.39 0.18 0.001
MC-Sd (1.98) (1.28) (0.98) (0.024) (2.17) (1.69) (1.09) (0.024)
RMSE 1.99 1.28 0.98 0.024 4.93 1.74 1.11 0.024

Contamination
10% MC Mean 199.87 700.10 349.9 0.499 205.02 700.18 350.05 0.501

Bias -0.13 0.10 -0.1 -0.001 5.02 0.18 0.05 0.001
MC-Sd (1.90) (1.26) (0.88) (0.024) (1.92) (1.80) (1.16) (0.024)
RMSE 1.90 1.27 0.88 0.024 5.38 1.81 1.16 0.024

20% MC Mean 200.05 699.91 350.08 0.497 205.35 700.20 350.11 0.496
Bias 0.05 -0.09 0.08 -0.003 5.35 0.20 0.11 -0.004

MC-Sd (1.96) (1.28) (0.90) (0.024) (2.00) (1.55) (1.19) (0.023)
RMSE 1.96 1.28 0.90 0.024 5.71 1.56 1.20 0.023

30% MC Mean 200.16 700.06 350.07 0.496 206.63 699.91 350.01 0.497
Bias 0.16 0.06 0.07 -0.004 6.63 -0.09 0.01 -0.003

MC-Sd (2.10) (1.05) (0.93) (0.024) (2.60) (1.60) (1.06) (0.022)
RMSE 2.11 1.05 0.93 0.024 7.13 1.60 1.06 0.023

Table 3.2: Simulation 2: Results based on 100 simulated samples. MC Mean, Bias, MC-Sd and
RMSE for the fixed effects 𝛽1, 𝛽2, 𝛽3 and the nuisance parameter 𝜎𝑒 obtained after fitting the
QR-NLMM for quantiles 0.50 and 0.75 using different distribution settings for the random effects.

33



rule, we can conclude that the proposed model is robust in presence of outliers or misspecification
of the random effect distribution.

3.4 Illustrative examples
In this section, we illustrate the application of our method to two interesting longitudinal

datasets from the literature.

3.4.1 Growth curve: Soybean data
For the first application, we are going to consider the Soybean genotypes data analyzed by

Marie Davidian and Giltinan (1995) and J. C. Pinheiro and D. M. Bates (2000), a longitudinal
experiment consisting of measuring along time the leaf weight (in g) as a measure of growth of
two kinds of Soybean genotype plants to be compared, a commercial variety, Forrest (F), and
an experimental strain, Plan Introduction #416937 (P). The samples were taken approximately
weekly during 8 to 10 weeks. For three consecutive years, 1988, 1989 and 1990, the plants were
planted in 16 plots (8 per each genotype) and the mean leaf weight of six randomly selected plants
was measured.

We use the three parameter logistic model in (3.3.1) introducing a random effect term for each
parameter and a dichotomic covariate as

𝑦𝑖𝑗 = 𝜙1𝑖

1 + exp (−[𝑡𝑖𝑗 − 𝜙2𝑖]/𝜙3𝑖)
+ 𝜖𝑖𝑗, 𝑖 = 1, . . . , 412, 𝑗 = 1, . . . , 𝑛𝑖, (3.4.1)
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Figure 3.4: Soybean data: (a) Leaf weight profiles versus time. (b) Leaf weight profiles versus
time by genotype. (c) Ten randomly selected leaf weight profiles versus time been five per each
genotype.
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where,

𝜙1𝑖 =𝛽1 + 𝛽4𝑔𝑒𝑛𝑖 + 𝑏1𝑖

𝜙2𝑖 =𝛽2 + 𝑏2𝑖

𝜙3𝑖 =𝛽3 + 𝑏3𝑖.

The observed value 𝑦𝑖𝑗 represents mean weight of leaves (in g) from six randomly selected soybean
plants in the 𝑖th plot, after 𝑡𝑖𝑗 days of been planted; 𝑔𝑒𝑛𝑖 is a dichotomic variable for the genotype
of plant 𝑖 (0=forrest, 1=plan Introduction) and 𝜖𝑖𝑗 is the measurement error for the 412 plants. Let
be 𝛽𝑝 = (𝛽1, 𝛽2, 𝛽3, 𝛽4)⊤ and b𝑖 = (𝑏1𝑖, 𝑏2𝑖, 𝑏3𝑖)⊤ the fixed and random effects vector respectively.
Then the matrices A𝑖 and B𝑖 are defined as

A𝑖 =

⎛⎜⎝1 0 0 𝑔𝑒𝑛𝑖
0 1 0 0
0 0 1 0

⎞⎟⎠ and B𝑖 =

⎛⎜⎝1 0 0
0 1 0
0 0 1

⎞⎟⎠ . (3.4.2)

The three parameter interpretation are the asymptotic leaf weight, the time at which the leaf
reaches half of its asymptotic weight and the time elapsed between the leaf reaching half and
0.7311 = 1/(1 + 𝑒−1) of its asymptotic weight, respectively. Due the goal of comparing the final
(asymptotic) growth of the two kind of Soybeans, the dichotomic covariate 𝑔𝑒𝑛𝑖 was incorporated
in the first component of the growth function, then the fourth fixed effect 𝛽4 will represent the
difference (in g) of the asymptotic leaf weight between the plan introduction type and the forrest
one (control). As seen in middle and right panel of figure 3.4, it appears to exist a significance
difference between the experimental and control Soybean so we expect a positive non zero 𝛽4
estimate for most of quantiles.
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Figure 3.5: Fitted quantile regression for several quantiles for the Soybean data by genotype.
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Figure 3.5 shows the fitted regression lines for quantiles 0.10, 0.25, 0.50, 0.75 and 0.90 by geno-
type. From this figure we can see clear how the extreme quantiles estimation functions captures the
full data variability and evidences some atypical observations, specially for the plan introduction
genotype. Quantile functions (for same quantile value) looks really different for each genotype due
the significance of 𝛽4 over the model as seen in Figure 3.6.

After fitting the quantile regression over the grid 𝑝 = {0.05, 0.10, ..., 0.95}, we show a graphical
summary of the obtained results in Figure 3.6. It shows a 95% confidence band for the fixed effect
parameters 𝛽1, 𝛽2, 𝛽3, 𝛽4 and for the nuisance parameter 𝜎 where the solid lines are the 𝑄0.025
percentile and 𝑄0.975 percentile obtained through the estimation of the standard errors based on
the empirical information matrix. We can see that the effect of the genotype results significant for
all the quantile profile and the difference varies with respect to the conditional quantile been more
significant for lower quantiles. We assessed the convergence of the fixed effect estimates, variance
components of the random effects and nuisance parameters using graphical criteria as shown in
Figure B.1 in Appendix B.4.

This can be corroborated in Figure 3.5 where the difference between the 0.10 estimated quantile
functions for different genotypes is greater than for other quantiles. Using the information provided
by the 95th percentile, we infer that the Soybean plants that grew more have a mean leaf weight
around 19.35 grams for the Forrest genotype and 23.25 grams for the plan introduction one, then
the asymptotic difference for the two genotypes is around 4 grams. The behavior of the estimate
of the nuisance parameter 𝜎 is symmetric with respect to 𝑝 = 0.50, taking its maximum value and
variability on it and both decreasing for extreme quantiles. This behavior is because the variance
within subjects depends of the quantile to be estimated, been proportional to the asymmetry of the
error term then for extreme quantiles the nuisance parameter should be reduced. Sample output
from the qrNLMM package is provided in Appendix B.6.

