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Abstract. This is the first part of a series of two papers where we study pertur-
bations of divergence form second order elliptic operators − div A∇ by complex-
valued first and zeroth order terms, whose coefficients lie in critical spaces, via
the method of layer potentials. In the present paper, we establish L2 control of
the square function via a vector-valued Tb theorem and abstract layer potentials,
and use these square function bounds to obtain uniform slice bounds for solutions.
For instance, an operator for which our results are new is the generalized magnetic
Schrödinger operator −(∇− ia)A(∇− ia) + V when the magnetic potential a and the
electric potential V are accordingly small in the norm of a scale-invariant Lebesgue
space.
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1. Introduction

In this paper, the first in a two-part series, we lay the groundwork for the study of
the L2 Dirichlet, Neumann and Regularity problems for critical perturbations of sec-
ond order divergence form equations by lower order terms. In particular, we produce
the natural (L2) square function estimates for (abstract) layer potential operators. We
consider differential operators of the form

(1.1) L := −div (A∇ + B1) + B2 · ∇ + V

defined on Rn × R = {(x, t)}, n ≥ 3, where A = A(x) is an (n + 1) × (n + 1) matrix of
L∞ complex coefficients, defined on Rn (independent of t) and satisfying a uniform
ellipticity condition:

(1.2) λ|ξ|2 ≤ <e 〈A(x)ξ, ξ〉 := <e
n+1∑
i, j=1

Ai j(x)ξ jξi, ‖A‖L∞(Rn) ≤ Λ,

for some Λ, λ > 0, and for all ξ ∈ Cn+1, x ∈ Rn. The first order complex coefficients
B1 = B1(x), B2 = B2(x) ∈

(
Ln(Rn)

)n
(independent of t) and the complex potential

V = V(x) ∈ L
n
2 (Rn) (again independent of t) are such that

max
{
‖B1‖Ln(Rn), ‖B2‖Ln(Rn), ‖V‖L n

2 (Rn)

}
≤ ε0

for some ε0 depending on dimension and the ellipticity of A in order to ensure the
accretivity of the form associated to the operator L on the space

Y1,2(Rn+1) :=
{

u ∈ L2∗(Rn+1) : ∇u ∈ L2(Rn+1)
}

equipped with the norm

‖u‖Y1,2(Rn+1) := ‖u‖L2∗ (Rn+1) + ‖∇u‖L2(Rn+1),

where p∗ := (n+1)p
n+1−p . We interpret solutions of Lu = 0 in the weak sense; that is,

u ∈ W1,2
loc (Rn+1) is a solution of Lu = 0 in Ω ⊂ Rn+1 if for every ϕ ∈ C∞c (Ω) it holds

that ∫∫
Rn+1

(
(A∇u + B1u) · ∇ϕ + B2 · ∇uϕ

)
= 0.

Examples of operators of the type defined above include the Schrödinger operator
−∆ + V with t−independent electric potential V ∈ L

n
2 (Rn) having a small L

n
2 norm,

and the generalized magnetic Schrödinger operator −(∇ − ia)A(∇ − ia), where A
is a t−independent complex matrix satisfying (1.2), and the magnetic potential a ∈
Ln(Rn)n is t−independent and has small Ln norm. We treat the case n ≥ 3 because the
Sobolev spaces we encounter are of the form

.
W1,2(Rn)∩Ls for some s ≥ 1, and in this

case, these spaces embed continuously into Lebesgue spaces. This is not the situation
when n = 2, in which case the Sobolev spaces considered embed continuously into
BMO. If one were to treat the case n = 2, it would be natural to assume that V = 0
and that Bi, i = 1, 2 are divergence-free. Under these additional hypotheses, one can
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use a compensated compactness argument [CLMS93] to obtain the boundedness and
invertibility of the form associated to L (see [GHN16]).

However, there are several considerations in the case n ≥ 3 that set it qualitatively
apart from n = 2. For instance, when n = 2, all solutions are locally Hölder con-
tinuous and this is certainly not the case when n ≥ 3. Indeed, let u(x) = − ln |x|,
x ∈ Rn and build V(x) or B1(x) so that either −∆u + Vu = 0 or −∆u + div B1u = 0
in the n-dimensional ball B(0, 1/2). By extending u to be a function on B(0, 1/2) ×R
by u(x, t) = u(x), we may see that the analogous equations in n + 1 dimensions are
satisfied by u(x, t), and yet u(x, t) fails to be locally bounded despite the fact that
V2, B1 ∈ Ln(Rn). Moreover, by considering u(x, t) on a smaller ball and replacing
V or B1 by Vε = V1B(0,ε) or (B1)ε = B11B(0,ε) respectively, we may ensure that V2

ε

or (B1)ε have arbitrarily small Ln(Rn) norm, provided that we choose ε > 0 small
enough. Therefore, solutions in our perturbative regime fail to be locally bounded
and hence fail (miserably) to be locally Hölder continuous.

The lack of local Hölder continuity (or local boundedness) is one reason our
results are not at all a straightforward adaptation of related works. For instance,
in [AAAHK11] the authors are able to treat the fundamental solution as a Calderón-
Zygmund-Littlewood-Paley kernel using pointwise estimates on the fundamental so-
lution (and its t-derivatives) presented in [HK07]. Additionally, although establishing
a Caccioppoli inequality (Proposition 3.1) is easy, constants are not necessarily null
solutions to our operator and thus this Caccioppoli inequality does not yield the usual
“reverse” Poincaré inequality for solutions. We remind the reader that if there are
no lower order terms, the Caccioppoli inequality (becomes a “reverse” Poincaré in-
equality and) improves to an Lp − L2 version; more precisely, we have that for each
ball Br and some p > 2, the estimate(

−

∫
Br

|∇u|p dx
)1/p
.

1
r

(
−

∫
B2r

|u|2 dx
)1/2

holds [Mey63, Geh73, Gia83]. We do not manage to obtain the above Lp − L2 in-
equality, but rather a suitable Lp − Lp version (Proposition 3.9). The unavailability
of these desirable estimates makes it far less clear whether constructing the funda-
mental solution will be useful for us, and so we do not attempt it. We still endeavor
to use the method of layer potentials, whence we appeal to (and adapt) the abstract
constructions of Barton [Bar17], which avoid the use of fundamental solutions en-
tirely. Fundamental solutions have been constructed in other situations with lower
order terms in [DHM18] and [KS19], but they rely on sign conditions.

Our results in this series of papers concern the unique solvability of some classical
L2 boundary value problems in the upper half space Rn+1

+ := Rn × R+. To state
them, we ought to recall the definition of the (L2−averaged) non-tangential maximal
operator N. Given x0 ∈ R

n, define the cone γ(x0) = {(x, t) ∈ Rn+1
+ : |x − x0| < t}.

Then, for u : Rn+1
+ → C we write

Nu(x0) := sup
(x,t)∈γ(x0)

(
−−

∫∫
|x−y|<t, |s−t|< t

2

|u(y, s)|2 dy ds
) 1

2
.

Given f : Rn → C, we say that u → f non-tangentially, or u → f n.t., if for almost
every x ∈ Rn, lim(y,t)→(x,0) u(y, t) = f (x), where the limit runs over (y, t) ∈ γ(x).
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We consider the following boundary value problems: The Dirichlet problem

(D2)



Lu = 0 in Rn+1
+ ,

limt→0 u(·, t) = f strongly in L2(Rn),

Nu ∈ L2(Rn) and u→ f non-tangentially,!
Rn+1

+
t|∇u(x, t)|2 dx dt < ∞,

limt→∞ u(·, t) = 0 in the sense of distributions,

the Neumann problem

(N2)



Lu = 0 in Rn+1
+ ,

∂u
∂νL

:= −en+1(A∇u + B1u)(·, 0) = g ∈ L2(Rn), 1

N(∇u) ∈ L2(Rn),!
Rn+1

+
t|∂t∇u(x, t)|2 dx dt < ∞,

limt→∞ ∇u(·, t) = 0 in the sense of distributions,

and the Regularity problem

(R2)



Lu = 0 in Rn+1
+ ,

u(·, t)→ f weakly in Y1,2(Rn),

N(∇u) ∈ L2(Rn), and u→ f non-tangentially,!
Rn+1

+
t|∂t∇u(x, t)|2 dx dt < ∞,

limt→∞ ∇u(·, t) = 0 in the sense of distributions.

The idea is to follow a (by now) familiar process for proving L2 existence and
uniqueness for these boundary value problems. This process has three steps, which
can be (very) roughly summarized as:

(1) Show square function (and/or non-tangential maximal function) bounds for
a linear operator defined, perhaps by continuous extension, on L2, where the
operator necessarily produces weak solutions to the elliptic equation (for us,
this operator is either the single or double layer potential).

(2) Show the boundedness and invertibility of the appropriate boundary trace of
the operator.

(3) Show that any solution with square function (and/or non-tangential maximal
function) bounds is, in fact, the solution produced by the linear operator with
appropriate data.

This paper is concerned establishing the square function bounds for abstract layer
potential operators, that is, step (1) in the process above. We prove the following.
Theorem 1.3 (Square function bound for the single layer potential). Suppose that
L0 = − div A∇ is a divergence form elliptic operator with t-independent coefficients,
and that the matrix A is elliptic. Then, there exists ε0 > 0, depending on n, λ, and Λ,

1The boundary data is achieved in the distributional sense; see Section 4. We elaborate on this in the
upcoming paper.
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such that if M ∈ Mn+1(Rn,C), V ∈ Ln/2(Rn) and Bi ∈ Ln(Rn) are (all) t-independent
with

‖M‖L∞(Rn) + ‖B1‖Ln(Rn) + ‖B2‖Ln(Rn) + ‖V‖
L

n
2 (Rn)

< ε0,

then for each m ∈ N, we have the estimate∫∫
Rn+1

+

∣∣tm∂m+1
t SLt f (x)

∣∣2 dx dt
t
≤ C‖ f ‖2L2(Rn),

where C depends on m, n, λ, and Λ, and

L := − div([A + M]∇ + B1) + B2 · ∇ + V.

Under the same hypothesis, the analogous bounds hold for L replaced by L∗, and
for Rn+1

+ replaced by Rn+1
− .

We point out that in the previous result, there is no restriction on the matrix A, other
than that it be t-independent and satisfy the complex ellipticity condition (1.2). In the
homogeneous, purely second order case (i.e., the case that B1, B2, and V are all zero),
this result is due to Rosén [Ros13]; an alternative proof, with an extra hypothesis of
De Giorgi/Nash/Moser regularity, appears in [GH17].

We also obtain a uniform estimate on horizontal slices in terms of the square func-
tion.
Theorem 1.4 (Uniform control of Y1,2(Rn) norm on each horizontal slice). Suppose
that u ∈ Y1,2(Rn+1

+ ) and Lu = 0 in Rn+1
+ in the weak sense. Then for every τ > 0,

‖Trτ u‖
L

2n
n−2 (Rn)

+ ‖Trτ∇u‖L2(Rn) .

∫ ∞
τ

∫
Rn

t|D2
n+1u|2 dxdt ≤ ‖|tD2

n+1u‖|,(1.5)

where the traces exist in the sense of Lemma 2.3, and C depends on m, n, λ, and Λ,
provided that max{‖B1‖n, ‖B2‖n, ‖V‖ n

2
} is sufficiently small depending on m, n, λ, and

Λ. Under the same hypothesis, the analogous bounds hold for L replaced by L∗, and
for Rn+1

+ replaced by Rn+1
− .

Now we make the following important remark. Consider the modified Dirichlet,
Neumann, and Regularity problems (D2’), (N2’) and (R2’) where the third condition
in each problem is deleted; that is,

(1.6) (D2’), (N2’) and (R2’) are the problems with only square function bounds,
and not non-tangential maximal function estimates nor n.t. limits.

In this case, our Theorems 1.3 and 1.4, when combined with well-known techniques
in the literature, give the unique L2 solvability of the modified Dirichlet, Neumann,
and Regularity problems within a perturbative regime (see Theorem 1.7). Indeed,
the boundedness and invertibility of the boundary trace operators2 require little more
than the “slice bounds” produced here along with analytic perturbation theory; while
the uniqueness of solutions with square function bounds is an exercise3 in “push-
ing” a representation formula (Green’s identity) to the boundary and exploiting the
invertibility of the trace operators. We mention that uniqueness, that is, pushing a
representation formula to the boundary, can be established under weak hypotheses

2This invertibility gives the existence of solutions to the boundary value problems.
3Especially if one reads and is inspired by [AM19].
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that are implied by either square function or non-tangential maximal function esti-
mates. Therefore, the significant contributions from the forthcoming paper are the
non-tangential estimates which will allow us to obtain a stronger result than Theorem
1.7 below. For that reason, in this article we omit further details of the exercise that
yields the L2 solvability of the modified problems from the square function estimates
and uniform slice estimates (but the full details will be given in the forthcoming pa-
per).

We summarize our observations in the following result.
Theorem 1.7. Suppose that L0 = − div A∇ is a divergence form operator with com-
plex, bounded, elliptic, t−independent coefficients. Suppose further that ± 1

2 I + KL :
L2(Rn)→ L2(Rn), ± 1

2 I + K̃L : L2(Rn)→ L2(Rn), and (S 0)L : L2(Rn)→ Y1,2(Rn) are
all bounded and invertible for L = L0,L

∗
0, where KL, K̃L and (S 0)L are the “bound-

ary operators” associated to L. Then there exists ε̃0 > 0 depending on dimension,
ellipticity of A and the constants in the operator norms of ± 1

2 I + KL,±1
2 I + K̃L and

(S 0)L, L = L0,L
∗
0 and their inverses, such that if M ∈ Mn+1(Rn,C), V ∈ Ln/2(Rn)

and Bi ∈ Ln(Rn) are (all) t-independent with

‖M‖L∞(Rn) + ‖B1‖Ln(Rn) + ‖B2‖Ln(Rn) + ‖V‖
L

n
2 (Rn)

< ε̃0

then the modified problems (D2’), (N2’) and (R2’) (see (1.6)) are uniquely solvable
for L1, where

L1 := − div([A + M]∇ + B1) + B2 · ∇ + V.
Moreover, the solutions to (D2’), (N2’) and (R2’) for L1 can be represented by layer
potentials, and have the natural square function bounds in terms of the data.

This paper is organized as follows. In Section 3 we prove some elementary but
essential PDE estimates, and in Section 4 we develop the notion of abstract layer
potentials. Next, we show that for ε0 > 0 small enough, the single and double layer
potentials have square function estimates (Theorems 1.3 and 5.5, and Lemma 6.2),
which, in turn, give us ‘slice space’ estimates for the single and double layer po-
tentials (Theorems 6.12 and 6.17). In passing we remark that this analysis already
allows us to establish the jump relations (as weak limits in L2(Rn))

D± f → (∓ 1
2 I + K) f

and

(∇S t)|t=±s f → ∓
1
2

f (x)
An+1,n+1

en+1 + T f

for f in L2, whereD and S are the double and single layer potentials.
Our results in this series may be best thought of as extensions of the results

in [AAAHK11] to lower-order terms as well as complex matrices (and not only those
arising from perturbations of real symmetric coefficients or constant coefficients), al-
beit with the important distiction that we do not require DeGiorgi-Nash-Moser [De
57, Nas58, Mos61] estimates; this allows us to consider any complex elliptic ma-
trix for A. Let us mention a few applications of our theorems. For the magnetic
Schrödinger operator −(∇ − ia)2 when a ∈ Ln(Rn)n is t−independent and has small
Ln(Rn) norm, we obtain in this paper the first estimate for the square function and
solvability of the modified problems (D2’), (N2’), (R2’) in the unbounded setting
of the half-space. In fact, since our methods do not rely on an algebraic structure
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other than t−independence, we have similar novel conclusions for the generalized
magnetic Schrödinger operators −(∇ − ia)A(∇ − ia) where A is a real, symmetric,
t−independent, elliptic, bounded matrix, and a is as above.

We will now review some of the extensive history of boundary value problems
for second order divergence form elliptic operators in Lipschitz domains. Unless
otherwise stated, the results below will always be results for operators without lower
order terms. For Laplace equation (L = −∆) in a Lipschitz domain, solvability of
(D2) was obtained by Dahlberg [Dah77], and solvability of (N2) and (R2) was shown
by Jerison and Kenig [JK81b]; these were also shown later by Verchota [Ver84] via
the method of layer potentials, using the celebrated result of Coifman, McIntosh and
Meyer [CMM82]. For real, symmetric and t-independent coefficients, the solvability
of (D2) was shown by Jerison and Kenig [JK81a], and the solvability of (N2) and
(R2) was shown by Kenig and Pipher [KP93]. The solvability via the method of
layer potentials in the case of real, symmetric and t-independent coefficients was
shown in [AAAHK11] (and previously by Mitrea, Mitrea and Taylor [MMT01] with
some additional smoothness assumptions on the coefficients).

Aside from the results in [AAAHK11, AAH08, AAM10], which we describe fur-
ther below, the known results for non-symmetric, t-independent matrices can be split
into three categories: complex perturbations of constant coefficient matrices, ‘block’
form matrices and real t-independent coefficients. In [FJK84], Fabes, Jerison and
Kenig showed solvability of (D2) for small complex L∞-perturbations of constant
coefficient operators, the solvability of (D2), (N2) and (R2) in this setting was shown
via layer potentials in [AAAHK11] (see [AAAHK11, Theorem 1.15]).

Solvability of L2 boundary value problems in the case of all ‘block’ form matrices

A(x) =


0

B(x)
...
0

0 · · · 0 1

 ,

where B(x) is an n× n matrix is, in the case of (D2), a consequence of the semigroup
theory and, in the case of (N2) and (R2), a consequence of the solution to the Kato
problem [AHLMT02] on Rn. In particular, if we let J := − divx B(x)∇x, then one
obtains the solvability of (R2) by solving the Kato problem for J, and one obtains
the solvability of (N2) from solving the Kato problem for ad j(J). In fact, for (N2),
one may equivalently show that the Riesz transforms associated to J, ∇J−1/2, are L2

bounded, which can, in turn, be interpreted as a statement about the boundedness of
the single layer potential from L2 into

.
W1,2. These results were obtained in [CMM82]

(n + 1 = 2) and in [AHLMT02] (n + 1 ≥ 3); see also [HM02, AHLT01, HLM02].
In the case of real, t-independent coefficients, the results available are of the form

(Dp) (for some p < ∞ sufficiently large), (Np) and (Rp) (for some p > 1, typically
dual to the Dirichlet exponent), where (Dp), (Np), and (Rp) are Lp analogues of
(D2), (N2), and (R2) respectively. This is the best one can hope for by a counter-
example in [KKPT00] (but see also [Axe10]), where the authors show that for any
fixed p < ∞, there exists a real (non-symmetric) coefficient matrix A, such that
(Dp) fails to be solvable for the associated divergence form elliptic operator. In
[KKPT00], the authors show that for all real t-independent coefficients with n + 1 =
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2, the problem (Dp) is solvable for some p < ∞. In the same setting, Kenig and
Rule [KR09] showed the solvability of (Nq) and (Rq) for q the Hölder conjugate
of the exponent p from the aforementioned result [KKPT00]. More recently, Barton
[Bar13] perturbed these solvability results to deduce that (Dp), (Nq), and (Rq) remain
solvable in the half-plane when the matrix consists of almost-real coefficients; and the
methods of [KKPT00] were extended by Hofmann, Kenig, Mayboroda and Pipher
[HKMP15b, HKMP15a] to show the solvability of (Dp) for some p < ∞ for all real
t-independent coefficients when n + 1 ≥ 3 and solvability of (Rq), again with q dual
to p.

As mentioned above, perhaps the closest results to the current exposition are
[AAAHK11, AAH08, AAM10], where L2 solvability of boundary value problems
was explored for full complex matrices, either by the method of layer potentials
[AAAHK11] or the “first-order approach” [AAH08, AAM10] (which relies on the
functional calculus of Dirac operators associated to divergence form elliptic opera-
tors). In [AAAHK11], the authors show solvability of (D2), (N2) and (R2) via the
method of layer potentials for L∞ perturbations of real, symmetric t-independent co-
efficients, and L∞ perturbations of constant coefficients. In [AAH08], the authors
show solvability of (D2), (N2) and (R2) in the same cases as [AAAHK11], as well as
perturbations from block form matrices. In [AAM10], the authors treat the previous
cases of [AAH08] as well as perturbations of Hermitian coefficient matrices.

We mention also the work of Gesztesy, Nichols, and the second author of this
paper [GHN16], where the authors studied the n-dimensional Kato problem related
to our perturbations. The works [AAAHK11, AAH08, AAM10, GHN16] as well as
[Ros13, GH17, HMM15] served as an indication that the present results should hold.
The techniques from the solution to the (original) Kato problem are integral to our
analysis. In particular, we adapt the methods from [AAAHK11, GH17, HMM15] to
prove our square function estimates for the single layer potential (Theorems 1.3 and
5.5) via the generalized Tb theory developed in the resolution of the Kato problem
[AHLMT02] and since refined in [GH17].

Let us remark on the assumption of t-independence. Given a second order diver-
gence form elliptic operator (no lower order terms), define the transverse modulus of
continuity ω(τ) : (0,∞)→ [0,∞] as

ω(τ) := sup
x∈Rn

sup
t∈(0,τ)

|A(x, t) − A(x, 0)|.

In [CFK81], Caffarelli, Fabes and Kenig showed that given any function ω(τ) :
(0,∞) → [0,∞] such that

∫ 1
0 [ω(τ)]2 dτ/τ = ∞, there exists a real, symmetric el-

liptic matrix with transverse modulus of continuity ω(τ) such that the correspond-
ing elliptic measure and n-dimensional Lebesgue measure (on Rn × {0}) are mutu-
ally singular, and hence (D2) (or even (Dp) for any p) fails to be solvable. On the
other hand, in [FJK84], the authors show that (D2) is uniquely solvable provided
that

∫ 1
0 [ω(τ)]2 dτ/τ < ∞ and that A(x, 0) is sufficiently close to a constant matrix.

Later, refinements of this condition were introduced and investigated; in these refine-
ments one measures some discrepancy on Whitney boxes quantified by a Carleson
measure condition; see, for instance, [AA11, FKP91, Dah86, DPP07, DPR17, DP19,
HMM15, KP95, KP01, FP]. In light of these constructions, it is natural to consider
t−independent coefficients as an entry point to our investigations.
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We end this review of the history of the work on the homogeneous (i.e., no lower
order terms) operators by noting that the a priori connections between the different
problems (Dp), (Np′) and (Rp′) have also been of great interest. In some instances
(say, A is real, t-independent), one has that the solvability of (Rp) for L implies solv-
ability of (Dp′) for the adjoint operator L∗, and vice versa (where p′ is the Hölder
conjugate to p) (see [Ken94]), but it was found in [May10] that such implications
need not hold in the general setting of complex coefficients, even for t-independent
matrices. We refer to [May10] for a more systematic review of these connections.

The literature in the setting with lower order terms present (that is, not all of
b1, b2,V are identically 0) is much more sparse. In [HL01], parabolic operators
with singular drift terms b2 were studied, and their results would later be applied to-
ward (Dp) for elliptic operators with singular drift terms b2 in [KP01] and [DPP07].
When A ≡ I, b1 ≡ b2 ≡ 0 and V > 0 satisfies certain conditions, Shen proved the
solvability of (Np) on Lipschitz domains in [She94]. His results were later extended
in [Tao12, TW01] to (Rp) and under weaker assumptions on the potential V . It is a
critical element of the proof that the leading term of L ≡ −∆ + V is the Laplacian,
and the question of (Np)−solvability for Schrödinger operators on rough domains in
the case that A , I remain open, even under generous assumptions on V .

More recently, the problems (D2) and (R2) for equations with lower order terms
have been considered in [Sak19] in bounded Lipschitz domains, under some conti-
nuity and sign assumptions on the coefficients. Solvability results for the variational
Dirichlet problem of equations with lower order terms on unbounded domains have
been obtained in [Mou]. Finally, we bring attention to [MT], where, through the
development of a holomorphic functional calculus, the authors proved the L2 well-
posedness of the Dirichlet, Neumann, and regularity problems in the t−independent
half-space setting for the Schrödinger operator − div A∇ + V with Hermitian A and
potential V in the reverse Hölder class RH

n
2 .

2. Preliminaries

As stated above, our standing assumption will be that n ≥ 3, and the ambient
space will always be Rn+1 = {x, t : x ∈ Rn, t ∈ R}. We employ the following standard
notation:

• We will use lower-case x, y, z to denote points in Rn and lower-case t, s, τ to denote
real numbers. By convention, x = (x1, . . . , xn), and xn+1 = t. We will use capital
X,Y,Z to denote points in Rn+1. The symbols e1, . . . , en+1 are reserved for the
standard basis vectors in Rn+1.

• We will often be breaking up vectors into their parallel and perpendicular parts. For
an (n + 1)-dimensional vector ~V = (V1, . . . ,Vn,Vn+1), we define its ‘horizontal’ or
‘parallel’ component as

V‖ := (V1, . . . ,Vn),

and its ‘vertical’ or ‘transverse’ component as V⊥ = Vn+1. Similarly, we label the
horizontal component of the (n + 1)-dimensional gradient operator as

∇‖ := ∇x := (∂x1 , . . . , ∂xn),

and the ‘vertical’ component as Dn+1 or ∇⊥.
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• Given the (n+1)× (n+1) complex-valued matrix A, for each i, j = 1, . . . , n+1, we
denote by Ai j the i j−th entry of A. We denote by Ã the (n + 1) × n submatrix of A
consisting of the first n columns of A. We define ~Ai,· as the (n+1)−dimensional row
vector made up of the i−th row of A; similarly we let ~A·, j be the (n+1)−dimensional
column vector made up of the j−th row of A.

• We set Rn+1
+ := Rn × (0,+∞) and ∂Rn+1

+ := Rn × {0}. We define Rn+1
− similarly and

often we write Rn in place of ∂Rn+1
+ when confusion may not arise. For t ∈ R, we

denote Rn+1
t = Rn+1

+,t := Rn × (t,∞), and Rn+1
−,t := Rn × (−∞, t).

• The letter Q will always denote a cube in Rn. By `(Q) and xQ we denote the side
length and center of Q, respectively. We write Q(x, r) to denote the cube with
center x and sides of length r, parallel to the coordinate axes.

• Given a (closed) n-dimensional cube Q = Q(x, r), its concentric dilate by a factor
of κ > 0 will be denoted κQ := Q(x, κr). Similar dilations are defined for cubes in
Rn+1 as well as (open) balls in Rn and Rn+1.

• For a, b ∈ [−∞,∞], we set Σb
a :=

{
X = (x, t) ∈ Rn+1 : t ∈ (a, b)

}
.

• Given a Borel set E and Borel measure µ, for any µ|E-measurable function f we
define the µ-average of f over E as

−

∫
E

f dµ :=
1

µ(E)

∫
E

f dµ.

• For a Borel set E ⊂ Rn+1, we let 1E denote the usual indicator function of E; that
is, 1E(x) = 1 if x ∈ E, and 1E(x) = 0 if x < E.

• For a Banach space X, we let B(X) denote the space of bounded linear operators
on X. Simiarly, if X and Y are Banach spaces, we denote by B(X,Y) the space of
bounded linear operators X → Y .

We will work with several function spaces; let us briefly describe them. For the
rest of the paper, we assume that the reader is familiar with the basics of the theory
of distributions and Fourier Transform and the basics of the theory of Sobolev spaces
(see [Leo17]). We delegate some of the basic definitions and results to these and
other introductory texts.

Let Ω be an open set in Rk for some k ∈ N. For any m ∈ N and any p ∈
[1,∞), the space Lp(Ω)m = Lp(Ω,Cm) consists of the complex-valued p−th inte-
grable m−dimensional vector functions over Ω. We equip Lp(Ω,Cm) with the norm

‖ ~f ‖Lp(Ω,Cm) =
( m∑

i=1

∫
Ω

| fi|p
) 1

p
, ~f = ( f1, . . . , fm).

For simplicity of notation, we often write ‖ ~f ‖p = ‖ ~f ‖Lp(Ω) = ‖ ~f ‖Lp(Ω,Cm) when the
domain Ω and the dimension of the vector function ~f are clear from the context (most
often, when Ω is the ambient space, which for us means either Ω = Rn or Ω = Rn+1).

The space C∞c (Ω) consists of all compactly supported smooth complex-valued
functions in Ω. As usual, we denote D = C∞c (Rn+1), and we let D ′ = D∗ be the
space of distributions on Rn+1. The space S consists of the Schwartz functions on
Rn+1, and S ′ = S ∗ is the space of tempered distributions on Rn+1.
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For p ∈ [1,∞), we denote by W1,p(Ω) the usual Sobolev space of functions in
Lp(Ω) whose weak gradients exist and lie in (Lp(Ω))n+1. We endow this space with
the norm

‖u‖W1,p(Ω) := ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω).

