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RENORMALIZED ENERGIES FOR UNIT-VALUED HARMONIC MAPS
IN MULTIPLY CONNECTED DOMAINS

REMY RODIAC, PAUL UBILLUS

ABSTRACT. In this article we derive the expression of remormalized energies for unit-
valued harmonic maps defined on a smooth bounded domain in R? whose boundary
has several connected components. The notion of renormalized energies was introduced
by Bethuel-Brezis-Hélein in order to describe the position of limiting Ginzburg-Landau
vortices in simply connected domains. We show here, how a non-trivial topology of the
domain modifies the expression of the renormalized energies. We treat the case of Dirichlet
boundary conditions and Neumann boundary conditions as well.

1 INTRODUCTION

The motivation for introducing the notion of renormalized energy of unit-valued har-
monic maps comes from a topological obstruction. As observed by Bethuel-Brezis-Hélein
in their pioneering work [7], if G C R? is a smooth bounded domain and g € C*(9G,S"),
the space

Hgl(G,Sl) = {u e HY(G, C)itriogu =g, [u| =1 ae.}
can be empty. In order to explain this, we introduce the definition of the topological degree.

If I' is a smooth simple closed curve and if g € C*(I',S'), the topological degree of g is
defined by

1
deg(g,T') = %/Fg/\&g (1.1)

where 7 is the tangent vector to the curve, oriented anti-clockwise and the wedge product
A is defined by

1 B
a/\b:E((ib—ab):albg—agbl for a = a1 +iag, b =101 +iby € C.

It can be shown that the topological degree is an integer (see e.g. [27]). Furthermore the
degree can be extended to functions g in H %(F,Sl) by using formula (LI]), where the
product is understood in the sense of the H 5 H"3 duality. This remains integer-valued
as was observed in the appendix of [§], see also [I1], 9, 10]. In the rest of the paper,
unless stated otherwise, G is a smooth bounded domain which is multiply connected, i.e.,
71(G) # {0} where 7 (G) is the fundamental group of G. More precisely G = G \ UL @,
where n € N* and é,wl,l =1,...,n are simply connected smooth bounded domains. We
call Ty = G and T, = Owy, I =1,...,n. We fix a boundary data g on 0G, that we assume

to be C! for simplicity. Then, we recall
1
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Proposition 1.1. The space Hgl(G,Sl) is not empty if and only if Y, deg(g,I}) =
deg(g, T'o).-

If H gl(G,Sl) = () there is no unit-valued harmonic map with trace g, i.e., there is no
critical point of the Dirichlet energy

E(u) = %/qu‘z

in the space H ;(G, S'). We can then relax the problem of finding a unit-valued harmonic
map with trace g by creating small holes in the domain. More precisely we consider & € N*|
ai,...,ar € G, dy,...,d € Z such that

k n

> di+ > deg(g,T1) = deg(g, To)- (1.2)

i=1 =1

For p small enough so that the balls B,(a;) are disjoint and included in G, we set

Q, = G\ U, B,(a;), (1.3)
Egp ={u e H;(Qp,Sl);tr‘agu = g; deg(u,0B,(a;)) = d;}, (1.4)
1
P(fa: ) — Z 2
Wi, () = inf 5 [Vl (15)

We can then study the asymptotic behaviour of W§ ({a;},{d;}) as p — 0 and the conver-
gence of minimizers for W§ (we will prove in Proposition Bl that minimizers exist). When
G is simply connected Bethuel-Brezis-Hélein proved that

k
Wy({ai}, {di}) := lim <W;({a,-}, {di}) — = (Z d?) \105-?;/7\) < 400, (1.6)

p—0 =
and they gave an expression of Wy ({a;},{d;}) in terms of Green functions with Neumann
boundary condition, cf. Theorem 1.7 in [7]. The quantity Wy({a;},{d;}) is called the
renormalized energy of the configurations ({a;}, {d;}) (with Dirichlet boundary condition).
In [7] the authors also related this renormalized energy to another way of relaxing the
problem of finding unit-valued harmonic map with a given trace g. They considered the

Ginzburg-Landau energy

1 1
B) =5 [Vl o5 [ =) (1.7

defined in H, ; = {u € H'(G, C);trjpgu = g} and studied the asymptotic behaviour of
a family of minimizers (u.). of E. in H, ;. When G is star-shaped and deg(g,0G) =
d # 0, they proved that there exist d points aq,...,aq in G, a singular harmonic map
uy € C®(G\ {a1,...,aq},S") such that u, has degree 1 around each a;, with u., — u, in
CY(G\ {a1,...,aq}), up to a subsequence £, — 0 and with the a;’s which minimize the
renormalized energy W,({a;},{d; = 1}). This was extended to simply connected domains
in [34], [12]. Recently, in [25, 24], the authors obtained an analogous result where S
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is replaced by an arbitrary smooth compact Riemannian manifold N' and without any
assumption on the topology of G. However, in [25] [24], the renormalized energy is given by
an abstract formula similar to (L6]). One of the goals of this article is to derive an explicit
expression of this renormalized energy when A = S! and G is multiply connected.

