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Abstract. We consider the inverse multiphase Stefan problem, where information on the heat flux
on the fixed boundary is missing and must be found along with the temperature and free boundaries.
Optimal control framework is pursued, where boundary heat flux is the control, and the optimality
criteria consist of the minimization of the L2-norm declination of the trace of the solution to the
Stefan problem from the temperature measurement on the fixed right boundary. The state vector
solves multiphase Stefan problem in a weak formulation, which is equivalent to Neumann problem
for the quasilinear parabolic PDE with discontinuous coefficient. Full discretization through finite
differences is implemented and discrete optimal control problem is introduced. We prove well-
posedness in a Sobolev space framework and convergence of discrete optimal control problems
to the original problem both with respect to the cost functional and control. Along the way,
the convergence of the method of finite differences for the weak solution of the multiphase Stefan
problem is proved. The proof is based on achieving a uniform L∞ bound, and W 1,1

2 -energy estimate
for the discrete multiphase Stefan problem.
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1 Description of Main Results

1.1 Introduction and Motivation

Consider the general multi-phase Stefan problem ([28]): find the temperature function and phase
transition boundaries {u(x, t), ξj(t), j = 1, J} in D = {0 < x < `, 0 < t ≤ T} satisfying the
following conditions:

α(u)ut − (k(u)ux)x = f(x, t), (x, t) ∈ D, u(x, t) 6= uj , j = 1, J, (1)

u|x=ξj(t) = uj , 0 < t ≤ T, j = 1, J, (2)

[u]|x=ξj(t) = 0, 0 < t ≤ T, j = 1, J, (3)

[k(u)ux]|x=ξj(t) = γj
dξj
dt
, 0 < t ≤ T, j = 1, J, (4)

u(x, 0) = φ(x), 0 ≤ x ≤ `, (5)

k(u)ux|x=0 = g(t), k(u)ux|x=` = p(t), 0 < t ≤ T, (6)

where α, k are positive C1 functions on each segment (−∞, u1], [uj , uj+1], j = 1, . . . , J − 1 and
[uJ ,+∞) with 1st type discontinuity at u = uj , j = 1, J , where u1 < u2 < · · · < uJ are known
values; each γj , j = 1, J is a known positive number, and [u]|x=ξj is the jump of u at ξj , defined as

[u]|x=ξj = u|+x=ξj
− u|−x=ξj

where u|+x=ξj
(or u|−x=ξj

) is the limit value of u at (ξj(t), t) taken in the region {(x, t) : u > uj} (or

{(x, t) : u < uj}). We define

ξj(0) =
{
x ∈ [0, `] | φ(x) = uj

}
, j = 1, J, (7)

that is, the phase transition boundaries at the initial time as level sets of the given initial function
φ. In the physical context, f characterizes the density of the sources, φ is the initial temperature,
g and p are the heat fluxes on the left and right fixed boundaries respectively, each uj represents
a phase transition temperature, and (4) is the Stefan condition expressing the conservation law
according to which the free boundaries are pushed by the jump of the heat flux from different
phases.

The weak formulation of the multiphase Stefan problem, as well as existence and uniqueness
of the weak solution to the multiphase Stefan problem, was first proved in [26, 34]. We refer to
monographs [28, 30] for the extensive list of references.

Assume now that some of the data is not available, or involves some measurement error. For
example, suppose that the heat flux, g, at the fixed boundary x = 0 is not known and must be
found along with the temperature u and the phase transition boundaries ξj . As compensation for
not knowing this function, we must have access to additional information, which may come, for
instance, as a measurement of the temperature at the fixed boundary x = `:

u(`, t) = ν(t), 0 < t ≤ T. (8)

Inverse Multiphase Stefan Problem (IMSP). Find the functions u(x, t), ξj(t), j = 1, J,
and the boundary heat flux g(t) satisfying (1)-(6),(8).

Motivation for the IMSP arose from the modeling of bioengineering problems on the laser
ablation of biological tissues through a multiphase Stefan problem (1)-(6). Laser ablation creates
three phases - solid (skin), fluid (melted skin) and gas (evaporated skin). Free boundaries ξ1(t)
and ξ2(t) are measuring ablation depth separating solid/fluid and fluid/air regions at the moment t.
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The temperature measurement on the fixed boundary x = 0 has an error, which makes it impossible
to measure flux accurately. On the other side, temperature ν on the bottom fixed boundary x = `
can be measured, and the boundary flux g can be identified by solving the IMSP. Moreover, our
variational approach allows us to regularize errors in the measurement ν. Our suggested approach
to solve the IMSP is quite robust and can be applied for the identification of various functions
such as f, α, k. Laser ablation of the skin creates a complex environment with three phases, and
phase transition boundaries are not necessarily functions of time, but may form complicated sets.
The major advantage of our approach in this paper is that the weak formulation of the multiphase
Stefan problem doesn’t impose any explicit restriction on the structure of the free boundary, which
is defined as a level set of the weak solution. Another important motivation arises from the optimal
control of the laser ablation process, in which one tries to achieve particular temperature distribution
on the bottom boundary x = ` by controlling flux on the fixed surface boundary, which is essential
to guarantee that the ablation depth is not more than required, and no healthy tissue is affected.

The IMSP is not well posed in the sense of Hadamard. That is, if the data is not sufficiently co-
ordinated, there may be no solution. Even if it exists, it might be not unique, and most importantly,
there is no continuous dependence of the solution on the data functions.

We refer to a recent paper [1] for a review of the literature on Inverse Stefan Problems. The
one-phase inverse Stefan problem (ISP) was first mentioned in [13], in which an unknown heat
flux is to be determined under the given free boundary. The variational approach for solving this
ill-posed inverse Stefan problem was used in [10, 11]. The first result on the optimal control of the
Stefan problem appeared in [41], in which an optimal temperature along the fixed boundary must
be determined to guarantee that the solutions of the Stefan problem stay close to the measurements
taken at the final time. In [41], the existence result was proved. In [43], the Fréchet derivative was
found, the convergence of the finite difference scheme was proved, and Tikhonov regularization was
suggested. Later development of the inverse Stefan problem proceeded in these two directions:
Inverse Stefan problems with given phase boundaries were considered in [5, 7, 9, 12, 14, 15, 16, 21,
37, 19]; optimal control of Stefan problems, or equivalently inverse problems with unknown phase
boundaries were investigated in [6, 17, 22, 23, 24, 25, 27, 29, 33, 31, 35, 36, 40, 19]. We refer to the
monography [19] for a complete list of references of both types of inverse Stefan problems, both for
linear and quasilinear parabolic equations.

In two recent papers [1, 2], a new variational formulation of the one-phase ISP was developed.
Optimal control framework was implemented, in which the boundary heat flux and the free bound-
ary are components of the control vector and optimality criteria consist of the minimization of
the sum of L2-norm declinations from the available measurement of the temperature on the fixed
boundary and available information on the phase transition temperature on the free boundary. This
approach allows one to tackle situations when the phase transition temperature is not known explic-
itly, and is available through measurement with possible error. It also allows for the development of
iterative numerical methods of least computational cost due to the fact that for every given control
vector, the parabolic PDE is solved in a fixed region instead of a full free boundary problem. In
[1], the well-posedness in a Sobolev space framework and convergence of time-discretized optimal
control problems is proved. In [2], full discretization is implemented and the convergence of the
discrete optimal control problems to the original problem both with respect to cost functional and
control is proved. The main advantage of this method is that numerically at each step, the problem
to be solved is only a Neumann problem, and not a full free boundary problem. Moreover, the
Neumann condition replaces the Stefan condition on the free boundary. In recent papers [3, 4], the
Fréchet differentiability and first order optimality condition in Besov spaces framework is proved
and the formula for the Fréchet gradient is derived.

This approach is not applicable to multiphase Stefan problem. The reason is that the Stefan
condition on the phase transition boundary includes the flux calculated from both phases. There-
fore, it can’t be treated as a Neumann condition, even if we include the free boundary as one of the
control components. In the current paper we develop a new approach based on the weak formula-
tion of the multiphase Stefan problem, as a boundary value problem for the nonlinear PDE with
discontinuous coefficients in a fixed domain. The main goal of this paper is to solve the IMSP in the
optimal control framework by employing the weak formulation of the multiphase Stefan problem.
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We prove the existence of the optimal control and convergence of the sequence of discrete optimal
control problems to the continuous problem both with respect to functional and control. The proof
is based on the proof of uniform L∞ bound, and W 1,1

2 -energy estimate for the discrete multiphase
Stefan problem. We address the problem of Fréchet differentiability and application of the iterative
gradient methods in Hilbert spaces in an upcoming paper.

In Section 1.2 we describe the notation of Sobolev spaces used in this paper. In Section 1.3
we formulate IMSP as an optimal control problem. In Section 1.4 we perform full discretization
through finite differences and formulate discrete optimal control problem. In Section 1.5 the main
results are formulated. In Section 2 we prove the existence and uniqueness of the discrete state
vector. We present the proof of the main results in Section 3. In Section 3.1 we prove L∞ estimation
for the discrete multiphase Stefan problem. In Section 3.2 we prove W 1,1

2 -energy estimation for the
discrete multiphase Stefan problem. Based on these estimations we prove the existence of the
optimal control in Section 3.3. Proof of the convergence of the discrete optimal control problems
to continuous optimal control problem is completed in Section 3.4.

1.2 Notation of Sobolev Spaces

L2(0, T ) - Space of Lebesgue square-integrable functions. It is a Hilbert space with inner product

(u, v) =

∫ T

0

uv dt.

