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Abstract

This paper introduces three new upper bounds on the chromatic number,
without making any assumption on the graph structure. The first one &
is based on the number of edges and nodes, and is to be applied to any
connected component of the graph, whereas ¢ and n are based on the degree
of the nodes in the graph. The computation complexity of the three-bound
computation is assessed. Theoretical and computational comparisons are also
made with five well-known bounds from the literature, which demonstrate
the superiority of the new upper bounds.
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1. Introduction

Given an undirected, simple graph, the graph coloring problem is to assign
a color to every node in such a way that two adjacent nodes do not have the
same color, while minimizing the total number of colors used. This problem
arises in many practical applications, such as map coloring, timetabling,
scheduling, memory allocation, and many others [1]. Formally, a coloring
of graph G = (X, U) is a function F' : X — N*; where each node in X is
allocated an integer value that is called a color. A proper coloring satisfies
F(u) # F(v) for all (u,v) € U [2, 3]. A graph is said to be a-colorable if
there exists a coloring which uses, at most, « different colors. In that case,
all the nodes colored with the same color are said to be part of the same
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class. The smallest number of colors involved in any proper coloring of a
graph G is called the chromatic number, it is denoted by x(G). The problem
of finding x(G), as well as a minimum coloring, is N'P-hard and is still the
focus of an intense research effort [4, 5, 6, 7].

First, we recall some elementary results on the graph coloring problem,
and introduce some notations. A graph cannot be a-colorable with o < x(G).
The chromatic number equals 1, if and only if G is a totally disconnected
graph, it is equal to | X| if G is complete, and for the graphs that are exactly
bipartite (including trees and forests) the chromatic number is 2.

Let G be a non directed, simple graph, where n = | X| is the number of
nodes, and m = |U| is the number of edges. The degree of node i is denoted
by d; for alli € {1,...,n}, and §(G) is the highest degree in G. The following
upper bounds on x(G) can be found in the literature:

o \(G)<d=6(G)+12 1].

. X(O)<i= {%mj 2, 1]

o X\(G) <M= I%ajg(min (d; + 1,4), provided that dy > dy > ... > d, [8].

o \(G) < s=03(G) + 1, where d2(G) is the largest degree that a node v
can have if v is adjacent to a node whose degree is at least as large as
its own [9].

e \(G)<q= ]_FT’I((S(G) + 1), where r is the maximum number of nodes

of the same degree, each at least (6(G) + 2)/2 [10].

Regarding lower bounds, the chromatic number is greater than or equal
to the clique number denoted by w(G), which is the size of the largest clique
in the graph, thus w(G) < x(G). However, this bound is difficult to use in
practice as finding the clique number is NP-hard, and the Lovasz number is
known to be a better lower bound for x(G) as it is “sandwiched” between the
clique number and the chromatic number [11]. Moreover, the Lovasz number
can be calculated in polynomial time.

There exist some upper bounds on the chromatic number for special
classes of graphs:

e \(G) < §(G), for a connected, simple graph which is neither complete,
nor has an odd cycle.



e \(G) < 4, for any planar graph.

In Section 2, three new upper bounds on the chromatic number are pro-
posed. The quality of these bounds is then compared with existing bounds
in Section 3, and computational experiments are conducted in Section 4 for
assessing the practical improvement of the three new upper bounds.

2. Three new upper bounds on the chromatic number

The following lemma is required for proving Theorem 1, which introduces
the first bound proposed in this paper.

Lemma 1. The following inequality holds for any connected, simple graph
Gn = (V,E), where m,, = |E|.

X(Gn) (x(Gn) = 1)
2

This inequality is referred to as Equation (1).

+n—x(Gn) < my, (1)

Proof. Lemma 1 is proved by recurrence on n.

First, it can be observed that Lemma 1 is obviously true for n = 2.
Indeed, there exists a unique connected, simple graph on two vertices, it has
a single edge, and x(Gg) = 2.