3.4.2 HIV viral load study
The data set belongs to a clinical trial (ACTG 315) studied in previous works by Lang Wu

(2002) and Lachos et al. (2013). In this study, we analyze the HIV viral load of 46 HIV-1
infected patients under antiretroviral treatment (protease inhibitor and reverse transcriptase in-
hibitor drugs). The viral load and some other covariates were mesured several times days after the
start of treatment being 4 and 10 the minimum and maximum number of measures per patient
respectively. Lang Wu (2002) found that the only significant covariate for modelling the virus load
was the CD4 therefore the other covariates even though they could be incorporated to the model
for instance they are going to be discarded. Figure 3.7 shows the profile of viral load in log10 scale
and CD4 cell count/100 per cubic millimeter versus time (in days/100) for six randomly selected
patients. We can see that appear to exist some relationship between the viral load and the CD4
cell count and it seems to be inversely proportional, i.e., high CD4 cell count leads to lower levels of
viral load. This is because the CD4 cells (also called T-cells) alert the immune system to invasion
of viruses and/or bacteria so lower CD4 count means a weaker immune system. Normal counts of
CD4 cells are from 500-1000 cells per cubic millimeter whereas fewer counts than 200 cells/mm3

will be a high qualification to diagnose AIDS. We can evidence the mentioned before in the right
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panel of Figure 3.7 where the three patients who have less than 200 CD4 cells/mm3 (delimited by
the horizontal dashed line in 0.02) are the ones with higher levels of viral load.
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Figure 3.7: ACTG 315 data. Profiles of viral load (response) in log10 scale and CD4 cell count (in
cells/100mm3) for six randomly selected patients.

In order to fit the nonlinear data we will use the bi-exponential nonlinear model proposed by
Lang Wu (2002) and also used by Lachos et al. (2013), a nonlinear model widely used for modeling
viral load. The proposed bi-exponential NLME model is given by:

𝑦𝑖𝑗 = log10

(︁
𝑒(𝜙1𝑖−𝜙2𝑖𝑡𝑖𝑗) + 𝑒(𝜙3𝑖−𝜙4𝑖𝑡𝑖𝑗)

)︁
+ 𝜖𝑖𝑗, 𝑖 = 1, . . . , 46, 𝑗 = 1, . . . , 𝑛𝑖, (3.4.3)

with

𝜙1𝑖 =𝛽1 + 𝑏1𝑖 𝜙2𝑖 =𝛽2 + 𝑏2𝑖

𝜙3𝑖 =𝛽3 + 𝑏3𝑖 𝜙4𝑖𝑗 =𝛽4 + 𝛽5𝐶𝐷4𝑖𝑗 + 𝑏4𝑖,

where the observed value 𝑦𝑖𝑗 represents the log-10 transformation of the viral load for the 𝑖th
patient at time 𝑗, 𝐶𝐷4𝑖𝑗 is the CD4 cell count (in cells/100mm3) for the 𝑖th patient at time 𝑗
and 𝜖𝑖𝑗 is the measurement error for the 46 patients. Let be 𝛽𝑝 = (𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5)⊤ and b𝑖 =
(𝑏1𝑖, 𝑏2𝑖, 𝑏3𝑖, 𝑏4𝑖)⊤ the fixed and random effects vector respectively and CD4𝑖 = (𝐶𝐷4𝑖1, . . . , 𝐶𝐷4𝑖𝑛𝑖

)⊤.
Then the matrices A𝑖 and B𝑖 are defined as

A𝑖 =
(︃

I3 0 0
0 1𝑛𝑖

CD4𝑖

)︃
and B𝑖 =

(︃
I3 0
0 1𝑛𝑖

)︃
. (3.4.4)
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The parameters 𝜙2𝑖 and 𝜙4𝑖 are the two-phase viral decay rates, which represent the minimum
turnover rates of productively infected cells and that of latently or long-lived infected cells if ther-
apy was successful, respectively. For more details about the model in (3.4.3) (see Zvi Grossman
et al. (1999) and Perelson et al. (1997)).
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Figure 3.8: ACTG 315 data: Fitted quantile regression functions overlayed for the HIV data.

Figure 3.8 shows the fitted regression lines for quantiles 0.10, 0.25, 0.50, 0.75 and 0.90 for the
HIV data. In order to plot, first, we fixed the CD4 covariate using the predicted sequence from
a linear regression (including a quadratic term) for explaning the CD4 cell count with respect to
time. We can see how quantile estimated functions follow the data behaviour satisfactorily and
turn easily to estimate a specific viral load quantile at any time of the experiment. Extreme quan-
tile functions bound the most of the observed profiles and evidence possible influential observations.

The results after fitting QR over the grid of quantiles 𝑝 = {0.05, 0.10, ..., 0.95} are shown in figure
3.9. The convergence of estimates for all parameters were also assessed using the graphical criteria
in Figure B.2 in Appendix B.4. Based on Figure 3.9, we have found that the first phase viral decay
rate is positive and its effect tends to increase proportionally along quantiles. For the second
phase viral decay rate we have that this second rate is positive correlated with the CD4 count and
therefore with the therapy time. Then, more days of treatment implies a higher CD4 cell count
and therefore a higher second phase viral decay. The CD4 cell process for this model has a different
behavior than for the expansion phase (Huang and Dagne, 2011). The significance of the CD4
covariate increases positively with respect to quantiles (until quantile 𝑝 = 0.60 approximately) and
then its effect becomes constant for greater quantiles. The behavior of the estimate of the nuisance
parameter 𝜎 is the same as in Application 1.
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Figure 3.9: ACTG 315 data: Point estimates (center solid line) and 95% confidence intervals for
model parameters after fitting the QR-NLMM to the HIV data across various quantiles. The
interpolated curves are spline-smoothed.
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3.5 Conclusions
In this work, we investigate quantile regression under non-linear mixed effects models from a

likelihood-based perspective. The AL distribution and SAEM algorithm are combined efficiently
to propose an exact ML estimation method, in contrast to the approximated method proposed
by Geraci and Bottai, 2014. We evaluate the robustness of estimates, as well as the finite sample
performance of the algorithm and the asymptotic properties of the ML estimates through empir-
ical experiments. To the best of our knowledge, we consider that this work is the first attempt
for exact ML estimation in the context of QR-NLME models. The methods developed can be
readily implemented inside R through package qrNLMM(), making our approach quite powerful and
accessible to practitioners.

We apply our method to a two data set from longitudinal studies, obtained interesting results
from the point of view of quantile estimation. Moreover, in the two applications considered, similar
conclusions to the previous analysis of these data sets have been obtained as in Marie Davidian
and Giltinan (1995) and Lachos et al. (2013).

There are a large number of possible extensions of the current work. For modelling both
skewness and heavy tails in the random effects, the use of scale mixtures of skew-normal (SMSN)
distributions (V. H. Lachos et al., 2010) is a feasible choice. Also, HIV viral loads studies include
covariates (CD4 cell counts) that often comes with substantial measurement errors (Lang Wu,
2002). How to incorporate measurement error in covariates within our robust framework can also
be part of future research. An in-depth investigation of such extensions is beyond the scope of the
present work, but certainly an interesting topic for future research.
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Chapter 4

Concluding remarks

4.1 Technical production
In this section, we describe the technical production as result of this thesis.

4.1.1 Submitted papers
• "Quantile Regression for Linear Mixed Models: A Stochastic Approximation EM approach"

Journal: Statistica Sinica

• "Likelihood-Based Inference For Quantile Regression Under Nonlinear Mixed Effects Models"
Journal: Statistics and Computing

4.1.2 R packages

ald: The Asymmetric Laplace Distribution

It provides the probability density function, distribution function, quantile function, random
number generator function, likelihood function, moment generating function and MLE for a given
sample, all this for the three parameter Asymmetric Laplace Distribution with pdf (1.1.1) as defined
in R. Koenker and Machado (1999) and K. Yu and Moyeed (2001) useful for quantile regression. It is
available to download for free in the website: http://cran.r-project.org/web/packages/ald/index.html.