We define W1,p
0 (Ω) as the completion of C∞c (Ω) in the above norm. We shall have

occasion to discuss the homogeneous Sobolev spaces as well: by
.

W1,p(Ω) we denote
the space of functions in L1

loc(Ω) whose weak gradients exist and lie in Lp(Ω). We
equip this space with the seminorm

|u| .
W1,p(Ω)

:= ‖∇u‖Lp(Ω),

and point out that
.

W1,p(Ω) coincides with the completion of the quotient space
C∞(Ω)/C in the | · | .

W1,p(Ω)
(quotient) norm. For p ∈ (1, n + 1) and Ω ⊂ Rn+1 an open

set, we define the space Y1,p(Ω) as

Y1,p(Ω) :=
{

u ∈ L
(n+1)p
n+1−p (Ω) : ∇u ∈ Lp(Ω)

}
.

Write p∗ := (n+1)p
n+1−p . We equip this space with the norm

‖u‖Y1,p(Ω) := ‖u‖Lp∗ (Ω) + ‖∇u‖Lp(Ω).

We define Y1,p
0 (Ω) as the completion of C∞c (Ω) in this norm. By virtue of the Sobolev

embedding, when p ∈ (1, n+1) we have that Y1,p
0 (Ω) coincides with the completion of

C∞c (Ω) in the
.

W1,p(Ω) seminorm. Moreover, we have that Y1,p
0 (Rn+1) = Y1,p(Rn+1).

The Y1,2 spaces exhibit the following useful property.
Lemma 2.1 (Integrability up to a constant of a function with square integrable gradi-
ent on a half-space). Suppose that u ∈ L1

loc(Σb
a) for some a < b, a, b ∈ [−∞,∞], either

a = −∞ or b = +∞, and that the distributional gradient satisfies ∇u ∈ L2(Σb
a). Then

there exists c ∈ C such that u − c ∈ Y1,2(Σb
a).

The proof is very similar to that of Theorem 1.78 in [MZ97], thus we omit it.
In our paper, whenever we write u(t) for t ∈ R, we mean

(2.2) u(t) = u(·, t);

thus u(t) is a measurable function on Rn. Let us present a fact regarding the regularity
of functions in Y1,2(Rn+1) when seen as single-variable vector-valued maps. The
proof is omitted as it is straightforward.
Lemma 2.3 (Local Hölder continuity in the transversal direction). Suppose that u ∈
Y1,2(Σb

a) for some a < b. Then it holds that u ∈ Cα
loc((a, b); L2∗(Rn)) for some ex-

ponent α > 0 (see (2.2)). Moreover, if ∂t∇u ∈ L2(Σb
a), then we also have that

∇u ∈ Cβ
loc((a, b); L2(Rn)) for some β > 0.

Remark 2.4. Note that the functions above are representatives of u(t) and ∇u(t), but
that these retain the same properties as their smooth counterparts when acting on
functions defined on the slice {xn+1 = t}. More precisely, for any ~ϕ ∈ C∞c (Rn;Cn) and
any t ∈ (a, b), we have the identity∫

Rn
u(x, t) div‖ ~ϕ(x) dx = −

∫
Rn
∇‖u(x, t) · ~ϕ(x) dx.
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The above identity is already true for a.e. t ∈ (a, b), and is seen to be true for arbitrary
t ∈ (a, b) by the continuity of u and ∇u.

Analogously, we introduce Y1,2(Rn) as

Y1,2(Rn) :=
{

u ∈ L
2n

n−2 (Rn) : ∇u ∈ L2(Rn)
}
,

and equip it with the norm

‖u‖Y1,2(Rn) := ‖u‖
L

2n
n−2 (Rn)

+ ‖∇u‖L2(Rn).

Note carefully that in our convention, 2∗ = 2(n+1)
n−1 ,

2n
n−2 .

Some fractional Sobolev spaces will be useful for us when discussing trace opera-
tors. Let F : L2(Rn) → L2(Rn) be the Fourier transform. Throughout this paper, we
shall also denote û := F u. We write

H
1
2 (Rn) =

{
u ∈ L2(Rn) :

∫
Rn

(
1 + |ξ|

)
|û(ξ)|2 dξ < +∞

}
.

The space
.

H
1
2 (Rn) consists of those tempered distributions u ∈ S ′ whose Fourier

transform û ∈ S ′ is a measurable function verifying that
∫
Rn |ξ||û(ξ)|2 dξ < +∞. Nat-

urally, this space comes equipped with the seminorm |u| .
H

1
2 (Rn)

=
∫
Rn |ξ||û(ξ)|2 dξ. We

define the space H
1
2
0 (Rn) =

.
H

1
2
0 (Rn) as the completion of C∞c (Rn) under the

.
H

1
2 (Rn)

seminorm. We write H−
1
2 (Rn) := (H

1
2
0 (Rn))∗, and emphasize that we are departing

from notation used elsewhere in the literature. Since H
1
2
0 (Rn) ) H

1
2 (Rn), it follows

that H−
1
2 (Rn) is contained in the dual space of H

1
2 (Rn), which is the usual (inhomo-

geneous) fractional Sobolev space of order −1/2 that coincides with the space{
u ∈ S ′(Rn) :

∫
Rn

(1 + |ξ|2)−
1
2 |û(ξ)|2 dξ < +∞

}
.

For a survey on the properties of fractional Sobolev spaces, see [DPV12]. We state
without proof two easy results which are nevertheless useful.
Proposition 2.5 (Sobolev embeddings of the fractional Sobolev spaces). Let p+ :=
2n

n−1 and p− := 2n
n+1 . Then we have the continuous embeddings H

1
2
0 (Rn) ↪→ Lp+(Rn),

Lp−(Rn) ↪→ H−
1
2 (Rn).

Proposition 2.6. The map ∇ : H
1
2
0 (Rn)→ H−

1
2 (Rn) is bounded.

For fixed t ∈ R and any open set Ω ⊂ Rn+1 with nice enough (but possibly un-
bounded) boundary such that Rn × {τ = t} ⊂ Ω, we define the trace operator

(2.7) Trt : C∞c (Ω)→ C∞c (Rn), Trtu = u(·, t).

The relevance of the fractional Sobolev spaces to our theory comes from the follow-
ing trace result; we cite a paper with the proof for traces of functions in

.
W1,2(R2), but

the result is straightforwardly extended to our situation.
Lemma 2.8 (Traces of Y1,2 functions; [Str16]). Fix t > 0. Let Ω be either Rn+1, Rn+1

t ,
or Rn+1

−,t . Then, for each s ∈ R such that there exists x ∈ Rn with (x, s) ∈ Ω, the trace
operator Trs (see (2.7)) extends uniquely to a bounded linear operator Y1,2(Ω) →

H
1
2
0 (Rn).
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Definition 2.9 (Local weak solutions). Let Ω ⊆ Rn+1 be an open set with Lipschitz
(but possibly unbounded) boundary, and fix f ∈ L1

loc(Ω), F ∈ L1
loc(Ω,Cn+1), and

u ∈ W1,2
loc (Ω). We say that u solves the equation Lu = f − div F in Ω in the weak

sense if, for every ϕ ∈ C∞c (Ω), the identity

(2.10)
∫∫
Rn+1

(
(A∇u + B1u) · ∇ϕ + B2 · ∇uϕ

)
=

∫∫
Rn+1

(
fϕ + F · ∇ϕ

)
holds.
Remark 2.11. Suppose that Ω is as in Lemma 2.8. By a standard density argument, if
u ∈ Y1,2(Ω) solves Lu = f + div F in Ω in the weak sense and either

• F ∈ L2(Ω) and f ∈ L(2n+2)/(n+3)(Ω), or
• Ω = D × I, where D is a domain with nice enough (but possibly unbounded)

boundary and I is an interval, and

(2.12) F ∈ L2(Ω), f ∈ L2(I; L(2n)/(n+2)(D)) + L(2n+2)/(n+3)(Ω),

then (2.10) holds for all ϕ ∈ Y1,2
0 (Ω). A similar observation to the second item can be

made if Ω is a ball in Rn+1.

For an infinite interval I ⊂ R and a Banach space X, let Ck
0(I; X) be the space of

functions f : I → X such that all their first k derivatives f (l) : I → X, 0 ≤ l ≤ k, exist,
are continuous on I, and satisfy that limt→∞ ‖ f (l)(t)‖X = 0 for all 0 ≤ l ≤ k. When
k = 0, we will omit the superscript and simply write C0 = C.
Definition 2.13 (Slice Spaces). For n ≥ 3, we define

D2
+ :=

{
v ∈ C0

(
(0,∞); L2(Rn)

)
: ‖u‖D2

+
< ∞

}
,

with norm given by ‖v‖D2
+

:= supt>0 ‖v(t)‖L2(Rn) (see (2.2)). We also define

S 2
+ :=

{
u ∈ C2

0
(
(0,∞); Y1,2(Rn)

)
: u′(t) ∈ C0

(
(0,∞); L2(Rn)

)
, ‖u‖S 2

+
< ∞

}
,

with norm given by

‖u‖S 2
+

:= sup
t>0
‖u(t)‖Y1,2(Rn) + sup

t>0
‖u′(t)‖L2(Rn)

+ sup
t>0
‖tu′(t)‖Y1,2(Rn) + sup

t>0
‖t2u′′(t)‖Y1,2(Rn).

In particular, both D2
+ and S 2

+ are Banach spaces. Similarly, with obvious modifica-
tions, we can define the slice spaces S 2

− and D2
− in the negative half line (−∞, 0).

We also state, without proof, the following criterion for the existence of weak
derivatives in L2(I; X). See [CH98] for further results and definitions.
Theorem 2.14 (Vector-valued weak derivatives; [CH98] Theorem 1.4.40). Suppose
that X is a reflexive Banach space and let I ⊂ R be a (not necessarily bounded)
interval. Let f ∈ L2(I; X). Then f ∈ W1,2(I; X) if and only if there exists ϕ ∈ L2(I;R)
such that for any t, s ∈ I, the estimate

‖ f (t) − f (s)‖X ≤
∣∣∣ ∫ t

s
ϕ(r) dr

∣∣∣



14 S. BORTZ, S. HOFMANN, J. L. LUNA GARCIA, S. MAYBORODA, AND B. POGGI

holds. Moreover, for a.e. t ∈ I, the difference quotients

∆h f (t) :=
f (t + h) − f (t)

h
, h ∈ R, |h| � 1,

converge weakly in X to f ′(t) as h→ 0.

Remark 2.15. We will see that if u ∈ W1,2
loc (Rn+1

+ ) ∩ S 2
+ and Lu = 0 in Rn+1

+ , then by
Caccioppoli’s inequality (on slices) we have that

‖u‖S 2
+
≈ sup

t>0
‖u(t)‖Y1,2(Rn) + sup

t>0
‖u′(t)‖L2(Rn)

≈ sup
t>0
‖∇‖ Trt u‖L2(Rn) + sup

t>0
‖Trt(Dn+1u)‖L2(Rn).

We now state a Trace Theorem in cubes. We set

I±R := (−R,R)n × (0,±R), IR := (−R,R)n+1, ∆R := (−R,R)n × {0}.

Proposition 2.16 (Trace operator on a cube). Let H
1
2 (∆R) be the space consisting of

pointwise restrictions of functions in H
1
2 (Rn) to ∆R. There exists a bounded linear

operator Tr0
± : W1,2(I±R ) → H

1
2 (∆R) (called the trace operator associated to I±R ) with

the following properties.

(i) For each u ∈ C∞(I±R ), Tr0
± u(·) = u(·, 0).

(ii) For each Φ ∈ C∞c (IR), the identity∫
∆R

(Tr0
± u)φ = ∓

∫∫
I±R

(uDn+1Φ + Dn+1uΦ)

holds, where φ(·) = Φ(·, 0).

In particular, the traces are consistent in the sense that for every R′ < R, the restric-
tion to I±R′ of the trace operator associated to I±R , agrees with the trace in I±R′ .

Proof. The result follows from the usual Trace Theorem on Lipchitz domains (see,
for instance, [Leo17] Theorem 15.23 and the results which follow this theorem) and
the fact that I+

R is an extension domain for W1,2 (see [Leo17] Theorem 12.15). �

We now remark that the zeroth-order term V in our differential equation can be
absorbed into the first order terms.
Lemma 2.17 (Zeroth order term absorbed by first order terms). Let L be as in (1.1)
with

max
{
‖B1‖n, ‖B2‖n, ‖V‖ n

2

}
≤ ε0.

Then
L = − div(A∇ + B̃1) + B̃2 · ∇,

where
max

{
‖B̃1‖n, ‖B̃2‖n,

}
≤ Cnε0.

Proof. We write

V(x) = − divx ∇‖I2V(x) = cn divx ~RI1V(x),

where Iα is the α-order Riesz potential

(Iα f )(x) =
1
cα

∫
Rn

f (y)
|x − y|α

dy,
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and ~R is the Riesz transform on Rn. For definitions and properties, see [Ste70]. To
conclude the lemma, we note that I1 : Ln/2(Rn)→ Ln(Rn) and ~R is a bounded operator
Ln(Rn)→ [Ln(Rn)]n. �

Observe that it suffices that V ∈
.
Ln
−1 = {V ∈ D ′ : I1V ∈ Ln}, with small norm.

Thus, our results hold under this slightly more general assumption on V .
Accordingly, from now on we drop the term V from our operator. We obtain

invertibility of the operator L on the Hilbert space Y1,2(Rn+1) when the size of the
lower order terms is small enough.
Definition 2.18 (Sesquilinear form and associated operator). Define the sesquilinear
form BL : C∞c (Rn+1) ×C∞c (Rn+1)→ C via

BL[u, v] :=
∫∫
Rn+1

[
A∇u · ∇v + uB1 · ∇v + vB2 · ∇u

]
, u, v ∈ C∞c (Rn+1).

Define the operator L : D → D ′ via the identity

〈Lu, v〉 = BL[u, v], u, v ∈ C∞c (Rn+1).

It is clear that L is linear.

In fact, the form BL extends to a bounded, coercive form on Y1,2(Rn+1)×Y1,2(Rn+1),
and the operator L extends to an isomorphism Y1,2(Rn+1) → (Y1,2(Rn+1))∗. This is
precisely the content of the following result.
Proposition 2.19 (Extension of operator to Y1,2). The form BL extends to a bounded
form on Y1,2(Rn+1); that is,

|BL[u, v]| . ‖∇u‖2‖∇v‖2, for all u, v ∈ C∞c (Rn+1),

with the implicit constant depending on n, λ,Λ, and max
{
‖B1‖n, ‖B2‖n

}
. Hence L

extends to a bounded operator Y1,2(Rn+1)→ (Y1,2(Rn+1))∗.
Moreover, there exists a constant ε0 = ε0(n, λ,Λ) > 0 such that if

max
{
‖B1‖n, ‖B2‖n

}
< ε0, then BL is also coercive in Y1,2(Rn+1) with lower bound

λ/2; that is,
λ

2
‖∇u‖22 . Re BL[u, u], for all u ∈ C∞c (Rn+1).

In particular, if max
{
‖B1‖n, ‖B2‖n

}
< ε0, then by the Lax-Milgram Theorem the

operator L−1 : (Y1,2(Rn+1))∗ → Y1,2(Rn+1) exists as a bounded linear operator.

Proof. The proof is straightforward, thus omitted. �

Remark 2.20. We will always assume that max{‖B1‖n, ‖B2‖n} < ε0, as above. The
value of ε0 may be made smaller, but it will always depend only on n, λ and Λ, and
we will explicitly state when we impose further smallness.
Definition 2.21 (Dual operator). Associated to L we also have the dual operator,
denoted L∗ : Y1,2(Rn+1)→ (Y1,2(Rn+1))∗, defined by the relation

〈Lu, v〉 = 〈u,L∗v〉.

It is a matter of algebra to check that

L∗v = − div(A∗∇v + B2v) + B1 · ∇v

holds in the weak sense.
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In particular, L∗ is an operator of the same type as L and if
max{‖B1‖n, ‖B2‖n} < ε0 so that L−1 is defined, then (L∗)−1 is well defined, bounded,
and satisfies (L∗)−1 = (L−1)∗.

2.1. Generalized Littlewood-Paley Theory. In this subsection, we review some of
the known results from the generalized Littlewood-Paley theory. Here, the general-
ization is that one replaces the classical smoothness assumption by a so-called quasi-
orthogonality condition, and one replaces the classical pointwise decay condition by
off-diagonal decay in an L2 sense.

First, we introduce the square function norm ‖| · ‖|. We define

‖|F‖|± :=
(∫∫

Rn+1
±

|F(x, t)|2
dx dt

t

)1/2
, ‖|F‖|all :=

(∫∫
Rn+1
|F(x, t)|2

dx dt
t

)1/2
.

For a family of linear operators on L2(Rn), {θt}t>0, we define

‖|θt‖|+,op := sup
‖ f ‖2=1

‖|θt f ‖|+,

and similarly define ‖|θt‖|−,op and ‖|θt‖|all,op. We will often drop the sign in the sub-
script when in context it is understood that we work in the upper half space.

Recall that a Borel measure µ on Rn+1
+ is called Carleson if there exists a constant

C such that µ(RQ) ≤ C|Q| for all cubes Q ⊂ Rn, where RQ = Q × (0, `(Q)) is the
Carleson box above Q. Given a measurable function Υ on Rn+1

+ , we define

‖Υ‖C := sup
Q

1
|Q|

∫ `(Q)

0

∫
Q
|Υ(x, t)|2

dx dt
t

,

where the supremum is taken over all cubes Q ⊂ Rn. In other words, ‖Υ‖C < ∞ if and
only if |Υ(x, t)|2 dx dt

t is a Carleson measure; in this case, we say that Υ ∈ C. There is
a deep connection between Carleson measures and square function estimates, as seen
in the T1 theorem for square functions of Christ and Journé [CJ87]. In this article,
we use a generalized version of their result [GH17, Theorem 4.3].

We record several results from [AAAHK11], which will be crucial in establishing
square function estimates for solutions.
Definition 2.22 (Good off-diagonal decay). We say that a family of linear operators
on L2(Rn), {θt}t>0, has good off-diagonal decay if there exist M ≥ 0 and C > 0 such
that for all f ∈ L2(Rn), the estimate

‖θt( f12k+1Q\2kQ)‖2L2(Q) .M 2−nk
( t

2k`(Q)

)2M+2
‖ f ‖2L2(2k+1Q\2kQ)

holds for every cube Q ⊂ Rn, every k ≥ 2 and all 0 < t ≤ C`(Q). Here, the implicit
constants may depend only on dimension, M, and on the family of operators.

If b ∈ L∞(Rn), then for any cube Q in Rn and any t ∈ (0,C`(Q)), it can be shown
via the good off-diagonal decay that θt(b1Rn\Q) ∈ L2(Q). This allows us to define
θtb := θ(b1Q) + θt(b1Rn\Q) ∈ L2(Q) for any t > 0 and Q with `(Q) ≥ t/C (the
independence of θtb over Q is given by the linearity). Thus, for b ∈ L∞(Rn), θtb ∈
L2

loc(Rn) for each t > 0. We omit further details.
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Lemma 2.23 (Consequences of off-diagonal decay; [FS72], [AAAHK11, Lemma
3.2]). Suppose that {θt}t>0 is a family of linear operators on L2(Rn) with good off-
diagonal decay which verifies that ‖|θt‖|op ≤ C. Then, for every b ∈ L∞(Rn) (see the
above remarks), the family {θt}t>0 satisfies the estimate

‖θtb‖C . (1 + ‖|θt‖|
2
op)‖b‖2∞.

Moreover, if ‖θt‖L2→L2 . 1 and θt1 = 0 for all t > 0, then for every b ∈ BMO(Rn),

‖θtb‖C . (1 + ‖|θt‖|
2
op)‖b‖2BMO.

Lemma 2.24 ( [AAAHK11, Lemma 3.11]). Suppose that {θt}t>0 is a family of linear
operators on L2(Rn) with good off-diagonal decay and which satisfies ‖θt‖L2→L2 . 1
for all t > 0. For each t > 0, let At denote a self-adjoint averaging operator on
L2(Rn), given asAt f =

∫
Rn f (y)ϕt(·, y) dy, whose kernel satisfies

0 ≤ ϕt(x, y) . t−n
1|x−y|≤Ct, and

∫
Rn
ϕt(x, y) dy = 1.

Then for each t > 0 and any b ∈ L∞(Rn), the function θtb is well defined as an element
of L2

loc(Rn), and we have that

sup
t>0
‖(θtb)At f ‖L2(Rn) . ‖b‖∞‖ f ‖2.

Lemma 2.25 ( [AAAHK11, Lemma 3.5]). Suppose that {Rt}t>0 is a family of opera-
tors on L2(Rn) with good off-diagonal decay, and suppose further that ‖Rt‖L2→L2 . 1
and Rt1 = 0 for all t > 0 (note that by Lemma 2.24, Rt1 is defined as an element of
L2

loc(Rn)). Then for each h ∈
.

W1,2(Rn), we have that∫
Rn
|Rth|2 . t2

∫
Rn
|∇xh|2.

If, in addition, ‖Rt divx ‖L2→L2 . 1
t , then we also have for each f ∈ L2(Rn) that∫

Rn+1
+

|Rt f (x)|2
dx dt

t
. ‖ f ‖22.

The following definition is important in establishing quasi-orthogonality estimates
(compare to the notion of an ε-family in [CJ87]).
Definition 2.26 (CLP Family). We say that a family of convolution operators on
L2(Rn), {Qs}s>0, is a CLP family (“Calderón-Littlewood-Paley” family), if there exist
σ > 0 and ψ ∈ L1(Rn) satisfying

|ψ(x)| . (1 + |x|)−n−σ, and |ψ̂(ξ)| . min(|ξ|σ, |ξ|−σ),

such that the following four statements hold.

i) The representation Qs f = s−nψ(·/s) ∗ f holds for each f ∈ L2(Rn).
ii) For each f ∈ L2(Rn), we have control of the following L2 norms uniformly in s:

sup
s>0

(‖Qs f ‖2 + ‖s∇Qs f ‖2) . ‖ f ‖2.

iii) For each f ∈ L2(Rn), we have the square function estimate∫ ∞
0

∫
Rn
|Qs f (x)|2

dx ds
s
. ‖ f ‖22.
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iv) Let I : L2(Rn)→ L2(Rn) be the identity operator. The equation∫ ∞
0
Q2

s
ds
s

= I

holds in the sense that the Bochner integrals
∫ R
δ Q

2
s

ds
s converge to I in the strong

operator topology on B(L2(Rn)) as δ→ 0 and R→ ∞.
Proposition 2.27 (Qualitative mappings). Let f ∈ Y1,2(Rn) and {Qs}s>0 be either

a) A standard Littlewood-Paley family as in Definition 2.26, with kernel ψ, with the
additional condition that there exists σ > 1 such that |ψ̂(ξ)| . min(|ξ|σ, |ξ|−σ).

b) Qs = I − Ps, where Ps is a nice approximate identity.

Then for all s > 0, we have that Qs f ∈ W1,2(Rn).

Proof. In either case, via Plancherel’s Theorem, it will suffice to estimate the L2 norm
of Q̂s f . In case a), by basic properties of the Fourier Transform, we see that∫
Rn
|Q̂s f (ξ)|2 dξ =

∫
Rn
|ψ̂(sξ)|2| f̂ (ξ)|2 dξ .

∫
Rn

min(|sξ|σ−1, |sξ|−σ−1)2|ξ|2| f̂ (ξ)|2 dξ,

whence the desired conclusion follows in this case. For case b), we similarly com-
pute, using Plancherel’s Theorem and the Fundamental Theorem of Calculus, that if
ϕ is the radial kernel of the nice approximate identity Ps,∫

Rn
|Q̂s f (ξ)|2 dξ =

∫
Rn
|1 − ϕ̂(s|ξ|)|2| f̂ (ξ)|2 dξ =

∫
Rn
| f̂ (ξ)|2

∣∣∣ ∫ s|ξ|

0
ϕ̂′(τ) dτ

∣∣∣2 dξ

≤

∫
Rn

s2|ξ|2| f̂ (ξ)|2−
∫ s|ξ|

0
|ϕ̂′(τ)|2 dτ dξ ≤ s2‖ϕ̂′‖L∞(Rn)

∫
Rn
|ξ|2| f̂ (ξ)|2 dξ.

�

3. Elliptic theory estimates

In this section, we establish several estimates for the operators under consideration,
which are ‘standard’ in the elliptic theory. We begin with Caccioppoli-type estimates.

3.1. Caccioppoli-type inequalities. Let us first show
Proposition 3.1 (Caccioppoli inequality, [DHM18]). Let Ω ⊂ Rn+1 be an open set.
Suppose that u ∈ W1,2

loc (Ω), f ∈ L2
loc(Ω), ~F ∈ L2

loc(Ω)n+1, and that Lu = f − div ~F in
Ω in the weak sense. Then, for every ball B ⊂ 2B ⊂ Ω, the estimate∫∫

B
|∇u|2 .

∫∫
2B

( 1
r(B)2 |u|

2 + | ~F|2 + r(B)2| f |2
)
,

holds, with the implicit constant depending only on n, λ,Λ.

The above estimate is a particular case of a Caccioppoli inequality obtained in a
very general setting of elliptic systems in [DHM18]. Since our techniques will be
exploited in several calculations later, we present here a self-contained proof.

Proof. Consider η ∈ C∞c (2B) such that 0 ≤ η ≤ 1, η ≡ 1 in B and |∇η| . r(B)−1. Note
that uη2 is a valid testing function in (2.10), and therefore we obtain that
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Rn+1

λ|∇u|2η2 ≤

∫∫
Rn+1

A∇u · ∇uη2

=

∫∫
Rn+1

(
− 2(A∇u · ∇η)ηū + B1u · ∇(uη2) − B2 · ∇uuη2

)
+

∫∫
Rn+1

(
~F · ∇(uη2) + f uη2

)
=: I + II + III + IV + V.

To handle the term I, we use Cauchy’s inequality with ε > 0 and the boundedness of
A to obtain that

|I| ≤ 2Λ

∫∫
Rn+1
|∇u|η|∇η||u| ≤ Λε

∫∫
Rn+1
|∇u|2η2 +

Λ

ε

∫∫
Rn+1
|u|2|∇η|2.

with ε small enough (depending only on λ,Λ) that we can hide the first term. The
second term is seen to be of a desired form after using the bound on |∇η|.

To handle the term III, we use the Hölder and Sobolev inequalities in Rn coupled
with the t−independence of B2, as follows:

|III| ≤
∫ ∞
−∞

∫
Rn
|B2|(|∇u|η)|u|η dxdt

≤

∫ ∞
−∞

‖B2‖Ln(Rn)‖η∇u‖L2(Rn)‖uη‖L 2n
n−2 (Rn)

dt

. ‖B2‖Ln(Rn)

∫ ∞
−∞

‖η∇u‖L2(Rn)‖∇‖(uη)‖L2(Rn) dt

≤ ‖B2‖Ln(Rn)

∫ ∞
−∞

(
‖η∇u‖2L2(Rn) + ‖η∇u‖L2(Rn)‖u∇η‖L2(Rn)

)
dt.

Using the Cauchy inequality on the second term, we arrive at the estimate

|III| . ‖B2‖n

∫∫
Rn+1

(
|∇u|2η2 + |u|2|∇η|2

)
.

If we choose ‖B2‖n < ε0 (see Proposition 2.19) with ε0 small enough (depending only
on n, λ,Λ), we can hide the first term, while the second term is of a desired form.

To handle the term II, notice that the product rule allows us to write the estimate

|II| ≤
∫∫
Rn+1

(
|B1||u||∇u|η2 + 2|B1||u|2η|∇η|

)
=: II1 + II2.

The first term is handled similarly as III. As for II2, we appeal again to the Hölder
and Sobolev inequalities, together with the t-independence of B1, to see that

|II| .
∫ ∞
−∞

‖B1‖Ln(Rn)‖u∇η‖L2(Rn)‖uη‖L2n/n−2(Rn) dt

. ‖B1‖Ln(Rn)

∫ ∞
−∞

‖u∇η‖L2(Rn)‖∇‖(uη)‖L2(Rn) dt,

and this last expression may be handled in the same way as in II.
For the term IV , we use the product rule to obtain that

|IV | ≤
∫∫
Rn+1

(
| ~F|η|∇u|η + 2| ~F|η|u||∇η|

)
=: IV1 + IV2.
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The first term may be estimated with the Cauchy’s inequality with ε:

IV1 ≤

∫∫
2B

(1
ε
| ~F|2 + ε|∇u|2η2

)
,

and we can hide the second term. The term IV2, since after using the Cauchy inequal-
ity, both terms are of a desired form:

IV2 ≤

∫∫
2B

(
| ~F|2 + |u|2|∇η|2

)
.