Second, we assume that Lemma 1 is valid for all graphs having at most
n vertices. We now prove than the inequality of Lemma 1 holds for any
connected, simple graph on n + 1 vertices. Let such a graph be denoted by
Gpa1. It has my, 41 edges and its chromatic number is x(G,41).

G411 can be seen as a connected, simple graph G,, plus an additional
vertex denoted by n + 1, and additional edges incident to this new vertex.
The addition of vertex n + 1 to G, either leads to x(Gn11) = x(Gn), or to
X(Gns1) = xX(G,) + 1. Indeed, the introduction of a new vertex (along with
its incident edges) to a graph leads to increment the chromatic number by
at most one.

e First case: x(Gni1) = X(Gy)
Adding 1 to Equation (1) yields

X(Grni1) (X(Gria) — 1)
2

+n+1—x(Gn1) <1 4+my <mpps



We have 1+ m,, < m,., because at least one new edge is to be added
to G, for building G,,,1: vertex n + 1 has to be connected to at least
one edge in G, for G, 1 to be connected.

e Second case: x(Gpni1) = x(Grn) +1

A minimal coloring of GG,,.1 can be obtained by keeping the minimal
coloring of G,,, and by assigning color x(G,+1) = x(G,) + 1 to vertex
n + 1. Since this coloring is minimal, there exists at least one edge
between any pair of color classes [2]. In particular, this requirement for
color x(G,41) implies that the degree of vertex n+ 1 is at least x(G,,),
hence m,, + x(G,) < myy1.

Adding x(G,,) to Equation (1) yields

(X(Gn) (x(Gn) = 1)

WD 0 (G)) 0 () <+ 1(G)

The quantity in parenthesis is equal to the sum of the integers in
{1a cee X(Gn)}> and since X(Gn-i-l) = X(Gn) + 17

MG OlGs) 21 3 (6,) < o+ 0(G)

Finally, as n — x(G,,) =n+ 1 — x(Gpy1) and m,, + x(G,) < myq1,

X(Gni1) (X; +1) ) +n+1—x(Gpy1) <mpiy

O

Theorem 1. The following inequality holds for any connected, simple undi-
rected graph G

X(G) <¢,

3+\/9—|—8(m—n)J
5 .

with £ = {



Proof. By Lemma 1, m can be lower bounded as follows:

X(G)X(G) — 1)
2

+n—x(G)<m

This inequality leads to the following second order polynomial in the
variable x(G):

X(G)? = 3x(G) = 2(m —n) <0

Once solved, this inequality leads to:

(6 < {3+\/9+8(m—n)J
= 2

O

Note that because all connected graphs have at least n — 1 edges, then
8(m —n) +9 > 1 thus the square root is in RT.

Remark 1. As this bound is only based on the number of the nodes and edges
in the graph, it yields the same value for all graphs having the same number
of nodes and edges. This bound computation requires O(1) operations.

Theorem 2. For any simple, undirected graph G, x(G) < (, where  is the
greatest number of nodes with a degree greater than or equal to ¢ — 1.

Theorem 3. For any simple, undirected graph G, x(G) < n, where n is the
greatest number of nodes with a degree greater than or equal to n that are
adjacent to at least n — 1 nodes, each of them with a degree larger than or
equal ton — 1.

Before proving Theorems 2 and 3, some notations and definitions need to
be stated. It should be noticed that connectivity is not required for the last
two bounds, which involves more information on the graph topology than
the first one.

The degree of saturation [12, 3] of a node v € X denoted by DS(v) is
the number of different colors of the nodes adjacent to v. For a minimum
coloring of graph G, DS(v) is in {1,...,x(G) — 1} for all v € X.

The following notations are used throughout this paper.



e C ={1,...,x(G)} is the minimum set of colors used in any valid
coloring.

e A valid (or proper) coloring using exactly x(G) colors is said to be a
minimal coloring.

e The neighborhood of node v denoted by N(v) is the set of all nodes
u such that edge (u,v) belongs to U. N(v) is also called the set of
adjacent nodes to v.

The last two bounds are based on the degree of saturation of a node and
on Lemma 2.