Description

The principal functions of this package are the p,d,q,r functions, that computes the probability
density function, distribution function, quantile function and random number generator function.
They can be run as:
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R code

dALD(y, mu = 0, sigma = 1, p = 0.5)
pALD(q, mu = 0, sigma = 1, p = 0.5, lower.tail = TRUE)
qALD(prob, mu = 0, sigma = 1, p = 0.5, lower.tail = TRUE)
rALD(n, mu = 0, sigma = 1, p = 0.5)

Arguments

y,q vector of quantiles.
prob vector of probabilities.
n number of observations.
mu location parameter.
sigma scale parameter.
p skewness parameter.
lower.tail logical; if TRUE (default), probabilities are 𝑃 [𝑋 ≤ 𝑥] otherwise, 𝑃 [𝑋 > 𝑥].

Details

If mu, sigma or p are not specified they assume the default values of 0, 1 and 0.5, respectively,
belonging to the Symmetric Standard Laplace Distribution denoted by 𝐴𝐿𝐷(0, 1, 0.5). The scale
parameter sigma must be positive and non zero. The skew parameter p must be between zero
and one (0 < 𝑝 < 1). The numerical arguments other than n are recycled to the length of the result.

Value

dALD gives the density, pALD gives the distribution function, qALD gives the quantile function,
and rALD generates a random sample. The length of the result is determined by n for rALD, and
is the maximum of the lengths of the numerical arguments for the other functions dALD, pALD and
qALD.

Examples
R code

dens = dALD(y=seq(-40,80,0.5),mu=50,sigma=3,p=0.75)
sample = rALD(n=10000,mu=50,sigma=3,p=0.75)
hist(sample,breaks = 70,freq = FALSE,ylim=c(0,max(dens)),main="")
title(main="Histogram and True density")
lines(seq(-40,80,0.5),dens,col="red",lwd=2)
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qrLMM: Quantile Regression for Linear Mixed-Effects Models

Quantile regression (QR) for Linear Mixed-Effects Models via the asymmetric Laplace dis-
tribution (ALD). It uses the Stochastic Approximation of the EM (SAEM) algorithm for de-
riving exact maximum likelihood estimates and full inference results for the fixed-effects and
variance components. It also provides graphical summaries for assessing the algorithm conver-
gence and fitting results. It is available to download for free in the website: http://cran.r-
project.org/web/packages/qrLMM/index.html.

Description

The principal function of this package is the QRLMM function that performs a quantile regression
for a LMEM using the Stochastic-Approximation of the EM (SAEM) algorithm for an unique or
a set of quantiles. It can be run as:

R code

QRLMM(y,x,z,nj,p=0.5,precision=0.0001,MaxIter=300,M=10,cp=0.25,
beta=NA,sigma=NA,Psi=NA,show.convergence=TRUE,CI=95)

Arguments

y the response vector of dimension 𝑁 where 𝑁 is the total of observations.
x design matrix for the fixed effects of dimension 𝑁 × 𝑑 where 𝑑 represents the

number of fixed effects including the intercept, if considered.
z design matrix for the random effects of dimension 𝑁 × 𝑞 where 𝑞 represents the

number of random effects.
groups factor of dimension 𝑁 specifying the partitions of the data over which the random

effects vary.
p unique quantile or a set of quantiles related to the quantile regression.
precision the convergence maximum error.
MaxIter the maximum number of iterations of the SAEM algorithm. Default = 300.
M Number of Monte Carlo simulations used by the SAEM Algorithm. Default = 10.

For more accuracy we suggest to use M=20.
cp cut point (0 ≤ 𝑐𝑝 ≤ 1) which determines the percentage of initial iterations with

no memory.
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beta fixed effects vector of initial parameters, if desired.
sigma dispersion initial parameter for the error term, if desired.
Psi Variance-covariance random effects matrix of initial parameters, if desired.
show.convergence if TRUE, it will show a graphical summary for the convergence of the

estimates of all parameters for each quantile in order to assess the con-
vergence.

CI Confidence to be used for the Confidence Interval when a grid of quantiles
is provided. Default=95.

Details

If the initial parameters are not provided, by default, the fixed effects parameter 𝛽 and dis-
persion parameter 𝜎 will be the MLE for an ALD (obviating the random term) as detailed in
Appendix A.1.

When a grid of quantiles is provided, a graphical summary with point estimates and confidence
intervals for model parameters is shown (e.g. see Figure 2.2) and also a graphical summary for the
convergence of these estimates (e.g. see figure B.2) for each quantile, if show.convergence = TRUE.
Also, the result will be a list of the same dimension where each element corresponds to each quantile
as detailed above.

If the convergence graphical summary shows that convergence has not be attained, it’s sug-
gested to increase M to 20, to increase the total number of iterations MaxIter to 500 or both. This
program uses progress bars that will close when the algorithm ends. They must not be closed
before, if not the algorithm will stop.

Value

The function returns a list with two objects:

conv A two elements list with the matrices teta and se containing the point estimates and
standard error estimate for all parameters along all iterations.

The second element of the list is res, a list of 12 elements detailed as:

iter number of iterations.
criteria attained criteria value.
beta fixed effects estimates.
sigma scale parameter estimate for the error term.
Psi Random effects variance-covariance estimate matrix.
SE Standard Error estimates.
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table Table containing the inference for the fixed effects parameters.
loglik Log-likelihood value.
AIC Akaike information criterion.
BIC Bayesian information criterion.
HQ Hannan-Quinn information criterion.
time processing time.

Examples

R code

#Using the Orthodontic distance growth data

data(Orthodont)
attach(Orthodont)

y = distance #response
x = cbind(1,c(rep(0,64),rep(1,44)),age) #design matrix for fixed effects
z = cbind(1,age) #design matrix for random effects
groups = Subject

QRLMM(y,x,z,groups,MaxIter=500) #a median regression
QRLMM(y,x,z,groups,p = c(0.25,0.50,0.75),MaxIter=300,M=10) #a quartile regression

qrNLMM: Quantile Regression for Nonlinear Mixed-Effects Models

Quantile regression (QR) for Nonlinear Mixed-Effects Models via the asymmetric Laplace dis-
tribution (ALD). It uses the Stochastic Approximation of the EM (SAEM) algorithm for de-
riving exact maximum likelihood estimates and full inference results for the fixed-effects and
variance components. It also provides graphical summaries for assessing the algorithm conver-
gence and fitting results. It is available to download for free in the website: http://cran.r-
project.org/web/packages/qrNLMM/index.html.

