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ZUSAMMENFASSUNG

Diese Arbeit befait sich mit zwei verschiedenen Aspekten der kombinatorischen
Optimierung: Online-Einsatzplanung von Fahrzeugen unter Echtzeit-Bedingungen
und Mengenpartitionierungsprobleme. In der Online-Fahrzeugeinsatzplanung geht
es darum, Routen zu berechnen, mit denen eine Flotte von Fahrzeugen eine gege-
bene Menge von Auftrigen optimal bedient. Das Wort “Online” weist auf die Tat-
sache hin, dass unmittelbare Entscheidungen auf Basis unvollstédndiger Information
getroffen werden miissen. Dariiber hinaus fordern die Echtzeit-Bedingungen ga-
rantierte Antworten innerhalb kurzer Zeit. Das Mengenpartitionierungsproblem,
andererseits, ist ein grundlegendes Problem in der kombinatorischen Optimierung:
Gegeben ein Untermengensystem F C 2% einer Grundmenge X und eine Kos-
tenfunktion ¢ : F — R, finde ein Subsystem 7' C F minimaler Kostensumme,
dessen Mengen eine Partition von X bilden.

Die Probleme der Online-Fahrzeugeinsatzplanung, die wir hier betrachten,
stammen aus einem Kooperationsprojektes des Konrad-Zuse Zentrums fiir In-
formationstechnik in Berlin mit dem Allgemeinen Deutschen Automobil-Club
(ADAC), in dem ein Online-Dispatching-Verfahren fiir die Disposition der Pan-
nenhilfefahrzeugen vom ADAC entwickelt wird. In dieser Arbeit wird die Aufstel-
lung eines solchen Einsatzplans als Online-Optimierungsproblem modelliert und
ein Losungsalgorithmus dafiir entworfen. Dieser verwendet einen Spaltengenerie-
rungsansatz, um einen kostengiistigen Dispositionsplan zu berechnen, der alle zu
einem bestimmten Zeitpunkt bekannten Auftrige mit den vorhandenen Hilfsfahr-
zeugen bedient. Mit denselben Methoden werden auch untere Schranken fiir die
Kosten eines optimalen Plans ermittelt. Wir berichten iiber praktische Erfahrung
mit dem Verfahren, das sich seit Herbst 2002 im Pilotbetrieb beim ADAC befindet.
Auf der anderen Seite untersuchen wir das Online-Problem aus theoretischer Sicht.
Fiir eine vereinfachte Problemstellung stellen wir einen kompetitiven Algorithmus
vor und beweisen untere Schranken.

Ein weiterer theoretischer Beitrag dieser Arbeit ist die Untersuchung von Men-
genpartitionierungsproblemen einer besonderen Form. Sie werden von unserem
Algorithmus fiir die Aufstellung eines Fahrzeugeinsatzplans als Unterprobleme ge-
16st. Thre Besonderheit besteht darin, dass die Kardinalitit jeder Menge im gegebe-
nen Mengensystem F von einer kleinen Konstante k£ begrenzt wird. Wir widmen
uns diesem Problem aus der Perspektive der Polyedertheorie. Fiir das verwandte
Mengenpackungsproblem erforschen wir, wie sich die Kardinalititsbegrenzung der
Untermengen auf die Struktur der Facetten vom Packungspolytop auswirkt.

Schliisselbegriffe: Fahrzeugeinsatzplanung, Spaltengenerierung, Online-Op-
timierung, polyedrische Kombinatorik, Mengenpartitionierung






ABSTRACT

This thesis addresses two different subjects in combinatorial optimization: online
vehicle dispatching in real-time, and set partitioning problems. Online vehicle
dispatching is the task of computing an optimal schedule to serve a given set of re-
quests with a fleet of vehicles. The word “online” means that immediate decisions
have to be taken on the basis of incomplete information. Moreover, real-time con-
ditions specify that an answer must be provided within a short time-frame. The set
partitioning problem, on the other hand, is a fundamental problem in combinatorial
optimization: Given a family F C 2% of subsets from a ground set X, and a cost
function ¢ : F — R, find a subsystem F' C F whose sets form a partition of X
and have the minimum sum of costs.

The instances of the online vehicle dispatching problem we discuss here ap-
peared in the framework of a cooperation project between the Konrad-Zuse Zen-
trum fiir Informationstechnik in Berlin and the German Automobile Association
(Allgemeiner Deutscher Automobil-Club, ADAC). The objective of this project has
been to design an automated online dispatching system for operating the fleet of
service vehicles at ADAC. In this thesis, we formulate the planning process as an
online optimization problem and describe a solution algorithm for it. Given the
set of waiting requests and available units at some stage in the planning, our al-
gorithm uses a column generation approach to find a low cost feasible dispatch
that covers all requests with the units. In the same way, lower bounds on the cost
of an optimum dispatch are computed. An implementation of this algorithm has
been in pilot operation at ADAC since fall 2002; we report here on the practical
experiences made during this period. Besides, we also consider the online problem
from a theoretical point of view. For a simplified version of it, a competitive online
algorithm is presented, and lower bounds are proved.

Another theoretical issue we consider in this thesis regards set partitioning
problems of a special type. They appear as subproblems in our solution strat-
egy for the dispatching problem at ADAC, and are characterized by a particular
feature: the cardinality of every set in F is bounded by a small positive constant k.
We look at them from the perspective of polyhedral combinatorics. For the related
set packing problem, we investigate the effects of restricting the subset cardinality
on the facetial structure of the packing polytope.

Keywords: vehicle dispatching, vehicle routing, column generation, online
optimization, polyhedral combinatorics, set partitioning
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Chapter 1

Introducing the ADAC-Problem

The German Automobile Association ADAC (Allgemeiner Deutscher Automobil-
Club") — the second largest such organization in the world, surpassed only by the
American Automobile Association — maintains a heterogeneous fleet of over 1,600
service vehicles in order to help people whose cars break down on the road. Due to
their color and the fact that they often bring needed help, people call these service
vehicles affectively “yellow angels”. In the sequel, we simply refer to them as
units, for short. Figure 1.1 shows a picture of them. Every unit is equipped with
more than 300 tools and a GPS system which allows to precisely locate its position
at any time. Incoming help calls from anywhere in Germany are transferred to
one of five help centers, where human dispatchers process them. Their task is to
assign to each customer a unit capable of handling his request, and to predict the
unit’s estimated time of arrival at the customer’s location. In addition to the ADAC
fleet, about 5,000 units operated by service contractors can be employed to cover
requests that otherwise could not be served in time.

Figure 1.1: The yellow angels fleet from ADAC. Every service unit is equipped
with more that 300 tools which together weigh about 280 kg. The cumulative
distance traveled by all units in one year exceeds 56 million kilometers. (Taken
from ADAC’s press office).

' Am Westpark 8, 81373 Miinchen, Germany, http: //www.adac.de
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Due to increasing operational costs and request volume, this dispatching sys-
tem has come under stress. As part of a cooperation project between ADAC, the
Konrad-Zuse Zentrum fiir Informationstechnik Berlin> (ZIB) and the software de-
velopment company Intergraph Public Safety® (IPS), we have been working on the
design of an automatic online dispatching system to relieve the human operators
and to reduce costs while ensuring a specified level of service quality (measured
for instance in the average wait times for the customers). Additionally, we seek to
exploit the new optimization potential that arises when schedules for large areas
are computed globally. (To keep the problem instances at sizes that are manage-
able for human dispatchers, the approach that has been taken before is to divide the
geographic region covered by a help center into many small sectors).

A Working Day at ADAC

The dispatching problem at ADAC — which we simply call the ADAC-Problem
from now on — is an online optimization problem: we are looking for a reasonable
strategy to control a system which is dynamically changing. To explain this in
more detail, let us follow a dispatcher at one of the ADAC’s help centers through
his typical working day. In Figure 1.2 we can see what his workplace looks like.
(Actually, several dispatchers will take turns at one of these places in the course of
a day).

Figure 1.2: An ADAC dispatcher at work. The computer system registers via GPS
the exact position of the service units at any time. Information about emerging help
requests is received by phone from the call centers. Orders are transmitted to the
units over radio. (Taken from ADAC’s press office).

We start early in the morning, say at 2 a.m. For simplicity, we assume no help
requests have been reported yet and only a few units are currently active. Some
thirty minutes later, the first call of the day is received. Somewhere in Berlin an
unlucky driver, who wants to return home after a long party-night, cannot get his
auto started. On the phone, the dispatcher gets information about the request: its

>Takustr. 7, 14195 Berlin, Germany, http://www.zib.de
*Huntsville, AL 35894 USA, http://www.intergraph.com



Introducing the ADAC-Problem 3

geographical position, the kind of failure, etc. Then he checks the available units
that are technically equipped for attending this request. Depending on the type of
the failure, the service might require application of specialized tools. (In the worst-
case, it might be necessary to haul the damaged car to a garage). Fortunately for
our driver, this is not the case, since every unit is capable of providing start help
“on-site”. The dispatcher assigns the request to a unit, estimates the arrival time at
the customer’s position, and tells him when he can expect the “yellow angel” to be
there.

After that, nothing happens for the next half an hour. Then the computer system
informs the dispatcher a new unit has logged in and is ready for taking orders.
Every unit is equipped with a GPS, which allows the computer to automatically
track its precise position at any time. Now the dispatcher is aware that he can
include this unit in future plannings. A couple of minutes later, the unit assigned
to the first request calls and reports it has successfully finished its assigned task.
As the day approaches, more and more units log in, and at the same time the units
who have worked in the night-shift log off and return to their depots.

It is about 7 a.m. People are on their way to work, the streets get crowded, the
traffic increases — and with it the number of help requests. Every time, the cycle
is the same: the call is taken, information about the request is collected, a new
service dispatch is computed to assign the request to an adequate unit, the arrival
time of the unit at the customer’s site is predicted, and the customer is informed.
What varies is the size (and hence the complexity) of the successive assignment
problems that the dispatcher has to solve.

Between 9 a.m. and 4 p.m., the system is working at its maximum load. On
some days, there may be situations where as many as 300 requests are waiting for
service, and about 80 units are active; with new requests arising at a rate of about 4
per minute. Figure 1.3 (elaborated from recorded real-world data) shows how the
picture typically looks like in practice. The small crosses indicate the positions of
ADAC s units while the small circles are used to illustrate the positions of waiting
requests. The figure contains 40 units and 195 requests, and yet it only shows a
partial view of the whole situation: at that time, there were in total 364 waiting
requests and 82 units distributed over an area covering approximately one fifth of
Germany. Under this conditions, the task of computing a service dispatch gets very
complicated. And yet it has to be done quickly — in less than 5 seconds, according
to ADAC’s specifications.

Two additional aspects increase the palette of options a dispatcher has to take
into account. At first, there is the possibility to hire service contractors, which can
take those requests that cannot be handled in time by the ADAC’s own units. Sec-
ondly, it might be convenient to reassign requests: Suppose, for instance, that a unit
u has been assigned a request 1. While u is on the way to getting there, a second
request 7 arises very close to the unit’s current location. Now the dispatcher has
to consider the possibility of changing orders and telling u to serve ro first. This is
called a preemption, and we shall say more about it in Chapter 7.

Every time a dispatch is computed, a cost function has to be minimized, which
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Figure 1.3: Partial view of a real-world snapshot in the dispatching process at
ADAC. Crosses indicate the geographical positions of units, small circles the po-
sitions of help requests. The complete snapshot consisted of 364 requests and 82
units.

involves several components and is used as a measure of both the “real” operational
costs of the system and some “fictive” costs that account for the quality of the
service. (Again, a precise definition will be provided in Chapter 7, after introducing
more background information on the problem).

After 7 p.m., the number of requests will eventually start to decrease. At some
time, units that have been active during the day will finish their shifts and log off,
and the units for the night-shift will log on again. Our working day at the ADAC’s
dispatching center ends here.

A first immediate observation when we look at the ADAC-Problem is that we
are dealing with a discrete online problem. To steer the system, we do not need to
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take actions continuously over time, but only whenever its state changes; and this
can happen only as a consequence of one of the following events:

® a new request emerges,

e a unit finishes service of a request,
e aunit logs in,

e aunit finishes its shift and logs off.

Hence, we may model the dynamic planning process as a collection of snap-
shots in time. Every snapshot specifies a set of units, a set of requests, and a set
of contractors; together with additional information concerning for instance their
positions, their technical compatibilities (which requests may be assigned to which
units/contractors), the time every request has been waiting in the system, etc. Our
task is to compute on the basis of this information a minimum cost feasible ser-
vice dispatch. Similar vehicle routing (or vehicle scheduling) problems constitute
a stand-alone topic of investigation in Operations Research. In this case, we are
dealing with a real-time routing problem, where the available time for finding a
solution is strongly constrained. For the rest of this thesis, we shall use the term
Vehicle Dispatching Problem (VDP) to refer to any of these snapshot problems.
We will discuss an example in a moment.

A second issue to be addressed regards the embedding of a solution algorithm
for the VDP into an online strategy. It might be a bad idea to change the schedule
of the whole system at every new snapshot. Even if we were able to compute the
optimum solution for each snapshot (which in high-load situations is unlikely to
happen, due to the restricted running time), we have no guarantee that this would
turn out to be the best choice in the end. Maybe it is better to incorporate incoming
requests into the current plan and compute a new schedule only from time to time.
We define the Online Vehicle Dispatching Problem (OLVDP) as the task of deter-
mining a good strategy for controlling the system in the long run. In particular,
such a strategy has to determine how to integrate a new request into an existing
dispatch, and when to globally recompute a new dispatch.

To conclude this initial description of the ADAC-Problem, remark that the in-
put information we are dealing with can be classified into three groups according
to its predictability. First, there are deterministic parameters which are known in
advance with precision, like the shift-duration of the units, the unitary travel costs,
etc. Then, there are some stochastic parameters that are not fixed beforehand, but
may be estimated from information collected in the past, such as the travel time
for getting to a certain position, the expected duration of service for a request, etc.
Finally, information regarding the distribution of the requests in space and time is
mainly of uncertain nature. Because of the high variance involved, this distribution
cannot be predicted with reasonable exactitude from observations in the past.

The latter fact has some consequences on the design and evaluation of algo-
rithms for the OLVDP. Instead of assuming requests will emerge adjusted to a
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specified probability distribution, we take a different approach, borrowed from
game theory, and consider the OLVDP as a two-player game. On one side, there
is the online algorithm that operates the dispatching system at ADAC according to
a certain strategy. On the other side, there is an malicious offline adversary who
decides when and where the next request will arise. The adversary wants to make
evident to an observer (for instance to a customer), that the quality of the algorithm
used at ADAC is poor. With this purpose, it issues the requests in such a way as
to drive the online player into a trap and force it to take bad decisions. After that,
the adversary solves the same problem instance itself, but knowing all requests in
advance, and tells the observer how good the “correct” solution was to be. Con-
versely, the online algorithm must choose its strategy in such a manner, as to ensure
the worst-case ratio between its own solution and that from the offline adversary
will not be too bad. This technique is called competitive analysis, and we shall
return to it in Chapter 3.

Solving the Snapshots

The VDP can be formulated mathematically as an integer program, and this will
be the matter of further discussion in the next chapters. As a motivation, let us
look at an example to introduce some relevant ideas and techniques. We cannot
afford to solve here any of the practical instances appearing at ADAC, but we must
restrict ourselves to something much smaller: assume at a certain stage there are
three requests 71, ro and r3 standing in line, and two units of different types EWS,
EVS5 (these are real denominations) are currently active. Besides, a contractor TAX
(for taxi) is available. The two first units may serve any of the requests, while TAX
is only allowed to attend request ry due to technical constraints. Figure 1.4 shows
how the requests and units are located.

The operational costs incurred by a vehicle during its duty depend both on the
distance traveled and on the requests served. They are calculated in a different way
for each type of vehicle, according to the formulas:

2.97tp for EWS,
co = 95 +tg for EVS,
24 for TAX,

where tp and tg represent the amount of time spent at driving and serving a re-
quest, respectively. In the figure, required travel times are shown on the edges of
the graph, and required service times are depicted at the nodes. (Although the co-
efficients used here are fictive, cost structures like these are indeed present in the
real-world instances at ADAC).

Costs are also incurred whenever some request r has to wait too long before
being attended. At ADAC, such lateness costs are given by a function of the fol-
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EWS
EV5

(45) (30)

(15)

Figure 1.4: A small example of the VDP. Three requests 1, 7o and r3 are waiting
for service, two units of different types (EWS and EVS5), and a contractor (TAX)
are available. Weights on the edges represent travel times, node-weights expected
service times.

lowing type:
0, for t < 30,
cr =1 0.25(t—30) for30 <t <60,
3.5(t —60) fort > 60,

where ¢ specifies the time at which a unit arrives at r.

A feasible service tour 7" for a unit u € {EWS, EV5} is a route starting at the
current position of u, visiting some requests in a specified order, and then returning
to the initial position. Observe that this definition automatically fixes the times at
which u reaches each of the requests and, hence, the corresponding lateness costs.
The cost of T' is defined to be the sum of all operational costs for u plus all lateness
costs for the covered requests. 7' can be encoded by a 0/1-vector of dimension
five: the first three entries of this vector indicate which requests are served by the
tour, and the last two entries indicate which unit drives the tour.* Figure 1.5 shows
an example. A feasible contractor tour for TAX is also encoded as 0/1-vector that
indicates which requests are covered by it. Unlike a unit tour, however, this vector
has no entry indicating which vehicle drives the tour, as we do not plan routes for
the contractors.

A feasible dispatch is a set of service tours which partitions the requests and
the units: each request must be covered exactly by one tour from the dispatch, and
each unit must have exactly one tour to drive. The cost of a dispatch is defined as
the sum of the costs of the tours contained in it. Thus, enumerating all 17 feasible
tours, and assigning a binary variable x1, ..., z17 to each of them, our VDP can be

“The encoding of a tour as a binary vector does not account for the ordering of requests in it. This
aspect must be addressed separately by the solution algorithm.
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(45)

1

0 co +cr,

1 2.97(15 + 30 + 19)
1] 5 +0.25(60 — 30)

0 / :EV5 = 197.58

Figure 1.5: Encoding of a service tour as a 0/1-vector. In tour Tg, EWS serves
requests 71 and 73 in that order. T is represented as an incidence vector and asso-
ciated to a coefficient cg equal to its cost. To avoid ambiguity, we consider in this
example only tours for which the ordering of the requests is optimal.

stated as the following integer program:

17
min E CjT;
j=1

S.t.
r: /01001 101010011010
r:/ 001 0101100101O0111
rs2] 00O 1 0111000101110 |x=1,
Ews:{ 1 1 1 1 111 1000O0O0O0O0O00O0
EVs:\ 0 0 0 0 0O 0OOO1 11111110
€{0,1}, V1<j<17,
where xI' = (z1,...,217), ¢; is the cost of the tour associated with the j-th col-

umn of the constraint matrix (computed from the formulas given before), and 1
is a vector full of ones, properly dimensioned. For simplicity, we have kept from
explicitly writing the cost values down. Each binary variable indicates whether or
not the corresponding tour is chosen to be in the dispatch. Columns 1 and 9 repre-
sent “empty” tours that cover no requests and have cost zero. They are used in the
model in order to allow solutions where not all units participate. By inspection, the
reader can check that a minimum cost dispatch is obtained setting x4 = 13 = 1
and all other variables to zero; its cost is equal to 272.61 monetary units. This
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means that EWS serves request r3, and EVS5 requests 71 and o, while TAX does
nothing.

Problems of this kind are known as set partitioning problems. They form a
widely studied field in combinatorial optimization, where a lot of work has been
invested both on the understanding of its theoretical properties and on the develop-
ment of practical solution algorithms. Special methods, such as column generation,
are required in order to address the huge instances that usually appear in connec-
tion with routing problems. (Just count how many feasible tours there could exist
for 50 units and 100 requests). Again, all these aspects deserve better explanation
and will be treated in more detail later.

Finally, we should mention here that general vehicle routing problems have an
alternative formulation as nonlinear integer programs with a polynomial number of
binary variables. Each variable indicates whether an arc is chosen to be in the route
for a specified vehicle or not. We shall learn more about this model in Chapter 2.
In the ADAC-Problem, however, the form of the lateness cost function makes a
formulation over arc variables inapplicable.

Structure of this Thesis

In this thesis, our work on the ADAC-Problem and related topics is reported. Three
threads of discussion will be pursued in a concurrent manner: The first one con-
cerns the vehicle routing problem with time windows, for which several models,
solution methods and applications are surveyed in Chapter 2. Many of the concepts
introduced there will be picked up again many times in the subsequent chapters,
ending up in Chapter 7, where an integer programming formulation and a solution
algorithm for the VDP are considered.

The second thread evolves around online vehicle routing problems. It begins
with a survey of them in Chapter 3, where at the same time the basic techniques of
competitive analysis are developed. Chapter 5 then continues with some consid-
erations on the competitivity of a simplified version of the ADAC-Problem , and
Chapter 7 closes the topic with an aspect coming from the practical side: we evalu-
ate online solution strategies for the OLVDP on the basis of simulations performed
over previously recorded real-world data.

Finally, Chapters 4 and 6 are of more theoretical nature and can be regarded to a
certain extent as a digression. They are devoted to set partitioning (and in particular
set packing) problems which, as exposed above, appear within our solution scheme
for the VDP. Due to specific features of the ADAC-Problem (for instance, the
fact that in any good dispatch the service tours for the units are usually short)
these set partitioning instances have a well determined form. Wondering if this
could be exploited to further improve the performance of our solution algorithm,
we were motivated to look into the polyhedral aspects of their structure in more
detail. Although there does not seem to be any property which immediately leads
to a breakthrough in efficiency, several interesting issues concerning the associated
polyhedra were encountered, which we would like to share with the reader here.
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Chapter 2

The Vehicle Routing Problem
With Time Windows. A Survey.

2.1 Introduction

The vehicle routing problem with time windows (VRPTW) can be stated as the
task of designing a minimum cost schedule for the delivery (resp. pick-up) of
some goods to (resp. from) a set of customers, using a fleet of vehicles with limited
capacities. Each customer has a certain demand and must be serviced exactly by
one vehicle. Furthermore, the delivery (resp. pick-up) at a customer has to begin
within a certain period of time called the customer’s time window. (It is allowed,
however, to arrive at a customer before the beginning of its time window and wait).
All vehicles have to start and end their routes at specific locations called depots.
The cost of a route involves usually a fixed component associated with the use of
the vehicle and a variable one, which depends on the distance (or time) traveled.

The VRPTW arises in many practical situations. Time windows are a natural
way to state problems that come up in certain environments where it is wished (or
needed) to work on flexible time schedules. Specific examples are bank deliver-
ies, postal deliveries, industrial garbage collection and routing and scheduling of
school-buses. The problem itself is a generalization of the intensively investigated
Vehicle Routing Problem VRP, which has been subject of many studies in the last
three decades (Magnanti [1981], Assad et al. [1983], Laporte & Nobert [1987] and
Laporte [1992] are survey papers). Also frequent in practical situations, but far
less studied in theory, is the version of the problem that appears if so-called “soft
time windows” are used. These may be violated at a cost given by some penalty
function.

Desrosiers et al. [1995] have collected a comprehensive survey on the VRPTW
and related problems. As far as possible, the notation and terms introduced there
will be maintained throughout this chapter. We begin by stating their general non-
linear formulation for the pick-up version of the problem. (The delivery version
can be formulated in a very similar way).

11
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Suppose the fleet consists of a set K of vehicles, from which at most v may be
used simultaneously. Associated to each vehicle k£ € K is the following problem
data:

a capacity QF,

an origin depot o(k),

a destination depot d(k),

an initial load Lok »

a final load Lagkys

a start time window [y, bo(r)]» and,

a return time window  [aq(k), ba(r)]-

In some instances, the origin and destination depots may correspond to the same
physical location.

Similarly, let N := {1,...,n} be the set of customers. For every customer
1 € N, two parameters are given:

a demand {;,and,
a time window  [a;, b;].

Define the directed graph G = (V, A) as follows: The set
V= NUA{o(k),d(k) : ke K}

contains one node for each customer, plus nodes representing all (origin and des-
tination) depots of the vehicles. We denote by V* C V the set N U {o(k), d(k)}.
Given a vehicle & € K and an ordered pair of nodes (i,7) € V¥ x V¥, let tfj be
the time required by k to travel from ¢ to j, including any service time spent at ¢, in
case i € N. We say that (7, j) are compatible with respect to k if the time and ca-
pacity constraints allow this vehicle to attend j directly after ¢, i.e., if a; + tfj <b;

and ¢; + ¢; < Q*. Forevery k € K, aset A* of arcs is defined by
A¥ .= {(i,4) : (4,7) is compatible with respect to k} ,

and A := Upcx A¥. Associated to each arc (i,5) € A* is a weight cfj equal to
the travel cost incurred by & when moving from ¢ to j. (Notice that service costs
at customer ¢ could also be considered here). Any fixed costs associated with the
use of vehicle £ are added to the weights C];(k),i’ Vi € N. Observe that G contains
parallel arcs.

The mathematical programming formulation uses three types of variables: for
every arc (i,7) € A*, a binary variable (called flow variable) X Z’E indicates if (i, )
is used by the route scheduled for k£ or not. Besides, for any node ¢ € V visited
among this route, two other variables TZ"“ and Lf reflect the time when service starts
at ¢ and the load of the vehicle after the pick-up. (For nodes not visited by the
route, these variables hold arbitrary values). The VRPTW can then be formulated
as follows:
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min Z Z cijikj (2.1)

kEK (i,j)c Ak
subject to

Z Xk =1, Vie N, (2.2)
(i,7)€A

> > Xwa=v 23)

kEK (o(k),j)€ Ak

> Xk, =1 Vk € K, (2.4)
(o(k),j)EA*
> Xf- > X§=0, VieN,VkeK, (2.5)
(i,5)EAK (4,i) €Ak
> XFaw =1, Vk € K, (2.6)
(i,d(k))e Ak
kpk | 4k k . k
X7+t = T7) <0, V(i,j) € A%, Vk € K, (2.7)
a; < TF <b;, Vie VE Vk e K, (2.8)
X5(Ly+6;,— L) <o, V(i,j) € A* Vk e K, (2.9)
6; < LF < QF, Vie Nu{dk)},Vk e K, (2.10)
L’;(k) = Lok Vk € K, (2.11)
X} efo,1}, V(i,j) € A* Vk € K. (2.12)

Due to the constraints (2.7) and (2.9) this model is nonlinear. The objective
function (2.1) specifies the total cost of the pick-up schedule. Constraints (2.2)
state that each customer has to be visited exactly once. Inequality (2.3) requires
the number of vehicles used to be less or equal than v. Constraints (2.4) to (2.6)
are flow constraints that characterize nonelementary directed paths' going from
the origin to the destination depot of each vehicle. Subtours are eliminated by
the other constraints, as we shall see later. Restrictions (2.7) - (2.8) and (2.9) -
(2.11) specify the time windows and capacity requirements. Finally, (2.12) are the
integrality constraints on the flow variables. Although many of these restrictions
are redundant, they have been kept in the model for the sake of clarity.

Let’s take a closer look at the restrictions (2.7). Consider any feasible solution
to the model and define A* to be the set of all arcs used by a vehicle k € K, ie.,

let AF = {z’j e Ak . ij = 1}. Constraints (2.7) require (T‘k)z‘evk to define a

7

'Given the directed graph G(V, A), we denote by nonelementary directed path from vo to vi, a
finite sequence W = (wvo, v1,...,vx) of nodes from V' having the property (v;,vi+1) € A V0 <
1 < k — 1. If the sequence contains no repetitions, we call it an elementary directed path.
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potential on the subgraph (V*, Ak ) with respect to the traveling times tfj on the
arcs. Since these times are all positive, (V*, Ak ) has to be acyclic. Furthermore,
combining this observation with the flow constraints (2.4) to (2.6), it follows that
(Vk, A¥) is a simple directed path from o(k) to d(k). Strict inequality may be
obtained in (2.7) if a vehicle arrives too early at a customer and has to wait before
starting the pick-up.

Making use of the fact that the flow variables ij are binary, it is possible to
replace constraints (2.7) and (2.9) by the following linear inequalities:

TF oty - TF < (1- XE) ME VG, ) € AbvE € K 2.13)

LE+ -1k < (1 - X{;) QF, V(i,j) € A ke K (2.14)

where MZ’; are sufficiently large constants. Whenever ij is equal to O, these
constraints become superfluous. On the other side, if X Z’g = 1 they take exactly the
same form as their nonlinear counterparts. Note that because of (2.8), it suffices to
choose M{; = max {b; + tfj —a;,0}, V(i,j) € A*.

It is obvious to see that the VRPTW is an N/P-hard problem. The following
simple construction, for example, gives a reduction from the ATSP: Given an
instance of ATSP over the complete digraph K = (V, A) with a nonnegative cost-
function ¢on A,

e choose the fleet size to be one,
e letc:=t:=c¢,

e choose one arbitrary vertex vy € V' and “split” it into two vertices to repre-
sent the origin and destination depot of a vehicle,

e define on each node a (very wide) time window [0, M|, where M is the sum
of the travel times over all arcs, and

e define the demands /; to be equal to O for each customer.

Solving the VRPTW over this new network gives an optimal solution for the
ATSP. Moreover, Savelsbergh [1985] showed that even the task of finding a feasi-
ble solution for the case of just one uncapacitated vehicle is a N/P-complete prob-
lem itself .

Due to the enormous computational complexity of the VRPTW, it is not
strange that solution methods for it were developed relatively late. In fact, Solomon
[1987] was the first to generalize a number of known route construction heuris-
tics for the VRP to incorporate time windows. Since then, but mainly during
the last decade, some exact algorithms (or approximation methods of guaran-
teed quality) for the VRPTW have also been developed (see Kolen et al. [1987],
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Desrochers et al. [1992], Halse [1992]). All of them rely on solving some relax-
ation of the model to get a lower bound that can then be used in a branch and bound
scheme.

The next section starts by presenting a closer insight into some special cases of
the VRPTW. A generalization of it, the so-called pick-up and delivery problem,
is then described in Section 2.2.3. Section 2.3 focuses on the principal exact opti-
mization approaches that have been developed for the VRPTW. A brief survey on
some heuristics and meta-heuristics is finally given in Section 2 4.

2.2 Related Problems

2.2.1 Fixed Schedule Problems

Fixed schedule problems are special cases of the VRPTW, in which the service
at a customer is not required to start within a time window, but rather at a certain
precise moment. Obviously, this fact dramatically reduces the number of feasible
vehicle routes and makes the time variables of the original model (see Section 2.1)
superfluous, since they are forced to have constant values. In the following, we
shall consider an even further simplified version of the problem and also drop ca-
pacity variables and constraints. The remaining linear model consists of the same
objective (2.1) and constraints (2.2) - (2.6), and (2.12). The number of vehicles to
be used might be fixed a priori, left free or be subject of minimization.

This kind of problem appears in several practical fields, as for example airline,
rail, urban and school bus transportation. Desrochers et al. [1982] describe some
real-world examples. In the case of airline transportation, flight legs (i.e., trips
between two airports, with fixed schedule and required aircraft type) have to be
concatenated to build routes for airplanes. In rail transportation, locomotives have
to be assigned to haul train cars over a set of given trips. The problem in this case
is a little more general, since a train may require more than one locomotive and,
on the other side, an extra locomotive may be hauled in a train to cover other trips
later. This situation can also be included in the model by making minimal changes
in constraints (2.2). Finally, in school-bus and urban transportation, a set of trips
with fixed start and end locations (in space and time) have to be attended using a
fleet of buses.

The particular case when all vehicles start and end their routes at the same
depot, or equivalently, when there are no restrictions about where a route has to
start and end, is called the Single Depot Vehicle Scheduling Problem (SDVSP).
Dantzig & Fulkerson [1954] were the first to formulate (and solve) the SDVSP as a
minimum cost flow problem, showing thus its polynomial time complexity, which
was explicitly stated later by Lenstra & Rinnooy Kan [1981]. Branco & Paixao
[1987] realized that the structure of the problem closely resembles that of an as-
signment problem and developed a specialized algorithm for it.

On the other hand, Bertossi et al. [1987] showed that allowing two or more
depots makes the problem A/P-hard. This version is then usually called the Mul-
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tiple Depot Vehicle Scheduling Problem (MDVSP) and was formulated as an
integer multi-commodity flow by Ribeiro & Soumis [1994]. Several heuristics
have been proposed for the MDVSP. (see Bodin & Golden [1981], Assad et al.
[1983] and Carraresi & Gallo [1984] for survey papers; and also Lamatsch [1992],
Mesquita & Paixao [1992] and Dell’ Amico et al. [1993], for newer heuristics not
included there). The exact solution methods base upon computing lower bounds
for the problem and using them in branch-and-bound enumeration schemes. We
shall just mention two of them here.

The first one was proposed by Carpaneto et al. [1989]. Their lower bound
comes from an additive scheme formerly introduced by Fischetti & Toth [1989],
which basically combines an assignment bound with shortest paths bounds. The
authors obtained an average integrality gap of 0.9% for a set of randomly generated
problems involving up to 70 trips and 3 depots.

The second method was developed by Ribeiro & Soumis [1994] and is based
on solving the linear relaxation of the model by a Dantzig-Wolfe decomposition
procedure similar to the one which will be explained in Section 2.3.1. Again, the
algorithm was tested only on randomly generated problems, but containing up to
250 trips and 6 depots, or 100 trips and 10 depots. An average gap of only 0.0008%
was reported.

The difference between the integrality gap in the two methods was explained
by Ribeiro & Soumis [1994], who proved the following result:

Zapp < Zip = Zpw < Zp,

where Zapp, Z1p, Zpw and Zip are the values of the additive lower bound, the
linear relaxation bound, the Dantzig-Wolfe bound and of the optimal solution, re-
spectively. This means that the additive bound is not better than the LP bound.
Even more, the authors showed that in the worst case, the ratio Zapp/ZLp can get
arbitrarily small.

2.2.2 The Asymmetric Traveling Salesman Problem with Time Win-
dows

Another special case of the VRPTW is obtained by relaxing from the original
formulation (see Section 2.1) the capacity constraints (2.9) - (2.11), and fixing the
number of available vehicles to one. In other words, we are looking for a route
(i.e., a tour) that starts from the origin depot, visits all customers and returns to
the destination depot, taking into account all time windows. This problem is called
the asymmetric traveling salesman problem with time windows (ATSPTW). The
word “asymmetric” is used to remark that we are working over a directed network.
For the undirected case, the (symmetric) TSPTW is defined in an analogous way.

The ATSPTW comes up in a variety of real-world applications. It also con-
stitutes an important element in some solution schemes for the VRPTW. The
cluster-first, route second approach, for example, relies in heuristically assigning
customers to vehicles at a first stage, and then solving one independent ATSPTW
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for each vehicle to construct the routes. On the other side, the ATSPTW also ap-
pears as a stand-alone optimization problem in some situations, such as the control
of automated manufacturing systems. Ascheuer et al. [1999], for instance, mod-
eled in this way the problem of minimizing the unloaded travel time of a stacker
crane within an automatic storage system in a warehouse. (See Ascheuer [1995]
for a detailed description).

Desrochers et al. [1984] proved that the nonlinear formulation of the ATSPTW
has an interesting property which is called nonlinear integrality. It states that if the
problem is feasible, replacing the integrality constraints (2.12) on the flow vari-
ables by nonnegativity constraints does not alter the optimal solution value. To
show this, suppose (X*,T™) is an optimal solution to the relaxed problem. If X*
is not integral, fix the values of 7* and and let A* := {(4,7) € A : (X*);; > 0}
be the set of arcs used by the solution. (The vehicle index has been omitted for
simplicity). Next, relax the time windows constraints (2.7) and (2.8), and solve the
remaining problem restricted to the arcs of A*. This is a min-cost flow problem
over the network (V, A*) with integral capacities, which is known to have an inte-
gral optimal solution X . Since by construction X* also defines a feasible flow in
this network, it follows that the cost of (X, T*) must be smaller than or equal to
the cost of (X*, 7). On the other side, from (2.7) we have

Xij#O@ij#O@ﬂ%—tij—Tng

Thus, (X, T*) is feasible for the original problem and therefore optimal. Re-
mark, however, that integrality is no longer maintained in the linearized version of
the model.

It is obvious that the ATSPTW, as a generalization of the ATSP, is NP-
complete. Savelsbergh [1985] even proved that finding a feasible solution consti-
tutes itself an A/P-hard problem. He also proposed some tour improvement heuris-
tics based on the idea of exchanging a certain number of arcs, which is quite a
common approach for the classical ATSP.

Several authors have focused on developing exact enumeration algorithms for
the ATSPTW. Besides of minimizing the fotal cost of the tour, the alternative
version of minimizing the fotal schedule time, which consists of replacing the ob-
jective (2.1) by T; — T,, has also been considered.

In both cases, it has been observed that the running time required by every of
these algorithms tends to increase rapidly as instances with wider time windows
are considered. Therefore, many preprocessing techniques have been developed
for “tightening up” time windows and removing unnecessary arcs iteratively. For
example, ifatanode j € V,

bj > max {bi-l-tz‘j : (2,]) GA}

then b; may be decreased to the value of the right-hand side, since no feasible path
can arrive at j at any time later. Reducing the time windows may in turn cause
some arcs to become infeasible (we call an arc (4, j) infeasible if a; + t;; > b;).
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These arcs can be deleted, and the whole process can be repeated until no more im-
provements are possible. Langevin et al. [1993] derived some more sophisticated
rules.

According to Desrosiers et al. [1995], a very simple branch-and-bound ap-
proach in which lower bounds are computed by relaxing time window constraints
(2.7) - (2.8) and solving the remaining assignment problem, and branching is done
on the X;; variables, may provide a good algorithm in practice. The linear lower
bound is at least as good as the assignment bound, but calculating it requires much
more running time.

For the case of minimizing the total schedule time, and assuming that the travel-
ing times are symmetric and satisfy the triangle inequality, Baker [1983] proposed
a branch-and-bound algorithm where lower bounds are calculated by exploring a
certain critical path in an acyclic network. This network is defined by precedence
relationships that the time windows impose between the nodes. Branching is done
under the assumption of further precedence relations.

State-space relaxation, a general relaxation method for a number of classical
routing problems proposed by Christofides et al. [1981b] and which will discussed
in Section 2.3.3, has also been used within a branch-and-bound scheme for the
ATSPTW. (See Desrosiers et al. [1995] for an example in the case of minimizing
the total schedule time). Moreover, under certain circumstances, the time windows
may be tight enough as to reduce the number of feasible states and transitions suf-
ficiently for direct dynamic programming methods to become viable. Dumas et al.
[1995] further developed this idea in the context of minimizing the tour cost. They
derived some tests which can be used to identify and eliminate states that have no
chance of leading to an optimal solution. While their algorithm is still clearly ex-
ponential, they report nevertheless having solved large scale problems with up to
200 nodes (or up to 800 nodes if the density of the nodes in a geographical region
is kept constant) to optimality without branching.

A quite different approach was proposed by Langevin et al. [1993], who ex-
tended a former formulation of Finke et al. [1984] for the classical TSP. In this
model, the ATSPTW is presented as a two-commodity flow problem. One com-
modity Y has to be delivered at each node, while the same quantity of another
commodity Z is picked-up. Thus, along any feasible tour, the total flow remains
constant on each arc. The authors then associate flow quantities with traveling
times as follows:

Minimize
Yo oYy +Zifbat D, Wi (2.15)
(i,5)eA ieNU{d}
subject to
> Y+ Zy)/ba=1, Vie N (2.16)

JENU{d}
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S (Vi Zji)/ba =1, Vie N 2.17)

JjENU{o}

Z(Yo,z‘ + Zoi)/ba =1, (2.18)

iEN

Z(Yz‘,d + Zia)/ba = 1, (2.19)

iEN

To = Zoj, (2.20)
JEN

T, = Z Zij, Vie N (2.21)
JENU{d}

To= > (Zi+t)(Yii+ Zi) [ba+ W;) Vi€ N (2.22)
JjENU{o}

To=>_ (Zia+tia)Yia + Zia)/bs + Wa), (2.23)
iEN

a; < T; < b;, VieV (2.24)

Yij >0, Z;; >0, V(i,j) € A (2.25)

W; > 0, Vi e NU{d} (2.26)

(Yi; + Zi;)/bq binary, V(i,j) € A. (2.27)

The objective function (2.15) combines traveling costs and waiting times W;
at the nodes. Constraints (2.16) - (2.19) are flow constraints that fix the total in-
and outflow at each node to be equal to a parameter by. The integrality constraints
(2.27) then require that each arc is either used at its full capacity by or not used at
all. This prevents the flow from splitting. Constraints (2.20) - (2.23) then define
the time variables in connection to the value of the commodity Z that is picked-up.
The reader may think of it as if a certain amount of traveling, service and waiting
time were “collected” at each node. Finally, (2.24) are the time windows and (2.25)
- (2.26) the nonnegativity constraints. The parameter b; imposes a bound on the
maximal duration admitted for a tour, and it must therefore be set at a sufficiently
large value in order to avoid eliminating feasible solutions.

To solve this model, a branch-and-bound approach may be used. Lower bounds
can be computed by solving either the linear relaxation or the assignment problem
obtained by dropping constraints (2.16) - (2.26). Again, the linear bound is at
least as good as the assignment bound. A particular feature of this formulation is,
however, that the linear relaxation involves only O(n) constraints, and not O(|A|)
as it was the case before. Nevertheless, the performance of an algorithm based
on it turned out to be rather modest for the practical instances investigated. The
authors report having solved problems up to 60 nodes with a fixed starting time
TO = ag = bo.

Some well known related problems of the TSP have also been subject of re-
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search in their constrained-time versions. They take into account special structures
and alternative objective functions. Psaraftis et al. [1990] define an ordered set of
points N = {1,2,...,n} to be located in a shoreline if the distances c;; between
them satisfy the following conditions: Forall 1 <i < k < j <n,

Ci; — O, (2.28)
Cij = Cji, (2.29)
Cij = Cik, (2.30)
Cij = Ckj, (2.31)
Cij < Cik + Crj- (2.32)

In other words, c is a metric with two additional properties (2.30) and (2.31). The
shoreline TSPTW, in its so-called path version, consists in finding the shortest
path for a vehicle traveling at unit speed, which starts from node 1, visits all nodes
within their time windows and finally arrives at n (the tour version includes re-
turning back). Such problems arise, for example, in the routing and scheduling of
cargo ships. The complexity of this problem is open, its classical counterpart (i.e.,
without time windows) is polynomially solvable. On the other side, if constraint
(2.32) is forced to be fulfilled with equality, we arrive at the straight-line TSPTW.
The authors gave an O(n?) algorithm for the path version of this problem, under
the assumption that time constraints consist only of earliest pick-up times. Later,
Tsitsiklis [1992] showed that when general time windows are present, or when
service times are considered, the problem becomes N/P-complete.

Another related problem is the traveling repairman problem with time win-
dows (TRPTW). It differs from the TSPTW only in the objective function: the
aim here is to minimize the sum of completion times Y 7T;, or equivalently, the
sum of flow times Y (7; — a;). Afrati et al. [1986] showed that the classical TRP
can be solved in O(n?) time, and that the version where time windows consist of
deadlines is \NP-complete but can be solved by a pseudo-polynomial algorithm.
Later, Tsitsiklis [1992] proved that the case with general time windows is strongly
NP-complete.

Finally, let us mention that if the use of more than one vehicle is admitted, the
problem is then called the multiple traveling salesman problem with time windows
(m-ATSPTW). It is still a special case of the VRPTW, where the capacity con-
straints have been dropped, and the fleet of vehicles is homogeneous and shares the
same depot. On the other side, the m-ATSPTW is a natural generalization of the
fixed scheduling problems described in the last section. Consequently, its applica-
tion areas are similar and cover aircraft, ship, school bus and urban bus scheduling.
The solution methods are basically the same as those used for the VRPTW and
which will be discussed in Section 2.3.
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223 Pick-up and Delivery Problems

The formulation of the VRPTW at the beginning of this chapter was stated under
the assumption that goods have to be picked-up from the customer and transported
to the depot. The same model may still be applied for the problem of finding a
minimum cost delivery schedule.

A slightly more general task is the so-called simple back-hauling problem. In
this case, we admit both pick-ups and deliveries at the same time. The set /N of
customers consists of two subsets: the line-haul customers N, who are expecting
to receive some goods from the depot, and back-haul customers N P who have
to send some goods to the depot. A fundamental restriction is, however, that any
vehicle must attend all deliveries before beginning with pick-ups. This problem
may also be addressed by introducing a small change in the original model. All
what is needed is to replace constraints (2.10) by

6; < LF < QF, Vk € K,Vie NP (2.33)
QF +0; < LF <2Q" vk e K, vie NP U{d(k)}. (2.34)

At the delivery level, the restrictions (2.33) work exactly in the same manner
as before. The load variable Lf indicates the total amount of goods delivered
by vehicle k& among the partial route that goes from its origin depot o(k) to (and
including) customer ¢. It must be larger than or equal to the demand /; at ¢, but
may not exceed the capacity Q" of the vehicle. Constraints (2.9) ensure that these
variables are incremented adequately over the traversed arcs.

During the pick-up phase, however, the value LY gives the total load collected
by vehicle k up to the moment after having attended customer ¢, incremented by an
offset of Q*. This offset is used to introduce a precedence constraint between the
nodes. Since the value of Lf must be smaller than Q* for any i € N, but larger
than Qk foranyi € N P and since, because of (2.9), this value can only increase
after traversing an arc, once a node in N P has been reached, no further delivery
nodes can be visited. The restrictions (2.34) express the capacity windows for the
pick-up nodes taking this offset into account. As the changes in the formulation
are small, the same algorithms used for the VRPTW can be adapted to solve the
simple back-hauling problem (see Gélinas et al. [1995]).

On the other side, if pick-up and delivery requests may be attended in any order,
the capacity constraints require two variables: the first one records the maximum
load on the vehicle up to the present, while the second one specifies the actual load
after the last customer has been visited. The solution approaches needed are more
complex. Halse [1992] describes some exact and approximate methods.

The situation gets more complicated if instead of two sets of (independent)
pick-up and delivering requests, a single set of transportation requests is given, i.e.,
if each customer specifies a certain quantity of goods that has to be picked-up at
one location and delivered at another, within established time windows. The task of
planning an optimal set of routes in such an environment is called the pick-up and
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delivery problem with time windows (PDPTW). As in the case of the VRPTW,
the usual objectives to be minimized are both the fleet size and, for a fixed size,
the operational costs. If instead of goods persons are transported, it is often also
desirable to minimize the inconvenience created by pick-ups and deliveries made
either sooner or later than wished by the customer . This version of the PDPTW is
called the dial-a-ride problem and constitutes the core of research in this area.
The PDPTW can be formulated using a nonlinear model similar to the one
introduced in Section 2.1. In this case, however, two nodes are defined for each
customer, one for pick-up and one for delivery. To simplify the notation, these
two nodes will be numbered as ¢ and n + 7, where n is the number of customers.
Furthermore, N* and N will denote the sets of all pick-up and delivery nodes,
respectively, and N := N¥ U NP The formulation has the following form:

Minimize

S Xk (2.35)

keK (i,j)e A

subject to
Z Z Xk =1, Vie NP (2.36)
k€K jeN
k

> Xiws v (2.37)
keK jeNF

Z X"“(k)j =1, Vke K (2.38)
FENPULd(k)}

oo XE- > Xj; =0,Yie N,Vke K (2.39)
JENU{o(k)} jENU{d(k

Z X{fd(k) =1, Vke K (2.40)
ieNPU{o(k)}

k k k k .. k
X5(TF+t5 - 1T)) <0, V(i,j) € Ak, Vk e K (2.41)
a; <TF < b, Vie V¥ Vke K (2.42)
X5(LF+4;— L) <o, V(i,j) € A¥ Vk e K (2.43)
6 < LF < QF, Vie NP Vke K (2.44)
0< L(nﬂ) <QF—uy, Vn+ie NP Vke K (2.45)
Lk( K =0, Vke K (2.46)
TF+tF, . <Th ., Vie NP, Vke K (2.47)
SNXE-> "X =0, Vie NP, Vke K (2.48)
JEN JEN

Xp5 >0, V(i,j) € Ak, Vk e K (2.49)
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X} binary, V(i,j) € A¥ Vk e K (2.50)

As in the case of the VRPTW, this formulation involves three type of variables:
binary flow variables ij, time variables TZ"“ and load variables Lf. Their meaning
is exactly the same as before. The constraints of the former model are still present
here: (2.36) specify that each customer has to be picked-up exactly once, (2.37)
takes care of the number of vehicles used, (2.38) - (2.40) and (2.49) - (2.50) are
multi-commodity flow constraints, and finally (2.41) - (2.42) and (2.43) - (2.46) are
the time windows and capacity restrictions, respectively. Observe, however, that
the capacity windows are defined differently at pick-up and delivery nodes, since
the load values increase at the former, but decrease at the latter (the value of /;
is negative for i € NP). There also two new kinds of constraints: the coupling
constraints (2.48) specify that a customer must picked-up and delivered by the
same vehicle, and the precedence constraints (2.47) guarantee that a pick-up has to
be accomplished before the corresponding delivery.