Lemma 2. Let F' be a minimal coloring of G. For every color k in C, there
exists at least one node v colored with k, (i.e., F(v) = k), such that its degree
of saturation is x(G) — 1 and where v is adjacent to at least x(G) — 1 nodes
with a degree larger than or equal to x(G) — 1.

Proof of Lemma 2. We prove the lemma by contradiction. First, we show
that for all k£ in C' there exists a node v, colored with k, such that DS(v) =
X(G) — 1. To do so, we assume that there exists a color k in C' such that
any node v colored with k has a degree of saturation that is strictly less than
x(G) — 1.
Then, it can be deduced that for all v € X such that F(v) = k, there
exists a color ¢ € C'\{k} such that there does not exist u € N(v)/F(u) = c.
Consequently, a new valid coloring can be derived from the current one by
setting F'(v) = ¢. Indeed, v is not connected to any node colored with ¢. This
operation can be performed for any node colored with k, leading to a valid
coloring in which color k is never used. Hence, this new coloring involves
X(G) — 1 colors, which is impossible by definition of the chromatic number.
Second, we show that, for every k in C, there exists a node v colored with
k, whose degree of saturation is equal to x(G) — 1, and such that v has at
least x(G) — 1 neighbors with degree larger than or equal to x(G)—1. To do
so, we assume that there exists a color k£ in C' such that any node v colored
with k having a degree of saturation equal to x(G) — 1 has strictly less than
X(G) — 1 neighbors with a degree larger than or equal to x(G) — 1.

Then, it can be deduced that for all node v colored with k and such that
DS(v) = x(G) — 1, there exists one color ¢ € C\{k} such that the degree of



any node w € V(v)/F(w) = c is strictly less than x(G) — 1. Then, for each
node w € V(v)/F(w) = ¢, there exists a color | € C\{k, ¢} such that setting
F(w) to [ yields a valid coloring. As a result, color ¢ is no longer used in
N(v), thus DS(v) is no longer x(G)—1. This operation can be performed for
any node v such that F(v) = k/DS(v) = x(G) — 1, leading to a coloring in
which there is no node v colored with & and such that DS(v) = x(G) — 1. It
can then be deduced from the first part of this proof that in such a situation,
G can be colored with strictly less than x(G) colors, which is impossible.

U

Proof of Theorem 2. 1t can be deduced from Lemma 2 that there exists at
least x(G) nodes in G, with a degree at least x(G) — 1. Thus, ¢ being the
greatest number of nodes with a degree greater than or equal to ( — 1, the
following inequality holds: x(G) < (. O

Remark 2. It can easily be seen that Algorithm 1, which returns ¢, has a
computational complezity of O (max{m,nlogy,(n)}), as it requires enumer-
ating the m edges to compute computing the degree of the nodes, nlogy(n)
operations to sort the nodes, and ( < n iterations in the while loop.

Algorithm 1: Computing (.
Data: Graph G(X,U); where n < |X| and m « |U].
Compute the degree, d; of all nodes ¢ in X;
Sort the nodes by non increasing degree;
¢ « 0, stable <~ 0 and ¢ < O;
while stable = 0 and i < n do
if d; > ¢ then
| ¢+<¢+1
else
L stable + 1;

141+ 1;

Proof of Theorem 3. It can be deduced from Lemma 2 that there exist at
least x(G) nodes in G, which are adjacent to x(G) — 1 nodes with degrees
larger than x(G) — 1. Since 7 is the greatest number of nodes with a degree
greater than or equal to n that are adjacent to at least n — 1 nodes, each of
them with degree larger than or equal to n — 1, then x(G) <. O

Remark 3. The proposed algorithm for computing n relies on the neighbor-
ing density. The neighboring density of node i is denoted by p; and is defined



as follows: p; is the largest integer such that node i is adjacent to at least p;
nodes. Each of the latter has a degree greater than or equal to p;. Algorithm
2 computes the neighboring density of all nodes. Then, n is computed by
executing Algorithm 1, where d; is replaced with p; for alli € X and where ¢
is replaced with n. The computational complexity for determining the neigh-
boring density of all nodes is O (mlogy(m)), as it requires m operations to
compute the degree, and 2mlog,(2m) operations to sort 2m numbers (the
degree sum of all nodes is 2m ). Therefore, the computational complexity for
computing n is O (max{mlog,(m),nlog,(n)}).

