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Abstract. We prove an analogue of a perturbation result for the Dirichlet problem of
divergence form elliptic operators by Fefferman, Kenig and Pipher, for the degenerate
elliptic operators of David, Feneuil and Mayboroda, which were developed to study
geometric and analytic properties of sets with boundaries whose co-dimension is higher
than 1. These operators are of the form −divA∇, where A is a weighted elliptic matrix
crafted to weigh the distance to the high co-dimension boundary in a way that allows
for the nourishment of an elliptic theory. When this boundary is a d−Alhfors-David
regular set in Rn with d ∈ [1, n − 1) and n ≥ 3, we prove that the membership of
the harmonic measure in A∞ is preserved under Carleson measure perturbations of the
matrix of coefficients, yielding in turn that the Lp−solvability of the Dirichlet problem is
also stable under these perturbations (with possibly different p). If the Carleson measure
perturbations are suitably small, we establish solvability of the Dirichlet problem in the
same Lp space. One of the corollaries of our results together with a previous result
of David, Engelstein and Mayboroda, is that, given any d-ADR boundary Γ with d ∈
[1, n − 2), n ≥ 3, there is a family of degenerate operators of the form described above
whose harmonic measure is absolutely continuous with respect to the d−dimensional
Hausdorff measure on Γ.
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1. Introduction

The study of the Dirichlet problem for the Laplace equation on domains with rough
boundaries has been of great interest in the last fifty years. This investigation has been
in part motivated by a broader program of enlightening a connection between the well-
posedness of the Dirichlet problem and the underlying geometry, essentially as pioneered
by Dahlberg in [Dah77] and Jerison and Kenig [JK81], with the important precursor work
of F. and M. Riesz in [RR16], and others.

The key machinery allowing the aforementioned link is the construction via the max-
imum principle of a family of probability measures, known as the harmonic measure,
which provides a representation formula for solutions to the Dirichlet problem with con-
tinuous data on the boundary. Then, in a robust way, quantifiable well-posedness of
the Dirichlet problem is equivalent to quantifiable absolute continuity of the harmonic
measure with respect to the boundary surface measure, whenever the latter makes sense
[FKP91,DKP11,DJK84,Zha18]. In turn, this property of quantifiable absolute continuity
of harmonic measure has been successfully tied to quantifiable geometric and topolog-
ical properties of the boundary of the domain, when the boundary has co-dimension 1.
We do not attempt to comprehensively review the literature in this area, but let us men-
tion that considerable attention has been devoted to studying the geometric assumptions
on co-dimension 1 boundaries for which the harmonic measure is absolutely continuous
with respect to the surface measure [Dah77, DJ90, Sem89, BL04, HM14], as well as the
converse so-called free boundary problems, where geometric information of the bound-
ary is deduced from a priori solvability properties [Azz, HMUT14, AHMNT17, AHM-
MMTV16], culminating in the recent results of [AHMMT], which gives a complete pic-
ture of the relationship between absolute continuity of harmonic measure with respect to
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surface measure on the one hand, and uniform rectifiability plus a quantitative connec-
tivity property on the other hand, for boundaries of co-dimension 1.

However, when the boundary has co-dimension larger than 1, the correspondence be-
tween geometry and the theory of the Dirichlet problem for uniformly elliptic operators
is severed, essentially owing to deep (and, as of yet, not completely understood) dimen-
sional constraints on the support of the harmonic measure [BJ90,Bou87,Wol95]. Indeed,
if we attempted to solve the Laplace equation outside of a boundary of high enough
co-dimension, the equation does not “see” the boundary, and thus the uniformly elliptic
theory is not a correct lens by which to characterize the geometry of such boundaries.

In [DFM19b], G. David, J. Feneuil and the first author of this paper started a program
to characterize the geometry of boundaries of high co-dimension via the theory of certain
degenerate elliptic operators, crafted to overcome the fundamental myopia of uniformly
elliptic operators vis-à-vis the geometry of low dimensional boundaries. Let d ≤ n − 1
be the Hausdorff dimension of the closed set Γ ⊂ Rn. Furthermore, suppose that Γ is
quantifiably d−dimensional; more precisely, suppose that Γ is d−Ahlfors-David regular
(cf. Definition 2.1). Formally, consider

(1.1) (Lu)(X) = − div
(

A(X)
dist(X,Γ)n−d−1∇u(X)

)
, X ∈ Ω := Rn\Γ,

where A is a uniformly elliptic matrix. Observe that in compactly contained subsets of
Ω, the operator L is strongly elliptic, but not uniformly so up to the boundary Γ, unless
d = n − 1. Instead, the operator must degenerate at a fixed rate which morally forces
harmonic functions to respect the high co-dimension sets. It turns out that for these
operators, one can recover an elliptic theory [DFM19b], and in particular an analogue of
harmonic measure can be devised. Degenerate operators have been considered in many
previous works, for instance, [FKS82] and [FJK82], but the solvability of boundary value
problems was not studied.

Let us review a bit of the theory developed so far for the operators of the form (1.1).
In [DFM19a] the authors provided an analogue of Dahlberg’s result [Dah77] which holds
for their weighted elliptic operators. More precisely, for a d−dimensional Lipschitz graph
Γ with small Lipschitz constant, David, Feneuil and Mayboroda constructed a weighted
elliptic operator of the form (1.1) so that the harmonic measure is absolutely continuous
with respect to the surface measure on Γ. The equivalence of quantitative well-posedness
of the Dirichlet problem and quantitative absolute continuity of harmonic measure was
considered by Mayboroda and Zhao in [MZ19], so that from the two works [DFM19a],
[MZ19] we see the first solvability results of the Dirichlet problem for the operators
defined in [DFM19b]. More recently, the Dirichlet problem (D)p was tackled by Feneuil,
Mayboroda, and Zhao in [FMZ] under some small Carleson norm assumptions on the
coefficient matrixA, extending results of [DP19] to this setting (see also [DPP07]).

Regarding solvability of the Dirichlet problem on domains with uniformly rectifiable
low dimensional boundaries, David and Mayboroda [DM] have shown that for a suit-
able substitute of the Laplacian in the low dimensional setting, the harmonic measure is
absolutely continuous with respect to the surface measure on d−dimensional uniformly
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rectifiable boundaries, with d ≤ n − 2 an integer (see also Feneuil [Fen] for a different
proof). On the other hand, in [DEM], David, Engelstein, and Mayboroda manufactured
an example which shows that for any d−Ahlfors-David regular set Γ with d < n − 2,
there exists a special operator LDEM formally belonging to the class (1.1) whose har-
monic measure is absolutely continuous with respect to the surface measure. The latter
result lies in sharp contrast to the co-dimension 1 case with the landmark free-boundary
result [AHMMT], because it implies that for d-ADR sets with d < n − 2 an integer (re-
call that the complements of these sets always verify the interior Corkscrew and Harnack
Chain properties), uniform rectifiability alone cannot possibly characterize the A∞ prop-
erty of the harmonic measure for all operators in the class (1.1). It is possible that the
case of LDEM is a miraculous arithmetic cancellation, and the free boundary result is still
valid in some capacity. We show in this article, however, that even if so, this arithmetic
cancellation produces an entire family of counterexamples - see Corollary 1.9 below.

We also mention briefly that an axiomatic elliptic theory for domains with mixed-
dimensional boundaries is realized in [DFMb], while the Regularity problem in the high
co-dimension setting is dealt with in an upcoming paper by Dai, Feneuil, and Mayboroda
[DFMa].

In this paper, we aim to further develop the theory of these degenerate elliptic operators
by showing that quantifiable well-posedness of the Dirichlet problem is an open property.
Given an operator L of the form (1.1), we say that the Dirichlet problem for L with Lp data
is solvable, or (D)p is solvable, if for each f ∈ Lp(Γ, σ), there exists a unique solution u
to the problem 

Lu = 0 in Ω,

u −→ f non-tangentially,

‖Nu‖Lp(Γ,σ) . ‖ f ‖Lp(Γ,σ).

For the definition of the non-tangential maximal function N and non-tangential conver-
gence, see Definition 2.15. Moreover, as usual we understand Lu = 0 in a weak sense,
see Definition 7.5. We are ready to state our main results.
Theorem 1.2 (Carleson perturbation preserves Dirichlet problem solvability). Suppose
that Γ is d-ADR with d ∈ [1, n − 1), n ≥ 3. Let two operators L0 and L be given as
in (1.1) with associated bounded and uniformly elliptic real (not necessarily symmetric)
matrices A0 and A (see (7.2) for the definition of uniform ellipticity). Let ω0, ω denote
the respective harmonic measures. We define the disagreement of the matricesA,A0 as

(1.3) a(X) := sup
Y∈B(X,δ(X)/2)

|E(Y)|, E(Y) := A(Y) −A0(Y), X ∈ Ω.

Assume that δ(X)d−na2 dX is a Carleson measure; that is, assume that there exists a
constant C ≥ 1 such that for each surface ball ∆ = B(x, r) ∩ Γ, the estimate

(1.4)
∫∫

T (∆)

a(X)2

δ(X)n−d dX ≤ Cσ(∆)

holds, where T (∆) = B(x, r) ∩ Ω. Then, if (D)p′ is solvable for L0 for some p′ ∈ (1,∞),
then there exists q′ ∈ (1,∞) such that (D)q′ is solvable for L.
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Theorem 1.5 (Small Carleson perturbation preserves (D)p). Suppose that Γ is d-ADR
with d ∈ [1, n−1), n ≥ 3. Let two operators L0 and L be given as in (1.1) with associated
uniformly elliptic real (not necessarily symmetric) matricesA0 andA. Let ω0, ω denote
the respective harmonic measures. Moreover, suppose that there exists p′ ∈ (1,∞) such
that (D)p′ is solvable for L0. Define a as in (1.3), and assume that there exists ε0 > 0 so
that

(1.6)
∫∫

T (∆)

a(X)2

δ(X)n−d dX ≤ ε0σ(∆), for all ∆ ⊂ Γ.

Then for all ε0 small enough, depending only on n, d, the d-ADR constant of Γ, the
ellipticity of L0 and L, and the RHp characteristic of the Poisson kernel

dωL0
dσ (see Theorem

7.40 and Definition 7.28), we have that (D)p′ is solvable for L as well, and the RHp

characteristic of
dωL1
dσ depends only on the same parameters as does ε0.

We note that when Γ = Rn\Rd, a version of Theorem 1.2 with a certain operator LDFM
satisfying some structural assumptions is already part of the main result in [DFM19a],
where Carleson measure perturbations from their operator LDFM are allowed. Likewise, a
version of Theorem 1.5 with a specific operator LFMZ satisfying some structural assump-
tions is already in [FMZ] for Γ = Rn\Rd. The novelty of our main results is that they
hold for any d ∈ [1, n − 1), any d−Ahlfors-David regular set Γ (with d not necessarily
an integer), and for any real operator L0 verifying the well-posedness of (D)p, for some
p ∈ (1,∞). We also briefly remark that Theorem 1.2 may not be deduced from Theorem
1.5 due to the dependence of the latter on the RHp characteristic of

dωL0
dσ .

Let us discuss a couple of immediate corollaries of our result. First, in the work
[DM] (also [Fen]) the authors obtain the following result. Suppose that Γ ⊂ Rn is a
d−dimensional uniformly rectifiable set in Rn with d ≤ n−2, d ∈ N, that µ is a uniformly
rectifiable measure on Γ, and that

Lµ,α = − div
( 1

Dn−d−1
µ,α

∇

)
, in Rn\Γ,

where Dµ,α is the regularized distance

(1.7) Dµ,α(X) :=
(∫

Γ

|X − y|−d−α dµ(y)
)1/α

, α > 0, X ∈ Rn\Γ.

Then ωµ,α ∈ A∞(µ). We remark that in this setting, µ is equivalent to σ = H d |Γ, and for
any α > 0, Dµ,α ≈α δ(X). Using our Theorem 1.2, we are able to extend their class of
solvable problems.
Corollary 1.8 (Uniform rectifiability implies solvability of many operators). Let Γ ⊂ Rn

be a closed d−dimensional uniformly rectifiable set with d ≤ n − 2 an integer. Suppose
that µ and Lµ,α are as described above, with α > 0. Let L be an operator of the form (1.1)
with matrixA for which the disagreement ofA withAµ,α satisfies the Carleson measure
perturbation (1.4). Then ωL ∈ A∞(H d |Γ).
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Next, we recall the “magic” α example in [DEM]. Let Γ be a (possibly purely un-
rectifiable) closed unbounded d−Ahlfors-David regular set in Rn with d ∈ (0, n − 2) not
necessarily an integer, and n ≥ 3. Let α̂ := n − d − 2. Write Dα̂ = Dσ,α̂ for the regu-
larized distance (1.7) with µ = σ. It turns out that in this setting, Dα̂ solves the equation
Lα̂u = Lσ,α̂u = 0 in Rn\Γ. Ultimately, this observation can be used to deduce that the
harmonic measure of Lα̂ is equivalent to σ (in the sense of pointwise equivalent bounds).
Our Theorem 1.2 implies
Corollary 1.9 (Open ball around “magic α” example of [DEM]). Let n ≥ 3 and let Γ ⊂ Rn

be a closed d-ADR set with d ∈ [1, n−2). Suppose that L is an operator of the form (1.1)
with matrixA for which the disagreement ofA withAσ,α̂ satisfies the Carleson measure
perturbation (1.4). Then ωL ∈ A∞(σ).

In other words, the counterexample of [DEM] to certain free boundary problems ex-
tends to give an open set of counterexamples.

Perturbation results are critical for the study of well-posedness, with applications to
inverse problems and numerical analysis, because they allow some degree of relaxation
of the assumptions on the coefficients needed for solvability. Indeed, necessary and suf-
ficient conditions for solvability are very difficult to come by, whence a sensible strategy
to establish a “fat” domain of operator invertibility is to first impose relatively strong
conditions on the coefficients to make the problem tractable, and then in a second step
exploit perturbation results.

In the widely studied case of co-dimension 1 with domain given by the half-space
and transversal direction denoted by t, the robustness of well-posedness has generally
been examined through two perspectives: t−independent L∞ perturbations, and Carleson
measure perturbations. In a sense, these are complementary to one another, as the latter
does not prescribe structural conformity but formally implies equality at the boundary
of the perturbed coefficients to the original coefficients, while the former allows dis-
crepancy at the boundary while imposing a rather strict structural condition (which is
nevertheless natural; see [CFK81]). The t−independent sturdiness has been studied in
[FJK84], [AAH08], [AAM10], [AAAHK11] and more recently in [BHLMPb,BHLMPa]
t−independent complex perturbations in the first-order and zeroth-order terms have been
treated. In our setting, t−independent perturbation does not make sense since our opera-
tor must weigh the distance to the boundary, so that the structural advantage is lost unless
d = n − 1 which is the case that has classically been considered.

Therefore, robustness for our degenerate elliptic operators is better understood via Car-
leson measure perturbations. In the co-dimension 1 setting, results in the spirit of Theo-
rem 1.2 go back to [FKP91], [KP93], [KP95] (see also [HL01], [HM12], [HM10]), and
have even been extended to complex coefficient perturbations under some conditions in
[AA11], [HMM15]. Analogues of the Carleson measure perturbation result Theorem 1.2
for the co-dimension 1 case have been seen to hold under progressively weaker geometric
and topological assumptions on the boundary, going up to and including 1−sided NTA
domains with a capacity density condition; see [MT10], [MPT13], [CHM19], [CHMT],
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and [AHMT]. That these perturbations are somehow optimal hypotheses to ensure trans-
fer of the A∞ property of the harmonic measure (and hence, solvability of the Dirichlet
problem on some Lp) was argued in [FKP91] for the co-dimension 1 setting, where it
was shown that, on the one hand, the analogous hypothesis of our Theorem 1.2 cannot
provide a stronger result than A∞ =⇒ A∞, and on the other hand, they show that no
weaker assumption than the Carleson perturbation hypothesis can preserve A∞. A key
player in the study of the optimality of this hypothesis is the theory of quasiconformal
mappings, which can be used to yield the existence of uniformly elliptic operators on
smooth domains for which the elliptic measure is not absolutely continuous with respect
to the surface measure [CFK81] (for other such examples see [MM81,Pog] in the setting
of co-dimension 1, and [DFM19c] for the case of low dimensional boundaries). In turn,
Theorem 1.5 is a higher co-dimensional analogue of small Carleson perturbation theo-
rems [Dah86], [MPT14], [CHM19] (see also [Esc96]) which preserve solvability of (D)p
in the same Lp space.

Our method of proof follows the program of [HM12] (see also [CHM19]), where
the main result of [FKP91] was given a new proof via an extrapolation theorem first
presented by [LM95] and based on ideas of the Corona construction in [Car62], [CG75],
where one aims to reduce matters to small perturbations on certain so-called sawtooth
domains. Under this perspective, the overarching goal is to prove that the membership to
a properly defined A∞ class (see Definition 7.28) of the harmonic measure is preserved
when the operator undergoes a perturbation ultimately controlled by its mass near the
d−dimensional boundary.

One of the main tools allowing one to attack uniformly rectifiable boundaries is the
analysis on so-called sawtooth domains “shielding” bad parts of the boundary and pro-
viding a systematic comparison of our solutions with nice ones on a sawtooth domain. In
contrast to the co-dimension 1 case, our sawtooth domains will in general have mixed-
dimensional boundaries, and therefore properties like Ahlfors-David regularity or uni-
form rectifiability cannot possibly transfer as-is to sawtooth domains. Nevertheless,
we show that the sawtooth domains which we generate through a dyadic decomposi-
tion of the boundary [Chr90, DS93] and which have been seen in [HM14, MZ19] sat-
isfy an axiomatic elliptic theory for sets with boundaries of mixed dimensions presented
in [DFMb]; in particular, we construct a measure on the boundary of the sawtooth do-
main which behaves sufficiently like a surface measure, as well as a suitable analogue
of the harmonic measure on such sets. This allows us to show a global analogue of the
Dahlberg-Jerison-Kenig sawtooth projection lemma [DJK84]; in our setting, a similar
result is shown in the upcoming work [DM].

Similarly, comparison principle techniques are much more subtle to use, due to the
fact that the coefficients of our operators must see the boundary of the domain, and hence
classical arguments in which restriction of the domain of the operator plays a crucial role
are not available to us. Accordingly, our arguments introduce some new ideas even in the
classical case of co-dimension 1.
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Furthermore, we do not require either of the matrices to be symmetric in any of our
main results. Though an analogue of Theorem 1.2 for the 1−sided chord-arc domains
was already shown in [CHMT] for the non-symmetric case, their methods are different
and do not go through the extrapolation technique (besides, they do not show the non-
symmetric case for their analogue of our Theorem 1.5). We will see in this article that the
extrapolation technique does not need the symmetry of the matrices to work, essentially
by being careful about the role of the adjoint operator.

Finally, we remark on a couple more subtle technical differences in our approach to
the proof of Theorem 1.2 than what has been seen in the literature. First, we circumvent
the use of “discrete” tent spaces or the use of a dyadic averaging operator in our proof
of Theorem 1.2 (though we have verified that both methods can work), in favor of a
simple direct approach to exploiting the smallness of a “discrete” Carleson measure in a
continuous setting (see (9.9)). Second, as mentioned above, we use a global rather than
local sawtooth projection lemma. This method allows us to only verify the axioms of
the mixed-dimension elliptic theory for unbounded sawtooth domains, and brings with it
other simplifications in the geometric arguments; however, it introduces the complication
that the globally constructed sawtooth domains do not locally coincide with the local
sawtooth domains. Nevertheless, we shall see that this issue can be circumvented by
realizing that the discrepancy between these sets is negligible from our point of view (see
Lemma 7.38).

In Section 2, we recap geometric results for our d-ADR boundary. In Section 3,
we present the dyadic decomposition of the boundary and related notions In Section 4,
we give a careful construction of the dyadically-generated sawtooth domains, reproving
many results shown in the co-dimension 1 setting. In Section 5, we construct a “surface”
measure on the boundary of the sawtooth domain and prove that our sawtooth domains
satisfy the axioms of the mixed-dimension elliptic theory of [DFMb]. In Section 6, we
present the continuous Carleson measures, discrete Carleson measures, and the extrap-
olation theorem proved in [DM]. In Section 7, we review the elliptic theory for sets of
high co-dimension, considered in [DFM19b]. Section 8 sees us proving the sawtooth
projection lemma. Finally, in Sections 9 and 10, we give the proofs of our main results,
Theorem 1.2 and Theorem 1.5.

2. Geometry of domains with boundaries of high co-dimension

Throughout, our ambient space is Rn, n ≥ 3. For m ∈ N, we denote by L m the
m−dimensional Lebesgue measure. For any m ≥ 0, we write H m for the m−dimensional
Hausdorff measure (see [Fed69]) . For integer m, we normalize H m so that it equals L m.
For X ∈ Rn and r > 0, we write B(X, r) ⊂ Rn for the (open) ball of radius r centered at X.
If A is a Borel set in Rn and F ∈ L1(A,L n), we will often write

∫
A F dL n(X) =

∫∫
A F dX.

We will often write a . b to mean that there exists a constant C ≥ 1 such that a ≤ Cb,
where C may depend only on certain allowable parameters which will be identified with
each statement. Likewise, we write a ≈ b if there exists a constant C ≥ 1 such that
1
C b ≤ a ≤ Cb.
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We now introduce the class of sets that the boundaries of our domains will reside in.
Definition 2.1 (Ahlfors-David regular sets). Let Γ ⊂ Rn be a closed set and d ∈ (0, n).
We say that Γ is d−Ahlfors-David-regular (or d-ADR for short) if there exists a number
Cd ≥ 1 such that for any x ∈ Γ and r > 0,

(2.2) C−1
d rd ≤H d(Γ ∩ B(x, r)) ≤ Cdrd,

where H d is the d−dimensional Hausdorff measure. We shall often denote H d |Γ by σ,
and refer to it as the surface measure. If E ⊂ Rn is a bounded, closed set, then we say
that E is d-ADR if (2.2) holds for each x ∈ E and r ∈ (0, diam E).

Henceforth, we take d ∈ (0, n − 1) always. The set Γ will always be a closed (un-
bounded) d-ADR set, and Ω := Rn\Γ, so that Ω is an open set and ∂Ω = Γ. Given x ∈ Γ

and r > 0, we call
∆ = ∆(x, r) = Γ ∩ B(x, r)

a surface ball. It is easy to see that, by virtue of (2.2), H d |Γ is doubling on Γ (see
Definition 2.9 below). Thus, if d|Γ is the restriction of the Euclidean distance on Rn to Γ,
then (Γ, d|Γ) is a doubling metric space (that is, it admits a doubling measure), and hence
the triple (Γ, d|Γ, σ) is a space of homogeneous type (see [Chr90]). It is obvious that if
Γ is a d-ADR set, then so is any surface ball in Γ. Given a surface ball ∆ = ∆(x, r) and
c > 0, we denote by c∆ the set Γ ∩ B(x, cr).

We now see that the mass of a surface ball cannot be too concentrated at its center.
Lemma 2.3 (Non-degeneracy of surface balls). Suppose that Γ is a closed d-ADR set.
Then for any x ∈ Γ and any r > 0,

diam ∆(x, r) ≥ 1
21/d C−2/d

d r.

Proof. We just need to prove that ∆(x, r)\∆(x,C−2/d
d r/21/d) , ∅, and this will be true

provided that σ
(
∆(x, r)\∆(x,C−2/d

d r/21/d)
)
> 0. Observe that

σ
(
∆(x, r)\∆(x,C−2/d

d r/21/d)
)

= σ(∆(x, r)) − σ(∆(x,C−2/d
d r/21/d))

≥ C−1
d rd −Cd

(
C−2/d

d r/21/d)d
=
[
1 − 1

2

]
C−1

d rd > 0,

as desired. �

If X ∈ Ω, then
δ(X) := dist(X,Γ).

We note in passing that since Γ is closed, for each X ∈ Ω there exists x ∈ Γ such that
|X − x| = δ(X). It will be useful to denote

w(X) := δ(X)−n+d+1,

and let m be the Borel measure on Ω given by m(E) :=
∫∫

E w(X) dX, E ⊆ Ω.
Next, we want to be able to use the openness of Ω in a quantitative way. The frame-

work that we use is the following definition.
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Definition 2.4 (Corkscrew points). Fix x ∈ Γ and r > 0. Then a point X ∈ Ω is called
a Corkscrew point (with Corkscrew constant c) for the surface ball ∆(x, r) ⊂ Γ if there
exists c > 0 such that

B(X, cr) ⊂ B(x, r) ∩Ω.

For domains with a boundary of codimension less than or equal to 1, it is not true in
general that every surface ball has a Corkscrew point. The situation for d-ADR sets with
d ∈ (0, n − 1) is different.
Lemma 2.5 (Existence of Corkscrews; Lemma 11.6 of [DFM19b]). Suppose that d <
n − 1. Then there exists c ∈ (0, 1), depending only on n, d, and Cd, such that every
surface ball in Γ has a Corkscrew point with Corkscrew constant c.

Furthermore, domains with high co-dimensional d-ADR boundaries enjoy quantitative
connectedness as well, as given in
Lemma 2.6 (Existence of Harnack Chains; Lemma 2.1 of [DFM19b]). Suppose that d <
n − 1. Then there exists a constant cH ∈ (0, 1), that depends only on d, n,Cd, such that
for Λ ≥ 1 and X1, X2 ∈ Ω with δ(Xi) ≥ s and |X1 − X2| ≤ Λs, we can find two points
Yi ∈ B(Xi, s/2) verifying that

dist([Y1,Y2],Γ) ≥ (cHΛ−
d

n−1−d )s,

where [Y1,Y2] is the straight line segment in Rn with endpoints Y1 and Y2. That is, there
is a thick tube in Ω that connects the balls B(Xi, s/2).

Inspired by the prior lemma, we consider
Definition 2.7 (Harnack Chains forRn\Γ). Let cH , s,Λ, X1, X2,Y1, and Y2 be as described
in Lemma 2.6. Let {B j} j be a finite collection of balls whose centers lie in the line
segment [Y1,Y2], whose radii are less than 1

2 cHΛ−
d

n−1−d s, and so that they cover [Y1,Y2].
If the radii of the balls B j are all exactly 1

2 cHΛ−
d

n−1−d s, we call H := ∪ jB j a (well-
tempered) Harnack Chain connecting X1 and X2.
Remark 2.8. As was shown in [DFM19b] and mentioned above, the closed unbounded
d-ADR set Γ that we consider has ample interior Corkscrew points and Harnack Chains.
Therefore, our boundary Γ is axiomatically very similar to the boundaries of the so-
called 1-sided chord-arc domains, which are open sets Ω̃ ⊂ Rn whose boundary ∂Ω̃ is
n-Ahlfors-David regular, and having interior Corkscrews and Harnack Chains. For this
reason, as we shall see in the rest of the paper, many of the results here have direct
analogues in the setting of 1-sided chord-arc domains that was explored in the seminal
paper [HM14], and often with very similar proofs, that we decide to omit in some cases,
and in some other occasions, we decide to give different proofs of the expected results.

A key difference for us is that the sawtooth domains (to be defined further below)
will have boundaries of mixed dimension, whence the usual global ADR notion is mean-
ingless for them. Another issue is that we cannot rely on comparison principles for
domains with different boundaries than Γ, because the coefficients of the operator ex-
plicitly depend on the distance to the boundary; instead we are restricted to work with
“global” comparison principles. Still, we are able to overcome these issues. Hence we
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supply very careful and detailed proofs of our results leading up to the analogue of the
Dahlberg-Jerison-Kenig sawtooth-projection lemma.

We will need to study non-negative doubling Borel measures on Γ.
Definition 2.9 (Doubling measures). Fix a surface ball ∆(x, r) ⊆ Γ, r ∈ (0,+∞] (by
convention, ∆(x,+∞) = Γ). We say that a non-negative Borel measure µ on ∆ is doubling
on ∆ if there exists a constant M large enough such that for each surface ball ∆′ with
2∆′ ⊂ ∆, we have that

µ(2∆′) ≤ Cdoublingµ(∆′).

The following definition gives a quantitative version of absolute continuity between
measures.
Definition 2.10 (A∞ measures). Given a doubling non-negative Borel measure ν on Γ,
and a fixed surface ball ∆ ⊆ Γ, we say that the doubling measure µ is of class A∞(ν,∆) if
for each ε > 0, there exists a number ξ = ξ(ε) > 0 such that for every surface ball ∆′ ⊆ ∆,
and every Borel set E ⊂ ∆′, we have that

(2.11)
ν(E)
ν(∆′)

< ξ =⇒
µ(E)
µ(∆′)

< ε.

After reviewing the elliptic theory for the sets we are studying, we will need to study
a more precise quantification of absolute continuity than just membership to A∞. Given
a doubling Borel measure µ on Γ, a weight w on Γ is a non-negative L1

loc(Γ, µ) function.
A weight induces a non-negative Borel measure as follows: for any µ−measurable set
E ⊂ Γ we write w(E) :=

∫
E w dµ.

Definition 2.12 (The Reverse Hölder class RHp). Given a non-negative doubling Borel
measure µ on Γ, a fixed surface ball ∆0 ⊂ Γ, a weight w ∈ L1

loc(∆0, µ), and p ∈ (1,∞),
we say that w ∈ RHp(µ,∆0) if there exists a constant Cp such that for every surface ball
∆ ⊂ ∆0,

(2.13)
( 1
µ(∆)

∫
∆

w
p dµ

) 1
p
≤ Cp

1
µ(∆)

∫
∆

w dµ.

We denote by the RHp(µ,∆0) characteristic of w the smallest number Cp such that (2.13)
holds for all ∆ ⊂ ∆0. When µ is the surface measure σ, we simply write RHp(σ,∆0) =

RHp(∆0). Furthermore, if ν, µ are two doubling non-negative Borel measures on Γ, ∆0 ⊂

Γ, and p ∈ (1,∞), we say that µ ∈ RHp(ν,∆0) if µ � ν and the Radon-Nikodym derivative
dµ
dν lies in RHp(ν,∆).

