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Introduction

This work was carried out within the department Génie Mathématique et Modélisation (GMM) of
the Institut National des Sciences Appliquées de Toulouse (INSA Toulouse). The INSA Toulouse is
one of the 204 French engineering schools accredited on September 1, 2020 to issue an engineering
degree. It benefits, as a public institution of higher education and research, from the status of a
Public Establishment with a Scientific, Cultural, and Professional nature.

This work is devoted to a mathematical study of weighted Poincaré inequalities and their
application to sensitivity analysis. This material is detailed and self-contained except for the
basics of probability and some additional results regarding Sobolev spaces. There is section with
notations at the end of the document.

Functional inequalities and global sensitivity analysis are two active mathematical fields, a
priori distinct. The field of functional inequalities, whose foundations go back at least to the
beginning of the 20th century with the work of Henri Poincaré, studies general inequalities, valid
for a whole class of functions, typically of a Sobolev space. The field of global sensitivity analysis
is more recent and is part of an approach of explainability. It seeks to quantify the influence
of input variables on the output of a multivariate function f : Rd −→ R, expensive to evaluate.
The latter can in particular represent computer codes modeling complex phenomena or artificial
intelligence algorithms, the functioning of which is not well understood. An important connection
between the two domains was initiated by (Lamboni, Iooss, Popelin, and Gamboa 2013), in which
it is shown that the inequality that appears between two sensitivity indices stems directly from a
Poincaré equality. This leads to revisit the Poincaré inequalities in a perspective of explainability
of computer codes and artificial intelligence algorithms.

The structure of our report consists in three chapters. In the first one, we give a review on
sensitivity analysis and Poincaré inequalities. Within two sections we cover the motivation and
definition of total Sobol indices and DGSM indices and their relation through Poincaré inequalities
for Sobolev spaces defined from probability measures. We characterize the optimal constant of a
Poincaré inequality as the reciprocal of the spectral gap of a differential operator.

In the second chapter we focus on the one-dimensional setting and consider a more general
type of inequality known as weighted Poincaré inequality, due to the presence of a weight on
its right-hand side. We provide the same theoretical background as for the classical Poincaré
inequality, showing that the optimal Poincaré constant is the reciprocal of the spectral gap of
a new differential operator. Later, we extend and support theoretically the ideas presented by
(Song, Tong, Wang, Kucherenko, and Lu 2018) who, given a probability measure, propose the
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choice of a specific type of weight. In particular, we give the explicit expression of such weight
for diverse probability measures and for their truncated versions. Finally, we provide a numerical
method to approximate the weight and its applications to sensitivity analysis.

The purpose of the third chapter is to explain the intertwining technique proposed in (Bon-
nefont and Joulin 2014) for the one-dimensional case, used to upper bound the optimal constants
of weighted Poincaré inequalities. We provide a general proof for the one-dimensional case, under
ideal conditions, and then for the multi-dimensional case we limit ourselves to employ the inter-
twining approach to show its utility by recovering an already established upper bound in (Nguyen
2013) for convex measures.
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Chapter 1

Background: Sensitivity analysis and

Poincaré inequalities

1.1 Sensitivity analysis

Sensitivity analysis is the �eld dedicated to measure the volatility of a mathematical model (an

output), with respect to the perturbation of the variables on which it depends (inputs), and to

quantify the in�uence of these variables within the model. To be more precise, letf : Rd �! R

be a function and letX 1; : : : ; X d be random variables. The random variables are what we called

the inputs and f (X 1; : : : ; X d) is the output, the mathematical model.

For example we can consider a study case of an industrial site protected by a dyke, initially

proposed by (Rocquigny 2006) and later taken up in (Iooss and Lemaître 2015). The dyke pre-

vents the river from a�ecting the industrial site. However, the variable river course produces

over�ows that increase the cost of maintenance of the dyke. In this case the inputs are modeled

as independent random variables with distributions as described in the table below. A graphic

representation of the problem is found in the Figure 1.1.

Input Meaning Probability distribution

Q Max. �ow rate (m3=s) G(1013; 558) on [500; 3000]

K s Strickler coe�cient N (30; 64) on [15; 1 )

Zv Downstream level T (49; 50; 41)

Zm Upstream level T (54; 55; 56)

L River length T (4990; 5000; 5010)

B River width T (295; 300; 305)

Hd Dyke height U([7; 9])

Cb Bank height T (55; 55:5; 56)

G(�; � ) is the Gumbel distribution with location � 2 R and scale� > 0, and T (a; c; b) (a <

c < b) is the triangular distribution with minimum value a, modec and maximum valueb. We do
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Figure 1.1: Graphical representation of the dyke and river problem that shows the variables

involved.

not provide the densities of those distributions now to avoid losing our interpretative objective;

they are de�ned in Section 2.2.1 where we make a numerical application for the two models that

we introduce below. It is also worth to mention that Gumbel distributions are used to simulate

extreme values.

The outputs of our interest are:

ˆ the maximal annual over�ow (measured in meters)

S = Zv � Hd � Cb +

0

@ Q
BK s

s
Zm � Zv

L

1

A

3
5

;

where the quantity inside the parenthesis is the maximal river height,

ˆ the annual cost of the dyke maintenance in million of euros

C = 1S> 0 +
�
0:2 + 0:8

�
1 � e� � 1000

S 2
��

1S� 0 +
1
20

max (Hd; 8) :

We want to study the variation of S and C with respect to each random variable or a group of

random variables. To ful�ll our mission we usesensitivity indices, tools that belong to sensitivity

analysis. We focus on two of them:Sobol indicesand DGSM (Derivative based Global Sensitivity

Measure) indices, both belonging to a group of indices calledglobal sensitivity indices. The

interested reader can consult (Iooss 2011), who made a compendium of this type of methods.

1.1.1 Sobol and DGSM indices

In order to give a de�nition of Sobol indices we need theHoe�ding-Sobol decomposition, �rst

introduced by (Hoe�ding 1948) and then reformulated by Ilya Sobol in (Sobol and Gershman
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1995). We write such a decomposition further down and from now on we assume that the random

variablesX 1; : : : ; X d are independent. This assumption endows the elements of the decomposition

a very important property. In the following, we note by X I the random vector formed by the

random variablesX i with i 2 I and X � I : = X f 1;:::;dgnI .

De�nition 1.1 (Hoe�ding-Sobol decomposition). Let X = ( X 1; : : : ; X d) a vector of independent

random variables andf : Rd �! R a function such thatE[jf (X )j2] < 1 . There exists a unique

decomposition off (X ) given by

f (X ) =
X

I �f 1;:::;dg

f I (X I ); (1.1)

where the sum is taken over all the subsets off 1; : : : ; dg (including the empty set), such that

E[f I (X I )jX J ] = 0; for all I � f 1; : : : ; dg and all J ( I: (1.2)

For the empty set the element of the decomposition is the constant functionf ; = E[ f (X )].

Condition (1.2) characterizes the Hoe�ding-Sobol decomposition and establishes its uniqueness.

Indeed, taking the expectation (which corresponds to the conditional expectation givenX ; ) in

(1.1) and using (1.2) for all subsets excepting for the empty set we obtain the �rst element of the

decompositionE[f (X )] = f ; . Next, taking the conditional expectation givenX i (i 2 f 1; : : : ; dg)

and using again the relation (1.2) we get

E [f (X )jX i ] = E [ f (X )] + f i (X i )

and we obtain f i (X i ) = E [ f (X )jX i ] � E [f (X )]. We can continue in the same way, with subsets

containing two indices, then with subsets containing three indices, etc., to recover all thef I (X I )'s

with the recursive formula

f I (X I ) = E [ f (X )jX I ] �
X

J ( I

f J (X J ):

Condition also implies thatE [f I (X I )f J (X J )] = 0 for eachI and J distinct, as we check below.

ˆ If I ( J we condition with respect toX I to get

E [f I (X I )f J (X J )] = E [E [ f I (X I )f J (X J )jX I ]] = E [ f I (X I )E [f J (X J )jX I ]] = 0:

ˆ If I \ J 6= ; and one of them is not a subset of the other one we condition with respect to

(for example) X I , so that

E [f I (X I )f J (X J )] = E
h
f I (X I )E

h
f J (X J )

�
�
�X I

ii
= E

h
f I (X I )E

h
f J (X J )

�
�
�X I \ J

ii
= 0;

where the second equality is due to the fact thatX J does not depend onX I nJ

This in turn implies, since eachf I (X I ) is centered (thanks again to (1.2)), that we can decompose

the total variance of f (X ) as a sum of variances:

Var (f (X )) = Var

0

@
X

I �f 1;:::;dg

f I (X I )

1

A =
X

I;J �f 1;:::;dg

Cov (f I (X I ); f J (X J )) =
X

I �f 1;:::;dg

Var (f I (X I )) :
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It is then natural to think that each f I (X I ) contains the information of the modelf (X ) with

respect to the vectorX I only. With this idea in mind, we provide the de�nition of the Sobol

indices as the partial variances over the total variance.

De�nition 1.2 (Sobol indices). Let X = ( X 1; : : : ; X d) a vector of random variables andf : Rd �!

R be a function. The Sobol index associated withI � f 1; : : : ; dg is de�ned as

SI =
Var (f I (X I ))
Var (f (X ))

and the total Sobol index associated withI is the sum of the variances of all thef J (X J )'s that

contain information about the vectorX I , over the total variance:

Stot
I =

1
Var (f (X ))

X

J \ I 6= ;

Var (f J (X J )) =
1

Var (f (X ))
Var

0

@
X

J \ I 6= ;

f J (X J )

1

A :

The total Sobol index Stot
I measures the total in�uence of the random vectorX I within the

output f (X 1; : : : ; X d) and, since the sum of all Sobol indices is one, it is very interpretative if we

think about it as the relevance percentage ofX I . By the other hand, a major disadvantage of Sobol

indices is their high computational cost due to their de�nition based on conditional expectations.