Combining these estimates gives∫∫
B
|∇u|2 ≤

∫∫
Rn+1
|∇u|2η2 .

1
r(B)2

∫∫
2B

(
|u|2 + | ~F|2

)
+ |V |.

To handle the term V , we use the Cauchy inequality to obtain that

|V | ≤
∫∫
Rn+1
| f ||u|η2 ≤

∫∫
2B

(
r(B)2| f |2 +

1
r(B)2 |u|

2
)
.

This completes the proof. �

Remark 3.2 (Y1,p form a complex interpolation scale). In the case of purely second
order operators (that is, B1 = B2 = 0), we may exploit the fact that constants are
always null-solutions. Applying the Poincaré inequality, we obtain a weak reverse
Hölder inequality for ∇u, which in particular implies Lp integrability for the gradi-
ent, for some p > 2. We do not obtain the analogous estimate here, but rather a
suitable substitute. More precisely, we shall muster an Lp version of the Caccioppoli
inequality. In order to prove this result, we remark that the spaces Y1,p(Rn+1) and
their dual spaces, (Y1,p)∗, form a complex interpolation scale, with

[Y1,p1 ,Y1,p2]θ = Y1,pθ ,
1
pθ

=
1 − θ

p1
+

θ

p2
,

for θ ∈ (0, 1) and 1 < p1 < p2 < n. We may show this fact by gathering the following
two ingredients. First, the homogeneous spaces

.
W1,p form a complex interpolation

scale (see [Tri95]). Next, one uses that the map that sends an element in
.

W1,p to
its unique representative in Y1,p is a ‘retract’ (see [KMM07, Lemma 7.11] and the
discussion preceding it). Thus, we employ [KMM07, Lemma 7.11] and conclude
that the spaces Y1,p form a complex interpolation scale. The fact that (Y1,p)∗ form
a complex interpolation scale is a general consequence of the interpolation scale for
Y1,p; see, for instance, [BL76, Theorem 4.5.1].

The Lp Caccioppoli inequality will also make use of the well-known lemma of
Šneı̆berg [Š74]. The (explicitly) quantitative version stated here appears in
[ABES19].
Theorem 3.3 (Šneı̆berg’s Lemma [ABES19, Theorem A.1], [Š74]). Let
X = (X0, X1) and Y = (Y0,Y1) be interpolation couples of Banach spaces, and T ∈
B(X,Y). Suppose that for some θ∗ ∈ (0, 1) and some κ > 0, the lower bound ‖T x‖Yθ∗ ≥
κ‖x‖Xθ∗ holds for all x ∈ Xθ∗ . Then the following statements are true.

i) Given 0 < ε < 1/4, the lower bound ‖T x‖Yθ ≥ εκ‖x‖Xθ holds for all x ∈ Xθ,
provided that |θ − θ∗| ≤ κ(1−4ε) min{θ∗,1−θ∗}

3κ+6M , where M = max j=0,1 ‖T‖X j→Y j .



CRITICAL PERTURBATION THEORY, PART I 21

ii) If T : Xθ∗ → Yθ∗ is invertible, then the same is true for T : Xθ → Yθ if θ is as in
(i). The inverse mappings agree on Xθ ∩ Xθ∗ and their norms are bounded by 1

εκ .

Using the above result, we can easily obtain
Lemma 3.4 (Invertibility of L in a window around 2). Let p ∈ (1, n) be such that
p′ < n, where p′ is the Hölder conjugate of p. The operator L extends to a bounded
operator Y1,p(Rn+1) → (Y1,p′(Rn+1))∗. Moreover, the operator is invertible if |p − 2|
is small enough depending on n, λ, and Λ.
Remark 3.5. Here and throughout, we assume that the range of p near 2 in Lemma
3.4 is such that p∗ =

(n+1)p
n+1+p < 2.

The following lemma details the modification to the operator output upon multi-
plying a solution by a cut-off function.

Lemma 3.6. Let Ω ⊂ Rn+1 be an open set. Suppose that u ∈ W1,2
loc (Ω) satisfiesLu = 0

in Ω in the weak sense. Then for any χ ∈ C∞c (Ω,R), we have that

(3.7) L(χu) = div ~F + f

in Rn+1 in the weak sense, where ~F = A(∇χ)u, and f = −A∇u ·∇χ−B1u∇χ+ B2u∇χ.

Proof. We apply the operator L to uχ and test against ϕ ∈ C∞c (Rn+1) with the goal in
mind of extracting a term of the form 〈Lu, ϕχ〉 = 0. Observe that∫

Rn+1
A∇(uχ) · ∇ϕ =

∫
Rn+1

A∇u · ∇(χϕ) +

∫
Rn+1

uA∇χ · ∇ϕ −
∫
Rn+1

[A∇u · ∇χ]ϕ,∫
Rn+1

(B1uχ) · ∇ϕ = +

∫
Rn+1

B1u∇(χϕ) −
∫
Rn+1

[B1u∇χ]ϕ,∫
Rn+1

B2∇(uχ)ϕ =

∫
Rn+1

B2∇uχϕ +

∫
Rn+1

[B2u∇χ]ϕ,

where we use that χ is real-valued. Collecting the first terms in each inequality and
noting that ϕχ ∈ C∞c (Ω), we realize that the contribution of these terms is 〈Lu, ϕχ〉 =

0. Then we have that 〈L(χu), ϕ〉 = 〈div ~F + f , ϕ〉, as desired. �

We are now ready to combine the past few results and obtain the local high inte-
grability of the gradient.
Lemma 3.8 (Local high integrability of the gradient of a solution). Let Ω be an open
set. Suppose that u ∈ W1,2

loc (Ω) solves Lu = 0 in Ω in the weak sense. Then u ∈
W1,p

loc (Ω), where p is close to 2 and depends only on n, λ, Λ, and ε0. Moreover, for
any χ ∈ C∞c (Ω,R) we have the estimate

‖χu‖Y1,p(Rn+1) ≤ ‖L
−1(div ~F + f )‖Y1,p(Rn+1) . ‖ ~F‖p + ‖ f ‖p∗ ,

where ~F and f are as in Lemma 3.6.

Proof. Let ~F and f be as in the previous lemma. One may verify, using the Sobolev
embedding and the fact that χ is smooth and compactly supported, that ~F ∈ L1(Rn+1)∩
L2∗(Rn+1) and that f ∈ L1(Rn+1) ∩ L2(Rn+1). Choosing p > 2 with |p − 2| sufficiently
small, we may apply Lemma 3.4 to show that the operator L extends to a bounded
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and invertible operator Y1,p(Rn+1) → (Y1,p′(Rn+1))∗. Hence L−1 is bounded. Apply-
ing L−1 to each side of (3.7), we obtain that

‖χu‖Y1,p ≤ ‖L
−1(div ~F + f )‖Y1,p . ‖ ~F‖p + ‖ f ‖p∗ .

Here, we note that Lp∗ embeds continuously into (Y1,p′)∗, and div ~F ∈ (Y1,p′)∗ since
~F ∈ Lp. This observation uses the identity [(p′)∗]′ = p∗ and the continuous embed-
ding Y1,p′(Rn+1) ↪→ L(p′)∗(Rn+1). �

Finally, we provide a more precise version of the above Lemma, namely the Lp-
Caccioppoli inequality.
Proposition 3.9 (Lp-Caccioppoli inequality). Let Ω ⊂ Rn+1 be an open set and let
u ∈ W1,2

loc (Ω) solve Lu = 0 in Ω in the weak sense. Suppose that B is a ball such that
κB ⊂ Ω for some κ > 1. Then, for every p > 0 such that |p − 2| is small enough that
the conditions of Lemma 3.8 are satisfied, the estimate

(3.10) ‖∇u‖Lp(B) .
1

r(B)
‖u‖Lp(κB)

holds, where the implicit constants depend on κ, p, n, λ, Λ, and ε0.

Proof. Set r := r(B) and let χ = η2 with η ∈ C∞c ( 1+κ
2 B,R), 0 ≤ η ≤ 1, |∇η| . 1

r . Note
that χ has the same properties as η. The estimate (3.10) will follow immediately from
the estimate

(3.11) ‖uχ‖Y1,p(Rn+1) .
1
r
‖u‖Lp(κB),

since ‖∇u‖Lp(B) . ‖(∇u)χ‖p and (the reverse triangle inequality yields)

‖(∇u)χ‖p − ‖(∇χ)u‖p . ‖∇(uχ)‖p ≤ ‖uχ‖Y1,p(Rn+1).

We immediately note that we have already established (3.11) in the case p = 2; this
is the classical Caccioppoli inequality. Applying Lemma 3.8, we have that

(3.12) ‖χu‖Y1,p(Rn+1) . ‖ ~F‖p + ‖ f ‖p∗ ,

where ~F and f are as in Lemma 3.6. The bound

(3.13) ‖ ~F‖p = ‖A∇χu‖p .
1
r
‖u‖Lp(κB)

is trivial from the properties of A and χ and desirable from the standpoint of (3.11).
It remains to find appropriate bounds for the terms appearing in the expression for f .
To this end, we have by Minkowski’s inequality that

‖ f ‖p∗ ≤ ‖A∇u · ∇χ‖p∗ + ‖B1u∇χ‖p∗ + ‖B2u∇χ‖p∗ = I + II + III.

Before continuing, we remark that the relation n+1
p∗

= n+1
(n+1)p [(n + 1) + p] = n+1

p + 1

holds. Using the L2 Caccioppoli inequality, Jensen’s inequality and the fact that
p > 2, we have that

(3.14) I = ‖A∇u · ∇χ‖p∗ . r
n+1

p

(
−

∫
1+κ

2 B
|∇u|2

) 1
2
.

1
r

r
n+1

p

(
−

∫
κB
|u|2
) 1

2

.
1
r

r
n+1

p

(
−

∫
κB
|u|p
) 1

p
.

1
r

(∫
κB
|u|p
) 1

p
.
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Next we bound II and III. The Sobolev embedding on Rn and the Caccioppoli
inequality 4 yield for i = 1, 2 the estimate

(3.15) ‖Biu(∇χ)‖p∗ .
1
r
‖Bi(uη)‖p∗ .

1
r

r
n+1
p∗

(
−

∫
1+κ

2 B
|Bi(uη)|p∗

) 1
p∗

.
1
r

r
n+1
p∗ r−

n+1
2

(∫
1+κ

2 B
|Bi(uη)|2

) 1
2
.

1
r

r
n+1
p∗ r−

n+1
2

(∫
Rn+1
|∇(uη)|2

) 1
2

.
1
r

r
n+1

p

(
−

∫
κB
|u|2
) 1

2
.

1
r

(∫
κB
|u|p
) 1

p
.

Combining (3.13), (3.14) and (3.15) with (3.12) and the definitions of ~F and f , we
obtain (3.11). As we had reduced the proof of the statement of the Proposition to
(3.11), we have thus shown our claim. �

3.2. Properties of solutions and their gradients on slices. Our next goal is to study
the t-regularity of our solutions as well as their properties on ‘slices’, which are sets of
the form {(x, t) : t = t0}. Let us first note that t−derivatives of solutions are solutions.

Proposition 3.16 (The t-derivatives of solutions are solutions). Let Ω ⊂ Rn+1 be an
open set, let f , ~F ∈ L2

loc(Ω), and suppose that u ∈ W1,2
loc (Ω) satisfies Lu = f − div ~F in

Ω in the weak sense. Assume further that ft := ∂t f ∈ L2
loc(Ω) and ~Ft := ∂t ~F ∈ L2

loc(Ω).
Then the function v = ∂tu lies in W1,2

loc (Ω) and satisfies Lv = ft − div Ft in Ω in the
weak sense.

Proof. Fix a ball B ⊂ 2B ⊂ Ω and consider the difference quotients

uh :=
u(· + hen+1) − u(·)

|h|
, |h| < dist(B, ∂Ω).

We define fh and ~Fh similarly. By t-independence of the coefficients, we have that
Luh = fh − div ~Fh in B for any such h. By the Caccioppoli inequality (Proposition
3.1), we obtain that for any h as above,∫∫

B
|∇uh|

2 .

∫∫
2B

( 1
r(B)2 |uh|

2 + | ~Fh|
2 + r(B)2| fh|2

)
.

∫∫
2B

( 1
r(B)2 |∂tu|2 + | ~Ft|

2 + r(B)2| ft|2
)
.

In particular, the difference quotients of ∇u are bounded, which implies that ∂tu ∈
W1,2

loc (Ω). Consequently, we must have that the difference quotients uh converge
weakly (in W1,2

loc (Ω)) to v = ∂tu (and similarly for fh and ~Fh). From (2.10) and
the fact that Luh = fh − div ~Fh, we conclude that Lv = ft − div ~Ft, as desired. �

We now check that t−derivatives of solutions are well-behaved on horizontal strips.

4More precisely, we use (3.11) with p = 2.
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Lemma 3.17 (Good integrability of the t-derivative of a solution on a strip). Denote
Σb

a :=
{

(x, t) ∈ Rn+1 : a < t < b
}

. Suppose that u and v := ∂tu are as in Proposition
3.16 with Ω = Σb

a, and suppose further that v ∈ L2(Σb
a). Then ∇v ∈ L2(Σb′

a′) for each
a < a′ < b′ < b.

Proof. Let χR = φ(x)ψ(t) be a product of infinitely smooth cut-off functions with
0 ≤ φR, ψ ≤ 1, ψ ≡ 1 on (a′, b′), ψ ∈ C∞c (a, b), and φR ≡ 1 on BR, φR ∈ C∞c (B2R).
Then, for all R � min{a′ − a, b − b′}, we claim that∫ b′

a′

∫
BR

|∇v|2 dx dt .
∫∫
Rn+1

χ2
R|∇v|2

.

∫∫
Rn+1

(
|v|2 + | ~Ft|

2 + | ft|2
)(
|∇χR|

2 + 1
)

.
1

(min{a′ − a, b − b′, 1})2

∫ b

a

∫
Rn

(
|v|2 + | ~Ft|

2 + | ft|2
)
.

We provide the details of the second line in a moment; note that in the third line we
used that the dominant contribution for the gradient of χR is its t component when R
is large. Sending R→ ∞ finishes the proof modulo the aforementioned line.

To see the computation above, denote χ := χR and observe that∫∫
Rn+1

χ2|∇v|2 .
∫∫
Rn+1

χ2
Re
(
A∇v∇v

)
≤ Re

[ ∫∫
Rn+1

A∇v∇(vχ2) − 2
∫∫
Rn+1

χvA∇v∇χ
]

=: Re[I + II].

Clearly,

|II| . ε
∫∫
Rn+1
|χ∇v|2 +

1
ε

∫∫
Rn+1
|∇χv|2,

and the first term can be absorbed to the left-hand side. It remains to handle I. We
use the equation Lv = ft − div ~Ft to write I = I1 + I2 + I3 + I4, where each I j is a term
of the equation and each will be given explicitly below. First, note that

|I4| :=
∣∣∣ ∫∫
Rn+1

ftvχ2
∣∣∣ . ∫∫

Rn+1
|vχ|2 +

∫∫
Rn+1
| ftχ|2,

which handles this term. Next, we have that

|I3| :=
∣∣∣ ∫∫
Rn+1

~Ft∇(vχ2)
∣∣∣ . ∫∫

Rn+1
| ~Ft∇vχ|2 +

∫∫
Rn+1
| ~Ftχ∇χv|.

We handle the first term as in II, and we handle the second term as I4. Moving on,
we see that

|I1| :=
∣∣∣ ∫∫
Rn+1

B1v∇(vχ2)
∣∣∣ . ∫∫

Rn+1
|(B1vχ)∇vχ| +

∫∫
Rn+1
|(B1vχ)∇χv|.

Both of the terms above are handled by using the smallness of B1 as in the proof of
the Caccioppoli inequality. Now, for the last term, we have that

|I2| :=
∣∣∣ ∫∫
Rn+1

B2∇vχ2v
∣∣∣ . ∫∫

Rn+1

∣∣(B2χv)∇vχ
∣∣,

so that we may handle this term exactly as we did I1. �
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Remark 3.18. We may bring the above lemma and Lemma 2.3 together to conclude
that if u solves Lu = 0 in Σb

a, then automatically we have the transversal Hölder

continuity of its gradient, and u ∈ Cα′

loc

(
(a, b), L

2n
n−2 (Rn)

)
for some α > 0.

Next, we present a formula for our equation on a slice. Recall that Ã denotes the
(n + 1) × n submatrix of A consisting of the first n columns of A.
Proposition 3.19 (Integration by parts on slices for L). Let u ∈ Y1,2(Σb

a) and suppose
that Lu = g in Σb

a for some g ∈ C∞c (Rn+1). Then, for every t ∈ (a, b) and ϕ ∈
W1,2(Rn), the identity∫

Rn

(
(A(x)∇u(x, t))‖ + (B1)‖u(x, t)

)
· ∇‖ϕ(x) dx +

∫
Rn

B2(x) · ∇u(x, t)ϕ(x) dx

=

∫
Rn

(
~An+1,·(x) · ∂t∇u(x, t) + (B1(x))⊥∂tu(x, t)

)
ϕ(x) dx +

∫
Rn

g(x, t)ϕ(x) dx

holds. If v, ∂tv ∈ Y1,2(Σb
a), and L∗v = 0 in Σb

a for some g ∈ C∞c (Rn), then for every
t ∈ (a, b) and ϕ ∈ W1,2(Rn), the identity∫

Rn

[
∇‖ϕ · ((B2)‖v(t)) + Ã∇‖ϕ · ∇v(t) + B1ϕ · ∇v(t)

]
=

∫
Rn

[
ϕ(B2)⊥Dn+1v(t) + ϕ~A·,n+1∇Dn+1v(t)

]
holds. Finally, for v and ϕ as above, we also have the identity∫

Rn
∇‖ϕ · (A∗∇v(t))‖ =

∫
Rn
ϕ · ~A∗n+1,·Dn+1∇v(t) −

∫
Rn
∇‖ϕ · (B2)‖v(t)

+

∫
Rn
ϕ(B2)⊥v(t) −

∫
Rn
ϕB1 · ∇v(t).

Proof. Fix ϕ ∈ C∞c (Rn) and t ∈ (a, b). Let ϕε(x, s) := ϕ(x)ηε(t − s) with ε < min{b −
t, t − a}, and where ηε(·) = ε−1η(·/ε), η ∈ C∞c (−1, 1),

∫
R η = 1. In particular, ϕε ∈

C∞c (Σb
a) is an admissible test function in the definition of the weak solution. Thus,

from the definition of Lu = g, we have that∫∫
Rn+1

{((
A(x)∇u(x, s)

)
‖
+(B1)‖u(x, s)

)
·∇‖ϕε(x, s)+B2(x)·∇u(x, s)ϕε(x, s)

}
dxds

=

∫∫
Rn+1

(
~An+1,·(x)∂s∇u(x, s) + (B1(x))⊥∂su(x, s) + g(x, s)

)
ϕε(x, s) dxds.

Notice, for instance, that the map

t 7→
∫
Rn

((
A(x)∇u(x, t)

)
‖

+ (B1)‖(x)u(x, t)
)
· ∇‖ϕ(x) dx

is continuous in (a, b), owing to Lemma 2.3 and the continuity of the duality pairings
in each of its entries. A similar statement holds for all the other integrals. The desired
conclusion now follows from the fact that for any continuous function h : (a, b)→ C,
we have that limε→0

∫
R ηε(t − ·)h = h(t), for each t ∈ (a, b). �

As in [AAAHK11], but now employing Lemma 3.9, the t−independence of our
coefficients allows us to obtain Lp estimates on cubes lying in horizontal slices.
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Lemma 3.20 (Lp estimates on slices; [AAAHK11, Proposition 2.1]). Let t ∈ R, Q ⊂
Rn be a cube, and IQ be the box IQ = 4Q × (t − `(Q), t + `(Q)). Let p ≥ 2 with |p − 2|
small enough that the conclusion of Lemma 3.4 holds. Suppose that u ∈ W1,2(IQ)
satisfies Lu = 0 in IQ. Then the estimates

(3.21)
( 1
|Q|

∫
Q
|∇u(x, t)|p

)1/p
.
( 1
|Q∗|

∫∫
Q∗
|∇u(x, t)|p

)1/p
,

and

(3.22)
( 1
|Q|

∫
Q
|∇u(x, t)|p

)1/p
.p

1
`(Q)

( 1
|Q∗∗|

∫∫
Q∗∗
|u(x, t)|p

)1/p

hold, where Q∗ := 2Q× (t − `(Q)/4, t + `(Q)/4) is an (n + 1)−dimensional rectangle,
and Q∗∗ := 3Q × (t − `(Q)/2, t + `(Q)/2) is a slight dilation of Q∗.

In [AAAHK11], the analogue of the preceding lemma is proved in the purely sec-
ond order case. However, the argument there extends almost verbatim to the present
situation, given Lemma 3.9. We omit the details.

Let us consider how the shift operator acts on L−1. For each τ ∈ R, denote by
T τ the (positive) shift by τ in the t−direction: If u ∈ C∞c (Rn+1), then (T τu) =

u(·, · + τ). More generally, if f ∈ D ′ is a distribution, we define the distribution T τ f
by 〈T τ f , ϕ〉 = 〈 f ,T −τϕ〉, for each ϕ ∈ D .

Proposition 3.23. Suppose that u ∈ W1,2
loc (Rn+1

+ ) solves Lu = 0 in Rn+1
+ . Then

i) Let f ∈ (Y1,2(Rn+1))∗ and fix s ∈ R. Then T sL−1 f ∈ Y1,2(Rn+1) and satisfies
T sL−1 f = L−1T s f .

ii) Let s > 0. Then T su ∈ W1,2
loc (Rn+1

+ ) and LT su = 0 in Rn+1
+ .

iii) We have that Dn+1u ∈ W1,2
loc (Rn+1

+ ) and LDn+1u = 0 in Rn+1
+ .

iv) For any s > 0, we have that Dn+1T su ∈ Y1,2(Rn+1
+ ) ∩ L2(Rn+1

+ ) = W1,2(Rn+1
+ ).

In particular, for any t > 0, the trace TrtDn+1u is an element of H
1
2 (Rn) =

L2(Rn) ∩ H
1
2
0 (Rn). Moreover, for each t > 0, the estimate

(3.24) ‖tTrt∇∂tu‖L2(Rn) . ‖u‖Y1,2(Rn+1
t/2 )

holds. In particular, for each s > 0 we have that

(3.25) sup
t≥0
‖(t + s)Trt∇∂tT

su‖L2(Rn) . ‖u‖Y1,2(Rn+1
+ ).

Finally, for each t > 0 and ζ ∈ H−
1
2 (Rn), we have the identity

(3.26) (TrtDn+1u, ζ) =
d
dt

(Trtu, ζ).

Proof. The proofs of i), ii), and iii) are very similar to the proof of Proposition 3.16,
and are thus omitted. We prove iv), and to this end fix s > 0. By assumption, it is
clear that T su ∈ Y1,2(Rn+1

+ ), and by ii), we have that LT su = 0 in Rn+1
+ . Hence, by

iii), we have that Dn+1T su ∈ W1,2
loc (Rn+1

+ ) and LDn+1T su = 0 in Rn+1
+ . Let G(s/2) be

a grid of pairwise disjoint cubes R ⊂ Rn+1
s such that Rn+1

s = ∪R∈G(s/2)R and `(R) = s
2 .

Consider the estimate∫∫
Rn+1

+

|∇Dn+1T
su|2 =

∫∫
Rn+1

s

|∇Dn+1u|2 =
∑

R∈G(s/2)

∫∫
R
|∇Dn+1u|2
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.
∑

R∈G(s/2)

1
s2

∫∫
R̃
|Dn+1u|2 .

1
s2 ‖Dn+1u‖2L2(Rn+1

s/2 ) ≤
1
s2 ‖u‖

2
Y1,2(Rn+1

+ ),

which proves that ∇Dn+1T su ∈ L2(Rn+1
+ ). Since Dn+1T su ∈ L2(Rn+1

+ ) by the as-
sumption that u ∈ Y1,2(Rn+1

+ ), it is proven that Dn+1T su ∈ W1,2(Rn+1
+ ). Hence, for

each t ≥ 0, TrtDn+1T su ∈ H
1
2 (Rn). But TrtDn+1T su = Trt+sDn+1u. The estimate

(3.24) is true by Caccioppoli on slices (Proposition 3.20), as follows: break Rn into
a grid Gn(t/2) of cubes Q ⊂ Rn, `(Q) = t/2, and use Caccioppoli on slices in each
cube.

It remains to check the identity (3.26), so fix t > 0. We have seen that TrτDn+1u ∈

H
1
2
0 (Rn) for each τ > 0. Fix ζ ∈ H−

1
2 (Rn), and define g(τ) := (Trτu, ζ) for each τ > 0.

We will show that g is differentiable at t, and compute its derivative. To this end, note
that

g(t+h)−g(t)
h =

(Trt+hu,ζ)−(Trtu,ζ)
h =

(
Trt

T hu−u
h , ζ

)
=
(
Tr0

T hT tu−T tu
h , ζ

)
.

By our previous computations, we have that T hT tu−T tu
h −→ Dn+1T tu in Y1,2(Rn+1

+ )

as h→ 0, which implies that Tr0

(
T hT tu−T tu

h

)
−→ Tr0Dn+1T tu in H

1
2
0 (Rn) as h→ 0,

and hence we have that g(t+h)−g(t)
h −→ (Tr0Dn+1T tu, ζ) = (TrtDn+1u, ζ) as h → 0.

This finishes the proof. �

4. Abstract Layer Potential Theory

In this section, we develop the abstract layer potential theory. Our methods often
closely follow the constructions of Ariel Barton [Bar17]; but see also [Ros13].
Definition 4.1 (Single layer potential). Define the single layer potential of L as the
operator SL : H−

1
2 (Rn) → Y1,2(Rn+1) given by SL :=

(
Tr0 ◦ (L−1)∗

)∗, which is
well defined by virtue of Lemma 2.8 and Proposition 2.19. For t ∈ R, we denote
SLt := Trt ◦ S

L. When the operator under consideration is clear from the context,
we will sometimes drop the superscript, so that we write S = SL. For each t ∈ R,
f : Rn → Cn+1 and ~f : Rn → Cn, define (SLt ∇‖) ~f := −SLt (div ~f ), SLt Dn+1 := −∂tS

L
t ,

and (SLt ∇)f = (SLt ∇‖)f‖ + SLt Dn+1fn+1.

Let us elucidate a few properties of this “abstract” single layer potential.

Proposition 4.2 (Properties of the single layer potential). Fix γ ∈ H−
1
2 (Rn). The

following statements hold.

i) The function SLγ ∈ Y1,2(Rn+1) is the unique element in Y1,2(Rn+1) such that

(4.3) BL[SLγ,Φ] = 〈γ,Tr0Φ〉, for all Φ ∈ Y1,2(Rn+1).

Accordingly, SL : H−
1
2 (Rn)→ Y1,2(Rn+1) is a bounded linear operator.

ii) The function SLγ satisfies LSLγ = 0 in Ω, where Ω = Rn+1
+ ,Rn+1

− .
iii) Suppose that γ has compact support. Then LSLγ = 0 in Rn+1\ supp γ.
iv) Define p−, p+ as in Proposition 2.5 and suppose that γ ∈ Lp−(Rn). Then the

bound ‖TrtS
Lγ‖Lp+ (Rn) . ‖γ‖Lp− (Rn) holds for each t ∈ R.

v) For each t ∈ R, the operators SLt and SL
∗

−t are adjoint to one another. That is,
for each γ, ψ ∈ H−

1
2 (Rn), the identity 〈SLt γ, ψ〉 = 〈γ,SL

∗

−t ψ〉 holds.
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vi) For each t ∈ R, we have the characterization

(4.4) T −tSLγ =
(
Trt ◦ (L−1)∗

)∗
.

vii) For each t ∈ R\{0}, we have that TrtDn+1S
Lγ ∈ H

1
2
0 (Rn). Moreover, for each

t ∈ R\{0} and each ζ ∈ H−
1
2 (Rn), we have that 〈TrtDn+1S

Lγ, ζ〉 = d
dt 〈S

L
t γ, ζ〉 =

−〈γ,Tr−tDn+1S
L∗ζ〉.

viii) Let t ∈ R\{0}. Let g = (~g‖, g⊥) : Rn → Cn+1 be such that g‖, g⊥ ∈ C∞c (Rn). In the
sense of distributions, we have the adjoint relation

(4.5) 〈∇SLt γ, g〉D ′,D = 〈γ, (SL
∗

−t ∇)g〉
H−

1
2 (Rn),H

1
2

0 (Rn)
.