Let us record some properties of the A∞ class. For our setting, the following results
have appeared in [Jaw86] and [ST89].
Theorem 2.14 (Properties of A∞ measures; Theorem 1.4.13 of [Ken94]; [ST89]). Let µ, ν
be doubling non-negative Borel measures on Γ, and let ∆ be a surface ball. The following
statements hold.

(i) If µ ∈ A∞(ν,∆), then µ is absolutely continuous with respect to ν on ∆.
(ii) The class A∞ is an equivalence relation.
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(iii) We have that µ ∈ A∞(ν,∆) if and only if there exist uniform constants C > 0, θ >
0, such that for each surface ball ∆′ ⊆ ∆ and each Borel set E ⊆ ∆′, we have that

µ(E)
µ(∆′)

.
( ν(E)
ν(∆′)

)θ
.

(iv) We have that µ ∈ A∞(ν,∆) if and only if there exist ε ∈ (0, 1), δ ∈ (0, 1) so that
(2.11) holds for all surface balls ∆′ ⊂ ∆ and all Borel sets E (see [GCRdF85]).

(v) The characterization A∞(ν) =
⋃

p>1 RHp(ν) holds.
(vi) We have that µ ∈ RHp(ν) if and only if the uncentered Hardy-Littlewood maximal

function adapted to Γ,

(Mµ f )(x) := sup
∆3x

1
µ(∆)

∫
∆

| f | dµ,

verifies the estimate ‖Mµ f ‖Lp′ (dν) . ‖ f ‖Lp′ (dν), where p′ is the Hölder conjugate
of p, so that 1

p + 1
p′ = 1.

To conclude this minimal set-up for d-ADR sets, we give a meaning to the non-
tangential maximal functions and square functions, which are essential concepts in theory
of the Dirichlet problems with rough data.
Definition 2.15 (Non-tangential maximal function and square function). For any x ∈ Γ

and α > 0, we define the non-tangential cone γα(x) with vertex x and aperture α as

γα(x) =
{

X ∈ Ω : |X − x| < (1 + α)δ(X)
}
,

We often omit the superscript α. Define the square function as

S u(x) =
(∫∫

γ(x)
|∇u(X)|2δ(X)2−n dX

) 1
2
.

Finally, the non-tangential maximal function is given by Nu(x) = sup
X∈γ(x)

|u(X)|. Given a

measurable function f on Γ, we say that u → f non-tangentially if for σ−almost every
x ∈ Γ, we have that lim

γ(x)3X→x
u(X) = f (x).

3. Dyadic decomposition of sets of high co-dimension

In the following lemma, we exhibit a family of partitions for Γ which are analogous
to dyadic cubes. The original construction of such a dyadic grid for d-ADR sets with
d = n− 1 is found in [Dav88]; in the book [Dav91] there is a simpler proof which adapts
to our setting. See also [Chr90] for a different proof in the even more general case of
spaces of homogeneous types.
Lemma 3.1 (Dyadic cubes for d−Ahlfors-David regular set). [Dav91]. There exist con-
stants a0 ∈ (0, 1], A0 ∈ [1,∞), ζ ∈ (0, 1), depending only on d, n, and the d-ADR constant
Cd, such that for each k ∈ Z, there is a collection of Borel sets (“dyadic cubes”)

Dk = Dk(Γ) := {Qk
j ⊂ Γ : j ∈J k},

where J k denotes some indexing set depending on k, satisfying the following properties.
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(i) For each k ∈ Z, Γ =
⋃

j∈J k Qk
j.

(ii) If m ≥ k then either Qm
i ⊂ Qk

j or Qm
i ∩ Qk

j = ∅.
(iii) For each pair ( j, k) and each m < k, there is a unique i ∈J m such that Qk

j ⊂ Qm
i .

When m = k − 1, we call Qm
i the dyadic parent of Qk

j, and we say that Qk
j is a

dyadic child of Qm
i .

(iv) diam Qk
j < A02−k.

(v) Each Qk
j contains some surface ball ∆(xk

j, a02−k) = B(xk
j, a02−k) ∩ Γ.

(vi) H d({x ∈ Qk
j : dist(x,Γ\Qk

j) ≤ ρ2−k}) ≤ A0ρ
ζH d(Qk

j), for all ( j, k) and all
ρ ∈ (0, a0).

Let us define some notions and state some useful properties of this construction.
•We shall denote by D = D(Γ) the collection of all relevant Qk

j; that is,

D = D(Γ) :=
⋃
k∈Z

Dk(Γ).

Henceforth, we refer to the elements of D as dyadic cubes, or cubes. For Q ∈ D, we write
DQ := {Q′ ∈ D : Q′ ⊆ Q}, and Dk

Q = Dk(Γ) ∩ DQ.

• Note carefully that if Qk+1
i is the dyadic parent of Qk

j, then it is possible that, as sets,
Qk+1

i = Qk
j. In other words, if Q ∈ D, then the set K(Q) := {k ∈ Z : Q = Qk

j for some j}
may in general have cardinality greater than or equal to 1. We call K(Q) the generational
bandwith of Q. By Lemma 2.3 and properties (iv) and (v) above, we have that if k ∈
K(Q), then

(3.2) 2−1/dC−2/d
d a02−k ≤ diam Q ≤ A02−k,

which implies that K(Q) is finite, and in fact,

(3.3) 1 ≤ card(K(Q)) ≤ log2
[
2

d+1
d C2/d

d A0a−1
0
]
.

Define the dyadic generation of Q ∈ D as the oldest generation that Q belongs to; that is,

k(Q) = min
k∈K(Q)

k,

and note that, if k ∈ K(Q), then k(Q) ≤ k ≤ k(Q) + log2
[
2

d+1
d C2/d

d A0a−1
0

]
. We call the

number `(Q) = 2−k(Q) the length of Q. Given a fixed Q ∈ D, we call a cube Q′ ∈ DQ\{Q}
a proper child of Q if `(Q′) < `(Q) and `(Q′) ≥ `(Q′′) for any other Q′′ ∈ DQ. Likewise,
given Q ∈ D, we call a cube Q̂ ∈ D with Q̂ ⊃ Q a proper parent of Q if `(Q̂) > `(Q) and
Q̂ ⊆ Q̃ for any Q̃ ∈ D with Q̃ ) Q. If Q′ ∈ DQ is a proper child of Q, then we have that

(3.4) `(Q) > `(Q′) ≥
a0

2
2d+1

d C2/d
d A0

`(Q) =: cK`(Q).

If Q′ is a proper child of Q, then by the partitioning property of the dyadic cubes we
must have that there exists a collection {Q′′} of proper children of Q such that ∪Q′′ = Q.
In the sequel, if we say that Q′ is a child of Q, we mean that Q′ is a dyadic child of Q,
leaving open the possibility that Q′ = Q as sets.
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• (Almost inscription and subscription of surface balls). Properties (iv) and (v) also
imply that for each cube Q ∈ D, there is a point xQ ∈ Γ such that

(3.5) ∆(xQ, a0`(Q)) ⊂ Q ⊆ ∆(xQ, A0`(Q)).

We call xQ the center of Q. We note that (3.5) and (2.2) imply the following estimate on
the surface measure of Q:

(3.6) C−1
d ad

0`(Q)d ≤ σ(Q) ≤ CdAd
0`(Q)d.

• (Number of children of Q). Fix Q ∈ D and let {Q j} j∈J be the collection of all
(dyadic) children of Q. It must be the case by property (i) that Q = ∪ j∈JQ j. Observe the
elementary estimate

σ(Q) = σ(∪ j∈JQ j) =
∑
j∈J

σ(Q j) ≥ C−1
d ad

0
`(Q)

2
card J,

where we used (3.6) in the last inequality. Putting the previous estimate together with the
upper bound in (3.6) gives that

(3.7) card({children of Q}) ≤ C2
d[a−1

0 A02]d.

• (Corkscrew points for Q). We denote by XQ a point in Ω which is a Corkscrew point
(with Corkscrew constant c̃ > 0) for the surface ball ∆(xQ, a0`(Q)). Such a point is called
a Corkscrew point for Q (with Corkscrew constant c̃ > 0).
• The inequality in (vi) says that the boundary of a dyadic cube Qk

j is uniformly thin;
indeed, one may easily deduce from it that H d(∂Q) = 0 for any Q ∈ D.
• By F = {Q j} j we denote a family of pairwise disjoint dyadic cubes in D, which we

identify as subsets of Γ and not as elements of ∪kD
k. Accordingly, if Q j ∈ F , then its

parent Q̂ ∈ D does not belong to F , and we have that `(Q j) < `(Q̂) ≤ c−1
K `(Q j). We refer

to such a collection F as a disjoint family.
•We define the projection operator PF : L1

loc(Γ, σ)→ L1
loc(Γ, σ) by

(3.8) (PF f )(x) := f (x)1Γ\(∪ jQ j)(x) +
∑

j

( 1
σ(Q j)

∫
Q j

f dσ
)

1Q j(x), x ∈ Γ.

One has that PF ◦ PF = PF , PF is self-adjoint, and ‖PF f ‖Lp(Γ,σ) ≤ ‖ f ‖Lp(Γ,σ) for every
p ∈ [1,∞]. Observe that if µ is a non-negative finite Borel measure on Γ and E ⊆ Γ is a
Borel set, then we may naturally define the measure PF µ as follows:

PF µ(E) :=
∫

Γ

PF (1E) dµ = µ(E\ ∪ j Q j) +
∑

j

σ(E ∩ Q j)
σ(Q j)

µ(Q j).

In particular, PF µ(Γ) = µ(Γ). Notice that PF µ is defined in such a way that it coincides
with µ in Γ\(∪ jQ j) and in each Q j we replace µ by µ(Q j)/σ(Q j) dσ.
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3.1. The theory of quantitative absolute continuity adapted to the dyadic grid. We
will need to make sense of the doubling property adapted to our dyadic grids.
Definition 3.9 (Dyadically doubling measures). We say that a Borel measure µ on Q0 ∈ D
is dyadically doubling in Q0 if 0 < µ(Q) < ∞ for every Q ∈ DQ0 and there exists a
constant Cµ ≥ 1 such that µ(Q) ≤ Cµµ(Q′) < ∞ for every Q ∈ DQ0 and for every dyadic
child Q′ of Q.
Lemma 3.10 (Doubling implies dyadically doubling). Fix Q0 ∈ D and suppose that µ is a
doubling Borel measure on the surface ball ∆0 := ∆(xQ0 , 2A0`(Q0)). Then µ is dyadically
doubling in Q0.

The following lemma gives us that if a measure is dyadically doubling, then so is its
projection. We omit its easy proof as it is essentially the same as that in [HM14] (see
Remark 2.8).
Lemma 3.11 (Lemma B.1 of [HM14]). Fix Q0 ∈ D, let F ⊂ Q0 be a disjoint family, and
let µ be a dyadically doubling measure in Q0. Then PF µ is dyadically doubling in Q0.

Now we define quantitative absolute continuity on our dyadic grid.

Definition 3.12 (Adyadic
∞ and RHdyadic

p ). Given Q0 ∈ D, we say that a Borel measure µ
defined on Q0 belongs to Adyadic

∞ (Q0) if there exist constants 0 < α, β < 1 such that for
every Q ∈ DQ0 and for every Borel set F ⊂ Q, we have that

σ(F)
σ(Q)

> α =⇒
µ(F)
µ(Q)

> β.

Given p ∈ (1,∞), we say that µ ∈ RHdyadic
p (Q0) if and only if µ � σ in Q0 and there

exists a constant Cp ≥ 1 such that for every Q ∈ DQ0 , we have the estimate( 1
σ(Q)

∫
Q

( dµ
dσ

)p dσ
) 1

p
≤ Cp

1
σ(Q)

∫
Q

dµ
dσ

dσ.

The next result gives that the Adyadic
∞ property is passed on from a measure to its pro-

jection. Its proof is essentially the same as that of Lemma 4.1 in [HM10] (see Remark
2.8); and so we omit the details.
Lemma 3.13 (Lemma 4.1 of [HM10]). Fix Q0 ∈ D, let F ⊂ Q0 be a disjoint family, and
suppose that µ ∈ Adyadic

∞ (Q0). Then PF µ ∈ Adyadic
∞ (Q0).

As expected, we have the symmetry of the Adyadic
∞ class. It is proven in [HM14] in a

similar setting (see Remark 2.8), but their proof generalizes to our situation immediately.

Lemma 3.14 (Symmetry of Adyadic
∞ , Lemma B.7 of [HM14]). Let Q0 ∈ D and let µ, ν

be two dyadically doubling measures on Q0. Assume that there exist positive constants
C0, θ0, such that for all Q ∈ DQ0 and all Borel sets F ⊆ Q,

ν(F)
ν(Q)

≤ C0

(µ(F)
µ(Q)

)θ0
.
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Then, there exist C1, θ1 > 0 such that for all Q ∈ DQ0 and all Borel sets F ⊆ Q,

µ(F)
µ(Q)

≤ C1

(ν(F)
ν(Q)

)θ1
.

To finalize this section, we present a generalization of Lemma B.7 in [HM12], which
allows us to conclude that a measure is Adyadic

∞ if it satisfies a certain local Reverse Hölder
inequality. The result has been shown in a setting very similar to ours in Lemma 3.1
of [CHM19] (see Remark 2.8); the proof is essentially the same and so we omit it.

Lemma 3.15 (Local RH implies Adyadic
∞ , Lemma 3.1 of [CHM19]). Fix Q0 ∈ D and

ε ∈ (0, 1). Let v ∈ L1(Q0) be a function such that there exists C0 ≥ 1 verifying that
0 < v(Q) ≤ C0v(ε∆Q) for every Q ∈ DQ0 . Assume also that there exist C1 ≥ 1 and
p ∈ (1,∞) such that( 1

σ(ε∆Q)

∫
ε∆Q

vp dσ
) 1

p
≤ C1

1
σ(ε∆Q)

∫
ε∆Q

v dσ, for each Q ∈ DQ0 .

Then v ∈ RHdyadic
p (Q0) with RHp characteristic depending only on n, d, Cd, p, ε, C0, C1.

4. Dyadically-generated sawtooth domains

4.1. Construction of dyadically-generated sawtooth domains. In this subsection, we
construct the so-called sawtooth domains for d-ADR sets with d < n − 1. The abstract
construction here was first considered for certain domains of co-dimension 1 in [HM14],
and developed for the setting d < n − 1 in [MZ19]. If d < n − 1, we have no further
assumptions, since the d-ADR property of Γ gives the existence of Corkscrew points
and Harnack Chains. We will see that our dyadically-generated sawtooth domains will
be mixed-dimensional, so that an elliptic theory for them is highly non-trivial. As such,
we will give a careful construction with the goal to prove in the following section that our
dyadic sawtooth domains satisfy the mixed-dimension theory of [DFMb]. Indeed, while
in [DFMb] it is shown that certain sawtooth domains over Lipschitz graphs satisfy their
axioms, our dyadic sawtooth domains over arbitrary d-ADR sets (with possibly fractional
dimension) were not considered, and the verification is considerably more subtle.

Since Ω = Rn\Γ is an open set in Rn, there exists a collection of closed dyadic Whitney
boxes, denoted byW =W(Ω), so that the interiors of the boxes never overlap pairwise,
the boxes form a covering of Ω, and moreover they satisfy the conditions

(4.1) 4diam I ≤ dist(4I,Γ) ≤ dist(I,Γ) ≤ 40diam I, for each I ∈ W,

and
1
4

diam I1 ≤ diam I2 ≤ 4diam I1

whenever ∂I1∩∂I2 , ∅ (see, for instance, [Ste70]). Let XI denote the center of I and `(I)
the side-length of I, so that diam I =

√
n`(I). We also write k(I) = k if `(I) = 2−k. We

say that two Whitney boxes touch, or that they are adjacent, if their boundaries intersect.
If X ∈ I and I ∈ W, then 4 diam I ≤ δ(X) ≤ 41 diam I.
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Next, we want to associate to each Q ∈ D a “Whitney region” in Ω, which we will
construct by taking a union of certain dylated Whitney boxes. Hence, we ought to under-
stand which Whitney boxes should be part of a Whitney region associated to the cube Q.
The main two properties we desire to embed in such a region are, first, that it houses the
Corkscrew points for Q, and second, that these Corkscrew points are joined together by
Harnack Chains that remain within the region. We will also want to fit in parameters that
allow us to control the non-tangential aperture of these regions. In preparation to define
these regions, we supply the technically relevant results.
Lemma 4.2 (Whitney boxes contain Corkscrew points). Fix Q ∈ D and suppose
that X ∈ Ω is a Corkscrew point with Corkscrew constant c > 0 for the surface ball
∆(xQ, a0`(Q)/2). Then there exists I ∈ W such that X ∈ I and satisfying

(4.3)
a0c

82
√

n
`(Q) ≤ `(I) ≤

a0

8
√

n
`(Q), dist(I,Q) ≤ a0`(Q)/2.

Proof. SinceW is a covering of Ω, it follows that there exists I ∈ W such that X ∈ I.
We now prove the bounds in (4.3). The upper estimate for `(I) in (4.3) is deduced from
the following chain of inequalities:

4
√

n`(I) = 4 diam I ≤ dist(I,Γ) ≤ dist(I, xQ) ≤ |X − xQ| < a0`(Q)/2,

where we have used (4.1), xQ ∈ Γ, X ∈ I, and that X ∈ B(xQ, a0`(Q)/2). By observing
that dist(I,Q) ≤ dist(I, xQ), we arrive at the desired estimate for dist(I,Q). It remains now
to give the lower bound for `(I). Since B(X, ca0`(Q)/2) ⊂ Ω, we have that dist(X,Γ) ≥
ca0`(Q)/2. Note that

40
√

n`(I) = 40 diam I ≥ dist(I,Γ) ≥ dist(X,Γ) − diam I ≥ ca0`(Q)/2 −
√

n`(I),

whence the desired result follows. �

Thus, for each cube Q ∈ D the collection

(4.4) Wcs
Q :=

{
I ∈ W :

a0c
82
√

n
`(Q) ≤ `(I) ≤

a0

8
√

n
`(Q), dist(I,Q) ≤ a0`(Q)/2

}
contains all the Corkscrew points for ∆(xQ, a0`(Q)/2) with Corkscrew constant c (which
evidently are Corkscrew points of Q). We note that without loss of generality, we may
assume that a Corkscrew point for Q is located at the center of some I ∈ Wcs

Q (with
possibly smaller Corkscrew constant), as gives us the following result.
Lemma 4.5 (Corkscrew points lie at the centers of Whitney boxes). Fix Q ∈ D and X
a Corkscrew point for the surface ball ∆(xQ, a0`(Q)/2) with Corkscrew constant c > 0.
If I ∈ Wcs

Q contains X, then XI is a Corkscrew point for Q with Corkscrew constant
c̃ = c/(1000

√
n). Moreover, B(XI , c̃a0`(Q)) ⊂ int( 1

2 I).

Proof. Suppose that I ∈ Wcs
Q contains X. Then |X − XI | ≤ diam I ≤ a0`(Q)/4, and

|XI − xQ| ≤ |XI − X| + |X − xQ| < a0`(Q)/4 + a0`(Q)/2 < a0`(Q).
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Hence XI ∈ B(xQ, a0`(Q)). Now let c̃ be as in the statement of the lemma, and observe
that for any Y ∈ B(XI , c̃a0`(Q)), we have that

|XI − Y | ≤ c̃a0`(Q) < a0c
82
√

n
`(Q)

8 < `(I)/8,

|Y − xQ| ≤ diam I + |X − xQ| < a0`(Q),

as desired. �

Corollary 4.6. For any Q ∈ D, there exists I ∈ Wcs
Q such that XI is a Corkscrew point

for Q with Corkscrew constant c̃ = c̃(c, n).

It may happen that Wcs
Q is too meager a region to use it to pass to “continuous”

sawtooth-domains, or to pass between “adjacent” Whitney regions. We introduce pa-
rameters η ∈ (0, 1) and K ≥ 1 and define

(4.7) W0
Q :=

{
I ∈ W :

a0c
82
√

n
η`(Q) ≤ `(I) ≤

a0

4
√

n
K`(Q), dist(I,Q) ≤ a0K`(Q)

}
so that we may enlargenW0

Q according to aperture considerations. Immediately we have
the following two technical results.
Lemma 4.8 (Transversal adjacency of Whitney regions). If η ∈ (0, cK), then for any
Q ∈ D, the Whitney regionW0

Q contains all Corkscrew points of the proper children of
Q (with Corkscrew constant c).

Proof. Upon using (3.4), the proof is very similar to that of (4.3), and thus we omit it. �
Lemma 4.9 (Parallel adjacency of Whitney regions). Fix Q1,Q2 ∈ D and suppose that
`(Q1) ≤ `(Q2) ≤ c−1

K `(Q1), and dist(Q1,Q2) ≤ 500`(Q2). If η ∈ (0, cK) and K ≥
500A0a−1

0 , thenW0
Q1
∩W0

Q2
, ∅.

Proof. Recall thatWcs
Q1
, ∅, so fix I ∈ Wcs

Q1
. It is easy to see that a0c

82
√

n cK`(Q2) ≤ `(I) ≤
a0

4
√

n K`(Q2), while the triangle inequality gives us that

dist(I,Q2) ≤ dist(I,Q1) + diam Q1 + dist(Q1,Q2) ≤ a0`(Q1)/2 + A0`(Q1) + 500`(Q2)
≤ 500A0`(Q2) ≤ a0K`(Q2).

Thus I verifies the conditions to be an element ofW0
Q2

. �

Henceforth, we assume that η < cK, K ≥ 500A0a−1
0 . We need to augment W0

Q one
final time: we must provide it with enough new boxes so that Harnack Chains connecting
its old boxes are contained within a region that stays far from Γ. When d < n − 1, the
technical result needed to accomplish this is
Lemma 4.10 (Harnack Chains ofW0

Q if d < n − 1). Fix Q ∈ D, XQ a Corkscrew
point of Q with Corkscrew constant c > 0, and I ∈ W0

Q (note that I may or may not
contain XQ). Then we may construct a well-tempered Harnack ChainHI connecting XQ
to XI consisting of a number at most NH of balls, where

NH = 4
cH

[
41
2cη

(
1 + 5

4 K + A0
a0

)] n−1
n−1−d

,
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and

dist(HI ,Γ) ≥
1
2

cH
[

41
2c

(
1 + 5

4 K + A0
a0

)] −d
n−1−d ( 2

41 a0c
)
η

n−1
n−1−d `(Q).

Proof. Since I ∈ W0
Q, we have that

δ(XI) = dist(XI ,Γ) ≥ dist(I,Γ) ≥ 4
√

n`(I) ≥
2

41
a0cη`(Q).

Furthermore, δ(XQ) ≥ crQ = a0c`(Q) ≥ 2
41 a0c`(Q). Thus we take s := 2

41 a0cη`(Q) in the
setup of Lemma 2.6. Next, we estimate

|XI − XQ| ≤ diam I + dist(I,Q) + diam Q + |XQ − xQ|

≤
√

n`(I) + a0K`(Q) + A0`(Q) + a0`(Q)

≤
(
( 5

4 K + 1)a0 + A0
)
`(Q) =

(
41
2cη

[
1 + 5

4 K + A0
a0

])( 2
41 a0cη`(Q)

)
.

Hence we take Λ := 41
2cη

[
1 + 5

4 K + A0
a0

]
. We now invoke the conclusion of Lemma 2.6 to

find two points YI ∈ B(XI , a0cη`(Q)/41),YQ ∈ B(XQ, a0cη`(Q)/41) such that

(4.11) dist([YI ,YQ],Γ) ≥ cH
[

41
2c

(
1+ 5

4 K+ A0
a0

)] −d
n−1−d ( 2

41 a0c
)
η

n−1
n−1−d `(Q) =: a1η

n−1
n−1−d `(Q).

Consider a finite covering of [YI ,YQ] by balls B j with centers in [YI ,YQ], radii all equal
to a1

2 η
n−1

n−1−d `(Q), and centers spaced by the radii. It is clear that the union of the balls B j
is a well-tempered Harnack ChainHI satisfying the second desired estimate. Let N′

H
be

the cardinality of the covering. Since
|YI − YQ|

a1
2 η

n−1
n−1−d `(Q)

≤
|YI − XI | + |XI − XQ| + |XQ − YQ|

a1
2 η

n−1
n−1−d `(Q)

≤
2Λs

cH
2 Λ

−d
n−1−d s

,

and N′
H

a1η
n−1

n−1−d `(Q)/2 ≤ |YI − YQ| + a1η
n−1

n−1−d `(Q)/2, the first desired estimate follows.�

Actually, Harnack Chains cannot stray too far from the boxes in W0
Q, as gives the

following result.
Lemma 4.12 (Non-degeneracy of boxes in Harnack Chains ofW0

Q). Suppose that
J ∈ W intersects the Harnack Chain of Lemma 4.10. Then

(4.13)
a1

82
√

n
η

n−1
n−1−d `(Q) ≤ `(J) ≤

2a0K + A0

4
√

n
`(Q), dist(J,Q) ≤ (2a0K + A0)`(Q),

where a1 = a1(n, d,Cd, c, cH ,K) is the quantity defined in (4.11).

Proof. Given that J ∩ HI , ∅, then there exists X ∈ J and X ∈ HI , so that in particular
dist(X,Γ) ≥ 1

2 a1η
n−1

n−1−d `(Q). On the other hand,

dist(X,Γ) ≤ diam J + dist(J,Γ) ≤
√

n`(J) + 40
√

n`(J) = 41
√

n`(J),

so that the lower bound for `(J) in (4.13) follows immediately. Now, note that 4
√

n`(J) ≤
dist(J,Γ) ≤ dist(X,Γ). Since X ∈ HI , there exists a ball B such that X ∈ B, where B has
center YB ∈ [YI ,YQ] and has radius a1

2 η
n−1

n−1−d `(Q). Consider the estimate
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dist(YB,Γ) ≤ max
{
|YI − xQ|, |YQ − xQ|

}
≤ 1

41 a0cη`(Q) + max
{
|XI − xQ|, |XQ − xQ|

}
≤ 1

41 a0cη`(Q) + dist(I,Q) + diam Q + diam I ≤
[ 1

41 cη + 5
4 K + A0

a0

]
a0`(Q),

so that

dist(J,Γ) ≤ dist(X,Γ) ≤ dist(YB,Γ) + a1
2 η

n−1
n−1−d `(Q)

≤
[ 1

41 cη + 5
4 K + A0

a0

]
a0`(Q) + a1

2 η
n−1

n−1−d `(Q) ≤ (2a0K + A0)`(Q).

This last estimate gives the rest of the bounds in (4.13). �

We proceed with the construction of the sawtooth domains. Fix Q ∈ D and let XQ be a
Corkscrew point for Q, which belongs to some Whitney box inW0

Q. For each I ∈ W0
Q,

we let HI be any well-tempered Harnack Chain connecting XI to XQ manufactured in
Lemma 4.10. Then we letWQ be the set of all J ∈ W which meet at least one of the
Harnack ChainsHI with I ∈ W0

Q; that is,

(4.14) WQ :=
{

J ∈ W : there exists I ∈ W0
Q for whichHI ∩ J , ∅

}
.

We clearly have that W0
Q ⊂ WQ, and we note that if J ∈ WQ, then J satisfies the

assumptions of Lemma 4.12 and therefore (4.13) holds, giving that

(4.15) WQ ⊆
{

I ∈ W : a2`(Q) ≤ `(I) ≤ A2`(Q), dist(I,Q) ≤ 4
√

nA2`(Q)
}
,

where a2, A2 are the corresponding multiplicative constants in the first inequality chain
in (4.13). In particular, once η,K are fixed, for any Q ∈ D, the cardinality of WQ is
uniformly bounded, which is a corollary of the following result.
Lemma 4.16 (Number of Whitney boxes in a Whitney region). Fix Q ∈ D and for posi-
tive numbers α, β, γ with α < β, define the set

W(α, β, γ) =
{

I ∈ W : α`(Q) ≤ `(I) ≤ β`(Q), dist(I,Q) ≤ γ`(Q)
}
.

Then

(4.17) card(W(α, β, γ)) ≤
[ √nβ + γ + A0

α

]n
|B(0, 1)|

Proof. Fix Q ∈ D, let X ∈ I be arbitrary with I ∈ W(α, β, γ), and consider the estimate

|X − xQ| ≤ diam I + dist(I,Q) + diam Q ≤
√

nβ`(Q) + γ`(Q) + A0`(Q).

It follows that ∪I∈W(α,β,γ)I ⊆ B(xQ, (
√

nβ + γ + A0)`(Q)). Hence, note that

card(W(α, β, γ))[α`(Q)]n =
∑

I∈W(α,β,γ)

[α`(Q)]n ≤
∑

I∈W(α,β,γ)

`(I)n

=
∣∣⋃

I∈W(α,β,γ) I
∣∣ ≤ |B(xQ, (

√
nβ + γ + A0)`(Q))| = [(

√
nβ + γ + A0)`(Q)]n|B(0, 1)|.

The desired result follows immediately. �

Corollary 4.18 (Cardinality ofWQ). For each Q ∈ D, we have that

card(WQ) ≤
[5
√

nA2 + A0

a2

]n
|B(0, 1)| =: N0.
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Next, we choose a small dilation parameter θ ∈ (0, 1) so that for any I ∈ W, the
concentric dilation I∗ = (1 + θ)I still satisfies the Whitney property

diam I ≈ diam I∗ ≈ dist(I∗,Γ) ≈ dist(I,Γ),

with uniform constants not depending on the choices of η,K. More precisely, it can be
easily shown that, as long as θ ∈ (0, 8), we have for each I ∈ W the estimates

diam I ≤ diam I∗ ≤ (1 + θ) diam I,

(1 − θ
8 ) dist(I,Γ) ≤ dist(I∗,Γ) ≤ dist(I,Γ),

1
40 dist(I∗,Γ) ≤ diam I∗ ≤ 2 1+θ

8−θ dist(I∗,Γ).