Another motivation for studying renormalized energies in multiply connected domains
is to have a better understanding of the role of the topology in this problem. In recent
works [20, 19], Ignat and Jerrard studied a Ginzburg-Landau problem for tangent vector
fields defined on smooth closed Riemannian surfaces. In this context, another topological
obstruction to the existence of H' unit-valued vector fields occurs. This is due to the H'
version of the Poincaré-Hopf theorem, which states that when the genus of the surface is not
equal to 1 there is no continuous (nor H') vector field of unit norm on the surface. Ignat-
Jerrard introduced a renormalized energy and proved that this is the I'-limit at second order
of the Ginzburg-Landau functional they considered. They also showed that, compared to
the work [7], new terms appear in the renormalized energy when the genus of the surface
is not zero. These terms involve flux-integrals of a limiting singular harmonic map, they
depend on the position and of the degrees of the singular points and are constrained to
belong to a vorticity-dependent lattice. The topology of a surface is determined by its
genus and the number of the connected components of its boundary. Thus, in this article,
we are interested in the effect of the number of the connected components of the boundary
on the renormalized energy rather than the effect of the genus. We find that, in this case
too, new terms appear and they can also be computed as flux-integrals. As a side remark,
we point out that the Ginzburg-Landau energy is used in superconductivity, superfluidity
and nonlinear optics. In physics, and in particular in electromagnetic, it is known that the
topology of the domain has an effect on the existence of potentials and this can be at the
origin of a new phenomenon like, for example, the Ahoronov-Bohm effect [I].

We now introduce some definitions in order to state our main results. We call ®; the
solution to

ADy = 273°F did,, in G,
Py = gAO-g on dG, (1.8)
fan’O = 0,

and Ry the regular part of ®g given by

k
Ro(x) = o(x) — Y _ d;log|z — aj. (1.9)
=1

We define ¢;, I = 1,...,n to be the solutions to

Ap; = 0 in G,
o = 1 only, (1.10)
pr = 0 only,,, m#IL
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For g € C}(0G,S') and dy, ..., d), € Z verifying (L2 we introduce

Ty, := {v € HY(G,SY);deg(v,T}) = deg(g,T}), 1 =1,...,n,

k

deg(v,Iy) = deg(g, o) — Zdl} (1.11)
i=1

and we call Uy 4, a minimizer of 3 [, |[Vo|? for v € Zy 4, ie.,

1 1
—/ VU, 4,/ = min —/ Vo2 (1.12)
2 Iel ’ UEZg,di 2 G

We will obtain in the proof of Theorem [[.1] that such a minimizer exists and is unique up
to a phase.

Theorem 1.1. Let g € C1(0G,SY), ay,...,ax € G, dy,...,dy € Z satisfying (L2). There
exists a unique minimizer u, for the problem (LLH). There exist a subsequence p, — 0
and a map uy € WH4(G,SY) for every 1 < q < 2 such that, as p — +o0, Up, —> Ug N
Cr(G\A{a1,...,ar}) for all m € N. The map ug satisfies

~Auy = |VuolPuo in G\ {a1,...,ax},
{ u = g on 0G, (1.13)
and ug can be written as
k d;
T — a ;
= ) Uyaq e 1.14
=11 (G=ag) thae (1149
where 14 is a harmonic function in G and Uy q, satisfies (LI12). Furthermore,
k
Wg{ai}, {di}) == (Z d?) | log p| + Wy({ai}, {di}) + o(1), (1.15)
i=1
with
1 k
Wo({ai} {di}) = =7 Y _ did;log|a; — a;| + 3 / Do(g Adrg) — 7Y _ diRo(a;)
i#j 9G i=1
+ a0;P +—/ aV , (1.16
;/ﬂ l 075 . ; AR ( )

where aq = ay(g,{a;},{d;}) are real constants.
Besides, there exist 0 = 0,(g,{a;},{d;}) € [—m, ] such that oy = 0; + 27Z and the coeffi-
cients o are solutions to the linear system

Zam/ 8,,90;2/ ug Adyug  forl=1,... ,n. (1.17)
m=1 m Fl
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We are also interested in the renormalized energy with Neumann boundary conditions.
Indeed, although there is no topological obstruction related to the degree in this case and
the minimizers of the Ginzburg-Landau energy without any constraints on the boundary
are constants of unit modulus, one can be interested in the asymptotic behaviour of critical
points of the Ginzburg-Landau energy. Furthermore, the Neumann boundary conditions
are the natural conditions when we consider a Ginzburg-Landau energy with magnetic
field, see e.g. [31]. Let us first define this renormalized energy: for G a smooth bounded
domain, k € N* ay,...,ar € G, dy,...,d; € Z and p sufficiently small, we define

Enp = {u e H(Q,,S");deg(u,0B,(a;)) = d;i, i = 1,...,k} (1.18)
1

We({ai}, {d;}) .= inf = [ |Vul’. 1.19

Ko ()= 5 [ 19 (119)

The renormalized energy with Neumann boundary condition is defined as

k
Wy ({ai}, {di}) = ;i_% [Wﬁ/({ai}v {di}) — = <Z d?) ’108;/?’] :

i=1

When G is simply connected, this quantity was shown to be finite in [21] and an expression
in terms of Green functions with homogeneous Dirichlet boundary conditions was derived
in the same article. We will obtain a similar result when G is multiply connected. It was
shown in [32] that, when G is simply connected, critical points of the Ginzburg-Landau
equation with homogeneous Neumann boundary condition converge to critical points of the
renormalized energy (with Neumann boundary condition). For the renormalized energy
with magnetic field and with Neumann boundary conditions we refer to [33], [22], [30]. In
the case of a multiply connected domain, the renormalized energy was formally derived in
[13] as the limit when £ — 0 of the Ginzburg-Landau energy of a suitable approximation
of a solution to the Ginzburg-Landau equation with homogeneous Neumann boundary
conditions. We again introduce some definitions, we call G the solution to