L∞(0, T ) - Space of essentially bounded functions. It is a Banach space with norm

‖u‖L∞[0,T ] = esssup
0≤t≤T

|u(t)|.

W k
2 (0, T ), k = 1, 2, ... - Hilbert space of all elements of L2(0, T ) whose weak derivatives up to order

k exist and belong to L2(0, T ). The inner product is defined as

(u, v) =

∫ T

0

k∑
s=0

dsu

dts
dsv

dts
dt.

L2(D) - Hilbert space with inner product

(u, v) =

∫
D

uv dx dt.

W 1,0
2 (D) - Hilbert space of all elements of L2(D) that have a weak derivative in the x direction,

∂u
∂x , and such that it belongs to L2(D). The inner product is defined as

(u, v) =

∫
D

(
uv +

∂u

∂x

∂v

∂x

)
dx dt.

W 1,1
2 (D) - Hilbert space of all elements of L2(Ω) with weak derivatives of first order, ∂u∂x , ∂u∂t . Also

its weak derivatives must belong to L2(D). The inner product is defined as

(u, v) =

∫
D

(
uv +

∂u

∂x

∂v

∂x
+
∂u

∂t

∂v

∂t

)
dx dt.

1.3 Multiphase Stefan Optimal Control Problem

Following the well-known reformulation of the IMSP (see [28, 34]), we consider the transformation

v(x, t) = F (u(x, t)) :=

u(x,t)∫
u1

k(y) dy. (9)
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Then vj =
uj∫
u1

k(y) dy, v1 = 0 < · · · < vJ , and our conditions become:

β(v)vt − vxx = f(x, t), (x, t) ∈ D, v(x, t) 6= vj , (10)

v|x=ξj(t) = vj , 0 < t ≤ T, (11)

[v]|x=ξj(t) = 0, 0 < t ≤ T, j = 1, J, (12)

[vx]|x=ξj(t) = γj
dξj
dt
, 0 < t ≤ T, j = 1, J, (13)

v(x, 0) = Φ(x) =

φ(x)∫
u1

k(y) dy, 0 ≤ x ≤ `, (14)

vx|x=0 = g(t), 0 < t ≤ T, (15)

vx|x=` = p(t), 0 < t ≤ T, (16)

v(`, t) = Γ(t) =

ν(t)∫
u1

k(y) dy, 0 < t ≤ T, (17)

where

β(v) =
α(F−1(v))

k(F−1(v))
, (18)

and F−1 is an inverse function of F . The function β(v) is of similar type as α and k, so that it is
a positive C1 function on each segment (F (−∞), v1], [vj , vj+1], j = 1, . . . , J − 1 and [vJ , F (+∞))
with 1st type discontinuity at v = vj , j = 1, J . Now, we can invoke a function b(v) such that
b′(v) = β(v). Our partial differential equation becomes

∂b(v)

∂t
− vxx = f(x, t), (x, t) ∈ D, v(x, t) 6= vj . (19)

Moreover, we’re free to choose the jump of b at the values v = vj . We choose them in such a way
that [b(v)]|v=vj = γj so that upon integration by parts of (19) over D, the integrals over the phase
transition boundaries cancel out. Define the level sets

Cj := {(x, t) ∈ D | v(x, t) = vj}, j = 1, J.

Definition. We say that a measurable function B(x, t, v) is of type B if

(a) B(x, t, v) = b(v), v 6= vj , ∀j = 1, J , and

(b) B(x, t, v) ∈ [b(vj)−, b(vj)+], v = vj for some j.

Note that B(x, t, v) can take different values for different (x, t) when v = vj for some j.
Given g, a solution to the Stefan problem (10)-(16) is understood in the following sense:

Definition. v ∈ W 1,1
2 (D) ∩ L∞(D) is called a weak solution of the Stefan problem (10)-(16) if

for any two functions B,B0 of type B, the following integral identity is satisfied:

T∫
0

`∫
0

[
−B(x, t, v(x, t))ψt + vxψx − fψ

]
dxdt−

`∫
0

B0(x, 0,Φ(x))ψ(x, 0) dx−

−
T∫

0

p(t)ψ(`, t) dt+

T∫
0

g(t)ψ(0, t) dt = 0, ∀ψ ∈W 1,1
2 (D), ψ(x, T ) = 0. (20)
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Note that the definition of the weak solution doesn’t impose any restriction on the structure of the
free boundaries, which are identified as level sets of the weak solution. In particular, the level sets
Cj need not be curves in D, and the Stefan condition (4) is not explicitly required, but is absorbed
into the definition of the weak solution through the function B(x, t, v) and the integral identity (20).

Consider the control set

GR =
{
g : g ∈W 1

2 (0, T ), ‖g‖W 1
2 [0,T ] ≤ R

}
.

We wish to minimize the cost functional J given by

J (g) = ‖v(`, t; g)− Γ(t)‖2L2(0,T ) (21)

on GR, where v = v(x, t; g) ∈ W 1,1
2 (D) ∩ L∞(D) is a weak solution of the Stefan problem in the

sense of (20). This optimal control problem will be called Problem I.

1.4 Discrete Optimal Control Problem

Let

ωτ = {tk, k = 1, n}, τ =
T

n
, tk = kτ, ωh = {xi, i = 1,m}, h =

`

m
, xi = ih

be grids in the time and space domains, respectively, and we’ll assume from here on that

m→∞ as n→∞.

Define the Steklov averages

ak =
1

τ

tk∫
tk−1

a(t) dt, Φi =
1

h

xi+1∫
xi

Φ(x) dx, Φm = Φ(`), (22)

fik =
1

τh

tk∫
tk−1

xi+1∫
xi

f(x, t) dxdt, k = 1, n, i = 0,m− 1,

where a stands for any of the functions p, Γ, g, or gn. Introduce the discretized control set

G n
R = {[g]n ∈ Rn+1 : ‖[g]n‖w1

2
≤ R}

where [g]n = (g0, g1, . . . , gn), and

‖[g]n‖2w1
2

=

n∑
k=1

τg2
k +

n∑
k=1

τg2
kt̄

with gkt̄ = gk−gk−1

τ . Assume that every element g ∈ W 1
2 (0, T ) is continued to [−τ, 0] as a con-

stant g(0). Consider now the mappings between the discrete and continuous control sets, Qn :
W 1

2 (0, T )→ Rn+1, Pn : Rn+1 →W 1
2 (0, T ) as

Qn(g) = [g]n, for g ∈ GR, where gk =
1

τ

tk∫
tk−1

g(t) dt, k = 0, n, (23)

Pn([g]n) = gn, for [g]n ∈ G n
R ; gn(t) = gk−1 +

gk − gk−1

τ
(t− tk−1), t ∈ [tk−1, tk), k = 1, n. (24)

Approximate the function b(v) by the infinitely differentiable sequence

bn(v) =

∫ v+ 1
n

v− 1
n

b(y)ωn(v − y)dy, (25)
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where ωn is a standard mollifier defined as

ωn(v) =

{
Cne−

1
1−n2v2 , |v| ≤ 1

n

0, |v| > 1
n

(26)

and the constant C is chosen so that
∫
R
ω1(u) du = 1. Since b′(v) is piecewise-continuous, we also

have

b′n(v) =

∫ v+ 1
n

v− 1
n

b′(y)ωn(v − y)dy. (27)

Hence bn is strictly monotonically increasing. Next we define a discrete state vector, which repre-
sent the solution of the discrete multiphase Stefan problem.

Discrete State Vector. Given [g]n, the vector function [v([g]n)]n =
(
v(0), v(1), . . . , v(n)

)
;

v(k) ∈ Rm+1, k = 0, . . . , n is called a discrete state vector if

(a) vi(0) = Φi, i = 0,m,

(b) For arbitrary k = 1, . . . , n, the vector v(k) ∈ Rm+1 satisfies

m−1∑
i=0

h
[(
bn(vi(k))

)
t̄
ηi + vix(k)ηix − fikηi

]
− pkηm + gnk η0 = 0, ∀η = (ηi) ∈ Rm+1. (28)

Given [g]n ∈ G n
R , the discrete cost functional In is defined as

In([g]n) =

n∑
k=1

τ
(
vm(k)− Γk

)2

(29)

where vm(k) are components of the discrete state vector [v([g]n)]n. We define

In∗ := inf
[g]n∈GnR

In([g]n).

The discrete optimal control problem will be labeled Problem In. Furthermore, the following
interpolations will be considered:

ṽ(x, t) = vi(k), x ∈ [xi, xi+1], t ∈ [tk−1, tk], i = 0,m− 1, k = 0, n,

v̂(x; k) = vi(k) + vix(k)(x− xi), x ∈ [xi, xi+1], i = 0,m− 1,

vτ (x, t) = v̂(x; k), t ∈ [tk−1, tk],

v̂τ (x, t) = v̂(x; k − 1) + v̂t̄(x; k)(t− tk−1), t ∈ [tk−1, tk], k = 1, n. (30)

1.5 Formulation of the Main Results

Unless otherwise stated, throughout the paper we suppose that

f ∈ L∞(D), p ∈W 1
2 (0, T ), Φ ∈W 1

2 (0, `) (31)

and the one-dimensional Lebesgue measure of the level sets ξj(0), j = 1, J defined in (7) is zero.
Equivalently, the level sets {x ∈ [0, `] | Φ(x) = vj} are of Lebesgue measure null sets. Concerning
the behavior of the coefficients α and k at ∞, we take the following assumptions:∫ ∞

u1

k(u)du =∞, (32)

lim inf
u→∞

α(u)

k(u)
≥ a0 > 0. (33)
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Condition (32) guarantees that the domain of b(v) is R. Condition (33) implies that there is a
uniform positive lower bound for b′ and b′n:

b′(v), b′n(v) ≥ b̄ > 0, v ∈ R. (34)

for some b̄ > 0.