As stated before, the dial-a-ride problem constitutes the main research sub-
ject in the area of the PDPTW. Early work was done already in the 70’s to
look for real-time solutions for the special case where only one vehicle is routed,
called the 1-PDPTW. (See Wilson et al. [1971], Wilson & Weissberg [1976] and
Wilson & Colvin [1977]). However, due to the size of practical problem instances,
which frequently involve over 3,000 requests and relatively large numbers of re-
quests per vehicle, most of the solution approaches are still based upon the use
of heuristics, either as stand-alone methods or combined with exact optimization
techniques. An example of the latter case is the so-called cluster first, route second
algorithm, originally proposed by Sexton & Bodin [1986]. Basically, it consists
in partitioning the set of requests into one cluster for each vehicle. In a second
stage, a 1-PDPTW is solved for each of these clusters. The process and further
refinements of it will be discussed with more detail in Section 2.4.

The 1-PDPTW can be seen as a TSPTW with additional capacity and prece-
dence constraints. Psaraftis [1983] exploited this fact to design one of the first
algorithms aiming at the minimization of total customer inconvenience. However,
his dynamic programming approach had a computational complexity of O(n?3")
and was therefore restricted only to very small instances (at most 10 requests, to
that time). Later, Sexton & Bodin [1985a,b] decoupled this problem into a rout-
ing master problem and a scheduling subproblem for a fixed route. Employing a
heuristic version of Benders’ decomposition, where only the subproblem is solved
to optimality by an efficient network flow algorithm, they could treat real problems
ranging from 7 to 20 customers in a matter of seconds on a UNIVAC 1100/81A
computer. A similar approach was used by Sexton & Choi [1986] for the case
when the objective function is a linear combination of the customer inconvenience
and the total distance traveled. Desrosiers et al. [1986] considered minimizing only
the travel distance and developed an optimal algorithm based on dynamic program-
ming that was able to solve instances with 40 customers in less than 6 seconds on
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a CYBER 173.

If several vehicles are considered, the exact optimization strategies are basi-
cally the same as for the VRPTW. Dumas et al. [1991] used a Dantzig-Wolfe
decomposition schema (see Section 2.3.1) embedded into a branch-and-bound tree
to solve two real life problems of 19 and 30 requests, as well as many randomly
generated problems involving up to 55 requests. The real life instances were solved
to optimality without branching, while in the other cases a gap between 0.6% and
3.2% on the total travel cost was obtained after the first cut. According to the
authors, their algorithm is appropriate for instances of the PDPTW where the so-
lutions require an average of at most 5 requests per vehicle.

2.3 Optimal Algorithms and Approximation Schemes

As stated in Section 2.1, all exact solution methods for the VRPTW employ branch-
and-bound enumeration trees. A first, rather naive approach could be to use the
lower bounds that come either from the linear or the network relaxation of the
problem (i.e., the min-cost flow problem obtained by dropping constraints (2.5)
and (2.7) - (2.11)). Desrochers et al. [1985] used the network relaxation to solve to
optimality urban-bus scheduling problems involving up to 150 trips, either branch-
ing on the flow variables or by partitioning the time windows. However, as the time
windows become wider, the size of the branch-and-bound tree grows too rapidly
for this procedure to remain applicable. The linear lower bound does not help much
either. Hence, alternative approaches are needed and some have been investigated
in the last years. So far, the most promising ones are based either on Dantzig-Wolf
decomposition or Lagrangian relaxation techniques. These will be described in the
next two sections.

2.3.1 Danzig-Wolfe Decomposition

Dantzig-Wolfe decomposition is a classical procedure for solving linear problems
that possess a certain block structure: relaxing a few constraints splits the problem
into several smaller independent subproblems. The original method and its general
aspects shall not be described here in detail, rather, the highlights of a specialized
version for the VRPTW will be pointed out. Refer to Chvatal [1983] for further
reading.

Letz € Q", A € Q™™ be Q" C € QF"and d € QF. Consider the
following integer problem:
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Minimize
T 2.51)
subject to
(IP) Az = b, (2.52)
Cr =d, (2.53)
x>0, (2.54)
x integer . (2.55)

Denote by Pp and P p the polyhedra defined by the convex hull of the set
of feasible solutions for IP and by the set of solutions of its linear relaxation LP,
respectively. For the purposes of this discussion, it is possible to consider them as
bounded polytopes. Moreover, define:

Psp :=conv{z € R" : Cz =d, x > 0, = integer}
Purp = {I'ERn : szb,wepsp},

and call MIP the problem of minimizing eIz over Pyp. Since Pp C Py C Prp,
it follows for the optimum values of the corresponding optimization problems that:

Zip < Zmip < Zpp.
The basic idea of the Dantzig-Wolfe decomposition procedure consists of ex-

pressing the polytope Psp as the convex combination of its vertices v € V and
rewriting MIP, also known as the master problem, in the form:

Minimize
'z (2.56)
subject to
(MIP) Ax = b, (2.57)
x=VE, (2.58)
17¢ =1, (2.59)
£>0. (2.60)

The usual convention to consider V' both as a set of points and as a matrix
containing the coordinates of these points as columns has also been adopted in this
formulation. Replacing (2.58) in (2.56) and (2.57) yields now:
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Minimize
Jdve (2.61)
(MIP) subject to
AVE =b, (2.62)
17¢ =1, (2.63)
£E>0. (2.64)

Obviously, the matrix V' may contain so many columns that even the task of
writing it down may become impossible from a practical point of view, not to men-
tion solving MIP. Nevertheless, if the problem has a special structure, an approach
called column generation can be used. It is based on the following observation:
what the simplex algorithm needs in order to solve MIP is, besides from a starting
basic solution which normally is not too hard to find, a way to decide at each it-
eration, if there exists some column with negative reduced cost outside the current
basis.

Suppose some set V C V of columns has been generated (for example heuris-
tically), and the modified version of MIP that consists of substituting V' by V in
(2.61) and (2.62), and restricting the variables accordingly has been solved. This
problem is usually called the restricted master problem. Let A € R™ be the opti-
mal dual multipliers associated to the equations (2.62) and 3 € R the one for the
equation (2.63). The problem now is to decide if there exists a column in V' \ 14
whose reduced cost with regard to this multipliers is strictly negative. If there is
not such a column, then the actual solution is optimal for MIP. The task of finding
such a column can be accomplished by solving the following so-called subproblem
SP:

Minimize
(SP) o — 2T Az
subject to
zeV.

Notice that SP consists of minimizing the linear function (¢! — AT A) over
the set of vertices of the integral polytope FPsp. We shall relax this problem a
little and admit just any integral point of FPsp. Clearly, the optimal value of the
objective function is the same in both cases. (Moreover, if Psp is contained in
some hypercube, as it is the case in many combinatorial optimization problems
involving binary variables, then every integral point of Psp is a vertex and both
problems are equivalent). The subproblem takes now the form:
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Minimize
e — 2 Az
(SP) subject to
Cr=d
x>0
x integer
Solving SP yields either a new column with negative reduced cost that can be
used to create a new restricted master problem, or the proof that there is no such
a column in V', which means that the current basic solution is optimal for MIP. In
the first case, the new restricted master problem is re-solved and the whole process

is repeated. Observe that it is possible, and usually also convenient, to add many
columns with negative reduced costs at each iteration.

The quality of the bound Zyyp obtained by Dantzig-Wolfe decomposition de-
pends on the structure of the subproblem SP considered. If SP possesses the in-
tegrality property (i.e., if removing the integrality constraints does not alter the
optimal solution value) then the polytopes Prp and Pyp are the same and Zyp
coincides with the linear bound. On the other side, if SP does not have this prop-
erty, part of the integrality gap between Zip and Z p might be explored by solving
SP as an integer problem, provided this could be done (efficiently) employing some
combinatorial approach. This is just the case with the VRPTW, where Zyp turns
out to be significantly better than the linear bound.

Let IP be the linearized formulation of the VRPTW that was introduced in
Section 2.1 and LP its linear relaxation. The objective function (2.1), the partition-
ing constraints (2.2) that require each customer to be served exactly once, and the
constraints (2.3) that limit the maximal number of vehicles to be used are retained
in the master problem MIP. All other constraints (including, of course, the integral-
ity constraints) are moved to the subproblem SP. Observe that SP splits into | K|
disjoint subproblems SP(k), one for each vehicle k € K. Moreover, a moment of
thought reveals that SP(k) is the task of finding an elementary directed path from
o(k) to d(k) that minimizes some arc-cost function and satisfies all time windows
and capacity constraints. This is the so-called shortest path problem with resource
constraints SPPRC which unfortunately is known to be (strongly) N/P-hard. Nev-
ertheless, as we shall see in Section 2.3.4, if we relax the problem and allow paths
to have cycles, it is possible to extend algorithms for the classical shortest path
problem to the SPPRC, and it turns out that they work well for practical purposes.

For every vehicle k € K, let QF be the set of all feasible (i.e., satisfying time
windows and capacity constraints) [o(k), d(k)]-paths. The (binary) flow variables
in any solution of SP can be written in the form (X;, R XILKl), where X],f, ke K
are (transposed) incidence vectors of paths p* € QF. On the other side, since
SP splits into independent problems for each vehicle, any such a combination of
feasible paths leads to a valid solution for the subproblem. The condition X € Pgsp
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may therefore be expressed as:

Xk = Z ghalk,, Vije A Vk e K,

yp’

peEQF
Y g=1, Vk e K,
peNk
& >0, Vp e OF, Vk € K,
where mfjp, ij € AF are the components of incidence vector X*, and 55 are convex

combination coefficients. With this substitution, the master problem MIP takes the
form:

Minimize
> ok (2.65)
keK pEQk

subject to
YD dbg=1, VieN (2.66)
keK pEQk
YD g <v (2.67)
keK peQk
Y g=1, keK (2.68)
pEQk
& >0, Vk € K, Vp € QF, (2.69)

with parameters ¢”

0> afp and b’; being defined as follows:

= Z c%:vfjp, Vp e QFVE € K,

P
(i,j) €Ak

afp = Z wfjp, Vp e QF Vk € K, Vi e N,
JENU{d(k)}

b, = Z(%(k),j,p), Vp e QF, Vk € K.
jeN

The value of c’; gives the cost of a path p € QF. afj is the number of times that
customer 7% is visited among p (remember that paths are allowed to have cycles).
Finally, coefficients b’; take only binary values due to the constraints (2.4). If b’;
is equal to one, then path p visits some customer’s node, otherwise it goes directly
from the origin to the destination depot.
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At each iteration, one instance of a restricted master problem is solved to op-
timality. The dual solution consists of multipliers ¢, € N, 3 and v*, k € K for
the constraints (2.66), (2.67) and (2.68), respectively. These multipliers are then
used to redefine the arc-cost function as follows:

ok — a, ifi € N,
o= i —p—9F ifi=o(k)andj € N,
ki —F, if i = o(k) and j = d(k).

After that, new SPPRCs are solved an the whole process is repeated until the
optimal value Zyp is found or a certain stop criterion is met. Zygp can then be
used as a lower bound in a branch-and-bound algorithm. However, an additional
complication comes here into play: after executing a branching decision and fixing
some variable, the new optimal solution of the master problem may require a col-
umn that is still not present in the restricted problem. The reason for this is that the
optimal dual prices, and therefore the reduced costs of the columns, are modified
by the addition of a branching constraint. Thus, it might be necessary to execute a
new round of column generation.

On the other side, fixing a path variable to zero alters the structure of the cor-
responding subproblem. As suggested by Hansen et al. [1991] and Maculan et al.
[1992], instead of finding the shortest constrained path, it now consists of deter-
mining the second shortest path, then the third shortest path, and so on. A way
to get around this obstacle has been proposed by Desrochers et al. [1992]: rather
than fixing the path variables ¢¥, take the branching decisions on the original arc
variables X Z’; and transmit them to the subproblems. Thus, the structure of SP can
be preserved among all the branch-and-bound tree.

The first attempt to apply Dantzig-Wolf decomposition for vehicle routing
problems dates back to Appelgren [1969], who used it for solving a vessel schedul-
ing problem with time windows. Later, Desrochers et al. [1984] applied it to in-
stances of the m-TSPTW. Several 100-customer problems for the single depot
VRPTW were solved by Desrochers et al. [1992] using the branching method
mentioned above. The same idea has also been applied by Gélinas et al. [1995]
in the context of the black-hauling problem.

For large problems, solving MIP to optimality may no longer be possible, not
even using column generation, since the number of required iterations and the size
of the reduced problems may become huge. In these cases, lower bounds on the
value of Zyp can still be used to stop generating columns when no more sub-
stantial improvement is expected. Another approach is to employ approximative
optimality criteria, i.e. to search for solutions that are “sufficiently” close to the
optimum. Borndorfer et al. [2001] use this idea in their adaptive column genera-
tion scheme to solve very large problems (having up to 50,000 nodes) arising in
the context of duty scheduling for urban transportation systems.

Finally, it should be mentioned here that the integrality gap in set partitioning
problems that arise from Dantzig-Wolfe decomposition schemes have empirically
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been observed to be very small, which explains the good behavior of branch-and-
bound approaches. Bramel & Simchi-Levi [1997] investigated this fact further by
employing probabilistic analysis in the particular case of the VRPTW when MIP is
formulated as a set covering problem, the objective is the sum of route lengths and
no maximal number of vehicles is specified. They showed that, for any distribution
of customer locations and the other customer parameters (time windows, demands
and service times), the relative integrality gap tends asymptotically to zero as the
number of customers increases, i.e.,

1 1
lim _ZMIP = lim _ZIP (a.s.)
n—oo n, n—oo N

The absolute integrality gap, on the other side, is at most of O(n%/?).

2.3.2 Lagrangian Relaxation

Lagrangian relaxation may be applied to the VRPTW in many ways. Before dis-
cussing some of them, a brief general description of the method will be presented.
Starting from the linear relaxation LP of the integer problem considered in the last
section, and applying the Duality Theorem for linear programs twice, the following
identity can derived:

Zip = min {CT:U:A:U:b,Cm:d,xZO}
TER™?

= max {Ab+67d: NTA+6TC <}
AeR™,
JeR"

= max {)\Tb + max {5Td oTo < — )\TA}}
AER™ JERT

= max {)\Tb + min {(cT ~MNA)z : Co=d, z> 0}}
AER™ z€R™

The Lagrangian lower bound of IP is obtained by adding an integrality condi-

tion on z in the inner minimization problem. This value will be denoted by Z;, and

written as

Z, = max F(\),
AER™

where
FO\) =Xb+ min {(c" = XAz : Cx=d, v >0, integral }
reR?
T . T _\T
= —AMAzx P
A b+rmn€11§1n{(c M Az -z € Py}

As in the last section, the general problem decomposes into a main problem of
maximizing F'(\) over R™ and a subproblem of minimizing some linear function,
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which in this case depends on A, over the polytope Psp. Notice also that Zyp < Zp.
and that if the subproblem possesses the integrality property, both values are equal.
On the other side, it is also straightforward to see that:

7y, = in {c"z—AT(Az—b) : z € P
L r)\neaRﬁIglelﬂgn{cx (Az —b) : z € Psp}

< max min {ch - )\T(Ax —b) : x € Psp, Ax = b}
AER™ zERn

. T
=min {c'z:x€ Psyp, Az =b
:BER"{ SP, }

= ZmIp (2.70)

Thus, Z1p < Z < Zyip < Zpp and the Lagrangian bound is no better than the
bound given by the Dantzig-Wolfe decomposition. Nevertheless, for many (large)
practical applications, it is often convenient to use Zi instead of Zyp because of
efficiency reasons. To maximize F'()), several different techniques might be used,
such as dual ascent methods, subgradient methods, bundle methods, etc.

There is also an interesting connection between Dantzig-Wolfe decomposition
and Lagrangian relaxation. At each iteration of the column generation process, the
Dantzig-Wolfe decomposition delivers a feasible primal solution for MIP. On the
other side, the values of F'(\) are equal to the objective values of feasible dual
solutions of MIP, which can be obtained by fixing to A the multipliers associated
with the equations Ax = b and maximizing over the remaining dual variables. (To
prove this, imagine the condition x € Psp written as a system of inequalities and
construct the dual problem).

Using subproblems that possess the integrality property can be an advantage or
a disadvantage, depending on the case. If the integrality gap Zjp — Zpp is small,
then the bounds obtained by approaches with and without integrality property will
be similar, and of course we can expect the first ones to be easier to solve. On the
contrary, as Zp — Zip becomes larger, the quality of both bounds will split apart,
since in the second case part of the integrality gap is explored during the solution of
the subproblem. This fact can, in turn, affect the efficiency of a branch-and-bound
algorithm dramatically.

One possible approach for the VRPTW could be to relax constraints (2.5),
(2.13) and (2.14). Thus, the multi-commodity flow condition and the connection
between flow, time and load variables disappear. SP then consists of three easy
disjoint problems: a common min-cost flow problem on the flow variables, and
trivial optimization problems over boxes for the time and load variables. This idea
was analyzed by Desrosiers et al. [1988] for the m-TSPTW. However, since the
subproblem possesses the integrality property, and since, as stated at the beginning
of this section, the value of the linear relaxation lower bound was known to be too
bad for a branch-and-bound algorithm, the authors discarded the idea and did not
execute any numerical tests.

A more promising approach consists in relaxing constraints (2.2) and (2.3),
which state that each customer has to be attended exactly once and that no more
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than v vehicles may be used. As analyzed in the last section, the problem then de-
composes into several constrained shortest path problems. Desrosiers et al. [1988]
and Fisher et al. [1997] tested two versions of this method.

2.3.3 State-Space Relaxation

The concept of state-space arises in connection with dynamic programming, which
is a general technique for optimum decision making due to Bellman [1957]. Vir-
tually any combinatorial optimization problem might be modeled as a dynamic
program by thinking of it as a sequential decision process. All relevant objects
involved are considered as a system which is at all times in one of many possible
states, each of them being described by the value of some variables, called state
variables. From a given state, the system may move to another successor state
at a certain cost. Both the set of successor states and the cost for reaching them
are specified by some (usually recursive) rules called transitions. The optimization
problem can then be stated as the task is to find a smallest-cost path of transitions
between two prescribed initial and terminating states. This is usually accomplished
by exploring the state-space exhaustively.

Unfortunately, apart from some few exceptions, this approach is not applica-
ble for most combinatorial problems, since the number of states that have to be
explored (the so-called dimension of the state-space) is simply too large. On the
other side, in the few cases where the dimension of the state-space can be kept
under control, dynamic programming algorithms have proven to be very fast.

This observation lead Christofides et al. [1981b] to propose a general relaxation
procedure for many routing problems based on the idea of reducing the number of
feasible states. Its approach is called state-space relaxation and consists in defining
a mapping ¢ from the original state-space S into a new state-space S of lower
dimension. For every transition from a state S to a state .S, in .S, a transition from
g(S1) to g(.S2) with the same cost is created. By solving the new smaller dynamic
program, we get a lower bound on the original problem that can then be used by a
branch-and-bound algorithm.

Following this idea, Kolen et al. [1987] developed a solution procedure for the
special case of the VRPTW where an homogeneous vehicle fleet of capacity Q
and sharing the same depot is considered. They constructed a branch-and-bound
tree by fixing the flow variables at 0 or 1 in such an order that, at each node of the
tree, the following holds:

e There is some set of fixed routes, each one starting and finishing at the depot.

e There is at most one partial route that starts from the depot but has not yet
returned to it.

e There is a set of forbidden customers that may not be inserted as next in the
partial route.
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At each node of the tree, a state-space relaxation method is used to calculate
a lower bound on all feasible extensions of the current incomplete solution. The
condition that every customer has to be visited exactly once is dropped. Instead,
all such extensions are considered, in which the total load of the routes is ) ;-\ ¢;
and the last customer visited is different for each route.

The dynamic program solved at the root node is defined as follows: every
feasible state has the form (i,4,k), i € N,0 < £ < Y . x4, 0 < k < vand
corresponds to any situation where there are k complete routes covering a total
load of ¢ and having different last customers. Those are required to be contained
in the set {1, ...,4}. Two possible kinds of transitions are defined:

e From a state (7,4, k) to a state (i + 1, ¢, k) at no cost.

e From astate (i, ¢, k) toastate (i+1,¢+¢',k+1) atacost c(i+1,¢") defined
as the minimal cost of a path from the origin to the destination depot that has
i+ 1 as the last customer and covers a load of ¢’. The value of such a path can
be calculated by using the algorithms that will be described in Section 2.3.4.

The lower bound for the root node is calculated by determining the smallest-
cost sequence of transitions from (0,0, 0) to any state of the set

{(n%&k) : 1§k§v}

At the other nodes, if no partial route is present in the current solution, a smaller
version of the same dynamic program is solved, considering only those customers
who are still not covered. On the contrary, if there is such a partial route, a slight
modification is needed. Let N* be the set of unserved customers and v* the number
of remaining free vehicles. The dynamic program to be solved is defined on states
of the form (4,4,0,k), i € N*,0 < £ < £ < >, .y« 4, 0 < k < v*. Each
of these states represents the situation when a total load of ¢ is covered by k£ — 1
complete routes and a partial one, such that the load on this partial route is ? and
the last customer visited by it is 7. Two types of transitions are defined, depending
if the current partial route is extended, or if it is closed and a new one is created.
The initial state is determined according to the current solution values, while the
admissible final states have the form:

(i, > b, k) :
1EN*

where
1€ N*
Zei_(k_l)QSESQ
iEN*
1<k<v*
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In the same article, the authors derive an analogous relaxation for solving the
set partitioning master problem that appears in a Dantzig-Wolfe decomposition
schema. Instead of dropping the integrality conditions, they relax the constraints
requiring each customer to be attended exactly once, and replace them by one row
aggregation constraint and |N| constraints specifying that the last customers of
the routes must be different. The resulting integral program is solved to optimal-
ity by dynamic programming. The lower bounds obtained are employed in the
same branch-and-bound approach described before. A similar method was used by
Bianco et al. [1989] in the context of urban crew scheduling.

2.3.4 The Shortest Path Problem with Resource Constraints

The shortest path problem with resource constraints (SPPRC) is a generalization
of the classical shortest path problems known from basic graph theory. It appears
as a subtask in almost all exact optimization approaches to routing problems. To
formulate it, some preliminary definitions are needed. Let D = (V, A) be a di-
rected graph and R = {1, ... s} a finite set of so-called resources. In association
with D and R, the following functions are defined:

e A cost function ¢ : A — Q on the arcs of D.
e One resource consumption function t” : A — Q for every resource r € R.

e One lower (resp. upper) limit function a” : V. — Q (resp. 0" : V — Q)
for every resource r € R. For each node ¢ € V/, the interval [a], b]] will be
called the r-th resource window of .

Consider now a nonelementary directed path p in D as a sequence of nodes
10,%1, - - - , L7 (possibly with repetitions). For any resource » € R and any node 7y,
among p, the level T of r when reaching iy, is recursively defined as :

7y = max {75+ )
for 1 < h < H. The initial level Tz"é is arbitrarily chosen from the r-th resource
window at the first node [a] ; b} |. The path p will be called feasible if, for each
resource r € R, it is possible to choose this initial level in such a way that a;, <
T < b;, holds for every node iy, in the sequence. The SPPRC can then be stated
as the task of finding a directed feasible path of minimal cost between two given
nodes o and d.

The SPPRC appears in many contexts. For example, the shortest path problem
with time windows (SPPTW) is the particular case when travel time is the only
resource being considered. On the other side, the formulation of the VRPTW used
in this chapter (see Section 2.1) leads to a SPPRC with two resources: time and
vehicle’s capacity. In more complex practical applications, the number of resources
may increase further. (See Borndorfer et al. [2001] for models that involve more
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than 10 resources to represent several side restrictions that appear in the context of
duty scheduling for public transportation companies.)

Scaling by an appropriate factor, t",a” and " may assumed to be integer-
valued for all » € R. It is then possible to reduce the SPPRC to a classical shortest
path problem (SPP) on a new graph D = (V, A) defined as follows:

e Several copies i1, ...,1y(;) of each node i € V' are created. These copies
correspond to all feasible combinations of allowed values for the resource
levels at 7. In the following, these combinations will be called states. Since
a” and b" are integer-valued, there are “only” finitely many states. In fact,

M(i)=> (bj —aj +1),VieV

r=1

e For each arc ij € A, we introduce arcs with the same cost c;; between
all pairs (i, j,) of states associated to ¢ and j that satisfy the following
condition: starting from node 7 at state 2,;, and traveling among ¢j, we reach
node j at state j;,.

Given two nodes o,d € V, it is straightforward to see that for every feasible
(0, d)-path in D, there is a directed path with the same cost between certain states
0y, and Jn in D, and vice-versa. The usual algorithms for shortest path calculation
could therefore be applied in D to solve the SPPRC. However, there are two main
difficulties that have to be considered.

The first one concerns the cost function. When the SPPRC is embedded as a
subproblem in the calculation of a feasible path with minimal reduced cost for the
VRPTW (see Section 2.3.1), the graph D will usually contain negative cost cycles.
It is known that in such cases the (classical) SPP becomes A/P-hard. Fortunately,
the additional resource constraints may help us out of this trouble. If at least one
resource consumption function takes only positive values, (as it is usually the case
with the travel time, for example) then it is easy to show that the transformed
graph D remains acyclic, so that Ford-Bellman’s classical algorithm can still be
employed and the results be translated back to D. However, as this is done, cycles
may appear in the solution, since two different states in D may correspond to the
same node in D. Dror [1994], on the other side, showed that the task of finding
an elementary constrained path in the case of just one resource is A/P-hard in the
strong sense, which means that there are not even pseudopolynomial algorithms for
it. Because of this reason, the algorithms for the VRPTW relax the subproblem
and admit paths with cycles, though they might eliminate some of them “by hand”.

The second difficulty regards the size of the auxiliary graph D. The transfor-
mation introduced above is by no means polynomial, since the number of nodes in
D depends on the values of the functions a” and b" which is exponentially larger
than its encoding size. The algorithms presented here have therefore only a pseu-
dopolynomial character. The set of possible states can grow rapidly out of control
if we consider many resources and if the resource windows at the nodes are too
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wide. Fortunately, for many practical applications concerning the VRPTW, the
time windows will be narrow enough to allow this approach to be efficient.

A solution algorithm for the SPPRC will not create the graph D explicitly.
Instead, the states of a node are generated as they are needed and maintained as
a set of so-called labels. More precisely, consider a feasible path p, in D that,
starting from the origin o, reaches a node ¢ € V' consuming 77, units of resource
r € R and at cost of ¢; .. We shall associate to p,; a label at 7 of the form f(i,x) =
(Ci s Tilﬁ, .. ,TZSK) As in the classical algorithms for the SPP, these labels are
created or adjusted during the solution process, until a certain optimality criterion
is met. For simplicity, the index & of a label will be omitted when there is no danger
of confusion.

A simple, but important, observation stated at first by Aneja et al. [1983] helps
to reduce drastically the number of labels that have to be taken into account. Given
two labels f (i, k) and f(i,n), we say that f (i, k) dominates f(i,n) if the following
holds:

Cix < Cig,

T, <T.,,vreR.

A label is said to be efficient if there are no other labels that dominate it. A
path using only efficient labels will be called an efficient path. 1t is straightforward
to show that for every feasible path p, between the origin o and any other node
i € V, there exists a feasible efficient (o,7)-path p, of at most the same cost.
Therefore, when solving an instance of the SPPRC, only efficient labels have to
be considered.

Denote by @); the set of all labels at a node 7 and let EFF (Q;) be the subset
of all efficient labels in ;. The three solution approaches for the SPPRC that
will presented here rely on calculating EFF (Q4) by dynamic programming. The
shortest feasible path from o to d is then obtained from the label with the smaller
cost in this set.

In the context of the SPPTW, Desrosiers et al. [1983] proposed their label
correcting algorithm, which is in fact an adaptation of the classical Ford-Bellman-
Moore algorithm (see Ford [1956], Bellman [1958], Moore [1957]). The version
described here has slightly been modified to take additional resources into account.

Given a label f(i, k) = (ci, T} T#.) at anode i, and a node j € Tt (7)

iKY TR

let NEXT (f (i, k), j) be the function that returns the label f(j,7) at j defined by:

Cim = Cik + Cij
17, =max {Ij,+1tj;, a"},VreR.
If f(4,n) is infeasible because of the violation of some resource window at j,
then the return value of NEXT (f(i, k), ) is set to be empty.
Algorithm 2.1 shows an outline of the label correcting method. Remark that
the set (), is initialized using some valid label f (o, o). Normally, this label is fixed
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{Initialization}
Qo —{(0,T) ..., T5 )}

30 Q; — {(c0,a,... ,as)} Vie V\ {o};
L —{o};

while £ # () do
6:  {Selection of next node}
Choose a node 7 € L; {Treatment of next node}
for j € ' (i) do
Q) — EFF (U, {NEXT (£(i, ), j)} UQ,):
if Q;- # @, then
Q; — Q'
12: L—LU{j}
end if
end for
15:  {Reduction of L}
L— L\ {i};
end while

°

Algorithm 2.1: A label correcting algorithm

by the problem instance. If this is not the case, the algorithm has to be run once for
each possible initial state.

The algorithm maintains a list £ of nodes that remain to be treated. Each time
anode 1 is treated, all possible new labels for each of its successors j € I'" (i) are
generated. Before adding any new labels to a set (), however, a check is done to
find out if they are not dominated by some older labels. For instances involving
many resources, this check may require a lot of computational time. If (efficient)
new labels are found, they are added to (Q; and j is inserted in the list £. The
execution finishes when the list gets empty.

For the remainder of this section, we shall restrict our attention to the case
where at least one resource consumption function is either strictly positive or strictly
negative; w.l.0.g., assume that ¢! is strictly positive. Since the value of Tzlf_i in-
creases for each new label f(i,x) that is created, finiteness of the algorithm is
then guaranteed by the upper bound limits bi1 at the nodes. Obviously, the number
of required iterations depends on the rule used for choosing the next node to be
treated. FIFO and LIFO strategies have an exponential worst-case complexity. A
better selecting criterion that ensures pseudopolynomiality has been discussed by
Desrochers & Soumis [1988a] (see also Pape [1980] and Pallottino [1984]). Us-
ing this criterion, their implementation of the label correcting algorithm was able
to solve instances of the SPPTW having 500 nodes, 50,000 arcs and 100 discrete
time units in a few seconds.

In the case of the unconstrained SPP, if it is known a priori that the cost func-
tion is nonnegative, then this fact can be exploited to improve the efficiency of the
label correcting method by specifying a certain order in which the nodes have to be
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treated, so that no node needs to be considered more than once. The well-known
Dijkstra’s algorithm is based upon this idea. Since ¢! is strictly positive, it is natural
to ask if a similar improvement may be attained here. This would require, however,
to treat the labels independently of the nodes they belong to.

Desrochers & Soumis [1988a] proposed an approach in this sense. Their label
setting algorithm provides a generalization of Dijkstra’s algorithm for the case of
the SPPTW. Again, the version presented in Algorithm 2.2 has been slightly mod-
ified to admit more than one constraining resource. Instead of maintaining a list £
of nodes to be treated, this algorithm defines at each node a set P; of permanent
labels, i.e., labels that will not be changed anymore.

{Initialization}
Qo — {(0.T oo T2}
Q; — 0,Vi e V\ {o};
P, —0,VieV,
5: while Uigv(Qi \PZ) #* 0 do
{Selection of next label}
Choose a label f(i, k) from U;cy (Q; \ F;) with Tzlf_i minimal
{Treatment of label f(i, )}
for j € T" (i) do
10: Qj <—EFF(QJ UNEXT(f(Z,Ii),])),
P, — P U f(Z, K)
end for
end while

Algorithm 2.2: A label setting algorithm

Finiteness is guaranteed by the same argument as in the label correcting algo-
rithm. The key step in this method is the selection of the next label to be treated,
since it involves comparing the value of T}M€ between all labels f (i, ) (of all nodes)
which are still not marked as permanent. To accelerate the search, the idea of creat-
ing buckets, proposed by Denardo & Fox [1979] for the classical SPP, may be also
applied here. A bucket is an unordered list that contains all labels whose values for
the first resource lie within a specific interval. The h-th bucket, for example, would
contain the labels f (i, ) for which hw < Tllm < (h 4 1)w, where w is a constant
called the width of the buckets and is defined by:

JU 1

w = 1rzrjuer}4 tij
Thus, while a label within one bucket B is treated, all new labels created will
belong to buckets that come after B. Instead of searching for the minimal among all
untreated labels, we can then just process all the labels of the first bucket unorderly,
then go to the second bucket, and so on. Of course, an extra computational cost has
to be paid to insert the newly created labels in the correct buckets, but this is still
more efficient than keeping the whole set of labels ordered. Using this approach,
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the authors report having solved problems with up to 2,500 nodes and 250,000 arcs
in a matter of seconds.

Both the label correcting and the label setting algorithms are so-called reaching
approaches. They rely on extending feasible paths by examining at each iteration
all successors of a certain node 7, a task that implies updating the set of labels Q);
for all j € I (4). As the number s of resources increases, however, the computa-
tional cost of such operations grows rapidly, since determining EFF (Q;) implies
comparing the level values 77, between all labels f(J, k) € Q; for each resource
re R.

To reduce the frequency with which sets of labels are updated, Desrochers
[1986] proposed a pulling approach for the SPPRC (see also Desrochers & Soumis
[1988b] for the SPPTW). His method is described in Algorithm 2.3. The main idea
is to treat a node j by examining the labels for all its predecessors ¢ € I'"(j) and
extending them as before. Since all new labels are created at j, only the set Q; has
to be updated during the iteration.

{Initialization}
Qo {(0. T, T3,)):
7o« b}
Qi — 0,Vi e V\{o};
m; —al,Vi € V\ {o};
while 3j € V with 7; < b} do
{Selection of next node}
Choose j € V with 7; minimal;
{Treatment of node j}
fori € I'"(j) do
Qj — Qj Ux NEXT (f (i, ), j);
end for
Qj — EFF(Q;)
T +— min {bjl-,Wj + w}

end while

Algorithm 2.3: A pulling algorithm

As in the last case, w is the minimal value of the function ¢! over A. At each
node ¢, a variable 7; is maintained to mark a subset of permanent labels. These are
defined as the labels f (i, k) of @; for which the value concerning the first resource
is less than ;.

At each iteration, the node j with the smallest value of 7; is selected. By ex-
amining its predecessors, new labels are (possibly) created at j and (); is updated.
Minimality of 7; guarantees that no further labels f(j,x) can be generated, for
which T]1 . < mj+w holds. The value of 7; is therefore increased by w and a new
iteration starts. After finitely many steps, the values 7; will reach the upper bounds
b} for all nodes 7 € V, and the algorithm will terminate. Notice that, during the
iteration described above, it suffices to generate only such labels f(j, k) for which
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Tj{ .. lies within the current “bucket” [r;; 7; + w).

An efficient implementation of the pulling process is described by Desrochers
[1986]. He uses a primal-dual approach to identify permanent and nonpermanent
labels. The computation of efficient subsets also takes advantage of specialized
data structures to obtain a low complexity. He reports having solved problems
with 1,000 nodes, 50,000 arcs and 5 resource constraints in less than a minute.

Several special cases of the SPPRC and the SPPTW have also been subject
of research. Consider, for example, the case of minimizing the total path duration,
while meeting the time windows at the nodes. This can be modeled as a SPPTW,
where the labels (c¢;, T;) satisfy the relation ¢; = T; — T,. It is easy to see that in
this case, there can be only one efficient label at each node. The algorithms for the
classical SPP may therefore be adapted to solve this problem.

On the other hand, if a path of maximal duration that fulfills the time window
requirements is sought (a task called the critical path problem), the cost function
can be seen as the negative value of the duration, and the same approach as before
yields labels of the form (¢;, T;), where ¢; = —(T; — T,). In this case, however,
it is no longer possible to reduce the problem to a classical SPP. Anyway, the
pseudopolynomial algorithms presented in this section may still be used.

As stated before, whenever cycles of negative cost are present, the problem
of finding an elementary shortest path is A/P-hard in the strong sense. However,
several authors have considered the relaxed problem of finding a shortest 2-cycle
free path, i.e., a path without cycles containing just two nodes. Houck et al. [1980]
and Christofides et al. [1981a] gave algorithms for the unconstrained case. These
have been extended for the SPPTW by Kolen et al. [1987] and Desrochers et al.
[1992]. The methods require duplicating the number of labels and will not be
discussed in detail here.

Sometimes it is desirable that the value of the resource levels T} among the
nodes of a path lie as close as possible to the allowed lower or upper bounds. For
example, in certain instances of the SPPTW, time windows may model intervals
at which customers are waiting for service. Obviously, it is wished to reduce their
waiting times by arriving as early as it is permitted. This problem may be mod-
eled by introducing a nondecreasing penalty cost function on the arrival time. The
algorithms presented in this section may still be used, provided the cost calcula-
tion is updated appropriately. On the other side, Salomon et al. [1997] found an
application in the manufacturing context where a penalty function with nonposi-
tive slope was required. The authors describe a transformation to deal with this
case. Finally, when penalty functions with mixed positive and negative slopes are
considered,loachim et al. [1994] showed that the algorithmic difficulties increase
substantially.
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2.4 Heuristics and Meta-Heuristics

Due to the huge computational complexity of time constrained routing problems,
most real world applications are still solved using heuristics. Moreover, heuristics
also often appear as subroutines within exact algorithms, for instance during the
initialization phase, or to round fractional solutions obtained from a linear relax-
ation of the problem. The development and analysis of heuristics capable of coping
with realistic problem sizes has in fact been one traditional focus of research in the
area of the VRPTW. Several route construction and route improvement algorithms
have been proposed during the last decades.

Route construction heuristics generate a feasible solution to the VRPTW by
the iterative insertion of all customers. Sequential insertion methods create one
route at a time, whereas parallel construction algorithms build several routes si-
multaneously. Both the next customer to be inserted, as well as the route and/or
position where insertion shall occur are determined using various criteria. Ap-
proaches based on maximizing savings, minimizing additional cost and time, and
nearest neighbor concepts have been proposed.

Solomon [1987] described a two-phase sequential algorithm in which the best
insertion position for each unrouted customer is computed at first, and then this
information is used to select the next customer to be inserted. This idea turned
out to be very effective in the instances where it was tested. Roy et al. [1984a] and
Roy et al. [1984b] developed a parallel insertion procedure for the dial-a-ride prob-
lem which constructs routes using certain proximity criteria. Similar approaches
have been utilized by Jaw et al. [1986] and Madsen et al. [1995] to minimize a
linear combination of customer inconvenience and travel costs.

The route improvement heuristics, on the other side, start from a given fea-
sible solution and enhance it by a sequence of local modifications, usually until
a so-called local optimum is reached. One classical idea in this context consists
in replacing k arcs from the current solution with k other ones that are presently
not used. This approach is called k-interchange and was inspired by early work
from Lin & Kernighan [1973] and Lin [1965]. Based upon their ideas, improve-
ment procedures for the VRPTW (see Russell [1977], Cook & Russell [1978] and
Baker & Schaffer [1986]) and for the m-TSPTW (see Potvin et al. [1989]) have
been developed. A main limitation of the method is, however, that large amount
of processing time is required to examine all possible exchanges. To overcome
this difficulty, the OR-opt procedure (Or [1976]) restricts the search only to those
exchanges where one, two or three adjacent customers are moved to another posi-
tion within the same route and inserted after another customer who meets a certain
proximity criterion. This idea was applied successfully by Solomon et al. [1988] in
an algorithm for the VRPTW. Savelsbergh [1992] addressed several additional is-
sues concerning the efficiency of edge-exchanges for the case of minimizing route
duration.

Another way of improving a solution was proposed by Thompson & Psaraftis
[1993] based on their concept of cyclic n-transfers. These consist in moving 7
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customers from the route served by vehicle k to the route served by vehicle d(k),
where ¢ is a cyclic permutation on the set of vehicles. An OR-opt similar procedure
can be used to reduce the number of exchanges to be examined,

Usually, heuristic algorithms for the VRPTW and related problems combine
one or more route construction procedures that generate some initial schedules
with local improvement methods that work on them. Potvin & Rousseau [1993],
for example, integrated parallel insertion with OR-opt techniques. Similarly, in the
“greedy randomized adaptive search procedure” (GRASP) of Kontoravdis & Bard
[1995], vehicle routes are first constructed by a randomized greedy method and
then improved via local search. On the other side, Russell [1995] has examined the
possibility of using improvement criteria already at the route construction level to
obtain what he calls “hybrid heuristics”.

During the last decade, meta-heuristics have constituted a popular framework
for the most local improvement methods. Much effort has been invested in devel-
oping and fine tuning specialized versions of general techniques like tabu search,
simulated annealing, genetic algorithms, etc. We refer the reader to Gendreau et al.
[1997] for a survey in this area. However, it must be observed here that the expec-
tation generated around meta-heuristics has turned out to be exaggerated in many
cases. While having achieved good results in some important practical instances,
meta-heuristics have two fundamental drawbacks when compared with exact op-
timization approaches: they are unable to provide lower bounds or performance
guarantees, and their algorithmic behavior usually depends on the value of some
“meta-parameters” that have to be calibrated on a trial-and-error basis. It is by no
means certain that the best suited set of values for some problem instances will still
perform good on different ones. Of course, exact approaches have on their side the
disadvantage of being limited to relative small problem sizes, but even this could
change in the near future (see Borndorfer et al. [2001] for an example).

The most challenging routing problems arise in the context of dial-a-ride ap-
plications. The additional precedence and coupling constraints (see Section 2.2.3)
dramatically increase the complexity of the route generation. In their cluster first,
route second approach, Sexton & Bodin [1986] were the first to suggest a nowa-
days classical procedure for solving large practical instances. They proposed to
partition the set of requests in so-called clusters, each of them associated to a vehi-
cle. The routing within these clusters is accomplished at a second phase, and con-
sists of solving independent single vehicle PDPTWs. A similar idea was followed
by Koskosidis et al. [1992] to develop an iterative optimization-based heuristic for
the VRPTW. The problem is decomposed into an assignment phase and a series
of TSPTW. At each new iteration, the assignment is recalculated by solving a
capacitated clustering problem.

A main limitation of the former methodology lies in the difficulty to construct
a good clustering without relying on routing information. Dumas et al. [1989] pro-
posed an improvement based on moving part of the clustering process into the rout-
ing process. Instead of creating one cluster for each vehicle, they devised heuristic
algorithms that group together customers who can efficiently be served by a seg-
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ment of a route to form what they call mini-clusters. In the second phase, a routing
problem is solved on these mini-clusters. This is still a multi-vehicle problem,
but some of the complicated local constraints like coupling and precedence are al-
ready satisfied a priori. In fact, a moment of thought reveals that what remains is
a m-TSPTW for an heterogenecous vehicle fleet, which the authors solved using
the methods discussed in Section 2.3. To build the mini-clusters, they employed a
sequential insertion heuristic. Later, Desrosiers et al. [1991] replaced it by parallel
insertion techniques and, finally, Desrosiers, Dumas, Ioachim & Solomon [1991]
employed an exact optimization method based on set partitioning and column gen-
eration.

A similar approach was used for the optimization of Berlin’s Telebus trans-
portation system for handicapped people, a dial-a-ride problem involving instances
with about 1,500 requests and 100 vehicles. (See Borndorfer [1998] for a detailed
description of the project). The structure of the problem allowed the enumeration of
all possible mini-clusters - about 100,000 in the most cases - in a couple of minutes.
For the solution of the corresponding huge partitioning problem, the author devised
a specialized code that was able, in all test instances, to deliver clusterings within
the 1% optimality gap in less than three minutes on a Sun UltraSparc 1 / 170E.
Using the best mini-clustering found, vehicle routes were generated heuristically
and a new set partitioning problem was then solved to obtain the final schedule.
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Chapter 3

Online Vehicle Routing. A
Survey.

3.1 Introduction

One typical question asked by foreign students visiting Berlin concerns their mobil-
ity. Berlin’s public transportation company, the Berliner Verkehrsbetriebe (BVG),
offers a variety of tickets and fares for traveling in and around Berlin. Their prices
range from €1.20 for a short-trip ticket (valid for 3 or fewer subway stations) to
€72.50 for a monthly ticket covering all three fare zones. Alternatively, the two
“canonical” transportation possibilities are also available here: to lend a bike from
a friend, or to walk. However, especially during the winter months — and this is true
not only for ecuadorian students — the two latter options may require a considerably
high level of physical fitness and mental courage.

Now consider the situation of a student that has just arrived for a stay of, say,
one month. He is wondering which is the right strategy for him. Should he buy
a monthly ticket directly? Or is it better to try to go by bike? And what about a
mixed choice (e.g., bike for the route to work, BVG for going out at night)? The
particular feature that makes this decision so difficult is the fact that it has to be
taken on the basis of incomplete input information. For instance, the student has
no way to know in advance how the weather conditions during the two months will
be, and if he will be able to travel by bike all the time, or if he will often be forced
to pay fares for single trips, spending in the end more than what a monthly ticket
would have costed. It is obvious that any decision he takes may later turn out to be
a wrong one. However, the student does not want to give up. He admits that luck
plays an important role, but he also realizes that some strategies seem to be more
promising than others; and hence he is looking for a criterion to evaluate them.

Similar problems often occur in practical applications that operate in a real-
time environment. During the last decade, there have been several approaches to
model and study them from a mathematical point of view, as well as to establish a
formal background for their analysis. This effort has given birth to a new branch in
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operations research called online optimization. In plain words, online optimization
problems are characterized by the fact that their input data is not explicitly given to
a solution algorithm from the beginning. On the contrary, the solution process has
a dynamic nature, with the online algorithm required to take immediate decisions
on one side, and new input information arising on the other side.

As common to any new research area, the theoretical framework for online op-
timization is still “under construction”, and many (even basic) issues have still not
been settled in a definitive manner. For instance, there is no clear agreement on all
fundamental concepts, and universally accepted ways of proceeding are also miss-
ing. This includes such questions as for example determining the quality of an on-
line algorithm. No unified idea on what should be called a “good” online algorithm
exists, but rather diverse criteria have been proposed that depend on the specific ap-
plications. Nevertheless, pioneer work is producing its first fruits, and increasingly
many interesting results and practical experiences are being collected. Compre-
hensive reviews can be found in Borodin & El-Yaniv [1998] and Fiat & Woeginger
[1998]. Krumke [2002] discusses various issues concerning the topic of compet-
itive analysis, its limitations and alternative models. Finally, Krumke & Rambau
[2002] give an introductory survey in the form of lecture notes.

The aim of this chapter is to focus on online optimization problems related to
vehicle routing. Section 3.2 will introduce some notation and preliminary concepts,
while the main problems and results in the area of online transportation, as well as
some practical applications, are addressed in Section 3.3.

3.2 Basic Concepts and Notation

3.2.1 Online Problems and Online Algorithms

There are a couple of ways — called online paradigms — in which an online opti-
mization problem and an online algorithm may be presented. The most common
two are the sequence model and the time stamp model.

In the sequence model, the problem data is given by a sequence of so-called
requests, which can be seen as “elementary pieces” of information. An online
algorithm receives these requests one after another and has to compute a sequence
of answers to the problem. Each new request requires the immediate calculation
of a new answer, using only the information contained in those requests that are
already known to the algorithm.

Alternatively, requests in the time stamp model are not ordered within a se-
quence, but are rather labeled by certain release times at which they become known
to the online algorithm. The algorithm itself must give answers for the problem at
certain moments in time, using only the information that has already been released.
The principal change with respect to the sequence model lies in the fact that here
the online algorithm may “collect” a couple of requests before taking an action.