Description

The principal function of this package is the QRNLMM function that performs a quantile regression
for a NLMEM using the Stochastic-Approximation of the EM (SAEM) algorithm for an unique or
a set of quantiles. It can be run as:
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R code

QRNLMM(y,x,groups,initial,exprNL,covar=NA,p=0.5,precision=0.0001,MaxIter=500,
M=20,cp=0.25,beta=NA,sigma=NA,Psi=NA,show.convergence=TRUE,CI=95)

Arguments

y the response vector of dimension 𝑁 where 𝑁 is the total of observations.
x vector of longitudinal (repeated measures) covariate of dimension 𝑁 . For

example: Time, location, etc.
groups factor of dimension 𝑁 specifying the partitions of the data over which the

random effects vary.
initial an numeric vector, or list of initial estimates for the fixed effects. It must

be provide adequately (see details section) in order to ensure a proper
convergence.

exprNL expression containing the proposed nonlinear function. It can be of class
character or expression. It must have a defined structure defined in
the details section in order to be correctly read by the derivate R function
deriv.

covar a vector of dimension 𝑁 containing a second covariate.
p unique quantile or a set of quantiles related to the quantile regression.
precision the convergence maximum error.
MaxIter the maximum number of iterations of the SAEM algorithm. Default =

300.
M Number of Monte Carlo simulations used by the SAEM Algorithm. De-

fault = 10. For more accuracy we suggest to use M=20.
cp cut point (0 ≤ 𝑐𝑝 ≤ 1) which determines the percentage of initial itera-

tions with no memory.
beta fixed effects vector of initial parameters, if desired.
sigma dispersion initial parameter for the error term, if desired.
Psi Variance-covariance random effects matrix of initial parameters, if desired.
show.convergence if TRUE, it will show a graphical summary for the convergence of the

estimates of all parameters for each quantile in order to assess the con-
vergence.

CI Confidence to be used for the Confidence Interval when a grid of quantiles
is provided. Default=95.
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Details

This algorithm performs the SAEM algorithm proposed by Delyon et al. (1999), deriving exact
maximum likelihood estimates of the fixed-effects and variance components. For the moment just
two covariates are allowed, the longitudinal (repeated measures) covariate x and a second covariate
covar.

About initial values: Estimation for fixed effects parameters envolves a Newton-Raphson step. In
adition, NL models are highly sensitive to initial values. So, we suggest to set of intial values quite
good, this based in the parameter interpretation of the proposed NL function.

About the nonlinear expression: For the NL expression exprNL just the variables x, covar, fixed
and random can be defined. Both x and covar represent the covariates defined above. The fixed
effects must be declared as fixed[1], fixed[2],..., fixed[d] representing the first, second and
𝑑th fixed effect. Exactly the same for the random effects where the term fixed should be replace
for random.

For instance, if we use the exponential nonlinear function with two parameters, each parameter
represented by a fixed and a random effect, this will be defined by

𝑦𝑖𝑗 = (𝛽1 + 𝑏1) exp−(𝛽2+𝑏2)𝑥𝑖𝑗

and the exprNL should be a character or and expression defined by

exprNL = "(fixed[1]+random[1])*exp(-(fixed[2]+random[2])*x)"
or

exprNL = expression((fixed[1]+random[1])*exp(-(fixed[2]+random[2])*x)).

If we are interested in adding a second covariate in order to explain one of the parameters, the
covariate covar must be included in the model. For example, for the nonlinear function

𝑦𝑖𝑗 = (𝛽1 + 𝛽3𝑐𝑜𝑣𝑎𝑟𝑖𝑗 + 𝑏1) exp−(𝛽2+𝑏2)𝑥𝑖𝑗

the exprNL should be

exprNL = "(fixed[1]+fixed[3]*covar+random[1])*exp(-(fixed[2]+random[2])*x)"
or

exprNL = expression((fixed[1]+fixed[3]*covar+random[1])*exp(-(fixed[2]+random[2])*x)).

Note that the mathematical function exp was used. For derivating the deriv R function rec-
ognizes in the exprNL expression the arithmetic operators +, -, *, / and ^, and the single-variable
functions exp, log, sin, cos, tan, sinh, cosh, sqrt, pnorm, dnorm, asin, acos, atan, gamma,
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lgamma, digamma and trigamma, as well as psigamma for one or two arguments (but derivative
only with respect to the first).

General details: When a grid of quantiles is provided, a graphical summary with point estimates
and confidence intervals for model parameters is shown (e.g. see Figure 3.6) and also a graph-
ical summary for the convergence of these estimates (e.g. see Figure B.1) for each quantile, if
show.convergence = TRUE. Also, the result will be a list of the same dimension where each ele-
ment corresponds to each quantile as detailed above.

Value

The function returns a list with two objects:

conv A two elements list with the matrices teta and se containing the point estimates and
standard error estimate for all parameters along all iterations.

The second element of the list is res, a list of 12 elements detailed as:

iter number of iterations.
criteria attained criteria value.
nlmodel the proposed nonlinear function.
beta fixed effects estimates.
sigma scale parameter estimate for the error term.
Psi Random effects variance-covariance estimate matrix.
SE Standard Error estimates.
table Table containing the inference for the fixed effects parameters.
loglik Log-likelihood value.
AIC Akaike information criterion.
BIC Bayesian information criterion.
HQ Hannan-Quinn information criterion.
time processing time.

Examples

R code

#Using the Soybean data
data(Soybean)
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attach(Soybean)

#A full model (no covariate)
y = weight #response
x = Time #time

#Expression for the three parameter logistic curve
exprNL = expression((fixed[1]+random[1])/
(1 + exp(((fixed[2]+random[2])- x)/(fixed[3]+random[3]))))

#Initial values for fixed effects
initial = c(max(y),0.6*max(y),0.73*max(y))

#A median regression (by default)
median_reg = QRNLMM(y,x,Plot,initial,exprNL)

#Assing the fit
fxd = median_reg$res$beta
nlmodel = median_reg$res$nlmodel
seqc = seq(min(x),max(x),length.out = 500)
group.plot(x = Time,y = weight,groups = Plot,type="l",main="Soybean profiles",
xlab="time (days)",ylab="mean leaf weight (gr)",col="gray")
lines(seqc,nlmodel(x = seqc,fixed = fxd,random = rep(0,3)),lwd=2,col="blue")

4.2 Conclusions
In this work, we developed a likelihood-based inference for QR in mixed-effects models from a

likelihood-based perspective based on the ALD. The stochastic representation of the ALD leads
to a simple implementation of EM-type algorithms where a SAEM algorithm has been developed
since it leads quickly to exact ML estimation of the parameters than traditional MCEM. The
ALD and SAEM algorithm are combined efficiently to propose an exact ML estimation method
outperforming the approximated method proposed by Geraci and Bottai (2014) for linear mixed-
effects models in terms of standard errors and mean square error.

For the nonlinear model we evaluated the robustness of estimates, as well as the finite sample
performance of the algorithm and the asymptotic properties of the ML estimates through empirical
experiments. We found that the model is robust to misspecification of the random effects leading
to quite good ML estimates. To the best of our knowledge, we consider that this work is the
first attempt for exact ML estimation in the context of QR in mixed-effect models. We apply our
method to a four data set from longitudinal studies, obtained interesting results from the point of
view of quantile estimation as robust estimation, identification of possible outliers profiles and full
conditional distribution estimation. The methods developed are readily implementable via the R
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packages qrLMM() and qrNLMM(), making our approach quite powerful and accessible to practi-
tioners.

4.3 Future research
There are a large number of possible extensions of the current work. For modelling both

skewness and heavy tails in the random effects, the use of scale mixtures of skew-normal (SMSN)
distributions (V. H. Lachos et al., 2010) is a feasible choice. It is also possible to proposed a
semi parametric QR, including a semi-parametric structure for modeling the conditional quantiles
extending the work in D. Zhang and M. Davidian (2001) or using a spatial covariance structure
for spatially correlated data. We conjecture this QR model can be also transferred for describing
multivariate responses in mixed-effects models. Other zero-quantile families of distributions can
be used for modeling the error term as proposed in Wichitaksorn et al. (2014).