Algorithm 2: Computing the neighboring density of all nodes.
Data: Graph G(X,U); where n < |X| and m « |U].
Compute the degree of all nodes in X;
for i =1 to n do
Create the array tab by sorting the degree of the d; neighbors of node i by
non increasing order;
pi < 0, stable < 0, and j < 0;
while stable = 0 and j < d; do
if tab[7] > p; then
| pi = pi+1;
else
L stable + 1;

J=i+ L

3. Theoretical quality assessment of these bounds

The three bounds introduced in this paper are compared theoretically
to the five upper bounds from the literature, which were mentioned in the
introduction, namely d, [, M, s and q.

Proposition 1. For any simple, undirected, connected graph
£ <.

Proof. The number of edges in any simple undirected graph is less than or
equal to n(n — 1)/2, thus:

2

2m < n“—n
8m+1 < 4n® —4n+1
sm+1 < (2n—1)>



gm+1 < 2n-—1
1-2n < —v8m+1
4—-8n < —4v8m+1

Then, 8m + 5 is added to the last inequality

9+8m—n) < Bm+1)+4—-4v/8m+1
9+8m—n) < V8m+1-2
3++/9+8(m—n) < 1+v8m+1

2 2
{3+\/9+8(m—n)J {1+\/WJ
2
3

2

IN

l

Proposition 2. For any simple undirected graph

n<(¢

Proof. This is obvious as the definition of ¢ and 1 can be seen as the statement
of two maximization problems. Since the requirements (or constraints) on 7
are more stringent than the requirements on (, the inequality n < ¢ holds. [

Proposition 3. For any simple undirected graph
¢<d

Proof. Since §(G) is the maximum degree in the graph, d, < §(G) for all
v € X. By definition of (, there exists at least one node w with a degree
greater than or equal to ( — 1, then:

dy < 6(G)
(-1 < 4§(G)

¢ < 0G)+1

¢ < d



Proposition 4. For any simple undirected graph
(=M

Proof. First, it is recalled that by definition of (, there does not exist { +
1 nodes with a degree larger than or equal to ¢ (otherwise this would be
conflicting with the definition of ().

It is assumed without loss of generality that the nodes are indexed by
non increasing degree: dy > dy > ... > d,. Then it can be deduced that the
nodes whose index is in {¢C + 1,...,n} have a degree less than or equal to
¢—1.

The node set X = {1,...,n} is split into two subsets: X = AU B with
A=A{1,...,¢} and B={¢+1,...,n}. In other words, A is the set of the ¢
nodes of highest degree, B is the set of the n — ( nodes of lower degree.

For all ¢ in X, we denote by m; the minimum between d; + 1 and 7 (i.e.
this makes it possible to write M = max m;).

For all + € X, i is either in A or in B:

e If 7 € A, then node 7 is such that d; > ( — 1, i.e. d;+1 > (. Moreover,

by definition of A, i < (. Consequently:

m;=1<¢<di+1 Vie A

In particular, for i = , m; = (, and by definition of M, ( < M.

e Ifi € B, then node i is such that d; < ( —1, i.e. d; +1 < (. Moreover,
by definition of B, ¢ > (. Consequently:

my=d; +1< (<1 Vie B

Finally, the inequality m; < ¢ holds for all i € {1,...,n} and by definition
of M this leads to M < (.
]

Remark 4. Computing M by using the formula M = max min (d; + 1,7)
1€

provided in [8] has a computational complezity of O (max{m,nlog,n}), as
it requires computing the degree of the nodes, and sorting them by non in-
creasing degree. Although ¢ and M are defined differently, their computation
requires the same order of arithmetic operations.

