
A mathematical model and a metaheuristic

approach for a memory allocation problem

Maŕıa Soto André Rossi
Marc Sevaux

Université de Bretagne-Sud – Lab-sticc, cnrs, umr 3192

Centre de recherche – bp 92116 – f-56321 Lorient Cedex, france
Corresponding author: marc.sevaux@univ-ubs.fr

Received: date / Accepted: date

Abstract

Memory allocation in embedded systems is one of the main chal-
lenges that electronic designers have to face. This part, rather difficult
to handle is often left to the compiler with which automatic rules are
applied. Nevertheless, an optimal allocation of data to memory banks
may lead to great savings in terms of running time and energy con-
sumption. This paper introduces an exact approach and a vns-based
metaheuristic for addressing a memory allocation problem. Numerical
experiments have been conducted on real instances from the electronic
community and on dimacs instances expanded for our specific prob-
lem.

keywords: Electronic design Memory allocation MILP VNS-TS

1 Introduction

This paper deals with the optimization of cache memory allocation; this
choice is motivated by the fact that processor cache memory management
deeply impacts the performances and power consumption of electronic de-
vices [28]. The continuous advances in microelectronic technology have made
possible the development of miniaturized chips that allow new embedded
products to be enhanced (smart phones and high definition image process-
ing are typical examples). As technology empowers the integration of more
and more functionalities into these electronic chips, their design becomes
more and more challenging. Furthermore, these high-tech products have to
hit the market within a very short amount of time as innovation in the field
of microelectronics also makes them subject to rapid obsolescence.

For a long time, electronic chips used to be designed manually by experts
who mastered a given technology, and were able to control the complexity of

1

the whole product. Such a line of design is no longer possible, and computer-
aided design softwares like Gaut [9] have been developed to generate chips
from their specifications. While the design process is significantly faster with
these types of software, the generated layouts are considered to be poor on
power consumption and surface compared to human expert designed circuits.
This is a major drawback as embedded products have to feature low-power
consumption. The need for optimization is expected to become even more
stringent in the future, as embedded systems will run heavy computations.
As an example, some cell phones already support multithreading operating
systems.

Furthermore, designers of electronic devices want to find a trade-off be-
tween architecture cost and power consumption [1]. Generally, electronic
practitioners consider that to some extent, minimizing power consumption
is equivalent to minimizing application running time on a given chip [6].
Moreover, power consumption of a chip can be estimated through consump-
tion models based on measurements as shown in [18]. As a consequence,
memory allocation must be such that loading operations are performed in
parallel as often as possible.

It is assumed that the application to be implemented on such systems
(e.g. mpeg encoding, filtering or any other signal processing algorithms) is
provided as a C source code, and the data structures involved have to be
mapped into memory bank. Another hypothesis is the absence of an oper-
ating system (OS) in the chip. Indeed, OS manage memory with methods
of their own, so the results presented in this work would require to change
it, which is generally impossible. The term data structures refers to the
variables (scalars, arrays, structures) of the application. Due to cost and
technological reasons, the number and the capacity of memory banks is lim-
ited; an external memory with unlimited capacity is then assumed to be
available for storing data (it models mass memory storage), but the data
stored in that external memory are accessed p times slower than if they were
in a memory bank.

An access time is spent by the processor for loading data structures
(this time is referred to as access cost). All memory banks can be accessed
simultaneously; then, data structures a and b can be loaded at the same time
when an operation in which they are jointly involved is to be performed (e.g.
a+b) provided that a and b are allocated to two different memory banks.
If they are allocated to the same memory bank, then they must be loaded
sequentially and more time is needed; so, a and b are said to be conflicting

if they are involved in the same operation.
Each conflict has a cost, which is proportional to the number of times the

corresponding operation is performed in the application. Such a situation
happens when operations appear in a loop. When the number of iterations
of a loop cannot be forecasted (as in a while loop), code profiling tools can
be used for assessing conflict costs on a statistical basis [17, 20]. Thus, a

2

conflict is said to be closed if its data structures are allocated to two different
memory banks, and it is said to be open if both data structures are allocated
to the same memory bank, or if at least one data structure is allocated to
the external memory. In such a case, its conflict cost is multiplied by p

because accessing the external memory bank is p times longer. Finally, if
both structures are allocated to the external memory, then the conflict cost
is multiplied by 2p.

The problem addressed in this paper is referred to as MemExplorer, it
is stated as follows: for a given number of capacitated memory banks and
an external memory, we search for a memory allocation for data structures
such that the time spent loading these data is minimized. We have studied a
simplified version of MemExplorer in [26]. A mixed integer linear program is
designed for this purpose, it is introduced in section 2. Some metaheuristics
are proposed in section 3, and exact and heuristic approaches are compared
in section 4, conclusions are drawn in section 5.

2 A Mixed integer linear programming formula-

tion for MemExplorer

The number of data structures is denoted by n and the number of memory
banks is denoted by m. Memory bank m+1 refers to the external memory.
The size of data structure i is denoted by si for all i ∈ {1, . . . , n}. The
capacity of memory bank j is cj for all j ∈ {1, . . . ,m} (it is recalled that the
external memory is not subject to capacity constraint). Sizes and capacities
are expressed in the same memory unit (typically Kbytes). Besides its size,
each data structure i is also characterized by an access cost denoted by ei for
all i ∈ {1, . . . , n}, that represents the time required to access data structure
i if it is mapped to a memory bank. If a data structure is mapped to the
external memory its access cost is multiplied by factor p. Any conflict k is
associated with conflict cost dk for all k ∈ {1, . . . , o}, where o is the number
of conflicts. If a data structure is allocated to the external memory then all
the conflicts in which it is involved have their cost multiplied by p. More
formally, conflict k between two data structures ak and bk has one of the
four following statuses:

• Status 1: ak and bk are mapped in two different memory banks. The
conflict does not generate any cost.