Theorem 1. The Problem I has a solution, that is, the set

G∗ =
{
g ∈ GR

∣∣J (g) = J∗ := inf
g∈GR

J (g)
}

is not empty.

The proof of Theorem 1 hinges upon showing the weak continuity of the cost functional J .

The weak continuity of J will be established by proving an L∞(D) bound and a W 1,1
2 (D) - energy

estimation for the solution to the discrete Stefan problem, and subsequent use of compactness of
the family of interpolations.

Theorem 2. The sequence of discrete optimal control problems In approximates the optimal control
problem I with respect to functional, that is,

lim
n→+∞

In∗ = J∗, (35)

where
In∗ = inf

GnR
In([g]n), n = 1, 2, . . . .

If [g]nε ∈ G n
R is chosen such that

In∗ ≤ In([g]nε) ≤ In∗ + εn, εn ↓ 0,

then the sequence gn = Pn([g]nε) has a subsequence convergent to some element g∗ ∈ G∗ weakly
in W 1

2 (0, T ) and strongly in L2(0, T ). Moreover, the piecewise linear interpolations v̂τ of the cor-
responding discrete state vectors [v([g]nε)]n converge to the weak solution v(x, t; g∗) ∈ W 1,1

2 (D) of
the Stefan Problem weakly in W 1,1

2 (D).

The necessary and sufficient conditions for the convergence of discrete optimal control problems
to the continuous optimal control problem are formulated in [41] (see Lemma 2 in Section 2 below).
The proof of Theorem 2 is based on the proof that the conditions of the general criteria are satisfied.
As before, the L∞ bound and the W 1,1

2 energy estimation for the solution to the discrete Stefan
problem play a significant role in this context.

2 Preliminary Results

Lemma 1. Given any [g]n ∈ G n, and any h, τ , a discrete state vector exists uniquely.

Proof. First we prove uniqueness. Suppose v and ṽ both are discrete state vectors for a given [g]n.
Due to (a) from the discrete state vector definition, we have that v(0) = ṽ(0). For a fixed k ≥ 1,
suppose that v(k− 1) = ṽ(k− 1). Because (28) is satisfied for both v and ṽ, subtract the identities
for η = v(k)− ṽ(k) to get:

m−1∑
i=0

[(
bn(vi(k))t̄ − bn(ṽi(k))t̄

)(
vi(k)− ṽi(k)

)
+
(
vix(k)− ṽix(k)

)2]
= 0.

However,

bn(vi(k))t̄ − bn(ṽi(k))t̄ =
bn(vi(k))− bn(vi(k − 1))

τ
− bn(ṽi(k))− bn(ṽi(k − 1))

τ

=
bn(vi(k))− bn(ṽi(k))

τ
,
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so that the previous summation identity becomes:

m−1∑
i=0

[1

τ

(
bn(vi(k))− bn(ṽi(k))

)(
vi(k)− ṽi(k)

)
+
(
vix(k)− ṽix(k)

)2]
= 0.

Since bn(v) is monotonically increasing, the whole summand is non-negative. Therefore, it is equal
to 0, which implies that vi(k) = ṽi(k), ∀i = 0,m. Hence, by induction, v = ṽ.

Now we seek to prove existence. Again we’ll rely on induction. Construct v(0) as given in (a)
of the Discrete State Vector Definition. Note that ‖v(0)‖ := max

i
|vi(0)| = max

i
|Φi| ≤ ‖Φ‖L∞[0,`].

Now fix k ≥ 1, and assume that v(k − 1) has been constructed successfully so that (28) is satisfied
for all K < k. Moreover, assume that ‖v(k − 1)‖ < +∞. Notice that the summation identity (28)
is equivalent to solving the following system of non-linear equations:

(
v0(k) + h2

τ bn(v0(k))
)
− v1(k) = h2

τ bn(v0(k − 1)) + h2f0k − hgnk

−vi−1(k) +
(

2vi(k) + h2

τ bn(vi(k))
)
− vi+1(k) = h2

τ bn(vi(k − 1)) + h2fik, i = 1,m− 1

−vm−1(k) + vm(k) = hpk

.

(36)
We will construct v(k) by the method of successive approximations. It is critical to remember that
h, τ will be fixed here. Choose v0 = v(k − 1). Having obtained vN ,we search vN+1 as a solution of
the following system:

(
vN+1

0 (k) + h2

τ bn(vN+1
0 (k))

)
− vN1 (k) = h2

τ bn(v0(k − 1)) + h2f0k − hgnk

−vNi−1(k) + 2vN+1
i (k) + h2

τ bn(vN+1
i (k))− vNi+1(k) = h2

τ bn(vi(k − 1)) + h2fik, i = 1,m− 1

−vN+1
m−1(k) + vN+1

m (k) = hpk

.

(37)
We now proceed to prove that the sequence {vN} converges to the unique solution of (36). Substract
(37) for N and N − 1 to get

vN+1
0 (k)− vN0 (k) + h2

τ

[
bn(vN+1

0 (k))− bn(vN0 (k))
]

= vN1 (k)− vN−1
1 (k)

2(vN+1
i (k)− vNi (k)) + h2

τ

[
bn(vN+1

i (k))− bn(vNi (k))
]

= vNi+1(k)− vN−1
i+1 (k) + vNi−1(k)− vN−1

i−1 (k)

vN+1
m (k)− vNm(k) = vN+1

m−1(k)− vNm−1(k)

which is transformed as

(
1 + h2

τ ζ
0
n,N

)
(vN+1

0 (k)− vN0 (k)) = vN1 (k)− vN−1
1 (k)(

2 + h2

τ ζ
i
n,N

)
(vN+1
i (k)− vNi (k)) = (vNi+1(k)− vN−1

i+1 (k)) + (vNi−1(k)− vN−1
i−1 (k))

vN+1
m (k)− vNm(k) = vN+1

m−1(k)− vNm−1(k)

where

ζin,N :=

∫ 1

0

b′n(θvN+1
i (k) + (1− θ)vNi (k))dθ, i = 0,m− 1.

9



Due to (34), we have ζin,N ≥ b̄, i = 0,m− 1. Hence we have

vN+1
0 (k)− vN0 (k) =

vN1 (k)−vN−1
1 (k)

1+h2

τ ζ
0
n,N

vN+1
i (k)− vNi (k) =

vNi+1(k)−vN−1
i+1 (k)+vNi−1(k)−vN−1

i−1 (k)

2+h2

τ ζ
i
n,N

, i = 1,m− 1

vN+1
m (k)− vNm(k) = vN+1

m−1(k)− vNm−1(k)

. (38)

Let AN := max
0≤i≤m

∣∣vN+1
i (k)− vNi (k)

∣∣, δ =
(

1 + h2

2τ
b̄
2

)−1

∈ (0, 1). From (38) it easily follows

AN ≤ δAN−1 ≤ · · · ≤ A0δ
N . (39)

Now it is possible to prove that there exist finite limits

vi(k) = lim
N→+∞

vNi (k), i = 0, 1, . . . ,m. (40)

Indeed, from (39) it follows that for arbitrary i = 0, 1, . . . ,m, we have

−A0δ
N ≤ vN+1

i (k)− vNi (k) ≤ A0δ
N . (41)

By summation we have

vNi (k)−A0

+∞∑
`=N

δ` ≤ vNi (K)−A0

M−1∑
`=N

δ` ≤ vMi (k) ≤ vNi (k) +A0

M−1∑
`=N

δ` ≤ vNi +A0

+∞∑
`=N

δ` (42)

for all M > N ≥ 0. In particular, by choosing N = 0 it follows that the sequence {vN} is bounded
in Rm+1. Let us now assume

lim inf
N→+∞

vNi (k) = lim
p→+∞

v
Np
i (k), Np < Np+1, p = 0, 1, . . . ; lim

p→+∞
Np = +∞.

By choosing in (42) N = Np we have

vMi (k) ≤ vNpi (k) +A0

+∞∑
`=Np

δ`, M > Np

which implies that

lim sup
M→∞

vMi (k) ≤ vNpi (k) +A0

+∞∑
`=Np

δ`, p = 1, 2, . . .

Passing to limit as p→ +∞ we have

lim sup
M→∞

vMi (k) ≤ lim
p→+∞

v
Np
i (k) = lim inf

N→+∞
vNi (k).

Since opposite inequality is obvious, it follows that finite limits (40) exist. �
Given the existence and uniqueness of the discrete state vector for fixed n, we can uniquely

define for each k = 1, . . . , n the vector ζk whose m components ζik are given by

ζik =

∫ 1

0

b′n(θvi(k) + (1− θ)vi(k − 1))dθ, i = 0,m− 1. (43)

Lemma 2. [41] The sequence of discrete optimal control problems In approximates the continuous
optimal control problem I if and only if the following conditions are satisfied:

10



(1) for arbitrary sufficiently small ε > 0 there exists M1 = M1(ε) such that QM (g) ∈ GM
R for all

g ∈ GR−ε and M ≥M1; and for any fixed ε > 0 and for all g ∈ GR−ε the following inequality
is satisfied:

lim sup
M→∞

(
IM (QM (g))−J (g)

)
≤ 0. (44)

(2) for arbitrary sufficiently small ε > 0 there exists M2 = M2(ε) such that PM ([g]M ) ∈ GR+ε

for all [g]M ∈ GM
R and M ≥ M2; and for all [g]M ∈ GM

R , M ≥ 1 the following inequality is
satisfied:

lim sup
M→∞

(
J (PM ([g]M ))−IM ([g]M )

)
≤ 0. (45)

(3) the following inequalities are satisfied:

lim sup
ε→0

J∗(ε) ≥J∗, lim inf
ε→0

J∗(−ε) ≤J∗, (46)

where J∗(±ε) = inf
GR±ε

J (g).