We shift our focus from Sobol indices and now we proceed to introduce another sensitivity

index known as DGSM (Derivative based Global Sensitivity Measure), whose de�nition is simpler

but we need to assume that the functionf is di�erentiable, at least in a week sense (see Section

1.2, page 10).

De�nition 1.3 (DGSM indices). Let X 1; : : : ; X d independent random variables andf : Rd �! R

a di�erentiable function in a weak sense. The DGSM index associated withI � f 1; : : : ; dg is

de�ned as

� I = E

2

4
X

i 2 I

�
�
�
�
�
@f
@xi

(X )

�
�
�
�
�

2
3

5 :

DGSM indices are the average variation off with respect to directionsx i for all i belonging to

I , so it is clear that they indicate the volatility of the random variablesX i in f (X 1; : : : ; X d), i 2 I .

Additionally, DGSM indices are cheap to compute if we know the partial derivatives off or if

we can approximate them numerically. However, the drawback with them is their incapability to

give an interpretative measure of the in�uence of the random variablesX i , since we do not have a

precise notion of when a derivative is small or large. For this reason we seek a relation between total

Sobol and DGSM indices in such a way that we can derive information aboutStot
I from � I . This

is achieved withPoincaré inequalities, that establishes the connection between sensitivity analysis

and functional inequalities. The next section is appropriately devoted to Poincaré inequalities.

For now, we limit ourselves to mention their restricted de�nition to smooth functions and how

this notion establishes the relation between both indices.

We say that a random vectorX = ( X 1; : : : ; X d) satis�es a Poincaré inequality withC > 0 if

Var (f (X )) � CE
h
jr f (X )j2

i
; for all f smooth enough; (1.3)
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where j � j is the Euclidean norm inRd. Later in Section 1.2 we precise the class of function we

work with to avoid the smooth enoughambiguity.

With this notion on the table the following proposition shows its application to sensitivity

analysis.

Proposition 1.1. Let X = ( X 1; : : : ; X d) be a vector of random variables such thatX I (I �

f 1; : : : ; dg) and X � I are independent. Letf : Rd �! R be a smooth function. Suppose that the

vector X I satis�es a Poincaré inequality with some constantCI > 0. Then the following inequality

holds

Stot
I � CI

� I

Var (f (X ))
:

Proof. We have to show that

Var

0

@
X

J \ I 6= ;

f J (X J )

1

A � CI � I :

Since
P

J \ I 6= ; f J (X J ) is a centered random variable we have that

Var

0

@
X

J \ I 6= ;

f J (X J )

1

A = E

2

6
4

0

@
X

J \ I 6= ;

f J (X J )

1

A

2
3

7
5

= E

2

6
4E

2

6
4

0

@
X

J \ I 6= ;

f J (X J )

1

A

2�
�
�
�X � I

3

7
5

3

7
5 :

Since we �x X � I with the conditional expectation, by independence ofX I and X � I , the random

quantity inside it only depends onX I and it is the expectation ofE
� � P

J \ I 6= ; f J (X J )
� 2

�
�
�
�X � I

�

(with

X I considered �xed). Furthermore,
P

J \ I 6= ; f J (X J ) is centered with the conditional expectation

with respect to X � I , since

E

2

4
X

J \ I 6= ;

f J (X J )
�
�
�X � I

3

5 =
X

J \ I 6= ;

E
h
f J (X J )

�
�
�X � I

i
=

X

J \ I 6= ;

E
h
f J (X J )

�
�
�X J n(I \ J )

i
= 0:

Where in the two last equalities we used again the fact thatX I and X � I are independent (note

that J \ (� I ) = J n(J \ I )) and the overlapping condition (1.2). This allows us to apply Poincaré

inequality (1.3) to the function
P

J \ I 6= ; f J (as a function ofx I , with x � I �xed). It follows that

Var

0

@
X

J \ I 6= ;

f J (X J )

1

A � E

2

6
4CI E

2

6
4

X

i 2 I

0

@ @
@xi

0

@
X

J \ I 6= ;

f J (X J )

1

A

1

A

2�
�
�
�X � I

3

7
5

3

7
5

= CI E

2

4
X

i 2 I

 
X

J 3 i

@fJ
@xi

(X J )

! 2
3

5 (1.4)

But thanks to the decomposition off , for i 2 I �xed we have that

@f
@xi

=
@

@xi

0

@
X

J �f 1;:::;dg

f J

1

A =
X

J 3 i

@fJ
@xi

;

which is the same expression that appears in the expectancy on the right-hand side of (1.4), thus

the proof is complete.
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Proposition 1.1 allows us to doscreeningwith the random variables X i , i 2 I . This means

that, instead of determining that X i is in�uential, we decide that it is not relevant to the model

f (X ) if our observations show us that, for example,

Stot
I � CI

� I

Var(f (X ))
� 5%:

We can estimate numerically the variance off (X ) with the Monte-Carlo method and the DGSM

index � I as well if we know the derivatives off or if we can approximate them numerically, which

is usually the case. The next task is then to learn to determine the best Poincaré constant, given

a random vectorX , or to �nd upper bounds for it. We deal with it in the next section and in

Chapter 3.
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1.2 Poincaré inequalities

Poincaré inequalities in probability theory owe their name to the homonymous inequality in theory

of Sobolev spaces. Classical Poincaré inequality states that if
 is a subset ofRd bounded in at

least one direction, then there exists a constantC > 0 such that

kf kL 2 (
) � C kr f kL 2 (
) ;

for every function f in the Sobolev space ofzero traceH 1
0 (
) . As we do not delve into this speci�c

space, we recommend Section 9.4 of (Brezis 2011) to the interested reader. Althought Poincaré

inequalities in probability theory are inspired from the classical Poincaré inequality for Sobolev

spaces, it is important to keep in mind that they are very di�erent mathematical concepts.

In this section, we limit ourselves to introduce Sobolev spaces de�ned from a probability

measure instead of the Lebesgue measure and present a related result on spectral decomposition

that lead us to characterize the optimal Poincaré constant. Everything established here provides

a summary of material extracted from Roustantet al. (2017), adapted to the multi-dimensional

case, and the spectral theorem comes from (Allaire 2007).

De�nition 1.4 (Lebesgue space). Let 
 � Rd be an open set and� a probability measure on
 .

The Lebesgue spaceL2
� (
) is the set of (equivalent classes given by the� -almost-surely equality

of) measurable functions such that
R


 jf (x)j2 � (dx) < 1 . L2
� (
) is a Hilbert space with the inner

product

hf; g i L 2
�

=
Z



f (x)g(x) � (dx); for all f; g 2 L2

� (
) :

De�nition 1.5 (Weak derivative and Sobolev spaces). Given a function f , we say that another

function g is the i th-weak derivative off if
Z



f (x)

@'
@xi

(x) dx = �
Z



g(x)' (x) dx; for all ' 2 C 1

0 (
) :

We noteg = @f
@xi

. The Sobolev spaceH 1
� (
) is space of functions inL2

� (
) such that all their weak

derivatives are also inL2
� (
) , that is

H 1
� (
) =

(

f 2 L2
� (
)

�
�
�

@f
@xi

2 L2
� (
) ; for all i 2 J1; dK

)

:

H 1
� (
) is a Hilbert space with the inner product

hf; g i H 1
�

=
Z



f (x)g(x) � (dx) +

Z



r f (x) � r g(x) � (dx); for all f; g 2 H 1

� (
) :

Now we can de�ne properly the Poincaré inequality (in probability theory) for Sobolev Spaces.

De�nition 1.6 (Poincaré inequality). Let 
 � Rd be an open set and let� be a probability measure

on 
 . We say that � satis�es a Poincaré inequality withC > 0 if

Var� (f ) :=
Z




�

f (x) �
Z



f (y) � (dy)

� 2

� (dx) � C
Z



jr f (x)j2 � (dx); for all f 2 H 1

� (
) : (1.5)

The smallest (optimal) constantC for which (1.5) holds is denoted byCP (� ).
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By de�nition the constant CP (� ) is given by

CP (� ) = sup
f 2 H 1

� (
)
f 6= constant

Var� (f )
R


 jr f (x)j2 � (dx)
:

1.2.1 Spectral interpretation

We move on theL2
� (
) spectral decomposition theorem that we use to characterize the constant

CP (� ). We �rst position in the context of general Hilbert spacesV � H , such that V has its own

inner product h �; � i V , which is di�erent from the inner product h �; � i H that it inherits from H .

We need the notion of compact embedding between spaces and the notion of coercivity of a bilinear

operator. First, we say thatV is compactly embedded inH if for every bounded sequence inV,

there exists a sub-sequence that convergences inH . Secondly, a bilinear operatora: V � V �! R

is said to be coercive if there exists a constant� > 0 such that

a(u; u) � � kuk2
V ; for all u 2 V:

The following spectral theorem is extracted from (Allaire 2007), page 214.

Theorem 1.1 (Spectral theorem). Let V and H be two real in�nite dimensional Hilbert spaces.