Proof. Fix γ ∈ H−
1
2 (Rn). Proof of i). Since Tr0 : Y1,2(Rn+1) → H

1
2
0 (Rn) is

a bounded linear operator, then Tγ := 〈γ,Tr0·〉 is a bounded linear functional on
Y1,2(Rn+1). By the Lax-Milgram theorem, there exists a unique uγ ∈ Y1,2(Rn+1)
such that BL[uγ,Φ] = 〈Tγ,Φ〉 = 〈γ,Tr0Φ〉, for all Φ ∈ Y1,2(Rn+1). Now let Ψ ∈

(Y1,2(Rn+1))∗ be arbitrary, and observe that

〈Ψ,SLγ〉 =
〈
Ψ,
(
Tr0 ◦ (L−1)∗

)∗
γ
〉

=
〈
Tr0 ◦ (L−1)∗Ψ, γ

〉
= 〈Tγ, (L∗)−1Ψ〉

= BL[uγ, (L∗)−1Ψ] = 〈Luγ, (L∗)−1Ψ〉 = 〈uγ,Ψ〉 = 〈Ψ, uγ〉.

Proof of ii). Let Φ ∈ C∞c (Rn+1
+ ), and let Φ̃ be an extension of Φ to C∞c (Rn+1) with

Φ̃ ≡ 0 on Rn+1\ supp Φ. In particular, Tr0Φ̃ ≡ 0. Then (4.3) gives that BL[SLγ,Φ] =

BL[SLγ, Φ̃] = 0. Since Φ was arbitrary, the claim follows.
Proof of iii). Let Ω := Rn+1\ supp γ, and let Φ ∈ C∞c (Ω). Let Φ̃ be an extension of

Φ to C∞c (Rn+1) with Φ̃ ≡ 0 on Rn+1\ supp γ. In particular, the supports of Φ̃ and γ are
disjoint. It follows that 〈γ,Tr0Φ̃〉 = 0. Using (4.3) now yields the result.

Proof of iv). By the boundedness of SL and the Sobolev embeddings, we have that

‖SLt g‖Lp+ (Rn) . ‖S
L
t g‖

H
1
2

0 (Rn)
. ‖SLg‖Y1,2(Rn+1) . ‖g‖H− 1

2 (Rn)
. ‖g‖Lp− (Rn).

Proof of v). Fix t ∈ R and γ, ζ ∈ H−
1
2 (Rn). By the Lax-Milgram theorem,

there exists a unique vζ,t ∈ Y1,2(Rn+1) such that BL∗[vζ,t,Φ] = 〈ζ,TrtΦ〉, for all
Φ ∈ Y1,2(Rn+1). Observe that

〈TrtS
Lγ, ζ〉 = 〈ζ,TrtS

Lγ〉 = BL∗[vζ,t,SLγ] = BL[SLγ, vζ,t] = 〈γ,Tr0vζ,t〉.

Thus it suffices to show that Tr0vζ,t and SL
∗

−t ζ coincide as elements in H
1
2
0 (Rn). In

turn, this will follow if we prove that SL
∗

ζ = T tvζ,t = vζ,t(·, · + t), in Y1,2(Rn+1).
Let Φ ∈ Y1,2(Rn+1) be arbitrary. Note then that T tΦ also lies in Y1,2(Rn+1). By the
t−independence of the coefficients of L and a change of variables we have that

BL∗[T tvζ,t,T tΦ] = BL∗[vζ,t,Φ] = 〈γ,TrtΦ〉 = 〈γ,Tr0T
tΦ〉.

By (4.3) with L replaced by L∗ throughout, SL
∗

ζ is the unique element of Y1,2(Rn+1)
for which the above identity can hold for all Φ ∈ Y1,2(Rn+1), as desired.

Proof of vi). In v), we proved that for each γ ∈ H−
1
2 (Rn), SLγ = T tL−1(T t

γ),
where T t

γ ∈ (Y1,2(Rn+1))∗ is given by 〈T t
γ,Φ〉 = 〈γ,TrtΦ〉 for Φ ∈ Y1,2(Rn+1). Hence

T −tSLγ = L−1(T t
γ). Reproduce the proof of i) in reverse to obtain the claim.
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Proof of vii). Let t > 0 (the case t < 0 is analogous). By ii) we have thatLSLγ = 0

in Rn+1
+ . Therefore, using Proposition 3.23 iv) we have that TrτDn+1S

Lγ ∈ H
1
2
0 (Rn)

for each τ > 0. Using (3.26) and v), we calculate that

d
dτ 〈TrτSLγ, ζ〉

∣∣
τ=t = d

dτ 〈ζ,TrτSLγ〉
∣∣
τ=t = d

dτ 〈Tr−τSL
∗
ζ, γ〉

∣∣
τ=t

= − d
d(−τ) 〈Tr−τSL

∗
ζ, γ〉

∣∣
−τ=−t = −〈Tr−tDn+1SL

∗
ζ, γ〉 = −〈γ,Tr−tDn+1S

L∗ζ〉.

Proof of viii). It is clear by an easy induction procedure that (vii) holds for higher
t−derivatives in the expected manner. Note that

〈∇SLt γ, g〉D ′,D = 〈∇‖S
L
t γ, ~g‖〉D ′,D + 〈TrtDn+1S

Lγ, g⊥〉D ′,D

= −〈SLt γ, div~g‖〉D ′,D − 〈γ,Tr−tDn+1S
L∗g⊥〉

H−
1
2 (Rn),H

1
2

0 (Rn)

= −〈γ,SL
∗

−t div~g‖〉
H−

1
2 (Rn),H

1
2

0 (Rn)
+ 〈γ, (SL

∗

−t Dn+1)g⊥〉
H−

1
2 (Rn),H

1
2

0 (Rn)
= 〈γ, (SL

∗

−t ∇)g〉.

�

In preparation for defining the double layer potential, let us make the following
remark.

Remark. Given ϕ ∈ H
1
2
0 (Rn), there exists Φ ∈ Y1,2(Rn+1) with Tr0Φ = ϕ and

‖Φ‖Y1,2(Rn+1) . ‖ϕ‖
H

1
2

0 (Rn)
.

For a fixed u ∈ Y1,2(Rn+1
+ ), let F +

u be the functional on Y1,2(Rn+1) defined by

〈F +
u , v〉 := BL,Rn+1

+
[u, v] =

∫∫
Rn+1

+

[
A∇u · ∇v + B1u · ∇v + B2 · ∇uv

]
,

for each v ∈ Y1,2(Rn+1). Then F +
u is clearly bounded on Y1,2(Rn+1). We define

BL,Rn+1
−

and F−
u in a similar way (using Rn+1

− instead of Rn+1
+ ), and we note that if

u ∈ Y1,2(Rn+1), then Lu = F +
u + F−

u .

Definition 4.6 (Double layer potential). Given ϕ ∈ H
1
2
0 (Rn), let Φ ∈ Y1,2(Rn+1) be any

extension of ϕ to Rn+1. DefineDL,+(ϕ) := −Φ
∣∣
Rn+1

+
+ L−1(F +

Φ )
∣∣
Rn+1

+
(see below for a

proof that this is well defined). We call the operatorDL,+ : H
1
2
0 (Rn)→ Y1,2(Rn+1

+ ) the
double layer potential associated to operatorL on the upper half-space. Analogously,
we defineDL,−, the double-layer potential associated to operatorL on the lower half-
space, by extending ϕ to Rn+1

− . We defineDL
∗,± similarly, by replacing L with L∗.

Proposition 4.7 (Properties of the double layer potential). Fix ϕ ∈ H
1
2
0 (Rn) and let Φ

be any Y1,2(Rn+1)−extension of ϕ to Rn+1 with Tr0Φ = ϕ. The following statements
hold.

i) The double layer potentialDL,+ is well defined.
ii) We have the characterizations

(4.8) DL,+ϕ = −L−1(F−
Φ )
∣∣
Rn+1

+
, DL,−ϕ = −L−1(F +

Φ )
∣∣
Rn+1
−
.

iii) The bound ‖DL,+ϕ‖Y1,2(Rn+1
+ ) . ‖ϕ‖

H
1
2

0 (Rn)
holds.

iv) The functionDL,+ϕ satisfies LDL,+ϕ = 0 in the weak sense in Rn+1
+ .



30 S. BORTZ, S. HOFMANN, J. L. LUNA GARCIA, S. MAYBORODA, AND B. POGGI

Proof. Proof of i). Let Φ,Φ′ ∈ Y1,2(Rn+1) be any two extensions of ϕ to Rn+1.
Then (Φ − Φ′)(·, 0) = 0. If w is defined as w|Rn+1

+
= Φ − Φ′ with w|Rn+1

−
≡ 0, then

w ∈ Y1,2(Rn+1). Thus observe that 〈Lw,Ψ〉 = BL[w,Ψ] = 〈F +
Φ−Φ′ ,Ψ〉, for all Ψ ∈

Y1,2(Rn+1), whence we conclude that w = L−1(F +
Φ−Φ′). Hence[

− Φ + L−1(F +
Φ )
]
Rn+1

+
−
[
− Φ′ + L−1(F +

Φ′)
]
Rn+1

+

=
[
Φ′ − Φ +L−1(F +

Φ −F +
Φ′)
]
Rn+1

+
=
[
Φ′ − Φ +L−1(F +

Φ−Φ′)
]
Rn+1

+
≡ 0.

Proof of ii). Simply note that

DL,+ϕ =
[
− Φ +L−1(F +

Φ )
]
Rn+1

+
=
[
L−1(−LΦ + F +

Φ )
]
Rn+1

+
=
[
L−1(−F−

Φ )
]
Rn+1

+
.

Proof of iii). Owing to (4.8) we write

‖DL,+ϕ‖Y1,2(Rn+1
+ ) = ‖L−1(F−

Φ )‖Y1,2(Rn+1
+ ) . ‖F

−
Φ‖(Y1,2(Rn+1))∗ .

Let 0 , Ψ ∈ Y1,2(Rn+1). We have

|(F−
Φ ,Ψ)| = |BL,Rn+1

−
[Φ,Ψ]| . ‖Φ‖Y1,2(Rn+1

− )‖Ψ‖Y1,2(Rn+1),

whence we deduce that ‖F−
Φ‖(Y1,2(Rn+1))∗ . ‖Φ‖Y1,2(Rn+1

− ) . ‖ϕ‖
H

1
2

0 (Rn)
. Putting these

estimates together we obtain the desired result.
Proof of iv). Let Ψ ∈ C∞c (Rn+1

+ ) and extend it as a function in Ψ ∈ C∞c (Rn+1) so
that Ψ ≡ 0 in Rn+1

− . Observe that

BL,Rn+1
+

[DL,+ϕ,Ψ] = BL,Rn+1
+

[−L−1(F−
Φ ),Ψ] = BL[−L−1(F−

Φ ),Ψ]

= −〈F−
Φ ,Ψ〉 = −BL,Rn+1

−
[Φ,Ψ] ≡ 0.

�

We may now introduce the definition of the conormal derivative. First let us make
the quick observation that since Y1,2

0 (Rn+1
+ ) ↪→ Y1,2(Rn+1

+ ), then we have a surjection
(Y1,2(Rn+1

+ ))∗ → (Y1,2
0 (Rn+1

+ ))∗ given by restriction of the test space for the functional.
In particular, if f ∈ (Y1,2(Rn+1

+ ))∗, then we can also think of f ∈ (Y1,2
0 (Rn+1

+ ))∗.

Definition 4.9 (Conormal derivative). Suppose that u ∈ Y1,2(Rn+1
+ ), f ∈ (Y1,2(Rn+1

+ ))∗

(note carefully that this space is not (Y1,2
0 (Rn+1

+ ))∗), and that Lu = f in Rn+1
+ in the

sense that for each Φ ∈ C∞c (Rn+1
+ ), the identity

(4.10) BL,Rn+1
+

[u,Φ] = 〈 f ,Φ〉(Y1,2
0 (Rn+1

+ ))∗,Y1,2
0 (Rn+1

+ )

holds. Define the conormal derivative of u associated to L with respect to Rn+1
+ ,

∂L,+ν u ∈ H−
1
2 (Rn), by

〈∂L,+ν u, ϕ〉 = BL,Rn+1
+

[u,Φ] − 〈 f ,Φ〉(Y1,2(Rn+1
+ ))∗,Y1,2(Rn+1

+ ) , ϕ ∈ H
1
2
0 (Rn),

where Φ ∈ Y1,2(Rn+1
+ ) is any bounded extension of ϕ to Rn+1

+ . Note that we also define
the objects ∂L

∗,+
ν u, ∂L,−ν u, ∂L

∗,−
ν u similarly.

When f = f̃ − div F̃ and f̃ , |F̃| verify the assumptions in (2.12) (with Ω = Rn+1
+ ,

D = Rn, and I = (0,∞)), then the sense (4.10) of weak solutions coincides with the
one previously given in Definition 2.9 (see Remark 2.11). In particular, if f ≡ 0, the
two senses (2.10), (4.10) of weak solutions coincide, and there is no ambiguity.
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Let us show that ∂L,+ν u is well defined. Let Φ,Φ′ be Y1,2(Rn+1
+ )−extensions of ϕ

with Tr0Φ = Tr0Φ′ = ϕ. Then Φ − Φ′ ∈ Y1,2
0 (Rn+1

+ ), and so

BL,Rn+1
+

[u,Φ] − BL,Rn+1
+

[u,Φ′] = BL,Rn+1
+

[u,Φ − Φ′] = 〈 f ,Φ − Φ′〉(Y1,2
0 (Rn+1

+ ))∗,Y1,2
0 (Rn+1

+ )

since u solves Lu = f in Rn+1
+ in the sense (4.10). Finally, observe that

〈 f ,Φ〉(Y1,2(Rn+1
+ ))∗,Y1,2(Rn+1

+ ) − 〈 f ,Φ
′〉(Y1,2(Rn+1

+ ))∗,Y1,2(Rn+1
+ )

= 〈 f ,Φ − Φ′〉(Y1,2(Rn+1
+ ))∗,Y1,2(Rn+1

+ ) = 〈 f ,Φ − Φ′〉(Y1,2
0 (Rn+1

+ ))∗,Y1,2
0 (Rn+1

+ ),

so that, upon subtracting these two identities, we see that ∂L,+ν u does not depend on
the particular extension Φ taken. It remains to show that ∂L,+ν u ∈ H−

1
2 (Rn). Observe

that

|〈∂L,+ν u, ϕ〉| ≤ |BL,Rn+1
+

[u,Φ]| + |〈 f ,Φ〉(Y1,2(Rn+1
+ ))∗,Y1,2(Rn+1

+ )|

.
(
‖u‖Y1,2(Rn+1

+ ) + ‖ f ‖(Y1,2(Rn+1
+ ))∗

)
‖Φ‖Y1,2(Rn+1

+ )

.
(
‖u‖Y1,2(Rn+1

+ ) + ‖ f ‖(Y1,2(Rn+1
+ ))∗

)
‖ϕ‖

H
1
2

0 (Rn)
.

It will also be helpful to consider conormal derivatives on slices other than t = 0,
denoted ∂L,±ν,t . The definition is entirely analogous.

The following identities tie these definitions of the conormal derivatives together.

Lemma 4.11. Let γ ∈ H−
1
2 (Rn). The following statements are true.

i) Suppose that u ∈ Y1,2(Rn+1
+ ) solves Lu = 0 in Rn+1

+ in the weak sense. Then for
any t > 0, ∂L,+ν T tu = ∂L,+ν,t u. Moreover, for any t > 0, ∂L,+ν,t u ∈ L2(Rn), and we
have the identity

(4.12) ∂L,+ν,t u = −en+1 · Trt[A∇u + B1u] in L2(Rn).

ii) Suppose that u ∈ Y1,2(Rn+1
− ) solves Lu = 0 in Rn+1

− . Then for any t > 0,
∂L,−ν T −tu = ∂L,−ν,−tu.

iii) Let t > 0. Then for each γ ∈ H−
1
2 (Rn), the identity −∂L,−ν,−tS

Lγ = ∂L,+ν,−tS
Lγ holds

in the space H−
1
2 (Rn).

Proof. Proof of i) and ii). Let ϕ ∈ H
1
2
0 (Rn), and Φ ∈ Y1,2(Rn+1

+ ) is any extension of ϕ.
Thenm

〈∂L,+ν T tu, ϕ〉 = BL,Rn+1
+

[T tu,Φ] = BL,Rn+1
t

[u,T −tΦ]

= 〈∂L,+ν,t u,TrtT
−tΦ〉 = 〈∂L,+ν,t u, ϕ〉.

We turn our attention now to (4.12). By Remark 3.18, we have that F(x, t) = −en+1 ·

Trt[A∇u+B1u] is continuous in t taking values in L2(Rn). In order to prove the lemma
we will regularize our coefficients and solution simultaneously.

Let Pε be an (n + 1)−dimensional approximate identity; that is, Pε( f ) = ηε ∗ f ,
where ηε(X) = 1

εn+1 η(X/ε) (X ∈ Rn+1), η ∈ C∞c (B(0, 1)), η non-negative and radially
decreasing with

∫
Rn+1 η = 1. We claim that

(4.13) − en+1 · Pε(A∇u + B1u)(x, t0) −→ −en+1 · (A∇u + B1u)(x, t0)
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strongly in L2(Rn). Assume (4.13) for a moment. Then to show i) and ii) in the
lemma, it is enough to show that for every Φ ∈ C∞c (Rn+1) with Φ(x, t0) = ϕ(x), we
have that

lim
ε→0

∫
Rn
−en+1 · Pε(A∇u + B1u)(x, t0)ϕ(x) dx =

∫∫
Rn+1

t0

A∇u∇Φ + B1u∇Φ + B2 · ∇uΦ.

To prove the above equality, first define for any cube Q ⊂ Rn, Rt0
Q := Q×[t0, t0+`(Q)].

Now choose any cube Q ⊂ Rn such that supp Φ∩{t ≥ t0} ⊂ Rt0
1
2 Q

. Integrating by parts,
we have for 0 < ε � min{`(Q), t0} the identity

(4.14)
∫
Rn
−en+1 · Pε(A∇u + B1u)(x, t0)ϕ(x) dx =

∫∫
R

t0
Q

div[Pε(A∇u + B1u)Φ]

=

∫∫
R

t0
Q

div[Pε(A∇u + B1u)]Φ +

∫∫
R

t0
Q

Pε(A∇u + B1u) · ∇Φ.

Now let X = (x, t) ∈ supp Φ ∩ {t ≥ t0}, and ε < t0
2 . Then, since Lu = 0 in Rn+1

+ , we
have that

divX[Pε(A∇u + B1u)](X) = divX

∫∫
Rn+1

ηε(X − Y)(A∇Yu + B1u)(Y) dY

= −

∫∫
Rn+1
∇Yηε(X − Y)(A∇Yu + B1u)(Y) dY

=

∫∫
Rn+1

+

ηε(X − Y)B2∇Yu(Y) dY = Pε(B2∇u)(X),

and therefore the identity

(4.15)
∫∫

R
t0
Q

div[Pε(A∇u + B1u)]Φ =

∫∫
R

t0
Q

Pε(B2∇u)Φ

holds. Finally, we want to pass in the limit as ε → 0 the identity (4.14) while using
(4.15), so we use the Lebesgue dominated convergence theorem. Observe that for
some p > 1, |A∇u| + |B1u| + |B2∇u| ∈ Lp(U t0

Q), where U t0
Q := Rt0

Q + B(0, t0
4 ) (the

t0
4 -neighborhood of Rt0

Q). It follows that for ε ∈ (0, t0
4 ),

Pε(A∇u + B1u)(x, t) + Pε(B2∇u)(x, t) ≤M
([
|A∇u| + |B1u| + |B2∇u|

]
1U

t0
Q

)
(x, t)

for all (x, t) ∈ Rt0
Q, where M is the usual Hardy-Littlewood maximal operator in Rn+1.

Hence we have that

lim
ε→0

∫
Rn
−en+1 · Pε(A∇u + B1u)(x, t0)ϕ(x) dx

= lim
ε→0

∫∫
R

t0
Q

Pε(A∇u + B1u)∇Φ + Pε(B2∇u)Φ

=

∫∫
R

t0
Q

A∇u + B1u∇Φ + B2∇uΦ.

Thus it remains to prove (4.13). Set Fε(x, t) := −en+1 · Pε(A∇u + B1u)(x, t),
F(x, t) := −en+1 · (A∇u + B1u)(x, t). For ε < t0

2 , we have that
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lim sup
ε→0

‖Fε(·, t0) − F0(·, t0)‖2

= lim sup
ε→0

(∫
Rn

∣∣∣ ∫∫
Rn+1

[
F0(x − εy, t0 − εs) − F0(x, t0)

]
ηε(y, s) dy ds

∣∣∣2 dx
) 1

2

≤ lim sup
ε→0

∫∫
Rn+1

η(y, s)
[ ∫
Rn
|F0(x − εy, t0 − εs) − F0(x, t0)|2 dx

] 1
2

dy ds

≤ lim sup
ε→0

sup
|y|,|s|<1

‖F0(· − εy, t0 − εs) − F0(·, t0)‖2

≤ lim sup
ε→0

sup
|ŷ|,|ŝ|<ε

‖F0(· − ŷ, t0 − ŝ) − F0(· − ŷ, t0)‖2 + ‖F0(· − ŷ, t0) − F0(·, t0)‖2,

which drops to 0 as ε→ 0, finishing the proof.

Proof of iii). Let ϕ ∈ H
1
2
0 (Rn) and let Φ ∈ Y1,2(Rn+1) be any extension of ϕ. Note

that LSLγ = 0 in Rn+1
−,−t, while LSLγ = Tγ in Rn+1

+,−t in the sense (4.10), where Tγ ∈
(Y1,2(Rn+1))∗ is the distribution given by 〈Tγ,Ψ〉 = 〈γ,Tr0Ψ〉, for Ψ ∈ Y1,2(Rn+1).
Then,

〈∂L,+ν,−tS
Lγ, ϕ〉 = BL,Rn+1

+,−t
[SLγ,Φ] − 〈γ,Tr0Φ〉

= −BL,Rn+1
−,−t

[SLγ,Φ] + BL[SLγ,Φ] − 〈γ,Tr0Φ〉

= −BL,Rn+1
−,−t

[SLγ,Φ] + 〈γ,Tr0Φ〉 − 〈γ,Tr0Φ〉 = −〈∂L,−ν,−tS
Lγ, ϕ〉.

�

4.1. Green’s formula and jump relations. Let us remark that the functional F +
u

makes sense even if we only have that u ∈ Y1,2(Rn+1
+ ) and u < Y1,2(Rn+1). Also, if

Ω ⊂ Rn+1 is an open set with Lipschitz boundary, and f ∈ (Y1,2(Ω))∗, define the
functional 1Ω f ∈ (Y1,2(Rn+1))∗ by 〈1Ω f ,Ψ〉 := 〈 f ,1ΩΨ〉 for each Ψ ∈ Y1,2(Rn+1).
Theorem 4.16 (Green’s formula). Suppose that u ∈ Y1,2(Rn+1

+ ) solvesLu = f in Rn+1
+

for some f ∈ (Y1,2(Rn+1
+ ))∗ in the sense (4.10). Then the following statements hold.

i) We have the identity

(4.17) SL(∂L,+ν u) = L−1(F +
u ) − L−1(1Rn+1

+
f ) in Y1,2(Rn+1).

ii) The identity u = −DL,+(Tr0u) + SL(∂L,+ν u)|Rn+1
+

+ L−1(1Rn+1
+

f )|Rn+1
+

holds in
Y1,2(Rn+1

+ ).
iii) We have that −L−1(1Rn+1

+
f )|Rn+1

−
= DL,−(Tr0u) + SL(∂L,+ν u)|Rn+1

−
in Y1,2(Rn+1

− ).
iv) Suppose that Lu = 0 in Rn+1

− . ThenDL,+(Tr0 u) = −SL(∂L,−ν u) holds in Rn+1
+ .

Proof. Proof of i). Let Ψ ∈ (Y1,2(Rn+1))∗. Then

〈Ψ,SL∂L,+ν u〉 = 〈Tr0(L∗)−1Ψ, ∂L,+ν u〉

= BL,Rn+1
+

[u, (L∗)−1Ψ] − 〈 f , (L∗)−1Ψ〉(Y1,2(Rn+1
+ ))∗,Y1,2(Rn+1

+ )

= 〈F +
u , (L−1)∗Ψ〉 − 〈1Rn+1

+
f , (L−1)∗Ψ〉 = 〈L−1(F +

u ),Ψ〉 − 〈L−1(1Rn+1
+

f ),Ψ〉

= 〈Ψ,L−1(F +
u ) − L−1(1Rn+1

+
f )〉.

Proof of ii). Let Ψ ∈ (Y1,2(Rn+1))∗ have compact support within Rn+1
+ . Using

(4.17), we have that
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〈Ψ,SL∂νu −DL,+Tr0u〉

= 〈Ψ,L−1(F +
u )〉 − 〈Ψ,L−1(1Rn+1

+
f )〉 −

[
− 〈Ψ, u|Rn+1

+
〉 + 〈Ψ,L−1(F +

u )|Rn+1
+
〉
]

= 〈Ψ, u − L−1(1Rn+1
+

f )〉.

Proof of iii). Let Ψ ∈ (Y1,2(Rn+1))∗ have compact support within Rn+1
− . Using (4.8)

and (4.17), we have that

〈Ψ,DL,−(Tr0u) + SL(∂L,+ν u)〉 = 〈Ψ,−L−1(F +
u )|Rn+1

−
+L−1(F +

u ) − L−1(1Rn+1
+

f )〉

= −〈Ψ,L−1(1Rn+1
+

f )〉.

The proof of iv) is the same as iii), and is thus omitted. �

Let us now consider some adjoint relations for the double layer potential. First,
for any u ∈ Y1,2(Rn+1), denote by F ∗

u
+
∈ (Y1,2(Rn+1))∗ the functional given by

〈F ∗
u

+, v〉 := BL∗,Rn+1
+

[u, v] for v ∈ Y1,2(Rn+1).
Proposition 4.18. We have the following identities.

i) For each ϕ, ψ ∈ H
1
2
0 (Rn), the identity 〈∂L,+ν D

L,+ϕ, ψ〉 = 〈ϕ, ∂L
∗,+

ν DL
∗,+ψ〉 holds.

ii) For each γ ∈ H−
1
2 (Rn), ϕ ∈ H

1
2
0 (Rn), t ≥ 0, the adjoint relation

(4.19) 〈γ,TrtD
L,+ϕ〉 = −〈∂L

∗,−
ν T −tSL

∗

γ, ϕ〉 = −〈∂L
∗,−

ν,−t S
L∗γ, ϕ〉 = 〈∂L

∗,+
ν,−t S

L∗γ, ϕ〉

holds. In the case that t = 0, we may write

(4.20) 〈γ,Tr0D
L,+ϕ〉 = −〈γ, ϕ〉 + 〈∂L

∗,+
ν SL

∗

γ, ϕ〉.

iii) Fix ϕ ∈ H
1
2 (Rn). For each t > 0, and every ζ ∈ H−

1
2 (Rn), we have the identity

〈TrtDn+1D
L,+ϕ, ζ〉 = d

dt 〈TrtD
L,+ϕ, ζ〉 = 〈ϕ, ∂L

∗,−
ν,−t Dn+1S

L∗ζ〉L2,L2 .
iv) Fix t > 0. Let g = (~g‖, g⊥) : Rn → Cn+1 be such that g‖, g⊥ ∈ C∞c (Rn). In the

sense of distributions, we have the adjoint relation

(4.21) 〈∇TrtDn+1D
L,+ϕ, g〉D ′,D = 〈ϕ,Dn+1∂

L∗,−
ν,−t (SL

∗

∇)g〉L2,L2

Proof. Proof of i). Let Φ,Ψ be extensions of ϕ, ψ respectively to Y1,2(Rn+1). Then,

〈∂L,+ν D
L,+ϕ, ψ〉 = BL,Rn+1

+
[DL,+ϕ,Ψ] = −BL,Rn+1

+
[Φ,Ψ] + BL,Rn+1

+
[L−1(F +

Φ ),Ψ]

= −BL∗,Rn+1
+

[Ψ,Φ] + BL∗,Rn+1
+

[Ψ,L−1(F +
Φ )]

= BL∗,Rn+1
+

[DL∗,+ψ,Φ] − BL∗,Rn+1
+

[(L∗)−1(F ∗
Ψ

+),Φ] + BL∗,Rn+1
+

[Ψ,L−1(F +
Φ )]

= 〈ϕ, ∂L
∗,+

ν DL
∗,+ψ〉 +

[
− BL∗,Rn+1

+
[(L∗)−1(F ∗

Ψ
+),Φ] + BL∗,Rn+1

+
[Ψ,L−1(F +

Φ )]
]
,

where in the first equality we used the definition of the conormal derivative, in the
second equality we used the definition of the double layer potential. Hence it suffices
to show that BL∗,Rn+1

+
[Ψ,L−1(F +

Φ )] = BL∗,Rn+1
+

[(L∗)−1(F ∗
Ψ

+),Φ]. Simply note that

BL∗,Rn+1
+

[Ψ,L−1(F +
Φ )] = 〈F ∗

Ψ
+,L−1(F +

Φ )〉 = 〈(L−1)∗(F ∗
Ψ

+),F +
Φ 〉

= BL,Rn+1
+

[Φ, (L−1)∗(F ∗
Ψ

+)] = BL∗,Rn+1
+

[(L∗)−1(F ∗
Ψ

+),Φ],

where in the first equality we used the definition of the functional F ∗
Ψ

+, and in the
third equality we used the definition of F +

Φ . The desired identity follows.
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Proof of ii). Let γ ∈ H−
1
2 (Rn), ϕ ∈ H

1
2
0 (Rn), and let Φ ∈ Y1,2(Rn+1) be an extension

of ϕ such that Tr0Φ = ϕ. By the definition of DL,+ϕ, we have that 〈γ,TrtD
L,+ϕ〉 =

−〈γ,TrtΦ〉 + 〈γ,TrtL
−1(F +

Φ )〉. By (4.4), we have that

〈γ,TrtL
−1(F +

Φ )〉 = 〈(Trt ◦ L
−1)∗γ,F +

Φ 〉 = 〈T −tSL
∗

γ,F +
Φ 〉

= 〈F +
Φ ,T

−tSL
∗
γ〉 = BL,Rn+1

+
[Φ,T −tSL

∗
γ] = BL∗,Rn+1

+
[T −tSL

∗

γ,Φ]

= BL∗[T −tSL
∗

γ,Φ] − BL∗,Rn+1
−

[T −tSL
∗

γ,Φ] = 〈γ,TrtΦ〉 − 〈∂
L∗,−
ν T −tSL

∗

γ, ϕ〉,

where in the last equality we used (4.4) combined with (4.3) for the first term, and
for the second term we used the definition of the conormal derivative and the fact
that LT −tSL

∗

= 0 in Rn+1
− . From this calculation, the first equality in (4.19) follows.