N I )
AGy = 2m Y i1 dide; in G, (1.20)
Go = 0 on 0G,
and we call Ry the regular part of G‘o, ie.,
. . k
Ry(z) = Go(x) — Z d;log |z — a;]. (1.21)
i=1
We also define ¥5s the solution to
Ay = 0 in G,
L
Oy = =3, diiE4r v on G, (1.22)

Jen =0
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For dy,ds, ... ,d, € Z verifying o d; + Zle d; = dy, we define
k
;. {v e HY(G,SY);deg(v, 1)) = di, 1 = 1,...,m, deg(v,Tg) = do — Zdi} (1.23)

and we call U d.q; & minimizer of the Dirichlet energy in 75 ddy 1€

Corl
Ud~l7di = argmln{g/G |Vv|2;v € Idz,di}' (1.24)

Again, we will show, in the proof of Theorem [[.2] that such a minimizer exists and is
unique up to a phase.

Theorem 1.2. There exists a minimizer u, for the problem (LI9) and it is unique modulo
to a phase. There exist a subsequence p, — 0 and a map Uy € Wha(G,SY) for every
1 < q < 2 such that, as p — 400, U,, — tg in CL(G \ {a1,...,ar}) for allm € N. The
map Uy satisfies

—Aty = ’VﬁOPﬁO m G\{CLl,.--,Wg}, (1 25)
o Adyig = 0 on 0G, '
and we can write .
d;
A T — a; ;
o= H <|517 — Clz|> Udeg(ﬁo,Fl)7diel¢N (1.26)

1
where Y is defined in (L22) and Ugeg(ag,r,),a; i (L24). Furthermore,

Wi ({ai} Adi}) == ZdQ) [log pl| + Wx({ai}, {di}) + o(1), (1.27)

with

({az} {d} _—Fde log]a,—a]\—ﬂZdRo az _ﬂ'zzdu@l@l az

1#£] =1 i=1

- —ZZBzﬁm/ Ovpm — = Zﬁl/ d, Ry, (1.28)
=1 m=1
where the functions ¢; satisfy (LI0) and the coefficients B = Bi({a;},{d;}) are real
numbers that solve the linear system

27 deg(tp, 1) = / 0, Py + Z Bm/ Opom forl=1,...,n. (1.29)
Iy m=1 Iy

Let us briefly indicate the difficulties to pass from simply connected domains to multiply
connected ones. For a Dirichlet boundary condition, in [7], the authors proved that the
variational problem (IL3]) is directly related to a minimization problem whose minimizer
solve a linear PDE. Indeed, if € is simply connected, and if u, is a minimizer for (IL5]) (which
exists by Proposition B.1]), then |Vu,| = |[V®,| where ®, is the harmonic conjugate of the
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gradient of the phase of u,. The phase is not a well-defined function (this is a multi-valued
function) but the gradient of this phase is well-defined and can be expressed by the current
J(uy) = u, A Vu, which satisfies divj(u,) = 0 in €,. In multiply connected domains,
since the Poincaré lemma does not necessarily hold, it is not true anymore that the current
Jj(u,) can be expressed as the perpendicular gradient of a harmonic function and its Hodge
decomposition is more complicated. We will show that we can write j(u,) = Vl@p +
VH, where ®,, H, are harmonic functions. Then we study the asymptotic behaviours of
these functions as p tends to zero. In [7] the main tools to do that were Lemma [5.1] and
Lemma We also employ these lemmas for the convergence of ®,, however to prove
the convergence of H, we employ a variational argument, cf. Lemma [3.4] and Lemma [3.5],
and elliptic estimates. The same difficulties appear in the case of Neumann boundary
conditions.

The paper is organized as follows: in section [2] we recall a generalization of Poincaré’s
lemma giving conditions for a vector field to be written as the gradient of a potential func-
tion. We show how it is related to the existence of a harmonic conjugate for a harmonic
function and to the existence of a lifting for a S'-valued map. In section [Blwe study the min-
imization problem (L.E) and its asymptotics as p — 0, thus proving Theorem [[LT} Section [4]
is devoted to the study of a similar minimization problem with Neumann boundary condi-
tions and to the proof of Theorem In section Bl we show how the renormalized energies
can be obtained by a slightly different approach similar to the point of view in [19]. In the
appendix we recall two lemmas presented in [7, chapter I] that are used through this article.

Acknowledgements. The second-named author gratefully acknowledges the support
of the Paris-Saclay University during this work.

2 PRELIMINARIES

We start by stating a generalization of Poincaré’s lemma which gives condition on which
a vector field in R? can be written as the gradient of a function.

Lemma 2.1. Let Q be a smooth bounded open set in R%. Let us call T'y,...,I'y the
connected components of 9. Let D be a vector field in C*(2,R?) N C(Q,R?) satisfying

divD = 0 inQ,
{ Jo,D-v = 0 fori=1,...,N.
Then there exists a function ¢ € C2(Q,R) NC(Q,R) such that
D =Vt¢ = (—0,0,0:0). (2.2)
In the same way, if D € C1(Q,R?) N C(Q,R?) is a vector field such that

curlD = 0 inQ,
fFiD'T =0 fori=1,...,N.