For later use, we record also that if X ∈ ∂I∗ and θ ∈ (0, 1), then

(4.19) 2 diam I ≤ δ(X) ≤ 82 diam I.

Moreover, by taking θ small enough we can guarantee that dist(I∗, J∗) ≈ dist(I, J):
Lemma 4.20 (Distances between dilated Whitney boxes). Suppose that I, J ∈ W. Then
for each θ ∈ (0, 1/(4

√
n)), we have the estimates

(4.21)
[
1 − 4

√
nθ] dist(I, J) ≤ dist(I∗, J∗) ≤ dist(I, J).

Furthermore, if θ is as above and I, J ∈ W are distinct, then I∗ ∩ 1
2 J = ∅.

Proof. Without loss of generality, suppose that `(I) ≥ `(J). If I and J are adjacent, so that
∂I ∩ ∂J , ∅, then dist(I, J) = 0 and dist(I∗, J∗) = 0, so that (4.21) holds trivially. Now
suppose that I and J are not adjacent. The upper bound in (4.21) holds trivially. By the
Pidgeonholing Principle, we must have that dist(I, J) ≥ 1

4`(I), for otherwise a point of J
lies in a Whitney box adjacent to I, which implies that J is adjacent to I and we have a
contradiction. Next, let X∗ ∈ I∗ and Y∗ ∈ J∗ be the points such that dist(I∗, J∗) = |X∗−Y∗|.
For each X ∈ I and Y ∈ J, observe the basic estimate

|X∗ − Y∗| ≥ |X − Y | − |Y − Y∗| − |X∗ − X| ≥ dist(I, J) − |Y − Y∗| − |X∗ − X|.

Choose X so that |X − X∗| = dist(X∗, I) and Y so that |Y − Y∗| = dist(Y∗, J). Note
that dist(X∗, I) ≤ θ

2
√

n`(I) and dist(Y∗, J) ≤ θ
2
√

n`(J) ≤ θ
2
√

n`(I). It follows that
dist(I∗, J∗) ≥

[
1 − 4

√
nθ
]

dist(I, J), which ends the proof of (4.21). Now suppose that
I, J ∈ W are distinct and without loss of generality say that `(I) ≥ `(J). If they are
not adjacent, then I∗ ∩ 1

2 J = ∅ follows immediately from (4.21). Hence we need only
consider the case that I and J are adjacent, and in this case we have that `(J) ≥ 1

4`(I).
Let X∗ ∈ I∗ and Y ∈ 1

2 J be points such that dist(I∗, 1
2 J) = |X∗ − Y |, and choose X ∈ I so

that |X∗ − X| = dist(X∗, I) ≤ θ
2
√

n`(I). Reckon the elementary estimate

|X∗ − Y | ≥ |Y − X| − |X − X∗| ≥ 1
2`(J) − θ

2

√
n`(I) ≥

[1
8 −

θ
2

√
n
]
`(I) > 0,

which yields the desired result. �

Corollary 4.22. Suppose that I, J ∈ W and θ ∈ (0, 1/(4
√

n)). Then I∗ ∩ J∗ , ∅ if and
only if ∂I ∩ ∂J , ∅.
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Given Q ∈ D, we define an associated Whitney region UQ as

UQ :=
⋃

I∈WQ
I∗.

For any disjoint family F = {Q j} j, we define the discretized sawtooth relative to F by

DF := D\
⋃
F DQ j ,

so that DF is the collection of all Q ∈ D which are not contained in any Q j ∈ F . We
may also need to consider a local version of the sawtooth. If F ⊂ DQ0\{Q0} is as above,
then we define the (local) discretized sawtooth relative to F by DF ,Q0 := DQ0\

⋃
F DQ j .

Finally, we define the global and local sawtooth domains relative to F via

ΩF := int
( ⋃

Q∈DF

UQ

)
, ΩF ,Q0 := int

( ⋃
Q∈DF ,Q0

UQ

)
.

For convenience, we set

WF :=
⋃

Q∈DFWQ, WF ,Q0 :=
⋃

Q∈DF ,Q0
WQ,

so that in particular, we may write

(4.23) ΩF = int
( ⋃

I∈WF

I∗
)
, ΩF ,Q0 = int

( ⋃
I∈WF ,Q0

I∗
)
.

We remark that

(4.24) ΩF ,Q0 ⊂ B(xQ0 , 7
√

nA2`(Q0)) ∩Ω

for any Q0 ∈ D and any family F as above. Indeed, let X ∈ ΩF ,Q0 , so that there exists
Q ∈ DF ,Q0 and I ∈ WQ with X ∈ I∗. By (4.15) and the triangle inequality, we see that

|X − xQ0 | ≤ diam I∗ + dist(I∗,Q) + diam Q0 ≤ 2
√

n`(I) + 4
√

nA2`(Q) + A0`(Q)

≤ 7
√

nA2`(Q0),

as desired.

4.2. Some further notation and auxiliary results. Let F = {Q j} j be a disjoint family.
The definitions below will be stated for the global discretized sawtooth relative to F , but
it is clear that we have direct analogues for the local discrete sawtooth.
• We denote by ∆? a surface ball on ∂ΩF . More precisely, suppose that x? ∈ ∂ΩF

and r > 0. Then ∆?(x?, r) := B(x?, r) ∩ ∂ΩF .
• Let δ? : ΩF → [0,∞) be the distance to ∂ΩF ; that is, δ?(X) := dist(X, ∂ΩF ).
•We denote Σ := ∂ΩF \Γ, and observe that

Σ = ∂ΩF \Γ = ∂
(⋃

I∈WF
I∗
)
\Γ ⊂

⋃
I ∈ WF

I ∩ ∂ΩF , ∅

∂I∗,

so that Σ consists of subsets of (n − 1)−dimensional faces of Whitney boxes I ∈ WF .
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• For each Q0 ∈ D, we let the Carleson collection associated to Q0 be

(4.25) RQ0 :=
⋃

Q∈DQ0
WQ.

We define the Carleson region RQ0 as

RQ0 := int
( ⋃

Q∈DQ0

UQ

)
= int

( ⋃
I∈RQ0

I∗
)
.

•We consider a discrete dyadic version of the approach region rather than the standard
non-tangential cone described in Definition 2.15. For every x ∈ Γ, we define the (global
and local) dyadic non-tangential cones as

(4.26) γd(x) =
⋃

Q∈D:Q3x

UQ, γQ0
d (x) =

⋃
Q∈DQ0 :Q3x

UQ

Given an aperture α > 0, there exists K (in the definition (4.7)) sufficiently large such
that the standard non-tangential cone γα(x) ⊂ γd(x) for all x ∈ Γ; and vice versa, for fixed
values of η,K and the dilation constant θ, there exists α1 > 0 such that the dyadic cone
γd(x) ⊂ γα1(x) for all x ∈ Γ.

4.3. Properties of the dyadically-generated sawtooth domains. In this subsection, we
collect a number of technical results, many of which are direct analogues of results shown
in [HM14]. There, the authors work with chord-arc domains with boundaries of co-
dimension 1. We are interested in borrowing their setup; the proofs of many results here
are very similar to theirs, with some small modifications.

The first lemma we wish to present says that the boundary of a union of Whitney boxes
consists of hyper-rectangles that do not degenerate.
Lemma 4.27 (Non-degeneracy of the faces of Σ). For all θ ∈ (0, 1/(16

√
n)) and for each

I ∈ WF intersecting ∂ΩF , the set

∂ΣI∗ := ∂I∗\ ∪J∈WF ,J,I int J∗ = (∂I∗ ∩ ∂ΩF )\ ∪J∈WF ,J,I int J∗

is a non-empty union of (n − 1)−dimensional rectangles R embedded in the (n − 1)-
dimensional faces of ∂I∗, such that no sidelength of any R is smaller than θ`(I)/4, thus
verifying H n−1(R) ≥ cnθ

n−1`(I)n−1, where cn ∈ (0, 1) depends only on n.

Proof. Suppose that I ∈ WF intersects ∂ΩF , whence it follows that some face of I∗

intersects ∂ΩF . In the union defining ∂ΣI∗, we need only consider those J ∈ WF which
are adjacent to I, by Corollary 4.22. That ∂ΣI∗ is a union of (n−1)−dimensional rectangles
is clear by the construction of the sawtooth domain, as the boundary can be written as a
union of faces of cubes intersecting the complements of cubes.

Now let F∗ be any face of I∗ so that F∗ ∩ ∂ΩF , ∅, and let F be the face of I
corresponding to F∗, defined as the unique face of I such that dist(int F, F∗) = 1

2θ`(I).
Fix a maximal rectangle R ⊂ F∗ ∩ ∂ΩF (maximal in the sense that increasing any of its
side-lengths makes it stop being a subset of ∂ΩF ) and consider two cases.

Case a) There exists x ∈ R and x′ ∈ F such that dist(x, x′) = 1
2θ`(I). In this case,

for each θ small enough, we must have that x′ ∈ J′, where J′ < WF is a Whitney
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box adjacent to I. Since J′ is adjacent to I, we have that `(J) ≥ `(I)/4, and recall
that the Whitney boxes are dyadically aligned. It follows that F\J∈WF ,J,I J contains an
(n−1)−dimensional cube F′ ⊂ ∂J′ of length `(F′) ≥ `(I)/4. For each y′ ∈ F′, there exists
a unique y ∈ F∗ such that dist(y, y′) = 1

2θ`(I); accordingly we set F′∗ to be the collection
of y ∈ F∗ constructed in this way, and observe that x ∈ F′∗. Then we must have that
R ⊃ F′∗\ ∪J∈WF ,J,I J contains an (n − 1)−dimensional cube of side-length ( 1

4 − 4θ)`(I),
because for any straight line segment L in F∗ parallel to a coordinate axis and passing
through the center of F′∗, L intersects at most two Whitney boxes J1, J2 ∈ WF different
from I and such that J∗i ∩ F′∗ , ∅; both of which have 4`(I) ≥ `(Ji) ≥ `(I)/4. Hence, in
case a) we have established the desired result.

Case b) There is no such x′ ∈ F as in Case a). It follows that R ⊂ F∗\ 1
1+θF∗, and

therefore R ∩ int J′ , ∅ for some Whitney box J′ <WF touching I. If J ∈ WF is any
Whitney box adjacent to I with `(J) = 2k`(I) and such that J∗∩J′ , ∅, then k ∈ {−2,−1}.
Indeed, if k ∈ Z is larger then J∗ protrudes a distance (perpendicular to the face F whose
boundary is intersected by J) greater than or equal to 1

2θ`(I), so that R ⊂ J∗. If R ⊂ int J∗

we have a contradiction to the fact that R ⊂ ∂ΩF ; whereas if R ⊂ ∂J∗, then there is a face
FJ∗ which is adjacent to F∗ and such that int(FJ∗ ∪ F∗) is a connected set; we may then
reduce to Case a) by considering that R ⊂ FJ∗ . Finally, since k ≤ −1, then J∗ protrudes a
distance at most 1

4θ`(I). It follows that all the sides of R have length larger than or equal
to 1

2θ`(I) − 1
4θ`(I) = 1

4θ`(I), giving the result. �

Proposition 4.28 (Characterization of non-hidden regions, Proposition 6.1 in [HM14]).
Let F be a disjoint family. Then

(4.29) Γ\
(⋃

F Q j
)
⊆ Γ ∩ ∂ΩF ⊆ Γ\

(⋃
F int Q j

)
.

Proof. Let us show by contradiction the second containment first, thus assume that there
exists x ∈ Γ ∩ ∂ΩF ∩ int Q j for some Q j ∈ F . Hence, there exists ε > 0 for which
B(x, ε) ∩ Γ ⊂ Q j. In particular, B(x, ε) ∩ Q = ∅ for any Q ∈ DF that does not contain
Q j. Since x ∈ ∂ΩF , there exist Xk ∈ ΩF such that |Xk − x| → 0 as k → ∞. Accordingly,
for each k ∈ N there exists a Whitney box Ik and a dyadic cube Qk ∈ DF such that
Ik ∈ WQk and Xk ∈ I∗k . Since x ∈ Γ and Xk → x, then δ(Xk)→ 0 and therefore `(I∗k )→ 0,
which further implies that `(Qk) → 0 by (4.15). It follows that for all k large enough,
`(Qk) � `(Q j), so that B(x, ε) ∩ Qk = ∅. On the other hand,

dist(Qk, x) ≤ dist(Qk, I∗k ) + diam I∗k + |Xk − x| . `(Qk) + `(Ik) + |Xk − x| −→ 0,

which implies that there is k0 ∈ N large enough and a point q ∈ Qk0 so that |q − x| < ε.
Hence q ∈ B(x, ε) ∩ Qk0 , a contradiction. The second containment is thus established.

We now prove the first containment. Suppose that x ∈ Γ\(∪FQ j), and note that ob-
viously x < ΩF . Hence, for any generation k ∈ Z, x ∈ Qk for some Qk ∈ DF ∩ D

k.
According to each Qk ∈ DF , there exists Ik ∈ WQk and Ik ⊂ ΩF . Then the centers
XIk ∈ Ik satisfy |XIk − x| ≤ diam Qk + dist(Qk, Ik) + diam Ik . `(Qk). Taking k → ∞ gives
that `(Qk) ≈ 2−k → 0, and hence that |XIk − x| → 0. It follows that x ∈ ∂ΩF . �

Although we may not quite say that Γ ∩ ∂ΩF ⊆ Γ\ int(∪FQ), we do have a technical
improvement to the upper containment in (4.29).



PERTURBATIONS OF OPERATORS ON DOMAINS WITH LOW DIMENSIONAL BOUNDARIES 25

Lemma 4.30 (A refinement to Proposition 4.28). Suppose that F is a disjoint family and
let x ∈ Γ ∩ ∂ΩF . Then for each k ∈ Z, there exists Qk ∈ DF ∩ D

k verifying that x ∈ Qk.

Proof. Fix k ∈ Z and recall that {Qk
m}m∈J k is a disjoint covering of Γ. We first show

that x ∈
⋃
Dk∩DF

Qk
m. Indeed, suppose otherwise, so that x ∈ int(

⋃
Dk\DF

Qk
m). Then there

exists ε > 0 so that B(x, ε) ∩ Γ ⊂
⋃
Dk\DF

Qk
m. Since x ∈ Γ ∩ ∂ΩF , as in the proof of

Proposition 4.28 we can procure dyadic cubes Q′i ∈ DF such that dist(Q′i , x) → 0 and
`(Q′i) → 0 as i → ∞. Accordingly, for all i large enough, we have that Q′i ⊂ B(x, ε) ∩ Γ

and `(Q′i) � 2−k ≈ Qk
m for any Qk

m ∈ D
k\DF , which prohibits Q′i from being an ancestor

of any Qk
m ∈ D

k ∩ DF , and this implies that for all i large enough, Q′i ⊆ Q j for some
Q j ∈ F , yielding a contradiction to Q′i ∈ DF .

To finish the proof, we observe that for any y ∈ Γ, the cardinality of the set S (y) :={
Qk

m ∈ DF ∩ D
k : dist(Qk

m, y) < 2−k
}

is uniformly finite, implying in particular that⋃
Dk∩DF

Qk
m =

⋃
Dk∩DF

Qk
m and thus yielding the desired result. To see that card S (y) <

+∞, reckon the estimate

C−1
d (a02−k)d card(S (y)) ≤

∑
Qk

m∈S (y)

σ(∆(xQk
m
, a02−k) ≤

∑
Qk

m∈S (y)

σ(Qk
m) = σ

(⋃
S (y) Qk

m
)

≤ σ
(
B(x, 2A02−k) ∩ Γ

)
≤ Cd(2A02−k)d,

so that card(S (y)) ≤ 2dC2
dAd

0a−d
0 . �

The following lemma establishes that Carleson regions are quantitatively fat.
Lemma 4.31 (Quantitative fatness of Carleson regions, Lemma 3.55 of [HM14]). The
following statements are true.

(i) For each Q ∈ D, there exists a ball Bs := B(xQ, s) ⊆ B(xQ, a0`(Q)) with s ≈ `(Q)
(we may, in fact, take s = a0`(Q)/4), such that

Bs ∩Ω ⊂ RQ.

(ii) Moreover, for a somewhat smaller choice of s ≈ `(Q) (in fact, we may choose
s = a0a2A−1

2 `(Q)/10), we have for every pairwise disjoint family F ⊂ D, and for
each Q0 ∈ D containing Q, that

(4.32) Bs ∩ΩF ,Q0 = Bs ∩ΩF ,Q.

Proof. We consider (i) first. Fix Y ∈ Bs ∩ Ω, and let I ∈ W be a Whitney box that
contains Y . Choose y ∈ Γ such that |Y − y| = dist(Y,Γ) = δ(Y) ≈ `(I), and observe that

|y − xQ| ≤ |Y − y| + |Y − xQ| ≤ δ(Y) + s ≤ 2s < a0`(Q),

provided that s < a0`(Q)/2. Hence y ∈ ∆(xQ, a0`(Q)) ⊆ Q. Now let Qd ⊂ DQ be a
descendant of Q (which is unique as a set) that contains y and that verifies the inequalities
a0ccK
82
√

n `(Q
d) ≤ `(I) ≤ a0

8
√

n`(Q
d). Since we must have that

dist(I,Qd) ≤ |Y − y| = δ(Y) ≤ 41 diam I ≤ 41
8 a0`(Qd) ≤ a0K`(Qd),

we conclude that I ∈ W0
Qd , and therefore Y ∈ UQd ⊂ RQ, as desired.
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Now we consider (ii). Since Q ⊆ Q0, the containment Bs ∩ ΩF ,Q0 ⊇ Bs ∩ ΩF ,Q is
trivial, and thus we need only verify the opposite containment. Fix Y ∈ Bs ∩ ΩF ,Q0 , and
as such there exist Q′ ∈ DF ,Q0 and I ∈ WQ′ verifying Y ∈ I∗. Note that

|Y − xQ| ≥ dist(I∗,Γ) ≥ 1
2 dist(I,Γ) ≥ 2 diam I = 2

√
n`(I),

so that `(I) < s/(2
√

n). We claim that Q′ ⊆ Q. To see this, let z ∈ Q′ and reckon the
estimate

|z − xQ| ≤ diam Q′ + dist(I∗,Q′) + diam I∗ + |Y − xQ|

< A0a−1
2 `(I) + 4

√
nA2a−1

2 `(I) + 2
√

n`(I) + s < 5A2a−1
2 s < a0`(Q),

provided that s < 1
5 a0a2A−1

2 `(Q). Hence Q′ ⊆ ∆Q ⊆ Q, as claimed. But then, Q′ ∈ DF ,Q,
so that I ∈ WF ,Q and therefore I∗ ⊂ ΩF ,Q, which implies that Y ∈ ΩF ,Q, as desired. �

The next proposition gives us that the sets in (4.29) are the same from the perspective
of a doubling measure. Its proof is essentially the same as in [HM14], thus we omit the
details (see Remark 2.8).
Proposition 4.33 (Negligibility of pathologies in (4.29) for doubling measures, Proposi-
tion 6.3 in [HM14]). Suppose that µ is a doubling measure on Γ. Then ∂Q := Q\int Q
has µ−measure 0, for every Q ∈ D. In particular, the sets in (4.29) have the same µ
measure.

We will now elicit the existence of a point that acts as a Corkscrew point simultane-
ously in Ω and in the sawtooth domain ΩF ,Q0 .
Proposition 4.34 (Existence of simultaneous Corkscrews, Proposition 6.4 of [HM14]).
Fix Q0 ∈ D, and let F ⊂ DQ0 be a disjoint family. Then for each Q ∈ DF ,Q0 , there is a
radius rQ ≈ `(Q) (in fact, we may take rQ = 6

√
nA2`(Q)), and a point XQ ∈ ΩF ,Q0 which

serves as a Corskcrew point (with Corkscrew constant c̃ := 1
12
√

n a2A−1
2 ) simultaneously

for ΩF ,Q0 , with respect to the surface ball ∆?(yQ, rQ), for some yQ ∈ ∂ΩF ,Q0 , and for Ω,
with respect to each surface ball ∆(x, rQ), for every x ∈ Q.

Proof. Fix Q ∈ DF ,Q0 , and so note that there exists I ∈ WQ with int I∗ ⊂ ΩF ,Q0 . We fix
this Whitney cube I. Observe that

dist(XI , ∂ΩF ,Q0) ≥ dist(XI , ∂I∗) = 1
2 (1 + θ)`(I) ≥ 1

2 a2`(Q),

while on the other hand, since XI ∈ int ΩF ,Q0 and Γ ⊂ Rn\ΩF ,Q0 , we have that

dist(XI , ∂ΩF ,Q0) = dist(XI ,R
n\ΩF ,Q0) ≤ dist(XI ,Γ) ≤ dist(XI ,Q) ≤ 5

√
nA2`(Q).

It follows that, if we let y ∈ ∂ΩF ,Q0 be a point that satisfies dist(XI , ∂ΩF ,Q0) = |XI − y|,
then B(y, rQ) ⊇ I ⊇ B(XI , c̃rQ), where c̃ and rQ are as in the statement of the proposition.
Moreover, for any x ∈ Q, note that

|x − XI | ≤ diam Q + dist(I,Q) + diam I ≤ A0`(Q) + 4
√

nA2`(Q) +
√

nA2`(Q)

≤ 6
√

nA2`(Q),



PERTURBATIONS OF OPERATORS ON DOMAINS WITH LOW DIMENSIONAL BOUNDARIES 27

whence it is easy to see that B(x, rQ) ⊃ B(XI , c̃rQ). Letting XQ = XI and yQ = y finishes
the proof. �

Owing to (4.24), when Q = Q0 in the above proposition, we have
Corollary 4.35 (A uniform Corkscrew point). The point XQ0 given by Proposition 4.34 is
a Corkscrew point (with Corkscrew constant c̃ = 1

12
√

n a2A−1
2 ) with respect to ∆?(y, rQ0)

for all y ∈ ∂ΩF ,Q0 , and for ∆(x, rQ0), for all x ∈ Q0, with rQ0 = 7
√

nA2`(Q0).

The next lemma establishes a fatness of the region “hidden” by the sawtooth boundary;
hence the next result has a similar spirit to (i) of Lemma 4.31.
Lemma 4.36 (Quantitative fatness of hidden regions, Lemma 5.9 in [HM14]). Let F ⊂ D
be a disjoint family. Then for every Q ⊆ Q j ∈ F , there is a ball B′ ⊂ Rn\ΩF , centered at
Γ, with radius r′ ≈ `(Q), and ∆′ := B′ ∩ Γ ⊂ Q. In fact, we may take B′ = B(xQ, r′) and
r′ = a0`(Q)/(5A2a−1

2 ).

Proof. Recall that ∆Q = B(xQ, a0`(Q)) ∩ Γ ⊂ Q. Let BM := B(xQ, a0`(Q)/M), where
M = 5A2a−1

2 . We claim that BM is the ball B′ with the desired properties. We need only
check that BM ⊂ R

n\ΩF , and we proceed via proof by contradiction. Thus suppose that
there exists I ∈ WF with I∗ ∩ BM , ∅, so that we may find Y ∈ I∗ ∩ BM and QI ∈ DF
with I ∈ WQI . Then δ(y) < a0`(Q)/M, and therefore

diam I∗ ≤ 2 diam I ≤ dist(I,Γ)/2 ≤ dist(I∗,Γ) ≤ δ(y) < a0`(Q)/M,

dist(I∗,QI) ≤ dist(I,QI) ≤ 4
√

nA2`(QI) ≤ 4
√

nA2a−1
2 `(I) ≤ 2A2a−1

2 a0`(Q)/M.

It follows that

dist(QI , xQ) ≤ dist(I∗,QI) + diam I∗ + |y − xQ| ≤
4A2a−1

2
M a0`(Q),

and so for any qI ∈ QI , we have that

|qI − xQ| ≤ diam QI + dist(QI , xQ) ≤ A0a−1
2√
n diam I +

4A2a−1
2

M a0`(Q)

≤
9A2a−1

2 /2
M a0`(Q) < a0`(Q),

which implies that QI ⊂ ∆Q ⊂ Q ⊂ Q j ∈ F , but this is a contradiction to the assumption
that QI ∈ DF . The desired result ensues. �

We would now like to fix an (n − 1)− dimensional rectangle of the boundary of the
Carleson region RQ j which is morally a “lift” of ∆Q j . The precise statement is as follows.
Proposition 4.37 (Lift of ∆Q j , Proposition 6.7 in [HM14]). Let F be a disjoint family.
Then for each Q j ∈ F , there is an (n − 1)−dimensional cube P j ⊂ ∂ΩF , which is
contained in a face of I∗ for some I ∈ W, and that satisfies

(4.38) `(P j) ≈ dist(P j,Q j) ≈ dist(P j,Γ) ≈ `(I) ≈ `(Q j),

with uniform constants.

Proof. Fix Q j ∈ F and let Q̂ be its proper parent, so that `(Q j) < `(Q̂) ≤ c−1
K `(Q j) and

Q̂ ∈ DF . Let I ∈ Wcs
Q̂

, and in particular int I∗ ⊂ ΩF . On the other hand, by Lemma 4.36,
the ball B = B(xQ j , a0a2`(Q j)/(5A2)) lies in Rn\ΩF , so that if X is a Corkscrew point
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(with Corkscrew constant c) for the surface ball B ∩ Γ, then there exists J ∈ WQ j such
that X ∈ J and J\ΩF , ∅, whence we have that ΩF ∩

1
2 J = ∅.

Let XI and XJ be the centers of I and J, respectively. We will connect these points via
a Harnack Chain. Reckon the estimates

2
41 a0c`(Q j) ≤ δ(XI) ≤ 41

4 a0c−1
K `(Q j),

1
100 a0a2cA−1

2 `(Q j) ≤ δ(XJ) ≤ 1
4 a0a2A−1

2 `(Q j),

|XI − XJ | ≤ diam I + dist(I, Q̂) + diam Q̂ + |xQ j − X| + |X − XJ |

≤ 1
4 a0`(Q̂) + a0`(Q̂) + A0`(Q̂) + 1

4 a0a2A−1
2 `(Q j) ≤ 4A0c−1

K `(Q j)

≤

[400A2
2

a2
2ccK

]( 1
100 a0a2cA−1

2 `(Q j)
)
.

We thus apply Lemma 2.6 with s := 1
100 a0a2cA−1

2 `(Q j) and Λ := 400A2
2/(a

2
2ccK) and fix

a well-tempered Harnack Chain H (cf. Definition 2.7) connecting XI and X j with Λ, s
as above. Since XI ∈ int ΩF , XJ ∈ int(Rn\ΩF ), and H is centered on a straight line
segment, it follows that H intersects ∂ΩF at some Z ∈ ∂ΩF . By the construction of the
well-tempered Harnack Chain, Z verifies

(4.39) 1
200 cHΛ

−d
n−1−d a0a2cA−1

2 `(Q j) ≤ δ(Z) ≤ 13a0c−1
K `(Q j).

Since Z ∈ ∂ΩF , there exists IZ ∈ WF such that Z ∈ ∂I∗Z , which implies by (4.19) and
(4.39) that

(4.40) 1
82
√

n
1

200 cHΛ
−d

n−1−d a0a2cA−1
2 `(Q j) ≤ `(IZ) ≤ 13

2
√

n a0c−1
K `(Q j),

1
(50)(82) cHΛ

−d
n−1−d a0a2cA−1

2 `(Q j) ≤ dist(IZ ,Γ) ≤ 260a0c−1
K `(Q j)

By Lemma 4.27, there exists an (n − 1)−dimensional cube P j ⊂ ∂I∗Z of side-length
θ`(IZ)/4 that contains Z, and hence

(4.41) 1
82
√

n
1

800θcHΛ
−d

n−1−d a0a2cA−1
2 `(Q j) ≤ `(P j) ≤ 13

8
√

nθa0c−1
K `(Q j)

Since dist(IZ ,Γ) ≤ dist(P j,Γ) ≤ dist(IZ ,Γ) + diam I∗Z , it follows that

(4.42) 1
500 cHΛ

−d
n−1−d a0a2cA−1

2 `(Q j) ≤ dist(P j,Γ) ≤ 300a0c−1
K `(Q j).

Finally, we consider dist(P j,Q j). The lower bound is immediate from (4.42) and the fact
that dist(P j,Q j) ≥ dist(P j,Γ). As for the upper bound, we first note that dist(XI ,Q j) ≥
dist(XJ ,Q j) and diam I ≥ diam J, so that by the construction of the Harnack Chain H ,
we have that

dist(IZ ,Q j) ≤ dist(Z,Q j) ≤ 1
2 cHΛ−

d
n−1−d s + dist(I,Q j) + diam I

≤ 1
2 cHΛ−

d
n−1−d s + dist(I, Q̂) + diam Q̂ + diam I ≤ 4A0c−1

K `(Q j).

Therefore, we conclude that

(4.43) 1
5000 cHΛ

−d
n−1−d a0a2cA−1

2 `(Q j) ≤ dist(P j,Q j) ≤ 11A0c−1
K `(Q j).
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The estimates (4.40), (4.41), (4.42), and (4.43) readily imply (4.38). �

Notation 4.44. Let F be a disjoint family and Q j ∈ F . Let P j ⊂ ∂ΩF be the (n −
1)−dimensional cube constructed in Proposition 4.37 and satsifying (4.38). We denote
by x?j the center of P j, and we write r j := 7

√
nA2`(Q j). With these choices, we have that

P j ⊆ ∆?(x?j , r j) and that RQ j ⊂ B(x?j , r j), by an argument similar to the one giving (4.24).
Moreover, given Q ∈ DF and yQ ∈ ∂ΩF as in (an analogous global version of) Proposi-
tion 4.34, then we may choose r̂Q ≈ rQ (in fact, we may take r̂Q = 42

√
nc−1
K A2`(Q)) so

that the containment

(4.45) Q
⋃(⋃

Q j∈F :Q j⊂Q B(x?j , r j)
)
⊂ B(yQ, r̂Q)

holds. Indeed, it is easy to see that Q ⊂ B(yQ, r̂Q), while if Q j ∈ F with Q j ⊂ Q, then for
any z ∈ B(x?j , r j) we use the bound

|z − yQ| ≤ diam B(x?j , r j) + dist(P j,Q j) + diam Q + |xQ − yQ| . rQ.