10



Proposition 5. For any simple undirected graph

n<s

Proof. By definition of d5(G), there does not exist two adjacent nodes i and
J in X such that d; > d2(G) and d; > 05(G). Consequently, it is impossible
to find a node adjacent to at least d(G) + 1 nodes whose degrees are at least
92(G) + 1. This shows that n—1 is less than or equal to do(G), i.e. n <s. O

Proposition 6. For any simple undirected graph

¢(<q

Proof. We prove by contradiction that { < ¢ by using Proposition 4.
M- (d 41
¢ max min(d; + 1,14)

We denote by A and B the two subsets of X: A= {1,...,(} and B =
{C+1,....n}.

As shown in the proof of Proposition 4:

i < ¢ < di+1 Vie A
di+1 < ¢ < i Vi€ B

We assume that ¢ > q.

First, it is recalled that Stacho has proved in [10] that d, < ¢, i.e. d,+1 <
q. Then ¢ > ¢ does not hold if ¢ € A.

Second, if ¢ belongs to B it must satisfy ¢ < ¢ which is conflicting with
the hypothesis { > q.

Consequently, this proves that { < q. O

4. Computational assessment of these bounds

The new bounds introduced in this paper are compared to the five bounds
of the literature on the DIMACS instances [13] for graph coloring. The detailed
results are shown in Table 1. The first three columns of this table provide the
instance source at DIMACS, its name, the number of nodes and the number
of edges. The next eight columns show the upper bound on the number
of colors provided by the five bounds of the literature, and the three upper
bounds introduced in this paper. The last three rows of Table 1 show the

11



average value of each bound on the DIMACS instances, the before last row is
the average improvement provided by 1 over all the other bounds (note that
these figures are not computed on the average numbers of colors), and the
last row is the total amount of CPU time (in seconds) required for computing
each bound on an Intel Xeon processor system at 2.67 GHz and 8 Gbytes RAM.
Algorithms have been implemented in ¢++ and compiled with gce 4.11 on
a Linux System.

Table 1: Upper bounds on the chromatic number

Instances | Known upper bounds | New upper bounds
Sour. Name n\m | d l M s q | £ ¢ n
MYC myciel3 11 \20 6 6 5 4 6 6 5 4
MYC myciel4 23\71 12 12 7 7 12 11 7 6
CAR 2-Insert._3 37\72 10 12 5 5 6 10 5 5
CAR 1-Fulllns_3 30 \100 12 14 9 12 12 13 9 7
CAR 3-Insert._3 56 \110 12 15 5 5 7 12 5 5
MIZ mug88_1 88 \146 5 17 5 5 6 12 5 4
MIZ mug88_25 88 \146 5 17 5 5 6 12 5 4
CAR 4-Insert._3 79 \156 14 18 5 5 8 14 5 5
SGB queen5_5 25 \160 17 18 13 13 17 18 13 13
MIZ mugl00-25 100 \166 5 18 5 5 6 13 5 4
MIZ mugl00_1 100 \166 5 18 5 5 6 13 5 4
CAR 2-Fulllns_3 52 \201 16 20 12 16 16 18 12 8
MYC r125.1 125 \209 9 20 7 7 10 11 7 6
CAR 1-Insert._4 67 \232 23 22 9 9 16 19 9 7
MYC myciel5 47 \236 24 22 13 13 22 21 13 9
SGB jean 80 \254 37 23 12 14 19 20 12 11
SGB queen6_6 36 \290 20 24 16 16 20 24 16 16
SGB huck 74 \301 54 25 11 21 28 22 11 11
CAR 3-Fulllns_3 80 \346 20 26 14 20 20 24 14 10
SGB miles250 128 \387 17 28 13 15 16 23 13 10
SGB david 87 \406 83 29 16 31 42 26 16 12
SGB queen7_7 49 \476 25 31 21 19 25 30 21 19
SGB anna 138 \493 72 31 15 51 37 28 15 12
CAR 4-Fulllns_3 114 \541 24 33 16 24 24 30 16 12
CAR 2-Insert._4 149 \541 38 33 9 11 20 29 9 9
CAR 1-Fulllns_4 93 \593 33 34 18 33 26 33 18 13
SGB games120 120 \638 14 36 13 14 15 33 13 11
SGB queen8_8 64 \728 28 38 24 22 28 37 24 22
DSJ dsjcl25.1 125 \736 24 38 17 20 24 36 17 12
MYC myciel6 95 \755 48 39 21 25 44 37 21 14
CAR 5-Fulllns_3 154 \792 28 40 18 28 29 37 18 14
MYC r250.1 250 \867 14 42 13 13 15 36 13 10
CAR 3-Insert._4 281 \1046 57 46 9 13 29 40 9 9
SGB queen9_9 81 \1056 33 46 27 25 33 45 27 25
SGB miles500 128 \1170 39 48 29 35 35 47 29 25
CAR 1-Insert._5 202 \1227 68 50 17 24 46 46 17 13
SGB queen8_12 96 \1368 33 52 31 30 33 51 31 27
SGB queenl0.10 100 \1470 36 54 32 28 36 53 32 28