(2.1)

Then there exists a function ¢ € C2(Q,R) NC1(,R) such that
D= V. (2.4)
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Proof. This is the same as in Lemma L.1 in [7]. O

As a consequence of the previous lemma we have the following criterion to determine
when a harmonic function admits a harmonic conjugate.

Lemma 2.2. Let Q be a smooth bounded open domain in R%. Let us call T;,i=1,...,N
the connected components of 9Q. Let H € CY(Q) be a harmonic function in Q. Then H
admits a harmonic conjugate, i.e., there exists a harmonic function in Q denoted by H*
such that

VH =V+H?,
if and only if

/8,,H=0 foralli=1,...,N. (2.5)
I

Proof. Tt suffices to apply the previous lemma with D = VH. Then we find H+ such that
VH = V+H", by observing that curl VH = 0 we obtain that H+ is harmonic. O

Lemma 2.3. Let Q be a smooth bounded open set in RZ. Let us call T'y,...,I'y the
connected components of 0. Let F = (Fy, Fy) € C*(Q,R?) N C(Q,R?) be such that

curl F' = 0, F» — 0y F; =0, (2.6)

/ F .1 e2nZ. (2.7)
r;

Then, there exists u € C'(Q,S'), unique up to a phase, such that
ju) :==uAVu=F = (F,F,). (2.8)

Proof. We define ¢(x) = f% F' - 7 where v, is a path joining a given point zy to a point
x € Q. The function v is multi-valued because 2 is possibly multiply connected but,
thanks to (21)), the different values differ only by an integer multiple of 2. Thus u = ¢
is well-defined and satisfies that j(u) = F. To prove the uniqueness, we assume that
u,v € C1(Q,SY) are such that j(u) = j(v). Then, we compute that j(uv) = ud A V(ud) =
uv A (0Vu+uVo) = j(u) +5(9) = j(u) — j(v) = 0. But since uv is Sl-valued, we have that
|7(uv)| = |V(uv)| and it implies that V(uv) = 0 in G. Thus u = ev for some n € R. [

To conclude this section we make the following observation: we define the vector fields
Xo = (1,1),{X; := V@i }i=1,...n, where the functions ¢;,l =1,...,n are defined in (LI0);
thanks to Lemma 2.1} (Xo, X3,..., X)) is a basis of the vector space

{X € C™®(G,R?);divX =curl X =0, X -7 =0 on G}.

This basis is in duality with a basis of the space of smooth harmonic one-forms in G with
vanishing tangential components. However the basis (X, V1, ..., Vi) is not orthonormal
for the L-inner product since [, V-V, = sz Oy om = me 0,y has no reason to vanish
a priori.
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3 RENORMALIZED ENERGIES WITH DIRICHLET BOUNDARY CONDITIONS

Let G = é\Ul”:lwl be a smooth multiply connected bounded domain, with é, W1y .nn,Wn

smooth simply connected bounded domains. We call Ty = dG the exterior connected
component of G and I'y = dwy,...,I', = dw, the inner connected components of JG.
These are smooth curves that we orient in an anti-clockwise manner. More precisely v
denotes the outward unit normal to G and the outward unit normal to w;, [ = 1,...,n
and (v,7) is always direct, with 7 a tangent vector to dG. We take g € C*(0G).

For k € N*, let ay,...,a; € G be k distinct points in G. For p > 0 small enough so
that B,(a;) N B,(a;) = 0 for every i # j and B,(a;) C 2 we recall that , is defined by
([I3). Our goals in this section is to study the asymptotic behaviour as p goes to 0 of the
minimization problem (L3]), where the class &, , is defined in (I4)), and to prove Theorem
LI In the following, v also denotes the outward unit normal to B,(a;),i =1,...,k. We
start with

Proposition 3.1. The infimum (L5) is attained by a map u, € H'(2,,S') which satisfies
the following Euler-Lagrange equation:

—Au, = |Vu,|’u, inQ,,
u, = g on 0G, (3.1)
up, Noyu, = 0 on 0B,(a;), i =1,... k.

Furthermore, u, € C®(Q,,S') N C1(Q,,S') and u, is also smooth up to the boundary of
every By(a;) fori=1,... k.

When one uses the direct method of calculus of variations to prove Proposition [B.1] the
difficulty is that the degree is not continuous with respect to the H > -weak convergence.
However, since we work with S'-valued maps, it is possible to show that, in this particular
case, we can recover weak continuity of the degree. This follows for example from a result of
White [35], but we will give a direct proof relying on Lemma [BI] below. We first introduce
functions V; for ¢ = 1,..., k defined by

—AV; = 0 in Q,,
Vi = 1 ondQ,\0B,(a;), (3.2)
Vi = 0 on0B,(a;).
Lemma 3.1. Let u € H'(2,,S!), then
1

deg(u, 0B, (a;)) = Dy /Q u A (0, ViOyu — 0, V;Opu). (3.3)
p

Furthermore if u,v € H'(2,,S") then
2
| deg(u, 0Bp(a;)) — deg(v, 0B, (ai))| < —[[Villerllu = vll2 ([Vull 2 + [ Vollz2). - (3.4)

The proof of this lemma can be found in [5 section 3] and [I4], Proposition 1], we give
the details for the comfort of the reader.
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Proof. For i =1,...,k, an integration by parts gives

1 u A (0, ViOyu — 0y V;Opu) = 1 / Vi(u A Oyu) — S / Vi(u A Oru)
21 Jr, 89,\I'o

2m Ja, s 27
k n
= deg(u7 FO) - Z deg(uv aBP(aZ)) - Z deg(u7 Fl)
J=Llj#i =1

= deg(u, 0B, (a;)).