Experimental studies include covariates that often comes with substantial measurement errors
(Lang Wu, 2002). How to incorporate measurement error in covariates within our robust framework
can also be part of future research. An in-depth investigation of such extensions is beyond the
scope of the present work, but certainly an interesting topic for future research.
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Appendix A

Supplementary Material for QR in
Linear Mixed-Effect Models

A.1 Specification of initial values
It is well known that a smart choice of the initial values of ML estimates can assure a fast

convergence of an algorithm to the global maxima solution for the respective likelihood. Obviating
the random effects term, let y𝑖 ∼ 𝐴𝐿𝐷(x⊤

𝑖 𝛽𝑝, 𝜎, 𝑝). Next, considering the MLEs of 𝛽𝑝 and 𝜎
as defined in Keming Yu and J. Zhang (2005) for this model, we follow the steps below for the
QR-LMM implementation:

1. Compute an initial value ̂︀𝛽(0)

𝑝 as

̂︀𝛽(0)

𝑝 = arg min
𝛽𝑝∈R𝑘

𝑛∑︁
𝑖=1

𝜌𝑝(y𝑖 − x⊤
𝑖 𝛽𝑝).

2. Using the initial value for ̂︀𝛽(0)

𝑝 obtained above, compute ̂︀𝜎(0) as

̂︀𝜎(0) = 1
𝑛

𝑛∑︁
𝑖=1

𝜌𝑝(y𝑖 − x⊤
𝑖
̂︀𝛽(0)

𝑝 ).

3. Use a 𝑞 × 𝑞 identity matrix I𝑞×𝑞 for the the initial value Ψ(0).

A.2 Computing the conditional expectations
Due the independence between u𝑖𝑗| y𝑖𝑗,b𝑖 and u𝑖𝑘| y𝑖𝑘,b𝑖, for all 𝑗, 𝑘 = 1, 2, . . . , 𝑛𝑖 and 𝑗 ̸= 𝑘,

we can write u𝑖|y𝑖,b𝑖 = [ u𝑖1|y𝑖1,b𝑖 u𝑖2|y𝑖2,b𝑖 · · · u𝑖𝑛𝑖
|y𝑖𝑛𝑖

,b𝑖 ]⊤. Using this fact, we are able
to compute the conditional expectations ℰ(u𝑖) and ℰ(D−1

𝑖 ) in the following way. Using matrix
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expectation properties, we define these expectations as

ℰ(u𝑖) = [ℰ(𝑢𝑖1) ℰ(𝑢𝑖1) · · · ℰ(𝑢𝑖𝑛𝑖
)]⊤ (A.2.1)

and

ℰ(D−1
𝑖 ) = diag(ℰ(u−1

𝑖 )) =

⎡⎢⎢⎣
ℰ(𝑢−1

𝑖1 ) 0 ... 0
0 ℰ(𝑢−1

𝑖2 ) ... 0
... ... ... ...
0 0 ... ℰ(𝑢−1

𝑖𝑛𝑖
)

⎤⎥⎥⎦ . (A.2.2)

We already have u𝑖𝑗|y𝑖𝑗,b𝑖 ∼ 𝐺𝐼𝐺( 1
2 , 𝜒𝑖𝑗, 𝜓), where 𝜒𝑖𝑗 and 𝜓 are defined in (14). Then, using

(5), we compute the moments involved in the equations above as ℰ(𝑢𝑖𝑗) = 𝜒𝑖𝑗

𝜓
(1 + 1

𝜒𝑖𝑗𝜓
) and

ℰ(𝑢−1
𝑖𝑗 ) = 𝜓

𝜒𝑖𝑗
. Thus, for iteration 𝑘 of the algorithm and for the ℓth Monte Carlo realization, we

can compute ℰ(u𝑖)(ℓ,𝑘) and ℰ(D−1
𝑖 )(ℓ,𝑘) using equations (A.2.1)-(A.2.2) where

ℰ(𝑢𝑖𝑗)(ℓ,𝑘) =
2|𝑦𝑖𝑗 − x⊤

𝑖𝑗𝛽
(𝑘)
𝑝 − z⊤

𝑖𝑗b
(ℓ,𝑘)
𝑖 |+4𝜎(𝑘)

𝜏 2
𝑝

and ℰ(𝑢−1
𝑖𝑗 )(ℓ,𝑘) =

𝜏 2
𝑝

2|𝑦𝑖𝑗 − x⊤
𝑖𝑗𝛽

(𝑘)
𝑝 − z⊤

𝑖𝑗b
(ℓ,𝑘)
𝑖 |

.

A.3 The empirical information matrix
In light of (10), the complete log-likelihood function can be rewritten as

ℓ𝑐𝑖(𝜃) = −3
2𝑛𝑖 log𝜎 − 1

2𝜎𝜏 2
𝑝

𝜁⊤
𝑖 D−1

𝑖 𝜁𝑖 − 1
2 log|Ψ|−1

2 b⊤
𝑖 Ψ−1b𝑖−

1
𝜎

u⊤
𝑖 1𝑛𝑖

(A.3.1)

where 𝜁𝑖 = y𝑖−x⊤
𝑖 𝛽𝑝−z𝑖b𝑖−𝜗𝑝u𝑖 and 𝜃 = (𝛽⊤

𝑝 , 𝜎,𝛼
⊤)⊤. Taking partial derivatives with respect to

𝜃, we have the following score functions:
𝜕ℓ𝑐𝑖(𝜃)
𝜕𝛽𝑝

= 𝜕𝜁𝑖
𝜕𝛽𝑝

𝜕ℓ𝑐𝑖(𝜃)
𝜕𝜁𝑖

= 1
𝜎𝜏 2

𝑝

x𝑖D−1
𝑖 𝜁𝑖,

and
𝜕ℓ𝑐𝑖(𝜃)
𝜕𝜎

= −3𝑛𝑖
2

1
𝜎

+ 1
2𝜎2𝜏 2

𝑝

𝜁⊤
𝑖 D−1

𝑖 𝜁𝑖+
1
𝜎2 u⊤

𝑖 1𝑛𝑖
.

Let 𝛼 be the vector of reduced parameters from Ψ, the dispersion matrix for b𝑖. Using the trace
properties and differentiating the complete log-likelihood function, we have that

𝜕ℓ𝑐𝑖(𝜃)
𝜕Ψ

= 𝜕

𝜕Ψ

[︂
−𝑛

2 𝑙𝑜𝑔|Ψ|−1
2tr{Ψ−1b𝑖b⊤

𝑖 }
]︂

= −1
2 tr{Ψ−1} + 1

2 tr{Ψ−1Ψ−1b𝑖b⊤
𝑖 }

= 1
2 tr{Ψ−1(b𝑖b⊤

𝑖 − Ψ)Ψ−1}
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Next, taking derivatives with respect to a specific 𝛼𝑗 from 𝛼 based on the chain rule, we have

𝜕ℓ𝑐𝑖(𝜃)
𝜕𝛼𝑗

= 𝜕Ψ
𝜕𝛼𝑗

𝜕ℓ𝑐𝑖(𝜃)
𝜕Ψ

= 𝜕Ψ
𝜕𝛼𝑗

1
2 tr{Ψ−1(b𝑖b⊤

𝑖 − Ψ)Ψ−1}. (A.3.2)

where, using the fact that tr{ABCD} = (vec(A⊤))⊤(D⊤ ⊗ B)(vec(C)), (A.3.2) can be rewritten
as

𝜕ℓ𝑐𝑖(𝜃)
𝜕𝛼𝑗

= (vec(𝜕Ψ
𝜕𝛼𝑗

⊤
))⊤ 1

2 (Ψ−1 ⊗ Ψ−1)(vec(b𝑖b⊤
𝑖 − Ψ)). (A.3.3)

Let 𝒟𝑞 be the elimination matrix (Lavielle, 2014) that transforms the vectorized Ψ (written as
vec(Ψ)) into its half-vectorized form vech(Ψ), such that 𝒟𝑞vec(Ψ) = vech(Ψ). Using the fact that
for all 𝑗 = 1, . . . , 1

2𝑞(𝑞 + 1), the vector (vec(𝜕Ψ
𝜕𝛼𝑗

)⊤)⊤ corresponds to the 𝑗th row of the elimination
matrix 𝒟𝑞, we can generalize the derivative in (A.3.3) for the vector of parameters 𝛼 as

𝜕ℓ𝑐𝑖(𝜃)
𝜕𝛼

= 1
2𝒟𝑞(Ψ−1 ⊗ Ψ−1)(vec(b𝑖b⊤

𝑖 − Ψ)).