Lemma 3. The mappings Pn,Qn satisfy the conditions of Lemma 2.

Proof. Let g ∈ GR, [g]n = Qn(g). We observe that

n∑
k=1

τg2
k =

n∑
k=1

τ

1

τ

tk∫
tk−1

g(t) dt


2

≤
T∫

0

g2(t) dt = ‖g‖2L2[0,T ], (47)

n∑
k=1

τg2
kt̄ =

n∑
k=1

1

τ

1

τ

tk∫
tk−1

g(t) dt− 1

τ

tk−1∫
tk−2

g(t) dt


2

≤
n∑
k=1

1

τ3

 tk∫
tk−1

t∫
t−τ

g′(ξ) dξdt


2

≤
n∑
k=1

1

τ

tk∫
tk−1

t∫
t−τ

|g′(ξ)|2 dξdt ≤ ‖g′‖2L2[0,T ]. (48)

From (47),(48), we get
‖[g]n‖2w1

2
≤ R2. (49)

Now let [g]n ∈ G n
R be given and write gn = Pn([g]n). We see that

T∫
0

∣∣∣∣dgn(t)

dt

∣∣∣∣2 dt =

n∑
k=1

tk∫
tk−1

g2
kt̄ dt =

n∑
k=1

τg2
kt̄, (50)

T∫
0

|gn(t)|2 dt =

n∑
k=1

tk∫
tk−1

(
gk−1 + gkt̄(t− tk−1)

)2

dt

=

n∑
k=1

τg2
k−1 +

n∑
k=1

τ2gk−1gkt̄ +
1

3

n∑
k=1

τ3g2
kt̄ =

n∑
k=1

τgkgk−1 +
1

3

n∑
k=1

τ3g2
kt̄. (51)

Actually, since [g]n ∈ G n
R , it is the case that

n∑
k=1

τg2
kt̄ ≤ C

2 where C is a constant independent of n.

This implies that
|gk − gk−1| ≤ C

√
τ , k = 1, . . . , n. (52)
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Using (52) in (51), we can write

T∫
0

|gn(t)|2 dt ≤
n∑
k=1

τg2
k + C

√
τ

n∑
k=1

τ |gk|+
1

3
τ2

n∑
k=1

τg2
kt̄

≤
n∑
k=1

τg2
k + C

√
T
√
τ

√√√√ n∑
k=1

τg2
k +

1

3
τ2

n∑
k=1

τg2
kt̄. (53)

Combining (50) and (53) we have that

‖gn‖2W 1
2 [0,T ] ≤ ‖[g]n‖2w1

2
+ C
√
T
√
τ

√√√√ n∑
k=1

τg2
k +

1

3
τ2

n∑
k=1

τg2
kt̄ ≤ R

2 +O(
√
τ). (54)

Owing to (54), we can choose n so large that τ will be small enough to guarantee that the right-hand
side will be bounded by (R+ ε)2. Hence gn ∈ GR+ε for all n large enough. �

Lemma 4. There is at most one solution to the Stefan problem in the sense of (20).

Proof. That a solution to the Stefan problem in the sense of (20) is unique follows by an argument
analogous to that presented in Section 9 of Chapter V of [28]. Indeed, we will prove uniqueness in
a wider class of solutions than that given in (20). Suppose that v ∈ L∞(D) only, not necessarily in
the Sobolev space W 1,1

2 (D), and that for any two functions B,B0 of type B it satisfies the identity

T∫
0

`∫
0

[
B(x, t, v)ψt + vψxx + fψ

]
dxdt+

`∫
0

B0(x, 0,Φ(x))ψ(x, 0) dx+

T∫
0

p(t)ψ(`, t) dt−
T∫

0

g(t)ψ(0, t) dt = 0, ∀ψ ∈W 2,1
2 (D), ψ(x, T ) = 0, ψx(0, t) = ψx(`, t) = 0.

(55)

The class of functions satisfying the above definition contains the class of solutions given in (20).
Suppose v and ṽ are two solutions in the sense of (55). Due to our assumption on Φ, subtracting
(55) with ṽ from that with v guarantees that the second integral in (55) vanishes, and we obtain:

T∫
0

`∫
0

(
B(x, t, v)− B̃(x, t, ṽ)

)
(ψt + a(x, t)ψxx) dx dt = 0

where a(x, t) = v−ṽ
B(x,t,v)−B̃(x,t,ṽ)

. For (x, t) ∈ D such that v(x, t) = ṽ(x, t), it is the case that

a(x, t) = 0. Otherwise, since B and B̃ are strictly increasing on v a.e. (x, t) ∈ D, it follows
that a is non-negative for a.e. (x, t). Moreover, the a.e. positiveness of b′(v(x, t)) implies that
b̄ = essinf b′ > 0 and that b is strictly increasing, and so for almost every (x, t) (assume that
ṽ(x, t) < v(x, t) for the sake of notational simplicity),

|a(x, t)| =

∣∣∣∣∣∣∣∣∣∣
v − ṽ

v(x,t)∫
ṽ(x,t)

b′(w) dw +
∑

i:vi∈(ṽ(x,t),v(x,t))

(b(vi)+ − b(vi)−)

∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
v − ṽ
v∫̃
v

b̄ dv

∣∣∣∣∣∣∣∣ =
1

b̄
,

so that a is essentially bounded, and esssup a(x, t) = a1 < +∞. Fix ε > 0, and take as ψ(x, t) the
solution of the Neumann problem

ψt + (a(x, t) + ε)ψxx = F (x, t), ψx(0, t) = ψx(`, t) = 0, ψ(x, T ) = 0, (56)
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where the ε is added to ensure the uniform parabolicity of the conjugate diffusion coefficient, and
F is an arbitrary smooth bounded function in D. Note that (56) is the conjugate heat equation.
There exists a unique solution ψε ∈W 2,1

2 (D) of the problem (56)([28]). Our goal here is to use the
arbitrariness of F to obtain that B − B̃ = 0 a.e.; to this end, notice that through the use of (56),
we can write

T∫
0

`∫
0

(
B(x, t, v)− B̃(x, t, ṽ)

)
(F − εψεxx) dx dt = 0. (57)

Thus our goal will be attained if we have an energy estimate on ψxx for solutions of (56). In
the following, we prove a sufficient estimation for the analogous Heat Equation (the result follows
immediately for the conjugate one by a simple change of variables). Let aε(x, t) = a(x, t) + ε, and
for simplicity we don’t write the superscript. Multiply the non-conjugate version of (56) by ψxx
and integrate it over the rectangle Dt := (0, `)× (0, t) to get

−
t∫

0

`∫
0

(ψτ − aψxx)ψxx dx dτ = −
t∫

0

`∫
0

Fψxx dx dτ =

t∫
0

`∫
0

Fxψx dx dτ −
t∫

0

Fψx

∣∣∣`
0
dτ,

t∫
0

`∫
0

(
(ψτ )xψx + aψ2

xx

)
dx dτ −

t∫
0

ψτψx

∣∣∣`
0
dτ =

t∫
0

`∫
0

(
(ψx)τψx + aψ2

xx

)
dx dτ =

t∫
0

`∫
0

Fxψx dx dτ,

1

2

`∫
0

ψ2
x(x, t) dx− 1

2

`∫
0

ψ2
x(x, 0) dx+

t∫
0

`∫
0

aψ2
xx dx dτ ≤

1

2

t∫
0

`∫
0

(ψ2
x + F 2

x ) dx dτ,

`∫
0

ψ2
x(x, t) dx+ 2

t∫
0

`∫
0

aψ2
xx dx dτ ≤

t∫
0

`∫
0

ψ2
x dx dτ +

t∫
0

`∫
0

F 2
x dx dτ. (58)

Letting now y(t) =
t∫

0

∫̀
0

ψ2
x dx dτ , it is clear that y′(t) =

∫̀
0

ψ2
x(x, t) dx, thus that (58) implies

y′(t) ≤ y(t) +

t∫
0

`∫
0

F 2
x dx dτ.

By Gronwall’s Inequality now (more precisely Lemma 5.5 from [28]), we deduce from the above

differential inequality that y(t) ≤
[
et − 1

] t∫
0

∫̀
0

F 2
x dx dτ , or in other words

t∫
0

`∫
0

ψ2
x(x, τ) dx dτ ≤

[
et − 1

] t∫
0

`∫
0

F 2
x dx dτ, ∀t ∈ (0, T ],

so that by (58),

`∫
0

ψ2
x(x, t) dx+ 2

t∫
0

`∫
0

aψ2
xx dx dτ ≤ et

t∫
0

`∫
0

F 2
x dx dτ, ∀t ∈ (0, T ].

The first of the above inequalities implies that ess sup
0≤t≤T

∫̀
0

ψ2
x(x, t) dx ≤ eT

T∫
0

∫̀
0

F 2
x dx dτ . Now, since
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ψt = aψxx + F , we have

‖ψt‖2L2(Dt)
= ‖aψxx + F‖2L2(Dt)

≤ (‖aψxx‖L2(Dt) + ‖F‖L2(Dt))
2 ≤ 2‖aψxx‖2L2(Dt)

+ 2‖F‖2L2(Dt)

≤ 2‖F‖2L2(Dt)
+ 2a0

t∫
0

`∫
0

aψ2
xx dx dτ ≤ 2

(
‖F‖2L2(Dt)

+ a0e
t‖Fx‖2L2(Dt)

)
.