For the last equality we have used that, since u € H 1(Qp, S1), we have d,u - Oyu = 0 almost
everywhere and thus by integrating by parts we find

k n
1
0= o /Qp Opu N\ Oyu = deg(u,I'g) — Z deg(u, 0B, (ai)) — Z deg(u,I).

i=1 =1
For the second point we observe that since V; is locally constant on 0f2,, an integration by
parts gives
/ v A (0,u0y Vi — 0yud, Vi) = / u A (0,00, Vi — 0yv0,V;).
Q, Q,

Hence, by using the first point we find

27| deg(u, 0B,(a;)) — deg(v, 0B, (a;))|

/ (1= ) A [0V, — B, Vidsu) + (9:Vidyv — 0, V)]
Qp

<Al =l [Viller (IVull 2 + IV ol £2)-
O

Proof. (proof of Proposition B.I]) We take a minimizing sequence (uy,), for the Dirichlet
energy E in the class £, ,. Since it is bounded in H 1 we can extract a subsequence weakly
converging to some u, € H 1(QP,R2). Up to other subsequences, we can assume that wu,
converges strongly to u, in L2(Qp) and w, converges almost everywhere to u,. Hence
u € H'(Q,,S') and by using Lemma B.1] we find that deg(u,, dB,(a;)) = deg(un, 0B,(a;))
for all n € N* and i = 1,...,k. With the weak continuity of the trace operator and the
lower semi-continuity of the Dirichlet energy we are able to conclude to the existence. To
derive the Euler-Lagrange equations we can make variations of the form w, + t¢ for ¢
small and ¢ € C(2,,R?) and wu,e™ for ¢ small and ¢ € C*(Q,,R) with ¢ vanishing
on 0G. These variations do preserve the class & ,. The regularity of u, follows from the
regularity for minimizing harmonic maps due to [26] (see also [18]). The regularity up to
the boundaries 0B, (a;) can be proved as in [2] Lemma 4.4]. O

In the rest of the paper we will make an intensive use of the current of a function.
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Definition 3.1. If U C R? is a bounded open set, for v € LP N WY (U,C), with 1 <
p,p' < 400 and 1/p+ 1/p' =1, we define the current associated to u by

J(u) :=uAVu=(uA0yu,uAdyu). (3.5)

Lemma 3.2. Ifu, is a solution of the minimization problem (L3l) given by Proposition [31]
then its current j(u,) satisfies

{ ' d.ivj(up) =0 and gurlj(up) =0 1in Q,, (3.6)
Jj(uy) - v=0o0n0By(a;), i =1,...,k, and j(u,) -7=gA0rg ondG.
Proof. We compute
div j(upy) = 0x(up A Ozup) + Oy(u, A Oyu,) = u, A Au, = 0.
In the same way
Ox(up N Oyup) — Oy(upy N Opuy) = 20,u, A Oyu, = 0.

The information for j(u,) on the boundary comes from the information on wu, on the
boundary. O

We now use the generalized Poincaré Lemma 2.1] to derive a Hodge decomposition of
the current j(u,). First we prove

Proposition 3.2. There exists a function ®, € HI(QP,R), satisfying

A, = 0 in Qp,
o, = cst. on 0B,(a;), i =1,...,k,
faB,,(ai) 0,®, = 2md; fori=1,... k, (3.7)
0,2, = gNOrg ondG,
faG e, = 0

We also have ®, € C*°(2,,R) NC*(,,R) and is smooth up to the boundaries dB,(a;),i =
1,... k.

Moreover, there exist a unique v, € H'(Q,,S') and a unique Op€—mml,l=1,...,n,
such that j(v,) = Vltﬁp in,, v,=g only CIG and v, = e OogonTy, 1=1,...,n.

Proof. The existence follows from the fact that a solution to (B.7)) is a minimizer of

k
5 Vol“+2m ) dig ai—/ ¢ (g N org
5 Qp| | ; 9Bp(a) = | ( )

in the space
Vyi={¢ e HI(QP,R);QD = cst. = P|aB,(a;) On each 0B,(a;), i=1,... ,k:,/ © =0}
oG

The uniqueness follows because the functional to be minimized is strictly convex in V.
The smoothness of ®, follows from the regularity for harmonic functions. Since the vector
field (—0,®,,0,®,) satisfies the assumption of Lemma 23] we can find a function v, €
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HI(QP,SI) satisfying j(v,) = qu)p in €, furthermore v, is unique up to a phase. Since
v, satisfies

v, N OV, = 0,P, = g A\ drg on G
we can choose an appropriate phase to prescribe v, = g on I'y, and then we have v, =
e"®rgoneach I', 1 =1,...,n for some 6, = 0, ,(g,{a;}, {d;}) € [-m,7[. O

Proposition 3.3. Let u, be a solution of (LI) and let ®, be a solution of (B.1) then there
exists H, € C*(2,,R) such that

J(up) = vlq)p +VH,, up,= Upein, (3.8)
AH, = 0 in €,
o,H, = 0 on 0By(a;), i =1,...,k, (3.9)
Hp = al,p(g7 {al}7{d2}) on Fl7 l= 1...,7’L, ’
H, = 0 on Ty,

where oy ,(g,{ai}, {di}) = 01, +27Z, 1l = 1,...,n, with §; , defined in Proposition [3.2. In
particular, we have uniqueness of a solution of (LHl).