We assume thatV � H with compact injection and thatV is dense inH . Let a: V � V �! R a

symmetric bilineal form which is continuous and coercive overV. Then there exists an increasing

sequence(� n )n2 N of real non-negative numbers which tend to in�nity, and there exists a Hilbert

basis ofH , (un )n2 N, such that

un 2 V; and a(un ; v) = � nhun ; vi H ; for all v 2 V:

We call the theorem abovespectral theorembecause eachun and � n are the solution of the

spectral problem: �nd u 2 V and � 2 R such that

a(u; v) = � hu; vi H ; for all v 2 V:

We take the particular case withV = H 1
� (
) and H = L2

� (
) but they do not satisfy the

requirement of the spectral theorem (1.1) yet. In order to achieve this, we assume that
 is

bounded of classC 1 (check the page 272 of (Brezis 2011) for the de�nition of classC 1 sets, but

basically it means that the boundary of
 is smooth) and that the measure� admits a density

� with respect to the Lebesgue measure which is bounded from above and from below by two

constantsm; M > 0:

m � � (x) � M; for all x 2 
 : (1.6)

Such an assumption implies, if we denote the Lebesgue measure by Leb, thatL2
� (
) = L2

Leb(
) and

H 1
� (
) = H 1

Leb(
) . Moreover, the pairs of normsk � kL 2
�
, k � kL 2

Leb
and k � kH 1

�
, k � kH 1

Leb
are equivalent

to each other. Then the results on the spacesL2
Leb(
) and H 1

Leb(
) are still valid for the spaces

L2
� (
) and H 1

� (
) . In particular, H 1
� (
) is dense inL2

� (
) and the Rellich compactness theorem

(Theorem 4.3.21 in (Allaire 2007)) states thatH 1
� (
) is compactly embedded inL2

� (
) . Now we

can justify the spectral theorem forL2
� (
) and H 1

� (
) .
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Theorem 1.2. Let 
 � Rd be an open set of classC 1, � (dx) = � (x) dx a measure on
 such

that (1.6) is true. Then there exists an increasing sequence(� n )n2 N of real positive numbers which

tends to in�nity, and there exists a Hilbert basis ofL2
� (
) , (f n )n2 N 2 H 1

� (
) N, such that
Z



r f n (x) � r g(x) � (dx) = � n

Z



f n (x)g(x) � (dx); for all g 2 H 1

� (
) : (1.7)

Furthermore, the constant functionf 0 = 1 is the eigenfunction associated with the �rst eigenvalue

� 0 = 0. The smallest non null eigenvalue� 1 is called thespectral gap.

Proof. For the proof we use the spectral theorem 1.1 withV = H 1
� (
) and H = L2

� (
) . The

bilineal operator we consider is theH 1
� (
) inner product, which is obviously continuous and

coercive. Then by theorem 1.1 there exists a sequence of eigenvalues(~� n )n2 N and its respective

sequence of eigenfunctions(f n )n2 N 2 H 1
� (
) N, which is a Hilbert basis ofL2

� (
) , such that
Z



f n (x)g(x) � (dx) +

Z



r f n (x)r g(x) � (dx) = ~� n

Z



f n (x)g(x) � (dx); for all g 2 H 1

� (
) :

To recover (1.7) we subtract the term
Z b

a
f n (x)g(x) � (dx) and take � n = ~� n � 1.

Theorem 1.2 gives us a nice expression ofCP (� ) in terms of the eigenvalues of the spectral

problem (1.7). The fact is that the CP (� ) is equal 1=� 1, where � 1 is the spectral gap given in

Theorem 1.2, and that the respective eigenfunctionf 1 is such that the Poincaré inequality holds

with equality. Indeed, on one hand we have that
Z



jr f 1(x)j2 � (dx) = � 1

Z



jf 1(x)j2 � (dx)

(such equality will show that the Poincaré inequality holds with equality withf 1). Then

CP (� ) = sup
f 2 H 1

�
f 6= constant

Var� (f )
R


 jr f (x)j2 � (dx)
�

Var� (f 1)
R


 jr f 1(x)j2 � (dx)
=

Var� (f 1)

� 1
R


 jf 1(x)j2 � (dx)
: (1.8)

But f 0 = 1 and eachf n (n 2 N) are orthogonal inL2
� (
) , so that

Var� (f 1) =
Z



jf 1(x)j2 � (dx) �

� Z



f 1(x) � (dx)

� 2

=
Z



jf 1(x)j2 � (dx)

and CP (� ) � 1=� 1. By the other hand for f 2 H 1
� (
) , since(f n )n2 N is a Hilbert basis ofL2(
) ,

there exists a sequence of real numbers(an )n2 N such that f =
P

n2 N an f n = a0 +
P

n� 1 an f n . Thus

we have

Var� (f )
R


 jr f (x)2j � (dx)
=

Var�

� P
n� 1 an f n

�

P
n� 1 an � n

R

 f n (x)f (x) � (dx)

=
P

n� 1 jan j2 Var� (f n )
P

n� 1 an � n
R


 f n (x)
P

m� 0 am f m (x) � (dx)

=
P

n� 1N jan j2
P

n� 1 � n jan j2

�
1
� 1

:
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Then, by taking the supremum over the functionsf 2 H 1
� (
) , it follows that CP (� ) � 1=� 1.

There is another interpretation of the spectral gap� 1 in terms of the spectral theorem of a

di�erential equation if the density of � is expressed as� (x) = e� V (x) , with V : 
 �! R a smooth

function. It turns out that the considered spectral theorem: �nd � � 0 and f 2 H 1
� (
) such that

Z



r f (x) � r g(x) � (dx) = �

Z



f (x)g(x) � (dx); for all g 2 H 1

� (
) ; (1.9)

is the variational formulation of the spectral problem in partial di�erential equations: �nd � � 0

and f 2 C 1(
) \ C 2(
) such that
8
><

>:

Lf (x) := � f (x) � r V(x) � r f (x) = � �f (x) on 
 ;
@f
@n

= 0; on @
 ;
(1.10)

where @f
@n is the di�erential of f in the direction of the unit normal n of 
 .

Indeed, on one hand, if� � 0 and f 2 C 1(
) \ C 2(
) are solution of (1.10), for everyg 2 H 1
� (
)

we have

�
Z



f (x)g(x) � (dx) =

Z



� Lf (x)g(x) � (dx)

= �
Z



� f (x)g(x)e� V (x) dx +

Z



r V(x) � r f (x)g(x)e� V (x) dx:

We introduce  : H 1
� (
) �! L2(@
) the trace operator (check Section 5.5 in (Evans 2010)) that

extends the notion of values on the boundary of functions inH 1
� (� ). Taking g and integrating by

parts the �rst integral on the right hand side of last display it follows that

�
Z



f (x)g(x) � (dx) =

Z



r f (x) � r

�
ge� V

�
(x) dx �

Z

@


@f
@n

 (g) ds+
Z



r V(x) � r f (x)g(x)e� V (x) dx

=
Z



r f (x) � r g(x)e� V (x) dx �

Z



r V(x) � r f (x)g(x)e� V (x) dx +

Z



r V(x) � r f (x)g(x)e� V (x) dx

=
R


 r f (x) � r g(x) � (dx);

and this is precisely (1.9). On the other hand, iff is a smooth function that satis�es (1.9) with

some� � 0, to recover (1.10) we suppose thatheV 2 H 1
� (
) for every h 2 H 1

� (
) . For example,

it is enough to suppose that each@V
@xi

is bounded. For allg 2 H 1
� (
) we have

�
Z



f (x)g(x) � (dx) =

Z



r f (x) � r g(x)e� V (x) dx

= �
Z



� f (x)g(x)e� V (x) dx +

Z



r V(x) � r f (x)g(x)e� V (x) +

Z

@


@f
@n

 (ge� V )ds

= �
Z



Lf (x)g(x)e� V (x) dx +

Z

@


@f
@n

 (ge� V )ds: (1.11)

In particular if we take g 2 C 1
0 (
) , then

�
Z



f (x)g(x) � (dx) = �

Z



Lf (x)g(x) � (dx); 8g 2 C 1

0 (
)

and by density of C 1
0 (
) in L2

� (
) we obtain that Lf = � �f . Finally, injecting the latter in

(1.11) and taking h 2 H 1
� (
) and g = heV it follows that

Z

@


@f
@n

 (h)ds = 0; for all h 2 H 1
� (
) :

13



We conclude that @f
@n = 0 thanks to the fact that the image of is dense inL2(@
) .

Actually, everything we made here makes sense iff belongs to the Sobolev space

H 2
� (
) =

(

g 2 L2(
)
�
�
�

@g
@xi

;
@2g

@xi @xj
2 L2

� (
) ; for all i; j 2 J1; dK

)

;

where the second derivatives ofg are also de�ned in a weak sense as functions such that

Z



g(x)

@2'
@xi @xj

(x) dx =
Z




@2g
@xi @xj

(x)' (x) dx; for all ' 2 C 1
0 (
) :

Therefore, if the eigenfunctionf 1 associated with the spectral gap� 1 belongs toH 2
� (
) , then � 1

is the �rst non null eigenvalue of the di�erential operator � L in (1.10).

Next, we present a powerful criterion to determine if an eigenfunction of the operatorL is

e�ectively the one associated with the inverse of the optimal Poincaré constant, but it is speci�c

for the one dimensional case.

Proposition 1.2. Let � be a probability measure on(a; b) � R (a < b). Suppose that there exists

an non null eigenfunctionf of � L which is strictly monotonic and is such thatf 0(a) = f 0(b) = 0 .

Then, if � is its corresponding eigenvalue, we have thatCP (� ) = 1 =� .

For the proof, we repeat what we did in (1.8) to obtain thatCP (� ) � 1=� . In this case we

show that f is centered by the fundamental calculus theorem since

Z b

a
f (x) � (dx) =

1
�

Z b

a
�f (x)e� V (x) dx

=
1
�

Z b

a
(� Lf )(x)e� V (x)

= �
1
�

Z b

a
(f 00(x) � V 0(x)f 0(x)) e� V (x) dx

= �
1
�

Z b

a

�
f 0e� V

� 0
(x) dx

= �
1
�

�
f 0(b)e� V (b) � f 0(a)e� V (a)

�

= 0:

The converse inequality employsChen's variational formula, that we state in the next subsection

and that we re-demonstrate for measures onR in Chapter 3, via intertwining techniques.