Independently of the online paradigm used, most online problems can be stated
as request-answer games, as shown by Ben-David et al. [1994]:
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3.2.1 Definition (Request-Answer Game) A request-answer game (R, .A,C)
consists of a request set R, a sequence A = A1, Ao, ... of nonempty answer sets
and a sequence C = (', (s, . .. of cost functions of the form

Ci:R"x Ay x -+ x Aj — R, U {+00},

where R® = R x R x --- x R denotes the i-th Cartesian product of R with itself,
i.e., R" contains all sequences of length i made from elements of R.

The input for any online algorithm consists in a sequence (ry,73,...) of re-
quests from R. After the request r; has been issued, the algorithm is required to
choose one answer from the set A;. Associated to each sequence of answers is an
(accumulated) cost, given by a function C;. The objective is to choose answers in
such a way that the accumulated cost is minimized. The key point is that C; de-
pends not only on the current answer, but also on all previous requests and answers.
Hence, decisions taken at some stage influence the cost for future stages.

An online algorithm which chooses the answers in some prescribed way, based
only on the information revealed by previously issued requests, is called a deter-
ministic online algorithm. Deterministic algorithms can be considered as func-
tions:

3.2.2 Definition (Deterministic Online Algorithm) A deterministic online algo-
rithm ALG for a request-answer game (R, A, C) is a sequence (f1, fa,...) of func-
tions having the form:
fZRZHAZ,V’LGN

Each function f; maps a sequence R’ of previously issued requests onto an
answer from the current feasible answer set A;. Hence, given a deterministic on-
line algorithm ALG, a finite input sequence o of requests automatically fixes a
finite sequence of answers. Moreover, the pair (ALG, o) determines a value for the
accumulated cost:

3.2.3 Definition (Cost) Given an input sequence 0 € R", witho := ry,..., Ty,
the value

ALG(0) := Cp(o, f1(r1), ..oy fu(ri, .. yrn))
is called the cost of ALG with respect to o.

The example described at the beginning of this chapter — which we call the
BVG-ticket problem in the sequel, for short — may be also modeled as a request-
answer game. For simplicity, we assume that only three alternatives are relevant
for the student each time he needs to travel to some destination: to buy a single-
trip ticket for €1, to buy the monthly ticket for €30, or to get there by bike. (The
real fares are different, but their relation is approximately the same). Moreover,
whenever the weather conditions allow him to travel by bike, he will do it, as
there are no (monetary) costs involved in that action. Thus, the only interesting
requests are those bad-weather requests which require him to choose between the
two tickets.

The BVG-ticket problem is the request-answer game (R, A, C), where



48

Online Vehicle Routing. A Survey.

e R = {r} is a set with only one element, which represents a bad-weather

request. Any input sequence o := (rq,...,r,) is made from repetitions of
r.

e The answer sets in A contain the alternatives available to the student each

time a bad-weather request is issued; each of them is equal to
A := {buy-single, buy-monthly, use-monthly }.

However, we must take care of preventing the student from choosing the
answer “use-monthly” as long as he has not yet selected “buy-monthly”.
This is done buy introducing penalizations in the cost function, as indicated
below.

e For any 7 € N, the cost function C; gives the total amount of money that the

student has spent for transportation during the first ¢ requests (including the
i-th one). As stated before, C; depends both on the requests issued so far
and on the sequence of decisions fi(r1),..., fi(r1,...,r;) taken by the stu-
dent. Moreover, the cost is defined to be equal to +o0o whenever the students
chooses “use-monthly” without having chosen “buy-monthly” before.

Let B;(f1,..., fi) be equal to smallest index in {1, ...,4} such that the an-
swer returned by the function fp,(r1,...,7rp,) is equal to “buy-monthly”.
If no such index exists, then B; := +oo0. Similarly, let U; be the index
corresponding to first answer in f1(r1),..., fi(r1,...,r;) which is equal to
“use-monthly”, with U; := 4-o0 if such an answer has not yet been chosen.
Then C; can be computed according to the formula:

Si|+30(M;|, ifB; < U
Ci(r1y.oymiy f1yoy fi) :{ L_;’O M othezrwise.l

Here,

Si:=A{f; + fi(r1,...,r;) = buy-single, V1 < j <}
M; = {f; : fj(r1,...,r;) = buy-monthly, V1 < j <4}

are used to count how many single-trip and monthly tickets the student has
purchased, respectively.

A deterministic online algorithm for the BVG-ticket problem is defined by fix-

ing the sequence of functions f, fo, ... to select answers from A according to the
known requests. For instance, two trivial examples are the algorithms ATFIRST
and NEVER given by

ATFIRST: NEVER:

buy-monthly, if¢=1,

fi= { use-monthly, otherwise. Ji = buy-single, Vi € N.
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The algorithm ATFIRST buys the monthly ticket the first time a bad-weather re-
quest arises, while NEVER takes the opposite strategy and purchases only single-
trip tickets, no matter how many times the student has to travel.

To judge the quality of an online algorithm, new, adequate reference parameters
are required. A moment of thought reveals that traditional approaches like worst-
case and average-case analysis are not of much help here. In fact, for the most
online problem instances, it is always possible to choose the input sequence in such
a way as to force the algorithm’s performance get arbitrarily bad. On the other side,
average-case results would require statistical information about the distribution of
the input data, which is normally not available.

Sleator & Tarjan [1985] proposed their technique of competitive analysis for
comparing the quality of various paging algorithms that manage cache memory in
computers. This method has by now become a standard tool to evaluate online
algorithms. It basically consists in comparing the output of an online algorithm
with that of an adversary. An adversary is another algorithm for the same problem
which has a certain degree of freedom to choose the input sequence in such a way
as to let its own solution be better than the one of the online algorithm. The most
common adversary is the offline adversary, which is allowed to choose any arbitrary
input sequence, and which constructs its solution knowing this whole sequence in
advance.

3.2.4 Definition (Competitiveness) A deterministic online algorithm ALG is said
to be c-competitive if there exist two constants c¢,b € R such that, for any input
sequence o, the following holds:

ALG(c) < c-OPT(o) + b, (3.1

where OPT(o) is the optimal solution value of the offline problem instance ob-
tained when o is given in advance.

The constant c is called the competitive ratio of ALG. If b = 0, ALG is said to
be strictly competitive.

Two remarks have to be made at this point. First, all optimization problems
we consider here are minimization problems involving nonnegative cost functions.
Therefore, in inequality (3.1) we assumed 0 < OPT (o) < ALG(c). On the other
hand, some authors define competitiveness in a more ample sense and allow the
competitive ratio to be a function ¢ : N — R on the length n = |o| of the input
sequence. We shall adopt the restricted definition from above for the rest of this
thesis. Moreover, as long as we do not explicitly say the contrary, when we talk
about competitiveness, we refer to strict competitiveness.

A moment of thought reveals that the algorithm ATFIRST for the BVG-ticket
problem is 30-competitive. In the worst-case, the input sequence o consists of
only one bad-weather request, and the student buys a monthly ticket for it. Thus,
ATFIRST(0) = 30, while OPT(0) = 1. In contrast, the competitive ratio for
the algorithm NEVER can get arbitrarily large as the length of the input sequence
increases. (Remark that it is possible to have several bad-weather requests per day).
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Another competitive algorithm for this problem is REVIEW, which can be
described as follows: After the ¢-th request has been revealed, the student takes the
same decision it would have taken in the beginning, if he had known in advance
that at least 7 bad-weather requests were to be expected. Hence, REVIEW buys the
monthly ticket as soon as the 30th request is issued. The cost incurred by REVIEW
depends on the length n = |o| of the input sequence:

n, ifn <29,

REVIEW(o) = { 59, ifn > 30.

The reader can easily verify that the offline optimum value also depends only
in the length of the input sequence, and that it is given by

n, ifn <29,
OPT(o) = { 30, ifn > 30. (32)

Hence, taking the largest ratio over all n € N we obtain for the competitive
ratio of REVIEW
REVIEW(o) _ 59 29
e > =1+,
OPT (o) 30 30
which is much better than the ratio of ATFIRST. Now it is natural to ask if there
exists some other online algorithm for which this ratio is further improved.

One subject of research in online optimization consists precisely in finding
lower bounds on the best competitive ratios that can be achieved for certain classes
of problems. This can be interpreted as the “dual” task to designing competitive
algorithms: we want to determine the unavoidable additional cost that any online
algorithm has to pay solely because it does not have knowledge about requests in
the future.

In our case, note that any deterministic online algorithm for the BVG-ticket
problem can be characterized by a value / € N U {400} which indicates how
many requests have been issued when it decides to buy the monthly ticket. Thus,
for £ = 1, 30, 400 we obtain the algorithms ATFIRST, REVIEW, and NEVER,
respectively. Since we have already proven that NEVER is not competitive, we
assume in the following ¢ £ +o0.

Denote by ALG, the deterministic algorithm corresponding to a fixed value
¢ € N, and consider the input sequence o, consisting of ¢ bad-weather requests.
We have

ALG(oy) = (¢ — 1) + 30,

as ALG, decides to buy the monthly ticket when the last request emerges. Com-
bining this observation with (3.2),

L
ALGy() T

if ¢ < 29,

OPT(oy)

-1
1+ 30 otherwise.



3.2 Basic Concepts and Notation 51

Clearly, this is a lower bound on the competitive ratio of ALG,. Moreover, for
any deterministic algorithm ALG we can construct in this way an input sequence
o such that
ALG ALG 29
(o) > inf o(og) 142
OPT(o) ~ ¢ten OPT(oy) 30

It follows that REVIEW indeed achieves the best possible competitive ratio a de-
terministic online algorithm for this problem can have.

One major drawback of competitive analysis lies in the fact that it often consti-
tutes a too pessimistic approach. In absence of any further restrictions, the ability
to “see in the future” usually makes of the offline adversary such a powerful oppo-
nent that no online algorithm has a chance against it. To work around this limita-
tion, a couple of ideas have been proposed. Basically, they all rely on weakening
the position of the offline adversary in some way. For example, in the resource
augmentation approach, the online algorithm is allowed to use more resources for
serving the requests than its adversary, with the aim of compensating its lack of
information. It is also possible to narrow the set of admitted input sequences in or-
der to avoid those “degenerate cases” that produce bad competitive ratios, but are
not likely to take place in practice. This was succesfully tried by Hauptmeier et al.
[1999, 2000] in the context of the online dial-a-ride problem, for which the authors
defined the notion of reasonable load (see Section 3.3.2). In the same manner,
Blom et al. [2000] introduced a fair adversary for the online traveling salesman
problem, and used it to improve the analysis for instances defined on the real line.
(We shall come back to it later).

Other researchers (see e.g. Koutsoupias & Papadimitriou [1994]) have con-
sidered the possibility of requiring the adversary to belong to a given class of al-
gorithms. They call this approach comparative analysis. In the context of job se-
quencing, Becchetti et al. [2003] improve the analysis of the Multi-Level Feedback
Algorithm by applying smoothening techniques to flatten peaks in the competitive
ratio caused by isolated bad input sequences. For a survey on extensions and alter-
native models to competitive analysis, the reader is referred to Fiat & Woeginger
[1998].

3.2.2 Randomized Algorithms

From the point of view of competitive analysis, a key difficulty that online algo-
rithms face regards their dependence on the input sequence. An algorithm that
obtains good solutions for some sequences may perform very bad on other ones.
Since competitive ratios are in this sense “worst-case” results, they commonly do
not provide useful information when applied to practical situations. An alternative
approach could be to look for “average-case” values, but, as anticipated before, this
would require statistical knowledge on the distribution of the input data, which is
normally either not present or insufficient. (Not to mention the additional technical
issues that would have to be addressed).
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A different idea consists in searching for average-case results in another sense,
namely, by letting the online algorithm take its decisions according to a speci-
fied probability distribution. Thus, strategies that perform bad on a given input
sequence may be averaged with better ones. Moreover, since the probability dis-
tribution used by the algorithm is known, it is possible to obtain expected values
regarding the quality of the solution. An online algorithm based on this approach
is called a randomized algorithm. In fact, one can think of a randomized algorithm
as a collection of deterministic algorithms, combined together using a prescribed
probability distribution.

3.2.5 Definition (Randomized Online Algorithm)

A randomized online algorithm RALG for a request-answer game (R, A,C) is a
probability distribution over the set D of all deterministic online algorithms for
(R,A,C).

Observe that the cost RALG(o) of the output from a randomized algorithm
RALG for a given input sequence o is a random variable. Furthermore, since
the decisions taken by RALG in response to o are no longer predetermined, it is
necessary to introduce some modifications in the basic framework of competitive
analysis. An important step consists in defining which will be the position of the
adversary, i.e. what kind of information from the online algorithm will be available
to it. Three distinct models have been considered here:

e An adversary like the one used in the last section, which chooses o a priori
and processes it offline is called an oblivious adversary.

e In contrast, an adaptive online adversary has the freedom to choose each
new request r; after knowing the answer given by the algorithm to request
7;—1. The term online refers to the way in which the adversary itself has to
process the input sequence.

e Finally, the adaptive offline adversary is allowed to construct the input se-
quence based on the answers provided by the online algorithm and to process
it offline.

Taking these changes into account, competitiveness is defined in the first model
as follows:

3.2.6 Definition (Competitiveness Against an Oblivious Adversary) A randomi-
zed online algorithm RALG for a request-answer game (R, A, C) is said to be c-
competitive against an oblivious adversary if, for any input sequence o,

E[RALG(0)] < ¢ OPT(0),

where E [RALG(0)] denotes the expectation of the random variable RALG(0).

By considering deterministic algorithms as special randomized algorithms with
Dirac probability measures, it is straightforward to see that the above definition is
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in fact a generalization of Definition 3.2.4. In the case of the adaptive adversaries,
it has to be taken into account that their solution values are also random variables:

3.2.7 Definition (Competitiveness Against an Adaptive Adversary) A randomi-
zed online algorithm RALG for a request-answer game (R, A,C) is said to be
c-competitive against an (online or offline) adaptive adversary if, for any input se-
quence o, the following holds:

E[RALG(c) — cADV(0)] <0,

where RALG(c) and ADV(c) are random variables that reflect the objective values
of the algorithm and its adversary, respectively.

Common sense suggests that the adaptive adversaries are stronger than the
oblivious one. In fact, the following holds for any randomized algorithm RALG
(see e.g. Borodin & El-Yaniv [1998]):

COBL < CADON < CADOFF;

where copL, capon and caporp are the competitive ratios of RALG against
the oblivious, the adaptive online and the adaptive offline adversary, respectively.
Moreover, Ben-David et al. [1994] showed the following two results:

3.2.8 Theorem (Ben-David et al. [1994])
Let (R, A,C) be a request-answer game:

1. If there exists a c-competitive randomized online algorithm for (R, A,C)
against the adaptive online adversary, then there exists also a c?-competitive
deterministic algorithm for (R, A,C).

2. If there exists a c-competitive randomized online algorithm for (R, A,C)
against the adaptive offline adversary, then there exists also a c-competitive
deterministic algorithm for (R, A,C).

In particular, the second part of the theorem states that the adaptive offline
adversary is so strong that the effects of randomization on the improvement of
competitiveness disappear.

3.3 Online Transportation Problems

In this section, online versions of two common optimization problems in the area
of transportation will be considered. Basically, they deal with the two main tasks
that appear in vehicle routing: matching, i.e., assigning requests to vehicles, and
routing itself, i.e. finding the best path for a vehicle to attend some given requests.
Due to the complexity of these problems, the competitive ratios that can be proved
theoretically are still far away from been satisfactory for practical purposes, except
for some special cases. Nevertheless, the ideas derived from online optimization
have been applied successfully to many real-world instances, some of which will
be described here. (See Ascheuer et al. [1999] for more examples).
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3.3.1 The k-Server Problem

Given a set X of points, a nonnegative functiond : X x X — ]Rar is called a metric
on X if and only if d satisfies the following properties:

(i) d(z,y) =0 z=y, Vr,yeX
(i) d(z,y) =d(y,x) Vz,ye X
(iii) d(z,y) <d(z,2) +d(z,y) Vz,y,2€ X

The pair (X, d) is then called a metric space.

Let (X, d) be a metric space and S = {s1,..., sk} a set of so-called servers
which are initially positioned on some points of X. An instance of the k-server
problem is given by a sequence o = rq,...,r, of n points of X, called requests.

An online algorithm receives this sequence over time and has to atfend the requests
in the same order as they appear, where “to attend a request” simply means to move
one server to it. The cost function to be minimized is the sum of the distances
traveled by all the servers. This problem is a natural online version of the well-
known transportation problem and has been extensively discussed in previous work
(see for example Borodin & El-Yaniv [1998] and Hochbaum [1997]). This section
will present a brief summary of the main ideas and results.

The k-server problem can be seen as a generalization of the paging problem,
one of the first online problems that was studied. Computer systems often make
use of two different kinds of memory devices for storing the data and program code
needed during their operation. The first one, the principal memory, has a relatively
large capacity, but accessing information from it takes more time than what would
be desired. On the other side, the cache memory is faster, but its capacity is much
more limited due to technical and/or production cost reasons. Given a sequence of
(online) incoming memory access requests, the paging problem basically consists
of deciding which information to maintain in the cache so that the number of times
that principal memory has to be accessed is minimized. (The term “paging” comes
from the fact that information is copied to and from memory in blocks of fixed size
called pages). If k denotes the number of pages that can be stored in the cache
simultaneously, a moment of thought reveals that this task can be modeled as a
k-server problem on the metric space defined by the set N of all pages from the
principal memory and by the discrete metricd : N — {0,1},d(z,y) = 1,Vx # y.

Several online algorithms for the paging problem have been considered. Some
of them, including the very simple strategy of assigning pages in the cache ac-
cording to a FIFO (first-in-first-out) scheme, turned out to be k-competitive. At the
same time, it has been shown that & is a lower bound on the competitive ratio of any
deterministic algorithm. Therefore, from the point of view of competitive analysis,
“best possible” algorithms are known, at least for the deterministic case. (There is
a randomized algorithm that beats the deterministic lower bound when compared
against an oblivious adversary. Refer again to Borodin & El-Yaniv [1998] for a
detailed discussion on this topic).
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A natural question to ask is if the above results may be extended to the general
k-server problem. If | X | > k41, given any deterministic algorithm ALG, an input
sequence o can be constructed which enforces ALG to move a server each time a
new request is released. Using such a sequence, it is possible to prove that & is still a
valid lower bound on the competitive ratio for the general case. On the other hand,
the question about the existence of a k-competitive deterministic online algorithm
— the k-server conjecture, as Manasse et al. [1988] called it — remains one of the
biggest open problems in online optimization.

The first step towards a (positive) resolution of this conjecture was taken by
Fiat et al. [1990], who gave a O ((k‘!)g)—competitive algorithm. Five years later,
Koutsoupias & Papadimitriou [1995] proved that the previously proposed work
function algorithm (WFA) is (2k — 1)-competitive. As this chapter is written, this
is still the best ratio that has been achieved in general. Additionally, the conjec-
ture has been proved for some particular cases. For instance, Bartal & Koutsoupias
[2000] show that the WFA is k-competitive when X is a line, when | X| = k + 2,
and for the symmetric weighted cache problem.

We explain in the sequel how the WFA works. With this purpose, a few pre-
liminary definitions and some new notation have to be introduced here:

3.3.1 Definition (Configuration. Distance between Configurations) Given an in-
stance of the k-server problem over a metric space (X, d):

1. A multiset C' containing k points of X is called a configuration. C' will be
used to represent the positions of the servers at a certain moment in time.
The set of all possible configurations is denoted by C.

2. For two configurations C1,Cs € C, the distance D(C4,Cs) between them
is the value of a minimum-cost perfect matching in the bipartite graph G =
(C1 U Oy, Cy x Cy) with respect to the cost function given by the metric d.

3.3.2 Definition (Work Function) Let Cj be the initial configuration for an in-
stance of the k-server problem (i.e., the initial position of the servers) and o a fixed
input sequence. The function

wy :C — RT

defined pointwise by requiring w,(C') to be the optimal solution value for the of-
fline problem of processing all requests in o (in the same order as they appear),
starting trom configuration Cy and ending up in configuration C, is called the work
function associated to o . In particular, wy(C') denotes the minimal cost for switch-
ing from configuration Cy to configuration C, i.e.,

wy(C) = D(Co, C)

For simplicity, the following notation will be used in the remainder of this
section:
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e Given a configuration C, apoint x € Candapointy € X,C —x +y
denotes the new configuration obtained by dropping x and adding y to C,
ie.

C—x+y:=C\{z}U{y}.

e o will be used to denote the request sequence 71, ..., 7y, and o; will refer to
the subsequence that contains the first ¢ requests, where 0 < 7 < n. By o9
we just mean an empty input sequence.

The values of the work function w, may be determined via dynamic program-
ming. It is easy to prove that, forall i € {1,...n} and any C € C,

w,(€) =min {uw,,_,(C)+ D(C,C) : Cec,mely.

In fact, consider an optimal solution and let C* be the configuration of the system
immediately after processing request r;.The cost for getting to this configuration
cannot be smaller than w,, ,(C*). (Remind that o; has one request more than
oi—1). It is also not larger, because if the system reaches configuration C* after
processing ;1 then request r; can be processed at no cost, since r; € C*. There-
fore, wy, (C) = we, (C*) + D(C*,C) = w,, ,(C*) + D(C*,C).

On the other side, observe that w,(C) < w,(C2) + D(C1, C) holds for any
two configurations C,Cs € C. This fact can be used to show (see for instance
Borodin & El-Yaniv [1998]) that there always exists a configuration of the form
C:=C—x + 7; that minimizes the right-hand side above, i.e.,

We, (C) =min {we,_,(C—x+r;) +d(z,r;) : € C}. (3.3)

We are now in position to discuss the WFA. Algorithm 3.1 outlines the basic
ideas of it. Each time a new request r; arises, the algorithm moves exactly one
server x;, namely, the one who minimizes the right-hand side of (3.3). By doing
so, WFA generates a sequence of configurations Cy, ..., C,, where Cj is the start
configuration and C), is the configuration after having processed the entire input
sequence. Since the cost associated to such a move is d(x;, 1), it follows from
(3.3) that

WFA(0) = > d(xi,mi) = > (0o, (Cim1) — wo,_, (Cy)) -
i=1

i=1

Adding and subtracting w,, , (C;_1) to each term of the last sum and taking
into account that, since r; € Cj, the equality w,, , (C;) = w,, (C;) holds, one can
work out that,

n

WFA(0) = (we,(Cic1) — wo,_, (Cim1)) — we(Ch). (3.4)

i=1
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{Initialization}
1+ 1;
3: Cy « initial configuration;
{Main loop}
loop
6:  wait until a new request r; arrives;
choose x; € C;_1 that minimizes the expression

Wo, ,(Cic1 — x5 +13) + d(z4,74);
Ci — Cioy — i + 145

9: 11+ 1;
end loop

Algorithm 3.1: Work Function Algorithm WFA

Consider now the optimal offline solution. A direct consequence from Defini-
tion 3.3.2 is that

OPT(0) = min {w,(C) : C € C} <wy(Cy) (3.5)
The expression
max {we,(C) —w,,_,(C) : C €C}

is called the extended cost EC; associated to the request 7;. It can be shown that
(again, refer to Koutsoupias & Papadimitriou [1995]):

Z EC; < 2kOPT(0) + b, (3.6)

=1

where b is a constant that does not depend on the input sequence. Replacing (3.5)
and (3.6) in (3.4), it follows finally that

WFA(c) < (2k — 1) OPT(c) + b,

which demonstrates the competitive ratio of WFA. The proof of (3.6) is intricate
and will not be given here. The reader is rather referred to the original article for
more information.

As a last remark, let us mention that Kalyanasundaram & Pruhs [1998] con-
sider a slightly different version of the k-server problem, where the servers “dis-
appear from the map” after attending a request. More precisely, instead of a set of
servers, a set of server sites with fixed locations and capacities is given. Each time
arequest is issued, the online algorithm has to choose one from these sites to attend
it, and the maximal number of requests a site can attend its given by its capacity.
As in the k-server problem, it is known that k& is a lower bound on the competi-
tive ratio of any deterministic algorithm for this online transportation problem. To
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derive positive results, the authors follow the “resource augmentation” paradigm:
the online algorithm is compared against an adversary which is allowed to use only
half of the capacity of each server site. Under this assumption, they show that
the competitive ratio of a greedy algorithm which always assigns a request to the
next available server site is still bounded from below by min {k,log C'}, where
C' is the sum of the capacities of the k server sites. Next, they show how a sim-
ple modification of this greedy strategy gives an algorithm of constant competitive
ratio.

3.3.2 The Online Dial-a-Ride Problem

As mentioned in Chapter 2, dial-a-ride problems constitute one important class
of vehicle routing problems. The aim of this section is to consider some online
versions of them, which will be stated using the time stamp model described in
Section 3.2.1.

A metric space (X, d) is called “connected and smooth” if, for every pair of
points (z,y) € X x X, there exists a function p : [0,1] — X such that, for all
7 € [0, 1], the following properties hold:

(@) p(r) € X,
(i) d(z,p(1)) = Td(2,y),
(i) d(y,p(1)) = (1 —7)d(z,y).

In particular, p(0) = z and p(1) = y. The image set p([0, 1]) is said to be the
shortest path between x and y. Examples of connected and smooth metric spaces
are the Euclidean spaces R™ and the metric space induced by an edge-weighted
undirected graph. (See Ausiello et al. [2001] for detailed explanations and more
examples).

An instance of the online dial-a-ride problem (OLDARP) over a connected and
smooth metric space (X, d) with a distinguished origin point 0 € X is given by a
set o of n requests having the following form:

o= {(ti,ai,bi) 1 V1 <1 <n, tiERar; a, b; EX}.

Each request r; € o represents a petition for transport of one unit of load from a
source point a; to a target point b;. This petition becomes known to the system at a
specific release time t; > 0. All requests have to be attended using a single server
of unit capacity and speed which is initially located on the origin o and which has to
return there at the end. The task is to design a transportation schedule for this server
which minimizes a certain cost function that will be explained later. Of course, no
request may be attended before its release time. Furthermore, preemption is not
allowed, which means that once the load corresponding to a request r; has been
picked-up, it may be unloaded only at the target point b;. A feasible schedule for
the server is called a transportation plan.
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Notice that there is a small formal change with respect to the previous sections
of this chapter: the input ¢ is now considered as a set of requests, not as a sequence.
The set notation is more convenient for stating some definitions that will be needed
later on. Besides, in the time stamp model, there is no need to require a specific
ordering of the requests, since they are already labeled by their release times. To
simplify the notation, however, we shall still assume that the requests in o are
indexed in such a way that these release times form a nondecreasing sequence
<. <t

According to the time stamp model, an online algorithm ALG for the OLDARP
has to work in real-time. This means that, at any time ¢, ALG must be able to
give an immediate answer to the question of what to do at next with the server.
Furthermore, this answer may depend only on the information contained in those
requests whose release times are smaller than or equal to ¢. The offline adversary,
on its side, knows the whole set o in advance, but its solution must still take the
release times of the requests into account.

Like in the offline case, several objective functions have been considered for
minimization in the OLDARP:

e The makespan or completion time Ch, .. This is the time at which the server
has attended all requests in ¢ and returned to the origin.

o The maximal flow time Fy, .. The flow time F; of a request r; is the differ-
ence T; — t; between the time 7; when r; has been attended and the time ¢;
when it was released. Fi,x is the maximal flow time obtained for a request
in o during the execution of transportation plan.

e The average flow time
1 n
Favg =~ Zl F,.
1=

o The maximal wait time W, ax. The wait time W; of request r; is defined by
W; = F;—d(a;, b;) and corresponds to the time elapsed between the moment
when 7; is released and the moment when the server reaches its source a; and
starts to attend it.

e The average wait time

1 n
Wavg = E ZWZ
i=1

To take care of these different objectives, it is necessary to extend our original
notation a bit. For the rest of this section, ALG(c, f) will be used to denote the
value of a solution obtained by an algorithm ALG in response to an input set o, with
respect to the objective function f,where f € {Cmax, Fmax, Faves Wmax,; Wave } -
Similarly, OPT (o, f) will stand for the optimal value regarding the input set o and
the objective function f.
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A first fact to notice is that minimizing the average flow (resp. wait) time is
equivalent to minimizing the sum of all flow (resp. wait) times. Moreover, since
flow and wait times are dependent on each other, it is reasonable to ask if there is
some kind of relation between the corresponding optimization problems. In fact,
if N = >, d(a;,b;) denotes the (unavoidable) time that any solution to the
OLDARP has to spend transporting the requests (the so-called “loaded time”), it is
straightforward to show that, for any online algorithm ALG and any input set o,

ALG(0, Wavg) nALG(0, Fayg) — N _ ALG(0, Fayg)

p— > ) ]
OPT(0, Wayg)  MOPT(0, Fayg) — N = OPT(0, Fayg) (3.7)

The last inequality implies that any c-competitive algorithm for the OLDARP with
respect to the average wait time is automatically c-competitive when the average
flow time is considered. The other way around, any lower bound on the competitive
ratio regarding Fy is also a valid lower bound for the case of W,,,. With a little
more effort, an analogous relation between the maximal times can be proved.

Ascheuer et al. [2000] considered the problem of optimizing the completion
time Cp.x and studied three online strategies: REPLAN, IGNORE, and the more
elaborated SMARTSTART. The first one, REPLAN, consists basically of cal-
culating a new transportation schedule each time a request arises. The server in-
terrupts the execution of its former plan (maybe after having finished the current
transport, to take care of the nonpreemption constraint), and then computes a new
one to attend all remaining requests starting from its actual position and finishing
in the origin. On the other hand, the main idea of IGNORE is to avoid interrupting
a commenced plan. All requests that arise while the server is “busy” executing a
transportation schedule are just ignored and collected. When the execution of the
whole plan has finished, a new plan for all collected requests is calculated, and
the cycle starts again. The authors showed that both REPLAN and IGNORE are
g—competitive.

This competitive ratio is outperformed by the SMARTSTART strategy, whose
main steps are illustrated in Algorithm 3.2. Basically, SMARTSTART resembles
the IGNORE strategy, but is designed to avoid a worst-case situation that occurs
when a request arises just after the server has started the execution of a long trans-
portation plan.

The behavior of the algorithm at a certain moment in time depends on what is
called the current state of the server. There are three possible states:

Idle No unattended requests are present, and the server is located in the origin and
“waiting for orders”. If one ore more new requests arise, they are added to
a list £ of pending requests and a control routine (called “work-or-sleep”
oracle by the authors) is invoked. This routine computes an optimal trans-
portation plan S for all requests in £. (In fact, the term “optimal” needs
further discussion. We shall return to this aspect later). Depending on the
time ¢(5) required for the execution of S, and on the current time ¢, the con-
trol routine may then set the server either into working (if ¢ + ¢(S) < 6t) or
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12:

15:

18:

21:

24

27:

30:

33:

36:

39:

42:

{Initialization}
L— 0
goto Idle state;

{Control routine}
if £ = () then
goto Idle state;
end if
compute an optimal schedule S to serve all requests in £;
t(S) « time needed to execute schedule S
t « current time;
if t +¢(S) < 6t then
L — 0
goto Working state;
else
lwake < Z(TS%;
goto Sleeping state;
end if

{Idle state}
while no new requests arise do
{keep waiting until new requests are issued ...}
end while
add new requests to L;
goto Control routine;

{Working state}
start serving plan .S;
while plan S is not completed do
{if new requests are issued while working, add them to £}
if new requests arise then
add new requests to £;
end if
end while
goto Control routine;

{Sleeping state}
while current time < ¢, do
{if new requests are issued while sleeping, add them to £}
if new requests arise then
add new requests to £;
end if
end while
goto Control routine;

Algorithm 3.2: SMARTSTART for the OLDARP
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into sleeping (if ¢ 4 t(S) > 6t) state. The factor # involved in this decision
is a constant calibration parameter larger than one.

Working The server is executing a transportation plan. All incoming requests are
“ignored” and added to £. When the server completes the plan, the control
routine is invoked to decide what to do next.

Sleeping When the server enters this state at some time ¢, it sets a “wake-up clock”

to time
C)
twake ‘= m7

which is the earliest time at which the control routine would have decided
to start working on plan S. Until ¢y, the server will just sit on the origin,
ignoring all new incoming requests and adding them to £. At that time, the
control routine is invoked again.

By case distinction on the state of the server when the last request arises, the
authors proved that, for any input sequence o,

SMARTSTART(0, Ciax)
OPT(0, Conax)

1 0
< = .
< max {6,1—}—6_1,24—1}

In particular, choosing § = 2, a 2-competitive strategy is obtained. On the
other side, Ausiello et al. [1994, 2001] had proved that 2 is a lower bound on
the competitive ratio of any deterministic algorithm for this problem. This means
that SMARTSTART achieves the best competitiveness, at least when considering
instances over general metric spaces. (There are specific spaces like the real line,
where the general construction used to derive the lower bound does not apply).

One important aspect that still has to be discussed concerns the offline subprob-
lems solved by the control routine of SMARTSTART each time it is called. Notice
that throughout this chapter, no consideration has been made about computational
complexity issues when analyzing online algorithms. This was because in all cases
the actions taken by an algorithm in response to a new incoming request were rather
trivial. In the case of SMARTSTART, however, this is no longer true. As stated
before, computing a transportation plan for the unattended requests is equivalent to
solving an instance of a dial-a-ride problem, a task known to be AV/P-hard. On the
other hand, both for technical reasons related to the complexity of the analysis, as
well as for practical requirements arising from the real-time environment in which
the algorithm usually has to work, the transportation plan must be calculated “in-
stantaneously” (i.e., within a time negligible when compared to C,ay). It makes
therefore little sense to solve the subproblems to optimality. Instead, heuristics and
approximation algorithms are commonly used.

Yet precisely this latter fact gives rise to a new question concerning competi-
tiveness. Namely, the competitive ratio for SMARTSTART mentioned above was
derived under the assumption that the optimal schedule was computed for all of-
fline subproblems. Fortunately, it is possible to generalize the results to the case
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when a p-approximation scheme is employed, i.e., when the transport plans cal-
culated are at most p times longer than the optimal ones. For this situation, the
authors proved the following:

3.3.3 Theorem (Ascheuer et al. [2000]) For all real numbers 0 > p with § > 1,
the algorithm SMARTSTART based on a p-approximation scheme for construct-
ing the partial transportation schedules has a competitive ratio equal to:

0.0 (14— ). 0+

The best choice for 0 is 3(1+ /T + 8p) and results in a competitive ratio of +(4p+
14+ V1+8p).

Frederickson et al. [1978] present a %—approximation algorithm for the offline
subproblems that appear in the OLDARP, which are also known as Stacker Crane
problems. Embedding this algorithm in SMARTSTART, a competitive ratio of
% (~ 3.03107) is achieved. Better results can be obtained if the underlying
metric space has some special structure. Frederickson & Guan [1993], for instance,
give a %—approximation scheme for the Stacker Crane problem on spaces arising
from trees. Moreover, for metric spaces arising from a simple path, the polynomial
time solvability of the problem has been proved.

A particular case of the OLDARP that has been subject of many studies is the
Online Traveling Salesman Problem (OLTSP). It appears when a; = b; holds for
all requests r; € o, and one can easily see that the related offline subproblems
are in fact instances of the TSP. (Remark that under our assumptions, Ciax 1S
equal to the length of a tour visiting all requests). Therefore, from the last theo-
rem, it follows that using the classical %—approximation scheme from Christofides

[1976], SMARTSTART could reach a competitive ratio of 7+4—\/ﬁ (~ 2.6514) for
this problem. Again, better results are known for special metric spaces.

Ausiello et al. [2001] proved a lower bound of %ﬁ (=~ 1.64039) for the
OLTSP on the real line and described an algorithm with a competitive ratio of
% (=1.75). Later, Lipmann [1999] found an algorithm whose competitiveness
matches the lower bound. Finally, Blom et al. [2000] refined the former analysis
by establishing two distinct categories for the online algorithms considered. They
called an algorithm to be zealous if it does not let the server “wait” in an idle state
and “collect” incoming requests. IGNORE and SMARTSTART are therefore ex-
amples of nonzealous algorithms. The authors showed that % is a lower bound on
the competitive ratio of any zealous algorithm for the OLTSP on the real line. As
it turned out, the algorithm of Ausiello et al. [2001] is zealous and therefore best
possible with regard to competitiveness, at least within its class. Moreover, the
“bad” sequence used to derive the lower bound reveals a conceptual limitation of
competitive analysis: it occurs in a situation of exaggerated inequity between the
online algorithm and the offline adversary. Namely, the adversary moves the server
far away from the previously released requests towards the point where the next re-
quest is going to take place. Motivated by this observation, the authors defined
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an adversary to be fair if it is not allowed to move the server outside the convex
hull of the previously released requests. Against a fair adversary, the lower bounds

decrease to % for zealous algorithms and @ for the general case. This opens
a new gap for possible further improvements. However, it has not been possible
to arrive at better positive results, except for the case when the metric space is
restricted to R

The other way around, Krumke [2002] considers some generalizations of the
OLDARP. For example, he shows that if the capacity of the server is allowed to
be larger than one, the competitive ratio of REPLAN degrades to %, while those
of IGNORE and SMARTSTART remain unchanged. Moreover, these latter ratios
are still preserved if k distinct servers with different capacities C,...,Cy € Nare
admitted. Results are also described for the related nonclosed makespan problem,
where the server is not required to return to the origin after having completed the
transportation schedule. The competitive ratios of the three online strategies are in
this case worse than the ones of their “closed” counterparts.

Notice that, since the OLDARP was defined on a metric space, all distances
have to satisfy the symmetric property: forany z,y € X, d(z,y) = d(y,x). While
working on a project to optimize the control of stacker cranes within automatic
storage systems at a production plant of Siemens Nixdorf Informationssysteme AG,
Ascheuer [1995] studied a similar problem where symmetry was no longer present.
This new problem turned out to be by far more complicated and, up to the present,
no competitive online algorithm is known for it. Nevertheless, an analysis based on
simulation and a-posteriori comparison of the results produced by several heuristics
made it possible to design a strategy that reduced the time needed for unloaded
moves of the crane by approximately 30%.

Regarding the optimization of flow and wait times, the situation is somehow
more complicated from the point of view of the competitive analysis, and results
come rather from the negative side. Hauptmeier et al. [1999, 2000] give the fol-
lowing two examples that lead to lower bounds on the competitive ratio of any de-
terministic algorithm ALG for the problems related to F,, and Fiyax, respectively.
For simplicity, both examples have been defined on the metric space X = R, but
they can be extended to any general metric space.

Consider at first the case of optimizing F.. The adversary starts by sending
arequest r; = (0, %, o) and then waits until ALG decides to attend it at some time
t. (Remember that, since ALG is deterministic, the value of ¢ can be computed in
advance). Just after that, at time ¢ 4- £, n — 1 new requests of the form (¢ + ¢, 5, 0)
are released. Since no preemption is allowed, ALG has to deliver the load of the
first request before attending the other “small” ones. Thus, the following holds for
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the sum nALG (0, Fiyg) of the flow times,

n—1
nALG(0, Favg) > (t+ 1)+ Y (t+1+ie — (t+¢))
=1
n—1
=t+l4n—1+e) (i-1)
=1
:t+1+n—1+%(n2—3n+2). (3.8)

The optimal solution, on the other hand, depends on the value of ¢. Suppose
that ¢ < 1. In this case, the offline adversary starts by moving the server to position
S and waits there until the small requests arise. (There is enough time for this
movement, since the requests are released at time ¢ + ). Then, it attends these

requests and leaves 71 for the end. Doing the corresponding calculations, it follows:

n—1 .
21+ 1 €
nOPT(a,Fan):§;<t+ 5 e—t—s) titete(n—1)+1-3
1=

n—1
€ ) €
=3 E (22—1)+t+1+§+8(n—1)
i=1
€ 2
:t+1+§n. (3.9

Combining (3.8) and (3.9), a bound on the competitive ratio is derived. In
effect, for any > 0 is it possible to find a sufficiently small value of ¢, such that

ALG(0, Fayg) t+14+n—1+5n"-3n+2) t+14n—-1

= > d.
OPT(o, Favg) t+1+5n? - t+1

Finally, since 0 <t < 1,

SupALG(U,Fan)>t+1—|—n—1: +n—1>n—1
o OPT(0, Favg) — t+1 t+1— 2

On the other side, if £ > 1, the offline adversary has enough time to process the
first request and return to the origin before the small requests are released. In this
case, it is easier to prove (in an analogous way) that n 4 1 is a valid lower bound
on the competitive ratio.!

The last results show that the gap between the best online and the offline solu-
tions will increase linearly with the cardinality of the input sequence. In particular,
no deterministic algorithm with a constant competitive ratio exists. Randomization
does not help much, either. For the online machine scheduling problem, Vestjens

'The analysis is greatly simplified if the small requests have the form (¢ + ¢, 0, 0). However, the
bound we have derived above remains valid even if we consider nonstrictly competitiveness, i.e., if
we allow an additive constant in (3.1) on page 49.
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[1997] proved a lower bound of §2(1/n) on the competitive ratio of any randomized
algorithm against the oblivious adversary. His construction can be translated to the
setting of the F,,; — OLDARP.

Regarding the optimization of the maximal flow times, the situation is even
worse. Consider the following example: the input set o contains only one request
of the form (1,z,2 + §), where ¢ > 0 and 2 € {0,1} is fixed depending on
the position y of the server at time ¢ = 1. (Remark, again, that since ALG is
deterministic, y is known a priori). If y < %, then x = 1, otherwise z = 0. It is
easy to see that the solution found by ALG will have a flow time strictly larger than
%. On the other side, the optimal solution consists in moving the server to position
x during the first second of time, and achieves therefore a value of ¢ for the flow
time. From this, it follows that:

ALG(o, Fiyax) - 1

OPT (o, Fnax) ~ 2

Since € can be chosen arbitrarily small, there is no constant ¢ that bounds the
quotient above. Therefore, no deterministic algorithm can be competitive even
for instances consisting only of one request! Optimizing over the maximal flow
time seems therefore to be one kind of problem where “pure” competitive anal-
ysis reaches one of its main limitations: the offline adversary is so powerful that
comparing any algorithm against it does not provide any information. This fact is
usually denoted by saying that the triviality barrier has been reached.

In virtue of inequality (3.7) and its counterpart for the maximal times, these two
lower bounds can be extended to the optimization of W,ye and W,ay, respectively.
The following theorem summarizes the results:

3.3.4 Theorem (Hauptmeier et al. [1999, 2000]) 1. Any c-competitive deter-
ministic online algorithm ALG for the OLDARP with objective functions
Fiyg or Waye has a competitive ratio ¢ > ”771, where n is the maximal

length admitted for an input set.

2. Any c-competitive randomized online algorithm RALG for the OLDARP
with objective functions F,y, or Wy has a competitive ratio ¢ € Q(v/n)
against the oblivious adversary, where n is the maximal length admitted for
an input set.

3. There is no c-competitive deterministic online algorithm for the OLDARP
with objective functions Fi,,x or Wiax.

These strong lower bounds raise again the question mentioned in Section 3.2.1.
Namely, if there is a reasonable way to limit the power of the offline adversary such
that some positive results can be derived, at least for the problem instances that
are relevant in practice. The authors proposed the idea of restricting the allowed
input sets in order to exclude those weird cases where the algorithms present an
extremely poor performance level. To describe their approach more precisely, a
few definitions are needed:
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3.3.5 Definition (Release-Span) Given a request set o, its release-span 0(o) is the
time elapsed between the moments at which the earliest and the latest request in o
were released, i.e.,

d(o) :==t, — t1.

3.3.6 Definition (Offline Version of a Request Set) Given a request set o, its of-
fline version o™i js the new request set obtained by setting the release times of
all requests in o to be equal to zero, i.e.,

Uofﬂine e {(07ai7b2~) : (ti,ﬂ;i,bi) S U} :

In other words, o°Mi"¢ defines a relaxation of the associated offline dial-a-ride
problem, which is obtained by dropping the time windows constraints. Using the
last two concepts, the notion of load bound is at next introduced:

3.3.7 Definition (Load Bound) A weakly monotone increasing real function is
called a load bound on a request set ¢ if, for any 0 € R and any S C o with
d(S) < 0, the following holds:

OPT(S°Mine O o) < £(0).

Notice that a (tight) load bound provides a kind of stability measure for the
system: it compares the frequency at which requests are released with the time it
takes to process them. Common sense suggests that, for the system to be stable,
requests should not arise “faster” than they can be attended. In fact, there is a
similar stability assumption well known in queuing theory that inspired the authors
to introduce this concept. A first idea could be to look at such input sets for which
the identity function is a load bound. However, observe that, for any input set o
and any valid load bound f on it,

f(0) > max {OPT({r;},Cnax) : 7 €E0}.

Hence, requiring f to be the identity function is equivalent to allowing ¢ to contain
only requests that can be served in no time. Such input sets are not of much interest.
A second approach consists in admitting a larger class of load bounds:

3.3.8 Definition (Reasonable Load) A load bound f is called (A, p)-reasonable
for some A, p € R if, forall 9 > A,

pf(0) < 0.

An input sequence o is called (A, p)-reasonable if it has a (A, p)-reasonable load
bound.

This criterion turned out to be effective enough to obtain some positive results.
The authors proved that, for problem instances under reasonable load, the strategy
IGNORE yields to solutions of bounded maximal and average flow times. More
precisely,
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3.3.9 Theorem (Hauptmeier et al. [1999,2000]) Let A > 0 and p > 1. Con-
sider an instance of the OLDARP given by a (A, p)-reasonable input set o. The
following holds for an implementation of the online strategy IGNORE that uses a
p-approximation algorithm to solve the offline subproblems:

(i) IGNORE(0, Fyna) < 2AA,
(i) IGNORE(0, Fyyg) < 2AA.

In fact, what the authors really proved was the upper bound for IGNORE(c, Fiyax ).
The other bound follows from the trivial observation that the average cannot be
greater than the maximum. The SMARTSTART strategy is also competitive under
reasonable load:

3.3.10 Theorem (Krumke [2002]) Let A > 0 and p > 1. Consider an instance of
the OLDARP given by a (A, p)-reasonable input set 0. For an implementation of
SMARTSTART which uses a p-approximation algorithm to compute an optimal
schedule in its control routine (see Algorithm 3.2), the following holds:

SMARTSTART(0, Finax) < max {%A, QA} :

In particular, choosing 6§ = 2 yields an upper bound of 2A for the maximum flow
time of any request.

Again, from the last theorem it follows that SMARTSTART is also competitive
for the minimization of average flow times. On the other hand, Hauptmeier et al.
[2000] show a “disastrous example” for REPLAN, where the algorithm produces
a schedule with unbounded maximal flow time for an instance of the OLDARP un-
der reasonable load. Basically, what this example puts in evidence is the fact that
continuous replanning without any other restrictions may cause individual requests
to be postponed indefinitely. This situation was also observed by Grotschel et al.
[1999] during simulation studies of various online strategies for instances of the
OLDARP that arise within the elevator subsystem of a fully automated pallet trans-
portation system in a large distribution center of the office supply provider Herlitz
AG.

Finally, let us point out that the strategy of restricting the admissible input se-
quences has also been successfully employed by Krumke et al. [2002] in the con-
text of the online traveling salesman problem with objective Fi,., on the real line:
They call an adversary to be non-abusive if it is only allowed to move the server
in a direction where unserved requests are located. Then they present an online
algorithm with constant competitive ratio against any non-abusive adversary.



Chapter 4

A Tutorial on Set Partitioning

4.1 Introduction

As exposed in Chapter 2, a common solution approach for the VRPTW concerns
the so-called Dantzig-Wolfe decomposition methods, which basically consist in
splitting the problem into a master problem (MP) and a subproblem (SP). The latter
addresses the issue of generating “good” individual feasible tours for the vehicles,
and can be stated as a shortest path problem with resource constraints. On the
other hand, MP deals with the task of putting all these tours together to assemble
a valid routing schedule in such a way that a certain cost function is minimized,
all customers are visited exactly once, and each vehicle of the fleet has exactly one
tour to drive (which might be an “empty” tour that does not attend any customers
and incurs no expenses).