Proof. This follows from LemmaZTlsince j(u,)—V+®, verifies that curl (j(u,) — V+®,) =
0, (j(up) - 7—0,2p) = gAN0-g—gAdrg =0 on dG and faBp(ai) (Jlup) -7 —=0,®,) =
2m(d; —d;) =0 fori=1,...,k. Note that H, is defined up to a constant and that is why
we can impose H, = 0 on I'yp. Now we have that
j(vpein) = vpein A V(vpeiH”) = fupein’ A (vaeiH” + ivpVHpein)
=v, AVv,+VH,=V"+®,+VH,.

From Lemma [Z3] this means that u, = fupeiHP up to a phase, but since H, = 0 on I'y
and v, = g on I'y we have u, = fupeiHP. Hence, since from Proposition v, = e Wog

on Iy, I =1,...,n we find that a;, = 0, + 2nZ. This means also that u, is uniquely
determined. ([l

We recall that &9 € C>°(G \ {a1,...,ax}) is the solution of (LS].
Lemma 3.3. There exists a unique vg € C°(G \ {a1,...,ax},S') such that
j(UO) = wvp A Vg :VJ_(DO inG\{alv"'vak}v
vw o= g on Ty C G, (3.10)
vy = e g only, l=1,...,n,
for some 0; = 6;(g,{a;},{d;}) € [-m,7[ forl=1,...,n.
Proof. The proof of Lemma 23] can be adapted to this context to find this vg. Note that

9y ®o = gNOrg = vo\Orvg on G implies that on every connected component I'g, I't, ..., T,
of OG we can write vy = e~ g, furthermore we can choose 6y = 0. O

Proposition 3.4. Let ®, be the solution to [B1) and ®q the solution to (LJ), then for
every m € N and every compact set K C G\ {ay,...,ax} there exists Cp, ;¢ such that

2, — Pollem () < Crm,xp- (3.11)
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Proof. We apply Lemma [B.1lto v, = &y — ®, which satisfies, Av, = 0 in €,, d,v, = 0 on
0G, faBp(ai) 0yv, =0 fori=1,... k. Hence, since ®, is constant on dB,(a;) we find

k
Supv 1nfv < sup v, — inf v, | < sup @9 — inf ®g | < Cp.
LD M F SN AR ol (PR

Since [ (®, — ®o) = 0, there exists a point x € G such that (&, — ®o)(z) = 0, thus
we find that ||®, — ®¢l|p~(q,) < Cp. By elliptic estimates, see e.g. [I7, Theorem 2.10], we

obtain (B11]). O

We introduce

N\ i
E,N'g,p = {v € Hl(Qp,Sl);v =g on 0G;v = (é — Zi,) , 1= 1,...,/<;} (3.12)
~ 1
WP({a;}, {di}) = inf —/ Vol2. (3.13)
vegg,p2 Qp

=1

Lemma 3.4. The map p — W5({a;},{d;})—= (Zk ) | log p| is non-increasing, whereas
the map p — W, ({a;}, {d;}) — = <Zk ) |log p| is non-decreasing. Furthermore

i=1"

W, ({ai}, {d;}) < W¥({ai},{d;}) and we have that

Wy({a;}, {di}) := hm (W”({az} {d;})—m <Z d2> ]logp[) exists and is finite. (3.14)

=1

This lemma follows from Proposition 2.10 and Lemma 2.11 in [25]. We reproduce the
proof for the comfort of the reader.

Proof. Let 0 < p < o with o small enough so that the balls B,(a;) are disjoints and
included in G. We can write that

[N e SN N
G\UE_, By(a;) G\UF_, Bs (a;) Uk_ (Bo(ai)\Bp(a:))

Now, by using polar coordinates centred at a; and the Cauchy-Schwarz inequality, we have

o 2T . 2 1 o1
/ |Vup|2 > / / M dei dT‘Z’ > _/ _
Bo(a;)\Bp(a:) p JO T 2r J, i

> 2rd? log g,
p

2 2
/ (up A Og,up) db;|  dr;
0

Thus we find that

k k
1 1
Wo—m <§ d?) log; >W7 —m <§ d?) log — (3.15)

i=1
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which proves the first assertion (here and in the rest of the proof, for simplicity, we do not
write the dependence of the singularities {a;}, {d;}). For the second assertion, if 0 < p < o
and if t, is a minimizer for the problem W7, then the map

( Ug(z) if z € Q,
v(x) = d; -
) (;;gg) if z € By(a;) \ By(a;)

is a comparison map from the minimization problem W/. Thus

k
we < 5/ Vol = W7 +n <Zdi> log —.
Qp im1 p
This proves that p + W¢ is non-decreasing. We can easily see that W} < W} for every p.
Hence both quantities admit a limit when p goes to zero and their limits are finite. ([l

Proposition 3.5. Let u, be the solution to the minimization problem (LX). Then there
exist ug € H} (G\ {a1,...,ax},SY), Hy € H. (G \ {a1,...,ar}) and a sequence p, — 0
such that

up, = ug in Hip (G\ {a1,....a}), H,— Hyin H..(G\ {a1,...,ax}).