Continued on next page
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Table 1 — continued from previous page

Instances | Known upper bounds | New upper bounds
Sour. Name n\m | d l M s q | I3 ¢ n
CAR 2-Fulllns_4 212 \1621 56 57 24 56 51 54 24 16
SGB homer 561 \1628 100 57 25 56 51 47 25 18
CAR 4-Insert. 4 475 \1795 80 60 9 15 41 52 9 9
SGB queenll_11 121 \1980 41 63 35 31 41 62 35 31
SGB miles750 128 \2113 65 65 42 55 57 64 42 37
MYC myciel7 191 \2360 96 69 35 49 88 67 35 23
SGB queenl2_12 144 \2596 44 72 38 34 44 71 38 34
SGB miles1000 128 \3216 87 80 57 82 74 80 57 49
DSJ dsjc250.1 250 \3218 39 80 33 35 39 78 33 25
CAR 1-Fulllns_5 282 \3247 96 81 36 96 73 78 36 23
SGB queenl3_13 169 \3328 49 82 43 37 49 81 43 37
CAR 3-Fulllns_4 405 \3524 85 84 28 85 72 80 28 20
REG zeroin_i3 206 \3540 141 84 41 38 119 83 41 32
REG zeroin_i2 211 \3541 141 84 41 38 119 83 41 32
DSJ dsjr500.1 500 \3555 26 84 23 26 27 79 23 18
MYC r125.5 125 \3838 100 88 61 70 85 87 61 52
REG mulsol_i2 188 \3885 157 88 53 34 139 87 53 33
DSJ dsjc125.5 125 \3891 76 88 63 72 72 88 63 57
REG mulsol_i3 184 \3916 158 89 54 34 140 87 54 33
REG mulsol_il 197 \3925 122 89 65 82 111 87 65 51
CAR 2-Insert._5 597 \3936 150 89 20 39 76 83 20 17
REG mulsol_i4 185 \3946 159 89 54 34 140 88 54 33
REG mulsol_i5 186 \3973 160 89 55 34 141 88 55 33
REG zeroin_il 211 \4100 112 91 54 95 104 89 54 51
HOS ash331agpia 662 \4185 24 91 20 23 25 85 20 16
SGB queenl4_14 196 \4186 52 92 46 40 52 90 46 40
SGB queenl5_15 225 \5180 57 102 49 43 57 101 49 43
SGB miles1500 128 \5198 107 102 84 106 96 102 84 78
LEI le450_5a 450 \5714 43 107 34 35 44 104 34 25
LEI 1e450_5b 450 \5734 43 107 34 35 43 104 34 26
SGB queenl6_16 256 \6320 60 112 54 46 60 111 54 46
CAR 1-Insert._6 607 \6337 203 113 33 69 136 108 33 25
CAR 4-Fulllns_4 690 \6650 120 115 36 120 104 110 36 24
DSJ dsjcl25.9 125 \6961 121 118 109 113 116 118 109 106
HOS will199Gpia 701 \7065 42 119 35 35 42 114 35 28
MYC rl25.1c 125 \7501 125 122 116 116 123 122 116 116
HOS ash608apriA 1216 \7844 21 125 20 20 22 116 20 16
LEI le450_15a 450 \8168 100 128 57 68 93 125 57 39
LEI 1e450_15b 450 \8169 95 128 56 72 88 125 56 39
LEI le450_25a 450 \8260 129 129 63 85 114 126 63 46
LEI 1e450_25b 450 \8263 112 129 60 80 99 126 60 43
REG fpsol2i3 425 \8688 347 132 53 68 299 130 53 35
REG fpsol2i2 451 \8691 347 132 53 68 299 129 53 35
CAR 3-Insert..5 1406 \9695 282 139 25 58 142 130 25 17
LEI le450_5d 450 \9757 69 140 52 53 68 137 52 41
LEI 1e450_5¢ 450 \9803 67 140 52 55 67 138 52 41
CAR 5-Fulllns4 1085 \11395 161 151 49 161 142 145 49 28
REG fpsol2il 496 \11654 253 153 79 102 231 150 79 67
CAR 2-Fulllns .5 852 \12201 216 156 56 216 193 152 56 31
DSJ dsjc500.1 500 \12458 69 158 59 61 69 156 59 47
HOS ash958GPIA 1916 \12506 25 158 21 22 26 147 21 17
REG inithx_i3 621 \13969 543 167 52 235 476 164 52 38