The second and third equalities are straightforward consequences of Lemma 4.11. To
see that (4.20) is true, simply observe that when t = 0, we have that L∗SL

∗

γ = 0 in
Rn+1

+ and in Rn+1
− , whence we deduce that 〈∂L

∗,−
ν T −0SL

∗

γ + ∂L
∗,+

ν T −0SL
∗

γ, ϕ〉 =

BL∗[SL
∗

γ,Φ] = 〈γ,Tr0Φ〉. Adding and subtracting 〈∂L
∗,+

ν T −tSL
∗

γ, ϕ〉 to the right-
hand side of (4.19) now proves the claim.

Proof of iii). Let t > 0. By Proposition 4.7 iv), we have that LDL,+ϕ = 0 in Rn+1
+ .

Therefore, using Proposition 3.23 iv) we see that TrτDn+1D
L,+ϕ ∈ H

1
2 (Rn) for each

τ > 0. Similarly, we have that Tr−τ∇Dn+1S
L∗ζ ∈ L2(Rn) for each τ > 0. Using (3.26)

and ii), we calculate that d
dτ (TrtD

L,+ϕ, ζ)
∣∣
τ=t = − d

dτ (ϕ, ∂L
∗,−

ν,−t S
L∗ζ)

∣∣
τ=t. Now we use

the characterization of the conormal derivative, (4.12), to obtain

−
d
dτ

(ϕ, ∂L
∗,−

ν,−t S
L∗ζ)

∣∣
τ=t = −

d
dτ

(
ϕ,
[
en+1 · Tr−τ(A∗∇ + B2)SL

∗

ζ
])

2,2

∣∣
τ=t

=
(
ϕ,
[
en+1 · Tr−t(A∗∇ + B2)Dn+1S

L∗ζ
])

2,2.

Finally, iv) follows from iii) similarly as in Proposition 4.2 viii). �

Let us now establish standard jump relations.

Proposition 4.22 (Jump relations). Let ϕ ∈ H
1
2
0 (Rn) and γ ∈ H−

1
2 (Rn).

i) The identity Tr0D
L,+ϕ + Tr0D

L,+ϕ = −ϕ holds in H
1
2
0 (Rn).

ii) The identity ∂L,+ν S
Lγ + ∂L,−ν S

Lγ = γ holds in H−
1
2 (Rn).

iii) The identity ∂L,+ν D
L,+ϕ = ∂L,−ν D

L,−ϕ holds in H−
1
2 (Rn).

iv) The identity Tr0(SLγ|Rn+1
+

) = Tr0(SLγ|Rn+1
−

) holds in H
1
2
0 (Rn).

Proof. The statement iv) is immediate from the fact that SLγ ∈ Y1,2(Rn+1). The
statement ii) follows from the definition of the conormal derivative and the fact that
LSLγ = 0 in Rn+1\{t = 0}.

Proof of i). Let γ ∈ H−
1
2 (Rn), and let Φ ∈ Y1,2(Rn+1) be any extension of ϕ. Using

(4.20), we see that

〈γ,Tr0[DL,+ϕ +DL,−ϕ]〉 = −2〈γ, ϕ〉 + 〈∂L
∗,−

ν SL
∗

γ + ∂L
∗,+

ν SL
∗

γ, ϕ〉

= −2〈γ, ϕ〉 + BL∗[SL
∗

γ,Φ] = −2〈γ, ϕ〉 + 〈γ,Tr0Φ〉 = −〈γ, ϕ〉.

Proof of iii). Let ψ ∈ H
1
2
0 (Rn), and let Φ,Ψ ∈ Y1,2(Rn+1) be extensions of ϕ, ψ

respectively such that Tr0Φ = ϕ,Tr0Ψ = ψ. Also recall that LDL,+ϕ = 0 in Rn+1
+ ,
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and LDL,−ϕ = 0 in Rn+1
− . Then,

〈∂L,+ν D
L,+ϕ, ψ〉 = BL,Rn+1

+
[DL,+ϕ,Ψ] = −BL,Rn+1

+
[Φ,Ψ] + BL,Rn+1

+
[L−1(F +

Φ ),Ψ]

= −BL,Rn+1
+

[Φ,Ψ] + BL[L−1(F +
Φ ),Ψ] − BL,Rn+1

−
[L−1(F +

Φ ),Ψ]

= −BL,Rn+1
+

[Φ,Ψ] + 〈F +
Φ ,Ψ〉 − BL,Rn+1

−
[L−1(LΦ),Ψ] + BL,Rn+1

−
[L−1(F−

Φ ),Ψ]

= −BL,Rn+1
−

[Φ,Ψ] + BL,Rn+1
−

[L−1(F−
Φ ),Ψ] = BL,Rn+1

−
[DL,−ϕ,Ψ] = 〈∂L,−ν D

L,−ϕ, ψ〉.

�

4.2. Initial L2 estimates for the single layer potential. We now establish several
estimates for the single layer potential. This will allow us to prove the square function
estimates, via a Tb theorem, in the next section. We begin with a perturbation result.

Proposition 4.23 (Initial slice estimates). The following statements hold provided
that max{‖B1‖n, ‖B2‖n} is small enough, depending only on n, λ, and Λ.

i) For each f ∈ C∞c (Rn), each a > 0, and each m ≥ 1, we have the estimate

(4.24) −

∫ 2a

a

∫
Rn
|tm∇∂m

t S
L f |2 dt .m ‖ f ‖22.

ii) For each f ∈ C∞c (Rn), each t ≥ 0, and each m ≥ 2, we have the estimate

(4.25) ‖tm∇∂m
t S
L
t f ‖L2(Rn) .m ‖ f ‖2.

Proof. First we see that the second estimate is a consequence of the first by the Cac-
cioppoli inequality on slices (3.22). In particular, we have that

‖tm∇∂m
t S
L
t f ‖22 =

∑
Q∈Dt

∫
Q
|tm∇∂m

t S
L
t f |2 dx . −

∫ 2t

t

∫
Rn
|sm∇∂m−1

s SLs f |2 dx ds,

where Dt is a grid of n-dimensional cubes of side length t. Thus it suffices to show i).
To this end, we know from [AAAHK11] that i) holds with SL replaced by SL0 ,

where L0 = −∆. Thus, to prove i), we show that −
∫ 2a

a

∫
Rn |tm∇∂m

t (SL − SL0) f |2 dt .
‖ f ‖2. Observe that

SL − SL0 = (Tr0 ◦((L∗)−1 − (L∗0)−1))∗ = (Tr0 ◦((L∗0)−1(L∗0 − L
∗)(L∗)−1))∗

= ((L∗0 − L
∗)(L∗)−1)∗SL0 = L−1(L0 − L)SL0

= − div(I − A)∇SL0 − L−1 div(B1S
L0) − L−1B2 · ∇S

L0 .

Now let f ∈ C∞c (Rn). Then we have that

−

∫ 2a

a

∫
Rn
|tm∇Dm

n+1(SL − SL0) f |2 dt . −
∫ 2a

a

∫
Rn
|tm∇Dm

n+1L
−1 div(I − A)∇SL0 f )|2 dt

+ −

∫ 2a

a

∫
Rn
|tm∇Dm

n+1L
−1 div(B1S

L0 f )|2 dt

+ −

∫ 2a

a

∫
Rn
|tm∇Dm

n+1L
−1B2 · ∇S

L0 f |2 dt =: I + II + III.
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We prove only the bound II . ‖ f ‖22 as the bounds for I and III are entirely analogous,
and we will indicate the small differences after we bound II. Let ψ = ψ(t) be such
that ψ ∈ C∞c (−a/5, a/5), ψ ≡ 1 on (−a/10, a/10), 0 ≤ ψ ≤ 1, dk

dtkψ .k (1/a)k. Writing
1 = ψ + (1 − ψ), we have that

II ≤ −
∫ 2a

a

∫
Rn
|tm∇Dm

n+1L
−1 div(B1S

L0 f )|2 dt

≤ −

∫ 2a

a

∫
Rn
|tm∇Dm

n+1L
−1 div(ψB1S

L0 f )|2 dt

+ −

∫ 2a

a

∫
Rn
|tm∇Dm

n+1L
−1 div((1 − ψ)B1S

L0 f )|2 dt =: II1 + II2.

To bound II1, we notice that if g = div(ψB1S
L0 f ), then g ≡ 0 on Rn × (a/5,∞).

It follows that each Dk
n+1L

−1g = L−1Dk
n+1g, k = 0, 1, . . .m is a (null) solution in

Rn × (a/5,∞). Let Da be a grid of n-dimensional cubes with side length a. Applying
the Caccioppoli inequality m times and using that t ≈ a on (a, 2a), we see that

II1 . a2m−1
∫ 2a

a

∫
Rn
|∇Dm

n+1L
−1 div(ψB1S

L0 f )|2

. a2m−1
∑
Q∈Da

∫ 2a

a

∫
Q
|∇Dm

n+1L
−1 div(ψB1S

L0 f )|2

. a−1
∑
Q∈Da

∫ 4a

a/2

∫
2Q
|Dn+1L

−1 div(ψB1S
L0 f )|2 . a−1

∫
R

∫
Rn
|∇L−1 div(ψB1S

L0 f )|2

. a−1
∫
R

∫
Rn
|ψB1S

L0 f |2 . −
∫ a/5

−a/5

∫
Rn
|B1S

L0 f |2 . ‖ f ‖22,

where we used that supt,0 ‖B1S
L0
t ‖L2(Rn)→L2(Rn) . supt,0 ‖∇S

L0
t ‖L2(Rn)→L2(Rn) ≤ C

(see [AAAHK11, Lemma 4.18]) and that ∇L−1 div : L2(Rn+1)→ L2(Rn+1).
Now we deal with II2. Set g = (1 − ψ)B1S

L0 f . Then, we have that

Dm
n+1g = (1 − ψ)B1Dm

n+1S
L0 f +

m∑
k=1

ψ(k)B1Dm−k
n+1S

L0 f =: F0 +

m∑
k=1

Fk.

where ψ(k) = dk

dtkψ. The triangle inequality yields that

II2 ≤

m∑
k=0

−

∫ 2a

a

∫
Rn
|tm∇Dm

n+1L
−1 div(Fk)|2 dt =:

m∑
k=0

II2,k.

For II2,k, k = 1, 2 . . .m, we use that t ≈ a in the region of integration, the properties
of ψ, and that ∇L−1 div : L2 → L2 to obtain that

II2,k . a2m−1
∫
R

∫
Rn
|ψ(k)B1∂

m−k
t SL0 f |2 dt

. a2m−2k−1
∫

a/10≤|t|≤a/5

∫
Rn
|B1∂

m−k
t SL0 f |2 dt



38 S. BORTZ, S. HOFMANN, J. L. LUNA GARCIA, S. MAYBORODA, AND B. POGGI

. −

∫ a/5

−a/5

∫
Rn
|tm−kB1∂

m−k
t SL0 f |2 dt . ‖ f ‖22,

where we used [AAAHK11, Lemma 2.10] in the last line. Finally, to handle II2,0, we
use that (1 − ψ) = 0 if |t| < a/10, and that ∇L div : L2 → L2 to obtain that

II2,0 . a2m−1
∫
R

∫
Rn
|(1 − ψ)B1∂

m
t S
L0 f |2 dt . a2m−1

∫
|t|>a/10

∫
Rn
|B1∂

m
t S
L0 f |2 dt

.

∫
|t|>a/10

∫
Rn
|tm+1B1∂

m
t S
L0 f |2

dt
t
. ‖ f ‖22,

where we used the estimate ‖|tm+1B1∂
m
t S
L0 f |‖22 . ‖|t

m+1∂m
t ∇S

L0 f |‖22 . ‖ f ‖
2
2 in the

last line. To see this last estimate, we simply use the “travelling up” procedure for
square functions (see Proposition 5.2 below) and that L0 = ∆ has good square func-
tion estimates. We now observe that handling the term III amounts to replacing the
use of the mapping property ∇L−1 div : L2 → L2 by the fact that ∇L−1B2 : L2 → L2.
The term I is handled exactly the same way, using the L∞ bound for (I − A), without
appealing to the mapping properties of multiplication by B1. �

Remark 4.26. Note that, from now on, it makes sense to write the objects appearing
in (4.24) and (4.25) for f in L2(Rn) after we have made extensions by continuity.

Before proceeding, we will need some identities improving on the duality results
in Section 4 for the single and double layers. To ease the notation, we will use (G)t
to denote the trace at t of a function G defined in Rn+1

+ .
Proposition 4.27 (Further distributional identities of the layer potentials). For any
t , 0 and m ≥ 1, the following statements are true.

i) For any f ∈ C∞c (Rn) and any ~g ∈ L2(Rn;Cn+1), we have that

dm

dtm 〈∇S
L
t f , ~g〉 = 〈(Dm

n+1∇S
L[ f ])t, ~g〉.

ii) For any f ∈ L2(Rn) and any ~g ∈ C∞c (Rn;Cn+1), we have that

dm

dtm 〈 f , ((S
L∗∇)[~g])−t〉 = (−1)m〈 f , (Dm

n+1(SL
∗

∇)[~g])−t〉.

iii) If m ≥ 2, then for every f ∈ L2(Rn) and ~g ∈ L2(Rn,Cn+1)), we have the identity

〈(Dm
n+1∇S

L[ f ])t, ~g〉 = (−1)m〈 f , (Dm
n+1(SL

∗

∇)[~g])−t〉.

Proof. Let us first show the identities with f ∈ C∞c (Rn) and ~g ∈ C∞c (Rn;Cn+1). For
the first equality, note that u := SL[ f ] ∈ Y1,2(Rn+1) and Lu = 0 in Rn+1 \ {xn+1 = 0}.
In particular, ∂tu ∈ W1,2(Σb

a) for any a < b such that 0 < [a, b], by Lemma 3.17. By
iteration we have that ∂m

t ∇u ∈ L2(Σb
a). In particular, arguing as in Lemma 2.3, we

realize that the map t 7→ ∇u(·, t) is smooth (with values in L2(Rn;Cn+1)). The first
equality for m = 1 then boils down to proving the weak convergence of the difference
quotients to the derivative in L2(Rn); that is, showing that

lim
h→0

∇u(t + h) − ∇u(t)
h

= ∂t∇u(t), weakly in L2(Rn).

But this follows from the smoothness of our map. The case of general m now follows
by induction.
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For the second equality, by definition we have that

((SL
∗

∇)[~g])s = −(SL
∗

[div‖ g‖])s − (Dn+1S
L∗[g⊥])s,

and since ~g ∈ C∞c (Rn;Cn+1), we can apply the same argument as above to conclude
that

dm

dtm 〈 f , ((S
L∗∇)[g])−t〉 = (−1)m〈 f , (Dm

n+1(SL
∗

∇)[g⊥])−t〉.

The third equality now follows by duality: For f ∈ C∞c (Rn) and g ∈ C∞c (Rn;Cn+1),
we have that

〈(Dm
n+1∇S

L[ f ])t, ~g〉 =
dm

dtm 〈∇S
L
t f , ~g〉 =

dm

dtm 〈 f , ((S
L∇)[~g])−t〉

= (−1)m〈 f , (Dm
n+1(SL∇)[~g])−t〉

Finally, the identities are extended to the respective L2 spaces via a straightforward
density argument using Proposition 4.23. �

We now present an off-diagonal decay result.
Proposition 4.28 (Good off-diagonal decay). Let Q ⊂ Rn be a cube and g ∈ L2(Q)
with supp g ⊆ Q. If p ∈ [2, p+] is such that |p − 2| is small enough that Lemma 3.4
holds, we have that(∫

R0

|tm(∂t)m∇SLt g(x)|p dx
) 1

p
. 2−(m+1)tm`(Q)−n(1/2−1/p)`(Q)−m‖g‖L2(Q),

provided t ≈ `(Q). Moreover, for any k ≥ 1 and any t ∈ R, the estimate(∫
Rk

|tm(∂t)m∇SLt g(x)|p dx
) 1

p
. 2nkα2−k(m+1)tm`(Q)−n(1/2−1/p)`(Q)−m‖g‖L2(Q),

where α = α(p) = 1
p (1 − p

p+
) and the annular regions Rk = Rk(Q) are defined by

R0 := 2Q, Rk := 2k+1Q \ 2kQ, for all k ≥ 1. In particular, if t ≈ `(Q) we have that(∫
Rk

|tm(∂t)m∇SLt g(x)|p dx
) 1

p
. 2nkα2−k(m+1)`(Q)−n(1/2−1/p)‖g‖L2(Q).

By a straightforward duality argument, from the above proposition we deduce
Corollary 4.29. Define Θt,m := tm∂m

t (St∇). Let g ∈ L2(Q) and suppose that p ∈
[2, p+] is such that |p−2| is small enough so that Lemma 3.4 holds. Then for q =

p
p−1

and k ≥ 1, we have that

‖Θt,m( f1Rk )‖L2(Q) . 2nkα2−k(m+1)tm`(Q)−n(1/q−1/2)`(Q)−m‖ f ‖Lq(Rk),

where α = α(p) is as in Proposition 4.28. Moreover, if t ≈ `(Q), then for all k ≥ 0,

‖Θt,m( f1Rk )‖L2(Q) . 2nkα2−k(m+1)`(Q)−n(1/q−1/2)‖ f ‖Lq(Rk)

≈ 2nkα2−k(m+1)t−n(1/q−1/2)‖ f ‖Lq(Rk).

Proof of Proposition 4.28. Notice that g ∈ L2(Q) ⊂ L2n/(n+1)(Q) ⊂ H−
1
2 (Rn), so that

SLt g is well defined.
We treat first the case k ≥ 1. Fix a small parameter δ = δ(m) > 0 and set R̃k =

(2 + δ)k+1Q \ (2 − δ)kQ be a small (but fixed) dilation of Rk. We may use that ∂m
t u is
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a solution (see Proposition 3.16), a slight variant of Lemma 3.20 adapted to annular
regions, and Proposition 3.9 to see that(∫

Rk

|tm(∂t)m∇SLt g|p
) 1

p
.

tm

(2k`(Q))1+1/p

(∫∫
Ik,1

|∂m
t S
L
t g|p

)1/p
,

where Ik := {(y, s) ∈ Rn+1 : y ∈ R̃k,1, s ∈ (t − 2k`(Q), t + 2k`(Q)} and R̃k, j is defined
as R̃k but with δ/(m + 2 − j) instead of δ (so that, in particular, R̃k,m+1 = R̃k). Now,
applying the (n + 1)-dimensional Lp Caccioppoli m times (see Proposition 3.9), we
further obtain that(∫

Rk

|tm∂m
t ∇S

L
t g|p

) 1
p
.

tm

(2k`(Q))m+1+1/p

(∫∫
Ik,m+1

|SLt g|p
)1/p

.

Now, using Hölder’s inequality in t and the mapping properties of SLt we see that(∫
Rk

|tm∂m
t ∇S

L
t g|p

) 1
p
.

tm

[2k`(Q)]m+1 sup
t∈(−2k`(Q),2k`(Q))

‖SLt g‖Lp(R̃k)

.
tm[2k`(Q)]nα

[2k`(Q)]m+1 sup
t∈(−2k`(Q),2k`(Q))

‖SLt g‖Lp+ (R̃k) .
tm[2k`(Q)]nα

[2k`(Q)]m+1 ‖g‖Lp− (Q)

.
tm[2k`(Q)]nα

[2k`(Q)]m+1 |Q|
1
2n ‖g‖L2(Q).

The case k = 0 is treated similarly, except that we impose the restriction t ≈ `(Q) to
guarantee that we are far away from the support of g. �

For the most part, the case q = p = 2 in the above proposition will be enough for
our purposes; however, the introduction of error terms in the Tb theorem below will
necessitate a certain quasi-orthogonality result for which we use the case p > 2 > q.
Lemma 4.30 (Quasi-orthogonality). Let m ≥ n and let Qs be a CLP family (see
Definition 2.26). Then there exist γ,C > 0 such that for all s < t, we have that

(4.31) ‖Θt,mB1I1Q
2
sg‖2 ≤ C

( s
t

)γ
‖Qsg‖2

for all g ∈ L2(Rn), where I1 is the standard fractional integral operator of order 1.
Here, C and γ depend on m, n, λ, Λ, and the constants in the definition of Qs.

Proof. Let us first note that if α(p) is given as in Proposition 4.28, then α(p) ≤ 1/(2n).
Therefore, for all k ≥ 0 and Q with `(Q) ≈ t, we have that

(4.32) ‖Θt,m( f1Rk )‖L2(Q) . 2nkα2−k(m+1)t−n(1/q−1/2)‖ f ‖Lq(Rk)

. 2−kβt−n(1/q−1/2)‖ f ‖Lq(Rk),

for some β ≥ n/2 + 1, where we use that m ≥ n.
We first establish a variant of (4.31) with a collection of CLP families. Let ζ ∈

C∞c (B(0, 1
100 )) be real, radial and have zero average. Define Q(1)

s f (x) := (ζs ∗ f )(x),
where ζs(x) = s−nζ( x

s ). Set Q(2)
s f := s2∆es2∆ f . By re-normalizing ζ (multiplying by

a constant) we may assume that

(4.33)
∫ ∞

0
Q(1)

s Q
(2)
s

ds
s

= I
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in the strong operator topology of L2. Indeed,

F
(∫ ∞

0
Q(1)

s Q
(2)
s f

ds
s

)
= −

∫ ∞
0

ζ̂(s|ξ|)s2|ξ|2e−s2 |ξ|2 f̂ (ξ)
ds
s

= − f̂ (ξ)
∫ ∞

0
ζ̂(s)s2e−s2 ds

s
,

where ζ̂ is the Fourier transform of ζ and we abused notation by regarding ζ and
hence ζ̂ as a function of the radial variable. Then, to achieve the desired reproducing
formula, (4.33), we may renormalize ζ so that

∫ ∞
0 ζ̂(s)s2e−s2 ds

s = −1. Let q < 2 be
such that the conclusion of Corollary 4.29 holds. We will show that for all s < t,

(4.34) ‖Θt,mB1I1Q
(1)
s Q

(2)
s g‖2 .

( s
t

)n(1/q−1/2)
‖Q(3)

s
~Rg‖2,

where ~R = I1∇‖ is the vector valued Riesz transform on Rn and Q(3)
s ~f := ses2∆ div‖ ~f .

Before proving (4.34), we establish a “local hypercontractivity” estimate. For Q ⊂ Rn

a cube and s < `(Q), we have that

(4.35) ‖Q(1)
s h‖

L
nq

n−q (Rk(Q))
. s−n

(
1
2−

n−q
nq

)
‖h‖L2(Bk)

for all k ≥ 0, where R0(Q) = 2Q, Rk(Q) = 2k+1Q \ 2kQ for k ≥ 1, and Bk(Q) =

B(xQ, 2k+2`(Q)
√

n). To verify (4.35), we use that s < `(Q), Young’s convolution
inequality, and the properties of ζs.

Now we are ready to prove (4.34). Let Dt be a grid of cubes on Rn with side length
t and set F = I1g. Consider the estimate

‖Θt,mB1I1Q
(1)
s Q

(2)
s g‖2 = ‖Θt,mB1Q

(1)
s Q

(2)
s F‖2 =

(∑
Q∈Dt

∫
Q
|Θt,mB1Q

(1)
s Q

(2)
s F|2

)1/2

≤
∑
k≥0

(∑
Q∈Dt

∫
Q

∣∣Θt,m
(
[B1Q

(1)
s Q

(2)
s F]1Rk(Q)

)
(x)
∣∣2 dx

)1/2

.
∑
k≥0

2−βkt−n(1/q−1/2)
(∑

Q∈Dt

(∫
Rk(Q)

|B1Q
(1)
s Q

(2)
s F|q

)2/q)1/2

. ‖B1‖n

∑
k≥0

2−βkt−n(1/q−1/2)
(∑

Q∈Dt

(∫
Rk(Q)

|Q(1)
s Q

(2)
s F|

nq
n−q

) 2(n−q)
nq
)1/2

.
∑
k≥0

2−βkt−n(1/q−1/2)s−n
(

1
2−

n−q
nq

)(∑
Q∈Dt

∫
Bk(Q)

|Q(2)
s F|2

)1/2

.
∑
k≥0

2−βkt−n(1/q−1/2)s−n
(

1
2−

n−q
nq

)
s
(∑

Q∈Dt

∫
Bk(Q)

|Q(3)
s ∇‖F|

2
)1/2

.
( s

t

)n(1/q−1/2)∑
k≥0

2−βk+ nk
2

(∑
Q∈Dt

∫
Q
−

∫
Bk(Q)

|Q(3)
s ∇‖F(x)|2 dx dy

)1/2

.
( s

t

)n(1/q−1/2)∑
k≥0

2−βk+ nk
2

(∫
Rn
−

∫
|x−y|<2kt

|Q(3)
s ∇‖F(x)|2 dx dy

)1/2

.
( s

t

)n(1/q−1/2)
‖Q(3)

s ∇‖F‖2 =
( s

t

)n(1/q−1/2)
‖Q(3)

s
~Rg‖2,
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where first we used that I1g = F, then Minkowski’s inequality in the second line,
(4.32) in the third line, Hölder’s inequality in the fourth line, (4.35) in the fifth line,
and the mapping properties of the Hardy-Littlewood maximal function in the last line.
The above estimate proves (4.34).