Henceforth, we fix yQ, r̂Q as in this paragraph.

We conclude this section with the fact that there is a “lift” of any ∆Q,Q ∈ DF which
does not intersect Carleson regions of Q j ∈ F , Q j not contained in Q.
Proposition 4.46 (A lift of ∆Q, Proposition 6.12 of [HM14]). Let F be a disjoint family.
For Q j ∈ F , let B(x?j , r j) be the ball described in Notation 4.44. Then for each Q ∈ DF ,
there is a surface ball

∆
Q
? := ∆?(x?Q, tQ) ⊂

(
Q ∩ ∂ΩF

)⋃(⋃
Q j∈F :Q j⊂Q

(
B(x?j , r j) ∩ ∂ΩF

))
,

with tQ ≈ `(Q), x?Q ∈ ∂ΩF , and dist(Q,∆Q
? ) . `(Q).

Proof. Fix M a large number to be chosen momentarily. We split the proof in two cases.
Case 1. There exists Q j ⊂ Q, for which `(Q j) ≥ `(Q)/M. In this case, we set

∆
Q
? = ∆?(x?k , `(P j)/2), where P j is the cube established in Proposition 4.37.
Case 2. There is no Q j as in Case 1. In this case, if Q j ∩ Q , ∅, then Q j ⊂ Q and

`(Q j) < `(Q)/M.

Sub-case 1. No Q j ∈ F meets ∆(xQ, a0`(Q)/(4
√

M). Then, we simply set ∆
Q
? :=

∆(xQ, `(Q)/(4
√

M)), and we reckon that ∆
Q
? ⊂ ∆Q ⊂ Q ∩ ∂ΩF by Proposition 4.28.

Sub-case 2. There exists Qk ∈ F which meets the surface ball ∆(xQ, a0`(Q)/(4
√

M).
We claim that for all M large enough, we have that Pk ⊂ B(xQ, a0`(Q)/(2

√
M)). Indeed,

suppose that y ∈ Pk. Then, using (4.38), we deduce that

|y − xQ| ≤ diam Pk + dist(Pk,Qk) + diam Qk + dist(Qk, xQ)

≤ 13
8 θa0c−1

K `(Qk) + 11A0c−1
K `(Qk) + A0`(Qk) + 1

4
√

M
a0`(Q)

< 13A0c−1
K

1
M `(Q) + 1

4
√

M
a0`(Q) =

13A0a−1
0 c−1
K√

M
1

4
√

M
a0`(Q) + 1

4
√

M
a0`(Q)

<
1

2
√

M
a0`(Q),
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provided that M > (13A0a−1
0 c−1
K )2. Thus the claim is shown, and accordingly, we have

the inclusion ∆
Q
? := B

(
x?k ,

a0`(Q)
2
√

M

)
∩ ∂ΩF ⊆ B

(
xQ,

a0`(Q)
√

M

)
∩ ΩF . In particular, note that

Γ ∩ ∆
Q
? ⊆ Q. It remains only to show that ∆

Q
? has the desired properties. To do this, we

claim that the inclusion

(4.47) ∂ΩF ⊆ (∂ΩF ∩ Γ)
⋃(⋃

Q j∈F

(
∂ΩF ∩ RQ j

))
holds. Indeed, observe the following elementary set-theoretic calculations:

Rn\ΩF =
⋃
W

I∗\ int
( ⋃
WF

I∗
)
⊆

⋃
W\WF

I∗ =
⋃

RQ j ,Q j∈F

I∗ ⊆
⋃

Q j∈F

RQ j ,

∂ΩF \Γ = ∂(Rn\ΩF )\Γ ⊂
(⋃

Q j∈F
RQ j

)
\Γ =

(⋃
Q j∈F

RQ j

)
\Γ,

where in the last equality we used that the boundary points of
⋃

Q j∈F
RQ j which are not

contained in the union, necessarily lie in Γ. From these calculations, (4.47) follows.

Since B(x?j , r j) ⊃ RQ j , (4.47) holds, and Γ∩∆
Q
? ⊂ Q, we will have the desired result as

soon as we show that for Q j ∈ F , if RQ j meets B(xQ, a0`(Q)/
√

M) ⊃ ∆
Q
? , then Q j ⊆ Q.

Thus we show the latter. Suppose that RQ j∩B(xQ, a0`(Q)/
√

M) , ∅, whence there exists
Q′ ∈ DQ j , I ∈ WQ′ and X ∈ I∗ such that X ∈ I∗ ∩ B(xQ, a0`(Q)/

√
M). Thus, we note

that δ(X) ≤ |X − xQ|, and

dist(Q′, xQ) ≤ diam Q′ + dist(I,Q′) + diam I∗ + |X − xQ|

≤ A0`(Q′) + 4
√

nA2`(Q′) + 2
√

n`(I) + a0`(Q)
√

M
≤

A0a−1
2

2
√

n δ(X) + 2A2a−1
2 δ(X) + δ(X) + a0`(Q)

√
M

≤
5A2a−1

2√
M

a0`(Q) < a0`(Q),

provided that M > (5A2a−1
2 )2. It follows that Q′ ⊂ ∆Q ⊂ Q, which implies that Q j ∩Q ,

∅, and so Q j ⊂ Q since Q ∈ DF . As explained above, this calculation ends the proof. �

5. A surface measure on the boundary of a dyadically-generated sawtooth

The goal of this section is to construct a non-negative locally finite Borel measure σ?
on ∂ΩF which is doubling and well-suited to work with the elliptic theory of [DFM19b];
so that it supplants the role of a “surface measure” on the boundary of the sawtooth do-
main. When d < n−1 andF , ∅, ∂ΩF is necessarily of mixed dimension. In [DFMb], an
author of this manuscript with coauthors established an axiomatic elliptic theory for do-
mains with boundaries of mixed dimension. Recall that m is the non-negative Borel mea-
sure on Ω given by m(E) =

!
E w(X) dX, where w(X) = δ(X)−n+d+1. We must construct

σ? so that the triple (ΩF ,m, σ?) satisfies the axioms (H1)-(H6) outlined in [DFMb].
Our candidate for the measure σ? on ∂ΩF is defined as follows: for each Borel set

E ⊂ ∂ΩF , let

(5.1) σ?(E) = H d |Γ(E ∩ Γ) +

∫
E\Γ

dist(X,Γ)d+1−n dH n−1|∂ΩF \Γ(X).
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We see that σ? = σ + σ?|Σ, where σ = H d |Γ and σ?|Σ are mutually absolutely continu-
ous, and

σ?|Σ(E) :=
∫

E\Γ
dist(X,Γ)d+1−n dH n−1|∂ΩF \Γ(X).

Theorem 5.2 (Dyadically-generated sawtooth domains admit an elliptic theory). The
triple (ΩF ,m, σ?) satisfies the following axioms.

(H1) There exists a constant c1 > 0 such that for each x ∈ ∂ΩF and each r > 0, there
exists a point X ∈ B(x, r) satisfying that B(X, c1r) ⊂ ΩF .

(H2) There exists a positive integer C2 = N + 1 such that for each X1, X2 ∈ ΩF with
δ?(Xi) > r, i = 1, 2, and |X − Y | ≤ 7c−1

1 r, there exist N + 1 points Z0 := X1,
Z2, . . . ,ZN := X2 in ΩF and verifying |Zi − Zi+1| < δ?(X)/2.

(H3) The support of σ? is ∂ΩF , and σ? is doubling. That is, there exists a constant
C3 > 1 such that for each x ∈ ∂ΩF and each r > 0,

σ?(∆?(x, 2r)) ≤ C3σ?(∆?(x, r)).

(H4) The measure m is mutually absolutely continuous with respect to the Lebesgue
measure; that is, there exists a weight w̃ ∈ L1

loc(ΩF ) which is positive Lebesgue-
a.e. in ΩF , and such that for each Borel set E ⊂ ΩF , we may write m(E) =!

E w(X) dX. In addition, m is doubling in ΩF , so that there exists a constant C4

such that for each X ∈ ΩF and each r > 0, we have that

m(B(X, 2r) ∩ΩF ) ≤ C4m(B(X, r) ∩ΩF ).

(H5) For each x ∈ ∂ΩF and each r > 0, the function ρ given by

ρ(x, r) :=
m(B(x, r) ∩ΩF )

rσ?(∆?(x, r))

verifies for some constant C5 and ε := 1/C5 that

ρ(x, r)
ρ(x, s)

≤ C5

( r
s

)1−ε
, for each x ∈ ∂ΩF , 0 < s < r.

(H6) If D is compactly contained in ΩF and ui ∈ C∞(D) is a sequence of functions
such that

∫
D |ui| dm → 0 and

∫
D |∇ui − v|2 dm → 0 as i → ∞, where v is a

vector-valued function in L2(D, dm), then v ≡ 0.

Roadmap to the proof of Theorem 5.2. The proof of the theorem is split into several
parts. First, we check the quantitative properties of ΩF , hence in Proposition 5.3 below
we show that the Corkscrew property (H1) holds, and in Proposition 5.5 we see that the
Harnack Chain property (H2) holds. We then explore the d-ADR -“like” properties of σ?
in Propositions 5.8 and 5.27, on which we base our verifications of (H3) in Proposition
5.37 and of (H5) in Proposition 5.39. Finally, we justify in Remark 5.40 that (H4) and
(H6) are easy consequences of the previously established results in [DFM19b] and the
existence of interior Corkscrews for ∂ΩF .

As stated, let us show that ΩF enjoys the properties (H1) and (H2).
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Proposition 5.3 (Existence of Corkscrew points for the sawtooth domain). The sawtooth
domain ΩF has property (H1). More precisely, for each x ∈ ∂ΩF and each r > 0, there
exists a point X ∈ B(x, r) such that B(X, c1r) ⊂ ΩF ∩ B(x, r), where c1 > 0 is the uniform
small constant given in (5.4) below.

Proof. Fix x ∈ ∂ΩF and r > 0. Suppose first that x ∈ Γ ∩ ∂ΩF . Fix k ∈ Z that
satisfies r

4A0c−1
K
≤ 2−k < r

2A0c−1
K

, and by Lemma 4.30, there exists Q ∈ DF with 2−k ≤

`(Q) ≤ c−1
K 2−k and verifying x ∈ Q. We observe that B(xQ, a0`(Q)) ⊂ B(x, r): let Y be an

arbitrary element of the former, and consider the estimate

|Y − x| ≤ |Y − xQ| + |xQ − x| ≤ a0`(Q) + diam Q ≤ (a0 + A0)`(Q) ≤ 2A0c−1
K 2−k < r,

as desired. Now, according to Corollary 4.6, there exists I ∈ Wcs
Q such that its cen-

ter XI is a Corkscrew point for Q with Corkscrew constant c̃ = c
1000

√
n . Moreover,

B(XI , c̃a0`(Q)) ⊂ int( 1
2 I) and therefore B(XI , c̃a0`(Q)) ⊂ ΩF . Reckon that c̃a0`(Q) ≥

c̃cKa0
4A0

r =: c11r, whence the ball B(XI , c11r) ⊂ ΩF ∩ B(x, r) has the desired properties.

We now consider the case that x ∈ Σ = ∂ΩF \Γ. In this case, δ(x) > 0 and consequently
there exists a Whitney box I ⊂ ΩF such that x ∈ ∂I∗, which we now fix. We split into
two cases: either r ≤ 10A2a−1

2 δ(x), or not.
We resolve the former case first. Since I∗ is an n−cube, int I∗ ⊂ ΩF , and x ∈ ∂ΩF ,

it follows that the ray R containing the line segment [x, XI] has a non-empty intersection
with B(x, r). If r ≤ 2 diam I, then take the unique point Y ∈ R such that |Y− x| = r/(4

√
n).

This point satisfies |Y − x| ≤ `(I)/2 < |XI − x| since x ∈ ∂I∗, and therefore Y ∈ [x, XI] ⊂
I∗. Note also that dist(Y, ∂I∗) ≥ r/(4n). Hence the ball B(Y, r/(8n)) = B(Y, c12r) has
the desired properties. If, instead, r > 2 diam I, then I∗ ⊂ B(x, r) and it follows that
B(XI , `(I)/4) ⊂ B(x, r). On the other hand, owing to (4.19) we have that `(I) ≥ δ(x)

82
√

n ≥
a2

820A2
√

n r. Thus the ball B(XI , a2r/(4000
√

nA2)) = B(XI , c13r) has the desired properties.

It remains only to consider the case that r > 10A2a−1
2 δ(x). In this case, let Q ∈ DF be

a dyadic cube such that I ∈ WQ, which we now fix. Observe that `(Q) ≤ r
20
√

nA2
, and

that for any generation k ≤ k(Q), there is a unique Qk ∈ DF ∩ D
k which contains Q. Let

k be the unique generation such that r
20
√

nA2
≤ 2−k < r

10
√

nA2
, and choose Qk as above.

According to Corollary 4.6, there exists a point Xk ∈ Ω which is the center of some
Whitney box Ik ∈ W

cs
Qk

and is also a Corkscrew point for Qk with Corkscrew constant c̃.
Let us see that with our choice of constants, we have that B(Xk, c̃a0`(Qk) ⊂ B(x, r). Fix
Y ∈ B(Xk, c̃a0`(Qk)) ⊂ 1

2 I, and consider the estimate

|Y − x| ≤ diam Ik + dist(Ik,Qk) + diam Qk + dist(I∗,Q) + diam I∗

≤
√
`(Ik) + a0`(Qk) + A0`(Qk) + 4

√
nA2`(Q) + 2 diam I

≤ (5a0/4 + A0)`(Qk) + 6
√

nA2`(Q) ≤ 9
√

nA2`(Qk) < 10
√

nA2`(Qk) < r,

as desired. Note that c̃a0`(Qk) ≥ c̃a0
r

20
√

nA2
, so that B(Xk,

c̃a0
20
√

nA2
r) =: B(Xk, c14r) is a

ball with the desired properties.
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Finally, take

(5.4) c1 = min
{

c11, c12, c13, c14
}

= min
{ c̃cKa0

4A0
,

1
8n

,
a2

4000
√

nA2
,

c̃a0

20
√

nA2

}
and reckon that the desired result is proved. �

Proposition 5.5 (Harnack Chains in the sawtooth domain). The sawtooth domain ΩF has
property (H2). More precisely, for any Λ ≥ 1, there exists C2 = C2(n, d,Cd, θ,Λ) such
that if X1, X2 ∈ ΩF are two points with mini δ?(Xi) ≥ r for i = 1, 2, and |X1 − X2| ≤

Λr, then there is a chain of balls {Bm}m ⊂ ΩF connecting X1 to X2, and verifying that
card({Bm}m) ≤ C2, and dist(Bm, ∂ΩF ) ≈ diam Bm, for each Bm.

We call a chain of balls {Bm}m as in the above proposition a Harnack Chain (for the
sawtooth domain).
Proof. Fix X1, X2 ∈ ΩF with δ?(Xi) > r, i = 1, 2, and |X1 − X2| ≤ Λr. We seek to join
X1 and X2 via a Harnack Chain that stays far from ∂ΩF . First, note that for any Z ∈ ΩF ,
δ(Z) ≥ δ?(Z), while in the other direction we have that if Z ∈ I for some I ∈ WF ,
then δ?(Z) ≥ 1

2θ`(I) ≥ 1
164
√

nθδ(Z). For each i = 1, 2, fix Qi ∈ DF and Ii ∈ WQi such
that Xi ∈ int I∗i . If it can be arranged that I1 = I2, then the result follows immediately
from the fact that int I∗ is an n−dimensional open cube. Similarly, if I∗1 ∩ I∗2 , ∅, then
a Harnack Chain connecting X1 to X2 can be obtained by noting that I∗1 ∩ I∗2 is a union
of rectangles with no side-length smaller than θmini `(Ii), whence we may use these
intersections to “transfer” from X to Y in the manner desired. Therefore, if the estimate
δ?(X1) < θ

200Λ
δ(X1) =: 1

Mδ(X1), holds, then

|X1 − X2| ≤ Λr ≤ θ
200δ(X1) ≤ θ

2 diam I1 � diam I1,

so that I1 and I2 touch, and the desired result is achieved with C2 = C2(n,Λ).
Thus it remains to obtain the conclusion under the supposition that for each i = 1, 2,

the estimate δ?(Xi) ≥ 1
Mδ(Xi) holds. In this case, we have that δ?(Xi) ≈M δ(Xi), and

without loss of generality suppose that `(Q1) ≤ `(Q2). In this case, we may connect each
Xi to the respective centers of Ii, XIi , through Harnack Chains with a uniform number
of balls (depending only on M). Hence we have reduced the problem to procuring a
Harnack Chain between XI1 and XI2 . We have that Q1 and Q2 have comparable length,
as follows: first, we have the estimate

δ(X2) ≤ |X1 − X2| + δ(X1) ≤ Λr + δ(X1) ≤ 2Λδ(X1),

which gives that `(I2) ≤ 41
2 Λ`(I1), and on the other hand,

n−1/2A−1
2 δ(Xi)/41 ≤ A−1

2 `(Ii) ≤ `(Qi) ≤ a−1
2 `(Ii) ≤ n−1/2a−1

2 δ(Xi)/4, i = 1, 2,

which implies that δ(X1) ≤ 41
4 A2a−1

2 δ(X2), and `(I1) ≤ A2a−1
2 `(I2). As such, `(Q1) ≤

`(Q2) ≤ 21ΛA2a−1
2 `(Q1), and, furthermore,

(5.6) dist(Q1,Q2) ≤ dist(I1,Q1) + diam I1 + |X1 − X2| + diam I2 + dist(I2,Q2)
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≤ 5
√

nA2(`(Q1) + `(Q2)) + Λr ≤ 51
√

nA2Λ`(Q2).

Fix Qa
2 ∈ DF as the unique ancestor of Q2 that satisfies

51
√

nA2Λ

500
`(Q2) ≤ `(Qa

2) ≤ c−1
K

51
√

nA2Λ

500
`(Q2),

and then choose for Qa
1 ∈ DF the ancestor of Q1 that verifies cK`(Qa

2) ≤ `(Qa
1) ≤ `(Qa

2).
By construction, we have that `(Qa

1) ≈ `(Qa
2) ≈ `(Q2) ≈ `(Q1) with uniform constants.

By Lemma 4.8, we see that Q2 and its proper parent Q′2 satisfy W0
Q2
∩W0

Q′2
, ∅, so

that by the construction of WQ2 in (4.14), there exists a Harnack Chain of the desired
properties connecting XI2 to some point X′2 lying in I′2 ∈ WQ′2 . It is easy to see that
therefore we may inductively “ascend” through a uniformly finite (since `(Qa

2) ≈ `(Q2))
sequence of Harnack Chains from XI2 to a point XIa

2
which is the center of a Whitney

cube Ia
2 ∈ WQa

2
. Now, from (5.6), we see that

dist(Qa
1,Q

a
2) ≤ dist(Q1,Q2) ≤ 500`(Qa

2),

so that by Lemma 4.9,W0
Qa

1
∩W0

Qa
2
, ∅. Hence we may pass through a Harnack Chain

from XIa
2

to a point XIa
1

which is the center of some Ia
1 ∈ WQa

1
. As before but in reverse,

we proceed to “descend” from XIa
1

to XI1 through a uniformly finite (since `(Qa
1) ≈ `(Q1))

sequence of Harnack Chains. Hence, in this case the desired result is achieved with a
constant C2 = C2(n, d,Cd,Λ, θ). �

We turn to a study of the properties of the measure σ?.
Lemma 5.7 (Support of σ?). The measure σ? is supported on ∂ΩF .

Proof. It is clear that Γ ∩ ∂ΩF ⊂ suppσ?, so we only need to check that Σ is in the
support of σ?. But this is easy: for any bounded open set U intersecting Σ and com-
pactly contained in Rn\Γ, the set Σ ∩ U is contained in a finite union of non-empty
(n − 1)−dimensional rectangles, so that H n−1(Σ ∩ U) ∈ (0,∞), and δ(X) ∈ (0,+∞) for
any X ∈ Σ. The claim ensues. �

Proposition 5.8 (Upper bound for σ?). Let x ∈ ∂ΩF and r > 0. Then

(5.9) σ?(∆?(x, r)) ≤ V1rd,

where V1 = V1(n, d,Cd, a0, A0, ζ, c, cH ). Moreover, if δ(x) > 0, then

(5.10) σ?(∆?(x, r)) ≤ V2δ(x)d+1−nrn−1.

The uniform constant V2 in the last inequality depends only on n, d, and V1.

Proof. Fix x ∈ ∂ΩF and r > 0. Let B := B(x, r) and recall that Σ = ∂ΩF \Γ, σ =

H d |Γ. We first prove (5.9) by adapting ideas of the proof for Lemma 3.61 from [HM14].
Observe that

σ?(∆?(x, r)) = σ?(B ∩ Γ ∩ ∂ΩF ) + σ?(B ∩ Σ)
≤ σ?(B ∩ Γ) + σ?(B ∩ Σ) = σ(∆(x, r)) + σ?|Σ(B ∩ Σ)

≤ Cdrd + σ?|Σ(B ∩ Σ).
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Thus we need only show that σ?|Σ(B(x, r) ∩ Σ) . rd. We will do this by splitting B ∩ Σ

into two parts: one part where the (portions of) faces in B ∩ Σ correspond to Whitney
boxes having small diameter compared to r, and the other part where the (portions of)
faces in B ∩ Σ correspond to Whitney boxes having large diameter compared to r. More
precisely, it is clear that any X ∈ Σ lies in the face of a fattened Whitney box J∗, such that
J ∈ W, int J∗ ⊂ ΩF , and ∂J∗ ∩ ∂ΩF , ∅. Then there exists a Whitney box I ∈ W, with
I <WQ for any Q ∈ DF , so that J∗ ∩ I , ∅ (otherwise, every Whitney box adjacent to
J lies inWF , contradicting that J∗ ∩ ∂ΩF , ∅). Necessarily then, there exists Q′ ∈ DQ j

with Q j ∈ F and verifying that I ∈ WQ′ . Denote by FB the sub-collection of those
Q j ∈ F such that there exists I ∈ RQ j (cf. (4.25)) intersecting B ∩ Σ. Let FB = F1 ∪ F2
where Q j ∈ FB belongs to F1 if `(Q j) < r, and F2 = FB\F1. Then, we may write

(5.11) B ∩ Σ = B ∩ Σ ∩
( ⋃

Q j∈FB

⋃
I∈RQ j

I
)

=
(

B ∩ Σ ∩
( ⋃

Q j∈F1

⋃
I∈RQ j

I
))⋃(

B ∩ Σ ∩
( ⋃

Q j∈F2

⋃
I∈RQ j

I
))

=
( ⋃

Q j∈F1

(B ∩ Σ j)
)⋃ ( ⋃

Q j∈F2

(B ∩ Σ j)
)
,

where Σ j := Σ ∩ (∪I∈RQ j
I) for each Q j ∈ F . Our further analysis will be based on the

following estimate:

(5.12) σ?(B ∩ Σ j) .
(

min
{

r , `(Q j)
})d

, for each Q j ∈ F .

Suppose momentarily that (5.12) holds, and we will use it to control σ?(B∩Σ). First, we
consider the contribution of F1. If Q j ∈ F1 so that `(Q j) < r, we have that Q j ∈ B∗ :=
B(x, (4a0K + 3A0)r). Indeed, since Q j ∈ F1 ⊂ FB, it follows that there exists Q′ ∈ DQ j

and I ∈ WQ′ such that B ∩ I , ∅, and thus for any q ∈ Q j, we have that

|q − x| ≤ diam Q j + dist(Q j, x) ≤ A0`(Q j) + dist(I,Q′) + diam I + dist(I, x)

≤ A0`(Q j) + (2a0K + A0)`(Q′) + 2a0K+A0
4
√

n `(Q′) + r < (4a0K + 3A0)r,

where we used that `(Q′) ≤ `(Q j) < r. Then,

(5.13) σ?
( ⋃

Q j∈F1

(B ∩ Σ j)
)
≤
∑

Q j∈F1

σ?(B ∩ Σ j) ≤ C
∑

Q j∈F1

`(Q j)d ≤ CCda−d
0

∑
Q j∈F1

σ(Q j)

≤ CCda−d
0 σ
(
B∗ ∩ Γ) ≤ CC2

d
(
4K + 3 A0

a0

)drd,

where C is the uniform constant implicit in (5.12), and in the second inequality we used
(5.12), in the third inequality we used (3.6), in the fourth inequality we used that the
cubes Q j ⊂ B∗ are disjoint.

Next we turn to the contribution of F2, still supposing that (5.12) holds. We begin by
proving that the cardinality of F2 is uniformly bounded. Suppose that Q j and Qk belong
to F2, so that there exist Whitney boxes I j ∈ RQ j , Ik ∈ RQk intersecting B∩Σ, and without
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loss of generality we may assume that `(Qk) ≤ `(Q j). Observe that for i = j, k we have
that `(Ii) ≤ 2a0K+A0

4
√

n `(Qi) since Ii ∈ RQi . Also note that dist(I j, Ik) ≤ diam B = 2r ≤
2`(Qk), and moreover

4 diam I j ≤ dist(I j,Γ) ≤ dist(I j, Ik) + diam Ik + dist(Ik,Γ)

≤ 2`(Qk) + 41
4 (2a0K + A0)`(Qk) ≤ A(a0K + A0)`(Qk),

where A ≥ 1 is a large real number with no dependence on any parameter. Now, we have

dist(Q j,Qk) ≤ diam Qk + dist(Ik,Qk) + diam Ik + dist(Ik, I j) + diam I j + dist(I j,Q j)

≤ A(a0K + A0)a−1
1 η−

n−1
n−1−d `(Qk),

where a1 = a1(n, d,Cd, c, cH ,K) is the quantity defined in (4.11). Thus, we have shown
that for any Q j,Qk ∈ F2, the estimate
(5.14)

dist(Q j,Qk) ≤ A(a0K + A0)a−1
1 η−

n−1
n−1−d min

{
`(Q j), `(Qk)

}
=: A1 min

{
`(Q j), `(Qk)

}
holds. Let us see that (5.14) implies the uniform boundedness of cardF2. Since for all
Qk ∈ F2 we have that `(Qk) ≥ r by definition, then we may choose Q j ∈ F2 so that
`(Qk) ≥ `(Q j) for all Qk ∈ F2. Fix such a Q j ∈ F2, and reckon that by (5.14) and (3.5),
for each Qk ∈ F2 the set Qk ∩∆(xQ j , (A0 + A1)`(Q j)) is not empty. Accordingly, for each
Qk ∈ F2, there exists a dyadic cube Q′k ∈ DQk such that cK`(Q j) ≤ `(Q′k) ≤ `(Q j) and
Q′k ⊂ ∆(xQ j , 3A1`(Q j)). We consider the estimate

cKC−1
d ad

0`(Q j)d cardF2 ≤
∑

Qk∈F2

σ
(
∆(xQ′k , a0`(Q′k))

)
≤
∑

Qk∈F2

σ(Q′k)

≤ σ(∆(xQ j , 3A1`(Q j)) ≤ Cd(3A1)d`(Q j)d,

and hence obtain that cardF2 ≤ c−1
K C2

d

[
3a−1

0 A1
]d. Therefore, we may conclude, using

(5.12), that

(5.15) σ?
(⋃

Q j∈F2
(B ∩ Σ j)

)
≤
∑

Q j∈F2

σ?(B ∩ Σ j) ≤ C2
d
[
3a−1

0 A1
]d sup

Q j∈F2

σ?(B ∩ Σ j)

≤ C2
d
[
3a−1

0 A1
]dCrd.

Putting (5.11), (5.13), and (5.15) together, we obtain the desired result modulo the proof
of (5.12).

We now turn to the proof of (5.12). Hence take Q j ∈ F and first suppose that `(Q j) ≤
Mr for some M > 0 to be fixed later. In this case, any I ∈ RQ j satisfies `(I) . `(Q j),
but this estimate is too crude as there may be too many (in fact, infinitely many!) such
boxes intersecting Σ j. Therefore the idea is to control the number of Whitney boxes I of
a given generation that contribute to Σ j. To this end, recall A2 = 2a0K+A0

4
√

n , and define

Σk
j := Σ

⋂(⋃
{I∈RQ j : `(I)=2−k} I

)
, so that Σ j =

⋃
{k :2−k≤A2`(Q j)} Σ

k
j.
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Hence,

(5.16) σ?(B ∩ Σ j) =
∑

k:2−k≤A2`(Q)

σ?(B ∩ Σk
j)

=
∑

k:a3`(Q j)<2−k≤A2`(Q)

σ?(B ∩ Σk
j) +

∑
k:2−k<a3`(Q j)

σ?(B ∩ Σk
j) =: T1 + T2,

where a3 > 0 is a small constant to be fixed momentarily. We bound term T1 first. Note
that if X ∈ Σk

j, then there exists I ∈ RQ j with `(I) > a3`(Q j) and such that X ∈ I. Hence
δ(X) ≥ 4

√
na3`(Q j). For convenience in the following calculation, set WΣ1

j
:= {I ∈

RQ j : a3`(Q j) ≤ `(I) ≤ A2`(Q j)}, and observe that

(5.17)
∑

k:a3`(Q j)<2−k≤A2`(Q)

σ?(B ∩ Σk
j) ≤

∑
k:a3`(Q j)<2−k≤A2`(Q)

∫
Σk

j

δ(X)d+1−n dH n−1|Σ(X)

≤ (4
√

na3)d+1−n`(Q j)d+1−nH n−1(⋃
I∈W

Σ1
j

(I ∩ Σ)
)

≤ ad+1−n
3 `(Q j)d+1−n

∑
I∈W

Σ1
j

H n−1(I ∩ Σ)

≤ Anad+1−n
3

[a0K+A0
a3

]n
`(Q j)d+1−n( sup

I∈W
Σ1

j

H n−1(I ∩ Σ)
)
,

where by An ≥ 1 we denote a constant depending only on n, and in the last line we used
the bound (4.17), since the setWΣ1

j
can easily be seen to be a subset of a set of the form

in Lemma 4.16. Next, let I ∈ WΣ1
j
, and we seek to bound H n−1(I ∩ Σ). Observe that

(5.18) H n−1(I ∩ Σ) ≤H n−1(⋃
J∈WF :J∗∩I,∅ ∂J∗

)
≤ An

(
supJ∈WF :J∗∩I,∅H n−1(∂J∗)

)
≤ An(1 + θ)n−1( sup

J∈WF :J∗∩I,∅
`(J)n−1) ≤ An`(I)n−1 ≤ AnAn−1

2 `(Q j)n−1.