Finally, at each iteration, we can compute the empirical information matrix (19) by approximating
the score for the observed log-likelihood using the stochastic approximation given in (20).

A.4 A Gibbs Sampler Algorithm
In order to draw a sample from 𝑓(b𝑖,u𝑖|y𝑖) we can use a the Gibbs Sampler, an Markov chain

Monte Carlo (MCMC) algorithm proposed by (Casella and George, 1992) for obtaining a sequence
of observations which are approximated from the joint probability distribution of two or several
random variables just using their full conditional distributions. Computing the full conditional
distributions 𝑓(b𝑖|u𝑖,y𝑖) and 𝑓(u𝑖|b𝑖,y𝑖), we have for the first one that

𝑓(b𝑖|y𝑖,u𝑖) ∝ 𝑓(y𝑖|b𝑖,u𝑖) 𝑓(b𝑖),
∝ 𝜑𝑛𝑖

(︁
y𝑖| X⊤

𝑖 𝛽𝑝 + Z𝑖b𝑖 + 𝜗𝑝u𝑖, 𝜎𝜏 2
𝑝𝐷(u𝑖)

)︁
× 𝜑𝑞(b𝑖|0,Ψ) (A.4.1)

so we have a product of multivariate normal densities which solution is based in the next lemma:

Lemma 1. Simplifying the notation above it follows that

𝜑𝑛(y|X𝛽 + Zb,Ω)𝜑𝑞(b|0,Ψ) = 𝜑𝑛(y|X𝛽,Σ)𝜑𝑞(b|𝜇1(y − X𝛽),Λ) (A.4.2)

where
𝜇1 = ΛZ𝑇Ω−1, Σ = Ω + ZΨZ𝑇 , Λ = (Ψ−1 + Z𝑇Ω−1Z)−1. (A.4.3)
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Due the equation (A.4.2) from the lemma 2 it leads us to

𝑓(b𝑖|y𝑖,u𝑖) ∝ 𝜑𝑛𝑖

(︁
y𝑖| X⊤

𝑖 𝛽𝑝 + 𝜗𝑝u𝑖, 𝜎𝜏 2
𝑝𝐷(u𝑖) + Z𝑖ΨZ⊤

𝑖

)︁
×

𝜑𝑞

(︂
b𝑖| Λ𝑖𝑍

⊤
𝑖

(︁
𝜎𝜏 2

𝑝𝐷(u𝑖)
)︁−1 (︁

y𝑖−X⊤
𝑖 𝛽𝑝−𝜗𝑝u𝑖

)︁
,Λ𝑖

)︂

where Λ𝑖 =
(︁
Ψ−1 + 𝜎𝜏 2

𝑝Z⊤
𝑖 𝐷(u𝑖)Z𝑖

)︁−1
. Then dropping the first term of the product by pro-

portionality it’s easy to see that b𝑖|y𝑖,u𝑖 ∼ 𝑁𝑞

(︂
Λ𝑖Z⊤

𝑖

(︁
𝜎𝜏 2

𝑝𝐷(u𝑖)
)︁−1 (︁

y𝑖−X⊤
𝑖 𝛽𝑝−𝜗𝑝u𝑖

)︁
,Λ𝑖

)︂
.

On other hand, for the full conditional distribution 𝑓(u𝑖|y𝑖,b𝑖) note that the vector u𝑖|y𝑖,b𝑖 can
be constructed as u𝑖|y𝑖,b𝑖 =

[︁
u𝑖1|y𝑖1,b𝑖 u𝑖2|y𝑖2,b𝑖 · · · u𝑖𝑛𝑖

|y𝑖𝑛𝑖
,b𝑖

]︁⊤
given that u𝑖𝑗| y𝑖𝑗,b𝑖 ⊥

u𝑖𝑘| y𝑖𝑘,b𝑖 for all 𝑗, 𝑘 = 1, 2, . . . , 𝑛𝑖 and 𝑗 ̸= 𝑘. So, the univariate distribution of the 𝑓(u𝑖𝑗|y𝑖𝑗,b𝑖) is
proportional to the product of 𝑓(y𝑖𝑗|b𝑖, u𝑖𝑗) and 𝑓(𝑢𝑖𝑗), a Normal and a Exponential distribution,
that is

𝑓(u𝑖𝑗|y𝑖𝑗,b𝑖) ∝ 𝜑(y𝑖𝑗|X⊤
𝑖𝑗𝛽𝑝 + Z⊤

𝑖𝑗b𝑖 + 𝜗𝑝𝑢𝑖𝑗, 𝜎𝜏
2
𝑝𝑢𝑖𝑗) ×𝐺𝑈𝑖𝑗

(1, 𝜎),

then the Lemma 1 leads us that u𝑖𝑗|y𝑖𝑗,b𝑖 ∼ 𝐺𝐼𝐺( 1
2 , 𝜒𝑖𝑗, 𝜓), where 𝜒𝑖𝑗 = |𝑦𝑖𝑗−X⊤

𝑖𝑗𝛽𝑝−Z⊤
𝑖𝑗b𝑖|

𝜏𝑝
√
𝜎

and

𝜓 = 𝜏𝑝
2
√
𝜎

.

In resume, the Gibbs Sampler proceeds as follow:

Given 𝜃 = 𝜃(𝑘) for 𝑖 = 1, . . . , 𝑛;

(1) Start with suitable initial values (b(0,𝑘)
𝑖 ,u(0,𝑘)

𝑖 )

(2) Draw b(1,𝑘)
𝑖 |y𝑖,u(0,𝑘)

𝑖 ∼ 𝑁𝑞

(︂
Λ(𝑘)
𝑖 Z⊤

𝑖

(︁
𝜎(𝑘)𝜏 2

𝑝𝐷(u(0,𝑘)
𝑖 )

)︁−1 (︁
y𝑖−X⊤

𝑖 𝛽(𝑘)
𝑝 −𝜗𝑝u(0,𝑘)

𝑖

)︁
,Λ(k)

i

)︂
(3) Draw u(1,𝑘)

𝑖𝑗 |y𝑖𝑗,b(1,𝑘)
𝑖 ∼ 𝐺𝐼𝐺

⎛⎝1
2 ,

⃒⃒⃒
𝑦𝑖𝑗−X⊤

𝑖𝑗𝛽
(𝑘)
𝑝 −Z⊤

𝑖𝑗b(1,𝑘)
𝑖

⃒⃒⃒
𝜏𝑝

√
𝜎(𝑘)

,
𝜏𝑝

2
√
𝜎(𝑘)

⎞⎠ for all 𝑗 = 1, 2, . . . , 𝑛𝑖

(4) Construct u(1,𝑘)
𝑖 |y𝑖,b(1,𝑘)

𝑖 as
[︁

u(1,𝑘)
𝑖1 |y𝑖1,b(1,𝑘)

𝑖 u(1,𝑘)
𝑖2 |y𝑖2,b(1,𝑘)

𝑖 · · · u(1,𝑘)
𝑖𝑛𝑖

|y𝑖𝑛𝑖
,b(1,𝑘)

𝑖

]︁⊤
(5) Repeat the steps 2-4 until draw 𝑚 samples

(︁
b(1,𝑘)
𝑖 ,u(1,𝑘)

𝑖

)︁
,
(︁
b(2,𝑘)
𝑖 ,u(2,𝑘)

𝑖

)︁
, . . . ,

(︁
b(𝑚,𝑘)
𝑖 ,u(𝑚,𝑘)

𝑖

)︁
from b𝑖,u𝑖|`(𝑘),y𝑖.