Now we are ready to pass to an arbitrary CLP family Qs. We may obtain, using
the Cauchy-Schwarz inequality and (4.33), that

‖Θt,mB1I1Q
2
sg‖2 =

∫
Rn

∣∣∣ ∫ ∞
0

Θt,mB1I1Q
(1)
τ Q

(2)
τ Q

2
sg(x)

dτ
τ

∣∣∣ dx

≤ Cγ

∫
Rn

∫ ∞
0

max
( s
τ
,
τ

s

)γ
|Θt,mB1I1Q

(1)
τ Q

(2)
τ Q

2
sg(x)|2

dτ
τ

dx =: I + II + III,

where I, II, III are, respectively, the integrals over the intervals τ < s < t, s ≤ τ ≤ t,
and s < t < τ. On the other hand, note that the kernel of Q(3)

s ~R is, up to a constant
multiple, the inverse Fourier transform of s|ξ|e−s2 |ξ|2 . Therefore, if we set Q(4)

s =

Q
(3)
s ~R, then we have that

(4.36) max
{
‖Q(4)

τ Qs f ‖2, ‖Q(2)
τ Qs f ‖2

}
. min

(τ
s
,

s
τ

)2γ
‖ f ‖2,

for some γ > 0 (and hence all smaller γ). For convenience, set σ = n(1/q − 1/2) and
we assume that γ above is such that γ < 2σ. By (4.34) and (4.36), we have that

I .
∫ s

0

( s
τ

)γ(τ
t

)2σ
‖Q(4)

τ Q
2
sh‖22

dτ
τ
.
( s

t

)2σ
‖Qsh‖22 ,

and observe that τ < s in the present scenario. Similarly, we have that

II .
∫ t

s

(τ
s

)γ(τ
t

)2σ( s
τ

)2γ
‖Qsh‖22

dτ
τ
.
( s

t

)γ
‖Qsh‖22 ,

since in particular, γ < 2σ. Finally, by (4.25) and the mapping B1I1 : L2(Rn) →
L2(Rn), we have that Θt,mB1I1Q

(1)
τ : L2(Rn) → L2(Rn) uniformly in t and τ, and thus

it follows that

III .
∫ ∞

t

(τ
s

)γ
‖Q(2)

τ Qsh(x)‖22
dτ
τ
.

∫ ∞
t

(τ
s

)γ( s
τ

)2γ
‖Qsh‖22

dτ
τ
.
( s

t

)γ
‖Qsh‖22,

where we used (4.36). �

We conclude this section with the following proposition, which summarizes the
off-diagonal decay given by Proposition 4.28 and Corollary 4.29.
Proposition 4.37. For m ∈ N, m ≥ n+1

2 + 2 , the operators tm∂m
t (St∇), tm∂m+1

t St and
Θ′t defined by

Θ′t~g(x) := (tm∂m
t St∇Ã~g + tm∂m

t St[B2‖g])(x)

have good off diagonal-decay in the sense of Definition 2.22 with the implicit con-
stants depending on n, m, λ, and Λ, provided that max{‖B1‖n, ‖B2‖n} < ε0, where ε0
depends on n, λ, and Λ.

Proof. By Corollary 4.29 with p = 2, for any cube Q ⊂ Rn and k ≥ 2 we have that

‖Θt,m( f1Rk )‖
2
L2(Q) . 2−k

( t
2k`(Q)

)2m
‖ f ‖2L2(Rk),
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where Rk = Rk(Q) = 2k+1Q \ 2kQ. Thus, for all t ∈ (0,C`(Q)), it follows that

‖Θt,m( f1Rk )‖
2
L2(Q) . 2−kn

( t
2k`(Q)

)2m−(n−1)
‖ f ‖2L2(Rk),

so that if m ≥ n+1
2 , we obtain the estimate

(4.38) ‖Θt,m( f1Rk )‖
2
L2(Q) . 2−kn

( t
2k`(Q)

)2
‖ f ‖2L2(Rk).

This bound provides the desired good off-diagonal decay for tm∂m
t (St∇), tm∂m+1

t St

and tm∂m
t St∇Ã~g in the sense of Definition 2.22. To obtain the good off-diagonal

decay for the remainder of Θ′t , tm∂m
t (StB2‖), we return to the proof of Proposition

4.28 and make a slight modification. Let η be a smooth cut-off adapted to Rk; that is,
η ≡ 1 on Rk, η ∈ C∞c (R̃k) and |∇η| . 1

`(Q) , where R̃k is as in Proposition 4.28. Then
for g ∈ L2(Q) with supp g ⊆ Q, from Hölder’s inequality and the Sobolev embedding
on Rn we have that

‖tm∂m
t B2‖Stg‖L2(Rk) . ‖ηtm∂m

t Stg‖2
L

2n
n−2 (Rn)

. ‖(∇η)tm∂m
t Stg‖2L2(R̃k) + ‖tm∂m

t ∇Stg‖2L2(R̃k) . ‖t
m−1∂m

t Stg‖2L2(R̃k) + ‖tm∂m
t ∇Stg‖2L2(R̃k)

. ‖(Θt,m−1)∗g‖2
L2(R̃k) + ‖(Θt,m)∗g‖2

L2(R̃k).

Dualizing these estimates, the off-diagonal decay for tm∂m
t (StB2‖) follows from the

off-diagonal decay in (4.38), provided that m ≥ n+1
2 + 1. �

Before continuing on to the next section we make two remarks.
Remarks 4.39. i) In the next section, we will use the off diagonal decay of the oper-
ators in Proposition 4.37 or similar ones. The proof of good off-diagonal decay for
these operators is entirely analogous to those above.

ii) As seen above, there may be some loss of t-derivatives (and hence decay) in
our operators when we obtain certain estimates. Therefore, when proving the first
square function estimate (Theorem 5.1), we ensure that m ≥ n + 10 > n+1

2 + 10 so
that Lemma 4.30 and Proposition 4.37 hold.

5. Square function bounds via Tb Theory

The goal of this section is to prove Theorem 1.3.

5.1. Reduction to high order t-derivatives. We will adapt the methods of [GH17,
HMM15] to prove the square function bound in Theorem 1.3 for m large:
Theorem 5.1 (Square function bound for high t−derivatives). For each m ∈ N with
m ≥ n + 10, we have the estimate∫∫

Rn+1
+

∣∣tm(∂t)m+1SLt f (x)
∣∣2 dx dt

t
≤ C‖ f ‖2L2(Rn),

where C depends on m, n, λ, and Λ, provided that max{‖B1‖n, ‖B2‖n} is sufficiently
small depending on n, λ, and Λ. Under the same hypotheses, the analogous bounds
hold for L replaced by L∗, and for Rn+1

+ replaced by Rn+1
− .
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Let us see that we may reduce the proof of Theorem 1.3 to that of Theorem 5.1.
First, it is a fact that square function estimates for solutions u of Lu = 0 “travel up”
the t−derivatives:
Lemma 5.2 (Square function bound “travels up” t-derivatives). Fix m, k ∈ N with
m > k ≥ 1. Suppose that u ∈ W1,2

loc (Rn+1
+ ) solves Lu = 0 in Rn+1

+ in the weak sense.
Then there exists a constant C depending only on m, n, λ, Λ, and max{‖B1‖n, ‖B2‖n},
such that ‖|tm∂m−1

t ∇u‖| ≤ C‖|tk∂k
t u‖|.

The proof of the previous lemma is very straightforward (decompose into Whitney
cubes and then use the Caccioppoli inequality), and thus omitted.

Now, the following proposition (and Lemma 5.25) immediately allow us to reduce
proof of Theorem 1.3 to that of Theorem 5.1, and is a partial converse to Lemma 5.2.
Recall that L2(Rn) ⊂ H−

1
2 (Rn).

Proposition 5.3 (Square function bound “travels down” t-derivatives). The following
estimates hold, where the implicit constants depend on m, k, λ, and Λ.

i) For each f ∈ L2(Rn) and each m ≥ 1, ‖|tm∂m
t ∇S f ‖| .m ‖|tm+1∂m+1

t ∇S f ‖| + ‖ f ‖2.
ii) For each f ∈ L2(Rn) and each m > k ≥ 1,

(5.4) ‖|tk∂k
t∇S f ‖| .m ‖|tm∂m+1

t S f ‖| + ‖ f ‖2.

Proof. One may obtain ii) as a consequence of i) via induction on m, using Cac-
cioppoli’s inequality on Whitney boxes after increasing the number of t derivatives
appropriately. So it suffices to prove i). Fix m ∈ N, N > 0 large, ε > 0 small and let
f ∈ L2(Rn). Let ψ ∈ C∞c (0,∞) be a non-negative function which satisfies

ψ ≡ 1 on
(
ε, 1

ε

)
, ψ ≡ 0 on

(
0, ε2
)
∪
(2
ε ,∞

)
,

|ψ′| ≤ 4
ε on

(
ε
2 , ε
)
, |ψ′| ≤ 2ε on

( 1
ε ,

2
ε

)
.

Since S f ∈ Y1,2(Rn+1) and LS f = 0 in Rn+1
+ in the weak sense, then ∂m

t S f ∈
W1,2

loc (Rn+1) and L∂m
t S f = 0 in Rn+1

+ in the weak sense. Observe that∫
B(0,N)

∫ 1/ε

ε
t2m−1|∂m

t ∇S f |2 dt ≤
∫

B(0,N)

∫ 2/ε

ε/2
t2m−1|∂m

t ∇S f |2ψ dt,

and notice per our observations in Proposition 4.23 that the right-hand side above is
finite. Now,∫

B(0,N)

∫ 2/ε

ε/2
t2m−1|∂m

t ∇S f |2ψ dt =

∫
B(0,N)

∫ 2/ε

ε/2
t2m−1∂m

t ∇S f∂m
t ∇S fψ dt

= −
1

2m

∫
B(0,N)

∫ 2/ε

ε/2
t2m∂t(∂m

t ∇S f∂m
t ∇S fψ) dt

≤
1
m

∫
B(0,N)

∫ 2/ε

ε/2
t2m|∂m+1

t ∇S f ||∂m
t ∇S f |ψ dt

+
1
m

∫
B(0,N)

[
−

∫ ε

ε/2
t2m|∂m

t ∇S f |2 dt + −

∫ 2/ε

1/ε
t2m|∂m

t ∇S f |2 dt
]
.

5Lemma 5.2 is used to show that ε0 can be chosen independently of m.
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The last two terms are controlled by (4.24). As for the first term, note that 2m =
2m−1

2 + 2m+1
2 , and we use Cauchy’s inequality and absorb one of the resulting sum-

mands to the left-hand side. Sending N → ∞ and ε ↘ 0 yields the desired result. �

Combining Lemma 5.26 below and Theorem 5.1, we will also obtain the following
result.
Theorem 5.5 (Square function bound for S∇). For each m ∈ N, with m ≥ n + 10,

(5.6)
∫∫
Rn+1

+

∣∣∣tm(∂t)m(St∇) ~f (x)
∣∣∣2 dx dt

t
. ‖ ~f ‖L2(Rn),

where C depends on m, n, λ, Λ, provided that max{‖B1‖n, ‖B2‖n} is sufficiently small
depending on m, n, λ, Λ. These results hold for L∗ and in the lower half space as the
hypotheses are symmetric.

5.2. Setup for the Tb argument and testing functions. Having reduced matters to
proving Theorem 5.1, we fix m ∈ N with m ≥ n + 10. We define the space H to be
the subspace of L2(Rn)n consisting of the gradients of Y1,2(Rn)-functions. That is,
H = {h′ : h′ = ∇F, F ∈ Y1,2(Rn)}. For h′ ∈ H and h0 ∈ L2(Rn), we set h = (h′, h0)
and define for each t ∈ R\{0},

Θ0
t h0 := tm∂m+1

t Sth0, and

Θ′th
′ := tm∂m

t (St∇)Ãh′ + tm(∂t)mSt(B2‖ · h
′),

where we recall that Ã is the (n+1)×n submatrix of A consisting of the first n columns
of A. We let Θt := (Θ′t ,Θ

0
t ) : H × L2(Rn) → L2(Rn), which acts on h = (h′, h0) via

the identity Θth = Θ′th
′ + Θ0

t h0.

For each t > 0, we also define an auxiliary operator Θ
(a)
t : L2(Rn,Cn+1) → L2(Rn)

which acts on g = (g′, g0) via Θ
(a)
t g = tm(∂t)m(St∇)(g′, g0). This auxiliary operator

will play the role of an error term that allows us to integrate by parts. Accordingly,
define Θ̂t acting on functions h = (h′, h0, h′′) ∈ H × L2(Rn,C) × L2(Rn,Cn+1) via

Θ̂th(x) = Θt(h′, h0)(x) + Θ
(a)
t h′′(x).

We need to define appropriate testing functions for our family {Θt}. Let τ ∈
(0, 1/40) be a small parameter to be chosen later, and let Ψ̃ be a smooth cut-off func-
tion in Rn+1 with the following properties:

Ψ̃ ∈ C∞c
([
− 1

1000 ,
1

1000

]n
×
[
− τ

2 ,
τ
2

])
, Ψ̃ ≡ 1 on

[
− 1

2000 ,
1

2000

]n
×
[
− τ

4 ,
τ
4

]
0 ≤ Ψ̃ ≤ 1, |∇Ψ̃| . 1/τ.

Let Ψ := cn,τΨ̃ where cn,τ is chosen so that ‖Ψ‖1 = 1. Hence Ψ is a normalization of
Ψ̃. For any cube Q ⊂ Rn, we define the measurable functions

ΨQ(X) :=
1

`(Q)n+1 Ψ
( 1
`(Q)

[X − (xQ, 0)]
)
,
(

note that ‖ΨQ‖1 = 1
)
,

Ψ±Q(y, s) := ΨQ

(
y , s ∓

3
2
τ`(Q)

)
,
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and Ψs′
Q(y, s) := ΨQ(y, s + s′), for each s′ ∈ R. Let us make a few observations about

Ψ̃ and Ψ. The fact that

1[
−

1
2000 ,

1
2000

]n
×

[
−
τ
4 ,
τ
4

] ≤ Ψ̃ ≤ 1[
−

1
1000 ,

1
1000

]n
×

[
−
τ
2 ,
τ
2

]
forces that cn,τ ≈

1
τ and that ‖Ψ̃‖2∗ ≈ τ

1
2∗ . Consequently, ‖Ψ‖2∗ ≈ τ

−1+1/2∗ , and

‖ΨQ‖2∗ ≈ τ
−1+1/2∗[`(Q)n+1]−1+1/2∗ = [τ`(Q)n+1]−1/2+1/(n+1).

Of course, the same L2∗ estimate holds for Ψ±Q and Ψs′
Q. Now, we define for any cube

and s′ ∈ R the quantities

F±Q := L−1(Ψ±Q), FQ := F+
Q − F−Q, F s′

Q := L−1(Ψs′
Q).

By our previous observations and the fact that L2∗(Rn+1) embeds continuously into
(Y1,2(Rn+1))∗, we easily see that for any cube Q and any s′ ∈ R, the estimate

(5.7) max
{
‖∇FQ‖2, ‖∇F±Q‖2, ‖∇F s′

Q‖2
}
. [τ`(Q)n+1]−1/2+1/(n+1)

holds. Notice that we have

Ψ+
Q(y, s) − Ψ−Q(y, s) = −

∫ 3
2 τ`(Q)

−
3
2 τ`(Q)

∂s′Ψ(y, s + s′) ds′ = −

∫ 3
2 τ`(Q)

−
3
2 τ`(Q)

∂sΨ
s′
Q(y, s) ds′.

Therefore, the identity

(5.8) FQ = −

∫ 3
2 τ`(Q)

−
3
2 τ`(Q)

L−1(Dn+1Ψs′
Q) ds′ = −

∫ 3
2 τ`(Q)

−
3
2 τ`(Q)

∂tL
−1(Ψs′

Q) ds′

= −

∫ 3
2 τ`(Q)

−
3
2 τ`(Q)

∂tF s′
Q ds′

is valid in Y1,2(Rn+1). For convenience, we write (∇y,su)(y, 0) := (∇y,su(y, s))
∣∣

s=0. We
are now ready to define our testing functions bQ = (b′Q, b

0
Q). Let b0

Q be defined via
b0

Q(y) := |Q|(∂L,−ν FQ)(y, 0), where

∂L,−ν u(y, 0) = en+1 · [A(∇y,su)(y, 0) − B1u(y, 0)]
= en+1 · [A(∇y,su)(y, 0)] − (B1)⊥u(y, 0).

We define b′Q via b′Q := |Q|∇‖FQ(y, 0), while we define the auxiliary testing function
b(a)

Q via b(a)
Q := |Q|B1FQ(y, 0).

We will define a measure for each cube Q that corresponds to a smoothened char-
acteristic function. We do this exactly as in [GH17]. Let ω > 0 to be chosen. For
each cube, we let dµQ = φQ dx, where φQ : Rn → [0, 1] is a smooth bump function
supported in (1 + ω)Q with φQ ≡ 1 on (1/2)Q. Clearly, we can choose φQ so that
φQ & ω on Q and ‖∇φQ‖L∞ . 1/`(Q). We also let ΦQ : Rn+1 → [0, 1] be a smooth ex-
tension of φQ; that is, ΦQ(y, 0) = φQ(y), with ΦQ supported in I(1+ω)Q and ΦQ ≡ 1 on
I(1/2)Q, where for any cube Q ⊂ Rn, we let IQ = Q× (−`(Q), `(Q)) denote the “double
Carleson box” associated to Q. We may also ensure that ‖∇ΦQ‖L∞(Rn+1) . 1/`(Q).
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5.3. Properties of the testing functions. The testing functions defined above enjoy
the following essential properties which justify their use in the Tb argument.

Proposition 5.9 (Properties of the testing functions). Let bQ = (b′Q, b
0
Q), b̂Q, and Θ̂t

be as above. For any η > 0, there exists τ ∈ (0, 1) depending on n, λ, Λ, η, and
C0 = C0(m, τ), and there exists a measure µQ as described above, such that for each
cube Q, the estimates

(5.10)
∫
Rn
|bQ|

2 ≤ C0|Q|

(5.11)
∫ `(Q)

0

∫
Q

∣∣Θ̂tb̂Q(x)
∣∣2 dx dt

t
≤ C0|Q|

(5.12)
1
2
≤ Re

( 1
µQ(Q)

∫
Q

b0
Q dµ

)
(5.13)

∣∣∣ 1
µQ(Q)

∫
Q

b′Q dµQ

∣∣∣ ≤ η

2
,

hold, provided that max{‖B1‖n, ‖B2‖n} = εm < τ.

We note that while the smallness of εm = max{‖B1‖n, ‖B2‖n} apparently depends
on m at this point, we may prove Theorem 5.1 for a fixed sufficiently large m, and then
use Lemma 5.2 and Proposition 5.3 to remove any dependence on m in the bound for
max{‖B1‖n, ‖B2‖n}. For now, throughout the Tb argument, we shall continue to use
εm to denote this quantity.

We will establish several preliminary lemmas in anticipation of the proof of the
above proposition.
Lemma 5.14 (Estimate of the L2 norm of bQ). The estimate∫

Rn
|bQ|

2 . τ−2+2/(n+1)|Q|,

holds, where the implicit constant depends on n, λ, and Λ.

Proof. Set a := τ`(Q)
1000 and observe that FQ solves LFQ = 0 in the strip {(x, t) : |t| <

50a}. Let Ga be the grid of pairwise disjoint n-dimensional cubes with sides of length
a parallel to the coordinate axes, and for each P ∈ Ga, define the (n + 1)−dimensional
box P∗ := 2P × [−2`(P), 2`(P)]. Applying Lemma 3.20 and the estimate (5.7), we
obtain that∫

Rn
|∇FQ(·, 0)|2 =

∑
P∈Ga

∫
P
|∇FQ(·, 0)|2 .

1
a

∑
P∈Ga

∫∫
P∗
|∇FQ|

2

.
1
a
‖∇FQ‖

2
2 .

1
a

[τ`(Q)n+1]−1+2/(n+1) . τ−2+2/(n+1)|Q|−1,

where we used that a ≈ τ`(Q) and the bounded overlap of {P∗}P∈Ga . Upon mul-
tiplying the above inequality by |Q|2, we have the desired estimate up to control-
ling ‖ |Q|(B1)⊥FQ(·, 0)‖2L2(Rn). We have already shown that ‖∇‖FQ(·, 0)‖L2(Rn) < ∞,
and from Lemma 2.3 and Lemma 3.17, we have that FQ(·, 0) ∈ L2∗(Rn), so that
F(·, 0) ∈ Y1,2(Rn). From this, we can deduce the estimate ‖FQ(·, 0)‖

L
2n

n−2 (Rn)
.
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‖∇‖FQ(·, 0)‖L2(Rn). Consequently, we may use the estimate for ‖∇FQ(·, 0)‖2L2(Rn) ob-
tained above and Hölder’s inequality to show that∫

Rn
|(B1)⊥FQ(·, 0)|2 ≤ ‖B1‖

2
n‖FQ(·, 0)‖2

L
2n

n−2 (Rn)
. ε2

m‖∇FQ(·, 0)‖2L2(Rn)

. ε2
mτ
−2+2/(n+1)|Q|−1.

Upon multiplying the previous estimates by |Q|2, we easily obtain the claimed in-
equality from the ellipticity of A. �

The next lemma says that we have a Carleson estimate by including the error term.

Lemma 5.15 (Good behavior of b̂Q vis-à-vis Carleson norm of Θ̂t). Let b′Q, b0
Q, and

b(a)
Q be as above. Then, if b̂Q = (b′Q, b

0
Q, b

(a)
Q ), we have the estimate∫ `(Q)

0

∫
Q

∣∣∣Θ̂tb̂Q(x)
∣∣∣2 dx dt

t
≤ C|Q|τ−β,

where β = 2 + 2m − 2/(n + 1) > 0, and C depends on m, n, λ, and Λ.

Proof. First, let us show the identity

(5.16) Θ̂tb̂Q(x) = |Q|tm(∂t)m+1F−Q, on Rn+1
+ .

By (an analogue of) Theorem 4.16 iii), to show the above identity, it suffices to show
that for each t > 0, the representation

Θ̂tb̂Q = |Q|tm∂m+1
t
(
SLt (∂L,−ν FQ) +D

L,+
t (Tr0 FQ)

)
holds in L2(Rn). For notational convenience, we will write F0

Q := Tr0 FQ. By defini-
tion, we have that for any f ∈ C∞c (Rn),

〈Θ̂tb̂Q, f 〉 = 〈|Q|tm(Dm+1
n+1 S

L)t[∂L,−ν FQ], f 〉

+ 〈|Q|tm(Dm
n+1(SL∇)[Ã∇‖F0

Q + B1F0
Q])t, f 〉 + 〈|Q|tm(Dm

n+1S
L[B2‖ · ∇‖F

0
Q])t, f 〉

= 〈|Q|tm(Dm+1
n+1 S

L)t[∂L,−ν FQ], f 〉

+ (−1)m〈Ã∇‖F0
Q + B1F0

Q, |Q|t
m(Dm

n+1∇S
L∗[ f ])−t〉

+ (−1)m〈B2‖ · ∇‖F
0
Q, |Q|t

m(Dm
n+1S

L∗[ f ])−t〉.

Therefore, it suffices to show that

〈|Q|tm(Dm+1
n+1D

L,+[F0
Q])t, f 〉 = (−1)m〈Ã∇‖F0

Q + B1F0
Q, |Q|t

m(Dm
n+1∇S

L∗[ f ])−t〉

+ (−1)m〈B2‖ · ∇‖F
0
Q, |Q|t

m(Dm
n+1S

L∗[ f ])−t〉

=: (−1)m|Q|tmIt.

We rewrite It as follows, using Proposition 3.19, and the fact that F0
Q ∈ W1,2(Rn),

It = 〈Ã∇‖F0
Q + B1F0

Q, (∇Dm
n+1S

L∗[ f ])−t〉 + 〈B2‖ · ∇‖F
0
Q, (D

m
n+1S

L∗[ f ])−t〉

= 〈∇‖F0
Q,
(
(A∗∇Dm

n+1S
L∗[ f ])‖

)
−t + B2‖(Dm

n+1S
L∗[ f ])−t〉

+ 〈F0
Q, B1(∇Dm

n+1S
L∗[ f ])−t〉
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= (−1)m+1
〈

F0
Q,D

m+1
n+1
(
~A∗n+1,·∇(SL

∗

[ f ])−s
)

s=t + Dm+1
n+1
(
B2⊥(SL

∗

[ f ])−s
)

s=t

〉
= (−1)m+1 dm+1

dsm+1

∣∣∣
s=t

〈
F0

Q, ~A
∗
n+1,·∇(SL

∗

[ f ])−s + B2⊥(SL
∗

[ f ])−s
〉

= (−1)m+1 dm+1

dtm+1

∣∣∣
s=t
〈F0

Q, ∂
L∗,−
ν,−s (SL

∗

[ f ])〉 = (−1)m+2 dm+1

dtm+1

∣∣∣
s=t
〈DL,+s [F0

Q], f 〉

= (−1)m+2〈(Dm+1
n+1D

L,+[F0
Q])t, f 〉,

where we used (i) in Lemma 4.11 in the fifth equality, we used (ii) of Proposition 4.18
in the sixth equality, and we justify the handling of the t-derivatives via Proposition
4.27. This concludes the proof of the identity (5.16).

Now, we let a = τ`(Q)
1000 as before, and note that (∂t)m+2F−Q is a solution in the half

space {(x, t) : t > 50a}. For P ∈ Ga and t ≥ 0, we set

P∗t = 2P ×
(
t − a

20 , t + a
20

)
, and P∗∗t = 4P ×

(
t − a

5 , t + a
5

)
.

Then using (3.21) and then Proposition 3.9 repeatedly (m + 1 times) , we obtain for
t ∈ (0, `(Q)]∫

Q

∣∣Θ̂tb̂Q
∣∣2 ≤ ∫

Rn

∣∣|Q|tm(∂t)m+1F−Q(·, t)
∣∣2 = t2m|Q|2

∑
P∈Ga

∫
P

∣∣(∂t)m+1F−Q(·, t)
∣∣2

. t2m|Q|2a−1
∑
P∈Ga

∫∫
P∗t
|(∂t)m+1F−Q|

2 . t2m|Q|2a−1−2m
∑
P∈Ga

∫∫
P∗∗t
|∂tF−Q|

2

. t2m|Q|2a−1−2m‖∇F−Q‖
2
2 . t2m|Q|2a−1−2m[τ`(Q)n+1]−1+2/(n+1) . |Q|τ−β

( t
`(Q)

)2m
,

where we used the bounded overlap of {P∗∗t }P∈Ga . Hence, we see that∫ `(Q)

0

∫
Q

∣∣∣Θ̂tb̂Q(x)
∣∣∣2 dx dt

t
. |Q|τ−β

∫ `(Q)

0

( t
`(Q)

)2m dx dt
t

. |Q|τ−β.

�

Observe that Lemma 5.14 and the properties of µQ allow us to establish that

(5.17)
∫
Rn\Q
|bQ| dµQ ≤ |(1 + ω)Q \ Q|1/2‖bQ‖L2(Rn) . ω

1/2τ−1+1/(n+1)|Q|.

Let us furnish a smallness estimate for b′Q.
Lemma 5.18 (Almost atomic behavior of b′Q). Let b′Q and µQ be as above. Then

(5.19)
∣∣∣ ∫
Rn

b′Q dµQ

∣∣∣ . |Q|τ1/2+1/(n+1),

where the implicit constant depends on n, λ, and Λ. In particular,

(5.20)
∣∣∣ 1
µQ(Q)

∫
Q

b′Q dµQ

∣∣∣ . τ1/2+1/(n+1) + ω1/2τ−1+1/(n+1).

Proof. We first show how to derive (5.20) from the first inequality. We have that∣∣∣ ∫
Q

b′Q dµQ

∣∣∣ ≤ ∣∣∣ ∫
Rn

b′Q dµQ

∣∣∣ +

∫
Rn\Q
|bQ| dµQ,
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so that (5.20) readily follows from (5.19), (5.17), and the fact that µQ(Q) ≥ (1/2)n|Q|.
It remains to show (5.19). To this end, we utilize the properties of φQ, (5.8), (3.21)
and Hölder’s inequality to see that∣∣∣ ∫

Rn
b′Q dµQ

∣∣∣ = |Q|
∣∣∣ ∫
Rn
∇‖FQ(·, 0)φQ

∣∣∣ = |Q|
∣∣∣ ∫
Rn

FQ(·, 0)∇φQ

∣∣∣
. `(Q)n−1

∫
(1+ω)Q\(1/2)Q

|FQ(·, 0)|

. `(Q)n−1
∫

(1+ω)Q\(1/2)Q

∣∣∣ ∫ 3
2 τ`(Q)

−
3
2 τ`(Q)

∂tF s′
Q(y, 0) ds′

∣∣∣ dy

. `(Q)n−1
∫ 3

2 τ`(Q)

−
3
2 τ`(Q)

∫
(1+ω)Q\(1/2)Q

∣∣∣∂tF s′
Q(y, 0)

∣∣∣ dy ds′

. `(Q)n−1 `(Q)n/2

`(Q)1/2

∫ 3
2 τ`(Q)

−
3
2 τ`(Q)

(∫∫
I2Q\I(1/4)Q

|∇F s′
Q(Y)|2 dY

)1/2
ds′

. |Q|τ1/2+1/(n+1),

where we used (5.7) in the last line and, in order to use (3.21), we used that for
s ∈ (− 3

2τ`(Q), 3
2τ`(Q)) each F s′

Q is a solution in I2Q \ I(1/4)Q. �

The last preliminary lemma we will need establishes a coercivity estimate for b0
Q.