The aim of this chapter is to give some highlights on the theoretical background
behind MP. Observe that the problem can be stated in the following equivalent way:
Let N be the set of all customers and K the set of all vehicles. We are given a
family £ of subsets of N U K, each of them containing exactly one element from
K. To every such subset E € £ is associated a nonnegative cost ¢(E). The task
is to find a minimum cost subfamily £; C & that constitutes a partition of N U K,
where the cost ¢(€1) of £ is defined as the sum of the costs of the sets it contains,
ie.,

c(&1) =) c(B). (4.1)
Ee&

Problems of this kind are called set partitioning problems (SPP), and constitute
a fundamental and broadly studied topic in the field of combinatorial optimization.
The general SPP can be formulated as follows: omitting the differentiation between
customers and vehicles, consider a weighted hypergraph H = (X, E), consisting
of a set X of nodes, a family £ of subsets from X, known as hyperedges, and an
integer-valued weight function w defined over £. We are interested in finding a
perfect matching in 'H, i.e., a set of hyperedges £, C &€ which forms a partition of

X, and has the minimum weight in the sense of (4.1).

69
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Two other well-known problems are related to SPP: the set covering problem
(SCP) and the set packing problem (SSP). The former is obtained by relaxing the
condition that £ must be a partition of X and instead requiring each element of the
ground set to appear at least in one of the members from &, i.e., requiring &; to
be an edge cover of minimum weight. Conversely, SSP asks for a maximum weight
matching in ‘H: a set & of disjoint hyperedges having the largest possible sum of
weights.! In general, set partitioning, set covering and set packing are known to be
NP-hard. (See for instance Garey & Johnson [1979]).

All three problems can be formulated as integer programs. In fact, suppose
the elements of X are numbered from 1 through m, and let £ = {E1,..., E,}.
Moreover, let A € {0,1}™*" be a 0/1-matrix whose columns are the incidence
vectors of the sets in £. Associating to each F; € £ a binary variable x; that
indicates whether the set is chosen to be in &1 or not, we can state the problems as
follows:

(SPP) min w’'z (SCP) min w’x (SSP) max w'w
S.t. S.t. S.t.
Ax =1, Ax > 1, Ax <1,
z e {0,1}", z e {0,1}", z e {0,1}",
where w! := (w(E),...,w(E,)),and 1 € R™ is a vector having all components

equal to one. Throughout this chapter we assume that A has no empty rows or
columns, since these imply either redundancy, unboundedness or infeasibility. As
a consequence, in the packing and covering problems it suffices to consider only
the cases where the weight vector w is positive.

A usual approach for studying these problems from the viewpoint of polyhe-
dral combinatorics consists in looking at the polytopes defined by the convex hulls
of their sets of feasible solutions. The set partitioning polytope P (A), the set
covering polytope Q1(A), and the set packing polytope Pr(A) are given by:

P (A) :=conv{z € {0,1}" : Az =1},
Qr(A) :=conv{z € {0,1}" : Ax > 1},
Pr(A) :=conv{z € {0,1}" : Az <1}.

Associated to these polytopes are their fractional relaxations, the solution sets
of the linear problems obtained from SPP, SCP and SSP by dropping the integrality

! Alternatively, one can consider the dual hypergraph H* = (£,£*) of ‘H, which has & as its
set of nodes and whose hyperedges are the sets of the form {E € £ : i € E} foralli € X. In
this case, SCP (resp. SSP) is the problem of finding a minimum weight vertex covering (resp. a
maximum weight vertex packing) in H*.
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constraints on the variables:

P=(A) := {xGRZ_ : szl},
Q(A):={z R} : Az > 1},
P(A):={zeR} : Az <1}.

The fractional covering polyhedron is unbounded, but it can be shown that all
of its vertices lie in the unit cube [0, 1]”. Remark that SPP, SCP and SSP may
be stated equivalently as linear optimization programs over P;-(A), Q7(A) and
Pr(A), respectively, since the fundamental theorem in linear programming guar-
antees that whenever such a program has a (bounded) optimal solution, it must also
have a basic optimal solution, i.e., one which is attained at a vertex of its feasibility
polyhedron. Unfortunately, an explicit description of P;(A), Qr(A), and Pr(A)
in terms of linear inequalities is in general so large that it cannot be used directly
to solve practical problem instances. However, the knowledge gained by examin-
ing the facetial structure of these polytopes can still be exploited for the design of
solution algorithms (e.g., in the form of good cutting planes).

From the definition above, it follows that P;-(A) = Pr(A) N Qr(A), which
implies that all linear inequalities valid for either the packing or the covering poly-
topes are also valid for the partitioning polytope. (In fact, observe that P, (A) is
actually a face of each of the other polytopes). For this reason, a by now estab-
lished approach for studying the structure of P;~(A) is to consider the packing and
covering polytopes separately.

In the next section, some known results regarding SSP and the structure of
the packing polytope will be presented. It turns out that set packing can be refor-
mulated as the problem of finding a maximum weight stable set in the so-called
conflict graph of A (defined in that section). Certain structures in this graph give
raise to valid — and sometimes facet defining — inequalities for Pr(A). Section 4.3
deals with the SCP. As we shall see, set covering is equivalent to the very general
maximum independence system problem described there. Not surprisingly, far less
results concerning the structure of (Q;(A) are available than for the packing case.
A satisfying formulation of the problem in graph theoretic terms is also missing.

Set partitioning, set covering and set packing have been focus of research
within the academic community for more than thirty years by now, and are still sub-
ject of ongoing work. Theoretical issues, as well as algorithmic aspects and practi-
cal applications have been addressed in numerous publications. Among them, we
suggest the following survey articles: Garfinkel & Nemhauser [1972, Chapter 8],
Balas & Padberg [1976], Padberg [1977, 1979], Grotschel et al. [1988, Chapter 9]
(in connection with the stable set problem and perfect graphs), Borndorfer [1998,
Chapter 1], and Schrijver [2003, Chapter 64,77 & 82] (the last two chapters within
the framework of hypergraph theory). Regarding algorithms and applications,
some good references are Hoffman & Padberg [1993] (related to the scheduling
of airline crews), Desrosiers et al. [1991], and Borndorfer [1998, Chapter 3 & 4]
(in the context of vehicle routing for public transportation systems).
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Before continuing, this is a good point to introduce a careful disclaimer: this
chapter is not intended to be a comprehensive survey in set partitioning, but rather
to present a few basic concepts that will be needed later in Chapter 6, and to draw
the interest of the reader towards the main current research topics in this field.
For a more detailed exposition of any of the subjects, refer to the survey works
mentioned above. In fact, much of the material treated here has been taken from
Borndorfer [1998].

4.2 Set Packing

Consider at first the set packing problem SSP. We have just seen that it can be
formulated either as maximum weight matching or as a maximum weight vertex
packing problem in a hypergraph. Edmonds [1962] suggested for the first time
that set packing has also an interesting interpretation in graph theoretic terms.
Namely, given the constraint matrix A € {0,1}™*", the intersection or conflict
graph G(A) = (V,E) of A is defined as follows:

o V={1,...,n},

o E={ij : i,j €V, supp(A.;) Nsupp(4,;) # 0}.

In other words, G(A) has one node for each column of A, and two nodes are joined
by an edge if and only if there exists at least one row of A where the corresponding
columns have both entries equal to one. Observe that the rows of A are incidence
vectors of cliques (i.e., sets of mutually adjacent nodes) in G(A), an that every
edge of G(A) has both of its end nodes contained at least in one of these cliques.
Moreover, note that different 0/1-matrices may lead to the same conflict graph, as
there are various ways to cover the edges of a graph by cliques.

It is straightforward to notice that any set of columns from A related to a fea-
sible solution of SSP (i.e., the columns corresponding to variables that have value
one in the solution) reveals a stable set in G(A) — a set of nodes in the graph which
are pairwise nonadjacent. Conversely, any stable set in G(A) can be used to obtain
a feasible packing by setting the corresponding variables to 1, as no two of them
appear in a row of A simultaneously. Thus, SSP can be restated as the problem of
finding a maximum weight stable set in G(A).

Applying the same principle described in the last section, define the stable set
polytope STAB(G) C RY associated to an undirected graph G(V, F) as the convex
hull of all incidence vectors of stable sets from GG. Due to the observations above,
it immediately follows that P;(A) = STAB(G(A)) holds for any 0/1-matrix A.
Moreover, given an undirected graph G, we can always find a 0/1-matrix A (for
instance the edge-node incidence matrix) with G = G(A), and hence by studying
the stable set polytope one can obtain polyhedral results for the set packing prob-
lem, and vice-versa. Therefore, as long as there is no risk of confusion, we shall
from now on consider P;(A) or STAB(G) as two different ways of denoting the
same mathematical object. We list at next some its basic properties:
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4.2.1 Lemma (Basic Facts About the Packing Polytope) Let A € {0,1}"*" be
a 0/1-matrix (with no empty rows or columns), and let P;(A) be the packing poly-
tope associated to A.

(i) Pr(A) is full dimensional, i.e., dim P;(A) = n.

(ii)) P;(A) is down monotone: For all x1,z9 € R}, with x1 < x9, x5 €
P](A) = 1 € P[(A)

(iii) All nonnegativity constraints induce facets of Pr(A).

(iv) All nontrivial facets of Pr(A) have only nonnegative coefficients (when put
in the form a”z < «).

(v) Let B be a submatrix obtained by selecting an (arbitrary) set of columns
from A. Any valid inequality for P;(B) is also valid for Pr(A).

Proof. For (i) just remark that the zero vector and all unit vectors ey, . . ., e, belong
to Pr(A). This at the same time proves (iii), as there are always at least n affinely
independent vectors that satisfy a nonnegativity constraint with equality.

Down monotonicity is better explained using the stable set formulation. Re-
mark that by dropping a node ¢ from a stable set S C V' we obtain a new stable set
S\ i. Now let z € P;(A) be a convex combination of incidence vectors of some
stable sets S1,...,Sy in G(A). Forany i € {1,...,n}, the vector x* obtained
from x by setting the i-th coordinate to zero is also contained in Pr(A), as it is the
convex combination of (the incidence vectors of) the stable sets S \ i,...,Sk \ i.
But then, since P;(A) is convex, any nonnegative vector obtained from x by de-
creasing the value of its i-th coordinate is also contained in Py(A). Iterating this
argument over all coordinates, the claim follows.

Claim (iv) follows from (iii). Suppose a nontrivial facet has some negative
coefficient a;, and let  be a point on this facet for which the ¢-th coordinate z;
is strictly positive (the reader can check that such a point must exist). Moreover,
let 2* be obtained from x by changing x; to zero. Due to down monotonicity, x*
belongs to Pr(A) , while at the same time it violates the facet inequality.

Finally, property (v) is also a consequence from down monotonicity. Notice
that Pr(B) is affine equivalent to the polytope P := Pr(A)N{x; =0 : j € N},
where N is the set of indices of the columns from A that were not chosen to be
in B. Now assume there is a point x € Pj(A) which violates an inequality valid
for Pr(B). Due to (iii), the point 2* obtained from x by setting all variables with
indices in IV to zero is also contained in Pr(A). Moreover, z* is contained in P
and hence it reveals a point of P;(B) violating the inequality, a contradiction. [J

The stable set problem is closely related to three other graph theoretic prob-
lems: the minimum clique-covering, the maximum weight clique, and the mini-
mum vertex-coloring problems. These constitute a stand-alone research field that
has attracted much attention in the past decades. (See, for instance, Schrijver
[2003, Chapter 64] for an updated survey). One key issue here concerns the study
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of those graphs for which the stable set polytope has only integral vertices (or,
equivalently, of those matrices for which the set packing polytope coincides with
its fractional relaxation). We enter then the realm of perfect graphs and perfect
matrices . It turns out that perfect graphs have a lot of interesting properties
and implications, both from the graph theoretical and from the polyhedral point
of view. During the last months, news about perfect graphs made it to the top lines
as Berge’s 40-year-old strong perfect graph conjecture , one of the seminal ques-
tions in this field, was proved by Chudnovsky et al. [2002]. We shall look at this
topic with some more detail in the next section.

A second direction of research addresses the case — by far more frequent in
practice — when the packing polytope is not integral. Here, Lemma 4.2.1 (v) opens
the way to the “polyhedral study through graph classification” approach initiated
by Padberg [1973a]. According to this lemma, any valid inequality for the stable
set polytope STAB(G’) of a graph G’ remains valid for the stable set polytope of
every graph G that contains G’ as a node induced subgraph. Thus, one can study
the facetial structure of stable set polytopes related to simple classes of graphs,
and then apply the gained knowledge for solving larger instances of the set pack-
ing problem. Moreover, Padberg investigated how facet defining inequalities from
STAB(G’) can be transferred (or /ifted, to put it in his own words) to facets of
STAB(G), and presented some classes of graphs that produce certain inequalities.
Padberg’s work marked the start of a race within the research community, with
more and more articles presenting new facets of the set packing polytope and new
classes of facet defining graphs. In Section 4.2.2 we will take a look at some clas-
sical examples.

4.2.1 Perfect Matrices and Perfect Graphs

Consider once again the IP formulation of set packing presented in Section 4.1.
Due to linear programming duality, we have

max w!z < max wlz = min yTl <  min yTl
S.t. S.t. S.t. S.t.
Axr <1, Axr <1, yTA>w’, yTA>w?,
x>0, x 20, y >0, y =0,
x integral, y integral.

4.2)

Notice that the left-most integer program does not require the variables to be binary,
but just positive integers. However, this is still a valid formulation for SSP, since
the missing condition x < 1 is implied by the packing inequalities Az < 1 to-
gether with the nonnegativity constraints. (Remark that A has no empty columns).
Moreover, observe that the second problem consists in maximizing w’ z over the
fractional set packing polytope P(A).
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Now remark that, as pointed out in the last section, P;(A) is not altered if A is
replaced by another 0/1-matrix having the same conflict graph. Therefore, we may
assume w.l.0.g. that A contains as rows all incidence vectors of inclusion-maximal
cliques in G(A).

We have seen that the packing problem can be stated as the maximum weight
stable set problem in G(A). It is therefore natural to ask, if its “dual” integer
problem (the right-most IP above) also has a graph theoretical meaning. Indeed,
we can formulate it as follows: Given the undirected graph G = (V,E), and the
positive (integral) weight function w : V — Z, find an assignment y of nonnegative
integral values to all maximal cliques in G, such that the weight w; of any node
7 € V is less or equal than the sum of the values corresponding to all cliques which
contain 7, and such that the sum > _ y over all cliques of the graph is minimized.

The last problem is a weighted version of the cligue covering problem, which
asks for a minimum-size family of cliques that covers all nodes of a graph. In fact,
setting w = 1 in (4.2), we obtain exactly the IP formulations for the maximum
cardinality stable set problem, on the left-most side, and for the clique covering
problem, on the right-most side. The optimum solution values for these problems
are usually denoted by o(G) and x(G), respectively. (See Definition 4.2.4 below).

In general, (4.2) establishes that a(G) < x(G) holds for any undirected graph
G, which has an easy combinatorial explanation, as each node of a stable set must
be covered by a different clique. In the late fifties, Berge started to study some
classes of graphs for which this relation is satisfied with equality. In the following
years, his work — and most important, his conjectures — led to the definition of
perfect graphs, and gave birth to a new research thread inside graph theory. It
goes beyond the purpose of this thesis to treat perfect graphs in detail here. Nor
will we give an exact description of how Berge’s famous conjectures historically
developed. The reader interested in one of these topics is referred, for instance, to
Ramirez Alfonsin & Reed [2001] and Berge [1996, 1997], respectively. We restrict
ourselves to a brief exposition of the main ideas that are connected with the set
packing polytope. Let us start with three basic definitions:

4.2.2 Definition (Node-Induced Subgraph) Given an undirected graph G(V, E),
any graph H(V (H), E(H)) satisfying V(H) C V and

EH)={ij€ E :i,j € V(H)}

is called a node-induced subgraph of G. We shall denote this by writing H < G.

4.2.3 Definition (Clique Covering, Node Coloring) Let G(V, E) be an undirec-
ted graph. A family O (resp. S) of node-induced cliques (resp. stable sets) from
G such that any node i € V is contained at least in one Q) € Q (resp. S € S) is
called a clique covering (resp. weighted node coloring?) of G.

2Usually, the term node coloring is used to denote a partition of V into stable sets, i.e.,a coloring
of the nodes in such a way that no edge joins two nodes of the same color.
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4.2.4 Definition (Four Basic Quantities) Let G be an undirected graph. We de-
fine the following four quantities related to G:

(i) The independence number or stability number of G:

a(G) :==max {|S| : S <G, S stable set}

(ii) The size of a maximum clique in G:

w(G) :=max {|Q] : Q <G, Q clique}

(iii) The clique covering number of G:

X(G) :==min {|Q| : Q clique covering of G}

(iv) The chromatic number of G:

X(G) :==min {|S| : S node coloring of G}

Observe that x (G) is the minimum number of colors required to paint the nodes
of (G in such a way that no edge joins two nodes of the same color. This explains
the name chromatic number. Also note that, by definition, w(G) = a(G), and
x(G) = x(GQ), where G denotes the complement of . Hence, (4.2) applied on
G implies that w(G) < x(G), which again is no surprising result: it is easy to see
that every node of a clique has to be painted with a different color. However, these
four quantities are related in a stronger way, and this has deeper implications for
the polytopes described above. To see how, let us first introduce the concept of

perfect graphs, and formulate Berge’s conjectures.

4.2.5 Definition (Perfect Graphs)

A graph G is called x-perfect if w(G") = x(G") holds for every G' << G. Similarly,
it is called x-perfect if «(G") = x(G’) holds for every G’ < G. Finally, G is said
to be perfect if it is both y-perfect and x-perfect.

As stated before, the work on perfect graphs was initiated by a seminal con-
jecture of Berge [1961], which later became known as the Strong Perfect Graph
Conjecture, and was proved only recently by Chudnovsky et al. [2002]:

4.2.6 Theorem (Strong Perfect Graph Theorem) An undirected graph G is per-
fect if and only if G does neither contain the odd hole Csy, 1, nor the odd antihole
C_’%H as a node induced subgraph, for all k > 2.
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Here, the term odd hole means an odd cycle without chords, and an odd an-
tihole is the complement of an odd hole. (See page 85 for a formal definition).
We shall say more about the proof of this theorem later. Of more importance for
our discussion on the set packing polytope is the weak perfect graph conjecture,
formulated again by Berge [1967] and proved some years later by Lovasz [1971]
and Fulkerson [1973] (recently, a new shorter proof has also been published by
Gasparian [1996]):

4.2.7 Theorem (Weak Perfect Graph Theorem) A graph G is perfect if and only
it is x -pertfect if and only if it is Y -pertfect.

Due to the observations made above, an equivalent formulation for this theorem
could read: “G is y-perfect if and only if its complement G is Y-perfect” (or a
similar statement concerning x-perfection). Note that if a 0/1-matrix A contains
as rows the incidence vectors of all cliques in G(A), then requiring G(A) to be y-
perfect is by definition the same as requiring A to satisfy all relations in (4.2) with
equality for any 0/1-weight vector w. Such kind of results are called combinatorial
min-max theorems. (The order of the terms “min” and “max” is important here,
and will become clear in a moment). Now let B be a 0/1-matrix whose rows are
incidence vectors of all stable sets in G(A). Since G(B) = G(A), Theorem 4.2.7
implies that whenever a combinatorial min-max result of the form (4.2) holds for
A and all 0/1-weight vectors w, then automatically a second companion theorem
of the same type is obtained for B.

Before the weak conjecture was enunciated, several celebrated theorems in
combinatorics had been noticed to appear in pairs, for instance the both earli-
est and most famous Konig-Egervary Theorem (see Konig [1986, Theorem XIV
13/14, page 249]) and Konig’s Edge Coloring Theorem for bipartite graphs (see
Konig [1986, Theorem XI 15, page 187]). In an attempt at proving the conjecture,
Fulkerson [1971, 1972] developed his theory of blocking and anti-blocking poly-
hedra and provided a proper framework for explaining this duality. We present the
basic notions at next.

4.2.8 Definition (Anti-Blocker of a Packing Polytope) Consider a nonnegative
(not necessarily 0/1) matrix A without empty columns, and define the fractional
packing polytope P(A) as on page 71. The polyhedron

P*(A):={yeR: : 2Ty <1, Vre P(A)}

is called the anti-blocker of P(A).3

Remark that if B is the nonnegative matrix whose rows are the vertices of P(A)
then

P*(A) = P(B) 4.3)

3 At present, and in a broader sense, some authors also refer to P*(A) as the polar polyhedron of
P(A). (See,e.g., Ziegler [1998, page 59])
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as trivially P*(A) C P(B) and any linear inequality defining P*(A) may be ex-
pressed as a convex combination from inequalities of P(B). Moreover, it can be
shown that if A has no empty columns then the same holds for B, and P*(B) =
P(A). Hence, the anti-blocking relation is a duality relation on the class of packing
polyhedra. The matrices A and B are called an anti-blocking pair.

Associated to anti-blocking polyhedra are the min-max equality and the max-
max inequality:

4.2.9 Definition (Min-max Equality, max-max Inequality) Let A € Q*",B €
Qixn be two nonnegative matrices.

(i) We say that the min-max equality holds for the ordered pair (A, B) if

.o
1 = B, 44
min y rlr%%)és 5. W 4.4)
S.t.
yTA>w,
y >0

holds for every positive (integral) vector w € Z} .

(ii) Similarly, the max-max inequality is said to hold for the (unordered) pair

{A, B} if
(max AM) <maX Bi.w> > [Tw
1<i<r 1<i<s

holds for every pair of nonnegative (integral) vectors w,l € Z} .

Fulkerson also proved the following:

4.2.10 Theorem (Characterization of Anti-Blocking Polyhedra) Let A € Q"
and B € Q7" be two nonnegative matrices, none of which has a zero column. The
following four statements are equivalent:

(i) P(A) and P(B) are a pair of anti-blocking polyhedra.
(ii) The min-max equality holds for (A, B).
(iii) The min-max equality holds for (B, A).

(iv) The max-max inequality holds for {A, B} and AZ-.BjT, < 1 holds for all
1<i<randl <j<s.

Of particular importance for the study of combinatorial min-max results are
those pairs of anti-blocking matrices A, B which are both 0/1-matrices. This im-
plies that the polytopes P(A) and P(B) have only integral vertices. In fact, much
more is true and this is maybe the main result of anti-blocking theory. The min-
max equality is said to hold strongly for (A, B) if the linear program in (4.4) has an
integer optimum solution for all integral nonnegative objectives w € Z'}. This is
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exactly the case when (4.2) holds with equality for both matrices A and B, and all
w € Z . Such kind of linear systems of inequalities are called fotally dual integral
(TDI). It is clear that a pair of anti-blocking 0/1-matrices is a necessary condition
for the min-max equality to hold strongly. Surprisingly, this is also sufficient, as
showed in Fulkerson [1972]:

4.2.11 Theorem (Integrality of Anti-Blocking Polyhedra) Let A € {0,1}"*"
be a 0/1-matrix without zero columns, and B € Q3" an anti-blocker of A. The
following statements are equivalent:

(i) All essential rows of B (i.e., all facets of P(B)) are 0/1-vectors.
(ii) The polytope P(A) is integral.

(iii) The polytope P(B) is integral.

(iv) The min-max equality holds strongly for A, B.
(v) The min-max equality holds strongly for B, A.

(vi) The system (4.2) is TDI.

(vii) The system obtained by replacing in (4.2) A by B is TDI.

What is the relation between this last theorem and the weak perfect graph con-
jecture? Well, as pointed out earlier, observe that the weak conjecture closely
resembles the equivalence “(vi) < (vii)”, except that in the former w is restricted
to be a 0/1-vector. In this sense, Fulkerson had proven a “weighted” version of the
conjecture, which he called the pluperfect graph theorem.

The original conjecture remained open until Lovész [1971] provided the miss-
ing link in form of his replication lemma, which in our context says the following:

4.2.12 Theorem (Replication Lemma) Let A € Q" be a 0/1-matrix without
zero columns, the following two statements are equivalent:

(i) The system (4.2) holds with equality for all w € {0,1}".
(ii) The system (4.2) is TDI.

Figure 4.1 illustrates the key ideas we have presented in this section, and how
they are put together to assemble a proof for the weak perfect graph theorem. Since
integrality of the packing polyhedra is now known to be equivalent to perfection
of the conflict graph, a 0/1-matrix having the property P;(A) = P(A) is also
called a perfect matrix, as it is exactly the clique-node incidence matrix of a perfect
graph. Moreover, from the weak theorem it also follows that the stable set vs. node
incidence matrices of perfect graphs are perfect matrices, too.

The proof of the strong perfect graph theorem by Chudnovsky et al. [2002]
is very long, with the current manuscript (submitted for publication) comprising
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Figure 4.1: The weak perfect graph theorem. Summary of the results obtained
by Fulkerson [1972] (F: see Theorem 4.2.11), and Lovész [1971] (L: see Theo-
rem 4.2.12). The matrices A and B are assumed to contain as rows all incidence
vectors of maximal cliques from their conflict graphs G(A) and G(B).

about 150 pages, and based upon some previous results obtained by other authors.
In the sequel we give a very brief outline of the main steps. (A more extensive
summary can be found in Chudnovsky et al. [2003]). A graph is called Berge if
it does not contain odd holes or odd antiholes. Obviously, every perfect graph is
Berge, and the “difficult direction” to prove in Theorem 4.2.6 is the converse one.

We need to introduce a short remark here. Observe that perfectness is by defi-
nition a hereditary property, i.e., if G is perfect then every G’ <1 G is also perfect.
A graph G is called minimally imperfect if G itself is not perfect, but all its node-
induced subgraphs are; and it follows that every graph is either perfect or contains
a minimally imperfect (node-induced) subgraph. Something similar can be said
for matrices in terms of contraction minors (submatrices obtained by deletion of
columns).

The strategy for proving the strong perfect graph theorem (originated by Con-
forti, Cornuéjols and Vuskovi¢) is to show that every Berge graph either belongs
to some known classes of perfect graphs or has some structure that cannot appear
in (minimally) imperfect graphs. Three of such structures were required for the
proof: the 2-join, the skew partition, and the M-join. We will not define them
here, but just mention that they are partitions of the set of nodes from G which
satisfy certain properties. Cornuéjols & Cunningham [1985] had already proven
that no minimally imperfect graph has a 2-join; and it follows from the work of
Chviétal & Sbihi [1987] that no minimally imperfect graph has an M-join, either.
Moreover, Chvéatal [1985] conjectured that no minimally imperfect graph has a
skew partition. This conjecture turned out to be true, but as a consequence of the
perfect graph theorem. To prove the latter, Chudnovsky et al. [2002] showed a
slightly different version of Chavétal’s conjecture, restricted to so-called even (or
balanced) skew partitions which comply with additional conditions. The authors
demonstrated that no minimum imperfect Berge graph has an even skew partition,
where a Berge graph G is said to be minimum imperfect if G is imperfect, and
every Berge graph H with |V (H)| < |[V(G)] is perfect.

Finally, the authors proved the following main result which, when combined
with the other ingredients described above, implies the strong perfect graph theo-
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rem:

4.2.13 Theorem (Characterization of Berge Graphs) Let G be a Berge graph.
Then one of the following statements is true:

(i) G belongs to one of six classes of perfect graphs (bipartite graphs, line
graphs of bipartite graphs, double split graphs, and the classes made from
their complements)

(i) either G or G admits a 2-join
(iii) G admits a M -join
(iv) G admits an even skew partition

There are more interesting aspects regarding perfect graphs/matrices that we
cannot present in this short “tour d’Horizon”. One of them is for instance the
recognition problem: Given a graph G (resp. a matrix A € {0,1}"*™), decide
whether G (resp. A) is perfect or not. It is easy to see that the recognition problem
for matrices is in co-NP, as it suffices to expose n linearly independent rows from
A which produce a nonintegral vertex € P(A). (Observe that testing member-
ship for x requires O(mn) time). The situation is much more complicated when
the input is a graph, or equivalently, when A is only implicitly given by some or-
acle that decides whether a 0/1-vector is a row of A or not. In these cases, we
are interested in algorithms which are polynomial on n alone. It is of no use to
construct the clique-node incidence matrix for (G, since the number of rows of such
a matrix will usually be an exponential function of n.

The approach followed has been to characterize perfect graphs/matrices in
terms of forbidden minors. Padberg [1973b, 1976] studied several properties of
minimally imperfect matrices, which can be used to conclude that the recogni-
tion problem for perfect graphs belongs to co-A/P, although this was at first stated
(and proven in a different way) by Grotschel et al. [1984]. With the resolution
of the strong conjecture, however, this result has become somehow “obsolete”:
now we know that the only forbidden minors for perfection (in graph theoretic
terms) are odd holes and odd antiholes, and obviously one can test in polyno-
mial time if a given graph is one of them. In fact, even more is true. Simulta-
neously, Chudnovsky & Seymour [2003] and Cornuéjols et al. [2003] devised two
polynomial time algorithms for detecting odd holes in a graph which, together
with the strong theorem, shows that the recognition problem can be solved in
polynomial time. Both algorithms need a first phase that was developed jointly
in Chudnovsky et al. [2003].

Another issue concerns the complexity of the maximum stable set problem.
This problem is known to be A/P-hard on a general graph G(V, E), in both its
weighted and unweighted versions (see Garey & Johnson [1979]). Now consider
the following relaxation of STAB(G), called the clique-constrained stable set poly-
tope:

QSTAB(G) := {z € RY : 2(Q) < 1, ¥Q clique from G}
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where z(Q) = ZZ-GQ x;. Note that if A contains as rows all incidence vectors of
maximal cliques in G, then QSTAB(G) = P(A). Moreover, as in (4.3) we have
QSTAB(G) = {y € RY : 2Ty <1,Vz € STAB(G)} =: STAB*(G), ie., the
clique-constrained stable set polytope of a graph is the anti-blocker of the stable
set polytope of its complement. One can prove that there is a polynomial time
transformation between the optimization problems over a packing polytope and its
anti-blocker, and hence optimizing over QSTAB(G) turns out to be A/P-hard in
general, too.

For perfect graphs, Grotschel et al. [1984, 1988] obtained a surprising result.
They showed that in this case the two problems can be solved in polynomial
time (in fact, they are equivalent). Their proof is based on two ideas: the or-
thonormal representations previously introduced by Lovasz [1979] (which later
opened the way for the field of semidefinite programming ), and the polynomial
time equivalence of separation and optimization, proved by the same authors (see
Grotschel et al. [1981, 1988]). Basically, a convex body TH(G), in general not a
polytope, is defined for any graph G as the solution set of infinitely many linear
inequalities — the so-called orthonormal constraints. This body has the property

STAB(G) C TH(G) C QSTAB(G). 4.5)

The key issue is that the weak optimization problem (see Grotschel et al. [1988] for
a definition) can be solved over TH(G) in polynomial time. Now observe that if G
is perfect then STAB(G) = QSTAB(G) and equality holds overall in (4.5), which
implies the polynomial time solvability for the (weighted) stable set problem on G.

This is not the end of the story: being of theoretical importance, the last result
does not deliver a “practically efficient” algorithm for solving the stable set prob-
lem on perfect graphs, because optimization over TH(G) is carried out using the
ellipsoid method. The search for a “pure” combinatorial algorithm remains in gen-
eral open, although such algorithms have been proposed for some specific classes
of perfect graphs. (See e.g. Grotschel et al. [1988, pp. 279-283] and the references
there).

Finally, let us just mention that perfect graphs reveal miscellaneous connec-
tions to several other problems in combinatorics and information theory: they are
related for instance to graph entropy (see Korner [1973], Cziszar et al. [1990] and
Simonyi [2001]), to the radio channel assignment problem (see McDiarmid & Reed
[2000] and McDiarmid [2001]), and also to the Shannon capacity of a graph (see
Shannon [1956], Berge [1963] and Lovész [1979]). In fact, the latter was one
of Berge’s original motivations for looking at these graphs. Tucker [1972, 1973]
also presents some applications in the context of optimization of municipal ser-
vices. A lot of articles have been devoted to the study of structural properties
and special classes of perfect graphs. Again, the interested reader is referred to
Ramirez Alfonsin & Reed [2001]. We close this section here with a nice exam-
ple of one of the various directions of research that have been pursued. Wagler
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[2000] investigated the effects of deleting edges from (resp. adding edges to) per-
fect graphs. A graph G is said to be critically (resp. anticritically ) perfect G itself
is perfect, but any graph G’ obtained from G by deleting (resp. adding) an edge is
imperfect. Figure 4.2 shows the smallest graph which is both critically and anti-
critically perfect at the same time. Applying these concepts, Hougardy & Wagler
[2003] proved that perfectness is an elusive graph property: to decide if a graph
G is perfect, any algorithm has in the worst-case to look at all the entries of the
adjacency matrix of G .

Figure 4.2: The smallest critically and anticritically perfect graph: either adding
or deleting any edge destroys perfection. (Taken from Wagler [2000]).

4.2.2 Facet Defining Subgraphs

In general, set packing problem instances that appear in practical applications do
not involve perfect matrices, or matrices having perfect conflict graphs. On the
contrary, we usually have STAB(G(A)) C QSTAB(G(A)) and hence there must
be facets of the stable set polytope which are not associated with cliques in G(A).

As pointed out earlier, Lemma 4.2.1 (v) presents a fundamental observation
that can be exploited to study the structure of the stable set polytope: if G’ < G
then any valid inequality for STAB(G') is also valid for STAB(G). Motivated by
this idea, Padberg [1973a] looked for the first time at certain classes of graphs that
define new inequalities. We say that a graph G defines an inequality o’ = < « if the
latter is essential for STAB(G), i.e., if it forms a facet of the stable set polytope of
G. By characterizing such facet defining graphs, we can hope to devise separation
algorithms for the general set packing problem.*

Several classes of facet defining inequalities for the set packing polytope have

*Of special interest are facet defining graphs that give rise to an inequality for the first time.
Padberg called them facet producing: A graph G(V, E) is facet producing for a certain inequality
v :a"x < aif G is facet defining for -y, but any subgraph of the form G \ 4, for all i € V/, is not.
Moreover, if the last statement is true for any arbitrary G’ <1 G, then G is said to be strongly facet
producing for v. We shall not treat facet producing graphs in this survey.
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been described in this way. (See Bornddrfer [1998] for an updated survey). We
shall briefly consider a few classical examples on the next pages which, besides
of illustrating basic proof techniques and properties, introduce some concepts that
will be needed in Chapter 6.

In the same article, Padberg also addressed the more complicated issue of ob-
taining facets of the stable set polytope of a graph G from facets of the stable set
polytope of some G’ <1 G. This led to development of lifting techniques. Other
authors studied certain graph theoretic composition procedures that can be used to
“glue together” graphs in such a way that their stable set polytopes are combined
in a predictable manner, i.e., some (or in the best case all) of the facets of the sta-
ble set polytope corresponding to the composed graph can be determined from the
facets of the stable sets polytopes of the pieces. A couple of elementary ideas re-
garding lifting techniques and composition procedures are presented at the end of
this section.

Edge Inequalities

These are the most simple valid inequalities for the stable set polytope. Given a
graph G(V, E), edge inequalities have the form

;i +r; <1

for all edges ij € E. Edge inequalities are trivially valid for STAB(G) , and they
constitute a special case of the clique inequalities treated below.

The fractional packing polytope P(A) where A is the matrix of edge-node in-
cidences from G(A) is called the edge relaxation of the packing polytope Pr(A).
For bipartite graphs, this edge relaxation indeed coincides with P;(A). Padberg
[1973a] and Nemhauser & Trotter, Jr. [1973] (among others) studied several prop-
erties of the edge relaxation polytope of general graphs. It can be shown, for ex-
ample, that its vertices are half integral, i.e., their coordinates are equal to 0, % orl.
Moreover, given a fractional optimal solution =™ for the set packing problem over
the edge relaxation polytope, there exists an optimal integer solution Z such that
Z; = x; holds for every integer component of z*. Unfortunately, in most practi-
cal applications z* will have only a few coordinates different from % Pulleyblank
[1979] gave a probabilistic justification for this fact.

Clique Inequalities

Associated to every clique () in a graph G is an also trivially valid clique inequality
for STAB(G):

<l (46)

i€eqQ
If ) is maximal with respect to inclusion, it is easy to show (and was at first
noticed by Fulkerson [1971] and Padberg [1973a]) that the clique inequality as-
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sociated to () is facet defining for STAB(G). Just consider the following stable
sets:

S;:={i}, VieQ
S;=1{i(4),j}, VieV\Q

where () is any node of ) which is not adjacent to j. (At least one such a node
exists for every j € @, since @ is inclusion-maximal). The n incidence vectors of
these stable sets are affinely independent and they all satisfy (4.6) with equality.

As pointed out on page 81, the polytope QSTAB(G) defined by all clique and
nonnegativity inequalities is called the clique-constrained stable set polytope of G
and is in general a relaxation of the stable set polytope. The optimization prob-
lem over QSTAB(G) turns out to be equivalent to the optimization problem over
STAB(G) and is therefore A’P-complete. Moreover, due to the polynomial time
equivalence of separation and optimization, the separation problem for clique in-
equalities is also NP-complete (see Grotschel et al. [1988, Section 9.2, page 283]).

On the other hand, clique inequalities belong to a larger class of polynomially
separable orthonormal representation constraints (again, refer to Grotschel et al.
[1988, Section 9.3, page 285], and Lovasz [1979]). For perfect graphs, we have
seen on page 82 that STAB(G) = QSTAB(G) holds, and hence all facets of the
stable set polytope are given by clique constraints. Moreover, these constraints can
then (at least theoretically) be separated in polynomial time.

Odd Cycle, Odd Hole and Odd Antihole Inequalities

An odd cycle is a graph C(V(C), E(C)) having an odd number of nodes, say
V(C)=H{0,...,2k}, and at least all edges of the form {ij : j =i+ 1}, with the
sum taken modulo 2k + 1. Any other kind of edge is called a chord in the cycle.
An odd hole is a chordless odd cycle, and an odd antihole is the complement of an
odd hole. Figure 4.3 shows examples of these three classes of graphs.

(a) (b) ()
Figure 4.3: (a) An odd cycle, (b) an odd hole, and (c) an odd antihole.

If C is either an odd cycle or an odd hole, it is straightforward to verify that the
odd hole inequality

Y i< {@J 4.7)

i€V (C)
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is valid for STAB(C'), and that it does not follow from the edge inequalities (just
take a point having all coordinates equal to %). Moreover, Padberg [1973a] proved
that (4.7) defines a facet of the stable set polytope if and only if C' is an odd hole.
If C appears as a node-induced subgraph from a larger graph G, then in general the
odd cycle constraint for C' will not define a facet of STAB(G), but it can be used
to obtain one (or more) facets via the lifting techniques that will be presented later.

Grotschel et al. [1988, Lemma 9.1.11] have shown that odd cycle constraints
can be separated in polynomial time. Chvétal [1975] suggested the term ¢-perfect
(from trou, the French word for hole) to refer to those graphs whose stable set poly-
topes are completely described by the system of odd hole, edge, and nonnegativity
inequalities. It follows from the equivalence between separation and optimization
that the stable set problem can be solved in polynomial time for the class of ¢-
perfect graphs. Series parallel graphs — graphs that do not contain a subdivision of
K, as anode-induced subgraph — are one well-known example of ¢-perfect graphs.
(See Chvatal [1975], Boulala & Uhry [1979], and Mahjoub [1988] for more de-
tails).

Associated to an odd antihole C'is the following inequality:

> <2 (4.8)
i€V (C)

Again, it is easy to verify that (4.8) is valid for STAB(C), and that it is nonre-
dundant with respect to the edge constraints. Odd antihole inequalities were at
first studied by Nemhauser & Trotter, Jr. [1973], who also showed that they are
facet defining. No combinatorial separation algorithm has been proposed for this
class of constraints, but (similarly as happens with clique inequalities) they have
been proved to belong to a larger class of matrix inequalities that can be separated
in polynomial time using the techniques quadratic and semidefinite programming
(see Lovész & Schrijver [1991]).

Antiweb and Web Inequalities

An antiweb C(n, k) is a graph having the node set V/(C) = {0,...,n — 1}, and
the set of edges

EC):={ij :i,jeV(C), (j—¢ modn)<k}.

A web C(n, k) is the complement of an antiweb. In the following, 2 < k < L%J
will be assumed, as otherwise antiwebs and webs degenerate into either cliques or
stable sets. Figure 4.4 shows two examples.

Observe that odd holes are exactly the antiwebs C'(2k + 1,2), and odd anti-
holes are the corresponding webs C(2k + 1,2). Trotter, Jr. [1975] proved that odd
antiholes are also antiwebs of the form C'(2k + 1, k) (and hence odd holes are also
the webs C'(2k + 1, k)). Moreover, the author showed that holes and antiholes are

the only structures which are both webs and antiwebs at the same time.
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(b)

Figure 4.4: (a) The antiweb C/(9,4), and (b) the web C'(9,4).

Given an antiweb C(n, k), the antiweb inequality

> @< |7 (+9)

i€V (C)

is valid for the stable set polytope STAB(C'). Similarly, the web inequality

Z x; <k (4.10)

i€V (C)

is satisfied by all points of the stable set polytope STAB(C) of a web C'(n, k).

Trotter, Jr. [1975] proved that (4.9) and (4.10) are facet defining for their cor-
responding polytopes if and only if k& and n are relatively prime (and k is restricted
as above). Wagler [2002] showed that the stable set polytope of an antiweb is
completely described by inequalities having only 0/1-coefficients on the left-hand
side. Such inequalities are called rank inequalities, and graphs with the mentioned
property are said to be rank-perfect.

No polynomial time separation algorithm is known for antiweb inequalities,
for web inequalities, or for some superclass containing them.

Lifting Techniques and Composition Procedures

On some occasions, when studying the stable set polytope of some graph G, we
may be able to detect a facet defining node-induced subgraph G’ <1 G (belonging,
for instance, to one of the classes exposed in the previous paragraphs). Associated
to G’ we obtain a facet defining inequality for STAB(G"), which is at the same time
a valid inequality for STAB(G). If G’ is a maximal clique in G, we even know that
the corresponding clique constraint is also facet defining for STAB(G). However,
this is not true in general for the other structures.

Padberg [1973a] introduced a method called sequential lifting that allows to
obtain facets of STAB(G) from odd hole inequalities related to node-induced odd
holes C <1 GG. Later, Nemhauser & Trotter, Jr. [1973] applied this method to arbi-
trary facets of packing and covering polyhedra, and Zemel [1978] further extended
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it to general 0/1 polytopes. The following theorem formulates Padberg’s technique
in the context of the stable set problem.

4.2.14 Theorem (Sequential Lifting) Let G(V, E) be an undirected graph and
G' < G. Let W be a sequence containing all nodes from V \ V(G') ordered in
some (arbitrary) way, say W = (wy, ..., wy). Assume aTx < « is a facet defin-
ing inequality for STAB(G'"), and determine the numbers [31, . .., By according to
the recursion:

G; =G +w; — N(U)Z)

i—1
T
= — 2 4.11
Bi =« me?%%(ai) a:v+jzlﬁz:vz 4.11)

foralli € {1,...,k}. Here, G;_1 +w; — N(w;) denotes the subgraph spanned by
all the nodes from G;_1 which are nonadjacent to w;, plus w; itself; and Gy := G'.
Then the inequality a™ xz + Zle Biz; < « defines a facet of STAB(G).

W is called a lifting sequence, and the numbers (1, . . ., Ok to be determined are
the lifting coefficients. The word sequential denotes the fact that these coefficients
are computed one after each other. Zemel [1978] also investigated the alternative
of simultaneous lifting.

We will not discuss all issues related to sequential lifting here, but rather point
out two basic ideas: first, observe that to calculate the lifting coefficients via (4.11)
an instance of the stable set problem has to be solved at each step. From an al-
gorithmical point of view, this seems at the first glance to make no sense, since in
order to obtain one facet defining inequality for one instance of the SSP, we are
required a solve a collection of several such problem instances. However, lifting
techniques perform well in practice, and this is due to certain details. Remark, for
example, that all lifting coefficients are integers between 0 and «, and hence (4.11)
can be solved by enumeration in pseudo polynomial time (i.e, in a running time
polynomial on both n and «). Besides, the successive instances of the lifting prob-
lem are closely related to each other, so chances are good that information can be
reused when solving them. Finally, note that if we are not able to obtain the exact
values of the lifting coefficients, we can still work with lower bounds for them. In
this case, we will not get a facet for STAB(G) in the end, but we will still have
“tightened up” our initial inequality.

The second aspect we want to highlight here is of conceptual nature. Since
ordering is important when computing the lifting coefficients, in theory (and this
is often also the case in practice) there are exponentially many facets of STAB(G)
that can be lifted from a single facet defining subgraph, revealing that the facetial
structure of a general set packing polytope might be extremely complex. Moreover,
it is easy to use the lifting procedure to construct arbitrarily complicated facets in-
volving intricate graph structures and large coefficients. On the other hand, one
can also formulate this in a positive way: it might be possible to classify the wild-
ness of facet defining inequalities appearing in set packing problems according to
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a few simple core structures. In fact, many such inequalities resemble the ones
presented in the previous sections, except for additional terms that can be seen as
the results of sequential lifting. Figure 4.5 shows an example. The graph depicted
there is known as a wheel, and associated to it is the wheel inequality (4.12), which
is known to be facet defining. Notice that this constraint can be lifted from the odd
hole inequality corresponding to the subgraph induced by the nodes on the “rim”
of the wheel.

2k

> @i+ kagpy <k (4.12)
=0

Figure 4.5: An odd wheel and the corresponding inequality. Odd wheel inequalities
can be obtained from odd hole inequalities by sequential lifting.

Sequential lifting can be considered as one of several so-called composition
procedures. In general, these procedures consist in taking two or more graphs
and combining them into a new larger one by means of certain graph theoretic
operations such that knowledge about the structure of the pieces can be transferred
to the composed graph. Basically, three alternatives have been investigated:

Extensions. Given facet defining inequalities for the stable set polytope of a
graph G, obtain facets for the polytope STAB(G'), where G’ is constructed
from GG by addition of some simple structures. In the case of sequential
lifting, these added structures are single nodes. Wolsey [1976] and Padberg
[1977] explore other alternatives.

Substitutions. Given two graphs G; and G5, a new graph G is defined by
substituting certain subgraphs of (G; by copies of G2 and connecting them
to the rest of the graph in some prescribed manner. Those substitutions are
investigated for which facets (or complete linear descriptions) of STAB(G)
may be obtained from facets of STAB(G;) and STAB(G2). A prominent
example here is the substitution of nodes by cliques, which is also called the
replication of a node and played an important role in the proof of the weak
perfect graph conjecture by Lovész [1971] and Fulkerson [1972]. Later,
Chvatal [1975] generalized this operation to the substitution of a fixed node
by an arbitrary graph.

Joins. Given two graphs G; and G2 which contain the isomorph node-
induced subgraphs G <1 G1 and G’ <1 G, their join G U G is constructed
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by identifying G and G’. Again, the idea is to consider joins where facets of
STAB(G1 U G3) may be obtained from facets of the stable set polytopes of
G and G5. Two examples are the cligue identification procedure of Chvatal
[1975], and the coedge identification introduced by Barahona & Mahjoub
[1994].

Several other composition procedures based on these three approaches have
been described. For more information on them see Borndorfer [1998, page 35] and
the references there.

4.3 Set Covering

We now focus our attention on the set covering problem, and discuss for it the
same issues treated in the last section for set packing. Yet there are far fewer (and
less elaborated) results to report here. This is mainly due to the fact that SCP is
a very general optimization problem which subsumes many (hard) combinatorial
problems — including set packing. Indeed, Laurent [1989] and Nobili & Sassano
[1989] (among others) pointed out by means of the affine transformation z =1 —=x
that SCP can be formulated as follows:

(SCP) min w'z < wl'l-max w'i (4.13)
s.t. s.t.
Az > 1, A;.x < |supp(4;.)| — 1,
z e {0,1}" V1<i<m,
Fe{0,1}".

Let us look at the combinatorial interpretation of the last integer program. Observe
that any row A;. whose support contains the support of some other row is redundant
for SCP. Therefore, we may assume that this does never occur, i.e., that the rows
of A are the incidence vectors of a clutter , to use the terminology introduced by
Edmonds & Fulkerson [1970]. It is known that for a clutter C over some ground
set X, the family

IT:={ICX:|InC|<|C|-1VC e}

is an independence system. Conversely, any independence system Z can be
defined in this form with respect to the clutter formed by its cycles. Hence, (4.13)
just asks for a set of maximum weight belonging to a general independence system
given through an independence oracle.’ This is called the maximum independence
set problem (ISP), and a moment of thought reveals that almost any combinatorial
optimization problem can be put in this way, which in turn yields a set covering

5 An independence oracle can be considered as a “subroutine” that gets as input any subset I C X,
and answers the question whether I belongs to Z or not. In our case, the oracle consists of the system
of linear constraints in (4.13).
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formulation for it. (The stable set problem, for instance, can be “translated” into
the equivalent minimum node covering problem).