These results combined provide the energy estimate we need:

T∫
0

`∫
0

(
ψ2
t + a(x, t)ψ2

xx

)
dx dt+ ess sup

0≤t≤T
‖ψx‖2L2(0,`) ≤ 2

(
‖F‖2L2(D) + a0e

T ‖Fx‖2L2(D)

)
. (59)

Having (59), we can now observe that∣∣∣∣∣∣
T∫

0

`∫
0

(B − B̃)εψεxx dx dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
T∫

0

`∫
0

(B − B̃)
ε

(a+ ε)
1
2

(a+ ε)
1
2ψεxx dx dt

∣∣∣∣∣∣
≤ 2esssup b(v)

 T∫
0

`∫
0

ε2

(a+ ε)
dx dt


1
2
 T∫

0

`∫
0

(a+ ε)(ψεxx)2 dx dt


1
2

≤ C
√
εesssup b(v)

 T∫
0

`∫
0

ε

(a+ ε)
dx dt


1
2

‖F‖W 1,0
2 (D) → 0 as ε→ 0

where C is a constant depending only on T and a0. Recall that ε ≤ a+ε, and so the integral on the
right-hand side of the above inequality is bounded above by the area of the rectangle D. Therefore,
(57) now implies

T∫
0

`∫
0

(
B(x, t, v(x, t))− B̃(x, t, ṽ(x, t))

)
F dx dt = 0.

Owing to the arbitrariness of F , the above equality gives that B(x, t, v(x, t)) = B̃(x, t, ṽ(x, t))
a.e.(x, t) ∈ D, implying b(v(x, t)) = b(ṽ(x, t)), a.e. (x, t) s.t. v(x, t) 6= vj , j = 1, . . . ,m. Since b is
strictly increasing, we therefore have v(x, t) = ṽ(x, t) a.e. (x, t), so v and ṽ coincide as solutions
in the sense of (55), and thus we have proven uniqueness in this large class of solutions. �

Corollary 1. If a weak solution exists, all of the sets Cj , j = 1, J have 2-dimensional measure 0.

Proof. The proof of uniqueness gives us that B1(x, t, v(x, t)) = B2(x, t, v(x, t)) a.e. on D, for any
two functions B1, B2 of type B. The functions of type B generally differ on the sets Cj , so if one
of them has positive measure, we arrive at a contradiction to Lemma 4. �

3 Proofs of the Main Results

3.1 L∞-estimation for the Discrete Stefan Problem

Theorem 3. Suppose that p ∈ L∞(0, T ),Φ ∈ L∞(0, `), f ∈ L∞(D). For [g]n ∈ G n
R and n,m large

enough, the discrete state vector [v([g]n)]n satisfies the following estimate:

‖[v]n‖`∞ := max
0≤k≤n

(
max

0≤i≤m
|vi(k)|

)
≤ C∞

(
‖f‖L∞(D)+‖p‖L∞(0,T )+‖gn‖W 1

2 (0,T )+‖Φ‖L∞(0,`)

)
(60)

where C∞ is a constant independent of n and m.
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Proof. Fix n arbitrarily large. Note max |vi(0)| ≤ ‖Φ‖L∞(0,`). Consider a positive function
γ(x) ∈ C2[0, `] satisfying

γ(0) =
1

2
, γ(`) =

1

2
, γ′(0) = 1, γ′(`) = −1,

1

4
≤ γ(x) ≤ 1, x ∈ [0, `]. (61)

Define γi = γ(xi), i = 0,m, and denote as xi the value in [xi, xi+1] that satisfies (by MVT)
γ(xi+1)− γ(xi) = γ′(xi)h. Transform the discrete state vector as

wi(k) = vi(k)γi, i = 0,m, k = 0, n.

System (36) can be rewritten as:
hζ0
kv0t̄(k)− v0x(k) = hf0k − gnk

ζikvit̄(k)− vixx̄(k) = fik, i = 1, . . . ,m− 1

vm−1,x(k) = pk

. (62)

We note

vi(k) =
1

γi
wi(k), vit̄(k) =

1

γi
wit̄(k),

vix(k) =
1

γi+1
wix(k) +

(
1

γi

)
x

wi(k) =
1

γi
wix(k) +

(
1

γi

)
x

wi+1(k),

vixx̄(k) =
1

γi−1
wixx̄(k) +

[(
1

γi

)
x̄

+

(
1

γi

)
x

]
wix(k) +

(
1

γi

)
xx̄

wi(k)

=
1

γi+1
wixx̄(k) +

[(
1

γi

)
x̄

+

(
1

γi

)
x

]
wix̄(k) +

(
1

γi

)
xx̄

wi(k),

(
1

γi

)
x

= − 1

γiγi+1
γix,

(
1

γi

)
xx̄

= − 1

γiγi+1
γixx̄ +

γix + γix̄
γi−1γiγi+1

γix̄.

Thus wi(0) = γiΦi, i = 0,m, and for k = 1, n,

h
γ0
ζ0
kw0t̄(k)− 1

γ1
w0x(k)−

(
1
γ0

)
x
w0(k) = hf0k − gnk

1
γi
ζikwit̄(k)− 1

γi−1
wixx̄(k)−

[(
1
γi

)
x̄

+
(

1
γi

)
x

]
wix(k)−

(
1
γi

)
xx̄
wi(k) = fik, i = 1,m− 1

1
γm−1

wm−1,x(k) +
(

1
γm−1

)
x
wm(k) = pk

. (63)

Furthermore, transform wi(k) as:

ui(k) = wi(k)e−λtk , i = 0,m, k = 0, n (64)

where

λ =
65

b̄

(
‖γ′′‖C[0,`] + ‖γ′‖2C[0,`]

)
, (65)

and if tk ∈ [tk−1, tk] satisfies through the MVT that eλtk −eλtk−1 = λeλt
k

(tk− tk−1) = λeλt
k

τ , then

wit̄(k) = eλtk−1uit̄(k) + λeλt
k

ui(k).
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So ui(0) = wi(0) = γiΦi, i = 0,m, and for k = 1, n, the vector u(k) satisfies the system

h
γ0
ζ0
ke
−λτu0t̄(k)− 1

γ1
u0x(k) +

[
λh
γ0
ζ0
ke
−λ(tk−tk) −

(
1
γ0

)
x

]
u0(k) = e−λtk

(
hf0k − gnk

)
1
γi
ζike
−λτuit̄(k)− 1

γi−1
uixx̄(k)−

[(
1
γi

)
x̄

+
(

1
γi

)
x

]
uix(k)

+
[
λ
γi
ζike
−λ(tk−tk) −

(
1
γi

)
xx̄

]
ui(k) = fike

−λtk , i = 1,m− 1

1
γm−1

um−1,x(k) +
(

1
γm−1

)
x
um(k) = e−λtkpk

. (66)

Now fix k1 ≤ n, and define the following sets of indexes for convenience:

Mk1 = {(i, k)|i = 0, . . . ,m, k = 0, . . . , k1},
N = {(i, k)|i = 1, . . . ,m− 1, k = 1, . . . , k1},

T0 = {(i, k)|i = 0, k = 1, . . . , k1},
Tm = {(i, k)|i = m, k = 1, . . . , k1},
X0 = {(i, k)|i = 0, . . . ,m, k = 0}.

Unless confusion may arise, we omit the subscript to Mk1 . It is clear that

M = N ∪T0 ∪Tm ∪X0.

If ui(k) ≤ 0 in M , then max
M

ui(k) ≤ 0. Suppose that there exists (i, k) such that ui(k) > 0. Then

max
M

ui(k) > 0. Let (i∗, k∗) ∈M be such that ui∗(k
∗) = max

M
ui(k).

If (i∗, k∗) ∈X0, then ui∗(k
∗) = max

i
γiΦi ≤ max

i
Φi ≤ max

[0,`]
Φ(x).

If (i∗, k∗) ∈ Tm, then i∗ = m, um−1,x(k∗) ≥ 0 and we can choose h small enough that γm−1,x =
γ′(xm−1) ∈ (− 3

2 ,−
1
2 ) so that

− γm−1,x

γmγm−1
um(k∗) ≤ e−λtk∗pk∗ =⇒ um(k∗) ≤ γmγm−1

−γ′(xm−1)
e−λtk∗pk∗ ≤ e−λtk∗pk∗ .

If (i∗, k∗) ∈ T0, then i∗ = 0, u0t̄(k
∗) ≥ 0, u0x(k∗) ≤ 0. Notice that

(
1
γ0

)
x

= − 1
γ0γ1

γ0x. Note

γ0x = γ′(x0), so for h small enough, we can ascertain γ0x = γ′(x0) ∈ ( 1
2 ,

3
2 ). It follows

γ′(x0)

γ0γ1
u0(k∗) ≤ e−λtk∗

(
hf0k∗ − gnk∗

)
=⇒ u0(k∗) ≤ e−λtk∗

(
hf0k∗ − gnk∗

)
.

If (i∗, k∗) ∈ N , then ui∗ t̄(k
∗) ≥ 0, ui∗xx̄(k∗) = 1

h2

(
ui∗+1(k∗)− 2ui∗(k

∗) + ui∗−1(k∗)
)
≤ 0. For

(i, k) ∈ N , the corresponding equation in (66) is equivalent to

1

γi
ζike
−λτuit̄(k)− 1

γi+1
uixx̄(k)−

[(
1

γi

)
x̄

+

(
1

γi

)
x

]
uix̄(k)

+

[
λ

γi
ζike
−λ(tk−tk) −

(
1

γi

)
xx̄

]
ui(k) = fike

−λtk . (67)

Define the sets

N+ =

{
(i, k) ∈ N

∣∣∣ ( 1

γi

)
x̄

+

(
1

γi

)
x

≥ 0

}
, N− =

{
(i, k) ∈ N

∣∣∣ ( 1

γi

)
x̄

+

(
1

γi

)
x

< 0

}
.