• Status 2: ak and bk are mapped in the same memory bank. The
conflict generates a cost dk.

• Status 3: ak and bk are such that one of these data structures is
mapped in a memory bank and the other one is mapped in the external
memory. The conflict generates a cost pdk.

3

• Status 4: ak and bk are mapped in the external memory. The conflict
generates a cost 2pdk.

Conflict costs and access costs are expressed in the same time unit (typically
milliseconds).

It must be stressed that a data structure can be conflicting with itself.
This case arises when two elements of the same data structure are involved in
the same instruction in the original C code, for example in a[i] = a[i+1].
This particular case is taken into account in our approach.

The number of memory banks with their capacities and factor p describe
the architecture of the chip. The number of data structures, their size and
access cost describe the application, whereas the conflicts and their costs
carry information on both the architecture and the application.

The problem decision variables represent the allocation of data structures
to memory banks. These variables are modeled as a binary matrix X, where:

xi,j =

1, if data structure i

is mapped to memory bank j

0, otherwise
,
∀i ∈ {1, . . . , n},
∀j ∈ {1, . . . ,m+ 1}

(1)

The vector of real nonnegative variables Y models the conflict statuses;
so variable yk associated with conflict k has four possible values: 0, 1, p and
2p.

The mixed integer program for that problem is the following:

Min

o
∑

k=1

ykdk +

n
∑

i=1

m
∑

j=1

(

eixi,j
)

+p

n
∑

i=1

(

eixi,m+1

)

(2)

m+1
∑

j=1

xi,j = 1, ∀i ∈ {1, . . . , n} (3)

n
∑

i=1

xi,jsi ≤ cj , ∀j ∈ {1, . . . ,m} (4)

xak ,j + xbk,j ≤ 1 + yk, ∀j ∈ {1, . . . ,m}, ∀k ∈ {1, . . . , o} (5)

xak ,j + xbk,m+1 ≤ 1 +
1

p
yk, ∀j ∈ {1, . . . ,m}, ∀k ∈ {1, . . . , o} (6)

xak ,m+1 + xbk,j ≤ 1 +
1

p
yk, ∀j ∈ {1, . . . ,m}, ∀k ∈ {1, . . . , o} (7)

xak,m+1 + xbk,m+1 ≤ 1 +
1

2p
yk, ∀k ∈ {1, . . . , o} (8)

xi,j ∈ {0, 1} ∀(i, j) ∈ {1, . . . , n} × {1, . . . ,m} (9)

yk ≥ 0 ∀k ∈ {1, . . . , o} (10)

4

The cost function of the problem, equation (2) is the total time spent
accessing the data structures and storing them in the appropriate registers
to perform the required operations listed in the C file. It is the sum of three
terms. The first one is the total cost generated by the conflicts. The second
term is the access cost of all data structures mapped to a memory bank,
whereas the last term is the access cost of all data structures placed in the
external memory.

The constraints are as follows. First, equation (3) enforces that each
data structure is allocated either to a unique memory bank or to the external
memory. Equation (4) is used for ensuring that the total size of the data
structures allocated to a memory bank does not exceed its capacity. Third,
for any conflict k, variable yk must be set appropriately. This is enforced
through equations (5) to (8). Inequality (5) prevents yk from being less than
1 if conflict k has status 2. Inequalities (6) and (7) prevent yk from being
less than p if conflict k has status 3, and inequality (8) prevents yk from
being less than 2p if conflict k has status 4. Fourth, xi,j is a binary variable,
for all (i, j) and yk is nonnegative for all k.

Note that this problem is similar to the k-weighted graph coloring problem

[4] (this problem is also referred to as the generalized graph coloring problem

in [19]) if memory banks are not subject to capacity constraints, or if their
capacity is large enough for holding all the data structures. Indeed, in
that case the external memory is no longer used and the size, as well as the
access cost of data structures can be ignored. The k-weighted graph coloring
problem is to color the vertices of an undirected weighted graph with at most
k colors so as to minimize the sum of the weighted edges, the end points
of which have the same color. In this problem, the vertices represent data
structures and each edge represents a conflict between a pair of structures
[26]. The k-weighted graph coloring problem has been addressed using Local
Search Programming in [27].

A close related problem is to determine the minimum number of memory
banks with infinite capacity so as to have no open conflicts, this turns out
to be the classical graph coloring problem [10, 25].

An optimal solution to MemExplorer problem can be computed by us-
ing a solver like glpk [15] or Xpress-mp [12]. However, as shown by the
computational tests in Section 4, an optimal solution cannot be obtained in
a reasonable amount of time for medium size instances. This is the reason
why metaheuristics are proposed in the next section.

3 Metaheuristics for MemExplorer

In this section, we describe the design of the different metaheuristics used for
addressing this problem. Before presenting the metaheuristics for MemEx-
plorer, we present the algorithms used for generating initial solutions, as well

5

as two neighborhoods. Then, a Tabu Search-based approach is introduced
with the two neighborhoods for exploring the solution space. At the end
of this section, a Variable Neighborhood Search-based approach hybridized
with a Tabu Search-inspired method (vns-ts called Vns-Ts MemExplorer)
is also presented.

3.1 Generating initial solutions

Below, we present two ways for generating initial solutions. The first one
generates feasible solutions at random, and the second one builds solutions
using a greedy algorithm.

Random initial solutions

Fig. 1 presents the procedure RandomMemex for generating random feasible
initial solutions. At each iteration, a data structure is allocated to a random
memory bank (or the external memory) provided that capacity constraints
are satisfied.