Lemma 5.21 (Coercivity of b0
Q). Let b0

Q and dµQ = φQ dx as above. Suppose that
εm > 0 is a small number depending on m. Then, if max{‖B1‖n, ‖B2‖n} ≤ εm, the
estimate

Re
( 1
µQ(Q)

∫
Q

b0
Q dµQ

)
≥

(
1 −C

[
τ1/2+1/(n+1) + εmτ

−1/2+1/(n+1) + ω1/2τ−1+1/(n+1)]),
holds, where C depends on m, n, λ, and Λ.

Proof. By the definitions of µQ, b0
Q, and the conormal derivative, we observe that∫

Rn
b0

Q dµQ =

∫
Rn

b0
QφQ = |Q|

∫
Rn

(∂L,−ν FQ)(y, 0)φQ(y) dy

= |Q|
(
− 〈ΦQ,LFQ〉Rn+1

−
+

∫∫
Rn+1

A∇FQ · ∇ΦQ + (B1FQ) · ∇ΦQ + (B2 · ∇FQ)ΦQ

)
= |Q|(I + II).

Since supp Ψ+
Q ∩ R

n+1
− = ∅, ΦQ ≡ 1 on supp Ψ−Q, and

∫∫
Rn+1
−

Ψ−Q = 1, we have that

I = −〈ΦQ,LFQ〉Rn+1
−

= −

∫∫
Rn+1
−

(−Ψ−Q) = 1.

To bound II, we write II = II1 + II2 + II3, where the IIi correspond to each of
the summands in the integral defining II. For the term, II1, we use essentially the
same estimates as in the previous lemma. In particular we use the properties of ΦQ,
Hölder’s inequality, the Caccioppoli inequality, and (5.8) to obtain that
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|II1| ≤

∫∫
Rn+1

∣∣∣A∇FQ · ∇ΦQ

∣∣∣ . 1
`(Q)

∫∫
I(1+ω)Q\I(1/2)Q

|∇F|

. `(Q)(n−1)/2
(∫∫

I(1+ω)Q\I(1/2)Q

|∇F|2
)1/2
. `(Q)

(n−3)
2

(∫∫
I(1+ω)Q\I(1/2)Q

|F|2
)1/2

. `(Q)
(n−3)

2

(∫∫
I(1+ω)Q\I(1/2)Q

∣∣∣ ∫ 3
2 τ`(Q)

−
3
2 τ`(Q)

∂tF s′
Q(Y) ds′

∣∣∣2 dY
)1/2
. τ1/2+1/(n+1).

To bound II2, we use the estimate ‖B1FQ‖2 . εm‖∇FQ‖2 and (5.7) to see that

|II2| ≤

∫∫
I2Q

|(B1F) · ∇ΦQ| .
1

`(Q)

∫∫
I2Q

|B1FQ|

.
`(Q)

n+1
2

`(Q)

(∫∫
I2Q

|B1FQ|
2
)1/2
. εm`(Q)

n−1
2 ‖∇FQ‖2 . εmτ

−1/2+1/(n+1).

To bound II3 we use Hölder’s inequality, ‖B2‖n ≤ εm, and (5.7) as follows:

|II3| ≤

∫ 2`(Q)

−2`(Q)

∫
2Q
|∇FQB2| ≤ εm

∫ 2`(Q)

−2`(Q)

(∫
2Q
|∇FQ|

n
n−1

) n−1
n

. εm`(Q)
n−2

2

∫ 2`(Q)

−2`(Q)

(∫
2Q
|∇FQ|

2
) 1

2
. εm`(Q)

n−1
2

(∫ 2`(Q)

−2`(Q)

∫
2Q
|∇FQ|

2
) 1

2

. εm`(Q)
n−1

2 ‖∇FQ‖2 . εmτ
−1/2+1/(n+1).

Combining the previous estimates gives that

Re
(∫
Rn

b0
Q dµQ

)
≥ |Q|

(
1 −C

[
τ1/2+1/(n+1) + εmτ

−1/2+1/(n+1)]).
This estimate, in concert with (5.17) and the fact that µQ(Q) ≤ 1, ends the proof. �

With εm and ω at our disposal, we collapse the dependence of parameters to only
τ, leaving freedom to take εm even smaller. We ensure that εm < τ and set ω = τ3.
Under these choices, we are ready to present the

Proof of Proposition 5.9. When the choices εm < τ and ω = τ3 are used in Lemma
5.21, we have that

Re
( 1
µQ(Q)

∫
Q

b0
Q dµ

)
≥ 1 −Cτ1/2+1/(n+1),

where C depends on n, λ, Λ. Accordingly, we may pick τ small enough so that (5.12)
holds. The choice ω = τ3 used in (5.20) gives that∣∣∣ 1

µQ(Q)

∫
Q

b′Q dµQ

∣∣∣ ≤ Cτ1/2+1/(n+1),

where C depends on n, λ, and Λ. Hence, we may guarantee that (5.13) holds by
choosing τ small depending on C and η. Having chosen τ so that (5.12) and (5.13)
hold, (5.10) and (5.11) follow from Lemma 5.14 and Lemma 5.15 respectively. �
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5.4. Control of the auxiliary square functions. As a last preliminary step to pre-
senting the proof of the square function bound, we elucidate how to control the error
terms involving Θ

(a)
t and Θ′t .

Proposition 5.22 (Control of error terms). Let Tt be either Θ′t or Θ
(a)
t . Then, for each

fixed t > 0, Tt1 is well defined as an element of L2
loc(Rn). Moreover, we have the

estimates

(5.23) ‖|Tt|‖op ≤ C‖|Θ0
t |‖op + 1,

and

(5.24) ‖Tt1‖C ≤ C‖Θ0
t 1‖C + 1.

where C depends on m, n, λ, and Λ, provided that max{‖B1‖n, ‖B2‖n} is sufficiently
small depending on m, n, λ, and Λ.
Remark 5.25. We will operate under the assumption that Tt1 and Θ0

t 1 have finite ‖·‖C
norm. Indeed, otherwise for γ > 0, we replace Tt1 by (Tt1)γ = (Tt1)1γ<t≤1/γ and
analogously for Θ0

t 1, and we observe that these truncated versions will always have
finite ‖·‖C norm under our hypotheses.

Proposition 5.22 will be a direct consequence of the following lemma.

Lemma 5.26 (Control of gradient field terms). Let Θ̃t := tm∂m
t S
L
t ∇‖ for m ∈ N,

m ≥ n + 10. Then

(5.27) ‖|Θ̃t|‖op . ‖|Θ
0
t |‖op + 1,

and

(5.28) ‖Θ̃t1‖C . ‖Θ0
t 1‖C + 1,

where the constants depends on m, n, λ, and Λ, provided that max{‖B1‖n, ‖B2‖n} is
sufficiently small depending on m, n, λ, Λ.

Proof. We note that (5.28) follows from Lemma 2.23, (5.27) and Proposition 4.37.
The proof will follow the general scheme of [HMM15, Lemma 3.1], with modifica-
tions due to the first order terms. Write L‖ := divx A‖∇‖ where A‖ = (Ai, j)1≤i, j≤n. By
the Hodge decomposition for the operator L‖, to prove (5.27) it is enough to show
that

(5.29)
∫∫
Rn+1

+

∣∣tm∂m
t S
L
t (∇‖ · A‖∇‖F)(x)

∣∣2 dx dt
t
. (1 + ‖|Θ0

t |‖
2
op),

for all F ∈ Y1,2(Rn) with ‖∇‖F‖L2 . 1 (dependence on λ and Λ). We write

tm∂m
t S
L
t ∇‖A‖∇‖F

=
{

tm∂m
t S
L
t ∇‖A‖ − tm(∂m

t S
L
t ∇‖A‖

)
Pt
}
∇‖F + tm(∂m

t S
L
t ∇‖A‖

)
Pt∇‖F

=: Rt(∇‖F) + tm(∂m
t S
L
t ∇‖ · A‖

)
Pt∇‖F,

where tm(∂m
t St∇‖A‖) is the (vector-valued) operator tm∂m

t St∇‖ applied to A‖, the lat-
ter understood as a vector function with components in L2

loc(Rn;Cn), and Pt is a

nice approximate identity constructed as follows. Let ζt(x) = t−nζ
(
|x|
t

)
, where
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ζ ∈ C∞c (B(0, 1/2)) is radial with
∫
Rn ζ = 0 and Qt f (x) = (ζt ∗ f )(x) satisfies the

Calderón reproducing formula∫ ∞
0
Q2

t
dt
t

= I, in the strong operator topology on L2.

Then Qs is a CLP family (see Definition 2.26) and we set Pt :=
∫ ∞

t Q
2
s

ds
s . Then

Pt is a nice approximate identity; that is, Pt = (ϕt ∗ f )(x) where ϕt = t−nϕ
(
|·|

t

)
and

ϕ ∈ C∞c (B(0, 1)) is a radial function with
∫
Rn ϕ = 1.

The term tm∂m
t St∇‖ · A‖Pt∇‖F is the ‘main term’ and we will apply the techniques

of the solution to the Kato problem [AHLMT02] to handle its contribution. For now,
we focus on the remainder term Rt(∇‖F), which takes a bit of exposition due to the
number of terms arising from the lower order terms in the differential operator L. To
this end, we write

Rt = tm∂m
t S
L
t ∇‖A‖ − tm(∂m

t S
L
t ∇‖A‖

)
Pt

=
{

tm∂m
t S
L
t ∇‖A‖Pt − tm(∂m

t S
L
t ∇‖A‖

)
Pt
}

+ tm∂m
t S
L
t ∇‖A‖(I − Pt) =: R[1]

t + R[2]
t .

Observe that R[1]
t 1 = 0, R[1]

t has sufficient off-diagonal decay (Proposition 4.37) and
uniform L2 boundedness (Proposition 4.23), and ‖R[1]

t ∇x‖2→2 ≤ C/t. Then the square
function bound ∫∫

Rn+1
+

|R[1]
t ∇‖F|

2 dx dt
t
. ‖∇‖F‖22

follows from Lemma 2.25 as desired. To control Rt it remains to control R[2]
t . Set

Zt := I − Pt and define ~b := (An+1,1, . . . , An+1,n). By using integration by parts on
slices (Proposition 3.19) and Proposition 2.27, we obtain that

tm∂m
t St∇‖A‖Zt∇‖F = tm∂m

t St∇‖A‖∇‖ZtF

= tm∂m+1
t (St∇) · ~A·,n+1ZtF − tm∂m+1

t St(~b∇ZtF) + tm∂m
t (St∇)B1ZtF

− tm∂m
t St(B2‖∇‖ZtF) + tm∂m+1

t St(B2⊥ZtF) =: J1 + J2 + J3 + J4 + J5.

Note that, using Plancherel’s theorem, we have that

(5.30)
∫∫
Rn+1

+

|t−1(I − Pt)F(x)|2
dx dt

t
. ‖∇‖F‖22.

Since tm+1∂m+1
t (St∇) : L2 → L2 uniformly in t, we easily obtain the associated square

function bound for J1. To bound J2, we write

J2 = −tm∂m+1
t St

(
~b · ∇‖(I − Pt)F

)
= −tm∂m+1

t St~b · ∇‖F + {tm∂m+1
t St~bPt − (tm∂m+1

t St~b)Pt}∇‖F + (tm∂m+1
t St~b)Pt∇‖F

=: J2,1 + J2,2 + J2,3.

For J2,1, we see that J2,1 = Θ0
t
~b∇‖F, whence∫∫

Rn+1
+

|tm∂m+1
t St~b∇‖F|2

dx dt
t
. ‖|Θ0

t ‖|
2
op‖∇‖F‖

2
2.
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Similarly, by Lemma 2.23 and Carleson’s Lemma, we have that∫∫
Rn+1

+

|(tm∂m+1
t St~b)Pt∇‖F|2

dx dt
t
. ‖|Θ0

t ‖|
2
op‖∇‖F‖

2
2,

so that the contribution from J2,3 has the desired control. Notice that J2,2 is of the
form Rt∇‖F where Rt1 = 0, Rt : L2 → L2 and ‖Rt∇x‖L2→L2 ≤ C/t and Rt good
off-diagonal decay. Thus, the desired square function bound for term J2,2, follows
immediately from Lemma 2.25.

For term J3, let g be such that I1g = F and ‖g‖2 ≈ ‖∇‖F‖2. Then using tm∂m
t (St∇) =

Θ
(a)
t , we have by Proposition 4.30 that

‖Θ
(a)
t B1I1Q

2
sg‖L2(Rn) .

( s
t

)γ
‖Qsg‖L2(Rn)

for some γ > 0 independent of g. Then by standard estimates we obtain∫∫
Rn+1

+

∣∣∣tm∂m
t (St∇)B1(I − Pt)F

∣∣∣2 dx dt
t

=

∫∫
Rn+1

+

∣∣∣tm∂m
t (St∇)B1I1(I − Pt)g

∣∣∣2 dx dt
t

.

∫∫
Rn+1

+

∣∣∣tm∂m
t (St∇)B1I1

(∫ t

0
Q2

sg
ds
s

)∣∣∣2 dx dt
t

.γ

∫∫
Rn+1

+

∫ t

0

( t
s

)γ/2∣∣∣tm∂m
t (St∇)B1I1Q

2
sg
∣∣∣2 ds

s
dx dt

t

.

∫ ∞
0

∫ ∞
s

( s
t

)γ/2
‖Qsg‖22

dt
t

ds
s
.γ

∫ ∞
0
‖Qsg‖22

ds
s
. ‖g‖22 ≈ ‖∇‖F‖

2
2,

where in the fourth inequality we used Cauchy’s inequality in the ds
s integral noting

that
∫ t

0(s/t)γ ds
s . Cγ, and we used the square function estimate for the CLP family

Qs (see Definition 2.26). This takes care of the contribution from J3.
Next, we handle J4. We write J4 as the sum of its pieces, as follows:

J4 = −tm∂m
t StB2‖∇‖(I − Pt)F

= −tm∂m
t StB2‖∇‖F + tm∂m

t StB2‖∇‖PtF = J4,1 + J4,2.

For J4,1, we observe that

J4,1 = −tm∂m
t StB2‖∇‖F = −tm∂m

t St div‖ ∇‖I2B2‖∇‖F = −Θ̃(∇‖I2B2‖F)

and notice that ‖∇‖I2B2‖F‖2 . ‖B2‖n‖∇‖F‖2. Therefore,∫∫
Rn+1

+

|tm∂m
t StB2‖∇‖F|

2 dx dt
t
. ‖|Θ̃t‖|

2
op‖B2‖

2
n‖∇‖F‖

2
2,

and hence J4,1 can be hidden in (5.29) when ‖B2‖n is small. For J4,2, we write

J4,2 =
{

tm∂m
t StB2‖Pt − (tm∂m

t StB2‖)Pt
}
∇‖F + (tm∂m

t StB2‖)Pt∇‖F

= R̃t∇‖F + (tm∂m
t StB2‖)Pt∇‖F.

We may handle R̃t∇‖F using Lemma 2.25, as R̃t satisfies the required hypotheses (see
Propositions 4.23 and 4.37). We see, in a similar fashion to J4,1, that tm∂m

t StB2‖ =
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Θ̃t∇‖I2B2‖, and ‖∇‖I2B2‖‖BMO . ‖B2‖
2
n. Noting that Θ̃t1 = 0, it follows from Lemma

2.23 and Carleson’s Lemma that∫∫
Rn+1

+

∣∣(tm∂m
t StB2‖)PtF

∣∣2 dx dt
t
. (1 + ‖|Θ̃t‖|

2
op)‖B2‖

2
n‖∇‖F‖

2
2,

which can be hidden in (5.29) when ‖B2‖n is sufficiently small.
Finally, to handle J5, rewrite it as J5 = tm+1∂m+1

t StB2⊥( 1
t [I − Pt]F). Since

tm+1∂m+1
t StB2⊥ : L2 → L2 uniformly in t, we may handle this term exactly as J1 by

using (5.30).
Having handled the remainder Rt, we have reduced matters to showing that the

square function bound∫∫
Rn+1

+

|tm(∂m
t St∇‖ · A‖)(x)Pt∇‖F(x)|2

dx dt
t
. ‖∇‖F‖22

holds for all F ∈ Y1,2(Rn) with ‖∇‖F‖2 ≤ 1. By Carleson’s Lemma, it is enough to
show that

(5.31) sup
Q

1
|Q|

∫ `(Q)

0

∫
Rn
|tm(∂m

t St∇‖ · A‖)(x)|2
dx dt

t
≤ C.

In order to obtain (5.31), we appeal to the technology of the solution of the Kato
problem [AHLMT02], and follow the argument of [HMM15]. By [AHLMT02], for
each dyadic cube Q there exists a mapping FQ : Rn → Cn such that

i)
∫
Rn
|∇‖FQ|

2 ≤ C|Q|

ii)
∫
Rn
|L‖FQ|

2 ≤
|Q|
`(Q)2

iii) sup
Q

∫ `(Q)

0
−

∫
Q
|~ζ(x, t)|2

dx dt
t
. C sup

Q

∫ `(Q)

0
−

∫
Q
|~ζ(x, t)Et∇‖FQ|

2 dx dt
t

for each ~ζ : Rn+1
+ → Cn, where Et denotes the dyadic averaging operator; that is,

if Q(x, t) is the minimal dyadic cube containing x ∈ Rn with side length at least t,
then Etg(x) = −

∫
Q(x,t) g. Here, we note that ∇‖FQ is the Jacobian of FQ and ~ζEt∇‖FQ

is a vector. Given such a family {FQ}Q, we see that by applying property iii) with
~ζ(x, t) = TtA‖, where Tt := tm∂m

t (St∇‖) it is enough to show that∫ `(Q)

0

∫
Q
|(TtA‖)(x)Et∇‖FQ(x)|2

dx dt
t
. (1 + ‖|Θ0

t ‖|
2
op)|Q|.

Following [AT98, CM86], we write that

(TtA‖)Et∇‖FQ = {(TtA‖)Et − TtA‖}∇‖FQ + TtA‖∇‖FQ

= TtA‖(Et − Pt)∇‖FQ + {(TtA‖)Pt − TtA‖}∇‖FQ + TtA‖∇‖FQ

=: R(1)
t ∇‖FQ + R(2)

t ∇‖FQ + TtA‖∇‖FQ.

Observe that R(2)
t = −Rt from above, and we have already shown that ‖|Rt‖|op .

(1 + ‖|Θ0
t ‖|op)6, so that the desired bound holds from property i) of FQ. For the last

6We have shown that ‖|Rt‖|op . (1 + ‖|Θ0
t ‖|op) + ε‖|Θ̃t‖|op, where ε is at our disposal by the smallness

of max{‖B1‖n, ‖B2‖n}, and this is enough for our purposes.
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term, we have that TtA‖∇‖FQ = tm∂m
t StL‖FQ, and we know that tm−1∂m

t St : L2 → L2

uniformly in t. Thus, by property ii) of FQ, we have that∫ `(Q)

0

∫
Q
|(TtA‖FQ)(x)|2

dx dt
t
≤

∫ `(Q)

0

∫
Rn
|tm−1∂m

t StL‖F(x)|2t dx dt

.
|Q|
`(Q)2

∫ `(Q)

0
t dt . |Q|,

which shows the desired bound for this term.
To bound the contribution from R(1)

t , we note that Tt : L2 → L2 uniformly in t and∫∫
Rn+1

+

|(Et − Pt)g(x)|2
dx dt

t
. ‖g‖22

for g ∈ L2(Rn). Therefore,∫ `(Q)

0

∫
Q
|R(1)

t ∇‖FQ|
2 dx dt

t
≤

∫ `(Q)

0

∫
Rn
|TtA‖(Et − Pt)∇‖FQ|

2 dx dt
t

.

∫ `(Q)

0

∫
Rn
|(Et − Pt)∇‖FQ|

2 dx dt
t

. ‖∇‖F‖22 . C|Q|,

where we used the ellipticity of A in the second inequality, and property i) of FQ in
the last inequality. This controls the contribution from R(1)

t and finishes the proof of
the Lemma. �

We move on to the

Proof of Proposition 5.22. To see that ‖|Θ(a)
t ‖|op . 1 + ‖|Θ0

t ‖|op, and that ‖Θ(a)
t 1‖C .

1 + ‖Θ0
t ‖C, we simply notice that Θ

(a)
t = (Θ0

t , t
m∂m

t (St∇‖)) so that the desired bounds
follow directly from the previous lemma.

We are left with showing the bounds in Proposition 5.22 for Tt = Θ′t . We note
immediately that (5.24) will follow from (5.23) and Lemma 2.23. Therefore, it is
enough to show (5.23). In fact, by Lemma 5.26, it suffices to show that ‖|Θ′t‖|op .

‖|Θ̃t‖|op + ‖|Θ0
t ‖|op. For g ∈ L2(Rn,Cn), we have that

Θ′tg = tm∂m
t St(B2‖g) + tm∂m

t (St∇) · Ãg

= tm∂m
t St(B2‖g) + tm∂m

t (St∇‖) · A‖g − tm∂m+1
t St~bg,

where ~b = (An+1, j)1≤ j≤n. The ellipticity of A gives immediately that
‖|tm∂m

t (St∇‖)A‖‖|op . ‖|Θ̃‖|op, and ‖|tm∂m+1
t St~b‖|op . ‖|Θ̃‖|op. It remains to handle

the first term. Observe that B2‖g = div‖ ∇‖I2B2‖g = div‖ ~RI1B2‖g, where ~R is the
vector-valued Riesz tranform. It follows that B2‖g = div‖ ~G with ‖ ~G‖2 . ‖B2‖n‖g‖2,
and hence

‖|tm∂m
t S tB2‖|op . ‖|Θ̃t‖|op‖B2‖n,

which yields the desired bound. �
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5.5. Proof of the square function bound. We finally turn to the proof of Theorem
5.1 (and hence, by our reduction, the proof of Theorem 1.3). Our method follows the
lines of [GH17], circumventing some difficulties by introducing Θ

(a)
t and b(a)

Q .

Proof of Theorem 5.1. Let C1 be a constant, depending on m, n, λ and Λ, for which
the inequalities (5.23) and (5.24) hold. We choose η in Proposition 5.9 as η :=
1/(2C1 + 4). By the generalized Christ-Journé T1 theorem for square functions,
(see [GH17, Theorem 4.3]) to prove the theorem it is enough7 to show that

(5.32) ‖Θ0
t 1‖C ≤ C.

As in [GH17], we want to reduce the above estimate to one of the form∫∫
RQ

∣∣∣(Θt1)AµQ
t bQ

∣∣∣2 dx dt
t
≤ C|Q|,

where AµQ
t is an averaging operator adapted to µQ (and hence Q) we will introduce

later and RQ is the Carleson region Q × (0, `(Q)). The argument up until this re-
duction, namely (5.40), is almost exactly as in [GH17]. Define ζ(x, t) := Θt1(x),
ζ0(x, t) := Θ0

t 1(x), and ζ′(x, t) := Θ′t1(x), where these objects make sense as elements
of L2

loc(Rn+1
+ ) by Lemma 2.24 and Proposition 4.37. Consider the cut-off surfaces

F1 :=
{

(x, t) ∈ Rn+1
+ : |ζ0(x, t)| ≤

√
η|ζ′(x, t)|

}
,

F2 :=
{

(x, t) ∈ Rn+1
+ : |ζ0(x, t)| >

√
η|ζ′(x, t)|

}
.

We easily have that ‖ζ0‖C ≤ ‖ζ
0
1F1‖C + ‖ζ0

1F2‖C. By definition of F1, Proposition
5.22, and the fact that η < 1/(2C1), we realize that

‖ζ0
1F1‖C ≤ η‖ζ

1‖C ≤ C1η(1 + ‖ζ0‖C) ≤
1
2

(1 + ‖ζ0‖C).

Consequently, ‖ζ0‖C ≤ 1 + 2‖ζ0
1F2‖C, and recall that we may work with truncated

versions of each of ζ, ζ0, ζ′ so that all quantities are finite. Accordingly, we have
reduced the proof of (5.32) to showing that

(5.33) ‖ζ0
1F2‖C ≤ C.

By (5.12) and (5.13) we have that

1
2
|ζ0| ≤

∣∣∣ζ0 ·
1

µQ(Q)

∫
Q

b0
Q dµQ

∣∣∣ ≤ ∣∣∣ζ · 1
µQ(Q)

∫
Q

bQ dµQ

∣∣∣+ ∣∣∣ζ′ · 1
µQ(Q)

∫
Q

b′Q dµQ

∣∣∣
≤

∣∣∣ζ · 1
µQ(Q)

∫
Q

bQ dµQ

∣∣∣ +
η

2
|ζ′|,

for every dyadic cube Q ⊂ Rn. Therefore, for every such Q ⊂ Rn, the estimates

1
2
|ζ0| ≤

∣∣∣ζ · 1
µQ(Q)

∫
Q

bQ dµQ

∣∣∣ +

√
η

2
|ζ0|, and

|ζ | ≤ |ζ0| + |ζ′| ≤ (1 + η−
1
2 )|ζ0| ≤ 2η−1/2|ζ0|

7The careful reader will notice that we have verified the hypotheses of [GH17, Theorem 4.3] above
aside from the quasiorthogonality estimate [GH17, equation (4.4)]. This estimate is slightly misstated
in [GH17], where h should be replaced by Qsh and we verify this below when dealing with the term
labeled J1.
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hold in F2. Combining the previous three estimates, we have that for (x, t) ∈ F2 and
every dyadic cube Q

(5.34)
√
η

2
(1 −

√
η)

1
2
|ζ(x, t)| ≤ (1 −

√
η)

1
2
|ζ0(x, t)| ≤

∣∣∣ζ · 1
µQ(Q)

∫
Q

bQ dµQ

∣∣∣.
At this juncture, we make the observation that, in order to obtain (5.33), it suffices

to show that for some α > 0 chosen small enough, we have that

(5.35) ‖ζ0
1F21Γαν

(ζ)‖C ≤ C,

with C independent of ν, where Γαν is an arbitrary cone of aperture α; that is,

Γαν := {z ∈ C2 : |(z/|z|) − ν)| < α},

for ν ∈ C2 a unit vector. It is clear that if we establish (5.35), then (5.33) follows by
summing over a collection of cones covering C2. In light of this, we fix such a cone
Γαν with α to be chosen. By (5.34) and the fact that η < 1/4 we have that for each
(x, t) ∈ F2 with ζ(x, t) ∈ Γαν and every dyadic cube Q ⊂ Rn,
√
η

8
≤

∣∣∣ ζ(x, t)
|ζ(x, t)|

·
1

µQ(Q)

∫
Q

bQ dµ
∣∣∣

≤

∣∣∣( ζ(x, t)
|ζ(x, t)|

− ν
)
·

1
µQ(Q)

∫
Q

bQ dµ
∣∣∣ +

∣∣∣ν · 1
µQ(Q)

∫
Q

bQ dµ
∣∣∣

≤ C0α +

∣∣∣ν · 1
µQ(Q)

∫
Q

bQ dµ
∣∣∣,

where in the last step, we used Schwarz’s inequality, the fact that

1/C0 ≤ dµ/dx = φQ ≤ 1 on Q,

and (5.10). Since α is at our disposal, we may choose α <
√
η

16C0
, so that

(5.36)
√
η

16
=: θ ≤

∣∣∣ν · 1
µQ(Q)

∫
Q

bQ dµ
∣∣∣.

Next, we observe that in order to obtain (5.36) we needed (x, t) ∈ F2 with ζ(x, t) ∈ Γαν .
This means that (5.36) holds whenever∫∫

RQ

|ζ0(x, t)|21F2(x, t)1Γαν
(ζ(x, t))

dx dt
t
, 0.

Consequently, when proving (5.35) we can always assume that (5.36) holds.
Now, fix any dyadic cube Q such that (5.36) holds and, following [GH17], use

a stopping time procedure to extract a family F = {Q j} of non-overlapping dyadic
subcubes of Q which are maximal with respect to the property that at least one of the
following conditions holds:

1
µQ(Q j)

∫
Q j

|bQ| dµQ >
θ

4α
(type I)∣∣∣ν · 1

µQ(Q j)

∫
Q j

bQ dµQ

∣∣∣ ≤ θ

2
(type II).