And it’s clear N = N+ ∪N−. Suppose (i∗, k∗) ∈ N+. Then owing to (66) and ui∗x(k∗) ≤ 0, we
can write [

λ

γi∗
ζi
∗

k∗e
−λ(tk∗−tk

∗
) −

(
1

γi∗

)
xx̄

]
ui∗(k

∗) ≤ fi∗k∗e−λtk∗ . (68)
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If instead (i∗, k∗) ∈ N−, then we can use (67) and the fact that ui∗x̄(k∗) ≥ 0 to achieve again

(68). Therefore, (68) is achieved in any case. We can choose τ so small that e−λ(tk−tk) > 1
2 , ∀k.

Observe that

1

ζi
∗
k∗
eλ(tk∗−tk

∗
)

[
− 1

γi∗+1
γi∗xx̄ +

γi∗x + γi∗x̄
γi∗−1γi∗+1

γi∗x̄

]
≤ 2

b̄

[
4(2‖γ′′‖C[0,`]) + 16(2‖γ′‖2C[0,`])

]
≤ 64

b̄

(
‖γ′′‖C[0,`] + ‖γ′‖2C[0,`]

)
.

Then by (65), it is the case that the coefficient of ui∗(k
∗) is positive independently of i∗, k∗. There-

fore,
ui∗(k

∗) ≤ Cγfi∗k∗e−λtk∗

where Cγ is a constant depending only on γ and b̄.
We can put together the obtained estimations to deduce that for (i, k) ∈Mk1 ,

ui(k) ≤ max
M

ui(k) ≤ max
{

0, ‖Φ‖C[0,`], ‖p‖C[0,T ], ‖gn‖C[0,T ] + ‖f‖L∞(D), Cγ‖f‖L∞(D)

}
.

But because ui(k) = γie
−λtkvi(k), we have the following uniform upper bound for the discrete state

vector:

vi(k) ≤ 4eλT max
{

0, ‖Φ‖C[0,`], ‖p‖C[0,T ], ‖gn‖C[0,T ]+‖f‖L∞(D), Cγ‖f‖L∞(D)

}
, (i, k) ∈Mk1 .

In a fully analogous manner, we arrive at a uniform lower bound for the discrete state vector: For
(i, k) ∈Mk1 ,

vi(k) ≥ 4eλT min
{

0, −‖Φ‖C[0,`], −‖p‖C[0,T ], −‖gn‖C[0,T ] − ‖f‖L∞(D), −Cγ‖f‖L∞(D)

}
.

Combining the uniform upper and lower bounds imply (60) up to k1. But k1 was arbitrary in
1, . . . , n. Theorem is proved. �

3.2 W 1,1
2 - energy estimation for the Discrete Stefan Problem

Theorem 4. Suppose that p ∈ W 1
2 (0, T ),Φ ∈ W 1

2 (0, `), f ∈ L∞(D). For [g]n ∈ G n
R and n,m large

enough, the discrete state vector [v([g]n)]n satisfies the following estimate:

‖[v]n‖2E :=

n∑
k=1

τ

m−1∑
i=0

hv2
it̄(k) + max

1≤k≤n

(
m−1∑
i=0

hv2
ix(k)

)
+

n∑
k=1

τ2
m−1∑
i=0

hv2
ixt̄(k) (69)

≤ C̃∞

(
‖Φ‖2W 1

2 (0,`) + ‖f‖2L∞(D) + ‖p‖2W 1
2 (0,T ) + ‖gn‖2W 1

2 (0,T )

)
where C̃∞ is a constant independent of n and m.

Proof. Consider n and m large enough that Theorem 3 is satisfied. In (28), choose η = 2τvt̄(k).
Using (43), write (bn(vi(k)))t̄ = ζikvit̄(k). Also, use the fact that

2τvix(k)(vit̄(k))x = 2τvix(k)(vix(k))t̄

= v2
ix(k) + v2

ix(k)− 2vix(k)vix(k − 1) + v2
ix(k − 1)− v2

ix(k − 1)

= v2
ix(k) +

(
vix(k)− vix(k − 1)

)2

− v2
ix(k − 1)

= v2
ix(k)− v2

ix(k − 1) + τ2v2
ixt̄(k).
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We thus have

2τ

m−1∑
i=0

hζikv
2
it̄(k) +

m−1∑
i=0

hv2
ix(k)−

m−1∑
i=0

hv2
ix(k − 1) + τ2

m−1∑
i=0

hv2
ixt̄(k)

= 2τ

m−1∑
i=0

hfikvit̄(k) + 2τpkvmt̄(k)− 2τgnk v0t̄(k). (70)

Estimate the right-hand side of (70) by applying Cauchy Inequality with ε > 0 in the first term.
Recall that b′n(v) ≥ b̄, ∀v. We have:

2τ

m−1∑
i=0

hζikv
2
it̄(k) +

m−1∑
i=0

hv2
ix(k)−

m−1∑
i=0

hv2
ix(k − 1) + τ2

m−1∑
i=0

hv2
ixt̄(k)

≤ b̄τ
m−1∑
i=0

hv2
it̄(k) +

1

b̄
τ

m−1∑
i=0

hf2
ik + 2τpkvmt̄(k)− 2τgnk v0t̄(k). (71)

We can absorb the first term on the right-hand side of (71) to the first term on the left-hand side.
Hence:

τ

m−1∑
i=0

hb̄v2
it̄(k) +

m−1∑
i=0

hv2
ix(k)−

m−1∑
i=0

hv2
ix(k − 1) + τ2

m−1∑
i=0

hv2
ixt̄(k)

≤ 1

b̄
τ

m−1∑
i=0

hf2
ik + 2τpkvmt̄(k)− 2τgnk v0t̄(k), ∀k = 1, . . . , n. (72)

Perform summation of (72) for k from 1 to q, 2 ≤ q ≤ n. The second and third terms on the
left-hand side telescope, and we obtain:

b̄

q∑
k=1

τ

m−1∑
i=0

hv2
it̄(k) +

m−1∑
i=0

hv2
ix(q) +

q∑
k=1

τ2
m−1∑
i=0

hv2
ixt̄(k)

≤
m−1∑
i=0

hv2
ix(0) +

1

b̄

q∑
k=1

τ

m−1∑
i=0

hf2
ik + 2

q∑
k=1

τpkvmt̄(k)− 2

q∑
k=1

τgnk v0t̄(k). (73)

Use the summation by parts technique on the p and g sums:

q∑
k=1

τpkvmt̄(k) =

q∑
k=1

pkvm(k)−
q∑

k=1

pkvm(k − 1) =

q∑
k=1

pkvm(k)−
q−1∑
k=0

pk+1vm(k)

= −
q−1∑
k=1

τpktvm(k) + pqvm(q)− p1vm(0),

q∑
k=1

τgnk v0t̄(k) = −
q−1∑
k=1

τgnktv0(k) + gnq v0(q)− gn1 v0(0). (74)

In view of (74) and borrowing (60) from Theorem 3, (73) yields (through Cauchy Inequality):

b̄

q∑
k=1

τ

m−1∑
i=0

hv2
it̄(k) +

m−1∑
i=0

hv2
ix(q) +

q∑
k=1

τ2
m−1∑
i=0

hv2
ixt̄(k) ≤

≤
m−1∑
i=0

hΦ2
ix +

1

b̄

q∑
k=1

τ

m−1∑
i=0

hf2
ik +

q−1∑
k=1

τp2
kt +

q−1∑
k=1

τ
(
gnkt
)2

+

+ 2tq−1‖[v]n‖2`∞ + 2
(
‖p‖L∞(0,T ) + ‖gn‖L∞(0,T )

)
‖[v]n‖`∞ . (75)
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Through the definition of the Steklov average, the Cauchy-Schwarz inequality and Fubini’s Theorem,
for h small enough we have the following results:

m−1∑
i=0

hΦ2
ix ≤ ‖Φ′‖2L2(0,`) + ‖Φ′‖2L2(`−h,`) ≤ ‖Φ‖

2
W 1

2 (0,`),

‖gn‖L∞(0,T ) ≤ ‖gn‖W 1
2 (0,T ) ≤ R,

q−1∑
k=1

τ
(
gnkt
)2

=

q∑
k=2

τ(gnkt̄)
2 ≤ ‖(gn)′‖2L2(0,T ) ≤ ‖g

n‖2W 1
2 (0,T ) ≤ R

2,

q−1∑
k=1

τp2
kt =

q∑
k=2

τp2
kt̄ ≤ ‖p

′‖2L2(0,T ) ≤ ‖p‖
2
W 1

2 (0,T ),

q∑
k=1

τ

m−1∑
i=0

hf2
ik ≤ ‖f‖2L2(D). (76)

Applying the results in (76) to (75),

q∑
k=1

τ

m−1∑
i=0

hv2
it̄(k) +

m−1∑
i=0

hv2
ix(q) +

q∑
k=1

τ2
m−1∑
i=0

hv2
ixt̄(k)

≤ C̃∞
(
‖Φ‖2W 1

2 (0,`) + ‖f‖2L∞(D) + ‖p‖2W 1
2 (0,T ) + ‖gn‖2W 1

2 (0,T )

)
(77)

where C̃∞ is a constant dependent on b̄, T, R, but independent of n,m and q. Since, q = 1, n is
arbitrary, from (77), (69) follows. �

Theorem 5. Let {[g]n} be a sequence in G n
R such that the sequence of interpolations {Pn([g]n)}

converges weakly to g ∈W 1
2 [0, T ]. Then the whole sequence of interpolations {v̂τ} of the associated

discrete state vectors converges weakly to v = v(x, t; g) ∈W 1,1
2 (D), with v the unique weak solution

to the Stefan Problem in the sense of (20).