The set covering polytope has some basic properties analog to the ones listed
on Lemma 4.2.1 for the packing polytope, although some further conditions have
to be imposed on the 0/1-matrix A:

mxn

4.3.1 Lemma (Basic Properties of the Covering Polytope) Let A € {0,1}
be a 0/1-matrix that has no empty columns and at least two nonzero entries on
each row, and let (Q;(A) be the covering polytope associated to A.

(i) Qr(A) is full dimensional, i.e.,dim Qr(A) = n.

(i) Qr(A) is up monotone: Forall z1,x9 € R, withxy > xo, x5 € Qr(A) =

xr1 € Q [(A).
(iii) The upper bound constraints x; < 1 induce facets of Q1 (A).

(iv) A nonnegativity constraint x; > 0 induces a facet of Q(A) if and only if the
minor A* obtained from A by deleting column i has at least two nonzeros in
each row.

(v) All facets of Q1(A) which are not induced by upper bound constraints have
only nonnegative coefficients when put in the form a”z > o.

(vi) Let B be a submatrix obtained by deleting an (arbitrary) set of columns from
A, and all the rows where at least one of these columns has a nonzero entry.
Any valid inequality for Q;(B) is also valid for Qr(A).

The matrix B in (vi) is called a deletion minor of A. This property establishes
that valid inequalities for the polytopes associated to such deletion minors remain
valid for Q7(A), and opens the way for studying facets of the covering polytope
through the classification of matrix minors.

Unlike the case of set packing, however, SCP lacks a “good” interpretation in
graph theoretic terms. Sassano [1989] and Cornuéjols & Sassano [1989] propose
to consider A as the node-node adjacency matrix of a bipartite graph G(V;UV3, E),
but the problem thus obtained - to find a minimum set of nodes in V; that covers
all nodes in V5, or vice-versa - does not possess any interesting structure that could
help increase our understanding of Q7(A).

A 0/1-matrix A that gives rises to an integral covering polyhedron (i.e., which
has the property Q(A) = Qr(A) + R?) is called ideal. Ideal matrices were in-
troduced at first by Lehman [1979]°. One can work out that if A is ideal, then
every minor of A obtained by a sequence of contractions and deletions (a so-called
contraction-deletion minor) is also ideal (see Seymour [1977]). Hence, it seems

% Although written in 1963, this paper was only published in 1979. Lehman called these matrices
“W-L matrices”, since he studied them in connection with his width-length inequality. (See the
observations following Theorem 4.3.3). The term “ideal” was proposed by Cornuéjols & Novick
[1989].
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again reasonable to characterize ideality through forbidden minors, introducing
the concept of minimally nonideal matrices, which only ideal contraction-deletion
minors. However, in contrast to the minimally imperfect matrices discussed on
page 80, these reveal a much more complex structure, as we shall see in the sequel.

For a nonnegative matrix A € R’'*", the (fractional) covering polyhedron
Q(A) is defined as on page 71, and its blocker bl(Q(A)) is a second covering
polyhedron given by

bl(Q(A) = {y e R : 2Ty >1, Vz e Q(A)}.

Fulkerson [1971] observed that bl(bl(Q(A))) = Q(A) and hence the blocking
relation pairs the members of the class of covering polyhedra. Similarly as for the
anti-blocking case, the author characterized blocking pairs of matrices/polyhedra
in terms of a max-min equality and a min-min inequality:

4.3.2 Definition (Max-min Equality, min-min Inequality) Let A € Q'*", B €

" be two nonnegative matrices.

(i) We say that the max-min equality holds for the ordered pair (A, B) if

max y'1 = min Buw
1<i<s
s.t.
yTA <,
y=>0

holds for every positive (integral) vector w € 7. .

(ii) Similarly, the min-min inequality is said to hold for the (unordered) pair
{A, B} if

(min Ai.l> (min Bmu) <!Tw (4.14)
1<ir 1<i<s

holds for every pair of nonnegative (integral) vectors w, [ € Z} .

4.3.3 Theorem (Characterization of Blocking Polyhedra) Let A € Q" and
B € Q3™ be two nonnegative proper matrices. The following four statements are
equivalent:

(i) Q(A) and Q(B) are a pair of blocking polyhedra.
(ii) The max-min equality holds for (A, B).
(iii) The max-min equality holds for (B, A).

(iv) The min-min inequality holds for { A, B} and AZ-.BJ-T, > 1 holds for all 1 <
t1<randl <j <s.
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Theorem 4.3.3 was motivated in part by two former results from combinato-
rial optimization, concerning the study of paths and cuts in a two-terminal net-
work: (ii) and (iii) are analogues of the max-flow min-cut equality presented by
Duffin [1962], while (iv) is the analogue of the width-length inequality proposed
by Lehman [1979].

The main difference to anti-blocking theory appears when one considers block-
ing pairs of 0/1-matrices and the corresponding strong version of the max-min
equality, where y is required to be integral. In particular, two important observa-
tions have to be made here (see Fulkerson [1971] for a counter-example):

e The strong max-min equality for an ordered pair (A, B) does not imply the
strong max-min equality for the pair (B, A).

e The integrality of a covering polyhedron QQ(A) does not imply that the cor-
responding system of constraints Az > 1, x > 0 is TDI.

A weaker version of Theorem 4.2.11 was proven by Lehman [1979, 1981] for
the covering case. Later, the same result was obtained by Padberg [1993] from a
polyhedral point of view, and by Seymour [1990] within the framework of hyper-
graph theory. We state it below, slightly modified to fit in our current notation.

4.3.4 Theorem (Width-Length Property of Ideal Matrices)
Let A, B be two 0/1-matrices. The following statements are equivalent:

(i) A and B are a blocking pair.
(ii) The min-min inequality holds for { A, B}.

(iii) The min-min inequality holds for { A, B} if the vectors w and [ in (4.14) are
allowed to have only coefficients from the set {0, 1,00}, except for at most
one coefficient whose value is equal to the number of 1-coefficients minus
one.

For (iii) we adopt the convention 0 - co = (0. The extra coefficient not in
{0, 1, 00} is required only to deal with a special case of minimally nonideal struc-
tures, the degenerate projective planes. And here we meet another difference to
the perfect case. Lehman [1979] gave three infinite families of minimally nonideal
matrices: the odd circulants C'(2k + 1,2), the integral part of their blockers, and
the incidence matrices J,, of degenerate projective planes, which have the form

T
g, = 0 1 ’
1 Infl

where I,,_; is the identity matrix of order n — 1. The two former classes can be
seen as the counterparts of odd holes an odd anti-holes, but the third one has no
equivalent. Moreover, researchers have compiled a large (but finite) list of “excep-
tion” matrices that are proven to be minimally nonideal, but do not belong to any of
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the three Lehman’s classes (see Cornuéjols & Novick [1989] and Liitolf & Margot
[1962]). Besides, Cornuéjols & Novick [1989] give operations to construct further
infinite families of minimally nonideal matrices from the ones known. This makes
a characterization of ideal matrices in terms of forbidden minors extremely com-
plicated. Still, they conjecture that such classification is possible for matrices with
a sufficiently large number of columns if we restrict our attention to their cores’ .

As the reader may have already guessed, there is much more to say about ideal
matrices than what can be covered here. We stop at this point and turn to the (in
practice more common) nonideal case. In general, there will be facets of QQ7(A)
whose inequalities are not contained within the rows of A; they might even in-
volve coefficients different from O and 1. Theorem 4.3.1 (vi) establishes that facets
of the covering polytope still can be determined by local structures. Lacking of
a satisfactory graph formulation, however, these structures must be expressed as
submatrices, or, to be more precise, as deletion minors of A.

A matrix A’ is said to define the inequality v : a’x > o« if the latter is es-
sential for Q7 (A"). Whenever we are able to identify such a facet defining matrix
as a deletion minor of the constraint matrix A from some SCP instance, we get
a new valid inequality that can be used to tighten up our relaxation of Q7(A).
Moreover, lifting procedures to further sharpen v (maybe until we obtain a facet
of Q1(A)) have also been studied, though the situation here is slightly more com-
plicated as in the packing case, since both additional columns and rows have to
be taken into account. (See Nemhauser & Trotter, Jr. [1973], Sassano [1989] and
Nobili & Sassano [1989] for some examples.)

We present at next the two main classes of facet defining matrices that have
been described (as far as we are aware).

Generalized Antiweb Inequalities

Given three natural numbers n > t > q, a generalized antiwveb AW (n,t,q) is a
n (éj) xn 0/1-matrix that has a row ZiEQ el for each g-element subset @ of any
set of ¢ consecutive column indices {7,...,j + ¢ — 1} (all additions taken modulo
n). Figure 4.6 (a) shows an example. Associated to this matrix, Laurent [1989]

and Sassano [1989] introduced the inequality:

ZZ";M . {n(t—tq%—l)-‘ |

which is facet defining if and only if n = ¢ or ¢ does not divide n(q — 1).
The generalized antiweb inequalities subsume three other classes of inequal-
ities that had been previously proposed: the generalized cliques, obtained when

"The core of a matrix A € {0,1}™ ™ is an x n regular submatrix A" with row and column
sums equal to a constant o and having the property that any row of A which is not in A’ is either the
duplicate of some row in A’, or has row sum strictly larger than . Obviously, not all 0/1-matrices
possess a core, but whenever it exists, a core is unique up to permutations of rows.
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11
1 1 1 1
11 I 1
1 1 1 1
11 . 1 1
1 1 1 1
11 1 1
1 I 1 1
1 1 . 1 1
1 1 . 1 1
(@) (b)

Figure 4.6: Two examples of facet defining matrices:(a) The generalized antiweb
AW(5,3,2), and (b) the generalized web W(9, 4, 2).

n = t (see Nemhauser & Trotter, Jr. [1973], Sekiguchi [1985] and Euler et al.
[1987]); the generalized cycles, that appear when ¢ = ¢ and ¢ does not divide
n (see Sekiguchi [1985] and Euler et al. [1987]); and the generalized antiholes, for
the case n = qt + 1 (see Euler et al. [1987]).

Remark that the antiwebs AW (2k + 1,2, 2) are exactly the circulant matrices
C(2k+1), the odd holes. These were further investigated by Cornuéjols & Sassano
[1989]. Sassano [1989] and Nobili & Sassano [1989] also found two more classes
of facet defining matrices that are constructed from the antiwebs AW (n, q, ) using
a lifting and a composition operation, respectively.

Generalized Web Inequalities

An example of this second structure is depicted in Figure 4.6 (b). Generalized
webs can be seen as the complements of generalized antiwebs: Given the natural
numbers n > t > q, the generalized web W (n,t,q) is a (Z) - n(t—l) xn 0/1-

q—1
matrix that has a row ZZEQ el for each g-element subset () not contained in any
of the sets {j,...,7 + ¢ — 1} of ¢ consecutive column indices (all additions taken

modulo n). In relation to it, Sassano [1989] defined the generalized web inequality:

n
in >n—t.
=1

Nobili & Sassano [1989] showed that this inequality is facet defining if and
only if £ does not divide n.

We close this section by mentioning a word about the separation problem
for set covering inequalities. As one would expect, apart from the case of odd
hole inequalities, only very few polynomial time algorithms are known, and all
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of them are of heuristic nature: Nobili & Sassano [1992] introduced the concept
of k-projections and used it to suggest a separation heuristic for rank inequali-
ties (inequalities having only 0/1-coefficients on the left side). Balas [1980] and
Balas & Ho [1980] explored the use of conditional cuts, which are only valid un-
der the assumption that a solution better than the best currently known one exists.
Caprara & Fischetti [1996] and Schulz [1996] studied certain classes of {0, %}
Chvatal-Gomory cuts. Finally, Borndorfer [1998, page 80] applied his sef packing
relaxation to derive a separation heuristic for the new class of aggregated cycle
inequalities.



Chapter 5

The ADAC-Problem. Competitive
Analysis Results.

5.1 Introduction

Acknowledgement. The results from this chapter are joint work with Diana Poens-
gen! and Tjark Vredeveld'.

In this chapter, some competitive analysis results for a simplified version of
the ADAC-Problem introduced in Chapter 1 will be presented. As we shall see
in the next section, this problem (even in the simplified version treated here) in-
cludes several standard online optimization problems as particular cases, like for
example the online dial-a-ride problem. For some of these problems, families of
input sequences are known which show that there exists no online algorithm with
constant competitive ratio. Section 5.3 extends this result to the case of the ADAC-
Problem and considers similar bad sequences and lower bounds. Following a com-
mon approach in online optimization, we iteratively introduce “reasonable” addi-
tional constraints into the model in order to get rid of these sequences. There is no
general rule to decide if a constraint is reasonable or not. On the contrary, different
criteria may be applied, leading to different results. As a guideline, we tried to keep
the model as close as possible to the “real world” situation and allowed only con-
straints that we found justified in the context of our current application at ADAC.
After adding a few restrictions, it is possible to come up with an online strategy
which has a constant competitive ratio determined by some problem parameters.
This is the subject of Section 5.4.

Let us start with a formal definition of the version of the problem we are con-
sidering here. Given are k£ homogeneous service vehicles of unit speed initially lo-
cated at adepot 0 € X, where X is a connected and smooth metric space (see Sec-
tion 3.3.2). The input for any online algorithm consists of a set 0 = {r1,...,7r,}

! Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Takustr. 7, 14195 Berlin, Germany,
http://www.zib.de
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of service requests?, each of them containing the following information:

a position a(r;) € X where the request r; takes place,

a release time T(r;) > 0 when r; enters the system, i.e., when it becomes
known to the online algorithm,

e a deadline 0(r;), which is the maximum time at which r; can be served
without incurring lateness costs,

e a duration §(r;) for the service of r;, and,

e a service cost s(r;). (Service costs are kept in the model only because are
needed to get rid of some pathological input sequences that will be presented
in the next sections. Evidently, there is no real room for optimization in
them.)

The task is to design a minimum cost feasible online service schedule to answer
all requests employing the k servers. There are three issues here that need further
explanation. At first, to answer a service request 7 means to move a server to the
request’s position a(r) and then hold it there for a time larger than or equal to the
request’s service duration 6(r). We assume that all servers are identical, i.e., that
any request can be attended by any server. The second issue refers to the exact sig-
nification of “feasible online service schedule” in the sentence above. Following
the time stamp model presented in section 3.2.1, we require from such a schedule
that all decisions taken up to any time ¢ must rely exclusively on information pro-
vided by requests having release times smaller than or equal to ¢. Moreover, any
feasible schedule is required to start and end at a configuration where all servers
are located at the depot.

The third key point is related to the definition of the cost of a schedule. In fact,
the structure of the cost function is complicated, as it needs to take into account
several heterogeneous components:

e Travel costs, which are proportional to the total distance traveled by the
servers during the execution of a dispatch.

e The actual service costs of the requests.

e Lateness costs, which are nonmonetary costs that aim at ensuring a certain
level of service quality from the viewpoint of the users of the system (i.e.,
the ones who issue the requests). If a request 7 is served at some time ¢(r)
after its deadline 6(r), then a cost proportional to the late time (¢(r) — 6(r))
has to be paid. (Here, t(r) is defined as the time when a server arrives at r.)

“We shall follow a usual practice in the literature and treat o both as set and as a sequence, abusing
a little of the terminology.
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e Overtime costs, used in the model to deal with another problem constraint
arising from management decisions and labor agreements: the shift-duration
of the servers. We introduce a global parameter 1" defined as the time by
which all servers should have finished duty and returned to the depot. If a
server ¢ misses this deadline and finishes its schedule at some time ¢ later,
then it incurs a cost proportional to its overtime ¢; — 7.

To be able to put these diverse quantities together, we scale them by introducing
constant coefficients as further problem parameters. In order to simplify notation,
we do this scaling in such a way that the coefficient corresponding to the travel
costs equals to one. Moreover, since service costs are constants, we also assume
they have already been properly scaled and omit their coefficient. The remaining
two coefficients will be denoted by cjate for the lateness costs, and ¢y for the
overtime costs. The total cost of a dispatch is then given by the weighted sum
of the travel and overtime costs of all servers, plus the service and lateness costs
associated to all requests:

k n n k
Z = ZDH‘ZS(W)"‘ZCMW (t(ry) — H(Tj))++zcot (ti — T)+ » B.D
=1 J=1 J=1 i=1

where D; denotes the total distance traveled by server i, and =™ stands for
max {x,0}.

An alternative approach that we looked at (in fact, the first one we tried) con-
sists in dropping the overtime component from (5.1) and replacing it by a “hard”
constraint in the model that requires all servers to have completed their schedules
by time 7'. However, as we shall see in Section 5.3.1, this modification involves
certain technical difficulties: for any online algorithm, input sequences can be con-
structed such that the set of feasible online solutions is empty, while there exist
some offline feasible schedules.

We are now ready to begin the analysis of the ADAC-Problem by establishing
its connections to other online optimization problems.

5.2 Relation to Other Problems

The ADAC-Problem, as defined in the previous section, includes two well known
online optimization problems as special cases: the k-server problem of Section
3.3.1, and a modified version of the online dial-a-ride problem from Section 3.3.2.

The most evident relation is the first one. Suppose service costs are ignored and
Clate = Cot = 0. The task is then to attend service requests arriving over time with k
servers, minimizing the total distance traveled by them. The only difference to the
“original” k-server problem is that the online algorithm is in our case not required
to attend requests in the same order as they are released. At least for deterministic
algorithms, however, this is not an important issue, since it is always possible to
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enforce this property by choosing the release times for the requests appropriately.
We tried to generalize known results (both lower bounds and algorithms) from
the k-server problem to the ADAC-Problem, but we didn’t obtain any interesting
results.

On the other hand, if lateness or overtime costs dominate the other compo-
nents of the cost function (5.1), the ADAC-Problem instances may be considered
as slightly modified versions of online dial-a-ride problems with multiple servers,
by considering service requests as transportation requests among an additional
“service-time dimension”. To explain this further, consider the following trans-
formation: Given an instance of the ADAC-Problem over a connected and smooth
metric space (X, d), the service-time extension (Y,d') of X is a new metric space
defined by:

o YV :={(z,t) e X, t>0}
° d'[(wl,tl), (562,752)] = d(:ﬂl,xz) + |7f1 — t2|

One can think of Y as being constructed by expanding X over time. The
distance between two points in Y is the sum of the distance between their “projec-
tions” on X plus their separation on the service-time axis. It is straightforward to
show that Y is indeed a metric space, and that it is connected and smooth.

An instance of the OLDARP is defined on Y from the input sequence o of the
ADAC-Problem in X by introducing, for every r € o, a transportation request 7 in
Y with the following properties:

e the pick-up position of 7 is (a(r),0),
e the delivery position of 7 is (a(r), 35(r)),

e the release time of 7 is identical to the release time 7(r) of r.

Figure 5.1 illustrates the idea of this transformation. The objective of introduc-
ing an additional time axis is to account for the fact that a server is “immobilized”
at a certain position a(r) while attending a request 7 in the ADAC-Problem. This
situation is modeled in the OLDARP by requiring the server to transport r along
the service-time axis for a time equal to one half of the request’s service duration
0(r). Since the start points of all transportation requests lie at the zero-time slice
of Y, (i.e., have coordinates (a,0), with @ € X) the server has to return back to
that time slice before picking-up the next request 7. The way in which d’ has been
defined ensures that no matter which route the server chooses for doing so, the dis-
tance traveled cannot be smaller than &(r) + d(r, 7). Thus, the effect is the same
as if the server had just waited at a(r) for a time larger than or equal to §(r).

Now consider what happens in the original ADAC-Problem if the cost coeffi-
cients are chosen in such a way that travel, service and overtime costs are negligible
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Figure 5.1: From the ADAC-Problem to the OLDARP

when compared to lateness costs. In this case, the cost function (5.1) may be ap-
proximated by

n

Clate Z (t(ry) — 9(7“j))+ .

j=1

Hence, the task is to minimize the sum of late times (¢(r) — 6(r))" for all requests
r € o. In the setting of the OLDARP described above, this is equivalent to mini-
mizing the total surplus of wait times. For each request 7, this surplus is defined
to be the quantity by which the wait time of r exceeds a maximal allowed value of
6(r) — 7(r). To maintain the analogy with Section 3.3.2, let us rather consider the
average surplus of wait times, and denote this new objective function with W

avg:*

Obviously, if 6(r) = 7(r) holds for all requests, then W, = Wy, and the
problem turns into a “classical” OLDARP with average wait time as the objective

function.

Unfortunately, the same does not hold in general, as shown by the example in
figure 5.2 for a problem instance with one server. Throughout this section, black
dots will be used to represent requests, little crosses for servers, and a white little
circle for the depot. At time 0, a request r; with deadline 2 and duration % is
released at a point located two units away from the depot, as indicated in the figure.
One time unit later, a second request o with deadline 3 and duration 1 is issued
exactly at the middle position between the depot and r;. If we have to minimize
the simple sum of wait times, then the optimal offline solution is to attend r5 before
r1, and has a value of 3 (compared to % for the other alternative). However, this is
not the correct solution when minimizing the late times: its value of 1 exceeds the
value of % obtained if r; is served at first.

Nevertheless, there is a strong relation between optimization of late and wait
times. In fact, if ALG is a c-competitive online algorithm (in the sense of definition
3.2.4) for the problem of minimizing wait times, then, for any input sequence o =
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6(7“2) =1 6(7“1) = %

Figure 5.2: Wait times vs. late times. The black dots represent two requests
and 7y released at the positions shown with respect to the depot (the small white
circle). The optimal offline solutions for the problems of minimizing wait and late
times do not coincide.

r1,...,Tn, the following holds:
ALG(0, Wi,) < ALG(0, Wayg) < cOPT(0, Wayg) + b (5.2)
< cOPT(0,Wh,) + ~B(0) + b,
n

where b,c € Rand B(o) := >_7_(0(r;) — 7(r;)). Furthermore, we keep
the notation from Chapter 3 and denote by ALG(o, f) the solution value obtained
by an algorithm ALG when solving an instance of the OLDARP (or of the ADAC-
Problem) with an input sequence ¢ and with regard to a cost function f. (For the
ADAC-Problem, if we omit f, we just refer by default to the total cost function).

The first inequality comes from the fact that late times cannot be longer (by def-
inition) than wait times. The second inequality just states that ALG is c-competitive
for the minimization of W,,.. The last inequality is justified by observing that the
optimal offline solution for the problem of minimizing Watg is at the same time a
feasible (offline) solution for the problem of minimizing Wy, with value less or
equal than (OPT (o, W;,) + 1 B(0)).

Inequality (5.2) does not mean that ALG is c-competitive for the minimization
of late times, since the additive “constant” B(c) that links wait and late times
depends on the input sequence. However, this relation poses the question if, and
under which conditions, it is possible to translate known competitive results from
the average-wait-time OLDARP to the ADAC-Problem. As we shall see in the next
sections, the answer is yes. At the same time, we know that minimizing average
wait times in the general setting of the OLDARP is hopeless from the point of view
of competitive analysis. Therefore, some restrictions have to be taken in order to
achieve positive results for the ADAC-Problem.

A similar situation occurs if (5.1) is dominated by overtime costs. In this case,
the ADAC-Problem can be transformed into an OLDARP where the objective is
to minimize the total excess of makespan CJ. . Here, the excess of makespan
(tr—T )" for a server i is defined as the amount by which the completion time of
its schedule surpasses the global return time 7'. As with late times, there is a con-
nection between this problem of minimizing CZ , and the “standard” OLDARP

that aims at minimizing the global makespan C\,,x (the time at which the last
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server has completed its schedule and returned to the depot). Moreover, competi-
tive results for the latter do in this case imply results for the former.
Suppose ALG is a c-competitive online algorithm for the makespan OLDARP,

and let 0 = ry,...,r, be an input sequence. Then, with the same arguments used
for (5.2),
ALG(0,C5 ) < kALG(0, Cax) < k (cOPT (0, Crpax) + b)

< kcOPT(o,CL.) + keT + kb,

sum

where the constant k appears due to the fact that CJf,  is the sum of overtimes for
all k servers, while Cy, is the return time of only the last server. Again, to prove
the third inequality, note that an optimal offline solution for the minimization of
C.h ., yields a feasible solution for the minimization of Cyay, With value not larger
than OPT (o, CZ,) +T'. Since the additive constant kcT + kb does in this case not
depend on o, it follows that ALG is a kc-competitive algorithm for the problem of
minimizing overtimes (although not necessarily strictly competitive).

Finally, let us point out that the OLDARP with objective function W;,g (resp.
Cd,) is indeed more general than the ADAC-Problem restricted to the minimiza-
tion of late (resp. overtime) costs: the latter one requires all transportation requests
to have starting positions only at points of Y with time coordinate equal to zero.

5.3 Lower Bounds and Problem Restriction

Considering the general character of the ADAC-Problem, the odds of finding a
competitive algorithm for it are not good. Therefore, in this section we take the op-
posite approach and derive lower bounds on the competitive ratios of deterministic
algorithms. Alternately, we restrict the set of allowed input sequences, with the
aim of arriving at some scenario where we can obtain some positive results. Our
search was guided by the relations between the ADAC-Problem and the “standard”
optimization problems described in the last section.

5.3.1 No Overtime Allowed

As pointed out in the introduction, our original formulation of the ADAC-Problem
did not consider overtime costs in the objective function. Instead, all servers were
required to finish their schedule by time 7'. However, this restriction has a bad side-
effect: given any deterministic online algorithm ALG, it is possible to construct an
input sequence o for which ALG even fails to find a feasible solution, which is, on
the other hand, available to the offline adversary.

Figure 5.3 shows an example of such a sequence. It consists only of one request
r, released at time % at a point a € X whose distance to the nearest server is at
least € > 0, and whose distance to the depot is at most % Since X is connected
and smooth, it is always possible to choose a sufficiently small e for which such a
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X

X X

Figure 5.3: A bad example if no overtimes are allowed. A request r is issued at
a distance of € from the nearest server. Due to its duration, r has to be attended
immediately after having been released to allow the server return to the depot on
time.

point exists. The service duration of the request is

50r) = L~ d(a, o).
2

Now remark that ALG has to move a server at least for £ time units before
reaching . Hence, it is easy to see that this server will not be able to return to the
depot by time T'.

On the other hand, an offline adversary ADV starts moving one server towards
a at time 0, while leaving all other servers at the depot. This server has already
reached a by the time r is released, since d(a,0) was chosen to be less or equal
than % ADV starts serving r» immediately, and then heads the server back towards
the depot, to arrive exactly at the deadline 7T'.

5.3.2 Degenerated Service Costs

The example of the last subsection motivated us to change the problem formulation
and allow penalized overtimes, resulting in the cost structure shown in (5.1). Let us
consider now a second “degenerated” situation that may arise if the service costs
can be chosen arbitrarily.

Let K be some large positive number, and choose ¢ such that 0 < 2Ke < T'.
Figure 5.4 shows the construction of this example. At time ¢ = 0, k requests are
released at the depot, with deadlines equal to zero, service costs equal to € and
service durations of % (In the figure, the requests have been drawn near the depot,
for clarity). The way the input sequence o is continued, depends on what the online
algorithm ALG has done by time ¢’ := Ke.

Case I: Not all servers are busy at time ¢

This means that there is at least one request for which service has yet not
started at this time. (Remark that due to the choice of ¢, it is not possible that
service has finished for any request by ¢). Hence, ALG has to pay at least
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Figure 54: A degenerated case if service costs are not restricted. At time 0, k

requests with duration % are released at the depot. If all servers are busy after K¢
time units, a second wave of short requests (small squares) is issued, otherwise the

input sequence is terminated.

the late costs associated to this request. In this case, the input sequence o is
ended here, and

ALG(c) > ALG(o,c- W

sum

) > Kecage,

where ¢ - W

o = k:clateW;gg denotes the sum of late costs for all requests.

The offline adversary ADV, meanwhile, may attend all requests immediately
after they have been released at time zero, and incurs therefore zero late
costs. Moreover, since it does not have to pay any travel or overtime costs
either, its total cost reduces to the sum s,y Of service costs:

ADV(c) = ADV(q, Sgum) = ke.

It then follows for the competitive ratio of ALG,

ALG(0) S Kaate
OPT(e) = Kk

(5.3)

Case II:  All servers are busy at time ¢/

If this happens, k new requests are released at this time, all of them located
at the depot and with deadline ¢’, duration equal to zero, and service cost of
e. Since each of these requests has to wait at least until time % before being
attended,

T
ALG(c) > ALG(0,c- W ) >k <§ — Ka) Clate-

On the other hand, ADV waits until time ¢’ and serves the “small” requests
first. This involves a late cost of Kecyye for each of the requests released at
time zero. It is straightforward to see that, together with service costs, these
are the only costs incurred by ADV. Hence,

ADV(0) = kKecate + 2ke.
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Thus, the competitive ratio is at least

ALG(O’) > k (% - K&“) Clate %Clate + 2¢ > Tclate

= 1> et g
OPT(0) = kKeciate + 2ke Kecppe + 26 ~ (2K cjate + 4)

54

Therefore, it is possible to force the competitive ratio to be larger than any
positive constant, by choosing the values of K and ¢ adequately: choose K large
enough in (5.3) and, for this fixed K, choose € small enough in (5.4). This implies
that there is no competitive deterministic algorithm for the general ADAC-Problem
with objective function as given by (5.1).

Observe that the construction of this lower bound relies on a somehow weird
asymmetry: all requests have the same service costs despite of the fact that the first
ones have a much longer duration. (If not, the ratio in the second case cannot be
chosen arbitrarily bad). In practice, however, service costs are usually correlated
(up to a certain degree) to service times, i.e., to the durations requests. We decided
therefore to refine our model and admit only such input sequences where the ser-
vice cost of any request is equal to its duration, multiplied with a service coefficient
Csve- In other words, the objective function (5.1) is now replaced by:

k

k n n
2= Di+ > el i)+ Clate (E(r;) — 0r) T+ cor (7 = T)F. (5.5)
i=1 j=1 j=1

i=1

5.3.3 Arbitrarily Small Durations

Another family of input sequences for which the competitive ratio of any determin-
istic online algorithm is unbounded can be constructed if requests with arbitrarily
small durations are allowed. Let N be a positive integer and R = %. Choose a set
A ={ao,...a;} of k+ 1 different points of X, all of them located within a circle
of radius R around the depot, and let

£ = min Lai’aj).
a;,a;€A 2

The existence of this set of points follows from the fact that X is connected and
smooth. Observe that the balls B(a;,¢), 0 < ¢ < k do not intersect each other.
Moreover, since there are only k servers, notice that at any time there is always a
ball with no server in it, i.e., there is a point in A whose distance to the nearest
server is at least €.

Given a deterministic online algorithm ALG, the input sequence o consists of
N requests released at time ¢ = R at such a point a* € A at least € length units
away from ALG’s next server, as indicated in figure 5.5. All requests have the same
deadline R, and the same duration 5, with N§ < %
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Figure 5.5: Requests having arbitrarily small durations do also constitute a prob-
lem. Given k + 1 non-intersecting balls, /N very short requests are released at the
center a* of the ball which does not contain a server.

No matter what ALG does, the algorithm cannot start processing any request
before time R + &, since it first has to move a server to a*. Therefore, it incurs
some unavoidable late costs of at least € ¢, for each request, and we conclude

ALG(o) > ALG(0,c - W,

sum

) > Necjate- (5.6)

In fact, the costs for ALG are higher, but bound (5.6) suffices for our purposes.

A (not necessarily optimal) offline adversary ADV, on the other hand, could
start moving a server to a* already at time zero. Because all points of A are located
within R length units of the depot, there is enough time for this server to reach
a* by time t. Thus, ADV can start processing the requests (one after the other)
immediately after they have been released. There is still lateness involved, since
latter requests have to wait until the earlier ones have been served. However, the
total late cost is in this case

N
~ NIN-1 A
ADV(O’ C- Wstm = Clate Z ] — 1 (5 = %C]me&

Jj=2

Furthermore, a moment of thought reveals that ADV does not incur any over-
time costs, due to the choice of R and 5. As for travel and service costs, the former
are bounded by 2d(a*,0) < 2R, whereas the latter are given by the cost definition
(5.5). Hence,

N(N-1) .

ADV(0) < 2R + Negyed + Clated.- (5.7)

Finally, from (5.6) and (5.7) it follows that, if § is chosen to be sufficiently
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small, then
ALG(0) S Necjate

OPT(0) = 2R

Since the number N of requests can be chosen freely, and is in particular inde-
pendent from the values of € and R, this quotient can become arbitrarily large. It
follows that there is no deterministic online algorithm which can achieve a constant
competitive ratio for the second version of the ADAC-Problem with cost function
(5.5). This result incited us to introduce a further restriction: from now on, we shall
allow only such input sequences where all requests have durations larger than or
equal to a fixed value (given by a new parameter), the minimum request duration
or.

Before continuing with the next lower bound, let us remark that the results of
this section can be extended for the case of a non-abusive and fair adversary, in
the sense defined by Krumke et al. [2002] and Blom et al. [2000], respectively. It
suffices, for instance, to issue a first “wave” of requests at time zero, one at each
point of A, all having deadlines of 2R + 4 and durations of §. This increases the
costs for the offline adversary, but it is easy to show that still a ratio of O(N) can
be obtained by choosing b sufficiently small:

— 1.

ALG(0) Necae S Necae .

OPT(0) = (2k + DR+ (k+ 1+ N)egyed + X8V 5 — Ch+ 1R

5.34 Unbounded Metric Space

If the metric space X is unbounded, it is also possible to obtain input sequences
that induce arbitrarily bad competitive ratios. Given a positive integer NV, choose a
point a; € X such that d(ay,0) = 2kN?. Then, along the shortest path between
o and ag, choose k — 1 further points a1, . .., ax_1 such that d(a;, 0) = 2j N2, for
7 =1,...,k—1. As in the last examples, the existence of such points is guaranteed
by the fact that X is connected and smooth. We denote by A the set {ay,...,a}.
Notice that this set satisfies two basic properties:

6{1(111/161,4 d(a,a’) = 2N? (5.8)
R:= max d(a,0) = 2kN? (5.9

The input sequence o starts with k requests, released at time zero, one at each
of the points in A, as shown in Figure 5.6. All requests have deadlines equal to
R and durations of N2. Let tq be the earliest time when an online algorithm ALG
starts the service of (at least) one of these requests. We distinguish between two
cases:

CaseI: t, < N2
In this case, observe that due to (5.8) there is a point a* € A whose distance
to the next free server is at least N2: there are at most k — 1 free servers (at
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Figure 5.6: In an unbounded metric space, k requests of duration N? are given at
points in distance of 2N? length units of each other. As soon as a server starts
processing a request, N new short requests are released at a point a* at least N2
units away from the nearest free server.

least one is busy processing a request), and there are k£ non-intersecting balls
B(a;, N?) with radii N2 and centers at the points in A. At time t = to, N
new requests of duration 1 and deadline ¢ + 1 are released at a*.

To attend any of these new requests, ALG has either to move a free server to
a*, or to wait that a “busy” server on a* finishes its current duty. No matter
which strategy it chooses, each of the N new events has to wait at least for
N? time units before being served. Hence,

ALG(c) > ALG(c,c - W,

sum

) 2 Clate N3- (5]0)

An offline adversary ADV would move the servers to all points in A, but
would not start service of the request in a* immediately. Instead, it would
just keep that server waiting there until the “small” requests arise, and it
would process them at first. Thus, the large request will have to wait for
to+ N time units, while the total wait time of all small requests is like in the
last example 2 N (N — 1). Therefore,

N(N —1)

ADV(o,c- Wi ) < <t0 + N+ 5

2.5
) Clate < 2clate N=2.

Similarly, the overtime costs ¢ - Cf. = for ADV can be bounded as follows:

sum

the k£ — 1 servers which attended the requests located at A \ {a*} will have
returned to the depot at latest by time 2R + N2, the server at a* at latest by
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time ¢y + N + N2 + R. Adding up these quantities together,
ADV(o,c-CZ.

Fm) <tk —1) 2R+ N2 = T)" ¢y
+(to+ N+ N>+ R—T)" cy
<[(2k = )R + kN? + N + N>%] co¢
<[(2k = 1)R+ (k + 2)N*?] cq
<(4k? — k +2) coy N?P
<6k*cop N2,

where the last but one inequality follows from (5.9).

Travel and service costs are straightforward to bound. Thus, putting all
pieces together,

ADV(0) < 2kR + (kN? + N) cyve + 2N?PClae + 66> N>5cyy
< [4K? + (k + 1)cove + 2C1ate + 6k%cot] NP (5.11)
Again, in the last inequality we made use of (5.9) to substitute R.

From (5.10) and (5.11), we obtain the following ratio for the solution values:

ALG(O’) Clate
> vV N.
OPT(O’) ~ 4k2 + (]C + 1)Csvc + 2¢late + GkQCot

CaseII: t; > N?2°

If ALG takes that long to start attending the first request, then the input se-
quence is simply ended. As every request has to wait for service at least until
to, it follows that

ALG(c) > ALG(0, c- W

sum

) >k (to — R)" clate > k (N*° = 2kN?) Clage.

The offline adversary does not lose any time, but moves the servers imme-
diately to the requests, and starts processing them. Due to the choice of the
deadlines, ADV doesn’t incur any late costs. Moreover, it can be seen easily
that

ADV(c) < 2kR + kN2coye + k (2R + N2 = T) " ¢y
< [4K* + kcgye + k(4k + 1)co| N2

Finally, combining the last two observations, it follows for this case

ALG(0) Clate
OPT(0) = Tk + cove + (4% + D)euy (VN —2).

As N may become arbitrarily large, the ratio between the solutions of ALG and the
offline adversary cannot be bounded by any constant. Observe that the adversary
in this example is also fair and non-abusive.



5.3 Lower Bounds and Problem Restriction 111

5.3.5 Heavy Load

We present now a last example for which the performance of any deterministic
online algorithm can get arbitrarily bad. Our input sequence does not include re-
quests with arbitrarily short durations. Nor does it require the metric space to be
unbounded. Its idea is to force the system to enter an overloaded state. We just de-
scribe the example here, leaving the formal definition of “heavy load” (as opposed
to reasonable load) for the next section.

Let N be a positive integer. At time zero, a request 7 is released at the depot
with duration N and deadline 0. Let ¢ be the time when the online algorithm ALG
starts serving this request. Again, we consider two cases.

Casel: t;5 < NP
In this case, the input sequence o is continued in the following manner: at
times t; := to+¢— 1,fori = 1,..., N, “waves” of k requests each are
released at the depot, like in figure 5.7. All requests have durations of 1 and
deadlines equal to their release times. *

k

Ity — eececee

{3 — eceecee
ty — eeeeeee

Oe ? t1 Hoooéo;o
e
5(7"0) =N 5(rij) =1

Figure 5.7: An example of heavy load. While one server is busy attending a long
request, waves of k requests each are released one after the other. The online
algorithm does not have enough resources to service them on time and accumulates
late costs.

Observe that while these waves of requests are released, ALG has only k& — 1
free servers, since one server is busy processing rg. However, with each new
wave a total “workload” arises, which requires k servers to be processed in
time. Thus, no matter which decisions ALG takes, the algorithm just doesn’t
have enough available resources to keep serving the requests at the same rate
they come in. As a result, some requests will have to be postponed, incurring
increasing late costs.

To estimate these late costs, remark that by time ¢+ NV a total of Nk requests
have been released, but ALG cannot have processed more than N(k — 1).
Thus, there are at least /N pending requests. From these, at most k have been
released at time {5y = tg + N — 1, i.e., have been waiting for service for one

3We assume w.1.0.g. that the minimum request duration §* is larger than one. If not, all times in
the example must be scaled up appropriately.
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time unit. Another k requests have been waiting for at least two time units,
and so on. Adding these figures up, we obtain

[ %]
ALG(0) > ALG(0,c- Wehy) > Clate b Y j
j=1

N N 1 2 _
> ClatekLkJ (L;J ha ) > N 2ka Clate- (5]2)

On the other hand, an offline adversary ADV can process the N waves of
requests first, leaving the “long” request for the end. Thus, it has enough
servers to attend the requests as they arise and incurs late costs only for 7,
which has to wait for a total time of {5 + N. Adding up the service and
overtime costs, we obtain the following result:

ADV(o) <N(k + 1)csve + (to + N) Clate
+ (k=1 (to+N—-T)" + (to+2N —T)"] cot
SN [(E + 1) csve + 2C1ate + (2k + 1)cot] - (5.13)

Combining (5.12) and (5.13), we finally obtain for sufficiently large N:

ALG(O’) 2 Clate (\/N— 1) ‘
OPT(O') 2k [(k + 1)Csvc + 2Clate + (2k + 1)Cot]

CaseIl: t; > N9

If, on the other hand, ALG takes too long to attend rg, then the input se-

quence is ended after this request. The costs for the online algorithm are

thus

ALG(c) > ALG(c,c - W,

sum

) > N, (5.14)

The offline adversary ADV attends the request immediately after it is released
and incurs no late costs. Hence,

ADV(0) < Negwe + (N = T) T ¢or < N(Csve + Cot)- (5.15)

From (5.14) and (5.15) it follows:

ALG(0) Clate
> vV IN.
OPT(0) = csve + Cot N

Thus, the ratio between the solution values is in both cases bounded from below
by a quantity proportional to v/N and will become arbitrarily large as N increases.
Observe that all requests from this example (in the first case) are released within
a time interval of length ¢ty + N — 1, but require at least ¢ + /N time units to be
processed. This gives an intuitive idea of what is meant by saying that the system is
under “heavy load”. In the next section, we look back on the concepts from Section
3.3.2, introduce a more precise formal framework to deal with system load, and use
it to specify a last restriction on the input sequence.
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5.4 A Competitive Deterministic Algorithm

After having reviewed some bad examples for the ADAC-Problem, we now intro-
duce an online deterministic algorithm that has constant competitive ratio for all
input sequences that satisfy certain conditions. Besides of requiring the service
costs to be proportional to the service times, and all service times to be larger than
or equal to a certain (positive) value ¢*, we will further consider only such prob-
lem instances where the system is under reasonable load. This last condition also
implies that the underlying metric space X must be bounded.

The concept of reasonable load (introduced by Hauptmeier et al. [2000]) was
discussed in Section 3.3.2, in the context of the online dial-a-ride problem. Roughly
speaking, the idea is to avoid such input sequences where requests arrive faster than
they can be served. Let us at first recall the key formal definitions that are relevant
for the purpose of this section (some slight changes have been introduced to adapt
them to the notation and particular requirements of our current problem). For sim-
plicity, we consider an input sequence ¢ both as a sequence and as a set of requests.

5.4.1 Definition (Release-Span) For any request set S C o, its release-span 9(S)
is the time between the moments at which the earliest and the latest request in S
are released, i.e.,

a(S) = max T(r) — Hrlé% 7(r).

5.4.2 Definition (Offline Makespan) Given a request set S C o, its offline make-
span COMine( G js the minimal total duration of a (feasible) service plan to attend
all requests in S, if their release times are all changed to zero. This plan is required

to start and end at a configuration where all servers are located at the depot.

Common sense suggests that the “load level” of a system is determined by
a relation between the former two quantities. This idea is made formal in the
following definitions:

5.4.3 Definition (Load Bound) A weakly monotone increasing real function f is
called a load bound on a request set o if, for any 0 € R and any S C o with
9(S) < 0, the following holds:

Cofﬂine(s) < f(a)

max

5.4.4 Definition (Reasonable Load) A load bound f is called (A, p)-reasonable
q for some A, p € R if, forall 0 > A,

pf(0) < 0.

An input sequence o is called (A, p)-reasonable if it has a (A, p)-reasonable load
bound.

Observe that, if an input sequence o is (A, p)-reasonable, then there cannot be
any subsequence S C o with 9(S) < A but CMine(S) > A/p. In particular, no

max
subsequence consisting of only one element may have an arbitrarily large offline
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makespan. This implies, among other things, that requests must lie within a certain
range from the depot, i.e., that the metric space X must be bounded.

The main objective of this section is to prove that the following online algo-
rithm IGNORE achieves a constant competitive ratio over all (A, p)-reasonable
problem instances that comply to the other restrictions stated at the beginning (ser-
vice costs proportional to service times, and service times bounded from below by
some constant §*):

IGNORE

Keep all servers at the depot until the first set Sy of requests arises
(which may be a singleton). Compute for all requests in Sy a service
plan of makespan at most p C0Mine( Sy (including the time needed to
return the servers to the depot at the end). Start execution of this plan
immediately.

Let S;11 (i > 0) be the set of requests that arise while the service
schedule for request set S; is being executed. These requests are sim-
ply ignored for some time. When execution of the plan for S; finishes,
IGNORE tests if there are pending requests (i.e., if S;y1 # (). As
long as this is true, a new schedule is computed and the cycle starts
again. When there are no pending requests anymore, the algorithm
returns to its initial state (just keep servers at the depot and “wait for
orders”).

Before proceeding with the analysis, let us state a small side-remark. The
reason for introducing the constant p in the definition of reasonable load is to allow
the use of approximation algorithms when the intermediate service schedules are
computed. Observe that computing such an schedule implies solving an (offline)
instance of the dial-a-ride problem, which is AV/P-hard itself. Hence, for larger
problems it might not be possible to find an optimal solution within a reasonable
computation time. Our competitive analysis results, however, are based on the
assumption that these intermediate computations demand no (significant) time.

Let 4g,...,Ln_1 be the points in time at which IGNORE computes a new
service schedule and /,, the time at which the execution of the last schedule has
finished. Under the assumption of reasonable load, it is possible to show that the
time required to carry out each of these partial schedules is bounded by a constant.
More precisely,

fprl—f@'SA,fOIiZO,...,m—l. (516)

Indeed, by construction we know that 9(Sp) = 0. Therefore, given any load
bound f on o,

01— Lo < pCRR(So) < pf(0) < pf(A) <A,
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where the first inequality follows from the definition of the algorithm, the second
and the third inequalities from the fact that f is a load bound, and the last inequality
is the reasonable load assumption. By induction, we then have fori =1,...,m—1
that

i1 — U < p COMI(S) < p f(li — 1) < pf(A) < A.

max

Equation (5.16) has a key implication for the competitive analysis: since, for
i =1,...,m — 1, all requests in \S; arrive in the time interval (¢;_1,¢;] and are
served in the interval (¢;, ¢;11], the delay of any request r € o is at most 2A. (For
the requests in Sy the delay is even no larger than A). Hence, the total lateness
costs incurred by IGNORE are bounded by

2kl Aciate

= (5.17)

IGNORE(0, ¢ - W

sum

) < 2nA Clate <

where n = |o|. Considering that all requests have service times of at least §*, n is
bounded by the amount of “total workload” that the k servers are able to carry out
until time ¢,,,, as reflected in the second inequality.

In a similar way, the total distance Dgyy, traveled by the servers before return-
ing home at time ¢,,, cannot be longer than

IGNORE (0, Dsum ) < klp,. (5.18)
Finally, the overtime costs for IGNORE are also obviously bounded by

IGNORE (o, ¢ - C,

sum

) < k(b —T)" cop. (5.19)

On the other hand, observe that, since there are requests issued after time ¢,,,_o,
the offline adversary must keep at least one server working until that time. Thus,

OPT(o,c- C5:

sum

) > (gm—Q - T)+ Cot = (gm —2A — T)+ Cot -

Ignoring travel and lateness costs, the total costs for the offline adversary can
be (roughly) bounded from below as follows:

OPT(0) > S+ (b, —2A —T) " ¢yt
> Negyed” + (U — 2A — T)Jr Cot
> Coved™ 4 (U — 20 = T) T ¢y, (5.20)

where S = Y | csved(r;) is the sum of all service costs. Recall that these costs
were required to be proportional to the service times. Although this bound is very
weak, it turns out to be sufficient for the goals of our analysis.