We may combine (5.17) with (5.18) to see that

(5.19) T1 ≤ Anad+1−2n
3

[
a0K + A0

]2n−1
`(Q j)d,

which is the desired bound for T1. We remark that the estimates in (5.18) and (5.19) also
allow us to say that for any I ∈ W, it holds that

(5.20) σ?(I ∩ Σ) ≤ An`(I)d.

Now we bound T2. SetWΣk
j

:= {I ∈ RQ j : `(I) = 2−k, I ∩ Σk
j , ∅}, and observe that

(5.21) T2 ≤
∑

k:2−k<a3`(Q j)

∑
I∈RQ j :`(I)=2−k

σ?(I ∩ Σ)

≤
∑

k:2−k<a3`(Q j)

card(WΣk
j
)
(

sup
I∈W

Σk
j

σ?(I ∩ Σ)
)
≤ An

∑
k:2−k<a3`(Q j)

card(WΣk
j
)2−kd,
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where we used (5.20) in the last inequality. Hence, it will suffice to show that for some
large uniform constant C and some ζ ∈ (0, 1), the estimate

(5.22) card(WΣk
j
) ≤ C(2k`(Q j)d−ζ

holds. Let us establish (5.22) then. If I ∈ WΣk
j
, then there exists QI ∈ DQ j such that

I ∈ WQI , and moreover there exists J ∈ WF so that I∩ J∗ , ∅. In particular, there exists
Q′ ∈ DF such that J ∈ WQ′ . Observe that `(Q′) ≤ a−1

2 `(J) ≤ 4a−1
2 `(I) ≤ 4a−1

2 a3`(Q j),
whence `(Q′) < `(Q j) provided that a3 ≤ a2/8, which we assume from now on. Since
Q′ ∈ DF and Q j ∈ F , it follows that Q′ and Q j are disjoint. Consequently,

(5.23) dist(QI ,Γ\Q j) ≤ dist(QI ,Q′) ≤ diam QI + dist(I,QI) + diam I + dist(J,Q′)

≤ (A0a−1
2 + 6

√
nA2a−1

2 )`(I).

Since for any q ∈ QI we have that dist(x,Γ\Q j) ≤ diam QI + dist(QI ,Γ\Q j), then by
using (5.23), it follows that

QI ⊂
{

x ∈ Q j : dist(x,Γ\Q j) ≤
[
10
√

na−1
2 A22−k`(Q j)−1]`(Q j)

}
=: V.

Observe that V is the set considered in property (vi) of Lemma 3.1, with
ρ = 10

√
na−1

2 A22−k`(Q j)−1. We may apply the inequality in (vi) so long as ρ < a0,
which in our case will be true as long as a3 ≤

a0a2
100
√

nA2
. Henceforth we fix a3 to be given

by the right-hand side of the last inequality, and note that it also satisfies a3 ≤ a2/8.
Then, we have that

(5.24) σ
(⋃

I∈W
Σk

j

QI
)
≤ σ(V) ≤ A0(10

√
na−1

2 A2)ζ2−kζ`(Q j)−ζσ(Q j).

Now, we reckon the estimate

(5.25) card(WΣk
j
)2−kd =

∑
I∈W

Σk
j

`(I)d ≤ Ad
2

∑
I∈W

Σk
j

`(QI)d ≤ Cd(a−1
0 A2)d

∑
I∈W

Σk
j

σ(QI)

≤ Cd(a−1
0 A2)d

∑
Q̃ ∈ DQ j s.t.
∃I ∈ W

Σk
j
∩WQ̃

∑
I∈WQ̃

σ(Q̃) ≤ Cd(a−1
0 A2)dN0

∑
Q̃ ∈ DQ j s.t.
∃I ∈ W

Σk
j
∩WQ̃

σ(Q̃)

≤ Cd(a−1
0 A2)dN0

[
C2

d(2A0a−1
0 )d] A2

a2 σ
( ⋃

Q̃ ∈ DQ j s.t.
∃I ∈ W

Σk
j
∩WQ̃

Q̃
)
≤ A32−kζ`(Q j)d−ζ ,

where A3 is a uniform constant. In the fifth inequality, we used Corollary 4.18, in the
sixth inequality we used (3.7) and the fact that `(QI)/`(QI′) ≤ A2/a2 for any I, I′ ∈ WΣk

j
,

and in the last inequality we used (5.24). It is clear that (5.25) gives (5.22). Going back
to (5.21), we can now conclude that

T2 ≤ AnA3`(Q j)d−ζ
∑

k:2−k<a3`(Q j)

2−kζ ≤ 2ζ
2ζ−1 aζ3AnA3`(Q j)d.

Putting this last estimate together with (5.19) and (5.16) gives (5.12) when `(Q j) ≤ Mr.
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It remains only to show that (5.12) holds in the case that `(Q j) > Mr. Observe that if
x ∈ Σ, then the ball B is centered on an (n − 1)−dimensional face of some Whitney box
J∗, with int J∗ ⊂ ΩF . Suppose that `(J) ≥ A′nr, where A′n ≥ 1 is chosen so that B ∩ Σ is
a subset of the boundary faces of the Whitney cubes adjacent to J (including also J). It
is clear that this is a constraint solely depending on n. In this case, if X ∈ ∂I∗ for any I
touching J, then δ(X) ≥ dist(I∗,Γ) ≥ 2

√
n`(I) ≥

√
n`(J)/2 ≥ r/2, and we have

σ?(B ∩ Σ j) ≤ σ?(B ∩ Σ) ≤ σ?
(⋃

I touching J(∂I∗ ∩ B)
)
≤
∑

I touching J σ?(∂I∗ ∩ B)

≤ An sup
I touching J

σ?(∂I∗ ∩ B) ≤ An sup
I touching J

∫
∂I∗∩B

δ(X)d+1−n dH n−1|Σ(X)

≤ An2n−1−drd+1−n sup
I touching J

H n−1(B ∩ ∂I∗) ≤ An2n−1−drd,

where An is a universal constant depending only on n, in the fourth inequality we used
that the number of Whitney boxes adjacent to J is uniformly bounded (depending only
on n), and in the last line we used the facts that at least one of H n−1(B ∩ ∂I∗) > 0, that
for any such I there exists x′ ∈ ∂I∗ satisfying B∩ ∂I∗ ⊂ B(xI , 2r)∩ ∂I∗, and that each ∂I∗

is an (n − 1)−Ahlfors-David regular set.
Now suppose that either x ∈ Γ, or x ∈ Σ with `(J) ≤ A′nr. The bound δ(x) ≤ 42

√
nA′nr

holds trivially in the former case, and in the latter it holds because of the estimate δ(x) ≤
dist(J∗,Γ) + diam J∗ ≤ 42

√
n`(J). For each I ∈ RQ j intersecting B, there exists QI ∈ DQ j

such that I ∈ WQI , and we have that

4
√

n`(I) ≤ dist(I,Γ) ≤ dist(I, x) + δ(x) ≤ 43
√

nA′nr.

Hence `(I) ≤ 11
√

nA′nr, and for any qI ∈ QI , we reckon that

|qI − x| ≤ diam QI + dist(QI , I) + diam I + dist(I, x) ≤ A0`(QI) + A2`(QI) +
√

n`(I) + r

≤ (2A2a−1
2 +

√
n)`(I) + r ≤ 100

√
nA′nA2a−1

2 r =: A4r.

Thus QI ⊂ B(x, A4r). Now let {Qi} ⊂ DQ j be a covering of B(x, A4r) ∩ Q j such that
Mr/2 ≤ `(Qi) ≤ Mr (which is possible since `(Q j) > Mr) and such that the Qi are
pairwise disjoint. It is easy to see then that dist(Qi1 ,Qi2) ≤ (4A4 +A0) min{`(Qi1), `(Qi2)},
whence we deduce as in the paragraph following (5.14) that card{Qi} ≤ N1 where N1 =

N1(d,Cd, a0, A0, A4). Now take M = 1000nA′nA2a−1
2 a−1

0 . With M chosen in this way, our
present scenario is very similar to the one for T2 above. More precisely, suppose that I
intersects Σ j; we have that QI ⊂ Qi for some Qi as above, and `(I) . r � `(Qi) ≈ Mr.
We may find J ∈ WQ′ such that J∗ ∩ I , ∅ and Q′ ∈ DF , so that `(Q′) ≈ `(J) ≈
`(I) � Mr. With our choice of M, we have that `(Q′) < `(Qi), so that Q′ ∩ Qi = ∅.
This observation gives us the estimate dist(QI , (Q j)c) . `(I), and we may once again
use Lemma 3.1 (vi) (owing to our choice of M) to control the cardinality of the Whitney
boxes I intersecting Σk

j by C(2k`(Qi))d−ζ . Thus it is easy to see that we obtain the desired
result in a similar way as we did for T2, by formally replacing `(Q j) with `(Qi) ≈ Mr.
Thus ends the proof of (5.12).
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We turn to the proof of (5.10). If r ≥ δ(x)/4, then the desired result follows from (5.9);
more precisely, we have that σ?(∆?(x, r)) ≤ Crd ≤ 4n−1−dCδ(x)d+1−nrn−1, where C is the
constant from (5.9). Now suppose that r < δ(x)/4. In this case, B(x, r) ∩ Γ = ∅, and for
any X ∈ ∆?(x, r), we have that δ(X) ≥ 3δ(x)/4, whence we deduce that

σ?(∆?(x, r)) ≤
(4

3

)n−1−d
δ(x)d+1−nH n−1(∆?(x, r)) ≤ An

(4
3

)n−1−d
δ(x)d+1−nrn−1,

and in the last inequality we used the (n − 1)−Ahlfors-David regularity of each face ∂J∗

intersecting B, and that the number of fattened Whitney boxes J∗ which intersect ∆?(x, r)
is uniformly bounded (depending only on n). �

Remark 5.26. Observe that Proposition 5.8 implies in particular that H n−1(Σ ∩ K) < ∞
for any compact set K ⊂ Rn. This is easily seen by fixing a compact set K ⊂ Rn and
noticing that therefore δ(X) ≤ MK for any X ∈ Σ ∩ K, which implies that

H n−1(Σ ∩ K) ≤ Mn+1−d
K σ?(Σ ∩ K) < ∞.

Moreover, since H d(Γ∩ K) ∈ (0,+∞) for any compact set intersecting Γ, it follows that
H n−1(Γ) = 0, and therefore ∂ΩF satisfies H n−1(∂ΩF ∩ K) < +∞ for any compact K.

We now concentrate on a lower bound for σ?.
Proposition 5.27 (Lower bound for σ?). Let x ∈ ∂ΩF and r > 0. Suppose that M0 is
given by (5.35) below. If δ(x) ≥ r/M0, then

(5.28) σ?(∆?(x, r)) ≥ v1δ(x)d+1−nrn−1,

where v1 = v1(n, d,M0, θ). If δ(x) < r/M0, then

(5.29) σ?(∆?(x, r)) ≥ v2rd,

where v2 = v2(n, d,Cd, θ, cK, A0, a0, c, cH ,M0).

Proof. We consider (5.28) first, so that δ(x) > 0 which implies that x ∈ ∂J∗ for some
J ∈ WF . Hence r/M0 ≤ δ(x) ≤ 42

√
n`(J). Observe the estimate

σ?(∆?(x, r)) ≥ σ?(∂J∗ ∩ Σ ∩ B(x, r)) =

∫
∂J∗∩Σ∩B(x,r)

δ(X)d+1−n dH n−1|Σ(X)

≥ (2M0)d+1−nδ(x)d+1−nH n−1(∂J∗ ∩ Σ) ≥ cn(2M0)d+1−nδ(x)d+1−nθn−1`(J)n−1

≥ cn2d Md+2−2n
0 δ(x)d+1−nθn−1rn−1

where in the fourth inequality we made use of Lemma 4.27.
We proceed to prove (5.29), using ideas of the proof for Lemma 3.61 in [HM14].

First, observe that by Remark 5.26 and the criterion for sets of finite perimeter [EG92,
5.11 Theorem 1], we have that ΩF is a set of locally finite perimeter. Hence, by the
structure theorem for sets of finite perimeter, [EG92, 5.7 Theorem 2], it follows that
‖∂ΩF ‖ = H n−1 ∂?ΩF . We will use these facts below.

Suppose that δ(x) < r/M0, so that there exists x̂ ∈ Γ with |x − x̂| ≤ r/M0. Now fix
Q̂ ∈ D with x̂ ∈ Q̂ and such that cKr/M0 ≤ `(Q̂) ≤ r/M0. If M0 > max{9, A2

0}, then we
may guarantee that Q̂ ⊂ B(x̂, r/

√
M0) ⊂ B(x, r) =: B. We consider two cases.



PERTURBATIONS OF OPERATORS ON DOMAINS WITH LOW DIMENSIONAL BOUNDARIES 41

Case 1. The ball B(x̂, r/
√

M0) meets some Q j ∈ F with `(Q j) ≥ r/M0. Then we may
procure a dyadic cube Q ∈ DQ j with r/2M0 ≤ `(Q) ≤ r/M0 and Q ⊂ B(x̂, 2r/

√
M0).

By Lemma 4.36, the ball B(xQ, r′) = B(xQ, a0`(Q)/(5A2a−1
2 )) lies in Rn\ΩF , while if we

further assume that M0 ≥ 16, then for any Y ∈ B(xQ, r′) we have that

|Y − x| ≤ |Y − xQ| + |xQ − x̂| + |x̂ − x| < a0a2
5A2

`(Q) + 2r√
M0

+ r
M0
≤ 4r/

√
M0 < r,

whence it is known that B(xQ, r′) ⊂ B\ΩF . On the other hand, we have shown in Propo-
sition 5.3 that ∂ΩF has interior Corkscrew points, so that there exists X ∈ ΩF verifying
that B(X, c1r) ⊂ ΩF ∩ B, and c1 is given in (5.4). We can now appeal to the relative
isoperimetric inequality (see [EG92, 5.6 Theorem 2]) to conclude that

(5.30) ‖∂ΩF ‖(B(x, r)) ≥ an min
{
L n(B(X, c1r)) , L n(B(xQ, r′))

} n−1
n

≥ an min
{

c1,
a0a2

10A2 M0

}n−1rn−1,

where an is a uniform constant depending only on n. Consequently,

(5.31) σ?(∆?(x, r)) ≥ σ?(∆?(x, r) ∩ Σ) ≥ Mn−1−d
0 rd+1−nH n−1(∆? ∩ Σ)

= Mn−1−d
0 rd+1−nH n−1(B(x, r) ∩ ∂ΩF ) ≥ Mn−1−d

0 rd+1−nH n−1(B(x, r) ∩ ∂?ΩF )

= Mn−1−d
0 rd+1−n‖∂ΩF ‖(B(x, r)) ≥ an(a0a2A−1

2 )n−1M−d
0 rd,

where we used the structure theorem for sets of finite perimeter, [EG92, 5.7 Theorem 2].
Case 2. There is no Q j as in case 1. It follows that if Q j ∈ F meets B(x̂, r/

√
M0),

then `(Q j) ≤ r/M0. Let F̂ denote the collection of those Q j ∈ F which intersect ∆̂ =

∆(x̂, r/
√

M0). Then we may split 1
2 ∆̂ as 1

2 ∆̂ =
( 1

2 ∆̂\
(⋃

F̂
Q j
))
∪
( 1

2 ∆̂ ∩ (
⋃
F̂

Q j)
)
. We

now consider two sub-cases: either the estimate

(5.32) σ
( 1

2 ∆̂\
(⋃

F̂
Q j
))
≥ 1

2σ
(1

2 ∆̂
)

holds, or it does not. If it does, then we deduce that

σ?(B(x, r) ∩ ∂ΩF ) ≥ σ
(
B(x, r) ∩ Γ\

⋃
F Q j

)
≥ σ

(
∆̂\
⋃
F̂

Q j
)
≥ 1

2σ
( 1

2 ∆̂
)

≥ C−1
d 2−d−1M−d/2

0 rd =: a5rd,

which yields the desired result. We are left to consider the case that (5.32) does not hold.
Then, instead, we have that

(5.33)
∑
F ′ σ(Q j) ≥ σ

( 1
2 ∆̂ ∩

(⋃
F̂

Q j
))
≥ 1

2σ
( 1

2 ∆̂
)
≥ a5rd,

where F ′ consists of those Q j ∈ F̂ which intersect 1
2∆. For each Q j ∈ F

′, fix any one of
the (n − 1)−dimensional cubes P j ⊂ ∂ΩF constructed in Proposition 4.37, and denote its
center by x?j . We now claim that for each Q j ∈ F

′, the ball B∗j = B(x?j , 16A0c−1
K `(Q j))

contains both an interior and an exterior Corkscrew ball for ΩF , with respect to the
surface ball B∗Q j

∩ ∂ΩF (with Corkscrew constants that could depend on K0).

Indeed, by virtue of Lemma 4.36, the ball B j = B(xQ j , a0a2`(Q j)/(5A2)) is contained
in Rn\ΩF , and we note that for any Y ∈ B j,
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|Y − x?j | <
a0a2

5A2
`(Q j) + diam Q j + dist(P j,Q j) + diam P j

≤ 2A0`(Q j) + 11A0c−1
K `(Q j) + 13

8 θa0c−1
K `(Q j) ≤ 15A0c−1

K `(Q j),

so that B j ⊂ B∗j\ΩF . By a similar reasoning, we also have that Q j ⊂ B∗j . For the
interior Corkscrew ball, let Q̂ ∈ DF be the proper parent of Q j and fix I ∈ Wcs

Q̂
.

Note that B(XI , `(I)/2) ⊂ I ⊂ int I∗ ⊂ ΩF , and by our choice of radius for B∗j , we
also have that B(XI , `(I)/2) ⊂ B∗j similarly as in the estimate above. Then the ball
B(XI , a0c`(Q j)/(41

√
n)) is contained in B∗j ∩ ΩF by (4.4). Thus by using the relative

isoperimetric inequality in a manner analogous to (5.30), we deduce that ‖∂ΩF ‖(B∗j) ≥
an(a0a2/(5A2))n−1`(Q j)n−1. We also have that for any Y ∈ B∗j ,

δ(Y) ≤ 16A0c−1
K `(Q j) + diam P j + dist(P j,Γ) ≤ 400A0c−1

K `(Q j),

and therefore, analogous to (5.31), we obtain that

(5.34) σ?(B∗j ∩ ∂ΩF ) ≥ an(a0a2A−1
2 )n−1Ad+1−n

0 cn−1−d
K `(Q j)d.

We show that for M0 ≥ 1250A2
0c−2
K , we have B∗j ⊂ B. Fix any Y ∈ B∗j and observe that

|Y − x| ≤ diam(B∗j) + diam Q j + 1
2 diam B

(
x̂, r/

√
M0
)

+ |x̂ − x|

≤ 32A0c−1
K `(Q j) + A0`(Q j) +

r
√

M0
+

r
M0
≤

35A0c−1
K√

M0
r < r,

as claimed. Henceforth we will take

(5.35) M0 := 125A2
0c−2
K .

Let us now show that we can muster a sub-collection F ′′ ⊂ F ′ of cubes Q j ∈ F
′ such

that the balls in {B∗j}Q j∈F ′′ are pairwise disjoint and

(5.36)
∑

Q j∈F ′′

`(Q j) & rd.

Since for any Q j ∈ F
′ ⊂ F̂ we have that `(Q j) < r/M0, it follows that there exists k0 ∈ Z

such that `(Q j) ≤ 2−k0 for all Q j ∈ F
′, and `(Q) = 2−k0 for some Q ∈ F ′. For any k ≥ k0,

let F ′k = {Q j ∈ F
′ : `(Q j) = 2k}. Fix a sub-collection F ′′k0

of F ′k0
which is B∗j−maximal

in the sense that the balls {B∗j}Q j∈F
′′
k0

are pairwise disjoint, but where adjoining any other
cube in F ′\F ′′k0

makes some of these balls overlap. Next, define inductively for each
k > k0 the sub-collection F ′′k which is the union of all F ′′k̃ , k0 ≤ k̃ < k, and adjoined
with a sub-collection of F ′k such that F ′′k is B∗j−maximal. We then set F ′′ = ∪k≥k0F

′′
k

and observe that it satisfies that the balls in {B∗j}Q j∈F ′′ are pairwise disjoint, and that each
Qm ∈ F

′\F ′′ is such that B∗m intersects B∗j ∈ F
′′ for some Q j ∈ F

′′ with `(Qm) ≤ `(Q j)
(otherwise, Qm would have had to belong to F ′′k for some k).

Recall that for any Q j ∈ F
′, Q j ⊂ B∗j . If Qm ∈ F

′ intersects Q j with `(Qm) ≤ `(Q j),
then

dist(Qm,Q j) ≤ diam B∗m + diam B∗j ≤ 32A0c−1
K `(Q j),
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and thus Qm ⊂ B(xQ j , 34A0c−1
K `(Q j)) ∩ Γ, which, together with our observations in the

last paragraph, implies that
⋃
F ′ Q j ⊂

⋃
Q j∈F ′′

B
(

xQ j , 34A0c−1
K `(Q j)

)
∩ Γ. Hence,∑

F ′

σ(Q j) ≤ σ
(⋃

F ′′ B
(

xQ j , 34A0c−1
K `(Q j)

)
∩ Γ
)
≤ Cd(34A0c−1

K )d
∑
F ′′

`(Q j)d.

By combining this last estimate with (5.33), we obtain (5.36) with implicit constant
a5C−1

d (34−1A−1
0 cK)d. Finally, we combine (5.34) and (5.36) to conclude that

σ?(B ∩ ∂ΩF ) ≥
∑

Q j∈F ′′

σ?(B∗j ∩ ∂ΩF ) ≥ an(a2
2A−2

2 )n−1Ad
0cn−1−d
K

∑
Q j∈F ′′

`(Q j)d

≥ 35−dC−2
d M−d/2

0 an(a2
2cKA−2

2 )n−1rd,

which does complete our argument for (5.29). �

We are ready to show
Proposition 5.37 (σ? is doubling). The measure σ? verifies (H3).

Proof. Fix x ∈ ∂ΩF and r > 0. We split the proof of the proposition into three cases.
Case 1. 2r < M0δ(x). Then we also have that r < M0δ(x), and therefore,

σ?
(
B(x, 2r) ∩ Γ

)
≤ 2n−1V2rn−1δ(x)d+1−n ≤ 2n−1V2v−1

1 σ?
(
B(x, r) ∩ Γ

)
.

Case 2. r < M0δ(x) ≤ 2r. Here, we obtain that

σ?
(
B(x, 2r) ∩ Γ

)
≤ 2dV1rd = 2dV1rd+1−nrn−1 ≤ 2−2d+1−nMd+1−n

0 V1δ(x)d+1−nrn−1

≤ 2−2d+1−nMd+1−n
0 V1v−1

1 σ?
(
B(x, r) ∩ Γ

)
.

Case 3. r ≥ M0δ(x). We easily estimate that

σ?
(
B(x, 2r) ∩ Γ

)
≤ 2dV1rd ≤ 2dV1v−1

2 σ?
(
B(x, r) ∩ Γ

)
,

as desired. �

Next, we turn to verifying the growth condition (H5). In preparation, we record the
following useful estimate from [DFM19b].
Lemma 5.38 (Behavior of m, [DFM19b] Lemma 2.3, Remark 2.4). For any α > 0, there
exists a constant M(α) > 0, depending only on n, d, Cd, and α, such that the following
statements hold for any X ∈ Rn and any r > 0.

(i) If δ(X) ≥ αr, then M(α)−1rnδ(X)d+1−n ≤ m
(
B(X, r)

)
≤ M(α)rnδ(X)d+1−n.

(ii) If δ(X) ≤ αr, then M(α)−1rd+1 ≤ m
(
B(X, r)

)
≤ M(α)rd+1.

Proposition 5.39 (Growth condition). The measures σ? and m satisfy (H5). More pre-
cisely, there exist constants V5 ≥ 1 and ε ∈ (0, 1) so that for each x ∈ ∂ΩF and all r, s
with 0 < s < r, we have the estimate

m
(
B(x, r) ∩ΩF

)
m
(
B(x, s) ∩ΩF

) ≤ V5

( r
s

)σ?(B(x, r) ∩ Γ
)

σ?
(
B(x, s) ∩ Γ

) .
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Proof. Recall that M0 is the uniform constant given in (5.35). Note that m
(
B(x, r) ∩

ΩF
)
≤ m

(
B(x, r)

)
for any x ∈ ∂ΩF and r > 0, while in the other direction, Proposition

5.3 implies the existence of a Corkscrew point X = Xx,r ∈ ΩF such that B(X, c1r) ⊂
ΩF ∩B(x, r). Observe that such a Corkscrew point satisfies c1r ≤ δ(Xx,r) ≤ r +δ(x). Now
fix x ∈ ∂ΩF and r, s > 0 with 0 < s < r. We consider three cases.

Case 1. δ(x) ≥ r/M0 ≥ s/M0. Here, note that δ(Xx,s) ≤ 2M0δ(x). We have that

m
(
B(x, r) ∩ΩF

)
m
(
B(x, s) ∩ΩF

) ≤ m
(
B(x, r)

)
m
(
B(Xx,s, c1s)

) ≤ M( 1
M0

)rnδ(x)d+1−n

M(1)−1(c1s)nδ(Xx,s)d+1−n

≤

[
(2M0)n−1−d

M(1)M( 1
M0

)

cn
1

]( r
s

) rn−1δ(x)d+1−n

sn−1δ(x)d+1−n

≤

[
(2M0)n−1−d

M(1)M( 1
M0

)V2

cn
1v1

]( r
s

)σ?(B(x, r) ∩ Γ
)

σ?
(
B(x, s) ∩ Γ

) ,
where we have used (5.10) and (5.28), and thus established the desired estimate.

Case 2. δ(x) ≤ s/M0 ≤ r/M0. In this case, we have that δ(Xx,s) ≤ 2s. Reckon that

m
(
B(x, r) ∩ΩF

)
m
(
B(x, s) ∩ΩF

) ≤ m
(
B(x, r)

)
m
(
B(Xx,s, c1s)

) ≤ M( 1
M0

)rd+1

M( 2
c1

)−1(c1s)d+1

≤

[M( 2
c1

)M( 1
M0

)

cd+1
1

]( r
s

) rd

sd ≤

[M( 2
c1

)M( 1
M0

)V1

cd+1
1 v2

]( r
s

)σ?(B(x, r) ∩ Γ
)

σ?
(
B(x, s) ∩ Γ

) ,
where this time we made use of (5.9) and (5.29).

Case 3. s/M0 < δ(x) < r/M0. Now we see that δ(Xx,s) ≤ 2M0δ(x), and estimate

m
(
B(x, r) ∩ΩF

)
m
(
B(x, s) ∩ΩF

) ≤ m
(
B(x, r)

)
m
(
B(Xx,s, c1s)

) ≤ M( 1
M0

)rd+1

M(1)−1(c1s)nδ(Xx,s)d+1−n

≤

[
(2M0)n−1−d

M(1)M( 1
M0

)

cn
1

]( r
s

) rd

sn−1δ(x)d+1−n

≤

[
(2M0)n−1−d

M(1)M( 1
M0

)

cn
1

]( r
s

)σ?(B(x, r) ∩ Γ
)

σ?
(
B(x, s) ∩ Γ

) ,
using (5.29) and (5.10). The desired result is established in any case. �

Remark 5.40. Incidentally, Lemma 5.38 together with Proposition 5.3 give that (H4)
holds (the doubling property on ∂ΩF follows from the existence of interior Corkscrew
balls; for a similar analysis see the first paragraph of the proof of Proposition 5.39). Fi-
nally, it is a trivial application of the fundamental results in [DFM19b] that m satisfies the
axiom (H6), since m|ΩF is merely the restriction of the function m on Ω which already
satisfies this property.
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6. Carleson measures, discrete Carleson measures, and extrapolation

Definition 6.1 (Carleson measures). We say that a non-negative Borel measure λ on Ω is
a Carleson measure if

|||λ|||C := sup
∆⊂Γ

1
σ(∆)

λ(T∆) < ∞,

where, if ∆ = B(x, r) ∩ Γ, then T∆ = B(x, r) ∩ Ω is the tent over ∆. The supremum runs
over all surface balls ∆ ⊂ Γ. We call |||λ|||C the Carleson norm of λ, and we write C for the
set of all Carleson measures in Ω.

A main tool in our proof is the extrapolation of Carleson measures, which we use in
the dyadic setting. We borrow the definitions and results from [HM14], where this result
has been considered in a co-dimension 1 setting; see also [CHM19]. In the setting of
higher co-dimension, this framework has appeared in [DM].
Definition 6.2 (Discrete Carleson measures). Let {αQ}Q∈D be a sequence of non-negative
numbers indexed by Q ∈ D, and for any sub-collection D′ ⊂ D, we define

m(D′) :=
∑
Q∈D′

αQ.

We say that m is a discrete Carleson measure on D with respect to σ (written m ∈ C) if

‖m‖C := sup
Q∈D

m(DQ)
σ(Q)

< ∞.

Similarly, we have a local version: For a fixed Q0 ∈ D, we say that m is a discrete
Carleson measure on DQ0 with respect to σ (written m ∈ C(Q0)) if

‖m‖C(Q0) := sup
Q∈DQ0

m(DQ)
σ(Q)

< ∞.