Output: [X∗, f∗]
Initialization:

Capacity used: uj ← 0, ∀j ∈ {1, . . . ,m+ 1}
Allocation: x∗ij ← 0, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m+ 1}
f∗ ← 0
Assignment:

for i← 1 to n do

repeat
Generate j at random in {1, . . . ,m+ 1}

until uj + si ≤ cj ;
x∗i,j ← 1
uj ← uj + si
Compute gij , the cost generated from allocating the data i to
memory bank j

f∗ ← f∗ + gij
end

Figure 1: Pseudo-code for RandomMemex

Greedy initial solutions

GreedyMemex is a greedy algorithm for MemExplorer, this kind of algorithm
makes locally optimal choices at each stage in the hope of finding the global

6

optimum [3, 8]. Generally, greedy algorithms do not reach an optimal so-
lution as they are trapped in local optima, but they are easy to implement
and can provide initial solutions to more advanced approaches.

Input: A← {a1, . . . , an}
Output: [X∗, f∗]
Initialization:

Capacity used: uj ← 0, ∀j ∈ {1, . . . ,m+ 1}
Allocation: x∗

ij ← 0, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m+ 1}
f∗ ← 0
Assignment:

for i← 1 to n do

h∗ ←∞ // (auxiliary variable for the partial greedy

solution)

for j=1 to m+1 do

if uj + sai
< cj then

Compute gij , the cost for allocating data ai to memory bank j

if gij < h∗ then
b← j

h∗ ← gij
end

end

end

x∗

ai,b
← 1

ub ← ub + sai

f∗ ← f∗ + h∗ //(total cost of the solution)
end

Figure 2: Pseudo-code for GreedyMemex

GreedyMemex is described in pseudocode of Fig. 2, where A is a permu-
tation of the set {1, . . . , n} that models data structures, used for generating
different solutions. Solution X∗ is the best allocation found by the algo-
rithm, where (x∗i,j) variables have the same meaning as in equation (1), and
f∗ = f(X∗). Matrix G is used to assess the cost when data structures are
moved to different memory banks or to the external memory. More pre-
cisely, gi,j is the sum of all open conflict costs produced by the affectation of
data structure i to memory bank j. If data structure i is moved to external
memory (j = m + 1), gi,j is the sum of all open conflict costs multiplied
by p plus its access cost multiplied by (p − 1). The numerical value of gi,j
depends on the current solution because the open conflict cost depends on
the allocation of the other data structures.

At each iteration, GreedyMemex completes a partial solution which is
initially empty by allocating the next data structure in A. The allocation for
the current data structure is performed by assigning it to the memory bank
leading to the minimum local cost denoted by h∗, provided that no memory

7

bank capacity is exceeded. The considered data structure is allocated to
the external memory if no memory bank can hold it. Allocation cost f∗ is
returned when the all data structures have been allocated.

GreedyMemex has a computational complexity of O(nm). Both algo-
rithms require very few computational efforts, but return solutions that
may be far from optimality. However, these procedures are not used as
standalone algorithms, but as subroutines called in the algorithm of Fig. 3
for generating initial solutions for a Tabu search-based procedure introduced
in Section 3.2.

Input: A
Output: [X∗, f∗]
if A← ∅ then

(X∗, f∗)←RandomMemex

else
(X∗, f∗)←GreedyMemex(A)

end

Figure 3: Pseudo-code for InitialMemex

3.2 A Tabu Search Procedure for MemExplorer

Tabu search is a metaheuristic that relies on a single local search procedure:
it iteratively moves from the current solution to another one in its neigh-
borhood [14]. Generally, local search procedures stop when a local optimum
is found, then it becomes necessary to escape from the local optimum to
explore other regions of the search space.

We introduce tabu search for MemExplorer in Fig. 4, which is based
on TabuCol, an algorithm for graph coloring introduced in [16]. The main
difference with a classic tabu search is that the size of the tabu list is not
constant over time. This idea is introduced in [2] and also used in the
work of Porumbel, Hao and Kuntz on the graph coloring problem [23]. In
TabuMemex, the size of the tabu list NT is set to a + NTmax × t every
NTmax iterations, where a is a fixed integer and t is a random number in
[0, 2].

A pair (i, j) means that data structure i is in memory bank j. A move is
a trio (i, h, j), this means that data structure i, which is currently in memory
bank h, is to be moved to memory bank j. As a consequence, if the move
(i, h, j) is performed, then the pair (i, h) is appended to the tabu list. Thus,
the tabu list contains the pairs that have been performed in the recent past
and it is updated on the FIFO basis (First In First Out).

The algorithm takes an initial solution X as input that can be returned
by InitialMemex. Its behavior is controlled by some calibration parameters,
such as the number of iterations, Niter, and the number of iterations for

8

Input: Initial solution X and number of neighborhood k

Output: [X∗, f∗]
Initialization:

Capacity used uj ← 0 ∀j ∈ {1, . . . ,m}
NT ← NTmax

f∗ ←∞
Iterative phase:

Iter ← 0
while Iter < Niter and f(X) > 0 do

[X ′, (i, h, j)]← Explore-Neighborhood-Nk(X)
X ← X ′

if f(X ′) < f∗ then
f∗ ← f(X ′)
X∗ ← X ′

end

Update the size of tabu list NT

Iter← Iter + 1
end

Update the tabu list with pairs (i, j) and (i, h)

Figure 4: Pseudo-code for TabuMemex

changing the size of the tabu list, NTmax. The result of this algorithm is
the best allocation found X∗ and its cost f∗.