Combining the results (5.17) — (5.20), it is finally possible to derive a compet-
itive ratio for IGNORE. Let us consider two possible situations:
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Casel: 7/, <T-+2A
In this case, from (5.19) it follows that the overtime costs incurred by IGNORE
are bounded by 2kA ¢, and hence,

IGNORE(0) 2k€m5% Yate 4 kf,, + 2kA cot + S

OPT(o) — S
14 ZhtmB Clate 4 kh,,, + 2kA co
o Csve0*
<14k 2(T 4+ 2A)A cpate + (T +22A)5* + 2A ¢ 0* 7
CSVC(é*)
which gives a constant bound for any fixed combination of the problem pa-
rameters.

Casell: /7, > T+ 2A

If the total completion time of IGNORE exceeds this critical value, on the
other hand, then (5.20) guarantees that there will be unavoidable overtime
costs for the offline adversary. Thus,

IGNORE(0) _ tm B ate 4 Lol 4 k(Cy, — T)eor + S
OPT(s) — (b — 2A —T)cop + S

el A Clage + k6 by + k6" (L, — Ty + S0
- (b — 28 — T) 0% coy + S0*

(b — 20 = T)(2kA Clage + k6" + k6" cor)
- (b — 2 — T)6%op + S0*
(24 + T)(2kA crage + k%) + 2Ak6* cor + S5*
(b — 2 — T') 0% oy + S6*

2kA Clate + kO™ + k0™ o
<
5*Cot
(2A + T)(2kA clate + k0*) + 2Ak6*coy + SO*
(b, —2A = T') 6*cor + S0*

< 2kA clate + k0™ + k6™ cot
- o* Cot,
(2A + T)(2kA e + k6*) + 2Ak6* cot, + Csve(6%)?
+ *)2 ’
CSVC(5 )
and the right-hand side of the last inequality is again a function of the prob-
lem parameters which does not depend on the input sequence o.
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We summarize the results of this section in the following theorem:

5.4.5 Theorem IGNORE is K-competitive for all ADAC-Problem instances of
(A, p)-reasonable load for which service costs are proportional to durations of re-
quests, and all durations are bounded from below by a positive value §*. Moreover,

K is a constant whose value if determined by the problem parameters Cgyc, Clate, Cot s
T k,0" and A.
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Chapter 6

Set Packing with Small Subsets

6.1 Introduction

The objective of this chapter is to study a special kind of set packing problems, and
their associated polytopes. Given a 0/1-matrix A € {0,1}"*" and a nonnegative
cost vector ¢ € Q'!, the set partitioning problem associated to A was defined in
Chapter 4 as the integer program

min ¢z

SPP
(SPF) Ar =1,

z e {0,1}".

If in addition every column of A has at most ~ entries equal to one (i.e., if
supp(A4.;) < k, Vj = 1,...,n), then we call SPP a k-set partitioning problem.
This notation is better understood by looking at the problem formulation in set
theoretic terms: we are given a family £ of n subsets of a ground set V', with
|V| = m. Each subset S; € £ (which corresponds to the support of column A.;)
has cardinality smaller than or equal to x, and has a cost ¢; € Q4 associated to it.
The task is to find a subfamily £* C &£ such that the sets in £* form a partition of
V', and the sum of their costs is minimal among all subfamilies from £ satisfying
this condition. The expression “with small subsets” is used to emphasize that we
are interested in those cases where « is a small integer constant. We define the
k-set packing and k-set covering problems in a similar way.

If  is equal to one, the problem is trivial and can be solved by a greedy algo-
rithm. For the case when x = 2 and all subsets in £ are uniform, i.e., they contain
exactly two elements, the x-set partitioning problem can be reduced to the prob-
lem of finding a perfect matching of minimum cost in a graph G, whose nodes are
the elements of V' and whose (weighted) edges are the 2-subsets in £ with their
corresponding costs.

This reduction is also possible for the nonuniform case, although some extra
work has to be invested in dealing with the singleton subsets in £ (empty subsets

119
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can be discarded from the input, since they are not needed in any optimal solution,
as the cost vector is nonnegative). Suppose there are s such singletons, and intro-
duce s “artificial” nodes in G. Now each singleton is represented by a weighted
edge that connects the element it contains with a uniquely determined artificial
node. Moreover, we add a set £’ of edges with cost equal to zero connecting every
pair of artificial nodes.

Remark that the parity of m and s determines the parity of the number of
singletons that are not used in a feasible solution of the set partitioning problem.
This is exactly the quantity of artificial nodes that will not be covered by the edges
associated to the singletons if we translate the solution to a matching in G. In fact,
if m+ s is even, a moment of thought reveals that the number of uncovered artificial
nodes is even, too. If this happens, it is straightforward to extend any solution of
the set partitioning problem to a perfect matching in GG having the same cost, by
just taking an appropriate set of edges from £’. On the other hand, if m + s is odd,
then we add to G an additional node and connect it with all artificial nodes using
edges of cost zero. Again, any solution to the set partitioning problem reveals a
perfect matching on GG, and vice-versa.

Surprisingly, if £ = 3 and all subsets in £ contain exactly three elements, then
the x-set partitioning problem becomes A/P-complete, a result that can be proved
using a reduction from 3-SAT (see for instance Garey & Johnson [1979]). The
problem has in this case no (satisfactory) equivalent formulation in graph theoretic
terms, though it can still be stated as a matching problem in a hypergraph.

Moreover, while it is easy to show that all vertices of fractional relaxations of 2-
set partitioning polytopes are half integral, it follows from the work of Chung et al.
[1988] that the vertices of fractional polytopes related to 3-set covering problems
may have arbitrary (rational) coordinates.

As discussed in Section 4.1, a usual approach when studying set partitioning
problems from the viewpoint of polyhedral theory consists in looking at the pack-
ing and covering polytopes separately. In this chapter, we will focus exclusively
on polytopes associated to k-set packing problems, as there was not enough time
in our schedule to examine the k-covering polytopes as well. Our aim is to inves-
tigate how the structure of the packing polytopes is affected when the cardinality
of the subsets is constrained. Most of the time, we will concentrate on the 3-set
packing problem, for which we introduce an alternative formulation in the next
section. Within the framework of this formulation, we then study in Sections 6.3 to
6.5 three “standard” classes of valid/facet defining linear inequalities for the pack-
ing polytope: clique, antiweb and web inequalities. In Section 6.6 we extend some
results to the case of general x-set packing problems, and state further questions
for future research.

This research was at first motivated by set partitioning problems that appeared
when solving instances of the VRPTW in a project for automating the online dis-
patching of service vehicles at ADAC (see Section 7.2 for the details). We solve
this routing problem using a tour-based set partitioning model. Due to particu-
lar problem constraints, the feasible tours that come in question for any service
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vehicle are strongly limited in the number of requests they can cover, so that the
corresponding set partitioning instances involve matrices having a limited number
of nonzero entries per column. However, there is yet a gap between the real-world
requirements, and the current state of our theoretical research: while most of the re-
sults presented here concern the 3-set packing environment, the average tour length
in a typical dispatch at ADAC lies between 4 and 6, and tours containing up to ten
requests have also been found in some cases.

6.2 A Combinatorial Formulation: Packing Triangles

As anticipated, we shall at first focus our attention on the polytopes associated to
the 3-set packing problem. We state here a new formulation for this problem as the
task of “packing triangles”. Before doing so, however, we need to briefly introduce
some basic definitions and observations.

Let A € {0,1}"" be the constraint matrix associated to a 3-set packing prob-
lem, i.e., A has the property supp(A4.;) < 3,Vj € {1,...,n}. Keeping the no-
tation introduced in Chapter 4, we define the corresponding set packing polytope
P;r(A), and its fractional relaxation P(A) as:

Pr(A) =conv{zx € {0,1}" : Ax <1}
P(A)={zeR} : Az <1}.

From now on, we shall assume that A has no empty rows or columns. In this
case, it is easy to show that both polytopes are contained in the unit hypercube,
from which it follows that all inequalities of the form z; < 1, j € {1,...,n} are
valid for them. Hence, if some column A.; has only one or two nonzero entries, by
adding sufficient (maybe duplicated) inequalities of the form z; < 1, it is possible

= 3 and both packing polytopes of

to obtain a new matrix A’ such that ‘supp(Af 5)

A and A’ are the same. Proceeding in this way, we prove the following.

6.2.1 Lemma Any 3-set packing problem can be reduced to a uniform 3-set pack-
ing problem, in which all subsets contain exactly three elements.

We shall therefore restrict our attention to uniform problems. Moreover, we
will work with the set theoretic formulation presented in the introduction, which
has in this case a nice combinatorial interpretation. Let V' = {1,...,m} be a set
of points and call any subset of V' having cardinality equal to three a triangle in V.
Define

E={supp(A,;) : 1 <j<n}

as the set of triangles in V' associated to the columns of A. To each of these
triangles, a nonnegative weight is assigned by the cost function c¢. The task is
to find a “packing of triangles” of maximum weight, i.e., a set £* C &£ of triangles
such that no point is contained in more than one triangle of £*, and the sum of the
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weights of all triangles in £* is maximal. Figure 6.1 shows an example. We call A
the point-triangle incidence matrix.

Analogously, the linear relaxation of the set packing problem can be stated
in this setting as the problem of assigning a positive quantity x. to each triangle
e € &, such that for each v € V, the sum of the values corresponding to triangles
that contain v is less or equal to one, while the total sum over all triangles in £ is
as large as possible. Notice that each point in V' corresponds to a row of A and,
therefore, to a linear constraint from the description of P(A). Hence, we shall refer
to these constraints as point constraints.

Finally, let us recall one basic concept from Section 4.2. Given a point-triangle
incidence matrix A € {0,1}"™*" associated with a triangle packing problem, we
define the conflict or column intersection graph G(A) = (V(A),E(A)) of A as
follows:

V(A) = ;n},
E(A) = {{Z J} : supp(A.;) Nsupp(A.;) # 0} .

As pointed out in the last chapter, one can obtain results concerning the struc-
ture of Pr(A) by looking into the structure of G(A). Our approach in the next
sections will be to exploit the triangle packing formulation presented here in order
study three “standard” classes of subgraphs from G(A) that are known to give rise
to valid (and some times facet defining) inequalities for P;(A): cliques, antiwebs
and webs. We start by considering how cliques of triangles look like.

Figure 6.1: Packing triangles. Given a set V' = {1,...,9} of points, and a set £
of weighted triangles (i.e., subsets of V' having cardinality 3), find a subset of £ of
maximal weight sum, such that each point appears at most in one triangle. Here,
the numbers inside the triangles indicate the weights, and the shadowed triangles
represent the optimal solution.
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6.3 Clique Inequalities

We consider in this section the simplest (and also most frequent) class of inequal-
ities appearing in the linear description of any packing polytope: the clique in-
equalities. We derive some properties that “cliques of triangles” must have, and
use them to prove that clique inequalities can be separated in polynomial time for
our problem. (In general, the separation problem for clique inequalities is known
to be A’P-complete, although it can be solved in polynomial time for the superclass
of orthonormal constraints. For further details refer to Section 4.2.2, page 84).

The motivation for studying cliques of triangles came from a simple observa-
tion concerning the corresponding structures in the (uniform) 2-set packing prob-
lem. In that case, the set of rows of A can be associated to a set V' of points, and
its set of columns to a set £ of edges between points of V! A clique in the conflict
graph G(A) corresponds in this setting to a set of edges from G, any two of which
share a common point. (Repeated columns can be trivially dropped from A). A
moment of thought reveals that there are only two possible classes of such struc-
tures, which are shown in Figure 6.2: the complete graph K3 on three points, and
the stars.

0
@> @
®

(a) (b)

Figure 6.2: Cliques of edges. The only possible structures corresponding to sets of
pairwise incident edges are (a) the K3 and (b) the stars.

Cliques associated to K3 structures are by definition limited in their size, as
they contain exactly three edges. Therefore, it is possible to solve the separation
problem for their corresponding inequalities in polynomial time by enumeration
of all 3-subsets of V. On the other hand, cliques arising from stars may be arbi-
trarily large in size, but the associated inequalities are already present in the linear
description of the fractional packing polytope as point constraints: since there is a
point v € V (the center of the star) contained in all edges of the clique, the row of
A associated to v will contain an entry equal to one for each column corresponding
to an edge of the clique.

"For the sake of clarity, we avoid calling the elements of V' “nodes”, and reserve this term exclu-
sively for the conflict graph G(A) of A.
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Unfortunately, this very simple structure (cliques either limited in size or asso-
ciated to point inequalities) is no longer present when we turn to the problem of
packing triangles. Figure 6.3 shows a counterexample. Suppose V' = {1,2,3} U
AUBUC,with A ={a1,...,an, }, B={b1,...,bp,}and C = {c1,...,cnz}-
Define Q as the union of the set of triangles &1, & and &3, where

51:{{1,2,0,2‘} : 1§i§n1}
522{{2,3,bi} 01 SZSTLQ}
53:{{1,3,Ci} : 1§2§n3}

Q is a clique, since any pair of triangles shares at least one common point from
the set {1, 2, 3}. Associated to this clique is the inequality

zp < 1. 6.1)
>

Now, choose one triangle from each of the sets £1, &, and &3, and assign to them
a value of % Assign a value of 0 to all other triangles in Q. One can easily
check that this solution satisfies all point inequalities, while violating (6.1) since
> Be 0TE = % > 1. Using this construction, it is possible to obtain cliques of
arbitrarily large sizes whose associated inequalities are not contained among the
point inequalities.

However, cliques belonging to this class still have a well-defined specific struc-
ture that makes it possible to recognize (and separate) them efficiently. Observe
that there is a set S = {1, 2,3} of three points with the property that all triangles
from Q contain two points of S. On the other hand, to intersect all triangles in O,
any other triangle must contain at least two elements from S. Thus, by looking at
all 3-subsets of the point set V/, it is then possible to enumerate all such cliques in
O(m?n).

The main result of this section is that all cliques of triangles either belong to the
class presented above, or are related to inequalities “almost contained” within the
point inequalities. More precisely, we are going to prove the following theorem:

6.3.1 Theorem (Cliques of Triangles) Let Q C £ be a maximal clique of trian-
gles. Then one of the two following statements hold:

(i) There exists a set S C V', with |S| = 3 such that

Q={Fe&:|SNE|>2},

(ii) there exists a point v € V' with the property

HEcQ:v¢gE} <5

Observe that if (ii) holds, then the clique inequality associated to Q can be
obtained from the point inequality of v by extending it to include at most five addi-
tional variables. Hence, by trying out all possible combinations, these inequalities
can be enumerated in O(mn?). It follows as an immediate corollary:
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Figure 6.3: A class of arbitrarily large cliques of triangles that give rise to fractional
solutions. If the variables associated with the shadowed triangles are given a value
of %, and all other variables are set to 0, then the point inequalities are satisfied, but
the sum of the values among all triangles in the clique is strictly larger than 1.

6.3.2 Corollary Clique inequalities can be separated in polynomial time for the
3-set packing problem.

Before proving Theorem 6.3.1, we need to introduce a few definitions and lem-
mas. Throughout the rest of this section, we assume w.l.0.g. that the triangle
Ey := {1,2,3} belongs to the clique Q and we classify all other triangles of Q
into six classes:

Q;:={Fe€Q: EnNEy={i}}, Vie{1,2,3},
Qujy ={E€Q: ENEy={i,j}}, Vi,j € {1,2,3}, i #J.

To simplify the notation, we shall from now on refer to the class Qy; ;1 simply
as either Q;; or Q,;, where the order of the indexes is not important. Since any
triangle of the clique must intersect E either in one or in two points,

Q=Ey" Q¥ Qo O3t Qio Q138 Qos.

We call the first three classes single classes, to reflect the fact that they intersect
FEj in only one point. Similarly, we shall refer to the other three classes as double
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classes. A single class Q; and a double class Q. are said to be opposite to each
other if i & {7, k}. Otherwise, the classes are said to be adjacent.
A first immediate observation is the following:

6.3.3 Lemma For any pair of opposite classes Q; and Q;, withi, j, k € {1,2,3},
the following holds:

(i) If |Q;| = 1 then there is a point v € V such that

(N E={}.

E€Q;UQjk

(i) If|Q;x| > 3 then Q; = 0.

Proof. For the first case, suppose Q;i, = {{7, k,v}}. Since every triangle of Q; has
to intersect the triangle in Q, and since by definition no triangle in Q; contains
either j or k, then all these triangles must contain v.

On the other hand, if Q;; = {{j,k,vo},{J,k,v1}}, then all triangles in Q;
must contain both vg and vy in order to intersect the two triangles in Q. But this
leaves us only with one possible candidate, namely {4, vo, v1 }. Therefore, |Q;| < 1
in this case.

Finally, a similar argument shows that if Q) contains three or more triangles,
it is not possible for a triangle in Q; to intersect all of them simultaneously. Hence,
Q; = () must hold in this case. dJ

The following lemma can be seen as an extension of (i) to include not only a
pair of opposite classes, but also an additional single class.

6.3.4 Lemma Let Q; and Qj;, be a pair of opposite classes, withi, j, k € {1,2,3},
andletl € {j,k}. If |Q;| > 3,|Q;| > 2 and |Q;1| > 0, then there exists a point
v € V with the property

ﬂ E ={v}

EcQ’
where Q' := Q; U Q; U Q,;, U Q,, and Q. is the double class opposite to Q;.

Proof. Observe that, since the opposite classes Q; and Q. satisfy |Q;| > 3 and
|Qjk| > 0,Lemma 6.3.3 (i) implies that |Q,| = 1, and that there exists a unique
point v € V contained in all triangles from both classes. Hence,

{Hi,v,21}, {i,v, 29}, {i,v,23}} C Q;

where 1,9, x3 are three different points. Now, to intersect all these triangles,
any triangle in Q; must also contain v. (Again, remark that by construction [ ¢
{v, 1,22, 23}) Since |Q;| > 2, we have

HLv, ) {lLv,y2}} € Q
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with y1, 92 € V, y1 # y2.

Finally, Lemma 6.3.3 also implies that the opposite double class Q,s of Q; is
either empty or contains only one triangle. In the latter case, the only candidate that
intersects {/,v,y; } and {l, v, y2} simultaneously is {r, s, v}. Thus, v is contained
in any triangle from Q,,, and the statement follows. U

Next, we prove an analogous result that takes into account all three single
classes and one double class.

6.3.5 Lemma Let Q; and Q, be a pair of opposite classes, with i, j, k € {1,2,3}.
If1Q;| > 2,194 > 1,|Qk| > 1 and |Q;i| > 0, then there exists a pointv € V
with the property

{FeQ:vg R} <5

Proof. From Lemma 6.3.3 it follows that Q. contains exactly one triangle, say
Qjr = {{J,k,v}}. Moreover, v must be contained in all triangles from Q; and
hence,

{{i,v,21}, {i,v,22}} C Q;

where x1, 12 € V', 21 # x2. We distinguish between two different cases.

Case I: All single classes contain at least two triangles

If this happens, Lemma 6.3.3 (i) implies that the cardinality of every double
class is less or equal to one. Moreover, since every triangle in Q; (resp.
in Q}) intersects all triangles from Q,, there can be at most one triangle in
this class that does not contain v, namely, {j, x1,x2} (resp. {k,x1,x2}).
Therefore, there are at most four triangles in the union of the six classes, and
hence at most five (including Fj) triangles in Q, which do not contain v.

Case II: At least one single class consists of only one triangle

In this case, assume w.l.0.g. that |Q;| = 1, and let £; be the unique triangle
belonging to this class. Due to Lemma 6.3.3 (iii), each of the double classes
Q;x and Q;; may contain at most two triangles. Now suppose v € E. There
can be at most one triangle in the opposite class Q;; which does not contain
v, intersecting E in its other “free” point. Hence, there are at most four
triangles in the six classes (one in Qj,, two in Q;; and one in Q;;) which do
not contain v, and the claim follows.

On the other hand, assume E; does not contain v. Then Fy = {j,z1, 22},
since it must intersect all triangles from Q;. At the same time, this means
that Q; may only contain the two triangles indicated above. Furthermore,
the number of triangles in the classes Q;; and Qy, is also limited due to the
restriction that they have to intersect F. In fact,

Qik g {{i,k,xl},{i,k,xg}},and,
Qr € {{k,v, 21}, {k,v, 22}, {k, 21, 22} }
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If Qj, does not contain {k, z1, z2}, then there are again at most four triangles
in the six classes which do not contain v: two in Q;;, one in Q,; and at most
one in Q;; (if |Qk| = 1). If, on the contrary, {k,z1,z2} € Qy, then the
opposite class Q;; may contain only the triangles {4, j, x1} and {4, j, 2 }. In
this case, either x; or x5 is contained in all but at most four triangles of the
six classes.

0

In the previous three lemmas, we have always made assumptions on the car-
dinality of a double class. The following result considers the case when only two
single classes are known to have sizes bounded from below.

6.3.6 Lemma Let Q; and Q; be a pair of single classes, with i,j € {1,2,3},
i #j.If|Q;] > 4 and |Q;| > 3, then there exists a point v with the property

M ={v}

EcQ’

where Q' := Q; U Q; U Q;;, U Qj, and Q. (resp. Qjy) is the opposite class to
Q; (resp. Q;).

Proof. Consider the following four triangles from Q; and three triangles from Q.

{{iawlvyl}7{i7m27y2}7{i7m37y3}7{iax47y4}} g Qi
{{j7701731}7{j7702732} ) {j7 743733}} g Q]

Dropping 7 and j from all triangles, we can consider the resulting 2-subsets as
edges from a graph on the remaining points. We group these edges into two classes,
depending whether they arise from triangles belonging to Q; or to Q;. Let us call
these classes “dashed” (Q;) and “solid” (Q;). Since any triangle from Q; must
intersect all triangles from Q; in points different than 7 and j, any dashed line
must intersect all solid lines. (And similarly, any solid line has to intersect all
dashed lines.) Notice that it is possible to have parallel edges belonging to distinct
classes. Figure 6.4 shows all possible arrangements of the three solid edges (up to
isomorphisms). Let us consider these five cases separately.

Case I: Three pairwise disjoint dashed edges
In this case, it is not possible to intersect all three solid edges with a single
dashed edge. Thus, this configuration may not appear.

Case II: Two connected components

Figure 6.4 (b) illustrates this configuration. The only two possible ways
to place a dashed edge so that it intersects all solid edges are {ry,r3} and
{r1, s3}. This contradicts the condition |Q;| > 4.
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50 G2 (59 (52 (53
(a) (b)

(d) (e

Figure 6.4: Sets of intersecting edges. The pictures show all graphs whose edges
can be divided into two sets £; (solid lines) and &, (dashed lines), such that || =
3, |&| is maximal and e N e’ # (), for any e € & and ¢ € &;. Five cases
are distinguished, according to the subgraph spanned by the edges from &£;: (a)
pairwise disjoint edges, (b) two connected components, (c) a simple path, (d) a
triangle, and (e) a star. In the last case, &5 may be arbitrarily large.

Case III: A simple path

This configuration is shown in Figure 6.4 (c) . At most three dashed edges
can be placed so that they intersect all solid edges: {s1,s2}, {r1,s1} and
{r1, s3}. Again, this contradicts the assumption on the cardinality of Q;.

Case IV: A triangle

Figure 6.4 (d) depicts this configuration. Once more, a contradiction to
|Q;| > 4 is obtained, since at most three dashed edges can be placed to
intersect all solid edges, namely, the same triangle edges {ri, 72}, {72, 73}
and {7“1, 7“3}.

Case V: A star

This configuration, drawn in Figure 6.4 (e), is the only one which admits four
(or more) dashed edges. All edges (solid and dashed) share a common point
v. Notice that, since both dashed and solid edges form stars, any further
edge obtained from Q; or Q; in the manner described above has to contain
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v. Hence,

(| E={v}.

E€Q;U0Q;

Moreover, a moment of thought reveals that any triangle from the opposite
classes Q. and Q;;, must also contain this point, and the claim follows.

0

The last lemma in this sequence presents an analogous result for the case when
the cardinalities of all three single classes are known to be sufficiently large.

6.3.7 Lemma Let Q;, Q;, and Qy, be the three single classes, withi, j, k € {1,2,3}.
If|Q;| > 3,|Q;| > 2 and |Qy,| > 2 then there exists a point v € V' such that

|{E€QiUQjUQk:U€E}|§3.

Proof. Following an approach similar to the one presented in the proof of Lemma
6.3.6, we drop the points ¢, 7 and k from all triangles and obtain three classes of
edges. Denote by S, D and O (for “Solid”, “Dashed” and “dOtted”) the classes
obtained from Q;, Q; and Qy, respectively. Hence, |S| > 3, |D| > 2,|0| > 2,and
any two edges belonging to different classes must intersect at least in one point.

As in the proof of the last lemma, let {r1,s1}, {r2, s2}, and {rs3, s3} be three
edges from S, and look at all five possible configurations for them, which are
shown in Figure 6.5. As in the previous proof, the first configuration (three pairwise
disjoint edges) is uninteresting, since there is no way to intersect all three solid
edges with another edge. Let us discuss the other four cases separately.

Case I: Two connected components
In this case, D and O may contain at most two edges, and there is only one
feasible configuration for them, namely:

D=0 ={{r1,rs},{r,ss}}

At the same time, any further edge from S must contain 7; in order to in-
tersect the edges from D and O. Hence, ry is contained in all but one of
the sets from S U D U O and, therefore, in all but one of the triangles from

Q;UQ;UQy.

Case II: A triangle

This configuration is depicted in Figure 6.5 (c). Let S C S be the set of
three solid edges shown there. Observe that, to intersect all these edges, any
edge from D U O must have its two points in {71, r2,73}. Thus, both classes
consist of either two or three edges parallel to the sides of the triangle. Now,
by adding the degrees of the points, we obtain

d(r1) + d(r2) + d(rs) > 2(]S1| + |D| + |0]) > 14.
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(d) ()

Figure 6.5: Sets of intersecting edges. The pictures show all graphs whose edges
can be divided into three sets £ (solid lines), & (dashed lines) and &3 (dotted
lines), such that |£1] = 3, || > |€3], E2 and &3 are maximal, and ene’ # () for any
two edges e and €’ belonging to different sets. Five main cases are distinguished,
according to the subgraph spanned by the edges from &£;: (a) pairwise disjoint
edges, (b) two connected components, (c) a triangle, (d) a simple path, and (e) a
star. In the last case, & and £ may be arbitrarily large.

Consequently, there must be a point v € {r1, 72,73} such that d(v) > 5, i.e,
such that v is contained in all but at most two of the edges from S; U D UO.

To complete the proof, we need to consider the remaining solid edges in .S \
S1. Notice that if this set is not empty, then there exists a point v’ contained
in all edges from D U O, and also in all edges from S\ S7. But then, v’ is
contained in all but one of the triangles from Q; U Q; U Q},, and the claim
follows.

Case III: A simple path
This situation is shown in Figure 6.5 (d). Since all edges in .S have to be
intersected, we have

D C {{s1,s2},{r1,s1},{r1,s3}}.

Now, suppose D contains both {s1,s2} and {r1, s3}. It follows that O C
{{r1,s1}}, as this is the only possibility to intersect all edges in .S and D.
But then |O| < 2, a contradiction.
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On the other hand, either {s1, s2} or {71, s3} must be contained in D, as
|D| > 2. Assume {s1,s2} € D. In this case, it is easy to see that D = O,
and that both classes have cardinality equal to two. Moreover, any further
edge from S has to contain s1, and hence this point is contained in all but
one of the edges from S U D U O.

Case IV: A star

If three solid edges form a star with point 71 as its center, then all edges in
D U O have to contain 7 in order to intersect them. Furthermore, apart for
the one exceptional case treated below, all the other edges in S must also
contain 71, and the claim is proved.

The only exceptional case occurs when |D| = |O| = 2 and any edge in one
class is parallel to some edge in the other class, i.e.,

D=0={{r,n},{r,y}}.

Hence S may contain the edge {y1,y2}. But, again, this is then the only
edge in S U D U O which does not contain the point 7.

0

We are now in position to put all the pieces together and assemble a proof for
the main theorem from this section.
Proof (of Theorem 6.3.1). Let Ey € Q and assume w.l.o.g. that Ey = {1,2,3}.
Moreover, consider the partition of Q into the seven classes defined on page 125.
We distinguish four cases, according to the cardinalities of the double classes.

Case I: All double classes contain three or more triangles

In this case, from Lemma 6.3.3 (iii) it follows that all single classes must
be empty. Therefore, all triangles of the clique contain at least two points
in {1,2,3}. Conversely, any triangle £ € £ having two points in this set
intersects all triangles in @ and must therefore belong to the clique, as O
was assumed to be maximal. Thus, (i) is proved.

Case II: Exactly two double classes contain three or more triangles
Suppose w.l.o.g. these two classes are Q12 and Q3. Then their opposite
classes Q3 and Qs must be empty, according to Lemma 6.3.3 (iii). Hence,
the only triangles which possibly do not contain the point 1 are the ones
belonging to class Qo3 . Since |Qa3| < 2, the claim (ii) follows.

Case III: Exactly one double class contains three or more triangles

Again, assume w.l.o.g that this class is Q9. It follows from Lemma 6.3.3
(iii) that Q3 = (). If one of the other two single classes, say Q1, contains
no more than two triangles, then there is a point contained in all but at most
4 triangles from Q (in this case point 2), and claim (ii) follows. Thus, we
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may suppose that both single classes Q; and Qj contain each three or more
triangles.

Now assume at least one of the other double classes is not empty, say for
example Qp3. From Lemma 6.3.4 it then follows that there is a point v
which is contained in all triangles from Q1 U Qo U Q13 U Qo3. Observe that
v & {1,2,3}, as it is contained in opposite classes. Hence, all triangles of
the clique contain at least two points from {1, 2, v}, and claim (i) is proved.

Finally, if [Q1] > 3, Q2| > 3 and |Qi3] = |Qa23| = 0, we consider two
possible situations. If one (or both) of the single classes contains at least
four triangles, applying Lemma 6.3.6 we find a v € V' which is contained in
all triangles from Q; U Qs and prove claim (i). On the other hand, if both
Q5 and Q3 contain exactly three triangles, then there are only three triangles
in @ which do not contain the point 1 (or the point 2), and claim (ii) follows.

Case IV: All double classes contain at most two triangles
For this last situation, let us consider three different subcases, according to
the cardinalities of the single classes:

(a) Two (or more) single classes contain at most one triangle. Suppose
these classes are Q1 and Qs. Then, | Q1 |+|Qa|+|Q12| < 14+1+2 =4,
and at most four triangles do not contain the point 3, which proves (ii).

(b) Exactly one single class contains at most one triangle. Assume
w.l.o.g that this class is Q;. If any of its adjacent double classes, say
Q12, is not empty, then from Lemma 6.3.3 it follows that |Q12| = 1,
as the opposite class Qg contains at least two triangles. Say Q15 =
{{1,2,4}} and observe that point 4 is contained in all of the triangles
from Qg, and all but (maybe) one of the triangles from Qs. Now, either
|Q1] = 0, in which case there are at most | Q3|+ 1+ |Qas|+1 < 5 tri-
angles (including Ej) that do not contain 4, or |Q;| = 1, and applying
Lemma 6.3.5 we find a point v € V contained in all but at most five of
the triangles from Q. In both cases, claim (ii) is proved.

On the other hand, if both adjacent double classes Q1o and Q3 are
empty, we look at the cardinalities of the single classes Qs and Q5.
If at least one of those, for instance Qs, contains no more than three
triangles, then there is a point, in this case 3, which is contained in all
but at most |Q;| + |Qz2| + |Q12] < 1+ 3+ 0 = 4 triangles from the
clique. If, on the contrary, | Q3| > 4 and |Q3| > 4, Lemma 6.3.6 shows
that there is a point v € V contained in all triangles from Qo U Q3 U
Q12 U Q13. Thus, v is contained in all but at most | Q1| + |Qa3| + 1 <
1+ 2+ 1 = 4 triangles from the clique (including Fy), and claim (ii)
follows.

(c) All single classes contain two or more triangles. In this configura-
tion, if at least one of the double classes is not empty, then applying
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Lemma 6.3.5 we get a point v € V which is contained in all but at
most five triangles from Q.

On the other hand, suppose |Q12| = Q13| = |Qas| = 0. If there
is a single class containing at least three triangles, Lemma 6.3.7 again
guarantees the existence of a point v contained in all but at most four
of the triangles (including Ej) from Q. Otherwise, if |Q;| = |Qa| =
|Qs| = 2, then there are only four triangles (those in |Q2| + |Qs])
which do not contain the point 1. In all cases, claim (ii) holds.

O

Before concluding this section, let us state a final remark. Theorem 6.3.1 is
best possible in the sense that the right-hand side from inequality (ii) cannot be im-
proved to a lower value. To see this, let V' = {1,...,6} and consider the following
set Q consisting of 10 triangles in V:

Q=1{{1,2,3},{2,3,4},{1,4,5},{1,4,6},{2,5,6},
{2,4,6},{3,5,6},{3,4,5},{1,3,6},{1,2,5}}

The reader can easily check that Q is a clique. Moreover, notice that each point
appears exactly in |Q] — 5 = 5 triangles from Q, which means that (ii) holds with
equality. At the same time, there is no pair of points appearing in all triangles, and
hence, claim (i) does not hold for Q.

6.4 About the Fractional Vertices Associated to Cliques

In the last section, we have shown that clique inequalities can be separated in poly-
nomial time for the 3-set packing problem. Now we turn our attention to another
issue regarding cliques of triangles. Namely, if Q is such a clique and A is the
matrix of point-triangle incidences of Q, we shall see that the nonintegral vertices
of the fractional packing polytope P(A) associated to A can be completely char-
acterized.

The idea of looking for such a characterization is once again motivated by
similar observations made for the cliques of edges presented in Figure 6.2 on page
123. As pointed out, there are only two possible structures associated with such
cliques: the K3 and the star. From these, only the former gives rise to a nonintegral
vertex in P(A), namely, the one obtained by setting all variables to . On the
other hand, the example in Figure 6.3 (on page 125) indicates that the situation is
not so simple for cliques of triangles: there can be, for instance, arbitrarily large
cliques which are not associated to a point inequality and, therefore, give rise to
nonintegral vertices in P(A).

Nevertheless, the last example still retains a simple structure: no matter how
large such a clique Q is, all nonintegral vertices from P(A) contain at most three
nonzero coordinates. To see why, observe that only the inequalities correspond-
ing to the points 1, 2 and 3 may be satisfied with equality by a fractional vertex
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x* € Q™. Hence, at least | Q| — 3 from the nonnegativity inequalities must also be
satisfied by «* with equality (as there must be a full-rank basis associated to this
vertex), and thus at most 3 of its components may be different from 0.

In fact, even more is true: if x* satisfies two point inequalities together with
|Q| — 2 nonnegativity inequalities with equality, one can check that the submatrix
containing all these restrictions is not of full column rank. Therefore, the vertex
needs to have exactly three fractional coordinates, and satisfy with equality all
three inequalities corresponding to the points 1, 2 and 3. Moreover, the only way
for doing so is assigning the value of % to one triangle in each of the classes &1, &
and &3. (One can consider this structure in some sense as a generalization of the
K3 clique.)

As we shall see, the last example is not an exception. To the contrary, some-
thing similar holds in general for any clique of triangles. The work in this section
consists of two parts. In a first step, we prove that the nonintegral vertices of
fractional packing polytopes associated to cliques can have at most 7 coordinates
different from zero. After that, we present a complete description, obtained via
computer enumeration, of all the vertices having up to 7 fractional coordinates.

We start again with some preliminary definitions and lemmas. Observe that
requiring any two triangles of a clique to intersect at least in one point is equivalent,
in terms of the corresponding point-triangle incidence matrix A, to the condition:

supp(A.j,) Nsupp(A.j,) # 0 (6.2)

for any two columns A.;, and A.;, of A.

6.4.1 Definition (Pseudo-basis of a Vertex) Let A = (a;;) be the point-triangle
incidence matrix associated to a clique of triangles, where 1 < ¢ < nand 1 <
j < m,. Letz* € Q" be a vertex of the fractional packing polytope P(A), and
consider the following sets of column and row indices of A:

J={jeln] : x>0},

I'={ie[m]:Yle[m], £+#1i, supp(Ai.)NJ ¢ supp(Aep)NJ},
I= {z el Vel (>i, supp(A;.)NJ # supp(Ag.)ﬂJ},

where [k] denotes the set {1,... k}.
The submatrix A* = (a;j), withi € I and j € J will be called the pseudo-
basis associated to x*.

In plain words, the pseudo-basis A* associated to a vertex x* is the submatrix
obtained from A by dropping all columns that correspond to variables equal to
zero, and then dropping from this new matrix any row whose support is contained
in the support of another row. Duplicated rows are also removed. Pseudo-bases
satisfy some elementary properties that we shall describe at next, as they will used
later to prove the main result of this section.
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6.4.2 Lemma Let x* be a nonintegral vertex of the fractional packing polytope
P(A) of a clique of triangles, and let A* be the pseudo-basis associated to z*.
Then the following holds:

(i) A* has full column rank,
(i) |supp(A7)

(iii) |supp(A;)| < |J|, Vi€ I,

<3,Vjel,

(iv) |supp(A%)| > 2,Vie I,

(v) ‘supp(A_*jl) Nsupp(AZ,)| = 1, Vi1, j2 € J,

where the index sets I and J are defined in 6.4.1.

Proof. To prove (i), remark at first that for any row A;. of A corresponding to a
inequality satisfied by x* with equality, either ¢ € I or 7 € I must hold, where A;.
is another row such that supp(A;.) NJ = supp(A;.) N J. If this is not the case, then
by construction there exists a third row Ay. such that:

supp(A;.) NJ C supp(Ae) N J,

and hence Ay.xz* > A;x* = 1, as all variables with indices in J have values
strictly larger than zero. But now, z* violates the inequality associated to Ay., and
the contradiction z* ¢ P(A) follows. Therefore, A* contains as a submatrix a
basis of z* in the linear programming sense, from which we conclude that A* has
full column rank.

The second property follows directly from the fact that A* is a submatrix of a
point-triangle incidence matrix A. For (iii), suppose there is a row containing |.J|
ones (i.e., a row full of ones). In this case, || = 1 must hold by construction. But
then, as A* is of full column rank, it follows that |.J| = 1, and thus z* has only one
nonzero coordinate, which in addition must be equal to one. This contradicts the
assumption that * was a nonintegral vertex.

To prove (v), let j, 7 be two indices in J and notice that (6.2) implies the exis-
tence of at least one row A;. of A whose support contains both j and 7. Moreover,
either ¢ € I or ¢ € I holds, where A;. is a row whose support contains (or is equal
to) supp(A;.). In any case, j and j are included in the support of some row of A*,
and the claim follows.

Statement (iv) says that every row of A* contains at least two entries equal to
one. Assume this is not true and let A7 be a row with supp(A}) = {j}. From
the definition of I, it follows that no other row in A* may contain j in its support.
Now, either |J| = 1 and z* is integral, or the column A_*j violates (v). g

The properties presented above can be used to limit the maximal number of
columns a pseudo-basis may have, as stated in the following. Observe that this is
at the same time the maximal number of nonzero coordinates in a vertex of the
fractional packing polytope related to a clique.



6.4 About the Fractional Vertices Associated to Cliques 137

6.4.3 Theorem (Maximal Number of Columns in a Pseudo-basis) Let A* be the
pseudo-basis associated to a nonintegral vertex of the fractional packing polytope
from a clique of triangles. Let J be the set of column indices of A*, as defined in
6.4.1. Then,

|J] < 7.

Proof. Suppose A* is a pseudo-basis for which J > 8 holds. Interchanging rows
and columns (as none of these operations affects the properties indicated in Lemma
6.4.2), we may assume w.l.o.g. that A* has the following form:

J1 g2 v gny k1 k2 ook
Lol oLl !
1 1 - 10 O --- O — 10
«— ’L'I
Al Ay
Af = —
— El
O 1452 .
— Ly
where the first row A} o- satisfies
|supp(Aj,.)| > |supp(4;)|, Vi € I. (6.3)

The columns of A* are divided into two groups, indexed by the sets J; =
{j1,---sjn, } and Jo = {k1,...,kn,}. The columns in the first group are ex-
actly those which contain a 1 in the first row. Observe that J, # (), since oth-
erwise the first row violates condition 6.4.2 (iii). The rows are also distributed
into three groups: A ~as a group itself, and two other groups with index sets
I = {i1,...,im, } and Io = {1,. .., lpn, }, with the rows in the last group being
exactly those which have entries equal to zero for all columns in J;. For simplicity
in the notation, we shall refer to the four sets described here either as sets of indexes
or sets of columns. We shall distinguish between two different cases, depending
whether 5 is empty or not.

Casel: my >0

In this case, there is at least one row Aj = with its support completely con-
tained in the set Jo. From Lemma 6.4.2 (iv), it then follows that there are (at
least) two columns A?kkl and A_*k2 with k1, ko € Jo whose supports contain
¢1. Now observe that, for t € J; U {kq, ka},

|supp(A%) N 11| < 2,
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since each column has at most three nonzero entries, all columns from J;
have already a one in A’;O_, and the two columns in J5 have a one in AZ_.
Moreover, property 6.4.2 (v) implies that, for any j € Ji, k € {k1, ka}

supp(AZ;) Nsupp(A%) N1y # 0,

as I; contains all the rows where these two columns may intersect each other.
Therefore, if either supp(A7, ) or supp(A%, ) contains a single row i € I,
then ¢ must also be contained in the support of all columns from .J;, and we
obtain

jsupp(A2)] > n1 + 1 > |supp(4},.)|

which is a contradiction to (6.3).

On the other hand, if both A_*k1 and A?}Q contain exactly two nonzero entries
in rows from /7, we define the graph G = (V, &), where V = I1,€ = £1UE,
and &; (resp. &) are the edges obtained by intersecting the supports of the
columns in Jy (resp. in {kq, k2 }) with ;. Notice that there may be “edges”
in £ containing only one point, which we shall represent in the following as
loops. Condition 6.4.2 (v) requires any two edges from &; and &, to intersect
each other. Figure 6.6 illustrates the two only possible configurations, where
the edges belonging to &£; are shown dashed, and the ones belonging to &
solid. Again, the first configuration reveals the existence of a row i1 € I3
that violates (6.3), as |supp(A;k1_){ >ny + 1.

(a) (b)

Figure 6.6: Sets of intersecting edges. The pictures show all graphs whose edges
can be divided into two sets £; (dashed lines) and &> (solid lines), such that |E5| =
2, |&1] is maximal and e N e’ # (), for any e € & and ¢ € &. Two cases
are distinguished, according to the subgraph spanned by the edges from &;: (a) a
simple path, (b) two pairwise disjoint edges. In the first case, £ may be arbitrarily
large, but all of its edges (except maybe one) have to contain the node ;.

Configuration (b) needs some more explanation. Observe that in this case
the maximal number of edges in £ (and, hence, of columns in J;) is limited
to four. (Parallel edges in £ would imply duplicated columns in the full
column rank matrix A*). Moreover, if |J1| < 4, it is not possible to add any
more solid edges (not even parallel) without ending up with a point having a
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degree larger than |&;|, which in turn leads to a contradiction to (6.3). Thus,
|J| = |J1] + |J2] <442 =6 < 7 follows.

On the other hand, if |J;| = 4 then at most two more solid edges can be
added, while keeping the degrees of all points less or equal to 4, namely, one
parallel to each of the solid edges already present. Now consider the column
A7, corresponding to one of these new edges, and suppose it is parallel to the
edge obtained from A% . Since supp(A%, ) Nsupp(A%,) # 0, it follows that
{1 € supp(A%,,). But then supp(A%, ) = supp(A7%,,) and A has duplicated
columns, which contradicts 6.4.2 (i).

Casell: my =0
If I, is empty, we have m = m; + 1 and

supp(A5)NJy #0 (6.4)

for any row A7 . Now consider the column A% and assume w.l.o.g. that
supp(A’,,) = {i1,i2,i3}. Due to 6.4.2 (v), the support of any of the columns
A?kj, with j € Ji, must contain at least one of these row indices, and conse-
quently, it may contain ar most one of the indices from {i4, ..., %y, }. To-
gether with (6.4), this implies that m < n; + 4. Moreover, since A* has full
column rank, it follows that

n+n<m<n +4 & ng<4. (6.5)

On the other hand, since supp(A?kk)ﬂsupp(Afl%) = () must hold for any k, k €
Jo, and since no column has more than three nonzero entries, it follows that

m* = U supp(A%)| < 2ng + 1.
keJa

Observe that by construction, m* < mj, as all columns in J5 have entries
equal to zero in the first row. Now if m* < my, then there must be at least
one row (besides from Aj ) whose support does not contain any indices from
Jo and is therefore included in (or equal to) supp( A7 ), a contradiction to the
assumption that A* is a pseudo-basis. Hence, m* = my and

n+n<m=mi+1<2n+2 < ny<ng+2. (6.6)

Let us consider all cases that satisfy the conditions (6.5) and (6.6). If no < 2,
then n; < 4 and |J| = n; + ny < 6 < 8. If ng = 3, the only possibility
to obtain |J| > 8 is to choose n1 = 5, which in turn implies m = 8. Since
the three columns in .J5 have to cover m; = m — 1 = 7 rows, and due to
Lemma 6.4.2 (v), there must be one row index 7; contained in the supports of
all three columns, and six row indices io, . .. , 77, each one contained exactly
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in one of the supports. But then, the support of any column from J; has to
contain the row index 71, too. (Again, due to Lemma 6.4.2 (v)). It follows
that A* contains a row full of ones, contradicting Lemma 6.4.2 (iii).

Finally, if no = 4, the only interesting cases arise when ny € {4,5,6}. For
n1 > 4, the same argumentation as above leads to the conclusion that A* has
a row full of ones. If n; = 4, there is only one possible arrangement (up to
exchangings of rows and columns) for the columns in J; that satisfies (6.4)
and the requirement that supp(A?;) N {i1, 42,43} # 0 for all j € J;, namely

J1 Je J3 Ja
R
11 1 1 «—i
1 . 1 «—19
1 .
. 1
1 .
1 .
1
1 <—’L'7

But then, to intersect these four columns, any column from Jo must contain
41. Thus,
|supp(A;,.)| = 6 > 4 = |supp(A},.)

and a contradiction to (6.3) is obtained.

)

The following is an immediate consequence of Theorem 6.4.3:

6.4.4 Corollary Let Q be a clique of triangles and A the corresponding point-
triangle incidence matrix. Let P(A) be the fractional packing polytope associated
to A and x* a vertex from P(A). Then x* has at most 7 nonzero coordinates.

Actually, even more is true: the nonzero coordinates of fractional vertices may
take only certain combinations of values. To prove this, we have enumerated all
0/1-matrices that may appear as (linear programming) bases in P(A), and used
them to calculate the corresponding vertices. As pointed out in the proof of Lemma
6.4.2 (i), any basis associated to a vertex z* € P(A) is contained as a submatrix in
the pseudo-basis defined by x*. Therefore, most of the results that have been dis-
cussed in the previous pages for pseudo-bases can be trivially extended for bases.
We summarize them here without proof, as they are in fact corollaries from Lemma
6.4.2 and Theorem 6.4.3.

6.4.5 Corollary Let A be the point-triangle incidence matrix of a clique of trian-
gles and x* a fractional vertex from P(A). Let B be a linear programming basis
associated to x*. Then the following holds:
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(i) B is a square nonsingular matrix of size n, where2 <n <7,
(i) ‘supp(Afkj)‘ <3, Vjed,
(iii) |supp(A7)| < |J|, Vi€ I,
(iv) |supp(A})| > 2, Vie I,

where I and J are the sets of rows and column indices of B.

Observe that 6.4.2 (v) does not necessarily hold for a basis. However, it must
be possible to extend any basis to a pseudo-basis by adding new rows until the
supports of any two columns intersect each other, while keeping all the other prop-
erties.

Algorithm 6.1 shows our enumeration scheme. (Recall that [n] is used to de-
note the set {1,...,n}). At each main iteration, matrices of a fixed dimension
n € {2,...,7} are considered. With this purpose, all 0/1-vectors of dimension
n containing up to three nonzero components are enumerated and stored into an
array S. At next, we enumerate all n X n matrices that can be formed by taking
n-subsets from S as columns. Observe that, by construction, any such matrix B
satisfies Lemma 6.4.5 (ii). We then check if B also satisfies the other properties. If
s0, we solve the linear system Bx = 1 to obtain the vertex candidate z* and check
if 0 < x7 < 1 holds for all coordinates of ™. If any of the tests fail, we discard B
and continue with the next matrix.