Proof. By the definitions of the interpolations given in (30), and by using (36) we deduce that

‖v̂τ‖L∞(D) = esssup
(x,t)∈D

|v̂τ (x, t)| = max
0≤k≤n

(
max

0≤i≤m
|vi(k)|

)
= ‖[v]n‖`∞ , (78)

T∫
0

`∫
0

(v̂τ )2 dx dt ≤ T`‖v̂τ‖2L∞(D) = T`‖[v]n‖2`∞ ,

T∫
0

`∫
0

(v̂τx)2 dx dt ≤ 2

n−1∑
k=0

m−1∑
i=0

τhv2
ix(k) + 2

n∑
k=1

m−1∑
i=0

1

3
τ3hv2

ixt̄(k) ≤ 2(‖[v]n‖2E + ‖Φ‖2W 1
2 (0,`)),

T∫
0

`∫
0

(v̂τt )2 dx dt ≤ 2

n∑
k=1

m−1∑
i=0

τh
(
v2
it̄(k) +

1

3
h2v2

ixt̄(k)
)
≤ 2

3

n∑
k=1

[
m−1∑
i=0

(
7τhv2

it̄(k)
)

+ 2τhv2
mt̄(k)

]
,

n∑
k=1

τhv2
mt̄(k) ≤ 2

n∑
k=1

τh
(
v2
m−1,t̄(k) + h2p2

kt̄

)
≤ 2‖[v]n‖2E + 2h3‖p‖2W 1

2 (0,T ). (79)

Since [g]n ∈ G n, then ‖gn‖W 1
2 [0,T ] ≤ R + 1 for large enough n. From the energy estimates (60),

(69) and calculations (78), (79) it is therefore the case that {v̂τ} is uniformly bounded in the spaces
W 1,1

2 (D) and L∞(D). As such, we may choose a subsequence of {v̂τ} that converges weakly in
W 1,1

2 (D) to some function v ∈ W 1,1
2 (D) ∩ L∞(D), and thus strongly in L2(D), by virtue of which

we can choose a further subsequence that converges to v pointwise almost everywhere. It is our
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intent to show now that v satisfies the definition of a weak solution to the Stefan Problem. To do
this, first realize that the sequences {vτ}, {v̂τ} are equivalent in W 1,0

2 (D), and sequences {vτ}, {ṽ}
are equivalent in L2(D), as shown by the following calculations:

T∫
0

`∫
0

|vτ − v̂τ |2 dx dt =

n∑
k=1

m−1∑
i=0

tk∫
tk−1

xi+1∫
xi

(
v̂(x; k)− v̂(x; k − 1)− v̂t̄(x; k)(t− tk−1)

)2
dx dt

=

n∑
k=1

m−1∑
i=0

tk∫
tk−1

xi+1∫
xi

v̂2
t̄ (x; k)(tk − t)2 dx dt =

1

3
τ2

T∫
0

`∫
0

(v̂τt )2 dx dt −→ 0, (80)

T∫
0

`∫
0

|vτx − v̂τx|2 dx dt =

n∑
k=1

m−1∑
i=0

tk∫
tk−1

xi+1∫
xi

(
vix(k)− vix(k − 1)− vixt̄(k)(t− tk−1)

)2
dx dt

=

n∑
k=1

m−1∑
i=0

tk∫
tk−1

hv2
ixt̄(k)(tk − t)2 dt =

1

3
τ

(
n∑
k=1

τ2
m−1∑
i=0

hv2
ixt̄(k)

)
−→ 0, (81)

T∫
0

`∫
0

|vτ − ṽ|2 dx dt =

n∑
k=1

m−1∑
i=0

τ

xi+1∫
xi

∣∣∣vi(k) + vix(k)(x− xi)− vi(k)
∣∣∣2 dx

=

n∑
k=1

m−1∑
i=0

1

3
τh3v2

ix(k) −→ 0, (82)

as n,m go to +∞. Accordingly, vτ → v weakly in W 1,0
2 (D) and ṽ → v strongly in L2(D) and

pointwise a.e. on D along a subsequence. Fix arbitrary ψ ∈ W 1,1
2 (D) with ψ|t=T = 0. Actually,

due to density of C1(D̄) in W 1,1
2 (D), without loss of generality we can consider ψ ∈ C1(D) and

ψ|t=T = 0. Define ψi(k) = ψ(xi, tk), ∀i ∀k, and consider the interpolations:

ψτ (x, t) := ψi(k), ψτx(x, t) := ψix(k) ψτt (x, t) := ψit(k),

xi ≤ x < xi+1, tk−1 < t ≤ tk, i = 0,m, k = 0, n. (83)

It is readily checked that ψτ , ψτx, ψ
τ
t converge uniformly on D as n,m→∞ to the functions ψ,ψx, ψt

respectively. Fix n. For each k in (28) as satisfied by the discrete state vector [v([g]n)]n, choose
ηi = τψi(k), ∀i and sum all equalities (28) over k = 1, . . . , n. The resulting expression is as follows:

n∑
k=1

τ

m−1∑
i=0

h
[(
bn(vi(k))

)
t̄
ψi(k) + vix(k)ψix(k)− fikψi(k)

]
−

n∑
k=1

τpkψm(k) +

n∑
k=1

τgnkψ0(k). (84)

We transform the first term through summation by parts:

n∑
k=1

τ

m−1∑
i=0

h
(
bn(vi(k))

)
t̄
ψi(k) =

n∑
k=1

m−1∑
i=0

hbn(vi(k))ψi(k)−
n∑
k=1

m−1∑
i=0

hbn(vi(k − 1))ψi(k)

=

n∑
k=1

m−1∑
i=0

hbn(vi(k))ψi(k)−
n−1∑
k=0

m−1∑
i=0

hbn(vi(k))ψi(k + 1)

= −
n−1∑
k=1

τ

m−1∑
i=0

hbn(vi(k))ψit(k) +

m−1∑
i=0

hbn(vi(n))ψi(n)−
m−1∑
i=0

hbn(vi(0))ψi(1)

= −
T−τ∫
0

`∫
0

bn(ṽ(x, t))ψτt dx dt−
`∫

0

bn(Φ̃(x))ψτ (x, τ) dx.

20



Thus, (84) can be rewritten as:

T∫
0

`∫
0

[
− bn(ṽ)ψτt + vτxψ

τ
x − fψτ

]
dx dt−

`∫
0

bn(Φ̃)ψτ (x, τ) dx

−
T∫

0

p(t)ψτ (`, t) dt+

T∫
0

gn(t)ψτ (0, t) dt+

T∫
T−τ

`∫
0

bn(ṽ)ψτt dx dt = 0. (85)

Theorem 3 implies that if Vn :=
{
y ∈ R | ∃(x, t) ∈ D s.t. ṽ(x) = y} (i.e. Vn is the range of ṽ), then

the set V =
∞⋃
n=1

Vn is bounded in R, hence its closure V is compact in R. Because of the piecewise

continuity of b, it follows that b(ṽ(x, t)) ∈ L∞(D), and therefore ‖bn(ṽ)‖L∞(D) ≤ C. Since D is a set
of finite measure, ‖bn(ṽ)‖L2(D) ≤ C, so that a subsequence {bnl(ṽ(x, t))} can be constructed so that

it converges weakly in L2(D) to a function b̃(x, t) ∈ L2(D). Through a similar argument, we can
choose this subsequence so that bnl(Φ̃(x)) converges weakly in L2[0, `] to a function b̃0(x) ∈ L2[0, `].
Take a diagonal of these subsequences as the whole sequence. We see that

T∫
T−τ

`∫
0

bn(ṽ)ψτt dx dt ≤

 T∫
T−τ

`∫
0

b2n(ṽ) dx dt


1
2
 T∫
T−τ

`∫
0

(ψτt )2 dx dt


1
2

≤ ‖b2n(ṽ)‖L2(D)‖ψτt ‖L2

(
[0,`]×[T−τ,T ]

) −→ 0 as n→∞. (86)

Now, due to (86), the uniform convergence of ψτ , ψτx, ψ
τ
t respectively to ψ, ψx, ψt and weak

convergence of bn(ṽ), vτx, bn(Φ̃), gn to b̃, vx, b̃0, g in the respective L2 spaces, then as n → ∞,
(85) implies

T∫
0

`∫
0

[
− b̃(x, t)ψt + vxψx − fψ

]
dx dt−

`∫
0

b̃0(x)ψ(x, 0) dx

−
T∫

0

p(t)ψ(`, t) dt+

T∫
0

g(t)ψ(0, t) dt = 0. (87)

It can be checked that both b̃ and b̃0 are functions of type B. If at the point (x, t),

ṽ(x, t)→ v(x, t) 6= vj ,

then we have

bn(ṽ(x, t)) =

ṽ(x,t)+ 1
n∫

ṽ(x,t)− 1
n

ω1/n(|ṽ(x, t)− u|)b(u) du −→ b(v(x, t)).