Remarks. ˆ In this case the spectral theorem (Theorem 1.2, page 12) is not needed.

ˆ We can also adapt the result ifb= 1 or (and) a = �1 , if instead of the boundary conditions,

we suppose thatf is such thatlimx!1 f 0(x)e� V (x) = 0 or (and) limx!�1 f 0(x)e� V (x) = 0.

We end this section mentioning that it is not always possible, or it is complicated, to obtain the

optimal Poincaré constantCP (� ) as the inverse of the spectral gap; for example if its associated

eigenfunction does not exist. This could be the case if the eigenfunctions do not form a countable

family and then the spectral gap might not be an eigenvalue but rather de�ned as an accumulation

14



point of eigenvalues. Another possible problematic case could occur if we do not know an easy

explicit expression for the optimal constant. Therefore, another of our interests is to provide

upper bounds forCP (� ), when we are unable to calculate it. Some usual criteria are presented in

Subsection 1.2.3 and a recent method is fully dedicated in Chapter 3.

1.2.2 Examples

In a spirit of exempli�cation, in this subsection we exhibit the optimal Poincaré constant of

some well known probability distributions in the one dimensional setting (uniform, normal and

exponential distributions).

Uniform distribution U(a; b).

The density function of the uniform distribution for x 2 [a; b] can be written as� (x) = 1
b� a =

exp(� log(b� a)). Then the spectral interpretation proposed in the preceding section tells us that

the optimal constant of the Poincaré inequality for the uniform distribution is the inverse of the

smallest eigenvalue� > 0 of the following problem:
8
<

:
� �f (x) = f 00(x) � (log(b� a))0f 0(x) = f 00(x); for all x 2 (a; b);

f 0(a) = f 0(b) = 0 ;
(1.12)

In order to have a nicer equation to solve, we re-scalef with the function de�ned as g(x) =

f ((b� a)x + a), for all x 2 [0; 1]. Sinceg00(x) = ( b� a)2f 00(x), problem 1.12 becomes
8
<

:
g00(x) + ( b� a)2�g (x) = 0 ; for all x 2 (0; 1);

g0(0) = g0(1) = 0 :

Its general solutions are expressed as

g(x) = A cos
�
(b� a)

p
�x

�
+ B sin

�
(b� a)

p
�x

�
; (1.13)

with A; B 2 R. The constant B has to be equal to zero thanks to the �rst boundary condition

because

g0(0) = B
p

� = 0:

From the second boundary condition which isg0(1) = � A(b � a)
p

� sin
�
(b� a)

p
�

�
= 0, we do

not want A to be equal to zero because otherwiseg would be identically zero. Then this condition

characterizes our� 's as � = 1
(b� a)2 k2� 2, with k 2 N. But, since we are only interested in the

smallest eigenvalue, which is the inverse of the optimal Poincaré constantCP , we takek = 1 and

obtain that

CP = 1=� 1 =
1
� 2

(b� a)2:

Once discovered the optimal Poincaré constant of the uniform distributionU([a; b]) we complete

this example by providing the eigenfunction associated with� 1. Recall that it is the function for

which the Poincaré inequality holds with equality. By takingA = 1 (this is possible because the

eigenfunction is unique up to scaling) and replacing� 1 in (1.13) we obtain the function

g(x) = cos

 

(b� a)

s

� 2
1

(b� a)2
x

!

= cos (�x ) :
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Finally, returning scaling, the wanted eigenfunction is

f (x) = g
� x � a

b� a

�

= cos
�

�
x � a
b� a

�

; for all x 2 [a; b]:

Normal distribution N (0; 1).

We deal with the standard case only because, for the general case, we can consider a scaling, as

we did in the previous example. The writing of the density function ofN (0; 1), � (x) = 1p
2�

e� x 2

2 =

e
�

�
x 2

2 � 1
2 log(2� )

�

, allows us to see that the di�usion operator associated with the Poincaré inequality

is de�ned as

Lf (x) = f 00(x) �

 
x2

2
�

1
2

log(2� )

! 0

f 0(x) = f 00(x) � xf 0(x):

Easily we recognize that the identity functionf (x) = x is a eigenfunction of� L with its respective

eigenvalue� = 1. Then, sincef is monotonic andlimx!�1 f 0(x)e� x 2

2 = lim x!1 f 0(x)e� x 2

2 = 0,

Proposition 1.2 along with the remarks below of it ensure thatf is indeed the eigenfunction

associated with the inverse of the optimal Poincaré constantCP , so that CP = 1=� = 1.

Moreover, it is possible to build a unique sequence of orthonormal polynomials(Hk)k2 N that

form a basis ofL2
� (R) (� (dx) = 1p

2�
e� x 2

2 dx), known asHermite polynomialsand such that each

Hk (k 2 N) is of order k and an eigenfunction of� L , with eigenvalue � k = k. Then, since
1p
2�

R
R x2e� x 2

2 = 1, the identity function is exactly the polynomial H1. For a lot more of information

about Hermite polynomials we recommend the Section 2.7.1 of (Bakry, Gentil, and Ledoux 2013).

It is worth mentioning that, for reasons of applicability, optimal constants of Poincaré in-

equalities for truncated measures on intervals are of our interest as well. However, truncating

the measure modi�es the associated eigenvalue problem by adding boundary conditions, which

usually makes it theoretically more di�cult to deal with. For example, the eigenvalue problem

associated with the Poincaré inequality for the truncated normal measure on the interval[a; b],

� (dx) = 1
Z

1p
2�

e� x2=2 (where Z is the renormalization constantZ = 1p
2�

Rb
a e� x2=2 dx), is written as

8
<

:
f 00(x) � xf 0(x) = � �f 0(x); for all x 2 (a; b);

f 0(a) = f 0(b) = 0 :

Here the identity function can not be an eigenfunction because it does not satisfy the boundary

condition. Roustant et al. (2017) recognized that actually the eigenfunctions areKummer series

and characterized the spectral gap in terms of them.

Exponential distribution E( ) (  > 0).

As mentioned, it is not always possible to get the optimal constant of a Poincaré inequality

explicitly as the inverse of the spectral gap if the associated eigenfunction does not exist. The

Poincaré inequality for the exponential distribution ejemplify this idea. Denoting the measure

� (dx) = e � x 1[0;1 ) ( > 0), by a method di�erent than the spectral interpretation, we show that

CP (� ) = 4 = 2. On one hand, (Bobkov and Ledoux 1997) (page 387) came up with the idea to
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obtain the �rst inequality CP (� ) � 4= 2. For every di�erentiable function f we have that

Var� (f ) = min
a2 R

� Z 1

0
(f (x) � a)2 � (dx)

�

�
Z 1

0
(f (x) � f (0))2 e � x dx:

We integrate by parts the integral on the right-hand side inequality in order make appear the

norm kf 0kL 2
�
. We have

Z 1

0
(f (x) � f (0))2 e � x dx = � (f (x) � f (0))2 e� x

�
�
�
�

1

0
+

Z 1

0
2(f (x) � f (0))f 0(x)e� x dx:

Hölder's inequality lets us control

Z 1

0
(f (x) � f (0))2 e � x dx � 2

� Z 1

0
(f (x) � f (0))2 e� x dx

� 1
2

� Z 1

0
jf 0(x)j2 e� x dx

� 1
2

=
2


� Z 1

0
(f (x) � f (0))2 e � x dx

� 1
2

� Z 1

0
jf 0(x)j2 e � x dx

� 1
2

:

Then Z 1

0
(f (x) � f (0))2 e � x dx �

4
 2

Z 1

0
jf 0(x)j2 e � x dx

and

Var� (f ) �
Z 1

0
(f (x) � f (0))2 e � x dx �

4
 2

Z 1

0
jf 0(x)j2 e � x dx;

so that CP (� ) � 4= 2.

On the other hand, to achieve the converse inequality we approximateCP (� ) from below by

the variances of functionsf " (x) = e"x over the integrals of their derivatives squared. For any

0 < " < = 2 (so that f " 2 H 1
� ((0; 1 ))) we compute

CP (� ) = sup
f 2 H 1

� ((0 ;1 ))
f 6= constant

Var� (f )
R1

0 jf 0(x)j2 e � x dx

�
R1

0 jf " (x)j2 e � x dx � (
R1

0 f " (x)e � x dx)2

R1
0 jf 0

" (x)j2 e � x dx

=


R1
0 e(2" �  )x dx �  2

� R1
0 e(" �  )x dx

� 2

" 2
R1

0 e(2" �  )x dx

=
1

2" �  � 
(" �  )2

" 2

2" � 

=
1 �  (2" �  )

(" �  )2

"2

=
(" �  )2 �  (2" �  )

"2(" �  )2
:

The limit " ! = 2 entails that CP (� ) � 4= 2.
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NeverthelessCP (� ) is not an eigenvalue of the spectral problem associated with the Poincaré

inequality. If that was the case, then there would be a functionf such that
8
<

:
f 00(x) � f 0(x) = �  2

4 f (x); for all x > 0;

f 0(0) = 0 :

Then one can prove that such function isf (x) =
�
1 � 1

2 x
�

e
1
2 x , but it does not even belong to

L2
� ((0; 1 )), and consequently it can not be an eigenfunction.

1.2.3 Usual criteria for bounding the optimal constant in dimension

one

We present three results used to control the optimal constant of the Poincaré inequality for any

probability measure. The �rst of them is derived from (Muckenhoupt 1972), who not only bounds

the optimal constant from both sides, but also characterizes if a probability measure satis�es a

Poincaré inequality. This form of the theorem is extracted from (Roustant, Barthe, and Iooss

2017).