The iterative phase searches for the best solution in the neighborhood
of the current solution. The neighborhood exploration is performed by
calling Explore-Neighborhood-Nk(X) which calls the corresponding pro-
cedure with only one neighborhood used at a time. Two neighborhoods,
denoted by N0 and N1 are considered; they are introduced in the next sec-
tion. The fact that the new solution may be worse than the current solution
does not matter because each new solution allows unexplored regions to be
reached, and thus to escape local optima. This procedure is repeated for
Niter iterations, but the search stops if a solution without any open con-
flict, and for which the external memory is not used is found. Indeed, such a
solution is necessarily optimal because the first and third terms of Equation
(2) are zero because no conflict cost has to be paid, and no data structure
is in the external memory. Consequently, the objective function assumes its
absolute minimum value, the second term of Equation (2), and so is optimal.
A new solution is accepted as the best one if its total cost is less than the
current best solution.

This tabu search procedure is used as a local search procedure in a vns-
based algorithm introduced in section 3.4.

9

3.3 Exploration of neighborhoods

In this section, we present two algorithms which explore two neighborhoods
for MemExplorer. Both of them return the best allocation (X ′) found along
with the corresponding move (i, h, j) performed from a given solution X. In
these algorithms, a move (i, h, j) is said to be non tabu if pair (i, j) is not
in the tabu list. The first one explores a neighborhood which is generated
by performing a feasible allocation change of a single data structure, it is
shown in Fig. 5.

Input: X
Output: [X ′, (i, h, j)]
Find non tabu min cost move (i, h, j), such that h 6= j and uj + si ≤ cj
Build the new solution X ′ as follows:

X ′ ← X

x′

i,h ← 0
x′

i,j ← 1
uj ← uj + si
uh ← uh − si

Figure 5: Pseudo-code for Explore-Neighborhood-N0

Algorithm Explore-Neighborhood-N1 is presented in Fig. 6. It ex-
plores solutions that are beyond N0 by allowing for unfeasible solutions
before repairing them.

The first phase of Explore-Neighborhood-N1 performs a move that
may make the current solution X ′ unfeasible by violating the capacity con-
straint of a memory bank. However, this move is selected to minimize the
cost of the new solution, and is not tabu. The second phase restores the
solution by performing a series of reallocations for satisfying capacity con-
straints, but also trying to generate the minimum allocation cost. Then, it
allows both feasible and infeasible regions to be visited successively. This
way of using a neighborhood is referred to as Strategic Oscillation in [14].

3.4 A hybrid Variable Neighborhood Search (vns-ts)

Since both neighborhoods have their own utility (confirmed by preliminary
tests), it seems clear that they should be used together in a certain way.
The general Variable Neighborhood Search scheme is probably the most
appropriate method to properly deal with several neighborhoods.

Fig. 7 presents the vns-based algorithm ([21]) for MemExplorer. The
number of neighborhoods is denoted by kmax, and the algorithm starts
exploring N0 as N0 ⊂ N1.

At each iteration, Vns-Ts MemExplorer generates a solution X ′ at ran-
dom from X. It copies the affectation of 60% of the data structures in the
initial solution (the 60% of data structures is selected randomly), and the

10

Input: X
Output: [X ′, (i, h, j)]
First phase: considering a potentially unfeasible move

Find non tabu min cost move (i, h, j), such that h 6= j

Build the new solution X ′ as follows:
X ′ ← X

x′

i,h ← 0
x′

i,j ← 1
uj ← uj + si
uh ← uh − si

Second phase: repairing the solution

while uj > cj do
Find non tabu min cost move (l, j, b), such that l 6= i, j 6= b and
ub + tl ≤ cb
Update solution X ′ as follows:

x′

l,j ← 0
x′

l,b ← 1
ub ← ub + sl
uj ← uj − sl

end

Figure 6: Pseudo-code for Explore-Neighborhood-N1

GreedyMemex is used for mapping the remaining 40% of unallocated data
structures for producing a complete solution X ′.

This vns algorithm relies on two neighborhoods. N0 is the smallest
neighborhood, as it is restricted to feasible solutions only. If TabuMemex

improves the current solution, it keeps searching for new solutions in that
neighborhood. Otherwise, it does not accept the new solution and changes
the neighborhood (i.e. by applying Explore-Neighborhood-N1 to the cur-
rent solution).

4 Computational results

This section presents the relevant aspects of implementation of the algo-
rithms, and the results reached by algorithms over two set of instances on
an Intel Pentium iv processor system at 3 ghz and 1 Gbyte ram. Algorithms
have been implemented in c++ and compiled with gcc 4.11.

4.1 Instances used

For testing our algorithms we have used two sets of instances. The first one
is called lbs, it is a collection of real instances provided by Lab-sticc lab-
oratory for electronic design purposes. The second set of instances is called
dmc, it originates from dimacs [22], a well-known collection of online graph

11

output: X∗ and f∗

Initialization:

Generate A

(X∗, f∗)←InitialMemex(A)
k ← 0
Iterative phase:

i← 0
while i < Nrepet do

// (Make a new initial solution X from X∗)

X ← 60%X∗ complete the solution with GreedyMemex

Apply (X ′, f ′)←TabuMemex(X, k) using Explore-Neighborhood-Nk

if f ′ < f∗ then
X∗ ← X ′

f∗ ← f ′

i← 0
k ← 0

else

if k = kmax then
k ← 0

else
k ← k + 1

end

i← i+ 1.
end

end

Figure 7: Pseudo-code for Vns-Ts MemExplorer

coloring instances. The instances in dmc have been enriched by generating
edge costs at random so as to create conflict costs, access costs and sizes for
data structures, and also by generating a random number of memory banks
with random capacities.

Although real-life instances available today are relatively small, they will
be larger and larger in the future as market pressure and technology tend
to integrate more and more complex functionalities in embedded systems.
Thus, we tested our approaches on current instances and on larger (but
artificial) ones as well, for assessing their practical use for forthcoming needs.