Otherwise, B is a feasible basis associated to a clique if and only if it can
be extended to a pseudo-basis. However, the computational effort for calculating
such extensions is too high, and so we rather test two relaxed conditions and later
examine the obtained matrices by hand. At first, we require the sum of any two
coordinates z; and z; of 2™ to be less or equal to 1, since otherwise the inequality
associated to any row containing both 7 and j in its support would be violated.
Then, we check if all columns having supports of cardinality equal to three intersect
each other, since this cannot be changed by the addition of new rows.

If all tests are successfully completed, B is stored in the solution set 3, and
the next matrix is considered. To keep B at a manageable size, we need to avoid
the insertion of “redundant” matrices, i.e., matrices that can be obtained from other
matrices in B by row and column exchanges. (The reader can compute how many
such redundant matrices there are for one matrix of size 7). This is done by putting
B in what we call a standard form: We consider each row as a number in binary
representation. Notice that the value of these numbers can be altered by exchanging
columns. We do this until we find the lexicographically smaller set of values. Then
we sort these numbers by exchanging rows.

The output of this enumeration algorithm consisted of 12 matrices, from which
three were discarded during the posterior manual checking, as it turned out that they
cannot be extended to pseudo-bases. The remaining nine matrices, together with
the corresponding fractional vertices, are listed in Appendix 8. As a consequence,
the following result is proved.
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{Initialization}
B — 0;
3: {Dimension is increased in the main loop}
forn — 2,3,...,7do
{Generate the set .S of all feasible columns}
6: S« {xe{0,1}" : |supp(z)| < 3};
N —|S]
T —{ACIN]: |4 =n};
9:  {Test all n-subsets of S}
for I € 7 do
{Get a new matrix B with the columns of S indexed by I}
12: B—{SeS:iell
if [supp(By.)| < 2 or |supp(By.)| = n for some ¢ € [n] then
Skip B and continue with next matrix;
15: end if
if B is singular then
Skip B and continue with next matrix;
18: end if
Solve linear system Bx = 1;
if x; <0or z; > 1 for some i € [n] then

21: Skip B and continue with next matrix;
end if
if z; + x; > 1 for some ¢, j € [n| then
24: Skip B and continue with next matrix;
end if

if |supp(B.;,)| = 3 and |supp(B.;,)| = 3 and
supp(B.j,) N supp(B.;,) = 0 for some j1, jo € [n] then
27: Skip B and continue with next matrix;
end if
Put B in standard form:;
30: if B ¢ BB then
B— BU {B };
end if
33:  end for
end for
Output all matrices from B;

Algorithm 6.1: Enumerating bases of cliques of triangles
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6.4.6 Theorem (Classes of Vertices) Let A be the point-triangle incidence matrix
of a clique of triangles, and x* a nonintegral vertex of the corresponding fractional
packing polytope P(A). Define M (xz*) to be the multiset formed by all nonzero
coordinates of z*. Then x* can be assigned to one of the following nine classes of

vertices X1, ..., Xg, according to the form of M (z*):
111 1111
X Mz =<= == Xo: Mz Y=<¢=.2 =
L M) {2’2’2}’ 2: M(@”) {3’3’3’3}’
1111 1112
Xy:M(z*)=4>, === Xy: M) =42 222
3 (x) {2727272}7 4 (w) {3737373}7
11111 11223
X5 M(x*) 2’a’a’a’a (0 X6 M(:C*): ORI R R E (0
3’333 3 55 555
11111 111111
Xe:M@*)=<9-,-,-,=,= Xs:Mx*)=<4=,=-,=,=,=,=
v M@ {4’4’4’2’2}’ 8 : M(@) {3’3’3’3’3’3}’

1111111
Xog: M(x*)=2=,=,=,=,=,=, = .
01 M(a") {3’3’3’3’3’3’3}

Class X, contains the fractional vertices that appear in cliques similar as the
one showed in Figure 6.3. We will not describe in detail the structures associated
to the other classes, but just make some basic observations about them. Looking
at the corresponding bases, one can check that vertices belonging to the classes
X, ..., X7 may appear in cliques having arbitrarily large sizes: in all these matri-
ces it is always possible to choose a pair of rows that intersects all columns, which
means that there is (at least) one pair of points that intersects all triangles. Now,
any triangle formed from this pair of points and a new point can be used to extend
the clique.

Class Xg is related to a clique that can also be extended, but not arbitrarily.
The minimal cardinality of a set of points that intersects all triangles of the clique
is 3. From these sets of three points, some correspond to triangles already present
in the clique, while others reveal new ones.

The structure related to class Xg is more interesting. It is a clique Q consisting
of seven triangles and seven points:

Q=1{{1,2,3},{1,4,5},{1,6,7},{2,4,6},{2,5,7},{3,4,7},{3,5,6} }.

In Figure 6.7 we show a schematic picture of Q, obtained by drawing each
triangle as a line. Surprisingly, a well-known mathematical object is revealed,
which has been reported to appear within many different contexts: the Fano plane.
We shall come to this fact later in Section 6.6.1.

It can be verified that Q satisfies the following properties:

(i) The clique cannot be extended. To intersect all triangles, a set containing
at least three points is needed. Moreover, all possible such sets are already
contained as triangles in Q.



144 Set Packing with Small Subsets

4
1 11
1 11
1 1 1 2 1
1 1 .1 7
1 1 01
1 1 . 1
1 11
6 3 5

Figure 6.7: Clique of triangles associated to the vertex class Xg. The clique con-
tains 7 triangles and 7 points, configured according to the point-triangle incidence
matrix shown. Representing triangles by lines, the structure turns out to be isomor-
phic to the Fano plane.

(i) The number of triangles is equal to the number of points.
(iii) The clique is “regular”: Each point appears exactly in three triangles.
(iv) For any two points, there is exactly one triangle containing both of them.

(v) Q is “self-dual” in the sense of hypergraph duality described at next. Con-
sider @ = (V, ) as a hypergraph. Its dual Q* is defined as the new hyper-
graph whose set of points is £, and whose hyperedges are all the sets of the
form:

E={Fe& :veE},

where v € V. Now from the last two observations it follows that Q* is also
a clique of triangles. Moreover, Q* is isomorph to Q.

Finally, let us point out that there are some similarities between this clique and
the clique of edges K3 showed in Figure 6.2. Namely, if in the last list we replace
the words “triangle” by “edge” and “three” by “two”, then the same properties hold
for the K3 structure. Besides, the fractional vertex associated to a K3 contains 3
coordinates, each one equal to %, while vertices of the class Xg contain 7 coordi-
nates, each one equal to % What these numbers mean will be discussed in Section
6.6.1. Both structures are also extremal in the sense that they give raise to vertices
of the fractional packing polytope having the largest possible number of nonzero
coordinates.

6.5 Antiwebs and Webs

In this section, we consider two other structures in the conflict graph G(A) asso-
ciated to a triangle packing problem that give rise to valid linear inequalities for
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the packing polytope P;(A): webs and antiwebs. We refer to Section 4.2.2 for
details about these inequalities, and review here just some definitions needed in the
following.

An antiweb C(n, k), with 2 < k < | 2], is the conflict graph of a circulant
matrix. Its set of nodes is {0, ...,n — 1}, and two nodes ¢, j are connected with an
edge if (j —i mod n) < k holds. A web C(n, k) is the complement of an antiweb.
In particular, odd holes are the antiwebs obtained for £ = 2, and odd antiholes the
corresponding webs. Figure 4.4 on page 87 shows two examples of these struc-
tures. Associated to webs and antiwebs are the following valid inequalities for the

set packing polytope:

Z xiSL%J Z xz; < k.

i€C(n,k) i€C(n,k)

Now remark that a circulant matrix C'(n, k) has exactly k entries equal to one
in each row and in each column. Thus, it is obvious that odd holes and antiwebs
of the form C'(n, 3) may appear in conflict graphs stemming from triangle packing
problems. However, they are not the only possible ones. Figure 6.8 shows a point-
triangle incidence matrix whose conflict graph is the antiweb C'(9,4). In general,
let A be the point-triangle incidence matrix of a family £ of n triangles having the
form

E;={i,i—2i—3},

where ¢ € {0,...,n — 1}, and all operations are taken modulo n. One can check
that, for any F;, E; € €, E; N Ej # () if and only if | — j| < 4 mod n. Hence,
G(A) = C(n,4), which proves that any antiweb of this form may appear in the
conflict graph related to a triangle packing problem. The next two results discard
the existence of further structures.

0123456 7 8
1 .11
1 . 11 .
1 .11 .
1 .11 .
1 .11
1 .11
T . . . . .1 .1
P
o |

Figure 6.8: The antiweb C'(9,4) can be obtained as the conflict graph associated
to a triangle packing problem.
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6.5.1 Theorem (Antiwebs of Triangles) Let A be the point-triangle incidence ma-
trix associated to a triangle packing problem. The conflict graph G(A) of A cannot
contain any antiweb of the form C(n,5) as a node induced subgraph.

Proof. Assume A € {0,1}"*" is a point-triangle incidence matrix for which
C(n*,5), with n* < n, appears as a subgraph from G(A). Let B be the subma-
trix of A containing the columns associated to the nodes of the antiweb and all
rows where this set of columns has at least two nonzero entries. Furthermore, sup-
pose w.l.o.g. that the columns of B have the indices O, ...,n* — 1. Observe that
the supports of the rows of B correspond to cliques from the antiweb, and hence
|supp(B;.)| < 5 holds for any row B;. of B.

We will use a counting argument to derive a contradiction. With this purpose,
let us group the edges of C(n*,5) into four types Yq,..., Ty, where jk € Ty
if and only if |[j — k| = ¢ mod n*. In the same manner, all cliques of C'(n*,5)
are divided into 15 classes, according to the relative position of their nodes on the
antiweb. Thus, all cliques containing five nodes are assigned to the same class II5,
while the cliques of size four are arranged into the following four classes:

My ={{j,j+1,j+2,7+3}: 0<j<n*—1},
My ={{j,j+1,j+2,j+4} : 0<j<n" -1},
M3 ={{j,j+1,54+3,j+4} : 0<j<n*—1},
My = {{j,j+2,5+3,j+4} : 0<j<n*—1},

where all operations are taken modulo n*. Analogously, six classes Il31, ..., I3
containing the cliques of size three and four classes IIa1, . . ., IIo4 with the cliques
of size two (which are exactly the edge types) are defined. The number of edges
of type T, contained in a clique from the class I}, is denoted by ay(I1;). These
values are presented in Table 6.1

Now define zj to be the number of rows of B that correspond to cliques from
the class II;,. Since B contains at most 3n™ nonzero elements (at most three in each
column), it follows that

5xs +4(1‘41 +- - —l—.%'44) —|-3(.%'31 +- - —l—.%'gﬁ) —|-2(.%'21 +- - —l—.%'24) < 3n*. (6.7)

On the other hand, notice that the number of edges of a certain type Y, that are
contained in the union of all cliques associated to the rows of B is bounded from
above by

> zpa(Ty).

heH

where H = {5,41,...,24} is the index set of all clique classes. Since there are
exactly n* different edges of each type in C'(n*,5), using the information of table
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Class Nodes a1 s Qa3 oy
115 {j,...,7+4} 4 3 2 1
H41 {]a]+17]+27.]+3} 3 2 1 -
H31 {]a]+1aj+2} 2 1 - -
II3p {j,j+1,7+3} 11 1 -
II33 {j,j+1,j+4} 1 - 1 1
I3y {j,i+2,j+3} 11 1 -
II35 {j,j+2,j+4} - 2 - 1
H36 {]7]"_37]—’_4} 1 - 1 1
1o {J,j+1}
T2 {J,j+2} D
o3 {47+ 3} - - 1 -
IIoy {J,j+4} |

Table 6.1: Clique classes of C'(n*,5). For each class IIj, the nodes contained
in any clique from II; are shown, as well as the number of edges from the types
Tq,..., 4. Inall cases, 0 < j < n* — 1, and all operations are taken modulo n*.

6.1 we obtain the following four inequalities:

Tlt

TQ:

Tg:

T42

4y + 3w41 + 2249 + 2243 + 22044 + 2031 + T30 + T33
+ 234 + 136 + 121 > n*
3x5 + 2w41 + 2242 + 143 + 2744 + T31 + T32 + T3a

+ 2x35 + w22 > 0 (6.8)
2x5 + T41 + 42 + 2043 + Tag + T32 + 33 + T34 + T36

+ x93 > n* (6.9)

T5 + T2 + 243 + Taa + T33 + 35 + T36 + T2g > 0T (6.10)

Finally, from the linear combination %(6.8) + %(6.9) + 2(6.10) of these last
three inequalities, and comparing the result with (6.7), we obtain

—3n*<5x + -z +—5x +4x +—5x —i—lx +§x +Ex
A >~ 5 A 41 A 42 43 A 44 2 31 A 32 A 33
5 1 3
- — — - 2
+ 4$34 + 3x35 + 1 T36 + 2%’22 + 4%23 + 2294

< bxs +4(xg1 + -+ 24a) + 3(x31 + -+ + x36)
+2(zo1 + -+ + x2)
< 3n*

which is a contradiction. O
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6.5.2 Corollary If A is the point-triangle incidence matrix associated to a triangle
packing problem, then the conflict graph G(A) of A does not contain any antiweb
of the form C(n, k), with k > 5, as a (node induced) subgraph.

Proof. To prove this, observe that the antiweb C'(n, k) contains as a subgraph an
antiweb of the form C'(n*, k — 1), with n* < n: Just remove from the former
all nodes having indices ¢ = 0 mod k. Hence, if for some fixed £ > 3, and
forall n > 2(k — 1), the antiweb C'(n, k — 1) is not contained in G(A) as a node
induced subgraph, then the same must hold for C'(n, k), and the result follows from
Theorem 6.5.1 by induction on k. U

The situation regarding webs is a bit more complicated. We shall consider at
first only webs of the form C'(n, k) with k > 3, and treat the other cases separately,
as they do not fit into the general proof due to certain specific structural properties.

Remark that a web C(n, k) is a regular graph, i.e., any node i has a constant
degree 0 given by:

§=n+1-2k, 6.11)

since there are exactly 2k — 1 nodes not connected to ¢, namely, the nodes ¢ — k+ 1
mod n,...,i + k — 1 mod n. The next theorem proves that the value of § is
bounded for any web obtained from the conflict graph of a set of triangles.

6.5.3 Theorem (Degree of Webs) Let A be the point-triangle incidence matrix
from a triangle packing problem, and C(n, k) a web contained as a node induced
subgraph in the conflict graph G(A) of A. If k > 3, then the degree of a node in

C'(n, k) is at most equal to three.

Proof. Suppose there is a submatrix B of A such that G(B) = C(n, k), with
k > 4and § > 5. Furthermore, let E; be the triangle associated to node i € V(B),
for 0 < i < n — 1, and assume w.l.o.g that £y = {1,2,3}. Now consider the
(consecutive) nodes k, k + 1,k + 2,k + 3. All these are neighbors from node 0 in
the web, which means that each of the four triangles Ey, Eyy1, Fx12, Fr+3 must
contain at least one point from the set {1,2,3}. On the other hand, since k£ > 4,
the four nodes form a stable set, and hence no two triangles may contain a common
point, a contradiction. U

The case when § = 1 is uninteresting, since then the web decomposes into
disjoint cliques of size two. On the other hand, if the degree is equal to two then
from (6.11) it follows that n is an odd integer, and that k = "T_l But, as pointed
out in Section 4.2.2 (on page 86), this kind of webs are isomorphic to the odd holes
C'(n,2), which have already been considered.

Only for § = 3 a new structure is obtained . Again, (6.11) implies in this case
that n is an even integer number and k = "T_Q To prove that these webs can indeed
be constructed, consider the set of points V = {0,...,3n — 1}, and define a set
E={FEy,...,E,_1} of ntriangles on V by:

EZ-:{Z', i—|—g—|—1 mod n, n+<i—i—1 mod g)},
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where i € {0,...,n — 1}. One can check that, forall i, j € {0,...,n — 1}, # j,
ENE #0 & j:z‘+g+e mod 7,

where ¢ € {—1,0,1}. Thus, the conflict graph associated to (the point-triangle
incidence matrix of) & is exactly C(n, 252). We summarize the last observations

in the following.

6.54 Corollary If C_’(n, k), with k > 3, is a web contained as a node induced
subgraph in the conflict graph G(A) of a point-triangle incidence matrix A, then C

is either (isomorphic to) an odd hole or has the form C(n, "T_Q), with n even.

Theorem 6.5.3 does not hold when £ = 3. Figure 6.9 shows a counterexample:
The web C(9, 3) can be obtained as the conflict graph of a point-triangle incidence
matrix, while from (6.11) it follows that the nodes in this web have degrees equal
to 4. On the other hand, the next result states that higher degrees are not possible
for this value of k.

0123456 7 8

1 . . .1 .
1 o1
1 |
1 . . 1
1 . 1
1 |
1 . .. 1
1 |
1 .o 1
1 1 . 1
1 1 . 1
1 1 1

Figure 6.9: A point-triangle incidence matrix that has the web C/(9, 3) as its conflict
graph. The degrees of the nodes in this web are all equal to four.

6.5.5 Theorem Let A be a point-triangle incidence matrix and C(n, 3) a web con-
tained as a node induced subgraph in G(A). Then the degree of a node in C(n,3)
is less or equal to four.

Proof. Assume there is a web C'(n, 3) contained as a node induced subgraph in
G(A), whose nodes have degrees equal to §* > 5. Moreover, let {0,...,n — 1}
be the set of nodes of C'. From (6.11) it follows that n > 10. Now consider the
subgraph induced by the eight consecutive nodes 0, . . . , 7, as shown in Figure 6.10,
and let Ey,..., E7 be the corresponding triangles. Some of these triangles are
displayed (as sets of points) near the nodes in the picture.
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Since the nodes 0, 1 and 2 form an independent set, the triangles Fy, E; and
FE5 must be disjoint, i.e., no two of them may contain the same point. Suppose
w.l.o.g. that

Eo=1{1,2,3}, E;=1{4,56}, E,={78,9}.

Now observe that E'7 must intersect all of these three triangles. This is only
possible if E'7 contains one point in common with each of them, say E7 = {1,4, 7}.
On the other hand, F5 must intersect F-, but it cannot contain any point from
FE1 U FE», as these are its two “nearest” neighbors on the web, and £ = 3. Hence,
E5 must contain the point 1.

Finally, since 1 is contained both in F5 and in F~, it follows that this point can-
not be in any of the triangles Ey, E5 and Eg. However, the nodes corresponding
to these triangles form an independent set contained in the neighborhood from FEj,
which means that each triangle must intersect Ey in a different point, a contradic-
tion.

Figure 6.10: Any web C(n, 3) where the degree of the nodes is larger than or equal
to five contains a subgraph which cannot be obtained as the conflict graph from a
point-triangle incidence matrix.

0

The following is obtained as an immediate conclusion from the last theorem,

by applying (6.11).
6.5.6 Corollary The only webs of the form C(n,3) that can be contained as node
induced subgraphs in the conflict graph of a point-triangle incidence matrix are
C(7,3), C(8,3) and C(9,3). The web C(7,3) is isomorphic to the odd hole
C(7,2).

At last, let us focus on the case when k = 2. If n is an odd number, then the
web C(n, 2) is isomorphic to the antiweb C (n, 251) and constitutes therefore no
new structure. Moreover, Theorem 6.5.1, together with its succeeding corollary,
implies that

n—1
2

<4 & n<H.
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Hence, the only webs of this form that might appear in conflict graphs associated
to triangle packing problems are C(5,2), C(7,2) and C(9, 2).

The case when k£ = 2 and n is an even number is not yet solved. While Fig-
ure 6.11 shows that the webs C(8,2) and C(10,2), containing nodes with degrees
five and seven, respectively, may appear in conflict graphs of sets of triangles, for
n > 12 the problem remains open. We have not encountered any triangle-node
incidence matrix producing a C'(12,2), nor have we found some structural feature
in this web which leads to the conclusion that such a matrix does not exist.

01 23 4567

T . .1 .
1 1 .
1 1 .
1 1 .
|
1 1 .
1 |
. |
1 .1 .1 .1

0123456 7 89
1 1 1 . 1
1 1 .1 1
1 1 1 .1
1 1 1 .1
1 1 1 1
1 1 1 .1 1
1 1 1 1 1

Figure 6.11: Point-triangle incidence matrices that give raise to the webs C(8,2)
and C'(10, 2).

To conclude this section, we put all the pieces together and summarize the
results that have been presented so far.

6.5.7 Theorem (Webs and Antiwebs of Triangles) Let A be a point-triangle in-
cidence matrix associated to a triangle packing problem. Then all webs and anti-
webs that can be contained as node induced subgraphs in the conflict graph G(A)
of A belong to one of the following classes:

(i) Antiwebs of the form C'(n, k), with k < 4.

(ii) Webs of the form C(n, "T_Q), with n an even number.
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(iii) The webs C(8,3) and C(9, 3).
(iv) The webs C(8,2), C(10,2).
(v) Webs of the form C(n, 2), withn > 12 and even.

Moreover, except for (v), constructions are known which produce these structures.

6.6 About the General x-Set Packing Polytope

The aim of this section is to describe a few preliminary results, besides of stating
some conjectures and open questions, regarding the problem, how the several poly-
hedral issues discussed so far in the setting of the triangle packing problem could
be extended to the generic k-set packing problem. The ideas presented here are not
at the stage of “closed research”, but rather intended to incite further work in this
subject.

Throughout this section, we will deal with the following formulation of the
k-set packing problem: Given a 0/1-matrix A € {0,1}™"" containing at most &
nonzero entries in each column, and a nonnegative cost vector ¢ € Q' , define the
hypergraph H(V, £) as follows:

V.=A{1,...,m}
E:={E; : Ej=supp(A;), 1 <j<n}.

Associate with each hyperedge E; a nonnegative weight equal to c¢;. The task is to
find a maximum-weight matching in H, i.e., a set of disjoint hyperedges in £ with
the largest possible sum of weights. To keep the notation consistent with the pre-
vious sections, we shall use the term points to denote the elements of V. Observe
that no hyperedge contains more than x points. Moreover, it is straightforward to
generalize Lemma 6.2.1 and assume that H is x-uniform , i.e., that each hyperedge
has cardinality exactly equal to . (See the remarks preceding this lemma on page
121). We denote such hyperedges simply as «-hyperedges.

6.6.1 Cliques

A first aspect concerns the polynomial time separability of clique inequalities. For
the triangle packing polytope, this was a consequence of Theorem 6.3.1, which
states that any clique of n triangles either can be reduced by deleting points to the
clique of edges K3, or has a point 7 contained in at least n — 5 triangles from the
clique.

An equivalent statement for the general case would require any clique of n -
hyperedges either to be reducible to a clique of (x — 1)-hyperedges by deletion
of points, or to have a point contained in at least n — ¢ hyperedges, where ¢q is a
constant depending solely on x. It is not clear if this statement holds for x > 3,
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but even if it held, it is not guaranteed that this would imply the existence of a
polynomial time algorithm for separation of cliques.

In fact, such an implication is rather unlikely. Remark that for triangle packing,
the polynomial time solvability of the separation problem followed from Theorem
6.3.1 only because all triangle cliques obtained from edge cliques (see Figure 6.3
on page 125) had a “nice” structure that made it possible to identify them. On the
other hand, the construction described below reveals that almost any clique O of
triangles may be extended to a clique Q' of 4-hyperedges in such a way that every
point appears in strictly less than |Q’| — ¢ hyperedges, for all ¢ € N.

Let (V, Q) be a clique of triangles, and let n := |Q|. Define the following
4-uniform hypergraph:

V, ::V&J{ally"‘>ans}a
Q ={FU{a;} : E;€Q 1<i<n, 1<j<s}.

Thus, each triangle F; from Q is used to obtain s different 4-hyperedges in Q'.
Observe that (V', Q') is a clique, since any two hyperedges intersect in their “old”
points from V. Moreover, for any point v € V, the degree of v in Q' (defined as
the number of 4-hyperedges from Q' containing v) is exactly equal to s times its
degree in Q. All points in V' \ V', on the other hand, have degrees equal to 1. Since
|Q'| = s]Q], if no point in V' is contained in all triangles from Q, then for any
fixed ¢ € N, it is possible to choose a sufficiently large value of s, such that all
points in V'’ have degrees strictly smaller than |Q'| — q.

Concerning the fractional packing polytope associated to a clique, we have seen
in the previous sections that for k < 3 there exist uniquely determined structures
which are extremal in the sense that they produce vertices containing the largest
possible number of nonzero coordinates. More precisely, they produce vertices
containing exactly n(x) coordinates, all of them equal to L, where n(2) = 3 and
n(3) = 7. These structures are the K, for the edge packing problem, and the Fano
plane (see Figure 6.7 on page 144), for the triangle packing problem. Both cliques
also share several interesting properties listed on the same page. The next result
states two sufficient conditions for a general clique of x-hyperedges to constitute a
similar structure.

6.6.1 Theorem Let Q be a clique of k-hyperedges and A € {0,1}™*" the corre-
sponding point-hyperedge incidence matrix. If m = n and

supp(A.j) Nsupp(Aj)| =1, Vi je{l,....,n}, j#]
then the following holds:

(i) Each point is contained in exactly x hyperedges, i.e., the hypergraph is k-
regular.

(ii) Q consists of exactly k(k — 1) + 1 hyperedges, and the same number of
points.



154 Set Packing with Small Subsets

(iii) P(A) contains a fractional vertex x* with all coordinates equal to %

(iv) The dual hypergraph Q* of Q is again a clique of k-hyperedges over a set
of k(k — 1) + 1 points, and the intersection of any two k-hyperedges of Q*
contains exactly one point.

(v) Q is maximal: it cannot be extended to a larger clique by adding new k-
hyperedges (assuming duplicates are not allowed).

Proof. Consider the n x n-square matrix defined by B = AT A. Remark that the
element b;; of B is equal to [supp(A.;) Nsupp(A.;)|. It is easy to check that

k 1 --- 1 a -8 - -p

1 k - 1 -8 a - =P
B = L . and B !'= . . . .

1 1 -+ k& -8 -3 - «a

where
a=(k+n—-2)p

1
b= et ==,

Thus, A is nonsingular, as it is a square matrix and det B = det Adet AT # 0.
It follows that the linear system Ax = 1 (where 1 is a vector full of ones) has a
unique solution equal to

=AM =p"AT1=B" (k1) = —— 1. 6.12
v (x1) kK+n—1 ( )
Substituting this values in the system, we obtain
K K+n-—1
Isupp(Ai )| ——— |supp(4;.)| —
forall i € {1,...,n}, which means that all rows from A contain the same number

of ones. Since each column contains s ones, each row must contain x ones, too,
and (i) is proved. Moreover,

n+n—1_

kK & n=k(k—1)+1,
K

as claimed in (ii). At the same time, plugging this value into (6.12), we obtain (iii).

To prove (iv), remark that the rows of A are the incidence vectors of the hy-
peredges in Q*. From (i) it follows that all hyperedges contain exactly x points,
i.e., that Q" is k-uniform. Furthermore, (ii) implies that |Q*| = k(k — 1) + 1,
and that there are the same number of points and hyperedges. Now let A;. and A;.
be two rows of A and suppose their supports intersect in two (or more) columns,
say 7 and j. This implies that the hyperedges of Q corresponding to these columns
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contain both ¢ and 7, and intersect therefore in more than one point, contradicting
the condition of the theorem. So we may assume

|supp(4;.) Nsupp(4;.)| < 1.

Define the indicator variable h(i,7,j) to be equal to one if j is contained in the
intersection of the supports from rows A;. and A;., and zero otherwise. Then, from
the last inequality it follows that

D (i, 5) =Y [supp(As) N supp(A;.)|

i<i j=1 1<i

< EZ() ) 1) (6.13)
Kk —1) +
- , ,

On the other hand, exchanging the order of the terms in the sum, and taking into
account that every hyperedge contains exactly (’;) pairs of points,

SN nGig) =30 (i)

1<i j=1 j=1 1<%

- JZ: <;> = (x(k = 1) +1) (;) - (“(“ —21) + 1>7

which implies that equality holds in (6.13) and hence every pair of rows must
intersect exactly at one column.

Finally, it remains to show (v). Let E' = {i,... iy} be a set containing at
most ~ points, and define 7, to be the number of hyperedges of Q that are covered
by the points {i1,. .., },for 1 <r < £. Since |supp(A4;.)| = & holds for any row
A;. of A, we have 11 = k. Now observe (iv) implies that any pair of points is con-
tained exactly in one hyperedge of Q, and denote by F; the hyperedge containing
11 and 2. It follows that 7o = 2k — 1, as F; is covered twice. Depending whether
i3 € FEj; or not, 13 may take two possible values. In the first case, 73 = 3K — 2,
since E; is covered three times. Otherwise, n3 = 3k — 3, because three differ-
ent hyperedges are counted twice, namely, the ones containing the sets of points
{i1,i2}, {41,173} and {i2,73}. (Notice that these are in fact three different hyper-
edges, as on the contrary there would be two hyperedges from Q intersecting in
more than one point). Proceeding in the same manner, one can prove by induction
on r that

n <rk—(r—1), V1<r<{,

and that equality holds only if {41, ...,4,} C E;. Therefore, to intersect all x(x —
1) + 1 hyperedges from the clique we need at least x points, and all of them must
be contained in E;, which implies E' = E;. O
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We have not yet found out if cliques satisfying the two sufficient conditions
enunciated in the last theorem exist for all values of . However, they can be con-
structed in infinitely many cases, as shown below. Our proof will make use of the
following well-known result from algebra (see for instance Birkhoff & Mac Lane
[1996, p. 413]): for any prime number p and any positive integer a, it is always pos-
sible to define a finite field containing p® elements. This field is usually denoted by
GF(p“).

6.6.2 Theorem Letx = v + 1, where v = p®, p is any prime number, and a any
positive integer. Let Q be the following set of k-hyperedges:

Q:{EO,...,E,,}u{EU L0<i<v—l1, 0§j§y—1},
with each x-hyperedge defined by

Ei:{y2+V}U{iV, z'u—i—l,...,z'y+y_1}’
By={+i}Uljo(o0)+vl: 0<l<y—1},

where @ and ® denote the addition and multiplication in the field GF (p*), respec-
tively.

Then Q is a clique that contains k(x — 1) + 1 hyperedges and the same number
of points. Moreover, any two hyperedges of Q intersect in exactly one point.

Proof. By construction we have |Q| = 12 + v + 1 = k(k — 1) + 1, and all points
are labeled by integers between 0 and v 4+ . Moreover, observe that each of these
integers appears at least once in some hyperedge, which means that there are also
k(k — 1) + 1 points in Q. It remains to show that any two hyperedges intersect in
exactly one point.

For two distinct E;, E; € Q we have E; N E; = {v* + v} and the claim
follows. In the same manner, observe that the hyperedges Ey, ..., E, partition
the set {0,...,v% + v — 1} into v + 1 disjoint “intervals” of size v, and that any
hyperedge E‘ij contains exactly one element from each of these intervals.

The interesting task is to prove that any two hyperedges of the form Eij and
EA@JA intersect in exactly one element. We distinguish two cases:

Casel: i=1 R
If this happens, E;; and Ej; intersect only in their first element v? +1i,as
j # jimpliesthat j & (i ®¢) #j® (i@ L) forall £ € {0,...,v — 1}.

CaseIl: i #1

In this case, EAU and E‘ij differ in their first elements. Moreover, notice that
for each 0 < ¢ < v — 1, both hyperedges have exactly one element in the
interval {v/,... , vl + v — 1}. Hence, the intersection of the hyperedges is
given by all values of ¢ that satisfy the equation:

JjeE)=18Ix1).
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Now the field properties of GF(p®) guarantee that there exists a unique solu-
tion to this equation. Namely,

t=@2i) (" o))
where 2z~ and z* are the additive and the multiplicative inverse of z in
GF(p®), respectively.
O

Figure 6.12 shows an example of this construction, obtained for k = 4. One
can check that each column (resp. each row) of the square 13 x 13 matrix A
contains exactly  entries equal to one, and that two different columns (resp. rows)
have exactly one element in common.

1 1 . 1 1
1 1 . 1 1
1 1 . 1 1
1 1 . .. 1 1
1 1 .1 1
1 1 1 1
A= 1 1 . 1 1
1 1 . 11
. 1 .11 1
1 1 11 .
1 1 11 .
1 . . 1 11
1 111

Figure 6.12: Point-hyperedge incidence matrix of a clique having the extremal
properties stated in Theorem 6.6.1, for kK = 4.

The extremal structures considered here can also be interpreted as finite pro-
jective planes. A finite projective plane of order n is a set of n2 4 n + 1 points and
lines with the following properties:

e every point lies on n + 1 lines

e every line contains n + 1 points
e any two points determine a line
e any two lines determine a point

The second and forth properties imply the other two and are equivalent to the con-
ditions of Theorem 6.6.1. The Fano plane is the projective plane of order 2, and in
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general we are looking for finite projective planes of order n = x — 1. One of the
most important unsolved problems in combinatorics (see Bruck & Ryser [1949])
is the conjecture that these do only exist for n equal to a prime power p®.

To finish this section, we collect here the main issues that remain to be solved
with regard to cliques.

6.6.3 Open Questions Let H be a k-uniform hypergraph, where x > 2 is any
fixed integer. Let A be the point-hyperedge incidence matrix for H.

(i) Is it possible to separate clique inequalities for the packing polytope Pr(A)
in polynomial time?

(ii) Is the maximum number of nonintegral coordinates in a vertex of the frac-
tional packing polytope P(A) bounded by a function of k? Moreover, is this
maximum achieved by the cliques presented in Theorem 6.6.17

(iii) Is it possible to construct such cliques when & is not the successor of a prime
power?

6.6.2 Antiwebs and Webs

Generalizing the observations established for antiwebs and webs of triangles to the
case of x-uniform hypergraphs turned out to be much more complicated than for
cliques. The main reason is that most of the proofs are “enumerative” in nature,
i.e., they rely on counting certain substructures such as edges or cliques, whose
complexity simply explodes with increasing . Nevertheless, we can state at least
two basic results.

The first one concerns the kind of antiwebs that might appear in the conflict
graph G(A) associated to the point-hyperedge incidence matrix A. While it is
obvious that any circulant of the form C'(n, k) with & < x may occur as a submatrix
of A, the question remains about what happens for larger values of k. For instance,
in Theorem 6.5.7 we showed that for the case of the triangle packing problem k < 4
must hold. Moreover, we have seen in Figure 6.8 an example where a C'(n,4) is
obtained from a matrix having three nonzero entries per column. For general x-set
packing problems, we have proved only the weaker upper bound presented at next.

6.6.4 Theorem Let A be the point-hyperedge incidence matrix associated to a k-
set packing problem. Let C'(n, k) be an antiweb contained as a node induced sub-
graph in G(A). Then k < 4k.

Proof. Group the nodes of V into blocks Vi, ..., V, = V; of k consecutive nodes
(with maybe some nodes left at the end, which we just include into V}.). Consider
two adjacent blocks V; and V1, as shown in Figure 6.13. By induction on k&, one
can prove that to produce the crossing edges, i.e., the edges joining nodes from V;
with nodes from V1, at least

k(k+1)

J) =243+ fh=—"0—"—1
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entries equal to one are needed in the matrix A. Moreover, since there is no clique
containing a node in V;, a node in V;;1, and a node in V' \ (V; U V;11), it follows
that for every pair of adjacent blocks, a different set of rows from A must be used
to obtain the crossing edges. Now observe that there are L%J pairs of adjacent
blocks in the antiweb (remark that Vj = V. and V; are adjacent). The total number
g(n, k) of entries equal to one required by the crossing edges is thus

oo =[] (52 -) = (3-1) (25=2)

>n_kk_2>n_k
- k2 4’

Y

as 2 < k < 5. Since the total number of nonzero entries available in A is equal to
nk, the claim k < 4k follows.

Figure 6.13: Crossing-edges between two consecutive blocks V; and Vj;; of k
nodes in a C(n, k) antiweb. (K" =k — 2, k' =k — 1).

0

Future work could improve this upper bound by carrying out a more detailed
exploration of other structural features of G(A). However, classifying and counting
edges and cliques, as done in the proof for Theorem 6.5.1, seems to be hopeless
for larger values of &.

Something similar occurs with respect to webs. While it is easy to extend
Theorem 6.5.3 to the general x-set packing problem, further results would require
an in-depth analysis that goes beyond the scope of this research. So we stop our
remarks at this point, and close the chapter with the following last observation.

6.6.5 Theorem Let A be the point-hyperedge incidence matrix associated to a k-
set packing problem, and let C(n, k) be a web contained as a node induced sub-
graph in G(A), withk > k. Thenn < Kk + 2k — 1.

Proof. Notice that the conflict graph related to a matrix A having at most x nonzero
entries per column cannot contain the complete bipartite graph K1 .1 as a node
induced subgraph, since each edge of K .11 is associated to a different row in A,
and all rows contain one common column index.

Hence, if C(n, k) is a web contained as a subgraph in G(A), and if & > &, then
the degree & of a node v in C' cannot be larger than x. Otherwise, v together with
a set of x + 1 consecutive neighbors of it would reveal a node induced K7 .1 in
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G(A). The claim is then proved by replacing this condition into equation (6.11).
0



Chapter 7

The ADAC-Problem Revisited. A
Solution Approach.
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7.1 Introduction

In the sequel we combine some of the concepts exposed throughout this thesis and
discuss a solution strategy for the ADAC-Problem introduced in Chapter 1. As
anticipated there, the ADAC-Problem can be decomposed into an online master
problem OLVDP, and a real-time offline vehicle dispatching subproblem VDP. Let
us briefly recall the principal aspects related to them:

The Online Master Problem OLVDP

The main task of the OLVDP is to find a good global strategy for processing the
incoming help requests. Hereby, the following questions have to be addressed:

e How often should a new dispatch for the units be computed?

e Which (if any at all) of the previously scheduled requests may be re-scheduled
in future plannings?

! Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Takustr. 7, 14195 Berlin, Germany,
http://www.zib.de

2 Allgemeiner Deutscher Automobilclub, Am Westpark 8, 81373 Miinchen, Germany,
http://www.adac.de

? Intergraph Corporation, Huntsville, AL 35894 USA, http://www.intergraph.com
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e Is it convenient to allow preemption? (i.e., changes in the next request as-
signed to a unit?)

The online character of the problem — and at the same time its main challenge
— comes from the impossibility to predict if, where and when new requests in the
(near) future will take place.

The (Real-Time) Vehicle Dispatching Subproblem VDP

Given a “snapshot” of the situation at some moment in time, the VDP consists in
computing a minimum cost dispatch for serving all pending requests with the avail-
able units and (if required) contractors. The term “real-time” is used to underline
ADAC’s requirement that such a dispatch has to be returned in a very short time,
usually in no more than 5 seconds for a system load of about 200 requests and 80
units.

In the next section, we present an integer programming formulation for the
VDP, based on the Danzig-Wolfe decomposition approach from Section 2.3.1. Our
solution algorithms for both the VDP and the OLVDP are described in Section 7.3.
The former consists in a column generation procedure, where the pricing subprob-
lem is solved by enumeration in a dynamically restricted search space. We use this
scheme to obtain feasible solutions as well as valid lower bounds on the cost of a
dispatch. Computational results are reported in Section 7.4.1.

On the other hand, as anticipated before, a theoretical treatment of the OLVDP
from the point of view of competitive analysis seems to be out of reach. In Chap-
ter 5 we presented some results concerning a simplified version of the problem, but
this is still far away from the practical situation. Here we change our strategy and
choose an approach based on a posteriori analysis via simulations. We compare
how different online algorithms perform on problem instances made from recorded
real-world data. In Section 7.4, we report some computational results regarding the
two problems.

7.2 An IP Model for the VDP

The VDP can be modeled as a multi-depot vehicle routing problem with soft time
windows (MDVRPSTW), where each guided vehicle is a depot of its own and
the contractors maintain a depot with capacity equal to the number of requests.
This problem is known to be NP-hard, since it contains the classic vehicle routing
problem as a special case. (And hence also the TSP, as stated in Chapter 2).
Many algorithms, heuristic and exact (i.e., capable of providing optimality
gaps), have been proposed for the related vehicle routing problem with time win-
dows, where the time windows constitute a hard constraint that has has to be re-
spected in any feasible dispatch (refer to Chapter 2 for a survey). In contrast,
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the use of “soft” time windows, which may be violated at a certain cost, has been
much less investigated. In our case, soft time windows are one of the “management
constraints” specified by ADAC, and their purpose is to fix an adequate trade-off
between quality of service and operational costs.

The IP formulation tackled by our algorithm relies on a tour-based, set par-
titioning model, similar to the one proposed (among others) by Desrosiers et al.
[1995]. Such formulations have been successfully applied to other VRP instances
involving hard time windows, capacity constraints, dial-a-ride precedence condi-
tions, etc. To the best of our knowledge, however, none of the exact algorithms
was ever reported to predictably meet strict real-time requirements in a large-scale
real-world application, or, put in other words, to produce reasonable answers very
early in the course of the optimization process.

An instance of the VDP consists of a set of units I/, a set of contractors V, and
a set of requests o, comprising the following input data:

e For each unit u € U:

a(u) its current position
ap(u)  its home position
ton(u)  its log-on time

toff(u)  the time when its shift ends
Cary(u)  its driving costs per time unit
Csve(u)  its serving costs per time unit
Cot(u)  its overtime costs per time unit
F(u) a set of available capabilities

e For each contractor v € V:
csve(v)  afixed cost for serving a request*
¢(v) a delay before starting service
F(v)  aset of available capabilities

e For each request r € o

a(r) its position

T(r) its release time
O(r) its deadline
0(r)  its service duration

F(r) aset of required capabilities

The soft time windows are expressed in form of a lateness cost function f that
depends on the delay W™ incurred when serving a request. We have considered
several possible definitions for f, which were proposed during discussions with
personnel from ADAC. Based upon empirical observations, we selected the one

*Actually, the service costs depend on the contractor-request pairing, but incorporating this into
the computation of the cost coefficient for a contractor tour is trivial and does not affect the perfor-
mance of the algorithm.
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that produced the best effects in terms of setting a reasonable balance between
average wait times and operational costs:

Fryt) = oW (1, 8) + e (WH (1)),

where ¢}, , ... are two nonnegative constants, and W+ (r,t) := (t —0(r))" is
the delay or late time incurred if request 7 is served at time ¢ (i.e., if a unit reaches
r at that time). This quadratic lateness cost function has the advantage of giving
higher priority to those requests that have been waiting longer, since the cost of
each additional minute of delay is larger for them.

A feasible service tour T' for a unit v € U can be described by a sequence
(u,r1,...,71) of k distinct requests visited by w in that order, such that F'(r;) C
F(u) holds for all i € [k] (i.e., the unit is technically equipped to serve each of the
requests in the tour).? It is assumed that v starts from its current position at time
ton(u) and drives to its home position after having attended the last request in 7.
We will use the sequence (u) to denote the go-home tour, i.e., the tour in which u
travels from its current position directly to its home position. A feasible contractor
tour S is an (unordered) set {ry, ..., r;} of requests that have been assigned to the
best possible service contractor capable of serving them. If .S is a singleton, we
call it an elementary contractor tour.

A feasible solution of the VDP (which in the sequel we simply call a dispatch)
is a set of service and elementary contractor tours® with the following two proper-
ties:

e cach request appears exactly in one (either service or contractor) tour, and,
e cach unit has exactly one service tour to drive.

Let us denote by 7, the set of all feasible service tours for unit u, and by S the set
of all feasible contractor tours. Moreover, we define 7 := U,y 7Z,,. To guarantee
the existence of at least one feasible dispatch, we always assume that 7 contains
all go-home tours and S contains all elementary contractor tours.

A service tour 7' = (u, 71, ..., ) fixes the time at which each of the requests
T1,...,ry are visited by u. For i € [k], we call this time the start-of-service time
for r; in T', and we denote it by ¢(7',r;). Considering that the service of requests
may not start before their release times, and that units are allowed to wait, ¢(7",7;)
may be computed according to the following recursive formula:

max {ton(u) + dy(a(u),a(ry)), 7(r1)}, ifi=1,
t(T,r;) = { max {t(T,ri—1) + 0(ri-1)+

dy(a(ri—1),a(r;)), 7(ri)}, otherwise,

SRecall that [k] denotes the set {1,...,k}.

® At the current stage of the project, we are only considering elementary contractor tours. Nonele-
mentary tours can easily be added to the model and could be used in a future version to deal with
more complex price structures involving for instance rebates based on the quantity of requests booked
to a contractor.
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where d, (x,y) is the time required by u to travel from position z to position y.
The cost ¢ of a service tour like the one above is the sum of four terms:
driving, service, lateness and overtime costs. These are defined by

cr = cary(u) dy(au),r1) + i Carv () dy (Ti-1,77) (7.1)
+ Cary (u) dy (18, ah(u))lz2 (driving)
+ Zk: Cove () 6(r;) (service)
2:1
+3 i t(Tr) (lateness)
i=1

+ ot (u) (H(T, ) + 6(rk) + du(r, an(u)) — toir(u)) ™. (overtime)

The cost of each contractor tour is explicitly given as part of the problem data.
The cost of a dispatch is equal to the sum of the costs of all service and contractor
tours that constitute it.

We are ready to formulate the VDP as an integer program. Using the approach
discussed in Section 2.3.1, we define a binary “indicator” variable for each tour.
For all T € 7, we take zp € {0,1} with the following meaning: zp = 1 if
and only if the service tour 7' is chosen to be in the dispatch. A variable xg is
introduced for each contractor tour S € S in a similar way. Moreover, for all
reocand X € TUS,letady € {0,1} denote whether 7 is served in X or not.
The problem can then be stated as follows:

min Z csrs + Z crxr (VDP)
Ses TeT
subject to
Z asrs + Z apry =1 Vr € o, (7.2)
Ses TeT
Y ar=1 Yu € U, (7.3)
TeTy

xp €{0,1} vI'eT, (74)
xzg € {0,1} VS eS. (7.5)

Constraints (7.2) specify that each request has to be covered exactly by one
service or contractor tour. Constraints (7.3) state that every unit has to be assigned
exactly one service tour to drive. Finally, (7.4) and (7.5) are integrality restrictions.
Observe that, under our assumptions, this integer program has a trivial feasible
solution consisting of all elementary contractor tours and all unit go-home tours.



166 The ADAC-Problem Revisited. A Solution Approach.

7.3 Solution Approach

Now we present our solution algorithm ZIBDIP for the ADAC-Problem. Sec-
tion 7.3.1 describes an approach based on column generation for solving the real-
time dispatching subproblem VDP. In Section 7.3.2, we discuss some alternatives
for embedding this algorithm into an online vehicle routing scheme for the OLVDP.

7.3.1 Solving the VDP

The IP model from the last section has one major drawback which makes a “direct”
solution approach impracticable: for a typical problem instance involving about 80
units and more than 200 requests, there are so many feasible tours that only writing
down the integer program explicitly would require huge amounts of memory space
and computing time. Here is where the column generation approach comes into
play. As described in Section 2.3.1, it is not necessary to know all columns of
VDP in advance in order to find an optimal solution; all what one needs is a way
to generate new columns with negative reduced costs dynamically, or to prove that
no such columns exist.

Before looking at the details of the algorithm, let us first introduce a few defini-
tions and a basic lemma. We shall use the term MLP (for master linear program)
to denote the linear relaxation of VDP, obtained as usual by replacing restrictions
(7.4) and (7.5) with nonnegativity constraints. Observe that this problem still has
one variable (though no longer integer) for each feasible tour. The reduced linear
problem RLP is defined by considering only a “small” subset T C T of feasi-
ble service tours, together with all the |o| elementary contractor tours. Initially,
T contains all go-home tours, as well as some heuristically constructed tours (see
page 170). In the course of the algorithm, T is enlarged as new tours are generated.
At any given iteration, DRLP denotes the dual linear program of RLP. Observe
that DRLP has one variable for each unit and each request. Following a standard
convention (see for instance Chvatal [1983]) we call these variables the units’ and
requests’ prices. Moreover, the reduced cost ¢x of a (service or contractor) tour
X € 7 U S with respect to some dual solution 7* € R™, with m = |o| + U] is
defined by

cx — g am, —my,, if X € 7T, for some u € U,
éX — reo . )
cx — g ax Ty, otherwise.

reo

7.3.1 Lemma (Lower bound on an optimal dispatch) At a certain stage of the
column generation algorithm, consider the reduced linear problem RLP and its
dual DRLP. Letx* € R, withn = |T|+|S|, and * € R™, withm = |o| + U],
be their corresponding optimal solutions. Then the cost c¢¥P" of an optimal dispatch
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is bounded from below by:

CVDP > CMLP > CRLP+ § :mln éT

ueU

ML RLP

where cMMP and ¢ are the optimal solution values for MLP and RLP, respec-
tively, and ¢ := cp — ), o, apmy — m, is the reduced cost of service tour T' with
respect to m*.