Continued on next page
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Table 1 — continued from previous page

Instances | Known upper bounds | New upper bounds
Sour. Name n\m | d l M s q | I3 ¢ n
REG inithx_i2 645 \13979 542 167 52 235 476 164 52 38
MYC r1000.1 1000 \ 14378 50 170 41 47 51 165 41 34
SCH schooll_.nsh 352 \14612 233 171 101 115 195 170 101 84
MYC r250.5 250 \14849 192 172 119 154 166 172 119 99
DSJ dsjc250.5 250 \15668 148 177 126 134 141 177 126 116
LEI 1le450-15¢ 450 \16680 140 183 93 129 133 181 93 70
LEI le450_15d 450 \16750 139 183 92 129 131 182 92 70
LEI le450-25¢ 450 \17343 180 186 101 128 163 185 101 76
LEI le450_25d 450 \17425 158 187 99 138 145 185 99 75
REG inithx_il 864 \18707 503 193 74 239 441 190 74 57
SCH schooll 385 \19095 283 195 117 172 213 194 117 98
CUL flat300.20_0 300 \21375 161 207 144 148 155 206 144 135
CUL flat300-26_0 300 \21633 159 208 146 152 154 208 146 136
CUL flat300-28_0 300 \21695 163 208 146 157 158 208 146 136
GOM qg.order30 900 \26100 59 228 59 59 60 226 59 59
DSJ dsjc250.9 250 \27897 235 236 219 224 228 236 219 214
MYC r250.1c 250 \30227 250 246 238 242 246 246 238 236
CAR 3-Fulllns 5 2030 \33751 410 260 79 410 343 253 79 40
KOS wap0ba 905 \43081 229 294 147 200 213 291 147 106
KOS wap06a 947 \43571 231 295 147 200 211 293 147 105
DSJ dsjc1000.1 1000 \49629 128 315 112 112 127 313 112 93
DSJ dsjr500.5 500 \58862 389 343 234 282 347 343 234 197
GOM qg.order40 1600 \62400 79 353 79 79 80 350 79 79
DSJ dsjc500.5 500 \ 62624 287 354 251 260 277 353 251 236
HOS abb313GPIA 1557 \65390 188 362 123 119 184 358 123 94
CAR 4-Fulllns 5 4146 \77305 696 393 96 696 598 384 96 48
KOS wap07a 1809 \103368 299 455 188 259 275 452 188 130
KOS wap08a 1870 \104176 309 456 189 272 293 453 189 129
KOS wapOla 2368 \ 110871 289 471 174 223 270 467 174 115
KOS wap02a 2464 \111742 295 473 175 222 280 469 175 116
DSJ ds;jc500.9 500 \112437 472 474 443 450 461 474 443 437
DSJ dsjr500.1c 500 \121275 498 492 478 489 490 492 478 476
GOM qg.order60 3600 \212400 119 652 119 119 120 647 119 119
MYC r1000.5 1000 \238267 782 690 472 535 696 690 472 396
CUL flat1000_50 1000 \245000 521 700 492 503 511 700 492 474
CUL flat1000-60 1000 \245830 525 701 493 501 515 701 493 472
CUL flat1000_-76 1000 \246708 533 702 494 501 523 702 494 474
DSJ dsjc1000.5 1000 \249826 552 707 501 518 538 706 501 475
KOS wap03a 4730 \286722 345 757 230 302 333 752 230 148
KOS wap04a 5231 \ 294902 352 768 238 307 341 762 238 149
LAT latinsquarel0 900 \307350 684 784 684 684 685 784 684 684
DSJ dsjc1000.9 1000 \449449 925 948 888 912 910 948 888 877
MYC r1000.1c 1000 \485090 992 985 957 976 978 985 957 951
GOM qg.order100 10000 \990000 199 1407 199 199 200 1401 199 199
MYC ¢2000.5 2000 \ 999836 1075 1414 1000 1028 1054 1414 1000 962
MYC c4000.5 4000 \4000268 2124 2829 2002 2019 2093 2828 2002 1942
Average number of colors 186.1 218.5 122.2 147.5 171.2 215.9 122.2  108.9
Av. Improvement of n (in %) —46.1 =583 —184 —294 —428 | —56.6 —18.4 0.0
Total time (seconds) 0.2 0.0 0.3 2.1 0.3 3.8 0.9 14.0
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Table 2 is displayed to assess the practical strength of Propositions 1 to
6. As each proposition is of the form a < b (except Proposition 4), the last
column of Table 2 indicates by which amount bound «a is better than bound
b (the average improvement is defined as the average value of (a — b)/b over
all the instances, in percent). Naturally, this amount is 0% in the particular
case of Proposition 4 as it is an equality. It can be seen that £ does not
provide a significant advantage over [ in practice.