4.2 Results

To our best knowledge, there are no alternative approaches for MemEx-
plorer in the literature. The k-weighted graph coloring problem can be
addressed by Local Search Programming [27], so we have tested the local
search on instances of MemExplorer. To this end, we have used LocalSolver
1.0 [11] which is a solver for combinatorial optimization entirely based on
local search. This solver address a combinatorial optimization problem by
performing autonomous moves which can be viewed as a structured ejec-

12

tion chains applied to the hypergraph induced by boolean variables and
constraints [24]. Results of that method are also reported.

In our experiments, in the tabu search procedure the size of the tabu list
is set every NTmax = 50 iterations to NT = 5 +NTmax× t, where t is a
real number selected at random in interval [0, 2]. The maximum number of
iterations has been set to Niter = 50000.

Table 1 presents Vns-Ts MemExplorer performances, i.e., the best re-
sults obtained over all the combinations of different initial solutions and dif-
ferent greedy algorithms for generating a solution X ′. Vns-Ts MemExplorer

results are compared with Local Solver Programming and the milp formu-
lation solved by xpress-mp. The milp formulation is used as a heuristic
when the time limit of one hour is reached: the best solution found so far
is then returned by the solver. A lower bound found by the solver was also
calculated but the value for non-optimal solutions was useless.

In Table 1 the first three columns show the main features of the instances
(the source, the name, n: the number of data structures, o: the number of
conflicts and m: the number of memory banks). Instance name with a “*”
are ones of lbs set which are the real life instances. For a clear view of the
difficulty, the instances have been sorted in non-decreasing order of number
of conflicts. The next two columns report the cost and cpu time (in s) of
Vns-Ts MemExplorer, the two following columns the cost and cpu time of
Local Solver, and the last three columns the results of the milpmodel: lower
bound, cost and cpu time.

Bold figures in Table 1 represent the best known solutions over all meth-
ods. In the milp columns, the cost with a star has been proved optimal by
xpress-mp. Vns-Ts MemExplorer reaches the optimal solution for all of in-
stances for which the optimal cost is known. The optimal solution is known
for 88% of real-electronic instances and for 31% of dimacs’ instances. Fur-
thermore, Vns-Ts MemExplorer always finds a better allocation cost than
xpress-mp. The number of best solutions reported by our approach is 38,
compared to 16 with Local Solver and 24 with the milp model.

Indeed, on average the milp cost is improved by 35.29% using the vns

algorithm. cpu time comparison of Vns-Ts MemExplorer and milp shows
that our algorithm remains significantly faster than milp in most cases. On
average, the time spent by xpress-mp is 1700 times longer than the time
spent by vns algorithm. When no optimal solution is found with xpress-
mp, the lower bound on the objective value seems to be of poor quality, as
it is 37% of the best solution found on average. This may suggest that after
one hour of computation, the optimal solution would still require a very long
time to be found. For the instances for which the optimal solution is not
known, the lower bound is often far from the best known solution. It is also
important to note that the milp performs well on small size instances (up
to 250 conflicts) since it benefits from very performant advances in its code
(like internal branch-and-cut, cut pool generation and presolver).

13

Table 1: Vns-Ts MemExplorer, Local Solver and milp results
Instances Vns-Ts MemExplorer Local Solver milp

Set Name n\o\m Cost Time Cost Time L. bound Cost Time

lbs compress* 6 \6 \2 511232 0.09 511232 1.00 511232 511232* 0.03
lbs volterra* 8 \6 \2 1 < 0.01 1 1.00 1 1* 0.33
lbs adpcm* 10 \7 \2 224 < 0.01 224 1.00 224 224* 0.08
lbs cjpeg* 11 \7 \2 641 0.2 641 1.00 641 641* 0.05
lbs lmsb* 8 \7 \2 3140610 0.18 16745739 200 3140610 3140610* 0.50
lbs lmsbv* 8 \8 \2 2046 < 0.01 2046 1.00 2046 2046* 0.03
lbs spectral* 9 \8 \2 640 < 0.01 640 1.00 640 640* 0.03
lbs gsm* 19 \17 \2 86132 0.34 86132 1.00 86132 86132* 0.06
lbs lpc* 15 \19 \2 790 0.42 790 200 790 790* 0.19
dmc myciel3 11 \20 \2 377 0.68 377 1.00 377 377* 0.17
lbs turbocode* 12 \22 \3 2294 0.43 2294 300 2294 2294* 0.34
lbs treillis* 33 \61 \2 12.06 1.43 12.06 200 12.06 12.06* 0.28
lbs mpeg* 68 \69 \2 786.5 0.88 786.5 1641 786.5 786.5* 0.36
dmc myciel4 23 \71 \3 2853 1.94 2930 1.00 2853 2853* 16.30
dmc mug88 1 88 \146 \2 1020 6.33 1379 3596 1020 1020* 31.23
dmc mug88 25 88 \146 \2 918 7.00 1263 3483 918 918* 13.71
dmc queen5 5 25 \160 \3 1338 2.47 8507 140 1338 1338* 1616
dmc mug100 1 100 \166 \2 2652 6.74 2788 2810 2652 2652* 2392
dmc mug100 25 100 \166 \2 2661 5.40 2791 1198 2661 2661* 1165
dmc r125.1 125 \209 \3 346 8.94 361 31.00 260.33 346 3600
lbs mpeg2enc* 127 \236 \2 32.09 7.21 39.2 6.00 32.09 32.09* 6.48
lbs mpeg2enc2* 180 \236 \2 32.09 8.93 36.3 892 32.09 32.09* 4.69
dmc myciel5 47 \236 \3 2990 4.56 3254 11 1420.54 3098 3600
dmc queen6 6 36 \290 \4 8656 14.63 9029 1940 4213.43 8871 3600
lbs mpeg2* 191 \368 \2 61476.52 8.78 61480.1 740 61476.52 61476.52* 12.00
dmc queen7 7 49 \476 \4 13951 10.93 14414 10.00 4708.61 14972 3600
dmc queen8 8 64 \728 \5 15132 10.48 15389 7.00 482.77 17183 3600
lbs mpeg2x2* 382 \736 \4 122831.26 0.05 122828.7 834 122826.97 122831.26 3600
dmc myciel6 95 \755 \2 9135 5.54 10532 2065 9135 9135* 1437
lbs ali* 192 \960 \6 7951 248.45 7965 3600 4738.9 8009 3600
dmc myciel7 191 \2360 \4 3347 37.15 9001 269 6.17 5140 3600
dmc zeroin i3 206 \3540 \15 707 26.80 757 2936 15 962 3600
dmc zeroin i2 211 \3541 \15 575 51.67 878 1396 15 829 3600
dmc r125.5 125 \3838 \18 20502 36.67 47403 3572 61.33 85026 3600
dmc mulsol i2 188 \3885 \16 1470 91.59 1255 3299 31.61 5722 3600
dmc mulsol i1 197 \3925 \25 543 944.49 520 3183 30 543 3600
dmc mulsol i4 185 \3946 \16 1149 30.19 1047 1325 30.19 1169 3600
dmc mulsol i5 186 \3973 \16 730 53.17 2022 1383 15 1840 3600
dmc zeroin i1 211 \4100 \25 716 50.07 497 2816 15 1050 3600
dmc r125.1c 125 \7501 \23 91433 44.55 266463 3210 15 289868 3600
dmc fpsol2i3 425 \8688 \15 1921 52.50 2313 3571 19.29 3468 3600
dmc fpsol2i2 451 \8691 \15 1006 89.38 1813 3563 30 2059 3600
dmc inithx i1 864\18707\27 739 204.28 1154 3590 15 2878 3600