Proof. The proof follows the idea of [25 Proposition 8.1]. By Lemma 34l for 0 < p < o
we have

k
|V, |? ) o
— <WPf({a;},{d;}) — 7 d; | log —.
/G\Uf_lBg(ai) 2 o {ash () 2 p

i=1

By using Lemma B.4] again we arrive at

9 k
/ Nusl™ <y a4y — = [ 30 | togor (3.16)
G\UE, Bo(a;) 2 i1

Thanks to the boundedness condition ([B.I6) we can use a diagonal argument to find a
subsequence p, — 0 and a map uy € H} (G \ {a1,...,ax},S') such that w,, — up
in H. (G \ {a1,...,ax}). Now since we know from Proposition B4 that ®, — ®( in
¢ (G\{a1,...,a}) we find that VH, = j(u,,) — V@, converges weakly in L? (G \
{a1,...,a;}). From the Poincaré inequality, which is valid here since H, = 0 on Iy,
we infer that there exists Hy € H\L (G \ {a1,...,ax}) such that H, — Hoin H.} (G \

g

{alw..,ak})

In particular, from the previous proposition and the weak continuity of the trace oper-
ator, there exist a subsequence p, — 0 and o = oy(g,{a;}, {d;}) such that

ap, oy, forl=1,...,n (3.17)
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Lemma 3.5. Let ®, be a solution to B.1). Then, we have

k
. 1
})12% <§ /Qp IV, > -7 (Z df) | log p\) = —WZdidj log |a; — aj|

i=1 i#j

k
1
5 [ B0lgndng) 7w > difoar) < +ox.

Proof. An integration by parts gives

n k
v<1>2:/ay<1><1>— /ayqnp— / 9,9,P,.
/Qp| = [ w3 [ave -3 [ o,

Now we use ([B.7) and more particularly we use 0,®, = g A drg on I'j,l = 0,1,...,n,
®, = cst. on dBy(a;), i =1,...,k and faBP(a )8,,<I>p = 27d; to obtain

T

n k
| vk = [ onom)e, =3 [ (an090, - Y 2mdid,08,()
P 0 =171 1=1

o

n k
= / (g N 0rg)Po — Z/ (g N 0rg)Po — Z 21d; ®o(z;) + O(p)
1=1 /T i=1

where x; is a point in 0B,(a;). Since Ro(x) = $o(x) — Zle d;log |x — a;| we can write

J

n k
IVO,* = /F (g9 A Drg)®o — Z/F (g A 0-g)®o + Y _ 2md;|log pl
0 =1 l =1

P

k
- Z 2md;d;log |a; — aj| — Z 2nd; Ro(a;) + O(p).
i#j i=1
This yields the result. U

Proposition 3.6. Let H, be the solution to [3.9), then up to a subsequence p, — 0, we
can find oy = (g, {a;},{d;}) forl=1,...,n and Hy € C°(G \ {a1,...,ax}) such that

H, — Ho in CL(G\{a1,...,a;}) for everym € N (3.18)

with Hy satisfying
AH() =0 m G,
H() = 0 on F(), (3.19)
Hy = o only, l=1,...,n.

Proof. We already know from Proposition that there exist oy, I = 1,...,n and Hy €
H! (G\{ay,...,a;}) such that, up to a subsequence not labelled, H, — Hy in HL (G \
{a1,...,ax}). It remains to show that Hy satisfies (3.19]). First by elliptic estimates, cf.
e.g. [16, Theorem 5.21], we have find that (8:I8]) holds and AHy =0 in G \ {a1,...,ax},
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Hy=0onTgand Hy=q;on Tyl =1,...,n. But we can use B.8), |Vu,|* = |5(u,)|* and
an integration by parts to write

| vl = [ Ve [ a2 [ vie, v,
Q, Q, Q, Q,

:/ \Vcbpy%r/ yVH,,\2+2Z/ a1 07 P .
Q Q, =1 /T

P
By Proposition B.4] and since oy, — oy as p — 0 we find that sz ay,,0-®, — sz 00, ®( as
p — 0. From Lemma B.4] and Lemma we obtain that

sup/ IVH,> < +cc.

p>0JQ,
By lower semi-continuity of the Dirichlet energy, for every o > 0 we have

/ |V Hy|? ghminf/ \VH,? ghmsup/ |VH,|?.
o p—>0 Qo P_>0 o

But if p < o then [, [VH,[* < pr |VH,|? and hence we arrive at

sup/ |V Ho|? < +o0.
c>0JQ,

By monotone convergence, it implies that VHy € L?(G), and by the Poincaré inequality we
find that Hy € L?(G). Then it can be show that the singularities ay, ..., ay are removabld]
for Hy and thus AHy =0 in G. O

Proposition 3.7. Let u, be the solution to the minimization problem (L3)), then there
exists a sequence pp, — 0 such that

up, — ug in Cp(G\ {ay,...,a,}) for everym € N (3.20)
with ug € C*(G \ {ay,...,ar},S) satisfying

~Aug = |Vugl?up in G\ {ai,...,ax},
{ uy = g on 0G. (3.21)
Furthermore we have that
jluo) = V&g + VHy (3.22)

and ug = voe0. In particular ug satisfies div j(ug) = 0, curl j(ug) = 2 Zle diba, in G

and j(up) -7 =g A 0rg on 0G.