Table 2: Computational assessment of Propositions 1 to 6 based on Table 1

Propositions Avg. improvement
Proposition 1 &<l —4.56%
Proposition 2 n<( —18.36%
Proposition 3 (<d —35.99%
Proposition 4 (=M 0.00%
Proposition 5 n<s —29.39%
Proposition 6 (<q -32.02%

However, Propositions 2, 3, 5 and 6 are stronger as the improvement is
larger than 18%. More specifically, the best bound proposed in this paper
outperforms the best upper bound of the literature by more than 18% in
average. Proving that M = ( is important for highlighting the reason for the
practical superiority of n over M. Indeed, 7 is based on the same principle
as (, it focuses on the degrees of saturation of nodes. The difference is that
71 goes one step further than ¢ by considering the degree of saturation of the
neighbors of each nodes (i.e the so-called neighboring density). This addi-
tional requirement has a computational cost which is drastically larger than
the one required by computing (, but it provides a significant improvement
in terms of the upper bound quality.

5. Conclusion

This paper introduces three new upper bounds on the chromatic number,
without making any assumption on the graph structure. The first one, &,
is based on the number of edges and nodes and only requires connectivity,
whereas ( and 7 are based on the degree of the nodes in the graph. It is
shown that ( is equal to an existing bound, while being computed in a very
different way. Moreover, a series of inequalities are proved, showing that
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these new bounds outperform five of the most well-known upper bounds
from the literature. Computational experiments also show that the best
bound proposed in this paper, n, is significantly better than the five bounds
of the literature, and highlight the benefit of using the degree of saturation
and its refined version (the neighboring density) for producing competitive
upper bounds for graph coloring.
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