Number of optimal sol. 23 11 23
Number of best sol. 38 16 24
Avg. impr. on milp: 35.29%
Avg. cpu time (s): 48.27 1349.44 1881.95

14

For the initial solutions, we have used three different sorting procedures
for permutation A of data structures; then, we have three GreedyMemex

algorithms: in the first one, A is not sorted; in the second one, A is sorted by
decreasing order of the maximum conflict cost involving each data structure
and in the last one, A is sorted by decreasing order of the sum of the conflict
cost involving each data structure. Hence, we have four initial solutions
(random initial solutions and greedy solutions) and three ways of mapping
the 40% of solution X ′ in vns algorithm.

However, other tests showed that the benefit of using different initial
solutions and different greedy algorithms to generate X ′ is not significant.
In fact, this benefit is visible only for the most difficult instances with a low
value of 1.2% on average, and for the other instances, vns algorithm finds
the same solutions no matter the initial solution or greedy algorithm.

In the vns, the search is intensified by using TabuMemex as a local search
procedure in the research space. To assess the benefit of this strategy, we
have tested our vns with a classic tabu search method (i.e., without chang-
ing the size of the tabu list), and we have also tested TabuMemex with each
neighborhood. Table 2 shows the comparison between Vns-Ts MemExplorer

performances, a vns variant with the classical tabu search and the tabu
search alone with each of the two neighborhoods. The first two columns of
Table 2 are the same as Table 1, the next four columns report the cost value
of each variant of the approach.

The costs reached by the other variants of vns are worse in most cases,
in fact the solution cost of Vns-Ts MemExplorer with classic tabu search is
on average 35% higher than with TabuMemex; in addition the tabu searches
with each neighborhood (namely N0 and N1) are on average 56% and 21%
worse than Vns-Ts MemExplorer, respectively. This shows the benefit of
the joint use use of different neighborhoods and an advanced tabu search
method.

4.3 Statistic analysis

We have used the Friedman test [13] to detect differences in the performance
of three heuristics (Vns-Ts MemExplorer, local search, milp formulation)
using the results presented by Table 1. As the result over instances are
mutually independent and costs as well as cpu times can be ranked, we
have applied the Friedman test for costs and cpu times. This allows us
to compare separately (univariate model [5]) the performance in terms of
solution quality and running time.

For each instance, the cpu times of the three approaches are ranked as
follows. The smallest cpu time is ranked 1, the largest one is ranked 3. If
two cpu times are equal, their rank is computed as the average of the two
candidate ranks (i.e., if two cpu times should be ranked 1 and 2, the rank
is 1.5 for both). The same is performed for solution objective value.