Note that for a given a iteration 𝑘 and for all 𝑖 = 1, . . . , 𝑛, drawing from the conditional dis-
tribution of the vector u(𝑙,𝑘)

𝑖 |y𝑖,b(𝑙,𝑘)
𝑖 implies to draw from the univariate conditional distributions

u(𝑘)
𝑖𝑗 |y𝑖𝑗,b(𝑘)

𝑖 for all 𝑗 = 1, 2, . . . , 𝑛𝑖, so this construction results in a heavy computational algorithm.
Also, given that the Gibbs Sampler is a Markov Chain we must apply a burn in and a thin, in
order to discard the first observations before convergence and to avoid the correlation between
nearby observations.
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A.5 Figures
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Figure A.1: Comparison of the Bias (upper row) and RMSE (lower row) at the 95-th quantile from
fitting the QR-LMM and the Geraci, 2014 model for the fixed effects 𝛽0, 𝛽1 and 𝛽2.
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Figure A.2: Comparison of the Monte Carlo standard deviation for the estimatives of 𝛽1 and 𝛽2
obtained by the SAEM procedure and the Geraci (2014) algorithm for the set of quantiles 5, 10,
50, 90 and 95.
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Figure A.3: Fitted mean regression overlayed with five different quantile regression lines for the
Cholesterol data, by gender.
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female male

Figure A.4: Orthodontic distance growth data: Individual profiles for 10 random children (Panel
a); Individual profiles for the same children, by gender (Panel b).
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Figure A.5: Fitted mean regression overlayed with five different quantile regression lines for the
Orthodontic distance growth data, by gender.
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Figure A.6: Graphical summary of convergence for the fixed effect parameters, variance compo-
nents of the random effects, and nuisance parameters, generated from the qrLMM package for the
orthodontic distance growth data. The vertical dashed line delimits the beginning of the almost
sure convergence, as defined by the cut-point parameter 𝑐.

65



A.6 Sample output from R package qrLMM()
-------------------------------------------------
Quantile Regression for Linear Mixed Models
-------------------------------------------------
Quantile = 0.75
Subjects = 27 ; Observations = 108 ; Balanced = 4

-----------
Estimates
-----------
- Fixed effects

Estimate Std. Error z value Pr(>|z|)
beta 1 17.08405 0.53524 31.91831 0
beta 2 2.15393 0.36929 5.83265 0
beta 3 0.61882 0.05807 10.65643 0

sigma = 0.38439

Random effects Variance-covariance matrix
b1 b2

b1 0.16106 -0.00887
b2 -0.00887 0.02839

------------------------
Model selection criteria
------------------------
Loglik AIC BIC HQ
Value -216.454 446.907 465.682 454.52

-------
Details
-------
Convergence reached? = FALSE
Iterations = 300 / 300
Criteria = 0.00381
MC sample = 10
Cut point = 0.25
Processing time = 7.590584 mins
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Appendix B

Supplementary Material for QR in
Nonlinear Mixed-Effect Models

B.1 Specification of initial values
It is well known that a smart choice of the initial values for the ML estimates can assure a fast

convergence of an algorithm to the global maxima solution. Obviating the random effects term,
i.e., b𝑖 = 0, let y𝑖 ∼ 𝐴𝐿𝐷(𝜂(𝛽𝑝,0), 𝜎, 𝑝). Next, considering the MLEs for 𝛽𝑝 and 𝜎 as defined
in Keming Yu and J. Zhang (2005) for this model, we follow the steps below for the QR-LMM
implementation:

1. Compute an initial value ̂︀𝛽(0)

𝑝 as

̂︀𝛽(0)

𝑝 = arg min
𝛽𝑝∈R𝑘

𝑛∑︁
𝑖=1

𝜌𝑝(y𝑖 − 𝜂(𝛽𝑝,0)).

2. Using the initial value for ̂︀𝛽(0)

𝑝 obtained above, compute ̂︀𝜎(0) as

̂︀𝜎(0) = 1
𝑛

𝑛∑︁
𝑖=1

𝜌𝑝(y𝑖 − 𝜂(𝛽𝑝,0)).

3. Use a 𝑞 × 𝑞 identity matrix I𝑞×𝑞 for the the initial value Ψ(0).

B.2 Computing the conditional expectations
Due the independence between u𝑖𝑗| y𝑖𝑗,b𝑖 and u𝑖𝑘| y𝑖𝑘,b𝑖, for all 𝑗, 𝑘 = 1, 2, . . . , 𝑛𝑖 and 𝑗 ̸= 𝑘,

we can write u𝑖|y𝑖,b𝑖 = [ u𝑖1|y𝑖1,b𝑖 u𝑖2|y𝑖2,b𝑖 · · · u𝑖𝑛𝑖
|y𝑖𝑛𝑖

,b𝑖 ]⊤. Using this fact, we are able
to compute the conditional expectations ℰ(u𝑖) and ℰ(D−1

𝑖 ) in the following way. Using matrix
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expectation properties, we define these expectations as

ℰ(u𝑖) = [ℰ(𝑢𝑖1) ℰ(𝑢𝑖1) · · · ℰ(𝑢𝑖𝑛𝑖
)]⊤ (B.2.1)

and

ℰ(D−1
𝑖 ) = diag(ℰ(u−1

𝑖 )) =

⎡⎢⎢⎣
ℰ(𝑢−1

𝑖1 ) 0 ... 0
0 ℰ(𝑢−1

𝑖2 ) ... 0
... ... ... ...
0 0 ... ℰ(𝑢−1

𝑖𝑛𝑖
)

⎤⎥⎥⎦ . (B.2.2)

We already have u𝑖𝑗|y𝑖𝑗,b𝑖 ∼ 𝐺𝐼𝐺( 1
2 , 𝜒𝑖𝑗, 𝜓) where 𝜒𝑖𝑗 and 𝜓 are defined in (3.2.9). Then, using

(1.1.5), we compute the moments involved in the equations above as ℰ(𝑢𝑖𝑗) = 𝜒𝑖𝑗

𝜓
(1 + 1

𝜒𝑖𝑗𝜓
) and

ℰ(𝑢−1
𝑖𝑗 ) = 𝜓

𝜒𝑖𝑗
. Thus, for iteration 𝑘 of the algorithm and for the ℓth Monte Carlo realization, we

can compute ℰ(u𝑖)(ℓ,𝑘) and ℰ(D−1
𝑖 )(ℓ,𝑘) using equations (B.2.1)-(B.2.2) where

ℰ(𝑢𝑖𝑗)(ℓ,𝑘) =
2|𝑦𝑖𝑗 − 𝜂𝑖𝑗(𝛽(𝑘)

𝑝 ,b(ℓ,𝑘)
𝑖 )|+4𝜎(𝑘)

𝜏 2
𝑝

and ℰ(𝑢−1
𝑖𝑗 )(ℓ,𝑘) =

𝜏 2
𝑝

2|𝑦𝑖𝑗 − 𝜂𝑖𝑗(𝛽(𝑘)
𝑝 ,b(ℓ,𝑘)

𝑖 )|
.