Theorem 1.3 (Muckenhoupt). Let � (dx) = � (x) dx be a probability measure on(a; b) (�1 �

a < b � 1 ). Let m be a median of� , that is, m 2 (a; b)) such that � ((a; m]) � 1=2 and that

� ([m; b)) � 1=2. De�ne the quantities

A � = sup
a<x<m

� ((a; x))
Z m

x

1
� (y)

dy; A+ = sup
m<x<b

� ((x; b))
Z x

m

1
� (y)

dy:

Then � admits a Poincaré inequality if and only ifA � and A+ are �nite, and in this case

1
2

max(A � ; A+ ) � CP (� ) � 4 max(A � ; A+ ):

The second bound we consider is a classical result that pertains to Bakry-Emery theory (see

for example the Proposition 4.8.1 in (Bakry, Gentil, and Ledoux 2013)) dedicated to probability

measures� (dx) = e� V (x) , with V that satis�es a V 00� c (c > 0). In general, if V is convex,� is

known as a log-concave measure.

Theorem 1.4. Let � (dx) = e� V (x) dx be a probability measure on(a; b) (�1 � a < b � 1 ) with

V 2 C 2((a; b)) such thatV 00� c (c > 0). Then

CP (� ) �
1
c
:

As an example of application we can think about the standard normal distribution. Given

that the density function is � (x) = 1p
2�

e� x2=2, we have thatV 00(x) = ( x2=2) = 1. Then, Theorem

1.4 leads us to the �rst bound for the optimal Poincaré constantCP (� ) � 1 (remember that the

second example in the previous section stated thatCP (� ) = 1 ).

The concluding result we display in this segment is called the Chen's variational formula (Chen

1999). Once again the version of this theorem is taken from (Roustant, Barthe, and Iooss 2017).
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Theorem 1.5 (Chen's variational formula). Let � (dx) = e� V (x) be a probability measure on

(a; b) (�1 � a < b � 1 ), with V 2 C 2((a; b)), and let L be the di�usion operator de�ned as

Lf = f 00� V 0f 0. Then
1

CP (� )
= sup

g0> 0
inf

x2 (a;b)

(� Lg(x))0

g0(x)
:

In particular, Chen's variational formula allows to obtain one of the desired converse inequality

to prove the Proposition 1.2 (page 14). Indeed, iff is a monotonic eigenfunction of� L with

eigenvalue� > 0, then

1
CP (� )

� inf
x2 (a;b)

(� Lf (x))0

f 0(x)
= inf

x2 (a;b)

(�f 0(x))0

f 0(x)
= �:

HenceCP (� ) � 1
� .

We supply a proof of Chen's variational formula for measures onR via intertwining arguments

in the last chapter of this writing (page 43).
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Chapter 2

Weighted Poincaré inequalities on

intervals

Other types of inequalities have been studied for multiple purposes. With the aim of providing

bounds for Sobol indices, in this section we consider one of them, calledweighted Poincaré in-

equality, which is a generalization of the classical Poincaré inequality. In the following we consider


 = ( a; b) (a < b) an open interval, a probability measure� (dx) = � (x) dx on (a; b) and a positive

function � 2 : 
 �! R+ .

De�nition 2.1. Let � (dx) = � (x) dx be a probability measure on
 = ( a; b) (a < b) and let

� 2 : (a; b) �! R+ be a positive function. We say that� satis�es a weighted Poincaré inequality

with weight � 2 and with constantC > 0 if

Var� (f ) =
Z b

a

 

f (x) �
Z b

a
f (y) � (dy)

! 2

� (dx) � C
Z b

a
� 2(x) jf 0(x)j2 � (dx); for all f 2 H 1

� (
) :

(2.1)

We denote the smallest constantC for which (2.1) holds byCP (�; � 2).

The study of weighted Poincaré inequalities has been addressed in several works, either for

a general weight or for some types of probability measures with a speci�c weight. Among them

we can cite: (Huguet 2023), dedicated toconvex measures; Bonnefont et al. (2016), dedicated to

exponential power distributionsand generalized Cauchy distributions; Songet al. (2018), where

they choose� 2 in such a way that (2.1) holds with equality with the function f (x) = x � E [� ] =

x �
Rb

a x � (dx).

One of the main reasons that inspires the study of weighted Poincaré inequalities is the fact

that they include probability measures that do not satisfy classical Poincaré inequalities, as for

example the so-calledheavy-tailed distributions. Furthermore, from what is written in the page

190 of (Bakry, Gentil, and Ledoux 2013), we know that if a probability measure� (on R for

example) satis�es a Poincaré inequality, then they have exponential moments:

Z

R
esx � (dx) < 1 for all s <

s
4

CP (� )
; (2.2)
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a property which is not satis�ed by heavy-tailed distributions like the Cauchy law� (dx) =
1

� (1+ x2 ) dx.

We have prepared three sections. In the �rst one we o�er the same theoretical background as

for the classical Poincaré inequality, demonstrating that for a given weight, the optimal constant

of the corresponding weighted Poincaré inequality is the inverse of the spectral gap of a di�usion

operator. In the second section we give a very small extension of the research of Songet al.

(2018). The considered problem here is di�erent: given a probability measure and the function

f (x) = x � E[� ], we look for the associated weight� 2. Next we propose a numerical method

to approximate such weight, the associated optimal Poincaré constantCP (�; � 2), and we show

its utility to sensitivity analysis in a practical case. Finally, in the third section we give a brief

summary of some usual criteria to bound the optimal constant in dimension one.

2.1 Spectral interpretation

We suppose that there are some constantsm1; m2; M1; M2 such that

0 < m 1 � � (x) � M 1; 0 < m 2 � � 2(x) � M 2: (2.3)

Then, the measures� and � (dx) = � 2(x)� (dx) are equivalent and have the same Lebesgue and

Sobolev spaces. Our assumption also preserves the spectral theory for classical Sobolev spaces, as

we did in last chapter.

Theorem 2.1. Let 
 = ( a; b) be an interval and� (dx) = � (x) dx a probability measure on


verifying (2.3). Then there exists an increasing sequence(� n )n2 N of real positive numbers which

tends to in�nity, and there exists a Hilbert basis ofL2
� (
) , (f n )n2 N 2 H 1

� (
) N, such that
Z b

a
� 2(x)f 0

n (x)g0(x) � (dx) = � n

Z b

a
f n (x)g(x) � (dx); for all g 2 H 1

� (
) : (2.4)

Furthermore, the constant functionf 0 = 1 is the eigenfunction associated with the �rst eigenvalue

� 0 = 0.

In this case each couple(� n ; f n ) is solution of the spectral problem: �nd� 2 R+ and f 2 H 1
� (
)

such that
Z b

a
� 2(x)f 0(x)g0(x) � (dx) = �

Z b

a
f (x)g(x) � (dx); for all g 2 H 1

� (
) : (2.5)

Proof. We use again the spectral theorem 1.1 (page 11) with the spacesH = L2
� (
) and V =

H 1
� (
) . Our bilineal form this time is

a: H 1
� (
) � H 1

� (
) �! R

(f; g ) 7�! a(f; g ) =
Z b

a
f (x)g(x) � (dx) +

Z b

a
� 2(x)f 0(x)g0(x) � (dx):

Condition (2.3) for � 2 guarantees the continuity and the coercivity ofa. Indeed, for the continuity

we have

a(f; g ) =
Z b

a
f (x)g(x) � (dx) +

Z b

a
� 2(x)f 0(x)g0(x) � (dx) � k f kL 2

�
kgkL 2

�
+ M 2 kf 0kL 2

�
kg0kL 2

�

� max(1; M2) kf kH 1
�

kgkH 1
�

:
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To expose the coercivity ofa we write

a(f; f ) =
Z



jf (x)j2 � (dx) +

Z



� 2(x) jf 0(x)j2 � (dx)

�
Z b

a
jf (x)j2 � (dx) + m2

Z b

a
jf 0(x)j2 � (dx)

� min(1; m2) kf k2
H 1

�
:

Once veri�ed that a satis�es the conditions of Theorem 1.1, this last one tells us that there exists

a sequence of eigenvalues(~� n )n2 N and its respective sequence of eigenfunctions(f n )n2 N 2 H 1
� (
) N,

a Hilbert basis ofL2
� (
) , that satisfy

Z b

a
f n (x)g(x) � (dx) +

Z b

a
� 2(x)f 0

n (x)g0(x) � (dx) = ~� n

Z b

a
f n (x)g(x) � (dx); for all g 2 H 1

� (
) :

We take � n = ~� n � 1 to recover (2.4).

Repeating exactly the same process done in last chapter in (1.8) (page 12) it can be shown

that the Poincaré constantCP (�; � 2) is equal to1=� 1.

As with the classical Poincaré inequality, when� (dx) = � (x) dx = e� V (x) dx, whereV : (a; b) �!

R and � 2 are di�erentiable functions, there exists a di�erential operatorL associated with the

weighted Poincaré inequality (2.1) in the sense that the spectral problem (2.5) is the variational

formulation of the spectral problem in partial di�erential equations: �nd f 2 H 2
� (
) and � � 0

such that 8
<

:

Lf (x) := 1
� (x) (� 2f 0� )0(x) = � �f (x) on (a; b);

f 0(a) = f 0(b) = 0 ;
(2.6)

A numerical method implemented to solve this spectral problem (an in particular to approximate

the optimal Poincaré constantC(�; � 2)) can be consulted in Appendix A.