15

Table 2: Intensity of some local search variants

Instances Vns-Ts M. vns with Tabu search neighborhood

Name n\o\m cost classic tabu N0 N1

compress* 6 \6 \2 511232 511232 511232 511232

volterra* 8 \6 \2 1 1 1 1

adpcm* 10 \7 \2 224 224 224 224

cjpeg* 11 \7 \2 641 641 641 641

lmsb* 8 \7 \2 3140610 16745700 16745700 16745700

lmsbv* 8 \8 \2 2046 2046 2046 2046

spectral* 9 \8 \2 640 640 640 640

gsm* 19 \17 \2 86132 86132 86132 86132

lpc* 15 \19 \2 790 790 790 790

myciel3 11 \20 \2 377 2167 377 377

turbocode* 12 \22 \3 2294 2294 2294 2294

treillis* 33 \61 \2 12.06 12.06 12.06 12.06

mpeg* 68 \69 \2 786.5 790.88 786.5 790.5

myciel4 23 \71 \3 2853 2853 2877 2853

mug88 1 88 \146 \2 1020 1068 1036 1020

mug88 25 88 \146 \2 918 1095 918 950

queen5 5 25 \160 \3 1338 1342 1342 1342

mug100 1 100 \166 \2 2652 2735 2901 2662

mug100 25 100 \166 \2 2661 2734 2661 2661

r125.1 125 \209 \3 346 349 429 347

mpeg2enc* 127 \236 \2 32.09 36.59 32.2 32.47

mpeg2enc2* 180 \236 \2 32.09 38.48 32.2 33.22

myciel5 47 \236 \3 2990 3033 3281 2990

queen6 6 36 \290 \4 8656 8810 9257 8754

mpeg2* 191 \368 \2 61476.52 61480.2 61476.5 61479.3

queen7 7 49 \476 \4 13951 14186 15120 14107

queen8 8 64 \728 \5 15132 15480 15455 15360

mpeg2x2* 382 \736 \4 122831.26 122831.26 122831.26 122831.26

myciel6 95 \755 \2 9135 9706 9135 9135

ali* 192 \960 \6 7951 8123 8053 8088

myciel7 191 \2360 \4 3347 3741 4116 3548

zeroin i3 206 \3540 \15 707 754 2233 791

zeroin i2 211 \3541 \15 575 632 954 607

r125.5 125 \3838 \18 20502 22735 22993 22609

mulsol i2 188 \3885 \16 1470 1779 3651 1480

mulsol i1 197 \3925 \25 543 755 955 792

mulsol i4 185 \3946 \16 1149 1085 1382 1197

mulsol i5 186 \3973 \16 730 800 3729 732

zeroin i1 211 \4100 \25 716 661 841 1516

r125.1c 125 \7501 \23 91433 94479 96528 94358

fpsol2i3 425 \8688 \15 1921 1973 3125 2121

fpsol2i2 451 \8691 \15 1006 1015 2184 1106

inithx i1 864 \18707 \27 739 820 1698 850

Avg. worsening: 35% 56% 21%

16

The number of instances is denoted by r, the number of compared meta-
heuristic is dented by q and the Friedman test statistic is denoted by Q.
The null hypothesis suppose that for each instance the ranking of the meta-
heuristics is equally likely. The null hypothesis is rejected at the level of sig-
nificance α if Q is greater than the 1−α quantile of the F(q1,q2)-distribution
(Fisher-Snedecor distribution) with q1 = q−1 and q2 = (q−1)(r−1) degrees
of freedom.

The test statistic Q is 21.86 for the running time, and 13.52 for the
cost. Moreover, the value for the F(2,84)-distribution with a significance
level α = 0.01 is 4.90. Then, we reject the null hypothesis for running time
and cost at the level of significance α = 0.01.

We can conclude that there exists at least one metaheuristic whose per-
formance is different from at least one of the other metaheuristics. To know
which metaheuristics are really different, it is necessary to perform an ap-
propriate post-hoc paired comparisons test.

4.4 Post-hoc paired comparisons

As the null hypothesis of Friedman test was rejected, we can use the following
method for knowing if two metaheuristics are different [7].

Let A2 be the total sum of squared ranks, B2 the total sum of squared
sum of ranks of metaheuristics and Ri the sum of ranks of metaheuristics i
for all i in {1, . . . , q}. We say that two metaheuristics are different if:

|Ri −Rj| >

√

2r(A2 −B2)

(r − 1)(q − 1)
t(1−α

2
,q2) (11)

where t(1−α
2
,q2) is the 1−

α
2 quantile of the t-distribution with (r−1)(q−1)

degrees of freedom.
For α = 0.01, t(0.095,84)-distribution is 2.64; then, the left-hand side of

equation (11) for the running time is 20.06 and for the cost is 17.44. Table
3 summarizes the paired comparisons for the cost and running time. The
bold values means the metaheuristics are different.

Table 3: Paired comparisons
Cost paired test Running time paired test

|Ri −Rj | milp Local search |Ri −Rj | milp Local search

Vns-Ts MemExplorer 26 32.5 Vns-Ts MemExplorer 42 45

milp - 6.5 milp - 3

Critical value 17.44 Critical value 20.06

The post-hoc test shows that milp and local search have the same perfor-
mance in terms of solution cost and cpu time, while Vns-Ts MemExplorer

is the best approach in terms of solution cost and computational time.

17

5 Conclusion

In this work, an exact approach and a vns-based metaheuristic are pro-
posed for addressing a memory allocation problem. Vns-Ts MemExplorer

takes advantage of some features of tabu search methods initially devel-
oped for graph coloring, which is efficient as relaxing capacity constraints
on memory banks lead to the k-weighted graph coloring problem. Vns-Ts

MemExplorer appears to be performing well because of its reasonable cpu

time for large instances, and because it returns an optimal memory allo-
cation for all instances for which the optimal cost is known. These results
allow one to hypothesize that the solutions found for the instances for which
the optimal solution is unknown are of good quality. The improvements
over a classic tabu search approach, like the implementation of a variable
tabu list, have a significant impact on solution quality. These features have
TabuMemex exploring the search space efficiently.

Vns-Ts MemExplorer achieves encouraging results for addressing the
MemExplorer problem due to its intensive search. The search is intensified
by exploring the largest neighborhood when a local optimum is found, in
addition the local search method (TabuMemex) gives a more in-depth search
because of the significant improvements over a classic tabu search procedure.
Using methods inspired by graph coloring problems can be successfully ex-
tended to more complex allocation problems for embedded systems, thereby
assess the gains made by using these methods to specific cases in terms of
energy consumption. Moreover, it gives good perspectives for using meta-
heuristics in the field of electronic design.