Proof. The first inequality is trivially valid, since MLP is just the linear relaxation
of VDP. For proving the second inequality, let x € RY, with N = |T| + |S], be
an optimal solution to MLP. Adding and subtracting the optimal solution values
for RLP and DRLP (which are equal to each other, due to the Duality Theorem of
linear programming) we obtain

MEP — Z crxT + Z csTg

TeT Ses
+ Z crep + chqu - ZTI’: - Z?TZ
TeT SeS reoc weU
= orZr+ Y csTs+ Y erap+ > csrh
TeT Ses TeT Ses
- (Z > aljmeJrZagxs) -y (Z xT> :
reo ueld TeT, Ses ueU TeTy
. N ,
by (7.2) _1by (73)

Rearranging terms in this expression,

cMLP _ ZCTx?—{—ZCng‘FZ (Z Tr (CT_ZGJTTW: —7T2>>

TeT Ses ueld \T€T, réc
I L (8 oy
SeS reoc
RLP — A — A
LSS a3 asts
ueld TeT, Ses
> REP min ép.
TeT,
ueU

The last inequality is the consequence of two facts:

e The reduced cost ¢g of any contractor tour S' € S is nonnegative, as all such
tours are already contained in RLP, and x* is optimal.
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e Since (7.3) requires ZTeTu Z7 to be equal to one for any unit u, we have
replaced a weighted average of the reduced costs from the tours in 7, by the
smallest such value.

0

The Top Level Algorithm

We are now in position to describe our solution algorithm ZIBDIP. Figure 7.1
shows an outline of it at the top level. The input of the algorithm is an instance
of the VDP. During the initialization phase, a first reduced linear program is
constructed which contains at least all (elementary) contractor tours and all unit
go-home tours. Additional tours may be generated by diverse start heuristics de-
scribed later in this section. The best feasible dispatch x found is stored to ensure
the availability of a valid solution at an early stage in the program’s execution, as
demanded by the real-time requirements of the problem.

The initial RLP is solved to optimality by calling an LP solver’. This call
returns a pair (x*,7*) of primal-dual optimal solutions for RLP and DRLP, re-
spectively.

At each iteration of the main loop, new columns (i.e., service tours) having
negative reduced costs with respect to 7 are generated by the pricing procedure
AddNewColumns. Besides of the current dual solution, this procedure uses four
parameters to control the column generation process: a search degree d, a search
depth ¢, an acceptance threshold a, and a sorting criterion <; we will learn more
about their exact meaning later. For now, it suffices to say that d and ¢ determine
how exhaustive the search for new tours will be. These parameters are adjusted
between successive calls to the pricing module, within a nested-loop scheme. At
each new iteration of the inner loop, the search depth is incremented. At each new
iteration of the outer loop, the search depth is reset to its initial value, and the search
degree is incremented. After a call to AddNewColumns, all columns found are
added to RLP, and the problem is re-solved to obtain a new pair of primal-dual
optimal solutions.

Whenever there has been enough progress on the value c of the current
optimal solution for the reduced program, or whenever enough time has elapsed,
RLP is solved as an integer program via a call to a third-party IP solver software,
and the best available dispatch x is updated, in case the real-time-conditions force
ZIBDIP to terminate in the near future. In order to reduce the impact caused by
the intermediate calls to the IP solver on the performance of the column generation
procedure, we require the solver to return the best solution found within a certain
time-limit A. We let A increase between successive calls, since at later stages of
execution the size of RLP becomes larger.

RLP

"In our prototype implementation, we have been using CPLEX 8.0 in its standard configuration
as both LP and IP solver.
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Obtain: initial dispatch,
initial RLP,
initial dual prices

l

d < initial search degree
¢ «— initial search depth

| Generate new columns |

1

| Resolve RLP |

l

If enough progress on ¢
or enough time elapsed,
compute new dispatch

l

If progress on c™-* stalls,
compute new lower bound

1

RLP

RLP

yes [T
Optimality gap below ¢*?
[0 ‘
yes
Running time reached ¢*?
[0
1 no
t=|o]? — Increase ¢
yes
no —
d=|o|? ¢« initial search depth,
increase d
yes

| Compute new dispatch |

| Output current dispatch |

Figure 7.1: Algorithm ZIBDIP for the VDP. Top level view.



170 The ADAC-Problem Revisited. A Solution Approach.

Applying Lemma 7.3.1 we could in principle compute a valid lower bound 2
on the cost of the optimum dispatch at any iteration during the column generation
process. However, finding a service tour with minimum reduced cost for a unit is in
general a task that demands excessive running time, specially in the cases of high
system loads.

For this reason, we look for lower bounds only at late stages in the program,
for instance when the progress on cRLF stalls. We use two procedures for calcu-
lating lower bounds: the same column generation module AddNewColumns with
a special configuration of the parameters, and a resource constrained shortest path
algorithm RCLowerBound. We shall describe both of them in detail later.

The execution of ZIBDIP terminates when one of the three following stopping
criteria is met:

e the running time reaches a certain limit ¢*,

e avalid dispatch with value ¢*, and a valid lower bound 2 are found for which
the optimality gap
- Q
Q

is less or equal to a certain value g*,

e there are no more service tours with negative reduced costs.

Both t* and g* are provided as input parameters.

The last two criteria deserve some additional explanation. Observe that the
absence of columns with negative reduced costs implies that cRFP = ¢MLP byt
it does not imply that the optimal integral solution for MLP (in other words, the
optimum dispatch) will consist solely of columns contained in RLP. In fact, as
pointed out in Section 2.3.1, to solve an integer program to optimality via column
generation a branch-and-price approach might be required, in which new columns
have to be generated at each node of the branch-and-bound tree. Fortunately, in
all practical instances we tested, there was no need of branching to achieve the
prescribed optimality gaps (between 1% and 5%). On several occasions we were
even able to find provably optimal dispatches.

After the column generation process has ended, RLP is solved as an integer
program for a last time, and ZIBDIP outputs the best dispatch found as well as
information on the optimality gap, if available.

Start Heuristics

On demand, our algorithm can employ heuristics during the initialization phase
in order to enhance the quality of both the first available dispatch and the initial
dual prices. This is specially useful for high-load instances of the VDP, where
column generation from scratch may take too long to give a reasonable answer.
We have planned to include several heuristics of both route construction and route
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improvement kinds (see section 2.4 for an explanation of these terms). Here we
describe the two of them which are currently implemented.

Best-Insertion. A feasible dispatch is built in a greedy manner. We start
with all units having go-home tours assigned to them. Then we consider all re-
quests sorted by increasing deadlines, which is the order in which they are usually
given in our data sets. For each request r € o, we search for the best unit tour—
together with the best position within this tour—where 7 can be inserted. If the cost
for inserting 7 at this position is smaller than the cost of assigning r to the best con-
tractor capable of serving it, the insertion is done. Otherwise, the corresponding
elementary contractor tour is generated.

Node-2-OPT. This heuristic consists in executing successive node-exchange
steps as long as this helps to improve the value of a given feasible dispatch. We
define a node-exchange between two requests 7; and r; as a swap of their current
positions. Three possible cases have to be taken into account: both r; and r; might
be covered by the same service tour; or, they might belong to different unit tours;
or, one of them might be currently served by a contractor. Exchanges are taken
whenever they lead to improvements in the solution value. After such a exchange
has been executed, both 7; and r; are tested to be in an (locally) optimal position,
in a similar way as in the Best-Insertion procedure. The heuristic stops when no
more improving steps can be taken.

Column Generation Procedure

Algorithm 7.1 shows an outline of AddNewColumns, our column generation pro-
cedure used to find new service tours with negative reduced costs. For each unit
u, the search for such tours is done by enumeration in a branch-and-bound tree
(called the search tree, for short). Nodes in this tree represent feasible tours for w.
The root node corresponds to the go-home tour, and any other node represents the
tour obtained by appending one new request at the end of the tour associated with
its parent node.

The search tree for a unit « is traversed via depth-first-search in the subpro-
cedure SearchTours. This procedure receives a partial tour 7" and tries to extend
it. We denote by o(7') the set of requests that are covered by T'. The elements in
o \ o(T) are sorted according to a sorting criterion < and the first d of them (at
most) are inserted into a priority queue (). Both < and d are passed as parame-
ters to SearchTours.® At next, the |Q| new tours of the form {(T,r) : r € Q}
are considered. Whenever the reduced cost of such a tour 7" lies below the given
acceptance threshold a, T” is added to the answer-set 7 *. The process continues
recursively until a given limit ¢ for the length of T’ (i.e., for the number of requests
covered by the tour) is reached. To avoid exploring branches of the search tree
unnecessarily, the procedure PruneBound (see below) computes a lower bound
on the reduced cost of any tour that can be obtained by further extending 7”.

880 far, we have tested the use of three such sortin g criteria: the reduced cost of the new extended
tour 7", its completion time, and its primal cost.
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Input Instance ¥ of the VDP, ¥ := (o, U, V),
current dual solution 7,
maximal search depth ¢,
maximal search degree d,
acceptance threshold a,
sorting criterion for requests <

Output Set 7* of new feasible tours with negative red. costs

T —
for w € U do
T «— (u)
SearchTours(7*,T,%, 7, 4,d, a, <)
5: end for
return 7 *

SearchTours(7*,T,%,m,4,d, a, <)
if length(7") = / then
10:  return
end if
Q < pqueue(o \ o(T), <,d)
{Q contains at most d requests to extend 7, sorted according to <}
while Q # () do
15 r «— ExtractMin(Q)
T — (T,r)
if ¢ < a then
T —T*U{T'}
end if
20:  if PruneBound(X, 7", 7, ¢) < a then
SearchTours(7*,T,%,m, ¢, d,a, <)
end if
end while
return

Algorithm 7.1: AddNewColumns
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Input Instance ¥ of the VDP, X := (o,U, V),
current dual solution 7,
maximal search depth 7,
feasible service tour 7'

Output A lower bound on min {égv : 7" € 7'}, where 7' contains all tours of
length at most £ that can be created by extending 7.

G—10

{ — ¢ —length(T)

forr € o\ o(T) do
Y(T,r) < maximal gain of serving r after T’
G—GuU{¥T,r)}

end for

s < sum of the largest ? elements of G

return ¢y — s

Algorithm 7.2: PruneBound

The acceptance threshold parameter a is used to keep the number of gener-
ated columns under control: if too many columns were generated in the previous
iteration, we double the (negative) value of a and thus “raise the standards” for ac-
cepting new columns in the current iteration. On the other side, if too few columns
were generated, we halve the threshold.

Observe that the maximal search depth £ and the maximal search degree d
strongly influence the running time required by a call to AddNewColumns, since
they determine both the height and the breadth of the search trees. For instance, if
¢ = d = |o| then we will explore via enumeration all tours in 7". On the contrary,
if £ = 1 then we are creating just one tour for each unit, in a greedy manner. This
fact is exploited by our dynamic pricing strategy: In the beginning we consider
only small search trees, and thus avoid generating too many columns, since we
expect the dual price information to be too “unstable”. At the same time, by doing
so we enforce RLP to be re-solved often. As the iterations go on the dual solution
7 will eventually start to settle down. Giving larger values to the depth and degree
parameters, we then allow a more exhaustive search to take place.

Pruning the Search Tree

PruneBound returns a lower bound on the reduced cost of any tour 7" with length
at most £ that can constructed by extending a given tour 7". This value is computed
in the way outlined in Algorithm 7.2.
Let T = (u,r1,...,r) and 7" = (u,ry,...,7%,...,7rq), With k < ¢ < L.
Moreover, denote by
t* =t(T,rr) + 6(rg)
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the time at which u has just finished serving the last request in 7'. Note that for all
k < i < q, processing the request r; at some time after ¢t* implies that v cannot
return to its depot earlier than time ¢, where

= t* + dyla(ry),a(r:)) + 0(ri) + du(alr), an(u)).

Thus, the insertion of r; in 7" causes at least the following unavoidable additional
cost e(r;, t*) to be incurred:

e(ri, t*) := cove(w) 6(ri) + f(ri, t")
+ ¢ot (1) min {(f - toff(u))+ , 5(7“1-)} .

It now follows for the reduced cost ¢é7v of TV,

Crr = e — E Ty — Ty

reo(T")
q
> Cr — Z (71'” - B(Tz‘,t*))
i=k+1
q
>eép— Y (T, (7.6)
i=k+1

where ¢ is the reduced precost of T', obtained by subtracting from ¢ the driving
costs for the return-home trip and the overtime costs; and

T, r;) = (7, — e(rl-,t*))Jr

is called the maximal gain of serving r; after 7.
Since k < g < ¢, (7.6) can be further extended:

q
ép = ér— Y O(T,r)

i=k+1
‘

>ér =) 0
i=1

where 7 is the i-th largest value from the set {9(T,r) : r € o \ o(T)}, and ¢ :=
¢ —length(T"). PruneBound computes and returns this last bound.

Lower Bounds

The key issue when computing a lower bound {2 on the cost of the optimal dispatch
via Lemma 7.3.1 is to determine for each unit the minimum reduced cost of a fea-
sible service tour. One way to do this consists in simply calling the same column
generation procedure AddNewColumns with the parameter setting ¢ = d = |o|
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and a = 0. This enforces the pricing module to enumerate all columns with nega-
tive reduced costs. Obviously, such an approach can be undertaken only when for
some reason we expect the number of new columns to be small. In this case, it
might be possible that the pruning criterion PruneBound is sharp enough to allow
an efficient traversal of the whole search tree.

Alternatively, we may use the procedure RCLowerBound described in Algo-
rithm 7.3, which consists in solving a resource constrained shortest path formula-
tion of the pricing problem, following the strategy presented in Section 2.3.4. For
each unit u € U, we define a digraph D = (V, A) whose set of nodes

V={a(r) : r€e o} U{a(u),an(u)}

contains the positions of all requests in o, together with the current and home
positions of u. Any two nodes associated with requests are joined with arcs in both
directions. Furthermore, there are arcs leaving from a(u) to all other nodes in V,
and arcs going from any node in V' to ap,(u).

The algorithm maintains a set of labels L, forevery a € V. If a = a(ry) is as-
sociated to a request ry, then each label Lr € L, represents what we call a partial
pseudotour for u ending at 7, i.e., a sequence of the form 7" = (u, 7y, ..., 7)) that
denotes the “service tour” where w starts from its current position at time o ()
and visits requests r1, . .., 7 in that order. We call it a pseudotour because we do
not require the visited requests to be different from each other. The word partial,
on the other hand, means that v does not return to its home position after serving
Tk.

To encode such a partial pseudotour 7', Ly stores a triplet (t7,¢r, 1 Lp-),
where 7 is the time at which u has completed service of ry, ¢7 is the reduced pre-
cost of T defined on page 174, and T Lp- is a pointer to the predecessor of L, i.e.,
to alabel Ly € L, ,) associated with the pseudotour T~ = (u,71,...,7%_1)
that is obtained by dropping 7, from the end of 7.

Checking the cost definition (7.1) one can see that both ¢7 and ¢ can be com-
puted from the information contained in the predecessor of L7 . Conversely, know-
ing the components of L7, it is always possible to calculate the label of any pseu-
dotour T created from 7" by adding a new “request-node” at its end. We call this
procedure to extend the label L.

The sets of labels for the two nodes a(u) and aj(u) have a special interpre-
tation. The first one contains only the start label (ton(u), —my, ), which has no
predecessor and is used with the sole purpose of forcing all pseudotours to start
at position a(u), at time ton(u), and to include the cost component regarding the
unit’s dual price. The labels at the home node ay,(u) are associated with complete
pseudotours, which include the return-home trip and the overtime costs. Observe
that they may be obtained by extending other labels as described above.

Let Ly, = (try,¢ny, 1 LTf) and L1, = (tp,, ¢y, 1 LT;) be two labels from
aset L,,a € V. Lp, is said to be dominated by L, if t, < tp, and ¢, < 7.
In Section 2.3.4, we proved that dominated labels are unessential for finding a



176 The ADAC-Problem Revisited. A Solution Approach.

Input Instance ¥ of the VDp, X := (o,U, V),
current dual solution 7,
aunitu € Y

Output A lower bound on min {¢r : T € 7, }

{Initialization:}
Lo +— (ton(u)7 T, ');
{unprocessed labels are maintained in a priority queue (), sorted according to
their times: }
Q@ < pqueue({Lo} , ton(u))
Ly —0,VaeV\{a(u)}
'Ca(u) N {LO}
{Main loop:}
while Q # () do
Lmin — POPmm(Q)
a* + node at which L,;, is located
{Label extension:}
for a*a™ € Ado
extend Ly, with at to L+
£a+ — ﬂdom(£a+ U {LT+})
if L+ € L.+ then
push(Q, Lp+,tr+)
end if
end for
end while
{Determination of minimum reduced cost of a pseudotour:}
Cr+ < min {ET : (tT,éT, TLTf) S ﬁah(u)}
return ¢y«

Algorithm 7.3: RCLowerBound



7.3 Solution Approach 177

resource constrained shortest path and hence may be deleted without losing any
information. However, for a reason that will be explained in a moment, we need to
keep some of them. More precisely, we call L1, to be strongly dominated if one of
the following is true:

e L7, is dominated by more than one label from £, or,

e L7, is dominated by another label L1, = (t7,,¢r,, 1 LTQ_) such that their
predecessors LTf and LT2_ belong to the same set L (i.e., they are “located”
at the same node).

For any set £ of labels, —dom(L£) denotes a new set obtained by deleting from £
all strongly dominated labels.’

We are now ready to describe how RCLowerBound works. In the beginning,
all sets of labels £, with a € V' \ {a(u)} are initialized to be empty, while L,
contains only the start label defined before. At each main iteration, the label L,
having the minimum time component is chosen, say Ly, € Lg+. Then Ly,
is extended to generate new labels at all the nodes that can be reached from a*,
including in particular the home node ay(u) . Whenever a label is inserted into a
set, strongly dominance is tested and any redundant information is deleted. After
this label extension phase has finished, L,,;;, is marked as “processed”, to avoid
choosing it again, and a new cycle starts. The main loop terminates when there are
no more unprocessed labels. All labels at the home node are then scanned, and the
minimum value of the cost component is returned.

To prove that the stopping criterion for the main loop is reached at some stage,
it suffices to show that after a certain number of iterations no new undominated
labels can be created. In fact, suppose label Ly = (tp,¢ép,T Lp—) is obtained
by extending Lr- = (tp—,¢ép—, 1 Lp--), where T~ = (u,ry,...,7,) and T =
(u,r1,...,7k, Tk+1). Then by definition

tr = max {tp- + dy(a(re), a(rr+1)), T(re+1)} + 6(re+1)

which means that the time component strictly increases in each new label. The cost
component may decrease during an “initial” phase. Yet at some point high times
will translate into strictly increasing costs due to the lateness component f. After
that, as both time and cost strictly increase, only a finite number of iterations can
be executed before all newly generated labels are (strongly) dominated.

We need to state a final comment about the procedure. Observe that RCLower-
Bound does not exactly compute the bound from Lemma 7.3.1, but rather a relax-
ation from it, since we allow pseudotours to contain repeated requests. In Sec-
tion 2.3.4, we showed that finding an elementary resource constrained shortest
path, where all requests are required to be visited at most once, is an N/P-hard

°One can construct simple examples to show that —dom(£) is not unique in general. However,
since this fact does not have any relevant consequences for the analysis of our algorithm, we shall
not insist on it and rather define = dom(L) to be any of these sets.
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problem. To improve the quality of our bound, however, we do forbid at least one
(frequent) kind of these request repetitions: the two-cycles of the form r;,r;,7;.
This is done by preventing any label from being extended to the same node of its
predecessor. However, doing so requires the dominance criterion to be modified, as
otherwise feasible solutions may be lost. In plain words, we need to keep not only
the “best”, but also the “second best” labels for each node. This was the reason for
introducing the idea of strongly dominance.

7.3.2 Online Strategies

As mentioned at the beginning of this chapter, we decided to keep away from car-
rying out a theoretical competitive analysis for the OLVDP, since we do not expect
any significant results to be obtained from it. Unless the power of the offline ad-
versary is restricted in some reasonable way, the situation for any online algorithm
seems to be hopeless: there are simply too many ways in which it can be mislead.
On the other hand, as soon as we start “refining” the model to better reflect the real-
world problem instances, we rapidly reach the limit of what is technically possible
to compute (at least within the time frame of our project).

Hence, we decided to take a more practical approach and evaluate online strate-
gies on the basis of what we call a posteriori competitive analysis: we compare
their performance on simulations executed using real-world data. The two main
strategies we tested were the following:

REPLAN. Each time a new request arises, re-solve the VDP considering all
pending requests and all available units. (Units currently serving requests
are marked as “busy” by setting their log-on times appropriately).

IGNORE][x]. Independently of the arrival of new requests, dispatches are
computed at fixed intervals of x time units, where x is a global parameter.

Both strategies use the ZIBDIP algorithm presented in the last section to solve
the VDP instances. The test results are discussed in Section 7.4.2.

A phenomenon that was detected during the simulations (and also in the pilot
operation of the system at some ADAC help centers) is the appearance of preemp-
tions. We say that there is a preemption for a unit v whenever the next request
assigned to u has to be changed (without being served) due to the successive re-
computations of the service schedule. In most of the cases, this means that orders
previously given to the unit have to be canceled. Although preemptions may just
constitute an inherent part of the optimization process, if they occur too often they
generate unnecessary operational costs. Besides, the idea of “aimlessly wandering
units” makes the user of the system feel uncomfortable with it. A high number of
preemptions also raises doubts about the quality of the solutions obtained for the
intermediate VDP instances.

We have considered three different alternatives to handle the problem of pre-
emptions:
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e allow more running time for solving the VDP instances, with the hope that
the obtained solutions will become more “stable”,

e penalize preemptions in the cost function,

o forbid preemptions completely and check out how much optimization poten-
tial is sacrificed by doing this.

Again, the results obtained are reported in the next section.

7.4 Computational Results

7.4.1 Solution of VDP Instances

Figure 7.2 shows the results of an experiment conducted on a collection of snap-
shot instances belonging to a complete day (December 7th, 2002). It should be
mentioned here that these are some of the hardest instances we have encountered
since our algorithm started pilot operation at ADAC in October 2002. We recorded
1163 snapshots obtained during a simulation using the IGNORE[1min] strategy
(i.e., dispatches computed at fixed intervals of one minute length, see last section).

We have run ZIBDIP on each of these instances with the following configura-
tion:

e The column generation loop is executed until the gap between the lower
bound 2 and the solution value of RLP is not larger than 2.5%, or until a
time limit of 7,200 seconds (two hours) is reached.

e No intermediate dispatches are computed during column generation.

e After the column generation loop has ended, the IP solver is called to calcu-
late a minimum cost dispatch using the columns in RLP. A time limit of ten
minutes and a desired optimality gap of 2.5% (between the integer solution
and the solution of RLP) are specified.

The tests were carried out on a two processor 800 MHz Pentium III machine, with
1.0 GB RAM and Linux as operating system.

We use the ratio between the number of waiting requests and the number of
available units as a measure of the load of the system at any moment in time.
Figure 7.2 shows two combined pictures: in the first one, the load of each snap-
shot along the day is plotted simultaneously with the optimality gap'® obtained by
our algorithm when solving it; in the second picture, the load is plotted together
with the running time required by our algorithm for each snapshot. The horizontal
dashed lines mark the aimed 5% optimality gap in the first picture, and the two-
hours time limit in the second picture. (Some snapshots were actually run for a

1Remark that the optimality gap is taken between the best feasible dispatch found and the best
valid lower bound, see page 170 for the definition.
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Figure 7.2: VDP snapshot instances solved during one “heavy” day. The horizon-
tal axis represents the time in the day. The first picture shows the load of every
snapshot together with the optimality gap obtained by ZIBDIP, the second picture
combines the plots of load and required running time. (Input data was recorded by
ADAC on December 7th, 2002).
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little more than two hours, due to the way how our implementation controls the
elapsed time).

Notice at first that the load increases during the day until about 14:00 and then
it starts to drop back. There is a peak between 11:00 and 16:00, when the load
ranges from 3 to 5 requests/unit. In the figure, this “high load region” has been
marked out by enclosing it between the two vertical lines. In contrast, before 9:00
and after 19:00 the load is below 1 requests/unit, which means that there is at least
one active unit per waiting request. Observe also that at some points across the day
the load “jumps down” from one snapshot to the next. This behavior is caused by
the sudden increase on the number of available units, either due to the beginning
of a new shift, or to the intervention of the ADAC dispatchers (they might call for
additional units to log in whenever they think this is necessary).

For the majority of the snapshots (724 of 1163), a solution with a proven op-
timality gap below 5% was obtained within one minute. For other 132 instances,
this was still accomplished in the first ten minutes. The especially hard snapshots
are the ones located in the high load region described above: 165 of them required
more than half an hour to be solved to 20% optimality. For one instance, the gap
was still about 40% when the time limit was reached. Moreover, there were 8 in-
stances for which ZIBDIP was not able to find a valid lower bound within the time
limit.

Notice also that the instance for which the 40% optimality gap was achieved
represents an “isolated” case. For the instances both immediately before and im-
mediately after it, the gap obtained was fairly below 20%. This fact illustrates
another typical feature from our problem: slight changes in the input may lead to
large leaps in the degree of difficulty of an instance.

Figure 7.3 depicts for each instance the optimality gap against the system load.
Observe that for almost all instances having a load below 3, the desired 5% opti-
mality gap is reached. If the system load is larger than 3, then our algorithm does
not present a unique behavior: for some instances the attained optimality gap still
lies below 5%, while for other instances it increases gradually from around 10%
(when the load equals to 3) up to around 20% (when the load equals to 5).

To evaluate the performance of our algorithm in a real-time environment, we
tested it on the same snapshot instances, but setting a time limit of 10 seconds
for the computations. We recorded the primal solution values for the snapshots
(lower bounds are usually not available within that time frame) and compared them
against the ones obtained in the previous test. Figure 7.4 shows the results, plotted
in the form of optimality gaps with respect to the lower bounds from the first test.
For most snapshots, the gaps attained by the two configurations of the algorithm
coincide, revealing that good solutions are found early in the optimization process.
(This is even true for the “outsider” snapshot having an optimality gap of about
40%). Differences appear mainly on the borders of the high load region described
above.

We also tested ZIBDIP on other real-world snapshots selected from representa-
tive problem instances recorded by ADAC. Table 7.1 describes their characteristics.
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Figure 7.3: Optimality gap versus system load for the VDP instances from Decem-
ber 7th, 2002.

Each test consisted in the following:

e We let ZIBDIP run four times, providing time limits of 5s, 15s, 1min, and
2min. Moreover, the algorithm was configured to skip lower bound compu-
tations.

e In the last test, the lower bound module was activated and no time limit was
specified. Instead, ZIBDIP was run until an optimality gap below 5% was
achieved.

The results are reported in Table 7.2.

We have classified the snapshots into four groups, according to the difficulty
they presented for our algorithm. The first eight snapshots are the easy ones: a
primal solution within 5% off the optimum is usually found in the first five seconds,
and one within 2% in the next ten seconds. In less than five minutes, a lower bound
for proving this gap is also available. The next five snapshots form a second group.
The solution in the first five seconds still lies 5% off the optimum, but it requires
one or two minutes to improve it below 2%. The computation of the lower bound
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Figure 7.4: Optimality gaps of solutions obtained with ZIBDIP using 10s time
limit and without time limit. (Lower bounds were computed only in the unlimited
time case).

gets more complicated. Achieving 5% proven optimality may demand up to ten
minutes. Most of the instances appearing in practice belong to these two classes.

The third group contains hard instances. Their main difficulty does not lie
in the computation of a primal solution (this is still 5% apart from the optimum
after the first five seconds), but on the computation of lower bounds and optimality
gaps. When solving the snapshot 0101150. 25, the algorithm required more than
40 minutes to find a solution with proven 1.8% optimality gap. Meanwhile, a better
(primal) solution was found in the first two minutes when the lower bound module
was disabled. More than 38 minutes were invested for computing a good lower
bound!

Finally, the last group contains especially difficult instances that stem from
simulations based on the December 7th (2002) data. For all of them, solutions
within 15% to 25% off the optimum are found in the first five seconds and cannot
be improved in the next two hours. Again, the computation of a good lower bound
is the task which requires the most running time.
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Name requests units load
010115m.14 77 23 335
010115m.12 75 23 3.26
021218.22 113 47 240
010115m.8 62 19 3.26
010115m.15 70 23 3.04
021218.21 115 47 245
0101150.14 174 80 2.18
0101150.12 162 80 2.3
010115m.9 68 19 358
0101150.17 193 80 241
0101150.15 180 80 2.25
0101150.13 160 80 2.00
0101150.22 214 80 2.68
010115m.10 75 19 395
0101150.20 202 80 2.53
0101150.25 226 80 2.83
021207.422 362 82 441
021207445 364 82 444
021207.378 335 71 472
021207.494 418 92 454

Table 7.1: Characteristics of the VDP instances tested.

7.4.2 Simulation Tests for the OLVDP

We tested two online strategies on 17 real-world instances of low (7), medium (7),
and high (3) system load. Each instance contains all requests appearing during a
day, and has information about the availability of units. Table 7.3 lists the total
number of requests and units in each case. No contractors were considered.

As anticipated in the last section, the two online strategies we tested are:

e REPLAN: Compute a schedule each time a new request arises or a unit
finishes service of a request.

e IGNORE[1min]: Compute a new dispatch at fixed intervals of one minute
length.

The two strategies use ZIBDIP as a subroutine to solve the intermediate dispatches.
Moreover, in both cases the lower bound module was disabled and a time limit
of 10 seconds was specified. The solution of every snapshot was “reused” as a
start solution for the next one. We also investigated how the solution changes
when preemption (see page 178) is penalized (at three different levels) or strictly
forbidden.

The high-load instances were solved on a four processor 2.4 GHz Xeon PC,
with 3.5 GB RAM. For the low- and medium-load instances we used a two pro-
cessor 3 GHz Pentium 4 with 2 GB RAM. Both machines had Linux as operating
system.

Tables 7.4 - 7.9 display the results obtained by both algorithms on the low,
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Instance Requests | Units | Conts
low_20021225 838 119 0
low_20021226 377 121 0
low_20021229 936 124 0
low_20030121 839 122 0
low_20030122 861 121 0
low_20030123 921 123 0
low_20030125 968 127 0
med_20021221 1252 131 0
med_20021222 1075 130 0
med_20021228 1023 129 0
med_20030118 1050 128 0
med_20030119 1029 122 0
med_20030120 1183 131 0
med_20030124 1087 127 0
high_20021206 1490 126 0
high_20021213 2566 146 0
high_20021214 1757 131 0

Table 7.3: Characteristics of the OLVDP instances tested.

medium and high load instances. For every instance, the following information
was recorded:

o the maximum load of the system, defined as the maximum number of re-
quests present in a snapshot divided by the average number of units in a
snapshot;

e the average load, given by the sum of requests over all snapshots divided by
the sum of units over all snapshots;

o the maximum number of preempts obtained for a single unit during the whole
day;

o the total number of preempts for all units; and,

e the rotal real cost incurred during the day. (Excluding preempt penaliza-
tions).

The column PP indicates the level of penalization for preemption: 20, 40, or
100 monetary units per preempt. The sign co means that preempts are strictly
forbidden. (Which is not achieved by setting a huge penalization, but rather by
changing the admission rules for tours).

In general, the two online strategies produce similar results, with a slight ad-
vantage in favor of REPLAN. This holds both for the cost and for the number
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of preempts. However, there are also a few instances in which IGNORE[1min]
performs better (see for example 1low 20021229 with preemption forbidden).

The total number of preempts decreases (as expected) when the penalization
is incremented. The maximum number of preempts for a unit, however, does
not clearly follow the same pattern and may even increase (see e.g. instance
med_20030118). This happens independently from the online strategy chosen.

The optimization potential lost when preempts are strictly forbidden ranges
between 5% and 30%. Again, these figures are the same for both online strategies
and for all levels of system load.
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Instance Load Preempts
PP | max | avg | max | total | Cost
low_20021225 | 20 | 1.19 | 0.40 5 71 | 60174.46
40 | 1.22 | 040 4 48 | 60203.58
100 | 1.19 | 0.40 2 30 | 60652.76
oo | 0.75 | 0.19 0 0 | 73985.80
low_20021226 | 20 | 1.84 | 0.63 3 33 | 47189.27
40 | 1.72 | 0.54 3 25 | 48005.38
100 | 1.78 | 0.60 2 15 | 46463.36
oo | 1.34 | 048 0 0| 61206.22
low_20021229 | 20 | 1.39 | 041 5 76 | 63247.77
40 | 145 | 041 3 60 | 64508.03
100 | 1.47 | 041 2 40 | 66795.55
oo | 092021 0 0 | 73440.67
low_20030121 | 20 | 0.81 | 0.31 3 29 | 43155.53
40 | 0.84 | 0.31 2 30 | 40976.23
100 | 0.82 | 0.33 2 22 | 42453.33
oo | 048 | 0.15 0 0 | 4761945
low_20030122 | 20 | 0.81 | 0.34 3 36 | 41813.03
40 | 0.81 | 0.33 3 32 | 41156.02
100 | 0.90 | 0.35 2 20 | 43292.27
oo | 047 | 0.17 0 0 | 43511.05
low_20030123 | 20 | 0.83 | 0.36 2 38 | 44730.64
40 | 0.84 | 0.36 3 31 | 44426.07
100 | 0.83 | 0.36 1 22 | 43774.12
oo | 053] 0.16 0 0 | 45748.61
low_20030125 | 20 | 1.07 | 0.44 4 71 | 73269.70
40 | 1.16 | 044 4 59 | 74274.07
100 | 1.16 | 0.46 5 49 | 76862.91
oo | 0.851]0.26 0 0| 99777.89

Table 7.4: Results for strategy IGNORE[1min] on instances of low load.
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Instance Load Preempts
PP | max | avg | max | total Cost
low_20021225 | 20 | 091 | 044 5 76 | 59082.95
40 | 0.86 | 043 5 54 | 58393.62
100 | 091 | 0.46 3 33 | 60625.56
oo | 0.56|0.22 0 0 | 73814.41
low_20021226 | 20 | 1.63 | 0.96 3 36 | 45664 .31
40 | 1.59 | 0.94 5 25 | 46006.57
100 | 1.68 | 0.97 2 18 | 45115.80
oo | 146 | 0.70 0 0 | 58334.43
low_20021229 | 20 | 0.99 | 046 5 63 | 63399.90
40 | 0.99 | 046 3 59 | 59654.65
100 | 0.99 | 046 3 40 | 70327.14
oo | 0.66 | 0.23 0 0 | 79998.75
low_20030121 | 20 | 0.68 | 0.33 3 40 | 41946.36
40 | 0.66 | 0.32 2 35 | 40911.23
100 | 0.64 | 0.33 2 23 | 41291.67
oo | 042 ] 0.16 0 0 | 46508.22
low_20030122 | 20 | 0.65 | 0.37 3 38 | 41521.09
40 | 0.70 | 0.37 3 29 | 4295741
100 | 0.70 | 0.37 2 24 | 41838.11
oo | 048 |0.20 0 0 | 4289448
low_20030123 | 20 | 0.68 | 0.38 3 40 | 44259.35
40 | 0.73 | 0.38 2 30 | 44513.01
100 | 0.71 | 0.38 3 22 | 47764.95
oo | 046 | 0.18 0 0 | 46686.85
low_20030125 | 20 | 0.84 | 0.49 4 77 | 68260.71
40 | 0.86 | 0.50 3 63 | 73287.95
100 | 091 | 0.51 5 44 | 74336.53
oo | 0.75 | 0.32 0 0 | 98333.48

Table 7.5: Results for strategy REPLAN on instances of low load.

189
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Instance Load Preempts
PP | max | avg | max | total Cost
med_20021221 | 20 | 1.80 | 0.61 9 97 | 106419.10
40 | 1.63 | 0.58 5 78 | 102754.00
100 | 1.76 | 0.58 5 62 | 101153.30
oo | 1.27 | 040 0 0 | 125322.30
med_20021222 | 20 | 098 | 043 3 59 | 61273.00
40 | 1.03 | 044 3 48 | 59660.05
100 | 1.06 | 046 3 43 | 65876.80
oo | 0.67 | 0.23 0 0| 71072.35
med_20021228 | 20 | 1.59 | 0.50 6 69 | 8281143
40 | 1.52 | 049 3 55| 81443.26
100 | 1.58 | 0.50 3 36 | 81537.02
oo | 1.12 | 0.30 0 0| 88947.70
med_20030118 | 20 | 1.25 | 045 3 59 | 67692.81
40 | 1.38 | 0.44 5 55 | 67016.35
100 | 1.41 | 045 4 39 | 69127.66
oo | 094 | 0.25 0 0| 80722.86
med_20030119 | 20 | 1.29 | 047 2 51 63757.81
40 | 1.28 | 0.46 3 40 | 6449995
100 | 1.27 | 045 3 27 | 62914.14
oo | 0.85]0.26 0 0| 7512590
med_20030120 | 20 | 1.14 | 0.50 5 58 | 71809.81
40 | 1.18 | 0.50 3 39 | 73583.92
100 | 1.15 | 0.51 3 34 | 78678.86
oo | 0.83]0.30 0 0| 83336.18
med_20030124 | 20 | 0.92 | 047 5 76 | 65084.40
40 | 1.00 | 0.49 3 51| 69630.53
100 | 1.02 | 0.49 2 26 | 71652.59
oo | 0.67 | 0.28 0 0| 78933.06

Table 7.6: Results for strategy IGNORE[1min] on instances of medium load.
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Instance Load Preempts
PP | max | avg | max | total Cost
med_20021221 | 20 | 1.33 | 0.69 5 91 | 99049.50
40 | 1.30 | 0.68 4 74 | 95231.71
100 | 142 | 0.74 6 62 | 112824.70
oo | 1.11 | 047 0 0 | 120951.70
med_20021222 | 20 | 0.83 | 0.47 3 68 | 60838.81
40 | 0.78 | 047 3 52 | 6131841
100 | 0.88 | 0.50 3 40 | 64476.14
oo | 058 | 0.25 0 0| 68577.20
med_20021228 | 20 | 1.27 | 0.62 5 70 | 81664.39
40 | 1.20 | 0.60 5 49 | 78547.56
100 | 1.25 | 0.62 3 35 | 82098.04
oo | 090 | 0.37 0 0| 86380.92
med_20030118 | 20 | 1.10 | 0.54 3 67 | 67859.59
40 | 1.13 | 0.53 5 66 | 67626.26
100 | 1.04 | 0.54 4 41 | 70519.26
oo | 0.83 ] 031 0 0| 79688.72
med_20030119 | 20 | 0.99 | 0.52 3 62 | 62104.24
40 | 096 | 0.51 3 41 62399.22
100 | 0.99 | 0.51 3 32| 63116.17
oo | 0.74 | 0.30 0 0| 75990.65
med_20030120 | 20 | 0.95 | 0.55 5 73 | 76985.85
40 | 099 | 0.54 3 46 | 74539.19
100 | 0.97 | 0.55 2 32 | 77196.65
oo | 0.71 | 0.31 0 0| 81422.37
med_20030124 | 20 | 0.83 | 0.52 5 68 | 66093.19
40 | 0.83 | 0.51 4 52 | 65837.62
100 | 0.86 | 0.53 4 35 | 70566.99
oo | 059 | 0.29 0 0| 77281.46

Table 7.7: Results for strategy REPLAN on instances of medium load.
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Instance Load Preempts
PP | max | avg | max | total Cost

high_20021206 | 20 | 1.49 | 0.79 89 | 125411.30
40 | 1.51 | 0.81 65 | 127017.40
100 | 1.54 | 0.81 35 | 132941.50
oo | 145 0.61 0 | 171021.80
high_20021213 | 20 | 442 | 1.88 149 | 707088.00
40 | 451 | 1.86 137 | 687735.20
100 | 454 | 1.87 85 | 681813.80
oo | 434 | 1.75 0 | 819823.80
high_20021214 | 20 | 549 | 1.90 132 | 666345.80
40 [ 572 | 191 147 | 679517.50
100 | 5.39 | 1.87 83 | 657351.70
oo | 532 1.76 0 | 773296.00
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Table 7.8: Results for strategy IGNORE[1min] on instances of high load.

Instance Load Preempts
PP | max | avg | max | total Cost

high_20021206 | 20 | 1.34 | 0.84 87 | 124576.10
40 | 133 | 0.83 89 | 125476.10
100 | 1.34 | 0.85 57 | 129623.20
oo | 1.23 | 0.66 0 | 178690.30
high_20021213 | 20 | 3.92 | 2.23 215 | 690317.30
40 | 3.87 | 2.21 151 | 704327.70
100 | 3.94 | 2.25 113 | 711134.20
oo | 3.76 | 2.05 0 | 774896.50
high_20021214 | 20 | 4.98 | 2.59 128 | 688662.40
40 | 4.86 | 2.57 137 | 668457.30
100 | 4.88 | 2.61 99 | 700186.30
oo | 4.83 | 248 0 | 761569.30
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Table 7.9: Results for strategy REPLAN on instances of high load.



Chapter 8

Fractional vertices associated to
cliques of triangles

The following nine matrices Ay, ..., Ag were obtained by computer enumeration.
They characterize the fractional vertices in cliques of triangles completely. In fact,
if A is the triangle-point incidence matrix of a clique of triangles and x, is a frac-
tional vertex of P(A), then each submatrix A, of A appearing as linear program-
ming basis of x, must be a equal to one of A1,..., Ag. (See Section 6.4).

110

T _ (1 11

Ar=|1 1 vy = (3,3:3)
01 1
1 001

01 10 T 1 111

Az = 010 1 vl = (3:2:3:3)
0011
1110

1001 T 1 11 2

A3 = 010 1 vy =(3333)
0011
1110

1101 T 1 111

Adi=19 01 1 7 = (333 3)
0111
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example, 6
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branch-and-bound schemes, 24
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generalized ~ inequalities, 94
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extensions, 89
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conditional cuts, 96
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contraction minor, 80
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generalized ~ inequalities, 94

Dantzig-Wolfe decomposition, 24
asymptotical integrality gap, 29
column generation, 26
in fixed schedule problems, 16
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master problem, 25
Psp, 25
quality of Zyyp, 27
subproblem, 26
Zwmip, 25

deletion minor, 94
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heuristics, 42
online, 51,58, 97,99, 100, 113

generalizations, 64
objectives, 59, 101, 102
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113
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edge inequalities, 84
exact methods, see branch-and-bound schemes

Fano plane, 143
finite field GF(p®), 156
fixed schedule problems, 15
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lower bounds, 16
solution methods, 15
Dantzig-Wolfe decomposition, 16
forbidden minors
for ideality, 92
for perfection, 81

G(A), see conflict graph
GF(p®), see finite field
graph entropy, 82

ideal matrix, 91
width-length property, 93
independence number, 76
integrality property, 27, 31
intersecting
sets of ~ edges, 129, 131, 138
ISP, see set covering, maximum inde-
pendence system

k-server problem, 54

Lagrangian relaxation, 30
and Dantzig-Wolfe decomposition,

31
in VRPTW, 31
quality of Z1 , 31
Zy,30

lifting techniques, 74, 84, 87, 94
sequential ~, 88

lower bounds
for ADAC-Problem, 103-112
for BVG-ticket problem, 50
for fixed schedule problems, 16
for k-server problem, 55
for OLDARP, 62, 64, 66
for OLTSP, 63
for paging problem, 54

matrix inequalities, 86
max-flow min-cut equality, 93
max-max inequality, 78
max-min equality, 92

strong ~, 93
metric space, 54
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connected and smooth, 58,97
min-max equality, 78
strong ~, 78
min-min inequality, 92
minimally
imperfect
graph, 80
matrix, 80, 92
nonideal matrix, 92, 93
exceptions, 93

nonlinear integrality, see ATSPTW, non-
linear integrality

odd
antihole, 77, 85
inequalities, 86
cycle, 85
hole, 77, 85
inequalities, 85
offline adversary, 49
adaptive, 52
fair, 64, 108, 110
non-abusive, 68, 108, 110
oblivious, 52, 66
OLDARP, see dial-a-ride, online
OLTSP, 63
OLVDP, see ADAC-Problem, online
online
ADAC-Problem, see ADAC-Problem,
online
algorithm, see competitive, algorithm,
46,47
deterministic, 47, 48
randomized, 51
zealous, 63
paradigms, 46
problem, 2, 46, 46
BVG-ticket problem, 47
transportation problems, see dial-a-
ride, online; k-server problem
opposite triangle classes, 125
orthonormal
constraints, 123



210

representations, 82, 85

Pr(A), see set packing polytope
P*(A), see set packing, polytope, anti-
blocker
paging problem, 54
PDPTW, 21
cluster first, route second, 42
solution methods
Benders’ decomposition, 23
cluster first, route second, 23
Dantzig-Wolfe decomposition, 24
perfect
graph, 74,76
and stable set problem, 81
anticritically =, 83
critically ~, 83
recognition, 81
strong ~ theorem, 74,76, 79
weak ~ theorem, 77, 79
matrix, 74,79
recognition, 81
pluperfect graph theorem, 79
point
-triangle matrix, 122
constraints, 122
projective planes
degenerate ~, 93
finite ~, 157
pseudo-basis, 135
elementary properties, 136
number of columns, 137

QSTAB(G), see clique-constrained sta-
ble set polytope

randomized algorithms, 51
rank inequalities, 96
real-time, 59

replication lemma, 79
Request-Answer-Game, 47

SCP, see set covering
semidefinite programming, 82
set covering, 70, 90-96
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and maximum independence system,
71,90
fractional relaxation, 71
IP formulation, 70
node covering formulation, 91
polyhedron, 70
basic properties, 91
blocker, 92
integrality, 93
valid inequalities, 94-96
set packing, 70, 72-90
and maximum stable set, 71,72
fractional relaxation, 71
IP formulation, 70
polytope, 70
anti-blocker, 77, 78
basic properties, 73
edge relaxation, 84
integrality, 79
valid inequalities, 74, 84—87
relaxation, 96
set partitioning, 69
fractional relaxation, 71
IP formulation, 70, 119
polytope, 70
Shannon capacity, 82
shoreline TSPTW, 20
simple back-hauling problem, 21
single triangle classes, 125
smoothening techniques, 51
SPP, see set partitioning
SPPRC, 34
algorithms
in ZIBDIP, 175
label correcting, 36
label pulling, 39
label setting, 38
and SPPTW, 34
as subproblem in VRPTW, 27
labels, 36
efficient, 36
related problems, 40
2-cycle free, 40
state graph D, 35
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SPPTW, 34
SSP, see set packing
STAB(G), see set packing polytope
stability number, 76
stable set, 72
polytope, see set packing polytope
problem
in perfect graphs, 81
Stacker Crane problems, 63
State-space relaxation, 32
in the ATSPTW, 18
in VRPTW, 32
straight-line TSPTW, 20

t-perfect graphs, 86

TDI, 79

time stamp model, 46, 58

traveling repairman problem, 20
TRPTW, 20

triangle packing, 121

triviality barrier, 66

VDP, see ADAC-Problem, snapshot
VRPTW, 11
arc formulation, 12
linearization, 14
heuristics and meta-heuristics, 41
k-interchange, 41
optimization-based, 42
OR-opt, 41
route construction, 41
related problems
ATSPTW, see ATSPTW
fixed schedule problems, see fixed
schedule problems
solution methods
branch-and-bound, 14

W -L matrices, see ideal matrix
web inequalities, 87, 145
generalized ~, 95
in 3-set packing, 148—151, see 3-set
packing, webs
in k-set packing, 159-160
width-length property, 93
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work function, 55
algorithm WFA, 55, 57

ZIBDIP, 166, 168
column generation, 171
search tree prunning, 173
lower bound computation, 174-178
start heuristics, 170
tests, 179