Let us show the equivalence between the two problems. First, iff and � are solution of (2.6)

then, for everyg 2 H 1
� (
) we have

�
Z b

a
f (x)g(x)� (x) dx = �

Z b

a

�
� 2f 0�

� 0
(x)g(x) dx

I.P.P.=
h
� 2(x)f 0(x)� (x)g(x)

i �
�
�
b

a
+

Z b

a
� 2(x)f 0(x)g0(x)� (x) dx

=
Z b

a
� 2(x)f 0(x)g0(x)� (x) dx:

Conversely, it is possible to show that iff 2 H 1
� (
) such that the last equality is true, then it

belongs toH 2
� (
) (see the Theorem 2 of (Roustant, Barthe, and Iooss 2017)). This allows us to

integrate by parts to obtain

�
Z b

a
f (x)g(x)� (x) dx =

Z b

a
� 2(x)f 0(x)g0(x)� (x) dx

= �
Z b

a

�
� 2(x)f 0(x)� (x)

� 0
g(x) dx +

h
� 2(x)f 0(x)� (x)g(x)

i �
�
�
b

a

= �
Z b

a
Lf (x)g(x) dx + � 2(b)f 0(b)� (b)g(b) � � 2(a)f 0(a)� (a)g(a): (2.7)
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By taking g 2 C 1
0 (
) we obtain

�
Z b

a
f (x)g(x) � (dx) = �

Z b

a
Lf (x)g(x) � (dx); for all g 2 C 1

0 (
) :

The density of C 1
0 (
) in L2

� (
) leads us toLf = � �f . Replacing this last equality in (2.7) it

follows that

� 2(b)f 0(b)e� V (b)g(b) � � 2(a)f 0(a)e� V (a)g(a) = 0 :

We conclude that f 0(a) = f 0(b) = 0 if we take into consideration a functiong that vanishes in a

but not in b and another one that vanishes inb but not in a).

2.2 A speci�c choice of weight

Recall that the function f of problem (2.5) associated with the inverse of the optimal constant is

centered because it is orthogonal to the constant function1 in L2
� (
) . In addition, it can be shown

that f is the only monotonic solution (actually it is strictly monotonic) of the problem. One can

for example adapt the same idea introduced in Roustantet al. (2017), page 3093. We can then

propose a di�erent related problem considering� 2 not �xed: we �x instead f 1 := f 2 H 2
� (
) a

centered and strictly monotonic function, and force� 2 to be the weight for which f is the �rst

non constant solution of (2.6). For this new problem, the �rst thing to notice is that the we can

choose without lose of generality the eigenvalue� 1 to be one because if some function~� 2 satis�es

1
� (x)

�
~� 2f 0�

� 0
(x) = � �f (x); for all x 2 (a; b);

for some� > 0, then the weight ~� 2=� is the solution of

1
� (x)

�
~� 2f 0�

� 0
(x) = � f (x); for all x 2 (a; b): (2.8)

The solution � 2 of this last equation is easily obtained. We multiply� (x) on both sides to get

�
~� 2f 0�

� 0
(x) = � f (x)� (x):

Then, remembering thatf is strictly monotonic and so in particular f 0 > 0 (or f 0 < 0) on (a; b),

we have

� 2(x) =
1

f 0(x)� (x)

�

� 2(a)f 0(a)� (a) �
Z x

a
f (y)� (y) dy

�

for all x 2 (a; b); (2.9)

where the whole constantK := � 2(a)f 0(a)� (a) has to be equal to zero knowing that we want

Z b

a
� 2(x) jf 0(x)j2 � (dx) =

Z b

a
jf (x)j2 � (dx): (2.10)

Notice that (2.10) comes from (2.5) with� = 1 and g = f .
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Indeed, replacing� 2 in the left-hand side of the equality above it follows from (2.9) that

Z b

a
� 2(x) jf 0(x)j2 � (x) dx =

Z b

a
f 0(x)

�
� 2(x)f 0(x)� (x)

�
dx

=
Z b

a
f 0(x)

�

K �
Z x

a
f (y)� (y) dy

�

dx

= K (f (a) � f (b)) �
Z b

a
f 0(x)

� Z x

a
f (y)� (y) dy

�

dx: (2.11)

Next we exchange the order of the integrals via the Fubini theorem. This is allowed to do because
Z b

a

Z b

a
jf 0(x)f (y)j � (y) dy dx =

Z b

a
jf 0(x)j

Z b

a
jf (y)j � (y) dy dx;

where the integral on the right-hand side is �nite becausef belongs toL2
� (
) (so that the integral

inside is �nite) and becausef 0 belongs toL2
� (
) as well.

Interchanging the integrals in (2.11) we obtain

Z b

a
� 2(x) jf 0(x)j2 � (x) dx = K (f (a) � f (b)) �

Z b

a

 Z b

y
f 0(x) dx

!

f (y)� (y) dy

= K (f (a) � f (b)) �
Z b

a
(f (b) � f (y)) f (y)� (y) dy

= K (f (a) � f (b)) � f (b)
Z b

a
f (y)� (y) dy +

Z b

a
jf (y)j2 � (y) dy

= K (f (a) � f (b)) +
Z b

a
jf (y)j2 � (y) dy:

In the last step we used the fact thatf is a centered function. Finally, the mixing between the

last equation and the relation (2.10) gives us thatK = 0 and we obtain the weight, that from

now on we will callassociatedwith � and f , given by

� 2(x) = �
1

f 0(x)� (x)

Z x

a
f (y)� (y) dy for all x 2 (a; b): (2.12)

We can divide the functionf 0 sincef is strictly monotonic.

If f 0(a) 6= 0 and f 0(b) 6= 0 we also have that� 2(a) = � 2(b) = 0 sincef is centered (Dire que

nous n'avons pas les conditions du théorème spectrale), but iff is a function such that f 0(a) = 0 ,

f 00(a) exists and it is not null, or such that f 0(b) = 0 , f 00(b) exists it is non null, we can extend

the de�nition of � 2 to [a; b] with the values

� 2(a) = �
f (a)
f 00(a)

and � 2(b) = �
f (b)
f 00(b)

:

Indeed, given that f 0(a) = 0 and de�ning the di�erentiable function g(x) =
Rx

a f (y) � (y) dy, we

can write

� 2(x) = �
1

f 0(x)� (x)
g(x)

= �
1

� (x)

0

@ 1
f 0(x)� f 0(a)

x� a

1

A g(x) � g(a)
x � a

:
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So we obtain the limit

lim
x! a

� 2(x) = �
1

� (a)f 00(a)
g0(a) = �

1
� (a)f 00(a)

f (a)� (a) = �
f (a)
f 00(a)

:

If f 0(b) = 0 , the proof is similar to get the expression of� 2.

Song et al. (2017) got the same expression (2.12) reasoning in the spirit of the calculus of

variations but for the speci�c casef (x) = x � m (where m = E [ � ] =
Rb

a x� (x) dx) and without

showing that K has to be zero. If we take the functionf (x) = x � m, the weight associated with

f and � is

� 2(x) =
1

� (x)

Z x

a
(m � y)� (y) dy; for all x 2 [a; b]: (2.13)

Here we extended the de�nition of the weight to the closed interval[a; b] becausef 0(a) 6= 0 and

f 0(a) 6= 0.

For the rest of the subsection we focus on this speci�c weight for di�erent measures de�ned

over all R and for truncated measures as well. We ignore the dependency of� 2 with the function

f (x) = x � m. Before giving some examples, we announce two interesting properties. The �rst

one is dedicated to the weight of a random variable under scaling and translation.

Proposition 2.1. Let X be a real random variable that admits a probability distribution� (dx) =

� X (x) dx on (a; b) (�1 � a < b � 1 ). We note by � 2
X its associated weight which is de�ned

in (2.13). Let �; � 2 R (� 6= 0) and consider the random variableY = �X + � supported on

[�a + �; �b + � ]. Then the weight� 2
Y associated withY is given by

� 2
Y (x) = � 2 � 2

X

� 1
�

(x � � )
�

; for all x 2 [�a + �; �b + � ]:

Proof. The density function of the random variableY is � Y (x) = 1
� � X

�
1
� (x � � )

�
1[�a + �;�b + � ](x).

Then, the weight � 2
Y is explicitly given by the formula (2.13) and we �nd that

� 2
Y (x) =

1
1
� � X

�
1
� (x � � )

�
Z x

�a + �
(E[Y] � y)

1
�

� X

� 1
�

(y � � )
�

dy

=
1

� X

�
1
� (x � � )

�
Z x

�a + �
(( � E[X ] + � ) � y) � X

� 1
�

(y � � )
�

dx

Then, via the change of variablesy = �z + � we get

� 2
Y (x) =

1

� X

�
1
� (x � � )

�
Z 1

� (x� � )

a
(( � E[X ] + � ) � (�z + � )) � X (z) �dz

= � 2 1

� X

�
1
� (x � � )

�
Z 1

� (x� � )

a
(E[X ] � z) � X (z) dz

= � 2� 2
X

� 1
�

(x � � )
�

:

The second property below ensures that a weight associated with a truncated measure converges

point-wise to the weight associated with the measure without truncation.
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Proposition 2.2. Let � a;b(dx) = � (x) dx be a probability measure on(a; b) (�1 � a < b � 1 )

with its associated weight� 2
a;b expressed by the formula (2.13). Consider the sub-interval(â; b̂) �

(a; b) and consider the truncated probability measure of� on (â; b̂) given by

� â;b̂(dx) =
1

Z â;b̂

� (x)1(â;b̂)(x);

whereZ â;b̂ =
Z b̂

â
� (x) dx is the normalization constant. Then, the weight� 2

â;b̂
associated with the

measure� â;b̂ converges point-wise to� 2
a;b (� 2

â;b̂
seen as its extension by zero outside(â; b̂)).