Finally, if the exact approach is suitable for today’s applications, it is
clearly not for tomorrow’s needs. Indeed, the best solution returned by the
solver is generally very poor even after a long running time, and the quality
of the lower bound is too bad for being helpful at all. The proposed meta-
heuristics appear to be suitable for the needs of today and tomorrow. The
very modest cpu time compared to the exact method is an additional asset
for integrating them to cad tools, letting designers test different options in
a reasonable amount of time.

Acknowledgements

This research was partially supported by the Région Bretagne and the grant
R2 - Allocations de recherche doctorale - ARED,211-B2-9/ARED,2008,CG2M.

References

[1] D. Atienza, S. Mamagkakis, F. Poletti, J. Mendias, F. Catthoor,
L. Benini, and D. Soudris. Efficient system-level prototyping of power-
aware dynamic memory managers for embedded systems. Integration,

the VLSI Journal, 39(2):113–130, 2006.

18

[2] R. Battiti. The reactive tabu search. In ORSA Journal on Computing,
volume 6, pages 126–140, 1994.

[3] P.E. Black. Greedy algorithm. Dictionary of Algorithms and Data
Structures, U.S. National Institute of Standards and Technology, 2005.

[4] R.C. Carlson and G.L. Nemhauser. Scheduling to minimize interation
cost. Operations Research, 14(1):52–58, 1966.

[5] M. Chiarandini, . Paquete, M. Preuss, and E. Ridge. Experiments
on metaheuristics: Methodological overview and open issues. Techni-
cal Report DMF-2007-03-003, The Danish Mathematical Society, Den-
mark, 2007.

[6] A. Chimientia, L. Fanucci, R. Locatellic, and S. Saponarac. VLSI archi-
tecture for a low-power video codec system. Microelectronics Journal,
33(5):417–427, 2002.

[7] W.J. Conover. Practical nonparametric statistic. Wiley, New York,
USA, 1999. Third edition.

[8] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction

to Algorithms, chapter Greedy Algorithms, pages 370–404. The Mas-
sachusetts Institute of Technology, second edition, 1990.

[9] P. Coussy, E. Casseau, P. Bomel, A. Baganne, and E. Martin. A formal
method for hardware IP design and integration under I/O and tim-
ing constraints. ACM Transactions on Embedded Computing System,
5(1):29–53, 2006.

[10] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathemat-

ics. Springer-Verlag, Heidelberg, Germany, 2005.

[11] Bouygues e-lab Innovation & Optimisation. Localsolver 1.0, 2010.
http://e-lab.bouygues.com/?p=693.

[12] FICO. Xpress-MP, 2009. http://www.dashoptimization.com/.

[13] M. Friedman. The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the American Statistical

Association, 32:675–701, 1937.

[14] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publisher,
Dordrecht, The Netherlands, 1997.

[15] GNU. GLPK linear programming kit, 2009.
http://www.gnu.org/software/glpk/.

19

[16] A. Herz and D. de Werra. Using tabu search techniques for graph
coloring. Computing, 39(4):345–351, 1987.

[17] M. Iverson, F. Ozguner, and L. Potter. Statistical prediction of task ex-
ecution times through analytic benchmarking for scheduling in a hetero-
geneous environment. IEEE Transactions on Computers, 48(12):1374–
1379, 1999.

[18] N. Julien, J. Laurent, E. Senn, and E. Martin. Power consumption
modeling and characterization of the TI C6201. IEEE Micro, 23(5):40–
49, 2003.

[19] A.W.J. Kolen and J.K. Lenstra. Handbook of Combinatorics, chap-
ter Combinatorics in operations research, pages 1875–1910. Elsevier
Science, Amsterdam, The Netherlands, 1995.

[20] W. Lee and M. Chang. A study of dynamic memory management
in C++ programs. Computer Languages Systems and Structures,
28(3):237–272, 2002.

[21] N. Mladenović and P. Hansen. Variable neighbourhood decomposition
search. Computers and Operations Research, 24(11):1097–1100, 1997.

[22] D. Porumbel. DIMACS graphs: Bench-
mark instances and best upper bound, 2009.
http://www.info.univ-angers.fr/pub/porumbel/graphs/.

[23] D. Porumbel, J-K. Hao, and P. Kuntz. Diversity control and multi-
parent recombination for evolutionary graph coloring algorithms. In
Proc. of the 9th EvoCOP conference on Evolutionay Computation in

Combinatorial Optimization, pages 121–132, Tübingen, Germany, 2009.

[24] C. Rego and F. Glover. Local search and metaheuristics. In Ding-
Zhu Du, Panos M. Pardalos, Gregory Gutin, and Abraham Punnen,
editors, The Traveling Salesman Problem and Its Variations, volume 12
of Combinatorial Optimization, pages 309–368. Springer US, 2004.

[25] M. Soto, A. Rossi, and M. Sevaux. Two upper bounds on the chro-
matic number. In Proc. of the CTW09 Cologne-Twente Workshop

on Graphs and Combinatorial Optimization, volume 8, pages 191–194,
Paris, France, 2009.

[26] M. Soto, A. Rossi, and M. Sevaux. Métaheuristiques pour l’allocation
de mémoire dans les systèmes embarqués. In Proc. ROADEF 11eme

congrès de la société Française de Recherche Opérationelle et d’Aide à

la Décision, pages 35–43, Toulouse, France, 2010.

20

[27] T. Vredeveld and J.K Lenstra. On local search for the generalized graph
coloring problem. Operations Research Letters, 31(1):28–34, 2003.

[28] S. Wuytack, F. Catthoor, L. Nachtergaele, and H. De Man. Power
exploration for data dominated video application. In Proc. IEEE Sym-

posium on Low Power Design, pages 359–364, Monterey, CA , USA,
1996.

21