B.3 The empirical information matrix
In light of (3.2.5), the complete log-likelihood function can be rewritten as

ℓ𝑐𝑖(𝜃) = −3
2𝑛𝑖 log𝜎 − 1

2𝜎𝜏 2
𝑝

𝜁⊤
𝑖 D−1

𝑖 𝜁𝑖 − 1
2 log|Ψ|−1

2 b⊤
𝑖 Ψ−1b𝑖−

1
𝜎

u⊤
𝑖 1𝑛𝑖

(B.3.1)

where 𝜁𝑖 = y𝑖−𝜂(𝛽𝑝,b𝑖) − 𝜗𝑝u𝑖 and 𝜃 = (𝛽⊤
𝑝 , 𝜎,𝛼

⊤)⊤. Differentiating with respect to 𝜃, we have
the following score functions:

𝜕ℓ𝑐𝑖(𝜃)
𝜕𝛽𝑝

= 𝜕𝜂

𝜕𝛽𝑝

𝜕𝜁𝑖
𝜕𝜂

𝜕ℓ𝑐𝑖(𝜃)
𝜕𝜁𝑖

= 1
𝜎𝜏 2

𝑝

J⊤
i D−1

𝑖 𝜁𝑖,

with Ji defined in subsection 3.2. and
𝜕ℓ𝑐𝑖(𝜃)
𝜕𝜎

= −3𝑛𝑖
2

1
𝜎

+ 1
2𝜎2𝜏 2

𝑝

𝜁⊤
𝑖 D−1

𝑖 𝜁𝑖+
1
𝜎2 u⊤

𝑖 1𝑛𝑖
.

Let 𝛼 be the vector of reduced parameters from Ψ, the dispersion matrix for b𝑖. Using the trace
properties and differentiating the complete log-likelihood function, we have that

𝜕ℓ𝑐𝑖(𝜃)
𝜕Ψ

= 𝜕

𝜕Ψ

[︂
−𝑛

2 𝑙𝑜𝑔|Ψ|−1
2tr{Ψ−1b𝑖b⊤

𝑖 }
]︂

= −1
2 tr{Ψ−1} + 1

2 tr{Ψ−1Ψ−1b𝑖b⊤
𝑖 }

= 1
2 tr{Ψ−1(b𝑖b⊤

𝑖 − Ψ)Ψ−1}
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Next, taking derivatives with respect to a specific 𝛼𝑗 from 𝛼 based on the chain rule, we have

𝜕ℓ𝑐𝑖(𝜃)
𝜕𝛼𝑗

= 𝜕Ψ
𝜕𝛼𝑗

𝜕ℓ𝑐𝑖(𝜃)
𝜕Ψ

= 𝜕Ψ
𝜕𝛼𝑗

1
2 tr{Ψ−1(b𝑖b⊤

𝑖 − Ψ)Ψ−1}. (B.3.2)

where, using the fact that tr{ABCD} = (vec(A⊤))⊤(D⊤ ⊗ B)(vec(C)), (B.3.2) can be rewritten
as

𝜕ℓ𝑐𝑖(𝜃)
𝜕𝛼𝑗

= (vec(𝜕Ψ
𝜕𝛼𝑗

⊤
))⊤ 1

2 (Ψ−1 ⊗ Ψ−1)(vec(b𝑖b⊤
𝑖 − Ψ)). (B.3.3)

Let 𝒟𝑞 be the elimination matrix (Lavielle, 2014) that transforms the vectorized Ψ (written as
vec(Ψ)) into its half-vectorized form vech(Ψ), such that 𝒟𝑞vec(Ψ) = vech(Ψ). Using the fact that
for all 𝑗 = 1, . . . , 1

2𝑞(𝑞 + 1), the vector (vec(𝜕Ψ
𝜕𝛼𝑗

)⊤)⊤ corresponds to the 𝑗th row of the elimination
matrix 𝒟𝑞, we can generalize the derivative in (B.3.3) for the vector of parameters 𝛼 as

𝜕ℓ𝑐𝑖(𝜃)
𝜕𝛼

= 1
2𝒟𝑞(Ψ−1 ⊗ Ψ−1)(vec(b𝑖b⊤

𝑖 − Ψ)).

Finally, at each iteration, we can compute the empirical information matrix (2.3.4) by approxi-
mating the score for the observed log-likelihood by the stochastic approximation given in (2.3.5).
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B.4 Figures
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Figure B.1: Graphical summary for the convergence of the fixed effect estimates, variance com-
ponents of the random effects, and nuisance parameters performing a median regression for the
Soybean data. The vertical dashed line delimits the beginning of the almost sure convergence as
defined by the cut-point parameter 𝑐 = 0.25.
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Figure B.2: Graphical summary for the convergence of the fixed effect estimates, variance compo-
nents of the random effects, and nuisance parameters performing a median regression for the HIV
data. The vertical dashed line delimits the beginning of the almost sure convergence as defined by
the cut-point parameter 𝑐 = 0.25.
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B.5 Sample output from R package qrNLMM()
---------------------------------------------------
Quantile Regression for Nonlinear Mixed Model
---------------------------------------------------
Quantile = 0.5
Subjects = 48 ; Observations = 412

- Nonlinear function
function(x,fixed,random,covar=NA){
resp = (fixed[1] + random[1])/(1 + exp(((fixed[2] +
random[2]) - x)/(fixed[3] + random[3])))
return(resp)}

-----------
Estimates
-----------
- Fixed effects
Estimate Std. Error z value Pr(>|z|)
beta 1 18.80029 0.53098 35.40704 0
beta 2 54.47930 0.29571 184.23015 0
beta 3 8.25797 0.09198 89.78489 0

sigma = 0.31569

Random effects Variance-Covariance Matrix matrix
b1 b2 b3

b1 24.36687 12.27297 3.24721
b2 12.27297 15.15890 3.09129
b3 3.24721 3.09129 0.67193

------------------------
Model selection criteria
------------------------
Loglik AIC BIC HQ
Value -622.899 1265.798 1306.008 1281.703

-------
Details
-------
Convergence reached? = FALSE
Iterations = 300 / 300
Criteria = 0.00058
MC sample = 20
Cut point = 0.25
Processing time = 22.83885 mins
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Appendix C

Licença

Copyright (c) 2015 de Christian Eduardo Galarza Morales.
Exceto quando indicado o contrário, esta obra está licenciada sob a licença Creative Commons

Atribuição-CompartilhaIgual 3.0 Não Adaptada. Para ver uma cópia desta licença, visite http:
//creativecommons.org/licenses/by-sa/3.0/.

A marca e o logotipo da UNICAMP são propriedade da Universidade Estadual de Camp-
inas. Maiores informações sobre encontram-se disponíveis em http://www.unicamp.br/unicamp/
a-unicamp/logotipo/normas%20oficiais-para-uso-do-logotipo.

C.1 Sobre a licença dessa obra
A licença Creative Commons Atribuição-CompartilhaIgual 3.0 Não Adaptada utilizada nessa

obra diz que:
1. Você tem a liberdade de:

• Compartilhar — copiar, distribuir e transmitir a obra;
• Remixar — criar obras derivadas;
• fazer uso comercial da obra.

2. Sob as seguintes condições:

• Atribuição — Você deve creditar a obra da forma especificada pelo autor ou licenciante
(mas não de maneira que sugira que estes concedem qualquer aval a você ou ao seu uso
da obra).

• Compartilhamento pela mesma licença — Se você alterar, transformar ou criar em cima
desta obra, você poderá distribuir a obra resultante apenas sob a mesma licença, ou sob
uma licença similar à presente.
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