If some Q j happens to satisfy both the type I and type II conditions we (arbitrarily)
assign it to be of type II. We will write Q j ∈ FI or Q j ∈ FII to mean that a cube is
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of type I or of type II respectively. This stopping time argument produces an ‘ample
sawtooth’ with desirable bounds in the following sense.
Claim 5.37 (Ample sawtooth). There exists β > 0, uniform in Q, such that

(5.38)
∑
Q j∈F

|Q j| ≤ (1 − β)|Q|,

provided that α > 0 is small enough (depending on allowable constants). Moreover,

(5.39) |ζ(x, t)|21Γα(ζ(x, t)) ≤ Cθ|ζ(x, t)AµQ
t bQ(x)|2, for (x, t) ∈ E∗Q,

where E∗Q := RQ \ (∪Q j∈FRQ j). Here AµQ
t is the ‘dyadic averaging operator adapted

to the measure µQ’, that is, Aµt f (x) = 1
µQ(Q(x,t))

∫
Q(x,t) f dµQ, where Q(x, t) denotes the

smallest dyadic cube, of side length at least t, that contains x.

We postpone the proof of the claim for a bit. The ampleness condition (5.38)
allows us to use the “John-Nirenberg lemma for Carleson measures” to replace RQ
in the definition of ‖ · ‖C by E∗Q. This is done via an induction argument; see for
instance, [Hof10, Lemma 1.37]. Thus, we have by (5.39) that

‖ζ0
1F21Γαν

(ζ)‖C .β sup
Q

1
|Q|

∫∫
E∗Q

|ζ0(x, t)|21F2(x, t)1Γαν
(ζ(x, t))

dx dt
t

. sup
Q

1
|Q|

∫∫
RQ

|ζ(x, t)AµQ
t bQ(x)|2

dx dt
t

,

where we used that |ζ0| ≤ |ζ | in the first line and replaced E∗Q by the larger set RQ
after using (5.39) in the second line. As we had reduced the proof of the theorem to
showing the estimate (5.35), it is enough to show that

(5.40) sup
Q

1
|Q|

∫∫
RQ

|ζ(x, t)AµQ
t bQ(x)|2

dx dt
t
≤ C.

To this end, we fix a dyadic cube Q and write

ζAµQ
t bQ = [(Θt1)Aµt − Θt]bQ + ΘtbQ =: RtbQ + ΘtbQ = I + II.

First we handle term II, which is (almost) good by design. We write

II = ΘtbQ = Θ̂tb̂Q − Θ
(a)
t b(a)

Q =: II1 + II2.

By (5.11), the contribution from the term II1 in (5.40) is controlled by C0. Moreover,
by Proposition 5.22 we have that∫∫

RQ

|Θ
(a)
t b(a)

Q |
2 dx dt

t
≤ C1‖b

(a)
Q ‖

2
L2(Rn)(1 + ‖Θ0

t 1‖C)

≤ C1C0|Q| ‖B1‖
2
n(1 + ‖Θ0

t 1‖C),

so that the contribution of II2 can be hidden in (5.32), provided that ‖B1‖n is suffi-
ciently small (depending on η, α). Here, we used that b(a)

Q (y) = |Q|B1FQ(y, 0), so
that

‖b(a)
Q ‖

2
L2(Rn) =

∫
Rn
|Q|2|B1FQ(·, 0)|2 ≤ ‖B1‖

2
n|Q|

2
∫
Rn
|∇FQ(·, 0)|2 ≤ C0‖B1‖

2
n |Q|.
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It remains to obtain a desirable bound for I. Let {Qs}s>0 be a CLP family (see
Definition 2.26). By a standard orthogonality argument and (5.10), it is enough to
show that for some β0 > 0 and all t ∈ (0, `(Q)), the estimate

(5.41)
∫

Q
|RtQ

2
sh|2 . min

( s
t
,

t
s

)β0
∫
Rn
|Qsh|2

holds for all h ∈ H × L2(Rn).
We remind the reader that H := {h′ : h′ = ∇F, F ∈ Y1,2(Rn)} and that bQ ∈

H×L2(Rn). Before proving (5.41), we make a small technical point. Having fixed Q,
we let µ̃Q be a measure on Rn defined by µ̃Q := µQ|Q + 1

C̃0
dx|Rn\Q, and set Et = Aµ̃Q

t .

Notice that for (x, t) ∈ Q × (0, `(Q)), Aµ̃Q
t acts exactly as AµQ

t . Thus, in order to prove
(5.41), we may replace Rt by R̃t, where R̃t := [(Θt1)Et − Θt]. Notice that we may
apply Lemma 2.24 to Θt, since Θt has good off-diagonal decay (see Proposition 4.37)
and satisfies uniform L2 bounds on slices (see Proposition 4.23). Thus, (Θt1) is well
defined as an element of L2

loc and, since Et is a self-adjoint averaging operator, we
have that

(5.42) sup
t>0
‖(Θt1)Et‖L2→L2 ≤ C.

We break (5.41) into cases.
Case 1: t ≤ s. In this case, we see by (5.42) and properties of Θt that R̃t1 = 0,

‖R̃t‖L2→L2 ≤ C and R̃t has good off-diagonal decay. Hence, it follows from Lemma
2.25 that

‖R̃tQ
2
sh‖L2(Rn) . t‖∇Q2

sh‖L2(Rn) .
t
s‖s∇QsQsh‖L2(Rn) .

t
s‖Qsh‖L2(Rn),

which shows (5.41) with β0 = 2 in this case.

Case 2: t > s. In this case, we break R̃t into its two separate operators. One can
verify that ‖EtQs‖L2→L2 . ( s

t )γ for some γ > 0. Since Et is a projection operator, we
have that Et = E2

t and hence by (5.42), we see that

‖(Θt1)EtQ
2
sh‖2 = ‖(Θt1)Et[EtQ

2
sh]‖2 . ‖EtQ

2
sh‖2 . ( s

t )γ‖Qsh‖2,

which shows that the contribution of (Θt1)EtQ
2
s to (5.41) when t > s is as desired

with β0 = 2γ.
We are left with handling ΘtQ

2
sh. Since h = (h′, h0) ∈ H × L2(Rn), we write

h = (∇‖F, h0), with F ∈ Y1,2(Rn) (note ∇‖ = ∇ here). Then we may write

ΘtQsh = Θ0
tQ

2
sh0 + Θ′tQ

2
s∇‖F

= Θ0
tQ

2
sh0 + [Θ′tQ

2
s∇‖F + Θ

(a)
t B1Q

2
s F] − Θ

(a)
t B1Q

2
s F
= J1 + J2 + J3.

To handle J1, we write Qs = s div‖ s∇‖es2∆, so that

J1 = Θ0
tQ

2
sh0 = tm(∂t)m+1SLt QsQsh0 = s

t tm+1(∂t)m+1SLt div‖ s∇‖es2∆Qsh0.

Note that by (4.25) we have that tm+1(∂t)m+1SLt div‖ and s∇‖es2∆ are bounded opera-
tors on L2(Rn). Therefore, we have that ‖Θ0

tQ
2
sh0‖2 .

s
t ‖Qsh0‖2, and the contribution

of J1 to (5.41) when t > s is as desired with β0 = 2.
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For the term J2, first we use Proposition 2.27 to justify that there exists g ∈ L2(Rn)
such that QsF = I1g, where I1 = (−∆)−1/2 is the Riesz potential of order 1, and
satisfying ‖g‖2 ≈ ‖∇‖QsF‖2 = ‖Qs∇‖F‖2 = ‖Qsh′‖2 (every F ∈ Y1,2(Rn) arises as the
Riesz potential of a function g in L2(Rn)). Then, we may use integration by parts on
slices (Proposition 3.19) to compute that

J2 = tm(∂t)mSLt
(
B2‖∇‖Q

2
s F
)

+ tm(∂t)m(SLt ∇)Ã∇‖Q2
s F + tm(∂t)m(SLt ∇)B1Q

2
s F

= −tm(∂t)m+1(SLt ∇)~A·,n+1QsI1g + tm(∂t)m+1SLt B2⊥QsI1g = J2,1 + J2,2.

Since ‖s−1QsI1‖L2→L2 ≤ C and tm+1(∂t)m+1(SLt ∇) : L2 → L2, we obtain that the
contribution of J2,1 to (5.41) when t > s is as desired with β0 = 2. Similarly,
tm(∂t)m+1SLt B2⊥ : L2 → L2, so that the contribution of J2,2 to (5.41) when t > s
is as desired with β0 = 2.

We are left with controlling the contribution of

J3 = Θ
(a)
t B1Q

2
s F = tm∂m

t (SLt ∇)B1QsF = Θt,mB1I1g,

where F = I1g, F ∈ Y1,2 and g ∈ L2 with ‖g‖2 ≈ ‖∇‖F‖2 . By Proposition 4.30, for
all s < t we have that

‖Θ
(a)
t B1Q

2
s F‖L2(Rn) .

( s
t

)γ
‖Qsg‖L2(Rn).

Then we may control this term in (5.41) with g in place of h = ∇‖F, which is sufficient
as ‖g‖2 . ‖∇‖F‖2.

The proof of the theorem is finished modulo the

Proof of Claim 5.37. We first verify (5.39). Observe, by the maximality of the family
Q j, that for any dyadic subcube Q′ of Q which is not contained in any Q j, we have
the inequalities opposite to the type I and type II inequalities, with Q′ in place of Q j.
Thus,

θ

2
≤

∣∣∣ν · AµQ
t bQ(x)

∣∣∣ and |AµQ
t bQ(x)| ≤

θ

4α
for all (x, t) ∈ E∗Q. It follows that if z ∈ Γαν and (x, t) ∈ E∗Q, we have the bound

θ

2
≤

∣∣∣ν · AµQ
t bQ(x)

∣∣∣ ≤ ∣∣∣(z/|z|) · AµQ
t bQ(x)

∣∣∣ +

∣∣∣(z/|z| − ν) · AµQ
t bQ(x)

∣∣∣
≤

∣∣∣(z/|z|) · AµQ
t bQ(x)

∣∣∣ +
θ

4
,

where we used the definition of Γαν in the last line. The above estimate yields (5.39)
with Cθ = ( 4

θ )2 by setting z = ζ(x, t).
Now we establish (5.38). Set E := Q \ (∪Q j∈FQ j) and BI := ∪Q j∈FI Q j. By

definition of FI and the fact that 1/C0 ≤ dµ/dx ≤ 1 on Q, we have that BI ⊂{
M (bQ) > θ

4C0α

}
where M is the uncentered Hardy-Littlewood maximal function

on Rn (taken over cubes). The weak-type (2, 2) inequality for the Hardy-Littlewood
maximal function and (5.10) yield the estimate

|BI | ≤ CC2
0

(α
θ

)2
∫
Rn
|bQ|

2 ≤ CC3
0

(α
θ

)2
|Q|.

From this estimate, (5.10), (5.36), the definition of type II cubes, and Hölder’s in-
equality we obtain
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θµQ(Q) ≤
∣∣∣ν · ∫

Q
bQ dµQ

∣∣∣
≤

∣∣∣ν · ∫
E

bQ dµQ

∣∣∣ +

∫
BI

|bQ| dµ +
∑

Q j∈FII

∣∣∣ν · ∫
Q j

bQ dµQ

∣∣∣
≤ |E|1/2‖bQ‖L2(Rn) + |BI |

1/2‖bQ‖L2(Rn) +
θ

2

∑
Q j∈FII

µQ(Q j)

≤ C|E|1/2|Q|1/2 + Cθα|Q| +
θ

2
µQ(Q).

Choosing α > 0 small enough and using the fact that (1/2)n|Q| ≤ µQ(Q) ≤ |Q|, the
above estimate implies that |Q| ≤ Cθ|E|, which yields the claim with β = 1/Cθ. �

Thus we conclude the proof of Theorem 5.1. �

6. Control of slices via square function estimates

We are able to use the square function estimate obtained in the previous section
to immediately improve our L2 → L2 boundedness results of t−derivatives of the
single layer potential. More precisely, in the following lemma, we extend estimate
(4.25) (previously valid for m ≥ 2), to the case m = 1, given sufficient smallness of
max{‖B1‖n, ‖B2‖n}.
Lemma 6.1 (Stronger L2 → L2 estimate). The estimate

‖t∇∂tS
L
t f ‖L2(Rn) . ‖ f ‖L2(Rn),

holds, provided that max{‖B1‖n, ‖B2‖n < ε0 and ε0 > 0 is small enough so that (5.6)
holds for m = n + 10.

We may use Lemma 6.1 to obtain the “travel down” procedure for ∇SL∇.
Lemma 6.2 (L2 → L2 estimates for S t∇). The following statements are true.

i) For each f ∈ L2(Rn,Cn+1) and each t , 0 we have that

(6.3) ‖tk∂k
t (SLt ∇)f‖2 . ‖f‖2, k ≥ 1,

(6.4) ‖tk∂k−1
t ∇(SLt ∇)f‖2 . ‖f‖2, k ≥ 2,

provided that max{‖B1‖n, ‖B2‖n < ε0 is small. Therefore, for each m > k ≥ 2,

(6.5)
∣∣∣∣∣∣tk∂k−1

t ∇(SLt ∇)f
∣∣∣∣∣∣ .m

∣∣∣∣∣∣tm∂m
t (SLt ∇)f

∣∣∣∣∣∣ + ‖f‖2,

provided that max{‖B1‖Ln(Rn), ‖B2‖Ln(Rn)} is small.
ii) The estimate (6.5) holds for k = 1 if the operator ∇ acting on (SLt ∇) is replaced

by ∂t.

We proceed with the
Proof of Theorem 1.4. Let h ∈ C∞c (Rn)n+1 and fix τ > 0. Notice that by Lemma 2.3,
the pairing (h,Trt∇u)2,2 is meaningful. Let R � τ, ψ ∈ C∞c (R) satisfy ψ ≡ 1 on [τ,R],
ψ ≡ 0 on [2R,∞), |ψ| ≤ 1 and |ψ′| ≤ 2

R . We have the following estimates:

(6.6) |I| :=
∣∣∣ ∫
Rn

h ·
∫ 2R

R
ψ′∇u

∣∣∣ ≤ ∫
Rn

∫ 2R

R
|h||ψ′||∇u|
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≤
2
√

R
‖h‖L2(Rn)‖∇u‖L2(Rn+1

+ ) −→ 0 as R→ ∞,

(6.7)
∣∣∣ ∫
Rn

h · tTrt+τ∇∂tu
∣∣∣ ≤ ‖h‖L2(Rn)

t
t + τ

‖(t + τ)Trt+τ∇∂tu‖L2(Rn)

≤
t
τ
‖h‖L2(Rn)‖∇u‖L2(Rn+1

+ ) −→ 0 as t ↘ 0,

(6.8) |II| :=
∣∣∣ ∫
Rn

∫ 2R−τ

R−τ
h · tψ′(t + τ)Trt+τ∂t∇u dt

∣∣∣ ≤ 2−
∫ 2R

R

∫
Rn

t|h||∂t∇u| dt

≤ 2‖h‖L2(Rn) sup
t∈(R,2R)

‖tTrt∂t∇u‖L2(Rn) . ‖h‖L2(Rn)‖∇u‖L2(Rn+1
R/2 ) −→ 0 as R→ ∞,

where in (6.7) we used (3.25), and in (6.8) we used (3.24) and the absolute continuity
of the integral. We now perform two integration by parts in the following calculation,
recalling that ψ(2R) = 0 so that the arising boundary terms vanish.∫

Rn
h · Trτ∇u =

∫
Rn

h · ψ(τ)Trτ∇u −
∫
Rn

h · ψ(2R)Tr2R∇u

= −

∫
Rn

h ·
∫ 2R

τ
ψ∂t∇u −

∫
Rn

h ·
∫ 2R

R
ψ′∇u

=

∫
Rn

∫ 2R−τ

0
h · tTrtT

τψ∂2
t ∇T τu dt +

∫
Rn

∫ 2R−τ

R−τ
h · tTrtT

τψ′∂t∇T τu dt − I

=

∫
Rn

∫ 2R−τ

0
h · tTrtT

τψ∂2
t ∇T τu dt + II − I

where in the third equality we used (6.7) already. Note that the terms I, II drop to
0 as R → ∞ by the estimates (6.6) and (6.8). For technical reasons, let us integrate
by parts one more time. The boundary term that is introduced is again controlled as
in (6.7) and (6.8) because we may apply the results of Proposition 3.23 to ∂2

t T
τu.

Hence we have that

(6.9)
∫
Rn

∫ 2R−τ

0
h · tTrtT

τψ∂2
t ∇T τu dt

= −
1
2

∫
Rn

∫ 2R−τ

0
h · t2TrtT

τψ∂3
t ∇T τu dt + III,

where |III| → 0 as R → ∞. Intuitively, we would like to introduce Green’s formula
at this point, but we want the “input" in the layer potentials to still depend on t for
when we later dualize to control our integral by square function estimates. Let us
now do a change of variables t 7→ 2t, and carefully track the use of the chain rule:

1
2

∫
Rn

∫ 2R−τ

0
h · t2TrtT

τψ∂3
t ∇T τu dt

= 4
∫
Rn

∫ R− τ2

0
h · t2T τψ(2t)∂3

2t∇x,2tT
τu(·, 2t) dt

=
1
2

∫
Rn

[ ∫ R− τ2

0

~h‖ · t2T τψ(2t)∂3
t ∇‖T

τu(·, 2t) dt
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+
1
2

h⊥

∫ R− τ2

0
t2T τψ(2t)∂4

t T
τu(x, 2t) dt

]
.

We now consider s ∈ R and write 2t = t + s|s=t. If F is a differentiable function in t,
the chain rule tells us that ∂tF(t + s) = ∂sF(t + s). By this change of variables, and
the above identity, we compute that

1
2

∫
Rn

∫ 2R−τ

0
h · t2TrtT

τψ∂3
t ∇T τu dt

= 4
∫ R− τ2

0
t2T t+τψ(t)

[ ∫
Rn

h · Trt∇x,tD3
n+1T

sT τu(x, t)
]

s=t
dt.

= 4
∫ R− τ2

0
t2T t+τψ(t)

[ ∫
Rn

h · Trt∇Dn+1T
τ
(

D2
n+1T

su
)]

s=t
dt.

We now apply Green’s formula, Theorem 4.16 ii). The function v := D2
n+1T

su
belongs to W1,2(Rn+1

+ ) ⊂ Y1,2(Rn+1
+ ) and solves Lv = 0 in Rn+1

+ in the weak sense.
Therefore the identity v = −DL,+(Tr0v) + SL(∂L,+ν v) holds in Y1,2(Rn+1

+ ), for any
s > 0. But by the results of Proposition 3.23, for each t > 0 we have the identity

Trt∇Dn+1T
τv = Trt∇Dn+1T

τ
(
−DL,+(Tr0v) + SL(∂L,+ν v)

)
in L2(Rn), for any s > 0 and t > 0. As such, per our calculations we have the identity

1
2

∫
Rn

∫ 2R−τ

0
h · t2TrtT

τψ∂3
t ∇T τu dt

= −4
∫ R− τ2

0
t2T t+τψ(t)

[ ∫
Rn

h · Trt∇Dn+1T
τDL,+(Tr0v)

]
s=t

dt

+ 4
∫ R− τ2

0
t2T t+τψ(t)

[ ∫
Rn

h · Trt∇Dn+1T
τSL(∂L,+ν v)

]
s=t

dt = IV + V.

Now we make use of the adjoint relations (4.5), (4.21) and (3.26) to dualize IV
and V . Indeed, we see that∫

Rn
h · Trt∇Dn+1T

τDL,+(Tr0v) =
(

Dn+1∂
L∗,−
ν,−t−τ(SL

∗
∇)h,Tr0v

)
2,2

=
(

Dn+1en+1 · Tr−t−τ

[
A∗∇ + B2

]
(SL∗∇)h,TrsD2

n+1u
)

2,2
,

∫
Rn

h · Trt∇Dn+1T
τSL(∂L,+ν v) =

(
Tr−t−τDn+1(SL∗∇)h, ∂L,+ν v

)
2,2

=
(

Tr−t−τDn+1(SL∗∇)h,−en+1 · Trs

[
A∇ + B1

]
D2

n+1u
)

2,2
.

Therefore, using the Cauchy-Schwartz inequality, we estimate that

(6.10) |IV | ≤ 4
∫ R− τ2

0
t2
∫
Rn

∣∣∣Tr−t−τDn+1

[
A∗∇ + B2

]
(SL

∗

∇)h
∣∣∣ ∣∣∣TrtD2

n+1u
∣∣∣ dt

. ‖|t2∂t∇(SL
∗

∇)h‖|−‖|t∂2
t u‖| . ‖h‖2‖|t∂2

t u‖|,
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(6.11) |V | ≤ 4
∫ R− τ2

0
t2
∫
Rn

∣∣∣Tr−t−τDn+1(SL
∗

∇)h
∣∣∣ ∣∣∣Trt

[
A∇ + B1

]
D2

n+1u
∣∣∣ dt

. ‖|t∂t(SL
∗

∇)h‖|−‖|t2∂2
t ∇u‖| . ‖h‖2‖|t2∂2

t ∇u‖|,

where we used the square function estimate (5.6) and the “travel-down” procedure
(6.5). Now send R→ ∞, which sends |I|, |II|, |III| → 0. By the bounds (6.10), (6.11),
and Lemma 5.2, the desired bound for the gradient follows.

To obtain the bound for the L
2n

n−2 (Rn) norm, we use Lemma 2.3 to ensure that at
each horizontal slice, the L

2n
n−2 (Rn) norm of a Y1,2(Rn+1

+ ) solution is finite. Then we
may apply the Sobolev embedding, whence the desired result follows. �

The method of proof of Theorem 1.4 is robust, in the sense that we may loosen the
condition that u ∈ Y1,2(Rn+1

+ ), provided that u is such that the square function in the
right-hand side of (1.5) is finite, and that the gradient of u decays to 0 in the sense of
distributions for large t. More precisely, we have

Theorem 6.12 (A more general Tr < S result). Suppose that u ∈ W1,2
loc (Rn+1

+ ), Lu = 0
in Rn+1

+ in the weak sense, and ∇u(·, t) converges to 0 in the sense of distributions
as t → ∞ (we refer to this last condition as the decaying condition). Furthermore,
assume that ‖|t∇Dn+1u‖| < ∞. Then, for every τ > 0, the following statements are
true.

i) If L1 , 0 in Rn+1
+ , then

‖Trτ u‖
L

2n
n−2 (Rn)

+ ‖Trτ∇u‖L2(Rn) .

∫ ∞
τ

∫
Rn

t|D2
n+1u|2 dxdt . ‖|tD2

n+1u‖|.(6.13)

ii) If L1 = 0 in Rn+1
+ , then there exists a constant c ∈ C such that v := u − c (which

is again a solution) satisfies estimate (6.13).

The proof of this theorem is omitted as it is very similar to the proof of Theorem
1.4 as soon as we have the following technical result.

Proposition 6.14 (Solutions with gradient decay). Suppose that u ∈ W1,2
loc (Rn+1

+ ) is a
solution of Lu = 0 in Rn+1

+ and that L1 , 0 on some box I = Q × (t1, t2) ⊂ Rn+1
+ .

Further, assume that supt>0 ‖∇u(t)‖L2(Rn) < ∞, and that limt→∞ ‖∇u(t)‖L2(Rn) = 0 (see
(2.2)). Then u(t) ∈ Y1,2(Rn) for every t > 0.

Proof. Step 1. There exists a constant c ∈ C such that for all t > 0, u(·, t) − c ∈
Y1,2(Rn).

To see this, first note that by the Sobolev embedding, there exists a function f :
(0,+∞) → C such that for each t > 0, u(·, t) − f (t) ∈ Y1,2(Rn). We must show that
f is identically a constant. Since (see the proof of Theorem 1.78 in [MZ97]) for
each t > 0 we have that f (t) = limR→∞ −

∫
B(0,R) u(·, t), it can be shown by the Sobolev

embedding and considering the difference quotient u(·,t+h)−u(·,t)
h that f is differentiable

and that f ′(t) ≡ 0 for all t > 0. It follows that f is a constant, as desired.
Step 2. For the box I ⊂ Rn+1

+ as in the hypotheses, it holds that∫∫
I
|uR|2

∗

→ 0 as R→ ∞,

where uR(·, ·) = u(·, · + R).
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This is the crucial step. We set p = 2∗ and uR
I = |I|−1

∫∫
I uR for ease of notation. By

the Poincaré-Sobolev inequality, we see that

(6.15) ‖uR − uR
I ‖Lp(I) . ‖∇uR‖L2(I) → 0, as R→ ∞,

where we used the definition of uR and the decaying condition of the gradient. In
particular, we have that uR − uR

I → 0 in Y1,2(I), so that L(uR − uR
I ) → 0 in I, which

implies that for every ϕ ∈ C∞c (I), the limit

−uR
I

∫∫
I

B1 · ∇ϕ =

∫∫
I

[
(A∇(uR − uR

I ) + B1(uR − uR
I )) · ∇ϕ + B2 · ∇(uR − uR

I )ϕ
]
→ 0

holds. Since L1 , 0 in I, for some ϕ0 ∈ C∞c (I) we have that
∫∫

I B1 · ∇ϕ0 , 0, whence
uR

I → 0 as R → ∞. The claim now follows by using this result in (6.15). Notice that
this argument holds just as well for any box J containing I, in particular it holds for
3
2 I.

Step 3. For Q ⊂ Rn, t ∈ (t1, t2) as in the hypotheses, we have that∫
Q
|Trt uR|p → 0, as R→ ∞.

This is a consequence of Step 2 and the definition of the trace: For any φ ∈ C∞c (Q)
and η ∈ C∞c (t1, t2) with η(s) = 1 near t, we set Φ := φη ∈ C∞c (I) and estimate

|(Trt uR, φ)| =
∣∣∣ ∫∫
Rn+1

+

(Dn+1uRΦ + uRDn+1Φ)
∣∣∣

≤ ‖Dn+1uR‖Y1,2(I)‖Φ‖Lp′ (I) + ‖uR‖Y1,2(I)‖Dn+1Φ‖Lp′ (I)

.η,η′ (‖Dn+1uR‖Y1,2(I) + ‖uR‖Y1,2(I))‖φ‖Lp′ (I).

The claim now follows by the Caccioppoli inequality; to wit,

‖Dn+1uR‖Lp(I) + ‖∇Dn+1uR‖L2(I) .|I| sup
s>t2+R

‖∇u(s)‖L2(Rn) → 0 as R→ ∞,

using the fact that p < 2n
n−2 .

We now conclude the proof: By Step 1, we can place Trs(u − c) ∈ Y1,2(Rn) for all
s > 0. By Sobolev’s inequality and the hypotheses, ‖Trs u− c‖Y1,2(Rn) → 0 as s→ ∞.
On the other hand, by Step 3, we have that Trs u→ 0 in Lp(Q), so that c = 0 and the
desired result follows. �

A quick application of Theorem 6.12 to the improvement of (6.4) will be useful
for the Dirichlet problem:
Corollary 6.16 (Improvement to slice estimate). The estimate (6.4) holds true for
k = 1. In particular, (6.5) holds true for k = 1 as well.

We can also, very similarly, prove

Theorem 6.17 (L2−sup on slices). Suppose that u ∈ W1,2
loc (Rn+1

+ ), Lu = 0 in Rn+1
+ ,

and that u converges to 0 in the sense of distributions. Furthermore, assume that
‖|t∇u‖| < ∞. Then, for every τ > 0,

‖Trτu‖L2(Rn) .

∫ ∞
τ

∫
Rn

t|∇u|2 dxdt . ‖|t∇u‖|

where the implicit constant is independent of τ and u.
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In the second paper, we will establish uniqueness under some weak background
hypotheses. For this reason, we give two definitions and make an observation.

Definition 6.18 (Good N/R solutions). We say that u ∈ W1,2
loc (Rn+1

+ ) is a good N/R
solution if Lu = 0 in Rn+1

+ in the weak sense, u ∈ S 2
+ (see Definition 2.13 for the slice

spaces S 2
+ and D2

+), and ∂tuτ ∈ Y1,2(Rn+1
+ ) for all τ > 0, where uτ(·, ·) := u(·, · + τ).

Definition 6.19 (GoodD solutions). We say that u ∈ W1,2
loc (Rn+1

+ ) is a goodD solution
if Lu = 0 in Rn+1

+ in the weak sense, u ∈ D2
+ and uτ ∈ Y1,2(Rn+1

+ ) for all τ > 0, where
uτ(·, ·) := u(·, · + τ).

As an immediate consequence of Theorems 6.12 and 6.17 we exhibit

Corollary 6.20. Let u ∈ W1,2
loc (Rn+1

+ ) satisfy Lu = 0 in Rn+1
+ .

i) If ‖|t∇∂tu‖| < ∞ and limt→∞ ∇u(t) = 0 in the sense of distributions (see (2.2)),
then either u is a good N /R solution (in the case that L1 , 0 in Rn+1

+ ), or u − c
is a good N /R solution for some constant c (in the case that L = 0 in Rn+1

+ ).
ii) If ‖|t∇u‖| < ∞ and limt→∞ u(t) = 0 in the sense of distributions, then u is a good
D solution.
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