On the contrary, if at the point (x, t) we have

ṽ(x, t)→ v(x, t) = vj ,

then we have
b(vj)− ≤ lim inf

n→∞
bn(ṽ(x, t)) ≤ lim sup

n→∞
bn(ṽ(x, t)) ≤ b(vj)+.

Since the sequence {bn(ṽ)} converges to b̃(x, t) weakly in L2(D), by Mazur’s lemma there is a
sequence of convex combinations of elements of {bn(ṽ)} which converges to b̃(x, t) strongly in L2(D).
Therefore, there is a subsequence of convex combinations which converges to b̃(x, t) a.e. in D. It
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easily follows that b̃ = B(x, t, v(x, t)) is a function of type B. In a very similar way, it is seen that
b̃0 = B(x, 0,Φ(x)) is of type B. Hence, by definition, v is a weak solution to the Stefan Problem
in the sense of (20). From Lemma 4 then, v is the unique solution, which implies that v is the only
weak limit point of the sequence {v̂τ}. Therefore, the whole sequence {v̂τ} converges to v weakly
in W 1,1

2 (D). �

3.3 Existence of the Optimal Control

Consider a sequence {gl} ∈ GR such that J (gl) ↘ J∗. Since {gl} is uniformly bounded in
W 1

2 (0, T ), it is weakly precompact in GR. Therefore, there exists a subsequence {glk} which con-
verges weakly in W 1

2 (0, T ), say, to g ∈ W 1
2 (0, T ) ∈ GR. For ease of notation, take this subsequence

as the sequence {gl}.
Let vl = v(x, t; gl) and v = v(x, t; g) be solutions to the Stefan problem in the sense of (20) with

gl and g respectively. Then for fixed l, the sequence of vectors {[gl]n} given by [gl]n = Qn(gl) is such
that the interpolations gnl = Pn([gl]n) converge weakly in W 1

2 (0, T ) to gl ∈ W 1
2 (0, T ) as n → ∞.

Therefore, Theorem 5 applies, and so associated to [gl]n the interpolations v̂τl of the discrete state

vectors [v([gl]n)]n converge weakly in W 1,1
2 (D) to vl. As such,

‖vl‖W 1,1
2 (D) ≤ lim inf

n→∞
‖v̂τl ‖W 1,1

2 (D) ≤ C lim inf
n→∞

(
‖[vl]n‖`∞ + ‖[vl]n‖E

)
(88)

where C is independent of n,m and l. Thanks to {gl} ⊂ GR, it it is clear from (60) and (69) that
the right-hand side of (88) is uniformly bounded. Similarly, one can conclude that

‖vl‖L∞(D) ≤ lim inf
n→∞

‖[vl]n‖`∞ .

Accordingly, {vl} ∈ W 1,1
2 (D) ∩ L∞(D) is a weakly precompact sequence in W 1,1

2 (D), so that it
contains a subsequence {vlk} which converges weakly to a function ṽ ∈W 1,1

2 (D), and thus strongly
in L2(D). Due to this strong convergence in L2(D), a further subsequence of {vlk} can be extracted
which converges almost everywhere to ṽ on D. Then the uniform boundedness of this subsequence
in L∞(D) implies that ṽ ∈ L∞(D). Now, take this subsequence as the whole sequence. Each
of the vl satisfies (20) with gl and with an arbitrarily fixed function B of type B. Going to
infinity along the sequence, we have that we can replace gl with g and vl with ṽ in (20). Indeed,
B(x, t, vl(x, t))→ B(x, t, ṽ(x, t)) a.e. on D because of Corollary 1 and the fact that vl → ṽ a.e. on
D. Consequently, ṽ is a solution to the Stefan problem with g. But, due to uniqueness of such a
solution, it follows that v = ṽ in W 1,1

2 (D) ∩ L∞(D). Next, note:

lim
l→∞

∣∣∣J (g)−J (gl)
∣∣∣ = lim

l→∞

∣∣∣‖v(`, t)− Γ(t)‖2L2[0,T ] − ‖vl(`, t)− Γ(t)‖2L2[0,T ]

∣∣∣
= lim
l→∞

∣∣∣ < v − Γ, v − Γ >L2[0,T ] − < vl − Γ, vl − Γ >L2[0,T ]

∣∣∣
= lim
l→∞

∣∣∣‖v(`, t)− vl(`, t)‖2L2[0,T ] + 2 < v − vl, vl − Γ >L2[0,T ]

∣∣∣
= lim
l→∞

∣∣∣∣∣∣
T∫

0

|v(`, t)− vl(`, t)|2 dt+ 2

T∫
0

(
v(`, t)− vl(`, t)

)(
vl(`, t)− Γ(t)

)
dt

∣∣∣∣∣∣ .
(89)

By the weak convergence of the sequence {vl} to v in W 1,1
2 (D), it follows that we have strong

convergence in the space of traces. In particular, the integrals in (89) vanish as l → ∞. Hence
lim
l→∞

J (gl) = J (g). This limit is unique though, therefore it is the case that J (g) = J∗, so that

g ∈ G∗. �

3.4 Proof of the Convergence of Discrete Optimal Control Problem

The proof of Theorem 2 is split into three separate lemmas, as shown below.
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Lemma A. Let J∗(±ε) = inf
GR±ε

J (g), ε > 0. Then lim
ε→0

J∗(ε) = J∗ = lim
ε→0

J∗(−ε).

Proof. The proof of this lemma is very similar to the analogous lemma from [1]. If 0 < ε1 < ε2,
then

J∗(ε2) ≤J∗(ε1) ≤J∗ ≤J∗(−ε1) ≤J∗(−ε2)

Hence lim
ε→0

J∗(ε) ≤J∗ and lim
ε→0

J∗(−ε) ≥J∗. Choose gε ∈ GR+ε such that

lim
ε→0

(
J (gε)−J∗(ε)

)
= 0.

Since {gε} is weakly pre-compact in W 1
2 [0, T ], there exists a subsequence ε′ such that gε′ → g∗

weakly in W 1
2 [0, T ] as ε′ → 0. Since J is weakly continuous, J (gε′) → J (g∗) as ε → 0. Hence

J∗(ε′)→J (g∗) ≥J∗ as ε′ → 0. Thus lim
ε→0

J∗(ε) = J∗.

From the other side, by Theorem 1 we know there exists g∗ ∈ GR such that J (g∗) = J∗. If
g∗ ∈ GR\∂GR, then there exists ε∗ > 0 such that g∗ ∈ GR−ε, ∀ε < ε∗, and in this case J∗(−ε) =
J∗, ∀ε < ε∗. If g∗ ∈ ∂GR, then there exists {gε} with gε ∈ GR−ε such that gε → g∗ in W 1

2 [0, T ] as
ε → 0. The continuity of J gives us that lim

ε→0
J (gε) = J (g∗) = J∗. Since on the other hand,

J (gε) ≥J∗(−ε), it follows that lim
ε→0

J∗(−ε) = J∗. �

Lemma B. For all g ∈ GR, lim
n→∞

In(Qn(g)) = J (g).

Proof. Take g ∈ GR arbitrarily. If Q(g) = [g]n, and gn = Pn([g]n), then gn → g strongly in
W 1

2 (0, T ) as n→∞. Applying Theorem 5, we have that the interpolations v̂τ of the discrete state
vectors [v([g]n)]n converge to v = v(x, t; g) weakly in W 1,1

2 (D) as n → ∞, and thus the traces
v̂τ (`, ·) converge strongly in L2(0, T ) to trace v(`, ·). By calculations (80) and (81), the sequences
{vτ}, {v̂τ} are equivalent in W 1,0

2 (D), so that the vτ (`, ·) traces too converge to v(`, ·) strongly in
L2(0, T ). If we define

Γ̃(t) = Γk =
1

τ

tk∫
tk−1

Γ(t) dt, tk−1 < t ≤ tk, k = 1, n, (90)

then Γ̃→ Γ in L2(0, T ) as n→∞. Therefore,

|In(Qn(g))−J (g)| =

∣∣∣∣∣∣
n∑
k=1

τ(vm(k)− Γk)2 −
T∫

0

(v(`, t)− Γ(t))2 dt

∣∣∣∣∣∣
≤ ‖vτ (`, ·)− v(`, ·)‖2L2[0,T ] + ‖Γ̃− Γ‖2L2[0,T ]

+ 2

T∫
0

[
|vτ (`, t)− v(`, t)||v(`, t)− Γ̃(t)|+ |Γ(t)− Γ̃(t)||v(`, t)− Γ(t)|

]
dt

−→ 0 as n→∞,

which establishes the lemma. �
Lemma C. For an arbitrary sequence {[g]n} such that [g]n ∈ G n

R ,

lim
n→∞

(
J (Pn([g]n))−In([g]n)

)
= 0.

Proof. Let gn = Pn([g]n). This sequence is weakly precompact, so that a subsequence gnl

converges weakly to a function g in W 1
2 (0, T ). Take this subsequence as the whole sequence. Note

that
|J (gn)−In([g]n)| ≤ |J (gn)−J (g)|+ |J (g)−In([g]n)|. (91)

Since J is weakly continuous, |J (gn)−J (g)| −→ 0 as n→∞. It remains to show that the second
term on the right-hand side of (91) goes to 0 as n→∞. Actually, the proof of this fact follows in
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a manner very similar to the proof of Lemma B. From (91) it follows that lim
nl→∞

(
J (Pnl([g]nl))−

Inl([g]nl)
)

= 0. However, the subsequence chosen was arbitrary. Therefore, the same result

can be achieved for any subsequence {gnα} of {gn}. It is then the case that the whole sequence
J (Pn([g]n))−In([g]n) converges to 0 as n→∞. �
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