Moreover, set Dshort
Q := DQ\{Q}, and given a disjoint family F ⊂ D, we define the

restriction of m to the sawtooth DF by

mF (D′) := m(D′ ∩ DF ) =
∑

Q∈D′\(∪FDQ j )

αQ, for D′ ⊂ DQ0 .

The following result concerns the extrapolation of Carleson measures.
Theorem 6.3 (Extrapolation of Carleson measures; [DM] [HM14]). Let Γ be a closed
d-ADR set, and recall that σ = H d |Γ. Fix Q0 ∈ D and a dyadically doubling Borel mea-
sure µ on Q0. Assume that there is some sequence of non-negative numbers {αQ}Q∈D(Q0)
such that the corresponding m satisfies ‖m‖C(Q0) ≤ M0 < +∞. Suppose that there exists
ξ > 0 such that for every Q ∈ DQ0 , and every disjoint family F ⊂ DQ verifying

‖mF ‖C(Q) = sup
Q′∈DQ

m(DF ,Q′)
σ(Q′)

≤ ξ,
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we have that PF µ satisfies the following property:

(6.4) ∀ε ∈ (0, 1), ∃Cε > 1 such that
(

F ⊂ Q,
σ(F)
σ(Q)

≥ ε =⇒
PF µ(F)
PF µ(Q)

≥
1

Cε

)
.

Then, there exist η0 ∈ (0, 1) and C0 < ∞ such that, for every Q ∈ DQ0 ,

F ⊂ Q,
σ(F)
σ(Q)

≥ 1 − η0 =⇒
µ(F)
µ(Q)

≥
1

C0
.

In other words, µ ∈ Adyadic
∞ (Q0).

Let us elucidate how Theorem 6.3 will be used to prove Theorem 1.2. In the hypothesis
of the latter, we have that the measure dλ(X) := δ(X)d−na2 dX is a (continuous) Carleson
measure, where a is defined in (1.3). In the following lemma, we define the natural
discrete version of this measure, and show that it is indeed a discrete Carleson measure.
Lemma 6.5. Suppose thatA0,A are two uniformly elliptic matrices, such that their dis-
agreement a defined in (1.3) satisfies that dλ(X) = δ(X)d−na2 dX is a Carleson measure.
Then, for every Q0 ∈ D, the collection m = {αQ}Q∈DQ0

with

(6.6) αQ :=
∑

I∈WQ

supY∈I∗ |E(Y)|2

`(I)n−d |I|, Q ∈ D,

is a discrete Carleson measure, and in fact, ‖m‖C(Q0) ≤ (41
√

n)n−d(7
√

nA2a−1
0 )dC2

d |||λ|||C.

Proof. Let Q ∈ DQ0 , write tQ = 7
√

nA2`(Q), and consider the estimates

m(DQ)
σ(Q)

=
1

σ(Q)

∑
Q′∈DQ

∑
I∈WQ′

supY∈I∗ |E(Y)|2

`(I)n−d |I|

≤ (41
√

n)n−d 1
σ(Q)

∑
I∈RQ

∫∫
I

supY∈I∗ |E(Y)|2

δ(X)n−d dX

≤ (41
√

n)n−d 1
σ(Q)

∑
I∈RQ

∫∫
I

a2(X)
δ(X)n−d dX ≤ (41

√
n)n−d 1

σ(Q)

∫∫
RQ

a2(X)
δ(X)n−d dX

≤ (41
√

n)n−d(7
√

nA2a−1
0 )dC2

d
1

σ(∆(xQ, tQ))

∫∫
B(xQ,tQ)∩Ω

a2(X)
δ(X)n−d dX

≤ (41
√

n)n−d(7
√

nA2a−1
0 )dC2

d |||λ|||C,

where we have used in the third line that B(X, δ(X)/2) ⊃ I∗ for any X ∈ I, and later we
used that RQ ⊂ B(xQ, 7

√
nA2`(Q)) (by the same argument as (4.24)), and (2.2). �

7. Review of the elliptic theory for sets with boundaries of high co-dimension

Let us review the necessary background and theory of the David-Feneuil-Mayboroda
operators [DFM19b]. Before starting, we remark that many of the results in this section
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have direct analogues for our sawtooth domains by virtue of Theorem 5.2 and the elliptic
theory for sets of mixed dimension carried out in [DFMb].

Formally, we write L = − div A∇, with A : Ω→ Mn(R), whereMn(R) is the set of n×n
real-valued matrices, and we require that A satisfies the following weighted boundedness
and ellipticity conditions:

δ(X)n−d−1A(X)ξ · ζ ≤ CA|ξ||ζ |, for each X ∈ Ω and every ξ, ζ ∈ Rn,

δ(X)n−d−1A(X)ξ · ξ ≥ C−1
A |ξ|

2, for each X ∈ Ω and every ξ ∈ Rn.(7.1)

Recall that we denote w(X) = δ(X)−n+d+1 and m(E) =
!

E w(X) dX. ByA we denote the
matrix w−1A, so that ∫∫

Ω

A∇u∇v =

∫∫
Ω

A∇u∇v dm.

The matrixA satisfies unweighted ellipticity and boundedness conditions

A(X)ξ · ζ ≤ C|ξ||ζ |, for each X ∈ Ω and every ξ, ζ ∈ Rn,

A(X)ξ · ξ ≥ C−1|ξ|2, for each X ∈ Ω and every ξ ∈ Rn.(7.2)

In order to rigorously define the operator L, we need a suitable domain and corre-
sponding range. As in [DFM19b], we consider the following weighted Sobolev space,

W = Ẇ1,2
w (Ω) :=

{
u ∈ L1

loc(Ω) : ∇u ∈ L2(Ω, dm)
}
,

and set ‖u‖W =
(!

Ω
|∇u|2 dm

) 1
2 , u ∈ W. Actually, it is proven in [DFM19b] that W ={

u ∈ L1
loc(Rn) : ∇u ∈ L2(Rn, dm)

}
.

If E ⊂ Rn is a Borel set, we let C∞c (E) denote the space of compactly supported,
smooth functions on E. We call W0 the completion of C∞c (Ω) in the norm ‖ · ‖W . Finally,
denote byM(Γ) the set of σ−measurable functions on Γ, and then set

H = Ḣ1/2(Γ) :=
{

g ∈ M(Γ) :
∫

Γ

∫
Γ

|g(x) − g(y)|2

|x − y|d+1 dσ(x) dσ(y) < ∞
}
.

The significance of H is that it plays a role for W analogous in many ways to the role that
the fractional Sobolev space H

1
2 plays for the classical Sobolev space W1,2.

In addition to W which is a space of functions defined globally, we introduce a local
version. Let E ⊂ Rn be an open set. The set of functions Wr(E) is defined as

Wr(E) =
{

f ∈ L1
loc(E) : ϕ f ∈ W for all ϕ ∈ C∞c (E)

}
where ϕ f is seen as a function on Rn.

The following two results establish that we can make sense of traces on Γ of functions
in this weighted Sobolev space.
Theorem 7.3 (Trace operator, Theorem 3.4 of [DFM19b]). There exists a bounded linear
operator T : W → H (a trace operator) with the following properties. The trace of u ∈ W
is such that, for σ−a.e. x ∈ Γ, Tu(x) = lim

r→0
1

|B(x,r)|

!
B(x,r) u(X) dX, and, analogously to

the Lebesgue density property, lim
r→0

1
|B(x,r)|

!
B(x,r) |u(X) − Tu(x)| dX = 0.
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Lemma 7.4 (Local traces, Lemma 8.1 of [DFM19b]). Let E ⊂ Rn be an open set. For
every function u ∈ Wr(E), we can define the trace of u on Γ ∩ E by

Tu(x) = lim
r→0
−−

∫∫
B(x,r)

u(X) dX for σ − almost every x ∈ Γ ∩ E,

and Tu ∈ L1
loc(Γ ∩ E, σ). Moreover, for every choice of f ∈ Wr(E) and ϕ ∈ C∞c (E),(

T (ϕu)
)
(x) = ϕ(x)Tu(x) for σ − almost every x ∈ Γ ∩ E.

Next, we give a meaning to a local solution of the problem Lu = 0.
Definition 7.5 (Local weak solutions). Let E ⊆ Ω be an open set. We say that u ∈ Wr(E)
is a solution of Lu = 0 in E if for any ϕ ∈ C∞c (E),∫∫

Ω

A∇u∇ϕ dX =

∫∫
Ω

A∇u∇ϕ dm = 0.

We have an analogous version of the Harnack inequality.
Lemma 7.6 (Harnack inequality; Lemma 8.9 of [DFM19b]). Let B be a ball such that
3B ⊆ Ω, and let u ∈ Wr(3B) be a non-negative solution in 3B. Then supB u ≤ C infB u,
where C depends only on n, d, Cd, and CA.

Now, we exhibit results concerning the Green function.
Lemma 7.7 (Green’s function, Lemma 10.1 of [DFM19b]). There exists a non-negative
function g : Ω ×Ω→ R ∪ {+∞} with the following properties.

(i) For any Y ∈ Ω and any α ∈ C∞c (Rn) such that α ≡ 1 in a neighborhood of y,

(1 − α)g(·,Y) ∈ W0.

In particular, g(·,Y) ∈ Wr(Rn\{Y}) and T [g(·,Y)] = 0.
(ii) For every choice of Y ∈ Ω, R > 0, and q ∈ [1, n

n−1 ),

g(·,Y) ∈ W1,q(B(Y,R)) :=
{

u ∈ Lq(B(Y,R)),∇u ∈ Lq(B(Y,R))
}
.

(iii) For Y ∈ Ω and ϕ ∈ C∞c (Ω),∫∫
Ω

A∇Xg(X,Y)∇ϕ(X) dX = ϕ(Y).

In particular, g(·,Y) is a solution of Lu = 0 in Ω\{Y}.
(iv) For r > 0, Y ∈ Ω, and ε > 0,

∫∫
Ω\B(Y,r)

|∇Xg(X,Y)|2 dm(X) ≤


Cr1−d, if 4r ≥ δ(Y),
Cr2−n

w(Y) , if 2r ≤ δ(Y), n ≥ 3,
Cε

w(Y)

(
δ(Y)

r

)ε
, if 2r ≤ δ(Y), n = 2,

where C > 0 depends on d, n,Cd,CA, and Cε > 0 depends on d,Cd,CA, ε.
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(v) For X,Y ∈ Ω such that X , Y and ε > 0,

0 ≤ g(X,Y) ≤


C|X − Y |1−d, if 4|X − Y | ≥ δ(Y),

C|X−Y |2−n

w(Y) , if 2|X − Y | ≤ δ(Y), n ≥ 3,
Cε

w(Y)

(
δ(Y)
|X−Y |

)ε
, if 2|X − Y | ≤ δ(Y), n = 2,

where C > 0 depends on d, n,Cd,CA, and Cε > 0 depends on d,Cd,CA, ε.

The next result is the representation formula given by the Green’s function.
Lemma 7.8 (Green representation formula, Lemma 10.7 of [DFM19b]). Let g : Ω ×

Ω → R ∪ {+∞} be the non-negative function constructed in Lemma 7.7. Then, for any
f ∈ C∞c (Ω), the function u defined by u(X) =

∫
Ω

g(X,Y) f (Y) dY belongs to W0 and is a
solution of Lu = f in the sense that the identity∫

Ω

A∇u · ∇ϕ =

∫
Ω

A∇u · ∇ϕ dm =

∫
Ω

fϕ

holds for every ϕ ∈ W0.

If A is a matrix satisfying (7.1), then its transpose AT also satisfies (7.1). We denote
LT = − div AT∇, and gT is the Green’s function of Lemma 7.7 for the operator LT .
Lemma 10.6 of [DFM19b] tells us that

(7.9) g(X,Y) = gT (Y, X), for all X,Y ∈ Ω, X , Y.

We now use Green’s functions for a representation formula concerning the difference
of two solutions. A proof of it in the setting of co-dimension 1 chord-arc domains may be
found in [CHM19] (more specifically, see their Lemma 3.12-Lemma 3.20), and its proof
in our setting is essentially the same (see Remark 2.8), given that our Green’s function
in Lemma 7.7 satisfies the properties analogous to those of the pioneering construction
in [GW82]. Thus we omit the details of the proof, but we do provide a heuristic that
formally justifies the desired identity.
Lemma 7.10 (Difference of solutions, [CHM19] Lemma 3.18). Suppose that A0, A1 are
two matrices satisfying (7.1). Let L0 = − div A0∇, L1 = − div A1∇, and let E be a
Borel set in Γ. Suppose that ui ∈ W solves Liui = 0 in Ω and that Tu0 = Tu1 = f ∈
H

1
2 (Γ) ∩Cc(Γ). Then the identity

(7.11) u1(X) − u0(X) =

∫∫
Ω

(A0 − A1)T (Y)∇YgT
L1

(Y, X)∇u0(Y) dY,

holds for almost every X ∈ Ω, and for all X ∈ Ω\supp (A0 − A1).

Heuristic for the proof. Let F := u1 − u0, and observe that L1F = L1u1 − L1u0 = −L1u0.
On the other hand, L1u0 = − div A1∇u0 = − div

(
(A1 − A0)∇u0). Therefore,∫∫

Ω

A1∇F∇ϕ =

∫∫
Ω

(A0 − A1)∇u0∇ϕ, ϕ ∈ C∞c (Ω).
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Equivalently,

(7.12)
∫∫

Ω

AT
1∇ϕ∇F =

∫∫
Ω

(A0 − A1)T∇ϕ∇u0, ϕ ∈ C∞c (Ω).

Then, formally plugging in ϕ = gT
L1

(·, X) and using the fact that LT
1 gT

L1
(·, X) = δX , we

obtain the desired result. The main issue with our logic is that in general we are not
justified in plugging in gT

L1
(·, X) for ϕ, because gT

L1
(·, X) may not belong to W0. However,

we do point out that if X ∈ Ω\supp (A0 − A1) (which, incidentally, is always the situation
in this paper), then we can make sense of ϕ = gT

L1 in the right-hand side of (7.12), and
this realization implies the claimed identity over any such X. �

7.1. The harmonic measure in a domain with boundary of high co-dimension. In
[DFM19b], the Dirichlet problem

(7.13)
{

Lu = 0 in Ω,
u = f on Γ,

was seen to have a suitably interpreted weak solution. Moreover, it was shown that there
exists a family of positive regular Borel measures ωX on Γ indexed over X ∈ Ω, called
the harmonic measure, such that for any boundary function f ∈ C0

c (Γ), the solution to
(7.13) can be written as

(7.14) u(X) :=
∫

Γ

f dωX .

Here, Cc(Γ) is the space of continuous functions on Γ with compact support. Let us write
the precise statement below. Let C(Rn) be the space of continuous functions on Rn.
Lemma 7.15 (Lemma 9.4 of [DFM19b]). There exists a bounded linear operator

U : Cc(Γ)→ C(Rn)

such that, for every f ∈ Cc(Γ),
(i) the restriction of U f to Γ is f ;

(ii) we have that supRn U f = supΓ f and infRn U f = infΓ f ;
(iii) we have that U f ∈ Wr(Ω) and U f solves L(U f ) = 0 in Ω;
(iv) if B is a ball centered on Γ and f ≡ 0 in B, then U f lies in Wr(B);
(v) if f ∈ Cc(Γ) ∩ H, then U f ∈ W, and U f is the unique solution of the Dirichlet

problem with data f .
Lemma 7.16 (Harmonic measure; Lemmas 9.5 and 9.6 of [DFM19b]). There exists a
unique positive regular Borel measure ωX on Γ such that U f (X) =

∫
Γ

f (y) dωX(y) for
any f ∈ Cc(Γ). Besides, for any Borel set E ⊂ Γ,

ωX(E) = sup{ωX(K) : E ⊃ K,K compact} = inf{ωX(V) : E ⊂ V,V open}.

Moreover, for each X ∈ Ω, ωX is a probability measure. That is, ωX(Γ) = 1.

We now record some results on the harmonic measure, proved mostly in [DFM19b].
The first lemma below tells us qualitatively how the family of harmonic measures behaves
over X ∈ Ω.



PERTURBATIONS OF OPERATORS ON DOMAINS WITH LOW DIMENSIONAL BOUNDARIES 51

Lemma 7.17 (Lemma 9.7 of [DFM19b]). Let E ⊆ Γ be a Borel set and define the function
uE on Ω by uE(X) = ωX(E). Then

(i) if there exists X ∈ Ω such that uE(X) = 0, then uE ≡ 0;
(ii) the function uE lies in Wr(Ω) and is a solution in Ω;

(iii) if B ⊆ Rn is a ball such that E ∩ B = ∅, then uE ∈ Wr(B) and TuE = 0 on Γ ∩ B.

The next lemma allows us to control from below the harmonic measure on a surface
ball by the Green function in certain settings.
Lemma 7.18 (Green’s function and the harmonic measure, Lemma 11.9 of [DFM19b]).
Let x0 ∈ Γ and r > 0 be given, and set X0 ∈ Ω to be a Corkscrew point for ∆(x0, r) given
by Lemma 2.5. Then for all X ∈ Ω\B(X0, δ(X0)/4),

(7.19) rd−1g(X, X0) ≤ CωX(B(x0, r) ∩ Γ),

where C > 0 depends only on d, n,Cd and CA.

The following lemma gives non-degeneracy of the harmonic measure.
Lemma 7.20 (Quantitative non-vanishing, Lemma 11.10 of [DFM19b]). Let α > 1, x0 ∈

Γ, and r > 0 be given, and let X0 ∈ Ω be a Corkscrew point for ∆(x0, r). Then

ωX(B(x0, r) ∩ Γ) ≥ C−1
α for X ∈ B(x0, r/α),

ωX(B(x0, r) ∩ Γ) ≥ C−1
α for X ∈ B(X0, δ(X0)/α),(7.21)

where Cα > 0 depends only upon d, n,Cd,CA, and α.

Complementary to Lemma 7.18, we have
Lemma 7.22 (Lemma 11.11 of [DFM19b]). Let x0 ∈ Γ and r > 0 be given, and set
X0 ∈ Ω to be a Corkscrew point for ∆(x0, r). Then

(7.23) ωX(B(x0, r) ∩ Γ) ≤ Crd−1g(X, X0) for X ∈ Ω\B(x0, 2r),

where C > 0 depends only upon d, n,Cd, and CA.

Next, we have a doubling property of the harmonic measure on surface balls.
Lemma 7.24 (Harmonic measure is doubling, Lemma 11.12 of [DFM19b]). For x0 ∈

Γ, r > 0, and α > 1, we have that

ωX(B(x0, 2r) ∩ Γ) ≤ Cdoublingω
X(B(x0, r) ∩ Γ) for X ∈ Ω\B(x0, 2αr),

where Cdoubling > 0 depends only on n, d,Cd,CA, and α.

The doubling property of the harmonic measure and the elementary properties of the
dyadic cubes gives us the following corollaries.
Corollary 7.25. Let Q ∈ D, and recall that ∆Q = ∆(xQ, a0`(Q)) is the surface ball which
Q contains. Then,

ωX(∆Q) ≤ ωX(Q) ≤ C
1+log2( A0

a0
)

doubling ωX(∆Q), for each X ∈ Ω\B(xQ, 2A0`(Q)).

Corollary 7.26 (Harmonic measure is dyadically doubling). Fix Q0 ∈ D and X0 ∈

Ω\B(xQ0 , 3A0`(Q0)). Then ωX0 is a dyadically doubling measure in Q0.
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Proof. This result follows easily from Lemma 3.10 and Lemma 7.24.
The following notion is fundamental in our analysis of the absolute continuity of the

harmonic measure.
Definition 7.27 (Poisson kernel). Fix X ∈ Ω, and suppose that ωX

L � σ. Then we denote

by kX
L =

dωX
L

dσ the Radon-Nikodym derivative of ωX
L with respect to σ, and refer to it as the

Poisson kernel.

We will concern ourselves with the quantitative absolute continuity of the harmonic
measure, but first we have to adapt the definitions of A∞ and RH for it to be meaningful
for the harmonic measures (as families of probability measures) that we consider here.
Definition 7.28 (A∞, RHp, and dyadic analogues for harmonic measure). We say that
the harmonic measure {ωX}X∈Ω is of class A∞ with respect to the surface measure σ, or
simply ω ∈ A∞(σ), if for every ε > 0, there exists ξ = ξ(ε) > 0 such that for any surface
ball ∆, every surface ball ∆′ ⊆ ∆, and every Borel set E ⊂ ∆′, we have that

σ(E)
σ(∆′)

< ξ =⇒
ωX∆(E)
ωX∆(∆′)

< ε,

where X∆ is a Corkscrew point for ∆ as in Definition 2.4. Analogously, we say that
ω ∈ Adyadic

∞ if for each Q0 ∈ D and XQ0 a Corkscrew point for Q0, we have that ωXQ0 ∈

Adyadic
∞ (Q0) with uniform constants.

Given p ∈ (1,∞), if ω � σ, then we say that { dω
X

dσ }X∈Ω is of class RHp, or simply k =
dω
dσ ∈ RHp, if there exists a constant C0 ≥ 1 such that for each surface ball ∆ = Γ∩B(x, r)
with a Corkscrew point X∆ ∈ Ω, we have the estimate
(7.29)( 1

σ(∆′)

∫
∆′

(kX∆)p dσ
)1/p

≤ C0
1

σ(∆′)

∫
∆′

kX∆ dσ, for each surface ball ∆′ ⊆ ∆.

We call C0 the RHp characteristic of dω
dσ . Analogously, if ω � σ, we say that k =

dω
dσ ∈ RHdyadic

p if for each Q0 ∈ D and XQ0 a Corkscrew point for Q0, we have that
kXQ0 ∈ RHdyadic

p (Q0) with uniform RHp characteristic (see Definition 2.12).

Next we state a global comparison principle for the harmonic measure.
Lemma 7.30 (Change of poles, Lemma 11.16 of [DFM19b]). Let x0 ∈ Γ and r > 0 be
given, and let X0 ∈ Ω be a Corkscrew point for ∆(x0, r). Let E, F ⊆ ∆0 := B(x0, r)∩ Γ be
two Borel subsets of Γ such that both ωX0(E) and ωX0(F) are positive. Then

C−1ω
X0(E)

ωX0(F)
≤
ωX(E)
ωX(F)

≤ C
ωX0(E)
ωX0(F)

, for X ∈ Ω\B(x0, 2r),

where C > 0 depends only on n, d,Cd, and CA. In particular, with the choice F =

B(x0, r) ∩ Γ,

(7.31) C−1ωX0(E) ≤
ωX(E)
ωX(∆0)

≤ CωX0(E) for X ∈ Ω\B(x0, 2r),

where again C > 0 depends only on n, d,Cd, and CA.
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We will also need to use a comparison principle for locally-defined solutions.
Theorem 7.32 (Local comparison principle, Theorem 11.17 of [DFM19b]). Let x0 ∈ Γ

and r > 0 and let X0 ∈ Ω be a Corkscrew point for ∆(x0, r). Let u, v ∈ Wr(B(x0, 2r)) be
two non-negative, not identically zero, solutions of Lu = Lv = 0 in B(x0, 2r), such that
Tu = Tv = 0 on Γ ∩ B(x0, 2r). Then

C−1 u(X0)
v(X0)

≤
u(X)
v(X)

≤ C
u(X0)
v(X0)

for X ∈ Ω ∩ B(x0, r),

where C > 0 depends only on n, d,Cd and CA.

Let us show that we also have a change of poles for the Poisson kernel.
Lemma 7.33 (Change of Poles for Poisson kernel). Let ∆ ⊂ ∆0 ⊂ Γ be surface balls in
Γ, and set X0, X to be Corskcrew points of ∆0,∆ respectively. If ω � σ then

kX(y) ≈
kX0(y)
ωX0(∆)

, for σ − a.e. y ∈ ∆.

Proof. Write ∆0 = B(x0, r0) ∩ Γ and ∆ = B(x, r) ∩ Γ. Let X′0 be a Corkscrew point for
4∆0. Then X′0 < B(x0, 2r0), and hence X′0 < B(x, 2r). By the Harnack chains we have that
ωX′0(E) ≈ ωX0(E), for any Borel E ⊂ ∆. We apply (7.31) to see that for any Borel E ⊂ ∆,

ωX(E) ≈
ωX′0(E)
ωX′0(∆)

≈
ωX0(E)
ωX0(∆)

.

The desired result now follows by the differentiation theorem and letting E ↘ y ∈ Q. �
The next lemma collects the results which allow us to compare harmonic measures

(and Green functions, incidentally) for operators which agree locally near a surface ball.
We remark in passing that the proof shown is based on the local comparison principle
stated above, but it is also possible to obtain the results in the following lemma without
appealing to the local comparison principle, by means of the identity (7.11), the proper-
ties of the Green function, and the Caccioppoli inequality.
Lemma 7.34 (Comparison of harmonic measures near the boundary). Fix x ∈ Γ, r > 0,
let X0 be a Corkscrew point (with Corkscrew constant c < 1) for the surface ball ∆0 :=
∆(x, r), and suppose that A0 and A1 are two matrices satisfying (7.1) and A0 ≡ A1 in
B(x, 4c−1r)∩Ω. Let L0 = − div A0∇ and L1 = − div A1∇. The following statements hold.

(i) For each surface ball ∆′ ⊂ ∆0, we have that

(7.35) 1
Cω

X0
1 (∆′) ≤ ωX0

0 (∆′) ≤ CωX0
1 (∆′).

(ii) The measures ωX0
1 and ωX0

0 are mutually absolutely continuous on ∆0.
(iii) If ωX0

0 |∆0 � σ|∆0 , then ωX0
1 |∆0 � σ|∆0 , and kX0

0 (y) ≈ kX0
1 (y), for σ−a.e. y ∈ ∆0.

Proof. (i). Let X̃0 ∈ Ω be a Corkscrew point for ∆(x, 4c−1r), so that X̃0 ∈ Ω\B(x, 4r).
Note that since L0 ≡ L1 in B(x, 4r) ∩Ω, then AT

0 ≡ AT
1 in B(x, 4r) ∩Ω. As such, we may

apply Theorem 7.32 to the Green functions gT
0 (·, X̃0) and gT

1 (·, X̃0), to deduce that

(7.36)
gT

0 (X0, X̃0)
gT

1 (X0, X̃0)
≈

gT
0 (Y, X̃0)

gT
1 (Y, X̃0)

, for every Y ∈ B(x, r) ∩Ω.
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We now use (7.9), (7.19), and (7.23) to obtain that gT
i (X0, X̃0) = gi(X̃0, X0) ≈ ω

X̃0
i (∆0)
rd−1 , i =

0, 1. By the Harnack inequality and Harnack chains we have thatωX̃0
i (∆0) ≈ ωX0

i (∆0) ≈ 1,
i = 0, 1, and thus using these last results in (7.36), we see that

(7.37) gT
0 (Y, X̃0) ≈ gT

1 (Y, X̃0), for every Y ∈ B(x, r) ∩Ω.

Now fix a surface ball ∆′ = ∆(y, r′) ⊂ ∆0 and let Y ′ be a Corkscrew point for ∆′. Then
Y ′ ∈ B(x, r) ∩Ω. Since we may write

gT
i (Y ′, X̃0) = gi(X̃0,Y ′) ≈

ωX̃0
i (∆′)
r′d−1 , i = 0, 1,

then, using (7.37), we observe that ωX̃0
0 (∆′) ≈ ωX̃0

1 (∆′), and (7.35) immediately follows.

(ii). Let us see that (7.35) implies the mutual absolute continuity of ωX∆

1 and ωX∆

0 , it
suffices to use the (outer and inner) regularity of the measures, the Besicovitch covering
theorem [Bes45] applied to a bounded open set, and (7.35). More precisely, let E ⊆ ∆0

be a Borel set such that ωX0
0 (E) > 0. Then by the inner regularity of ωX0

0 , there exists a
compact set K ⊆ E such that ωX0

0 (K) ≈ ωX0
0 (E). To prove that ωX0

1 (E) > 0, it suffices
to show that ωX0

1 (K) > 0. Let V ⊆ ∆0 be an open set in the subspace topology of ∆0
such that V ⊃ K. Then we can write V = Γ ∩

(⋃
x∈V B(x, rx)

)
, for suitable finite rx > 0.

Let B := {B(x, rx)}. The latter is a Besicovitch covering of the bounded set V , and thus
applying the Besicovitch covering theorem, we can write V = Γ∩

(
∪B∈B′ B

)
where B′ is

a subcollection of B such that the balls intersect an at most uniformly finite (depending
only on n) number of times. Then we may use (7.35) to estimate ωX0

0 (K) from above by
ωX0

1 (V) times a constant independent of V . Since this is true for any V , it follows by the
outer regularity of ωX0

1 that ωX0
1 (K) > 0, which completes the proof of (ii).

(iii). Since ωX0
0 |∆0 � σ|∆0 and we have seen that (ii) holds, then ωX0

1 |∆0 � σ|∆0

follows. Now fix y ∈ ∆0, and for each k ∈ N, let ∆k = ∆(y, rk) ⊂ ∆0 with rk ↘ 0 as
k → ∞. According to (i), we may then write

ωX0
0 (∆k)
σ(∆k)

≈
ωX0

1 (∆k)
σ(∆k)

, for each k ∈ N and every y ∈0 .

Finally, we send k → ∞ in the above estimate, and due to the Lebesgue Differentiation
Theorem we arrive at the desired result. �

Lemma 7.38 (Comparison of Poisson Kernels in a cube, Lemma 3.24 in [CHM19]).
Fix Q0 ∈ D, let X0 ∈ Ω be a Corkscrew point (with Corkscrew constant c) for the
surface ball ∆(xQ0 , 10c−1 √nA2`(Q0)), let F ⊂ Q0 be a disjoint family, and suppose
that A0 and A1 are two matrices satisfying (7.1) and A0 ≡ A1 in RQ0\(ΩF \ΩF ,Q0). Let
L0 = − div A0∇ and L1 = − div A1∇. If the corresponding harmonic measures ωX0

0 , ωX0
1

are absolutely continuous with respect to σ, then for each t ∈ (0, 1) we have that

1
Ct

kX0
1 (y) ≤ kX0

0 (y) ≤ Ctk
X0
1 (y), for σ − almost every y ∈ Q0\ΣQ0,t,
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and ΣQ0,t :=
{

x ∈ Q0 : dist(x,Γ\Q0) < t`(Q0)}.