Proof. We note the respective means of� a;b and � â;b̂ as

ma;b =
Z b

a
x� (x) dx and mâ;b̂ =

1
Z â;b̂

Z b̂

â
x� (x) dx;

respectively. The weight associated with� â;b̂ is

� 2
â;b̂(x) =

1
� (x)

Z x

â
(mâ;b̂ � y)� (y) dx

=
1

� (x)

�

mâ;b̂

Z x

â
� (y) dy �

Z x

â
y� (y) dy

�

; for all x 2 (â; b̂): (2.14)

For x 2 (a; b) �xed, we take the sub-interval (â; b̂) large enough so that it containsx. Then

the equality (2.14) is valid for x and the two integrals that appear in it converge respectively toZ x

a
� (y) dy and

Z x

a
y� (y) dy when â �! a due to the continuity of the primitive function of � and

y 7�! y� (y). Regarding the meanmâ;b̂, the uniform continuity of the integrals also shows that

lim
(â;b̂)! (a;b)

mâ;b̂ = lim
(â;b̂)! (a;b)

1
Z â;b̂

Z b̂

â
x� (x) dx

= lim
(â;b̂)! (a;b)

 Z b̂

â
� (x) dx

! � 1 Z b̂

â
x� (x) dx

=

 Z b

a
� (x) dx

! � 1 Z b

a
x� (x) dx

= ma;b:

Our three limits complete the proof.

2.2.1 Some weights associated with the centered identity function

Let us compute the weights� 2 associated with some probability distributions: uniform, exponen-

tial, normal, generalized Cauchy(described below with the computations) and also the weights

associated with their respective truncated probability measures on intervals. The importance of

covering truncated measures arises from their natural appearance in applications. The weights of

the uniform, the exponential and the normal distributions without truncation have been already

discovered by Songet al. (2018) and they also computed� 2 for the Beta distribution, the Gamma

26



distribution, and the triangular distribution that we introduce in the next subsection.

Uniform distribution U([a; b]), (a < b)

We �rst write the weight of the distribution U([0; 1]), that we denote by � 2
[0;1], and later use

the Proposition 2.1 to derive� 2
[a;b], the weight of U([a; b]).

� 2
[0;1](x) =

Z x

0

� 1
2

� y
�

dy =
1
2

x �
1
2

x2 =
1
2

x(1 � x); for all x 2 [0; 1]:

Then, sinceU([a; b]) = ( b� a) U([0; 1]) + a, from Proposition 2.1 it follows that

� 2
[a;b](x) = ( b� a)2 1

2

� 1
b� a

(x � a)
� �

1 �
1

b� a
(x � a)

�

=
1
2

(x � a)(b� x); for all x 2 [a; b]:

Exponential distribution E(� ) ( � > 0) and its truncation over [0; a] (a > 0).

First, the mean of the distribution E(� )
�
�
�
[0;a]

is given by

m =
� Z a

0
�e � �x dx

� � 1 Z a

0
�xe � �x dx

=
1

1 � e� �a

� h
� xe� �x

i �
�
�
a

0
+

Z a

0
e� �x dx

�

=
1

1 � e� �a

�

� ae� �a �
1
�

e� �a +
1
�

�

= �
ae� �a

1 � e� �a
+

1
�

:

For x 2 [0; a] we have

� 2(x) =
1
�

e�x
Z x

0
(m � y) �e � �y dy

=
1
�

e�x

  

�
ae� �a

1 � e� �a
+

1
�

!
�
1 � e� �x

�
+ xe� �x +

1
�

e� �x �
1
�

!

=
1
�

e�x

 

�
ae� �a

1 � e� �a
(1 � e� �x ) + xe� �x

!

=
1
�

 

� a
1 � e�x

1 � e�a
+ x

!

:

When we take the limit a �! 1 we recover the weight associated with the exponential distribution

E(� ) which is the function x 2 R+ 7�! 1
� x. This is the same expression obtained in Songet al.

(2018).

Normal distribution N (m; &2) (m 2 R, & > 0) and its truncation over [a; b] (a < b).

We give the weight� 2 in function of the density and the cumulative distribution function of

N (0; 1),

� (x) =
1

p
2�

e� x 2

2 ; �( x) =
1

p
2�

Z x

�1
e

� y 2

2 dy; for all y 2 R:

27



We also write � 2 in function of the mean of the truncated normalN (m; &2) which is

~m =

 
1

p
2�&2

Z b

a
e� ( y � m ) 2

2&2 dy

! � 1 1
p

2�&2

Z b

a
y e� ( y � m ) 2

2&2 dy

=

 
1

p
2�

Z b� m
&

a� m
&

e� y 2

2 dy

! � 1
1

p
2�

Z b� m
&

a� m
&

(&y+ m) e� y 2

2 dy

=
� & 1p

2�
e� y 2

2

�
�
�

b� m
&

a� m
&

�
�

b� m
&

�
� �

�
a� m

&

� + m

= m � &
�

�
b� m

&

�
� �

�
a� m

&

�

�
�

b� m
&

�
� �

�
a� m

&

� :

We have

� 2(x) =
1

1p
2�& 2 e� ( x � m ) 2

2&

"
1

p
2�&2

Z x

a
( ~m � y)e� ( y � m ) 2

2&2 dy

#

= &
1

�
�

x� m
&

�

"
1

p
2�

Z x � m
&

a� m
&

( ~m � &y� m) e� y 2

2 dy

#

= &
1

�
�

x� m
&

�
�

&
�

�
� x � m

&

�

� �
� a � m

&

��

+ ( ~m � m)
�

�
� x � m

&

�

� �
� x � a

&

���

= &2

0

@1 �
�

�
a� m

&

�

�
�

x� m
&

�

1

A + &( ~m � m)
1

�
�

x� m
&

�
�

�
� x � m

&

�

� �
� x � a

&

��

When we choosea and b to be aroundm at the same distance,a = m � h, b= m + h (h > 0), so

that ~m = m, we have

� 2(x) = &2

 

1 � e
( x � m ) 2

2&2 � h 2

2&2

!

:

Then, by making h tend to in�nity we recover the weight associated with the normal distribution

N (m; &2), � 2(x) = &2, which again matches with the expression that appears in Songet al. (2018).

Generalized Cauchy distribution � (dx) = 1
Z (1+ x2)� � , for � > 1=2 and Z =

R
R(1+ x2)� � dx,

and its truncation over [� b; b] (b > 0).

In this case we consider the symmetric case for the truncation only because we can not get a

nice expression for the integral
Rx

a (1 + y2)� � dy. In this way the mean of the truncated measure is

zero and we compute

� 2(x) = � (1 + x2)�
Z x

� b
y(1 + y2)� � dy

= (1 + x2)� 1
2(1 � � )

(1 + y2)� � +1
�
�
�
x

� b

=
1

2(� � 1)

��
1 + x2

�
� (1 + x2)� (1 + b2)� � +1

�
:

If � > 1, when b �! 1 , we discover the weight associated with the Cauchy distribution without

truncation, given by � 2(x) = 1
2(� � 1) (1 + x2).
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We �nish this subsection with the table 2.1 below that summarizes the di�erent weights� 2

with respect to the measure� .

Probability distribution � Weight � 2

Uniform U([a; b]) 1
2(x � a)(b� x)

Exponential E(� )
On R+ Truncated on [0; a]

1
�

x
1
�

 

x � a
1 � e�x

1 � e�a

!

Normal N (m; &2)
On R Truncated on [m � h; m + h]

&2 &2

 

1 � exp

 
(x � m)2

2&2
�

h2

2&2

!!

Generalized Cauchy
On R Truncated on [� b; b]

1
2(� � 1)

(1 + x2)
1

2(� � 1)

�
(1 + x2) � (1 + x2)� (1 + b2)� � +1

�

Table 2.1: The weight� 2 associated to some probability distributions� .

2.2.2 Illustrated examples

We present the performance of the implemented code inR, taking as examples the probability

measures considered in Subsection 2.2.1. A summary of the explicit expressions of the weights

associated with such measures can be found on the Table 2.1. We represent graphically the

explicit expressions of our weights and their numerical approximations. For simplicity, for the

corresponding truncated measures, we take the symmetric case only. In the Appendix B we leave

the implemented code to approximate numerically the weights.

Figure 2.1: Weight associated with the uniform distributionU([0; 1]) (black points) � 2(x) =
1
2x(1� x), and its numerical approximation (blue line). The two curves are visually super imposed.
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Figure 2.2: Weight associated with the exponential distributionE(1) � 2(x) = x (red line), weight

associated with its truncated measure on[0; 15] � 2
[0;15](x) = x � 151� e� x

1� e� 15 (black points), and its

numerical approximation (blue line). The two curves are visually super imposed.

Figure 2.3: Weight associated with the normal distributionN (0; 1) � 2(x) = 1 (red line), weight

associated with its truncated measure on[� 3; 3] � 2
[� 3;3](x) = 1 � exp

�
x2

2 � 9
2

�
(black points), and

its numerical approximation (blue line). The two curves are visually super imposed.
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Figure 2.4: Weight associated with the generalized Cauchy distribution� (dx) = 1
Z (1 + x2)� 2 dx,

where Z =
R

R(1 + x2)� 2 dx, � 2(x) = 1
2 (1 + x2) (red line), weight associated with its truncated

measure on[� 3; 3] � 2(x) = 1
2

�
(1 + x2) � 1

10(1 + x2)2
�

(black points), and its numerical approxi-

mation (blue line). The two curves are visually super imposed.

2.2.3 An application to sensitivity analysis

We use this segment to show an application of weighted Poincaré inequalities. From Section 1.1

we know that if a random variableX i from a collection of independent random variablesX 1; : : : X d

satis�es the classical Poincaré inequality with constantCi > 0 then

Stot
i � Ci

1
Var (f (X ))

E

2

4

�
�
�
�
�
@f
@xi

(X )

�
�
�
�
�

2
3

5 ; for all f smooth (2.15)

(Proposition 1.1, page 8), whereStot
i = Var (

P
J 3 i f J (X J )) =Var (f (X )) is the total Sobol in-

dex associated withi , de�ned from the Sobol-Hoe�ding decomposition (De�nition 1.1, page 6).

Weighted Sobolev inequalities also provide a way to upper bound the total Sobol indices, involving

the weight � 2 on the right-hand side of (2.15).

Proposition 2.3. Let X = ( X 1; : : : ; X d) be a vector of independent random variables and let

us denote by� the law of X (on some open set
 � Rd) and by � i the law eachX i (on some

open interval 
 i ). Let � 2
1; : : : ; � 2

d be weight functions. Suppose that each� i satis�es the weighted

Poincaré inequality

Var� i (g) � Ci

Z


 i

� 2
i (x) jg0(x)j2 � i (dx); for all g 2 H 1

� i
(
 i ): (2.16)

Then, for every f 2 H 1
� (
) the following inequality holds

Stot
i � Ci

1
Var (f (X ))

E

2

4 � 2
i (X i )

�
�
�
�
�
@f
@xi

(X i )

�
�
�
�
�

2
3

5 : (2.17)
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Proof. We have to show that

Var

 
X

J 3 i

f J (X J )

!

� Ci E

2

4 � 2
i (X i )

�
�
�
�
�
@f
@xi

(X i )

�
�
�
�
�

2
3

5 :

Having in mind that
P

J 3 i f J (X J ) is a centered random variable, we compute

Var

 
X

J 3 i

f J (X J )

!

= E

2

4

 
X

J 3 i

f J (X J )

! 2
3

5

= E

2

4E

2

4

 
X

J 3 i

f J (X J )

! 2�
�
�
�X f 1;:::;dgnf i g

3

5

3

5 :

Since we �x X f 1;:::;dgni with the conditional expectation, by independence the random quantity

inside it only depends on the random variableX i . This allows us to apply the Poincaré inequality

(2.16) with the function
P

J � I f J (as a function that depends onx i , with x f 1;:::;dgni �xed). Thus

Var

 
X

J 3 i

f J (X J )

!

� E

2

4Ci

Z


 i

� 2
i (x i )

�
�
�
�
�

@
@xi

 
X

J 3 i

f (x i ; X J ni )

! �
�
�
�
�

2

� i (x i )

3

5

= Ci E

2

4 � 2
i (X i )

�
�
�
�
�
@f
@xi

(X i )

�
�
�
�
�

2
3

5 ;

where the last equality is due to the fact that the missing elements of the decomposition off do

not depend onx i .

Thanks to Proposition 2.3, in order to upper bound the total Sobol indexStot
i , it is su�cient

to compute Var(f (X )), the optimal Poincaré constantC(� 2
i ; � i ) and the expected value in the

right-hand side of (2.15), that from now on we will callweighted DGSMindex. We suppose

that each X i admits a density and we focus only on the weights� 2
i associated with the functions

f i (x) = x � E[X i ], expressed in (2.13). This implies thatC(� 2
i ; � i ) = 1 and that the weighted

Poincaré inequality (2.16) holds with equality with f i . So now we have two possible bounds for

each total Sobol index; the �rst one based on the classical DGSM indices and the second one

based on our new weighted DGSM indices, which are adapted to each probability measure. It

is then natural to ask which one of the two bounds is better (closer to the total Sobol index).

Theoretically this is a problem that can be addressed in future research. In this subsection, we

limit ourselves to the observe the performance of each upper bound in a practical case.

Lets now resume our example model of the industrial site protected by a dyke, introduced in

Section 1.1. The random variables which are the inputs of our model are expressed in the table

below
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Input Meaning Probability distribution

Q Max. �ow rate (m3=s) G(1013; 558) on [500; 3000]

K s Strickler coe�cient N (30; 64) on [15; 1 )

Zv Downstream level(m) T (49; 50; 41)

Zm Upstream level(m) T (54; 55; 56)

L River length (m) T (4990; 5000; 5010)

B River width (m) T (295; 300; 305)

Hd Dyke height (m) U([7; 9])

Cb Bank height (m) T (55; 55:5; 56)

Above the Gumbel distribution G(�; � ) with location � 2 R and scale� > 0 is the one whose

density function is given by

� (x) =
1
�

exp

 

�
x � �

�
+ exp

 

�
x � �

�

!!

; for all x 2 R;

and the density function of the triangular distribution T (a; b; c), represented in Figure 2.5.

� (x) =

8
>>>>>><

>>>>>>:

2(x � a)
(b� a)(c � a)

if a � x � c;

2(b� x)
(b� a)(b� c)

if c � x � a;

0 otherwise:

Figure 2.5: Density function of the triangular distribution T (a; b; c) with minimum value a, mode

c and maximum valueb.

We recall as well the outputs on which we focus: the maximal annual over�ow

S = Zv � Hd � Cb +

0

@ Q
BK s

s
Zm � Zv

L

1

A

3
5

(2.18)

and the annual cost of the dyke maintenance

C = 1S> 0 +
�
0:2 + 0:8

�
1 � e� � 1000

S 2
��

1S� 0 +
1
20

max (Hd; 8) : (2.19)
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Our code implemented inR approximates numerically the total Sobol indices, their upper

bounds based on DGSM indices and their bounds based on weighted DGSM indices (the expression

on the right-hand side of (2.17)), of both outputsS and C with respect to each random variable

involved. Total Sobol and DGSM indices are approximated via the functionsoboljansen ,

belonging to thesensitivity package, and the weighted DGSM bounds are approximated by

Monte Carlo. The sensitivity package also contains functions used to simulate truncated

Gumbel and truncated normal random variables. To simulate triangular random variables we

employ the packagetriangular . A con�dence interval obtained by bootstrapping is provided

as an output of these functions.

First we focus on the maximal annual over�owS (2.18). The barplot in Figure 2.6 indicates

the values of the total Sobol indices of each random variable and their upper bounds based on

DGSM indices. We see that the bounds do not stray too far from total Sobol indices excepting

for the maximal �ow rate of the river Q and the Strickler coe�cient K s. On the other hand, both

total Sobol indices and the upper bounds suggest to state thatZm , Cb, L and B are not in�uential

on S.

Figure 2.6: Barplots containing the values of total Sobol indices (right one) and their upper bound

based on DGSM indices (left one) of the maximal annual over�owS (2.18).

Barplot in Figure 2.7 contains again the numerical approximations of total Sobol indices and

now we compare them with the upper bounds provided by the weighted DGSM indices. We �nd

that, for each random variable, our new upper bounds are more sharp than those based on DGSM

indices without weight, especially with respect to the variableQ that follows a truncated Gumbel

distribution.
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Figure 2.7: Barplots containing the values of total Sobol indices (right one) and their upper bound

based on weighted DGSM indices (left one) of the maximal annual over�owS (2.18).

Now we focus on the annual cost of the dyke maintenanceC. Figure 2.10 presents the total

Sobol indices and their corresponding upper bounds based on DGSM indices. In this case the upper

bounds for the variablesQ, K s, Zv and Hd are not close to the total Sobol indices; especially the

bound associated with the dyke heightHd, which is quite far from the total Sobol index. The

possible culprit for this to happen is the termmax(Hd; 8) that appears in C, becausex 7�!

max(x; 8) is not a smooth function, altought belonging toH 1
� (
) (recall that DGSM indices are

de�ned from partial derivatives).

Figure 2.8: Barplots containing the values of total Sobol indices (right one) and their upper bound

based on DGSM indices (left one) of the annual cost of the dyke maintenanceC (2.19).

The next barplots in Figure 2.9 show the comparison between total Sobol indices and their

upper bounds based on weighted DGSM indices. Every bound is more accurate with respect to

the bounds based on DGSM indices without weight, but those related to the random variablesQ

and Hd are still not close to total Sobol indices.
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Figure 2.9: Barplots containing the values of total Sobol indices (right one) and their upper bound

based on weighted DGSM indices (left one) of the annual cost of the dyke maintenanceC (2.18).

Speaking in terms of numerical approximations, it is evident that the bounds based on weighted

DGSM indices improve their versions without the weights. Thus, we venture to a�rm that, at

least for our dyke model, it is better consider our new upper bounds rather than the classical, old

fashioned ones. We suspect that this performance improvement is due to the fact that our models

are close to be linear (or linear) with respect to each random variable, and that the associated

weighted Poincaré inequalities hold with equality with the centered identity function.

We end this chapter with two last �gures in the next two pages, Figure 2.10 and Figure 2.11.

Through bootstrapping we compute each index and upper bound 1000 times. Our graphs display

all the numerical approximation of the indices presented in the previous barplots; the �rst one

dedicated to the maximal annual over�owS and the second one to the cost of the dyke maintenance

C. The vertical lines represent the ranges between the 2.5% and the 97.5% quantiles of the values

obtained by bootstrap. In particular, we can observe that the upper bounds based on weighted

DGSM indices are not only closer to the total Sobol indices but also less variable.
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Figure 2.10: Numerical approximation (points) with the ranges between the 2.5% and the 97.5%

quantiles of the values obtained by bootstrap (lines) of total Sobol indices (�rst graph), their

upper bound based on DGSM indices (second graph) and their upper bound based on weighted

DGSM indices (third graph), of the maximal annual over�owS (2.18).
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