Sketch of proof. The proof is essentially the same as in Lemma 3.24 of [CHM19] (see
Remark 2.8), except that our claim is slightly sharper by requiring that A0 ≡ A1 only in
RQ0\(ΩF \ΩF ,Q0) as opposed to in all of RQ0 . It turns out that this is enough: in [CHM19],
the authors cover Q0\ΣQ0,t with a uniformly finite (cardinality depending on t) collection
of surface balls {∆k = ∆(xk, rk)}k, and chosen such that xk and rk ≈t `(Q0) verify the
containment Bk ∩ Ω = B(xk,Crk) ∩ Ω ⊆ RQ0 , for some uniform large constant C ≈ 1.
Actually, their method of proof gives that if X ∈ Bk∩Ω and X ∈ I ∈ W, then I ∈ WQ with
Q ∈ DQ0 . Hence, if X ∈ ΩF ∩ Bk, then X ∈ ΩF ,Q0 . It follows that (ΩF \ΩF ,Q0)∩ Bk = ∅,
whence we have that Bk ⊂ RQ0\(ΩF \ΩF ,Q0). The rest of the proof is elementary; one
employs Lemma 7.34 and the fact that L0 = L1 in Bk to get the desired result on each
∆k, and via Harnack Chains and the Harnack Inequality, one can teleport (with constants
depending on t) from a Corkscrew point for ∆k to the fixed point X0. �

Remark 7.39. The main reason why we require the slightly sharper version of this result
as opposed to in [HM12], [CHM19], is because we will decide to use our analogue of
the Dahlberg-Jerison-Kenig sawtooth lemma, Lemma 8.1, on the unbounded sawtooth
domain ΩF as opposed to the bounded sawtooth ΩF ,Q0 whose mixed-dimension elliptic
theory we have not fully developed (although it would not be hard to make it work given
our theory in this paper and in [DFMb]; it would just be tedious rather than difficult).

We next see how to relate the solvability of the Dirichlet problem with the quantitative
absolute continuity of the harmonic measure.
Theorem 7.40 (Relationship between A∞ and the Dirichlet problem). Assume that Γ is a
closed d-ADR set with d ∈ [1, n − 1) not necessarily an integer. Suppose that the matrix
A satisfies (7.1), let L = − div A∇, let ω be the harmonic measure associated to L, and
let p, p′ ∈ (1,∞), 1

p + 1
p′ = 1. Then, the following statements are equivalent:

(a) For each f ∈ Cc(Γ), the solution to the Dirichlet problem u satisfies

(7.41) ‖Nu‖Lp′ (Γ) ≤ C‖ f ‖Lp′ (Γ),

where Nu is the non-tangential maximal function and C is a uniform constant.
(b) We have that ω � σ and dω

dσ ∈ RHp.
(c) We have that ω � σ, and there is a uniform constant C0 such that for every

surface ball ∆ = Γ ∩ B(x, r), there exists X∆ ∈ Ω, which is a Corkscrew point for
∆, verifying the following scale-invariant Lp estimate:

(7.42)
∫

∆

(kX∆)p dσ ≤ C0σ(∆)1−p.

Proof. (a) =⇒ (b). Fix a surface ball ∆ = Γ ∩ B(x0, r) and X∆ ∈ Ω a Corkscrew
point for the surface ball ∆. Let X0 ∈ Ω\B(x0, 2r) be a Corkscrew point for the surface
ball 4∆, and immediately by Harnack Chains and the Harnack Inequality we see that
ωX0 ≈ ωX∆ , whence we need only prove the desired result with pole X0 as opposed to X∆.
We will show that ωX0 � σ on ∆ and that dωX0

dσ ∈ RHp(σ,∆) via the characterization in
Theorem 2.14 (vi). Owing to Lemma 7.17 (i), we have that for any X ∈ Ω, ωX � ωX0 .
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Accordingly, for each X ∈ Ω let K (X, ·) = dωX

dωX0
be the Radon-Nikodym derivative

(see [Fol99]). Since {ωX} is a family of probability measures, we trivially have that
K (X, ·) ∈ L1(Γ, ωX0), for each X ∈ Ω.

Now fix a non-negative f ∈ Cc(∆), and let u(Y) :=
∫

Γ
f dωY , for eachY ∈ Ω. We claim

that there exists a uniform constant C > 0 such that

(7.43) (MωX0 f )(x) := sup
∆(x,s)⊆∆

1
ωX0(∆(x, s))

∫
∆(x,s)

f dωX0

≤ C(Nu)(x), for each x ∈ ∆.

Assume the claim for a moment. Then, since u is the solution to the Dirichlet problem
with data f and (7.41) holds, we have the estimate

‖MωX0 f ‖Lp′ (∆,σ) . ‖Nu‖Lp′ (∆,σ) ≤ ‖Nu‖Lp′ (Γ,σ) . ‖ f ‖Lp′ (Γ,σ) = ‖ f ‖Lp′ (∆,σ),

valid for each non-negative f ∈ Cc(∆). If f ∈ Lp′(∆, σ) is non-negative, we may ap-
proximate it by Cc(∆) non-negative functions in a standard way, so that the estimate
‖MωX0 f ‖Lp′ (∆,σ) . ‖ f ‖Lp′ (∆,σ) is valid for all non-negative f ∈ Lp′(∆, σ). Consequently,

according to Theorem 2.14 (vi), we deduce that dωX0

dσ ∈ RHp(∆) with RHp characteristic
independent of ∆, as desired.

Thus we proceed to prove (7.43). Fix x ∈ ∆, α > 0, and X ∈ γα(x) such that s := |X−x|
satisfies ∆(x, s) ⊆ ∆. By definition of γα(x), we have that δ(X) ≤ s ≤ (1+α)δ(X). Observe
that by the non-negativity of f and the properties of the Radon-Nikodym derivative,

(7.44) u(X) ≥
∫

∆(x,s)
f dωX =

∫
∆(x,s)

f K (X, ·) dωX0 .

Since ωX0 is a doubling measure on ∆ (see Lemma 7.24), we may use the Differentiation
Theorem for doubling measures [Fol99] to obtain that for ωX0 − a.e. y ∈ ∆(x, s),

K (X, y) = lim
∆′↘y

1
ωX0(∆′)

∫
∆′

K (X, ·) dωX0 = lim
∆′↘y

ωX(∆′)
ωX0(∆′)

,

(here, ∆′ is a surface ball centered at y and contained in ∆(x, s)). Note that necessarily
we have X0 ∈ Ω\B(x, 2s). Denote by A∆(x,s) a Corkscrew point for ∆(x, s), and so from
the Comparison Principle (7.31) we may conclude that

ωA∆(x,s)(∆′)
ωX0(∆′)

≈
1

ωX0(∆(x, s))
, for all ∆′ ↘ y and all ∆(x, s) ⊆ ∆.

On the other hand, for any y ∈ ∆(x, s), 1
1+α s ≤ |X−y| ≤ 2s, which implies by the Harnack

chains that ωX(∆′) ≈ ωA∆(x,s)(∆′). Putting all these observations together and back into
(7.44), we deduce that (Nu)(x) & 1

ωX0 (∆(x,s))

∫
∆(x,s) f dωX0 for each x ∈ ∆ and each s > 0

such that ∆(x, s) ⊆ ∆. Since ∆(x, s) ⊆ ∆ is arbitrary, the claim (7.43) follows.
(b) =⇒ (a). This is a consequence of Theorem 4.1 in [MZ19] (formally, they have

symmetric A, but this assumption can be dropped).
(b) =⇒ (c). By assumption we already have that ω � σ. Now fix ∆ ⊂ Γ and X∆ the

Corkscrew point for ∆ given by property (b) above. We apply (7.29) with ∆′ = ∆ to get
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that
∫

∆
(kX∆)p dσ ≤ Cp

0σ(∆)1−pωX∆(∆)p ≤ Cσ(∆)1−p, where we used the non-degeneracy
of the harmonic measure. Hence (7.42) is established.

(c) =⇒ (b). By assumption we already have that ω � σ. Now fix a surface ball
∆ ⊂ Γ and another surface ball ∆′ ⊆ ∆. According to (7.42) we have the estimate( 1
σ(∆′)

∫
∆′

(kX∆′ )p dσ
)1/p
≤ C

1
p
0

1
σ(∆′) . Next, we use Lemma 7.33 applied with surface balls

∆,∆′ to obtain that there exists a uniform (in ∆,∆′) constant c̃ such that kX∆′ ≥ c̃ kX∆

ωX∆ (∆′) ,
σ−a.e. on ∆′. Putting these observations together, we deduce that( 1

σ(∆′)

∫
∆′

(kX∆)p dσ
)1/p

≤
C

1
p
0

c̃
1

σ(∆′)
ωX∆(∆′) =

C
1
p
0

c̃
1

σ(∆′)

∫
∆′

kX∆ dσ,

as desired. �

When (a) of the above theorem occurs we say that (D)p′ is solvable for L or that L
is solvable in Lp′ . In such case, for every f ∈ Lp′(Rd) there exists a unique u such that
Lu = 0 in Rn, (7.41) holds and u converges non-tangentially to f for σ−a.e. x ∈ Γ.

Remark 7.45 (Equivalence of RHp and RHdyadic
p ). Suppose throughout this remark that

ω � σ. In Theorem 7.40, we saw that the condition (7.42) is equivalent to dω
dσ ∈ RHp.

Consider the following dyadic analogue of condition (7.42): For each Q ∈ D and for XQ
a Corkscrew point for Q, the estimate

(7.46)
∫

Q
(kXQ)p dσ . σ(Q)1−p

holds. Using Corollary 7.25 and the Harnack inequality to flexibly move the poles, it is
not difficult to see that the condition (7.46) is equivalent to (7.42). Of course, this new
condition (7.46) is also equivalent to the condition that dω

dσ ∈ RHdyadic
p . It follows that

dω
dσ ∈ RHp is equivalent to dω

dσ ∈ RHdyadic
p .

To end this section, we record the Lp-control of the square function by the nontangen-
tial maximal function under the assumption that the harmonic measure lies in A∞.
Theorem 7.47 (S < N; Theorem 3.1 of [MZ19]). Suppose that d ∈ [1, n − 1) is not
necessarily an integer, Γ is d-ADR , and that A is a (not necessarily symmetric, see
Remark 7.48 below) matrix satisfying (7.1). Assume that for some p′ ∈ (1,∞), (D)p′ is
solvable for L. Write u for the solution to the Dirichlet problem (D)p′ with data f ∈
Lp′(Γ). Then, for all apertures α > 0 we have the estimate

‖S u‖Lp′ (Γ) . ‖ f ‖Lp′ (Γ),

where the implicit constants depend on n, d, Cd, CA, α, and the RHp constant of ω.
Remark 7.48. We remark that the previous theorem is stated in [MZ19] for symmetric
matrices and d ∈ N only, but in fact their method of proof generalizes to non-symmetric
matrices, mainly using (7.9), and to all d ∈ R, d ∈ [1, n − 1). For concreteness, the
fact that d ∈ N was never explicitly used in the proof (recall that the construction of
the dyadic cubes Lemma 3.1 works for all real d ∈ (0, n − 1)), and the symmetry of
the matrix A is used only in Step 3 of the proof of their Proposition 1.16, and explicitly
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arising only in their calculation (3.78), where A = AT is used to maneuver the integration
by parts. However, we note that their function G = G(X) in (3.78) really is G(XQ, X)
(see their estimate (3.73)), while G(XQ, X) = GT (X, XQ) by (7.9), and the latter is the
“correct” Green’s function for which the needed cancellation div ATGT (·, XQ) = 0 will
hold in their (3.78) (of course, in the symmetric setting, there is no difference between
these Green’s functions). Thus, in the non-symmetric setting, the last two lines of their
calculation (3.78) read

. . . =
1
2

∫∫
Rn

u2(X)AT (X)∇XG(XQ, X)∇ψN(X) dX

−

∫∫
Rn

u(X)G(XQ, X)A(X)∇u(X)∇ψN(X) dX =:
1
2

I − II.

One then uses the representation G(XQ, X) = GT (X, XQ) again while bounding |I| and
|II| (see their (3.79)-(3.81)) to exploit the fact that GT (·, XQ) solves − div ATG(·, XQ) =

0 in the fat sawtooth domain, so that one may use the Caccioppoli inequality and the
Harnack inequality as required. At the last step when bounding |I| and |II|, we switch
from GT (XI , XQ) to G(XQ, XI) and invoke Lemma 7.18 to obtain the required control with
ωL (and no dependence on ωLT ). As explained here, one recovers their full Proposition
1.16 in the non-symmetric case; the rest of the proof of their Theorem 3.1 sees no obstacle
from the non-symmetric point of view.
Remark 7.49. We note that Theorem 7.47 has content for all d ∈ [1, n − 2) with d not
necessarily an integer, and for all closed d-ADR unbounded Γ. Indeed, for any such Γ, we
consider the special operator LDEM of [DEM] Theorem 6.7, and recall that ωDEM � σ.
By Theorem 7.40, it follows that there exists p > 1 such that (D)p is solvable for LDEM.
We thus see that the hypotheses of Theorem 7.47 are verified for this operator, and hence
the control of the square function by the non-tangential maximal function holds.

8. The projection lemma for the dyadically-generated sawtooth

Having shown that the triple (ΩF ,m, σ?) satisfies the axioms (H1)-(H6) in Section 5,
we appeal to the elliptic theory set forth in [DFMb] to conclude that there is a harmonic
measure ω? on ∂ΩF associated to the operator L = − div A∇ whose matrix A satisfies
(7.1). This harmonic measure ω? on the sawtooth boundary ΩF enjoys many similar
properties to the harmonic measure on Γ which were reviewed in Subsection 7.1. In
particular, we note that ω? has the doubling property; that is, we have Lemma 7.24 with
Ω, Γ, and ω replaced by ΩF , ∂ΩF , and ω?, respectively (see Lemma 15.43 of [DFMb]).

The following lemma is an analogue of the Dahlberg-Jerison-Kenig sawtooth lemma
[DJK84]; it has already been shown in [DM] on a similar setting, but we include its proof
here too for completeness.
Lemma 8.1 (Dyadic sawtooth lemma, global version). Suppose that Γ is a d-ADR set
with d ∈ (0, n − 1). Fix Q0 ∈ D, let F = {Q j} j ⊂ DQ0 be a family of pairwise disjoint
dyadic cubes, and let PF be the corresponding projection operator, as in (3.8). Let X0
be the Corkscrew point for Q0 with respect to both Ω and ΩF , whose existence is shown
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in Proposition 4.34 and Corollary 4.35. Let A be a matrix of essentially bounded, real
coefficients satisfying the weighted ellipticity condition (7.1). Let ω = ωX0 and ω? = ωX0

?

denote the respective harmonic measures for the domains Ω and ΩF , with the fixed pole
X0 as above. Let µ = µX0 be the measure defined on Q0 as

(8.2) µ(F) = ω?
(
F\(∪ jQ j)

)
+
∑
Q j∈F

ω(F ∩ Q j)
ω(Q j)

ω?(P j), F ⊂ Q0,

where P j is the n−dimensional cube constructed in Proposition 4.37. Then PF µ depends
only on ω? and not on ω. More precisely,

(8.3) PF µ(F) = ω?
(
F\(∪ jQ j)

)
+
∑
Q j∈F

σ(F ∩ Q j)
σ(Q j)

ω?(P j), F ⊂ Q0.

Moreover, there exists θ > 0 such that for all Q ∈ DQ0 and Borel F ⊂ Q, we have that

(8.4)
(
PFω(F)
PFω(Q)

)θ
.
PF µ(F)
PF µ(Q)

.
PFω(F)
PFω(Q)

.

Proof. We first verify that (8.3) holds. Let F ⊂ Q0 be a Borel set, and observe that

PF µ(F) = µ
(
F\(∪ jQ j)

)
+
∑
Q j∈F

σ(F ∩ Q j)
σ(Q j)

µ(Q j)

= ω?
(
F\(∪ jQ j)

)
+
∑
Q j∈F

σ(F ∩ Q j)
σ(Q j)

∑
Qk∈F

ω(Q j ∩ Qk)
ω(Qk)

ω?(Pk),

which implies (8.3) since F is a pairwise disjoint family.
We now show the right-hand side inequality in (8.4), so we fix Q ∈ DQ0 and F ⊂ Q.

First, suppose that there exists Q j ∈ F such that Q ⊂ Q j. In this case, we have that

PF µ(F)
PF µ(Q)

=

σ(F∩Q j)
σ(Q j)

ω?(P j)
σ(Q∩Q j)
σ(Q j)

ω?(P j)
=

σ(F∩Q j)
σ(Q j)

ω(Q j)
σ(Q∩Q j)
σ(Q j)

ω(Q j)
=
PFω(F)
PFω(Q)

.

Therefore, it remains to consider the case that Q is not contained in any Q j, Q j ∈ F ;
in this case, we have that Q ∈ DF ,Q0 ⊂ DF , and that, if Q j ∩ Q , ∅, then Q j ( Q. Let
x?j be the center of P j and let r j ≈ `(Q j) be as in Notation 4.44, so that P j ⊆ ∆?(x?j , r j).
Since `(P j) ≈ `(Q j) ≈ r j, we have that

(8.5) ωX0
? (P j) ≥ ω

X0
?

(
∆?(x?j , `(P j)/2)

)
& ωX0

?

(
∆?(x?j , r j)

)
,

where we used the doubling property of ωX0
? in the last estimate (if `(Q j) ≈ `(Q),

then we consider a point X′ ∈ ΩF , where X′ is a Corkscrew point for the surface ball
∆(xQ0 , A`(Q0)), with A > 0 large enough, and such that ωX′

? is doubling on the surface
balls centered at x?j and of radius less than r j; then, by the Harnack Inequality Lemma
11.35 and Lemma 12.19 of [DFMb], and Harnack Chains, we have that ωX0

? ≈ ωX′
? ).

Using (8.3), we have that
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(8.6) PF µ(Q) = ω?
(
Q\(∪ jQ j)

)
+

∑
Q j∈F ,Q j(Q

σ(Q ∩ Q j)
σ(Q j)

ω?(P j)

= ω?
(
Q\(∪ jQ j)

)
+

∑
Q j∈F ,Q j(Q

ω?(P j) & ω?
(
Q\(∪ jQ j)

)
+

∑
Q j∈F ,Q j(Q

ω?
(
∆?(x?j , r j)

)
≥ ω?

((
Q ∩ ∂ΩF

)⋃ (⋃
Q j∈F ,Q j(Q ∆?(x?j , r j)

))
≥ ω?

(
∆

Q
?

)
,

where ∆
Q
? is the surface ball in Proposition 4.46, in the third step we used (8.5), and in

the last line we used Proposition 4.46, and the doubling property of ω? and Propositions
4.28 and 4.33 to see that ω?(Q\(∪ jQ j)) = ω?(Q ∩ ∂ΩF ).

Now let XQ be the Corkscrew point (simultaneous for Ω and ΩF ) for the cube Q. By
the change of poles (Lemma 15.61 of [DFMb]) and the doubling property of ω?, for any
Borel set H? ⊂ ∆?(yQ, r̂Q) (see Notation 4.44), we have that

ω
XQ
? (H?) ≈

ωX0
? (H?)

ωX0
? (∆?(yQ, r̂Q))

≈
ωX0
? (H?)

ωX0
? (∆Q

? )
,

where in the last step we have used the fact that both ∆?(yQ, r̂Q) and ∆
Q
? have radius

comparable to `(Q), and that dist(∆Q
? ,Q) . `(Q), so that we can compare both of these

surface balls to a bigger (with radius still equivalent to `(Q)) surface ball containing both
of them, and hence achieve the stated equivalence between these surface balls by using
the doubling property of ω? (and, if needed, Harnack Chains and Harnack Inequality).

Using this last result, (4.45), and (8.6), we see that

(8.7)
PF µ(F)
PF µ(Q)

.
ωX0
? (F\(∪ jQ j))

ωX0
? (∆Q

? )
+

∑
Q j∈F ,Q j⊆Q

σ(F ∩ Q j)
σ(Q j)

ωX0
? (P j)

ωX0
? (∆Q

? )

≈ ω
XQ
? (F\(∪ jQ j)) +

∑
Q j∈F ,Q j(Q

σ(F ∩ Q j)
σ(Q j)

ω
XQ
? (P j).

Next, we claim that the estimates

(8.8) ω
XQ
? (F\ ∪ j Q j) . ωXQ(F\ ∪ j Q j), ω

XQ
? (P j) . ωXQ(Q j)

hold. Indeed, the first one follows immediately by the maximum principle (Lemma 12.8
in [DFMb]) since ΩF ⊂ Ω. For the second estimate, let u(X) := ωX(Q j) and u?(X) :=
ωX
?(P j), and we first note that ωX(Q j) ≈ 1 = u?(X) for each X ∈ P j, by (7.21) and the

fact that dist(P j,Q j) ≈ diam P j ≈ diam Q j ≈ `(Q j). Since also we have that u?(X) = 0 ≤
u(X) for each X ∈ ∂ΩF \P j, we may thus apply again the maximum principle to conclude
that u?(XQ) . u(XQ), as desired.

Finally, from (8.7) and (8.8) we deduce that

PF µ(F)
PF µ(Q)

. ωXQ(F\(∪ jQ j)) +
∑

Q j∈F ,Q j(Q

σ(F ∩ Q j)
σ(Q j)

ωXQ(Q j)
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.
ωX0(F\(∪ jQ j))

ωX0(Q)
+

∑
Q j∈F ,Q j(Q

σ(F ∩ Q j)
σ(Q j)

ωX0(Q j)
ωX0(Q)

=
PFω(F)
ω(Q)

=
PFω(F)
PFω(Q)

,

where in the second line we used the change of poles for ω (7.31), and in the last step
we used that PFω(Q) = ω(Q). This ends the proof of the right-hand side of (8.4). The
left-hand side is obtained because PFω is dyadically doubling by Lemma 3.11, PF µ is
dyadically doubling by Lemma 9.51 of [DM] (whose argument is very similar to that of
Lemma B.2 from [HM14]; see our Remark 2.8), and Adyadic

∞ is an equivalence relationship
among dyadically doubling measures (see Lemma 3.14). �

9. Proof of Theorem 1.2

In this section, we give the proof of Theorem 1.2; we mainly follow the outline in
[HM12]; see also [CHM19].

Let A0, A be two matrices that satisfy (7.1), write A0 = w−1A0, A = w−1A, and
suppose that dλ(X) = a(X)2

δ(X)n−d dX is a (continuous) Carleson measure, where a is defined
in (1.3). As in Lemma 6.5, the natural discretization of the Carleson measure λ is the
collection m = {αQ}Q∈D with

αQ =
∑

I∈WQ

supY∈I∗ |E(Y)|2

`(I)n−d |I|, Q ∈ D,

where E(Y) = A(Y) − A0(Y). Let L0 = − div A0∇, L = − div A∇, and let ω0, ω be the
harmonic measures of L0, L respectively.

Our program is to apply Theorem 6.3 to eventually obtain that ωL ∈ Adyadic
∞ . Of course,

this will imply that ωL � σ and that dωL
dσ ∈ RHdyadic

q for some q > 0, and by Remark
7.45, the latter is equivalent to dωL

dσ ∈ RHq, which in turn means that ωL ∈ A∞.
Thus we ought to verify the hypotheses of Theorem 6.3. Fix Q0 ∈ D, and observe that

‖m‖C(Q0) . |||λ|||C by Lemma 6.5. Given ξ > 0 small enough and to be chosen later, we fix
a disjoint family F = {Q j} j ∈ DQ0 that verifies the estimate

(9.1) ‖mF ‖C(Q0) = sup
Q∈DQ0

m(DF ,Q)
σ(Q)

≤ ξ.

Recall that RQ0 ⊂ B(xQ0 , 7
√

nA0`(Q0)) (see (4.24)). Let X0 ∈ Ω be a Corkscrew point
(with Corkscrew constant c) for the surface ball ∆(xQ0 , 10c−1 √nA2`(Q0)). Then

|X0 − xQ0 | ≥ δ(X0) ≥ c10c−1 √nA2`(Q0) = 10
√

nA2`(Q0),

which implies that X0 ∈ Ω\B(xQ0 , 10
√

nA2`(Q0)) ⊂ Ω\R∗∗Q0
⊂ Ω\RQ0 , where R∗∗Q0

:=
int
(⋃

I∈RQ0
I∗∗
)
, I∗∗ = (1 + 2θ)I. Moreover, according to Corollary 7.26, we have that

ωX0 is dyadically doubling in Q0, while we also have that δ(X0) ≈ dist(X0,Q0) ≈ `(Q0).
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We want to show that PFω
X0
L satisfies (6.4), with uniform constants and with ωX0

L
in place of µ. Since L0 is solvable in some Lp′ , then by Theorem 7.40, ωX0

L0
� σ and

kX0
0 ∈ RHp(∆(xQ0 , A0`(Q0)) (with reverse Hölder characteristic independent of Q0).

9.1. Step 0: A qualitative reduction. We first make a reduction that allows us to con-
jure qualitative absolute continuity properties of the harmonic measure ωL.
Definition 9.2 (Tubes encasing the boundary). Fix τ > 0. By a τ−tube around Γ, we
mean the open set Γτ :=

{
X ∈ Ω : dist(X,Γ) < τ

}
.

We define Aτ as Aτ = A0 in the τ−tube Γτ, and Aτ = A in Rn\Γτ. In the next steps we
work with Lτ = − div Aτ∇ in place of L. We note that the ellipticity of Aτ is controlled
by those of A and A0. The same is true of the condition on the disagreement a.

Let us now exploit Lemma 7.34 to deduce absolute continuity properties of ωLτ , with
dependence on τ.
Corollary 9.3 (Comparability of harmonic measures in tubes). Retain the notation above.
Then ωX0

τ � σ, and if τ is small enough depending on n, d, Cd only, then kX0
τ ∈

RHp(∆(xQ0 , A0`(Q0))), with the RHp characteristic depending on τ and `(Q0).

We emphasize that this is a qualitative result (the dependence on τ and `(Q0) is non-
optimal) - see also related comments after the proof.
Proof. Fix a surface ball ∆ = ∆(x0, r) with r ∈ (0, cτ

4 ), and let X∆ be a Corkscrew point
for ∆. By Lemma 7.34, we have that ωX∆

0 is mutually absolutely continuous with ωX∆
τ

on ∆. Recall that for each i = 0, τ, ωX∆

i is mutually absolutely continuous with ωX0
i . It

follows that ωX∆

0 � σ on Γ, and therefore that ωX0
τ � ωX∆

τ � ωX∆

0 � σ on ∆. Since
∆ ⊂ Γ was arbitrary, we have that ωX0

τ � σ on Γ.
Next, fix a surface ball ∆τ := ∆(x, cτ/4) with x ∈ ∆(xQ0 , 10c−1 √nA2`(Q0)), and let

X∆τ be a Corkscrew point for ∆τ. Then Lemma 7.34 (iii) gives that kX∆τ
0 (y) ≈ kX∆τ

τ (y) for
σ−a.e. y ∈ ∆τ. Then the Harnack Chains and Harnack inequality guarantee the estimates

kX0
τ (y) ≈τ kX∆τ

τ (y) ≈ kX∆τ
0 (y) ≈τ kX0

0 (y), for σ − a.e. y ∈ ∆τ.

Since we may cover ∆(xQ0 , A0`(Q0)) by {∆τ} as above, it follows that kX0
τ (y) ≈τ kX0

0 (y)
for σ−a.e. y ∈ ∆(xQ0 , A0`(Q0)) ⊃ Q0. The desired result ensues. �

It follows that we may assume that all the harmonic measures ωτ = ωLτ are absolutely
continuous with respect to σ, and kX0

τ = kX0
Lτ ∈ RHp(Q0) with the RHp characteristic

depending on τ and `(Q0). The dependence on τ and `(Q0) will not be an issue because
these facts are used only qualitatively.

Therefore, in Step 1 below, we will have a priori that ωX0
τ � σ and that kX0

τ ∈

Lp(Q0, σ). We eventually establish a reverse Hölder inequality for kτ with RH expo-
nent and characteristic independent of τ and `(Q0). We will finally pass to the limit using
Lemma 9.19 below to conclude that ωL � σ and dωL

dσ ∈ RHq. This will in turn imply as
desired that L is solvable in Lq′ by Theorem 7.40.
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9.2. Step 1: Exploit smallness of ‖mF ‖C(Q0). Introduce the operator L1 defined as L1 =

Lτ in ΩF ,Q0 , and L1 = L0 in Ω\ΩF ,Q0 . We write ω1 for the harmonic measure associated
to the operator L1, and g1 for the Green function associated to L1. We have that kX0

0 ∈

RHp(∆(xQ0 , A0`(Q0))), and in particular by Theorem 7.40, we have that∫
Q0

(
kX0

0

)p dσ ≤
∫

∆(xQ0 ,A0`(Q0))

(
kX0

0

)p dσ . C0σ(∆(xQ0 , A0`(Q0)))1−p ≈ σ(Q0)1−p;

thus, in summary,

(9.4)
∫

Q0

(
kX0

0

)p dσ . σ(Q0)1−p.

Our immediate goal in Step 1 is to show that (9.4) remains true when kX0
0 is replaced

by kX0
1 , the Poisson kernel for the operator L1 defined above.

Let f ≥ 0 be a continuous function supported on Q0, such that ‖ f ‖Lp′ (Q0,σ) = 1, and
let u0 and u1 be the corresponding solutions to the Dirichlet problems for L0 and L1
with boundary data f . Set E1(Y) = A1(Y) − A0(Y) = E(Y)1ΩF ,Q0

(Y), where E(Y) =

Aτ(Y) − A0(Y). Then, we may write

(9.5) F1(X0) := |u1(X0) − u0(X0)| =
∣∣∣ ∫∫
Rn
∇YgT

1 (Y, X0)ET
1 (Y)∇u0(Y) dY

∣∣∣
≤

∫∫
ΩF ,Q0

|∇Yg1(X0,Y)||E(Y)||∇u0(Y)| dY

≤
∑

Q∈DF ,Q0

∑
I∈WQ

∫∫
I∗
|∇Yg1(X0,Y)||E(Y)||∇u0(Y)| dY

≤
∑

Q∈DF ,Q0

∑
I∈WQ

(
sup
Y∈I∗
|E(Y)|

)( ∫∫
I∗
|∇Yg1(X0,Y)|2 dY

) 1
2
(∫∫

I∗
|∇u0(Y)|2 dY

) 1
2
,

where we have used (7.11) in the first line, and later Hölder’s inequality. By definition
of X0, we have that v(Y) = g1(X0,Y) = gT

1 (Y, X0) is a non-negative solution of LT
1 v = 0

in R∗∗Q0
(as X0 < R∗∗Q0

). Hence, we can apply Caccioppoli’s inequality (see Lemma 8.6
of [DFM19b]) to obtain that

(9.6)
∫∫

I∗
|∇Yg1(X0,Y)|2 dY .

1
`(I)−n+d+1

∫∫
I∗
|∇Yg1(X0,Y)|2w(Y) dY

. `(I)−2 1
`(I)−n+d+1

∫∫
I∗∗
|g1(X0,Y)|2 dm ≈

∫∫
I∗∗

|g1(X0,Y)|2

δ(Y)2 dY,

for any I ∈ WQ, Q ∈ DF ,Q0 . Fix such an I and Q. We have by the Harnack inequality
that g1(X0,Y) ≈ g1(X0, XQ) for all Y ∈ I∗∗ and where XQ is a Corkscrew point for Q.
Then by Lemma 7.18, Lemma 7.22, and Corollary 7.25, for every Y ∈ I∗∗ we have that

(9.7)
g1(X0,Y)
δ(Y)

≈
g1(X0, XQ)
δ(XQ)

≈
ωX0

1

(
∆(xQ, a0`(Q))

)
`(Q)`(Q)d−1 ≈

ωX0
1 (Q)
σ(Q)

.



64 S. MAYBORODA AND B. POGGI

Putting together (9.6) and (9.7), we see that

(9.8)
∫∫

I∗
|∇Yg1(X0,Y)|2 dY .

(ωX0
1 (Q)
σ(Q)

)2
|I|.

Plugging (9.8) into (9.5), using the fact that supY∈I∗ |E(Y)| ≈ `(I)1−(n−d) supY∈I∗ |E(Y)|,
and using the Cauchy-Schwartz inequality, we obtain that

(9.9) F1(X0) .
∑

Q∈DF ,Q0

∑
I∈WQ

`(I)1− n−d
2
ωX0

1 (Q)
σ(Q)

(supY∈I∗ |E(Y)|2

`(I)n−d |I|
) 1

2
(∫∫

I∗
|∇u0|

2
) 1

2

.
∑

Q∈DF ,Q0

( αQ

σ(Q)

) 1
2
σ(Q)

ωX0
1 (Q)
σ(Q)

(∫∫
UQ

|∇u0(X)|2δ(X)2−n dX
) 1

2

.
∑

Q∈DF ,Q0

(
m(DF ,Q)
σ(Q)

) 1
2
∫

Q

(
M(kX0

1 1Q0)
)
(x)
(∫∫

γQ
d (x)
|∇u0(X)|2δ(X)2−n dX

) 1
2

dx

. ‖mF ‖
1
2
C(Q0)

∑
Q∈DF ,Q0

∫
Q

(
M(kX0

1 1Q0)
)
(x)
(∫∫

γα1 (x)
|∇u0(X)|2δ(X)2−n dX

) 1
2

dx

. ‖mF ‖
1
2
C(Q0)

∫
Γ

(
M(kX0

1 1Q0)
)
(x)
(
S α1u0

)
(x) dx

where in the second line we used that `(I) ≈ `(Q) for each I ∈ WQ, the definition of αQ,
and the bounded overlap of the dylated Whitney cubes I∗; in the third line we used for
each x ∈ Q the estimate

ωX0
1 (Q)
σ(Q)

=
1

σ(Q)

∫
Q

kX0
1 dσ .

1
∆(x, A0`(Q))

∫
∆(x,A0`(Q))

kX0
1 1Q0 dσ

≤
(

M(kX0
1 1Q0)

)
(x), for each x ∈ Q,

and in the fourth line we chose α1 so that γd(x) ⊂ γα1(x) for all x ∈ Γ (see the paragraph
following (4.26)). Using (9.1), (9.9) and the Hölder’s inequality, we furnish the estimate

F1(X0) . ξ
1
2 ‖M(kX0

1 1Q0)‖Lp(Γ,σ)‖S α1u0‖Lp′ (Γ,σ) . ξ
1
2 ‖kX0

1 ‖Lp(Q0,σ),

where we have used Theorem 7.47 and that the trace of u0 is f . As such, we have that

(9.10) |u1(X0) − u0(X0)| = F1(X0) . ξ
1
2 ‖kX0

1 ‖Lp(Q0,σ).

We will now see that (9.10) implies the desired result. By the definitions of u0, u1, f , and
Hölder’s inequality, (9.10) gives that∫

Q0

f kX0
1 dσ . ξ

1
2 ‖kX0

1 ‖Lp(Q0,σ) +

∫
Q0

f kX0
0 dσ

≤ ξ
1
2 ‖kX0

1 ‖Lp(Q0,σ) + ‖ f ‖Lp′ (Γ,σ)‖k
X0
0 ‖Lp(Q0,σ) ≤ ξ

1
2 ‖kX0

1 ‖Lp(Q0,σ) + ‖kX0
0 ‖Lp(Q0,σ).
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Since the continuous functions are dense in Lp′(Γ, σ), by taking supremum over all pos-
sible f as described earlier, we obtain that

(9.11) ‖kX0
1 ‖Lp(Q0,σ) . ξ

1
2 ‖kX0

1 ‖Lp(Q0,σ) + ‖kX0
0 ‖Lp(Q0,σ).

It follows that as long as ξ
1
2 is small enough (depending only on the permissible con-

stants), we may hide the first term on the right-hand side of the above inequality to the
left-hand side; hence we get that ‖kX0

1 ‖Lp(Q0,σ) . ‖k
X0
0 ‖Lp(Q0,σ). And hence, since kX0

0 satis-
fies (9.4), we obtain that kX0

1 satisfies (9.4) as well, with the implicit constant independent
of τ and Q0.

9.3. Self-improvement of Step 1. We currently have (9.4) for Q0; but let us see that we
can extend (9.4) to obtain a reverse Hölder estimate on every dyadic subcube of Q0.

Fix Q ∈ DQ0 . Let XQ be a Corkscrew point for the surface ball ∆(xQ, 10c−1 √nA2`(Q)),
so that XQ ∈ Ω\R∗∗Q (see the remarks about X0 following (9.1)). Define a new operator
LQ

1 = Lτ in ΩF ,Q and LQ
1 = L0 otherwise in Ω\ΩF ,Q, and let kXQ

LQ
1

denote the Poisson

kernel for LQ
1 with pole at XQ. Given our proof above, it is easy to see that

(9.12)
∫

Q
(kXQ

LQ
1

)p dσ ≤ C1σ(Q)1−p,

for some C1 independent of Q (and τ). Indeed, if Q ⊂ Qk for some Qk ∈ F then we
obtain that DF ,Q = ∅ so that ΩF ,Q = ∅ and so LQ

1 ≡ L0 in Ω\Γ. In that case, (9.12)
holds by hypothesis. Otherwise, trivially we have that ‖mF ‖C(Q) ≤ ‖mF ‖C(Q0) ≤ ξ, and
consequently, if Q is not contained in any Qk ∈ F , then we may repeat the previous
argument with respect to Q, and we obtain (9.12) as before. This proves the claim.

Now, by the non-degeneracy of the harmonic measure we have that
∫

Q kXQ

LQ
1

dσ & 1,

and combining this estimate with (9.12) we obtain that

(9.13)
( 1
σ(Q)

∫
Q

(kXQ

LQ
1

)p dσ
) 1

p
.

1
σ(Q)

∫
Q

kXQ

LQ
1

dσ.

Next, we want to pass from kXQ

LQ
1

to kXQ

L1
. Notice that L1 ≡ LQ

1 in (Ω\ΩF ,Q0) ∪ ΩF ,Q, and

observe that for Bs = B(xQ, s) the ball in Lemma 4.31 ii) for which `(Q) . s ≤ `(Q) and
(4.32) is satisfied, we have that

Bs ∩Ω = Bs ∩
[
(Ω\ΩF ,Q0) ∪ΩF ,Q0

]
=
(
Bs ∩ (Ω\ΩF ,Q0)

)
∪
(
Bs ∩ΩF ,Q0

)
=
(
Bs ∩ (Ω\ΩF ,Q0)

)
∪
(
Bs ∩ΩF ,Q

)
= Bs ∩

(
ΩF ,Q ∪Ω\ΩF ,Q0

)
,

and hence L1 ≡ LQ
1 in Bs ∩ Ω. Therefore, using Lemma 7.34 we see that there exists ε̃,

1 . ε̃ ≤ 1 so that kXQ

1 (y) = kXQ

L1
(y) ≈ kXQ

LQ
1

(y), for σ−a.e. y ∈ ε̃∆Q = ∆(xQ, ε̃`(Q)). We use

this result, (9.13), and the doubling property Lemma 7.24 to deduce the estimate( 1
σ(ε̃∆Q)

∫
ε̃∆Q

(kXQ

1 )p dσ
) 1

p
≤

( 1
σ(ε̃∆Q)

∫
Q

(kXQ

LQ
1

)p dσ
) 1

p
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.
1

σ(ε̃∆Q)

∫
Q

kXQ

LQ
1

dσ ≤
1

σ(ε̃∆Q

∫
∆(xQ,A0`(Q))

kXQ

LQ
1

dσ

.
1

σ(ε̃∆Q)

∫
ε̃∆Q

kXQ

LQ
1

dσ ≈
1

σ(ε̃∆Q)

∫
ε̃∆Q

kXQ

1 dσ.

We can now change poles from XQ to X0 via Lemma 7.33 to obtain( 1
σ(ε̃∆Q)

∫
ε̃∆Q

(kX0
1 )p dσ

) 1
p
.

1
σ(ε̃∆Q)

∫
ε̃∆Q

kX0
1 dσ, for each Q ∈ DQ0 .

Finally, we use Lemma 3.15 to furnish

Conclusion 9.14 (Step 1). We have that ωX0
1 ∈ Adyadic

∞ (Q0) uniformly in τ and Q0. Hence
we deduce that PFω

X0
1 ∈ Adyadic

∞ (Q0) (uniformly in τ and Q0) by Lemma 3.13.

9.4. Step 2: Hide the “bad” Carleson regions. We define the operator L2 such that
the disagreement with L1 lives roughly inside the Carleson regions corresponding to the
family F . More precisely, set

L2 =

{
Lτ, in RQ0\ΩF ,
L1, in Ω\(RQ0\ΩF ).

Note carefully that RQ0\ΩF ⊆ RQ0\ΩF ,Q0 , but the opposite containment does not hold in
general. We write ω1 = ωX0

L1
and ω2 = ωX0

L2
for the corresponding harmonic measures (on

Γ) for L1 and L2 with fixed pole at X0. We also let ω?,1 = ωX0
?,1 and ω?,2 = ωX0

?,2 denote
the harmonic measures of L1 and L2 on ∂ΩF , the boundary of the dyadically-generated
sawtooth domain ΩF (see the beginning of Section 8). Note that ΩF ⊂ Ω\(RQ0\ΩF ),
whence L1 ≡ L2 in ΩF and consequently we have that ω?,1 ≡ ω?,2.

Next, we apply Lemma 8.1 to both L1 and L2 to deduce that for all Q ∈ DQ0 and
F ⊂ Q, the estimate (

PFωi(F)
PFωi(Q)

)θi
.
PF µi(F)
PF µi(Q)

.
PFωi(F)
PFωi(Q)

holds for i = 1, 2, and µi is defined in (8.2). Observe that PF µ1 ≡ PF µ2 since ω?,1 ≡
ω?,2. Since Adyadic

∞ (Q0) defines an equivalence relationship among dyadically doubling
measures (which the projection measures PF µi are; see Lemma 9.51 of [DM] or Lemma
B.2 of [HM14]), and since we showed in Step 1 that PFω1 ∈ Adyadic

∞ (Q0), we obtain in
this step that PFω2 ∈ Adyadic

∞ (Q0). For definiteness, we have
Conclusion 9.15 (Step 2). There exist θ, θ′ > 0 (independent of τ and Q0) such that for
all Q ∈ DQ0 and all Borel sets F ⊆ Q, we have the estimate

1
C

(σ(F)
σ(Q)

)θ
≤
PFω

X0
2 (F)

PFω
X0
2 (Q)

≤ C
(σ(F)
σ(Q)

)θ′
with C uniform in τ and Q0.
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9.5. Step 3: Extend outside the Carleson region of Q0. Observe that

Ω = ΩF ,Q0 ∪ (RQ0\ΩF ) ∪ (RQ0 ∩ΩF \ΩF ,Q0) ∪ (Ω\RQ0).

We have successfully changed the operator from L0 to Lτ on ΩF ,Q0 ∪ (RQ0\ΩF ) in the
last two steps; it remains to change it in the set Ω̂ := (RQ0 ∩ΩF \ΩF ,Q0)∪ (Ω\RQ0). Thus
we define

L3 =

{
Lτ, in Ω̂,

L2, in Ω\Ω̂.

Hence, note that L3 = Lτ in Ω, and L3 ≡ L2 in Ω\Ω̂ = RQ0\(ΩF \ΩF ,Q0). We will show
that (6.4) holds, so fix ε ∈ (0, 1) and take E ⊂ Q0 with σ(E)

σ(Q0) ≥ ε. In the case that
F = {Q0}, we have the trivial estimate

PFω
X0
3 (E)

PFω
X0
3 (Q0)

=

σ(E)
σ(Q0)ω

X0
3 (Q0)

σ(Q0)
σ(Q0)ω

X0
3 (Q0)

=
σ(E)
σ(Q0)

≥ ε.

We thus suppose that F ⊆ DQ0\{Q0}. For t � 1, recall that we define Σt = ΣQ0,t in
Lemma 7.38. Define Qt = Q0\

⋃
Q′∈It

Q′, where It = {Q′ ∈ DQ0 : t`(Q0) < `(Q′) ≤
2t`(Q0),Q′ ∩ Σt , ∅}. It is easy to see that Σt ⊂

⋃
Q′∈It

Q′ ⊂ ΣCt for C a uniform
constant. Then, for all t = t(ε) small enough, we have that

σ(Q0\Qt) ≤ σ(ΣCt) . A0(Ct)ζσ(Q0) ≤
ε

2
σ(Q0),

where we have used Lemma 3.1 (vi). Letting F = E ∩ Qt, it follows that εσ(Q0) ≤
σ(E) ≤ σ(F) + ε

2σ(Q0), and therefore σ(F)/σ(Q0) ≥ ε/2. Using the conclusion of Step
2, we see that

PFω
X0
2 (F)

PFω
X0
2 (Q0)

&
( σ(F)
σ(Q0)

)θ
≥

(ε
2

)θ
.

Now we claim that PFω
X0
3 (F) ≥ cεPFω

X0
2 (F). The point of our argument is that the

region of discrepancy between A2 and A3 is uniformly far away (depending on t = t(ε))
from most of Q0, allowing us to compare the Poisson kernels of ω2 and ω3 in the set
F ⊆ E, which has been chosen so that it retains most of σ(E) while staying far from the
region of discrepancy between A2 and A3. Since L2 ≡ L3 in RQ0\(ΩF \ΩF ,Q0), then we
have by Lemma 7.38 that

kX0
2 (y) ≈t kX0

3 (y) for σ − almost every y ∈ Qt ⊂ Q0\Σt,

where the implicit constants depends on t and hence on ε. It is then the case that
ωX0

2 (F\(∪Q j∈FQ j) ≈ ω
X0
3 (F\(∪Q j∈FQ j)), and thus we observe the estimate

(9.16) PFω
X0
3 (F) = ωX0

3 (F\(∪Q j∈FQ j)) +
∑
Q j∈F

σ(F ∩ Q j)
σ(Q j)

ωX0
3 (Q j)

≥ cεω
X0
2 (F\(∪Q j∈FQ j)) +

∑
Q j∈F

σ(F ∩ Q j)
σ(Q j)

ωX0
3 (Q j).



68 S. MAYBORODA AND B. POGGI

It remains to estimate the last term. We need only consider the cubes in F that meet
F. Let Q j ∈ F be such a cube. If Q j ⊂ Qt, then again by Lemma 7.38 we have that
ωX0

3 (Q j) ≥ cεω
X0
2 (Q j). Otherwise, Q j ∩ (Q0\Qt) , ∅, whence there exists Q′ ∈ It such

that Q′ ( Q j (since Q j ∩ Qt , ∅). Accordingly, `(Q j) > t`(Q0). Now let Q̃ ∈ DQ j

be a dyadic descendant of Q j which contains xQ j and verifying `(Q̃) = 2−M`(Q j) with
M = 2(1+ log2(A0a−1

0 )) ≈ 1, so that `(Q̃) ≈ `(Q j). Let us see that Q̃ ⊂ Q0\Σa0t/2. Indeed,
choose x∗ ∈ Γ\Q j and y∗ ∈ Q̃ so that dist(Γ\Q j, Q̃) = |x∗ − y∗|, and reckon that

dist(Γ\Q0, Q̃) ≥ dist(Γ\Q j, Q̃) = |x∗ − y∗| ≥ |x∗ − xQ j | − |xQ j − y∗|

≥ a0`(Q j) − diam Q̃ ≥ [a0 − A02−M]`(Q j) > a0
2 t`(Q0),

which does give our claim. We may then apply Lemma 7.38 one last time to see that
kX0

2 (y) ≈t kX0
3 (y) for σ−almost every y ∈ Q̃, and therefore ωX0

3 (Q j) ≥ ωX0
3 (Q̃) ≈ε

ωX0
2 (Q̃) & ωX0

2 (Q j), where we have used the doubling property of the harmonic mea-
sure on the dyadic cubes. We now plug this result back into (9.16) to obtain that

PFω
X0
3 (F) ≥ cεω

X0
2 (F\(∪Q j∈FQ j)) + cε

∑
Q j∈F

σ(F ∩ Q j)
σ(Q j)

ωX0
2 (Q j) = cεPFω

X0
2 (F).

We have arrived at
Conclusion 9.17 (Step 3). There exists ξ > 0 for which the following statement holds:
given ε ∈ (0, 1), there is Cε < ∞ such that for every Q0 ∈ D, if F = {Q j} j ⊂ DQ0 is a
disjoint family satisfying ‖mF ‖C(Q0) < ξ, then for any Borel set F ⊂ Q0,

σ(F)
σ(Q0)

≥ ε =⇒
PFω

X0
Lτ (F)

PFω
X0
Lτ (Q0)

≥
1

Cε
,

and Cε is uniform in τ.

9.6. Step 4: Fix the pole. The conclusion of Step 3 above almost looks like what is
needed; but we ought to improve it so that its conclusion holds for any cube Q ∈ DQ0

while keeping the pole X0 fixed. Nevertheless, this is not difficult; the following result
is immediate from the method proof in [HM12]; we omit the details of the proof carried
out in [CHM19] in a very similar setting (see our Remark 2.8).
Proposition 9.18 (Proposition 4.25 of [CHM19]). There exists ξ > 0 for which the fol-
lowing statement holds: given ε ∈ (0, 1), there is Cε < ∞ such that for every Q0 ∈ DQ0

and for all Q ∈ DQ0 , if F = {Q j} j ⊂ DQ is a disjoint family satisfying ‖mF ‖C(Q) < ξ, then
for any Borel set F ⊂ Q, we have that

σ(F)
σ(Q)

≥ ε =⇒
PFω

X0
Lτ (F)

PFω
X0
Lτ (Q)

≥
1

Cε
,

with Cε uniform in τ. Consequently, ωX0
τ ∈ Adyadic

∞ (Q0) uniformly in τ and Q0. In par-
ticular, there exists 1 < q < ∞ such that kX0

τ ∈ RHdyadic
q (Q0) uniformly in Q0 ∈ D and

τ > 0; and therefore kτ ∈ RHq with RHq characteristic independent of τ.



PERTURBATIONS OF OPERATORS ON DOMAINS WITH LOW DIMENSIONAL BOUNDARIES 69

9.7. Step 5: Pass to the limit in τ. Proposition 9.18 is the desired conclusion for each
operator Lτ, τ > 0, with RHq characteristic independent of τ. We now ought to pass to
the limit as τ → 0 and argue that these quantitative absolute continuity properties are
preserved. The required technology is the following result.
Lemma 9.19 (Limiting lemma). Let A0, A be two matrices satisfying (7.1), and write
L0 = − div A0∇, L = − div A∇. For each τ ≥ 0 small enough, define Aτ = A0 in Γτ (see
Definition 9.2) and Aτ = A in Rn\Γτ. Accordingly, define the operator Lτ := − div Aτ∇.
Let {ωX

0 }, {ω
X}, {ωX

τ } be the families of harmonic measures associated to the operators
L0, L, Lτ respectively. Assume that there exists q ∈ (1,∞) such that dωLτ

dσ ∈ RHq with the
RHq characteristic uniformly bounded in τ. Then ωL � σ and dωL

dσ ∈ RHq.

Proof. Fix the surface ball ∆0 ⊂ Γ, let X0 be a Corkscrew point for the ball ∆0, and
suppose that τ < δ(X0)/4. We first show that ωX0

τ ⇀ ωX0 on ∆0 as τ ↘ 0. Define the
functionals Φ and Φτ on Cc(∆0) by

Φ( f ) =

∫
∆0

f dωX0 , Φτ( f ) =

∫
∆0

f dωX0
τ , f ∈ Cc(Γ).

Let u (respectively, uτ) be the unique solution to the Dirichlet problem Lu = 0 in Ω,
u|Γ = f (respectively, Luτ = 0 in Ω, uτ|Γ = f ). By (7.14), we have that Φ( f ) = u(X0),
Φτ( f ) = uτ(X0). In this setting, using an elementary approximation argument, the
Cauchy-Schwartz inequality, and Lemma 7.7 iv), it is easy to show that the identity (7.11)
holds for all X ∈ Ω\Γ2τ, since the pole X0 lies far away from the support of Aτ−A. Thus,
according to Lemma 7.10, we may write

|Φ( f ) − Φτ( f )| = |u(X0) − uτ(X0)| ≤
∣∣∣ ∫∫

Γτ

(A − Aτ)T (Y)∇YgT
τ (Y, X0)∇u(Y) dY

∣∣∣
≤ 2(CA + CA0)

(∫∫
Γτ

|∇YgT
τ (Y, X0)|2 dm(Y)

) 1
2
(∫∫

Γτ

|∇u(Y)|2 dm(Y)
) 1

2

≤ 2(CA + CA0)
(∫∫

Ω\B(X0,δ(X0)/2)
|∇YgT

τ (Y, X0)|2 dm(Y)
) 1

2
(∫∫

Γτ

|∇u(Y)|2 dm(Y)
) 1

2

≤ 2(CA + CA0)C
1
2 (δ(X0)/2)

1−d
2

(∫∫
Γτ

|∇u(Y)|2 dm(Y)
) 1

2

−→ 0 as τ→ 0,

where we have employed Lemma 7.7 iv), the fact that u ∈ W, and the absolute continuity
of the integral. We have shown that Φτ( f ) −→ Φ( f ), for all f ∈ Cc(∆0), which gives the
claimed weak convergence.

Now suppose that f ∈ Cc(∆0) and ‖ f ‖Lq′ (∆0,σ) = 1, where q′ is the Hölder conjugate of
q. Since ωX0

τ ∈ RHq(∆0) uniformly in τ, then we have that (7.42) holds with ∆ replaced
by ∆0 and X∆ replaced by X0. Consequently, we see that

|Φ( f )| =
∣∣∣ ∫

∆0

f dωX0

∣∣∣ =

∣∣∣ lim
τ→0

∫
∆0

f dωX0
τ

∣∣∣ ≤ sup
τ>0

∣∣∣ ∫
∆0

f kX0
τ dσ

∣∣∣
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≤ sup
τ>0

(
‖kX0
τ ‖Lq(∆0,σ)‖ f ‖Lq′ (∆0,σ)

)
≤ C0σ(∆0)1−q.

It follows that Φ is a bounded linear functional on Lq′(∆0, σ). Hence we must have that
ωX0 � σ and kX0 = dωX0

dσ ∈ Lq(∆0, σ) satisfies the estimate (7.42), so that kX0 ∈ RHq(∆0).
Since ∆0 ⊂ Γ was arbitrary, we finally conclude that dω

dσ ∈ RHq. �

Using the previous lemma in conjunction with Proposition 9.18 yields the desired
conclusion for the operator L and Theorem 1.2 is shown. �

10. Proof of Theorem 1.5

In this section, we give the proof of Theorem 1.5; in fact, the proof of this theorem is
very similar to but simpler than the proof of Theorem 1.2 in the previous section, as we
will not need to use the projection lemma, Lemma 8.1, nor the extrapolation theorem,
Theorem 6.3. As such, we mainly describe the set-up here and point out the differences
to the proof of Theorem 1.5.

Let A0, A be two matrices that satisfy (7.1), write A0 = w−1A0, A = w−1A, and
suppose that dλ(X) = a(X)2

δ(X)n−d dX is a (continuous) Carleson measure with |||λ|||C ≤ ε0,
where a is defined in (1.3) and ε0 is small and to be chosen later. As in Lemma 6.5,
the natural discretization of the Carleson measure λ is the collection m = {αQ}Q∈D with
αQ as defined in (6.6). By Lemma 6.5, we see that ‖m‖C . ε0. Let L0 = − div A0∇,
L = − div A∇, and let ω0, ω be the harmonic measures of L0, L respectively.

Fix Q0 ∈ D, and recall that RQ0 ⊂ B(xQ0 , 7
√

nA0`(Q0)) (see (4.24)). Let B̂0 :=
B(xQ0 , 30c−1 √nA2`(Q0)), and fix X0 ∈ Ω as a Corkscrew point (with Corkscrew constant
c) for the surface ball B̂0 ∩ Γ. Then X0 ∈ Ω\B(xQ0 , 30

√
nA2`(Q0)) ⊂ Ω\R∗∗Q0

⊂ Ω\RQ0 .
Moreover, according to Corollary 7.26, we have that ωX0 is dyadically doubling in Q0,
while we also have that δ(X0) ≈ dist(X0,Q0) ≈ `(Q0).

Since (D)p′ is solvable for L0, then by Theorem 7.40, we have that ωX0
L0

= ωX0
0 ∈

RHp(Q0) (with reverse Hölder characteristic independent of Q0).
Step 0. Owing to our assumptions and Theorem 1.2, we a priori have that ωL � σ.

However, we still ought to make a qualitative reduction as in Step 0 of the proof of The-
orem 1.2, to guarantee that k ∈ Lp

loc(Γ, σ) for the fixed p in our hypothesis. Accordingly,
we define Aτ as Aτ = A0 in the τ−tube Γτ (see Definition 9.2), and Aτ = A in Rn\Γτ. We
work with Lτ in place of L in the steps below, and ultimately pass to the limit as τ → 0
using Lemma 9.19, very similarly as in Step 5 of the proof of Theorem 1.2. We omit
further details.

Step 1. Introduce the operator L1 defined as L1 = L in B̂0, and L1 = L0 in Ω\B̂0. We
write ω1 for the harmonic measure associated to the operator L1, and g1 for the Green
function associated to L1. We have that kX0

0 ∈ RHp(Q0), and in particular by Theorem
7.40, Harnack Chains and the Harnack Inequality, we have that

(10.1)
∫

Q0

(
kX0

0

)p dσ . σ(Q0)1−p.
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Our immediate goal in Step 1 is to show that (10.1) remains true when kX0
0 is replaced

by kX0
1 , the Poisson kernel for the operator L1 defined above. The proof follows essen-

tially the same as that of Step 1 in the previous section, where F = ∅ in our situation;
thus we omit it and present only the

Conclusion 10.2 (Step 1). The estimate (10.1) holds with kX0
0 replaced by kX0

1 .

We remark that the smallness of ε0, used in the analogue of (9.11), necessarily depends
on the implicit constant in Theorem 7.47 applied to the operator L0; hence, ε0 depends
on the RHp constant of ω0.

Step 2. Now let L2 = L in ΩB̂0
and L2 = L1 in B̂0. Note that L2 ≡ L in Ω. According

to our choice of B̂0 and Lemma 7.34, we have that kX0
2 (y) ≈ kX0

1 (y) for σ−almost every
y ∈ B(xQ0 , 7

√
nA0`(Q0)) ⊃ Q0. As such, we reckon the estimate∫

Q0

(kX0
2 )p dσ ≈

∫
Q0

(kX0
1 )p dσ . σ(Q0)1−p.

Let XQ0 ∈ Ω be a Corkscrew point for Q0. Then by Lemma 7.33 and the doubling
property of the harmonic measure, we have that kX0

2 ≈ k
XQ0
2 for σ−almost every y ∈ Q0.

Therefore, we conclude that
∫

Q0
(kXQ0 )p dσ . σ(Q0)1−p. Since Q0 ∈ D was arbitrary,

then the Poisson kernel k for the operator L satisfies the condition (7.46) in Remark 7.45.
By this same remark, we know that then k satisfies the condition (7.42), and finally by
Theorem 7.40 we obtain the desired conclusion. �
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