Proof. This result follows from the convergence of ®, in Proposition B.4land H, in Propo-
sition ]

We are now in position to obtain Theorem [I.1]

170 prove this we can take a cut-off function 7 such that n = 1 in B.(a;) and n = 0 in Ba-(a;)°,
i=1,...,k, then we write that [, VHoVY¢ = [, VHoV[¢)(1 —n) + ¢n]. By using that [Vn|re < C/e,
and that [|[VHo| 125, (4;)) — 0 as € — 0, we arrive at the result.
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Proof. (proof of Theorem [LT]) From Lemma [3.4lwe know that the limit of W/ ({a;},{d;})—
T (Zle df) |log p| as p — 0 exists and is finite. To compute this limit we can use a special

subsequence p, — 0 such that Proposition B.7] and Proposition hold. For simplicity of
notation, in the rest of the proof we let p = p,. Let u, be the solution to the minimization
problem (L5). We use that |[Vu,|> = |5(u,)|* along with (.8) and an integration by parts

to obtain
[ vt = [ vep [ va Pz [ vie, va,
Q Q, Q Q

p P

P
:/ yV@p\Q—Z/ al,paVHp+2Z/ 1,0, ®,.
Qp 1=1 /11 1=1 711

We have used the boundary condition for H, in ([8.9). Now we use Lemma [3.5] and Propo-
sition [3.6] to obtain

n k
/Q IVup|2=/F <I>o(gA8Tg)—Z/F Do(g A Drg) +2m Y d7|log p|
0 =1 7T

p 1=1

k n
— 2 Z dldj log |ai — aj| — 27 Z diRo(ai) — Z /Fl o0, Hy
itj i=1 =1

n
+2 Z /11 10 Py + 0, (1).
=1

We can integrate by parts once more and find that

Z/ ozl&,Ho:/ |V Hol?. (3.23)
=17 G

We decompose Hy = > ', aypr(x) where the functions ¢; are defined by (LI0O) to find
(LI6). We also observe that

/ ‘V]LI()‘2 = Z/ ala,,Ho = Z Z alam/ 8chm. (3.24)
G =171 T

=1 m=1

Now we describe the coefficients oy = (g, {a;},{d;}). To see that oy = 6; + 27w7Z we recall
from Lemma B3 that vy = e ®tgon Ty, 1 =1,...,n. Then, we observe that j(ugtg) = VHy
and thus we can conclude that uy = vge!0e for some constant n € R. Since ug = vg on
Ty, and Hy = 0 on I’y we obtain that n € 27Z. Besides, on each I';, I = 1,...,n we obtain
that g = ge "1+ which implies oy = 6; + 27Z. Next we take the inner product of
B22) with V¢, to find

/ Jj(ug) -V = Z am/ oy forl=1,...,n. (3.25)
G m=1 m
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By integrating by parts the left-hand side we arrive at (LI7). It remains to show that wg is
given by (LI4]). First, by using the same arguments as in Proposition 3.1 we can see that
there exists a minimizer Uy, g4, of the Dirichlet energy in Z, 4, where this class is defined
in (LII). To prove the uniqueness up to a multiplication by a constant. We write the
Euler-Lagrange equations for Uy 4, and we use Lemma 2.1 to prove that j(Ugq,) = Vidy
for some function ®;;. We use again the Euler-Lagrange equations on Uy 4, to obtain that
®y satisfies

A(I)U =0 in G,
Py = cst. only, 1=0,1,...,n,
frl 0,0y = deg(g,I) l=1,...,n, (3.26)

Jry %@y = deg(g,To) = 21, di.
As in Proposition B3] we obtain that ®;; is uniquely determined up to a constant, since it
is a minimizer of F(¢) = 1 [, |Ve|* + 27> 1 pdeg(g,I') + 2y (deg(g, To) — 0, di>
in the space
{o e H(G,R);p =cst.on Ty, 1=0,1,...,n}.
This minimizer is unique up to a constant by a convexity argument. We then use Lemmal[2.3]

_\d
Now we call V := uoUg d; Hl 1 < =g ) and we compute that

lx—as]

7 (V) = j(uo) f: ( R l) — Vi (3.27)

— |z — a;)?

Thus we can check that curlj (V) =0 in G, sz V.-r=0forl=0,1,...,n. By applying
Lemma 2.l we find ¢, € C!(G) such that j(V) = V),. Therefore, by using Lemma 2.3] we

can write V' = €™ which yields (ILI4). We can check that divj(V) = 0 in G and hence
we find that Ay, =01in G. O

4 RENORMALIZED ENERGIES WITH NEUMANN BOUNDARY CONDITIONS

In this section we fix k € N, d; = 1, ...k, and we consider Ex, given by (LI8) and Wy,
given by (LI9).
Proposition 4.1. The infimum WY, in (LI9) is attained. Let G, be a minimizer for (LI19)
then 1, satisfies

—Ad, = |Va,la, inQ,,
i, Aoy, = 0 on 09, (4.1)
lu,] = 1 on €.

We also have that @, € C*(,,S!), faB,,(ai)aP A Ort, = 2md;, fori =1,...,k, fl“z Uy N
Oy, =: 2rdy € 27, for 1 =10,1,...,n and 3% d; + S0, di = do.
Proof. The proof follows the same lines as in Proposition [3.1] O

As in the previous section, we introduce the current associated with i, defined by
J(tp) =t A V.
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Lemma 4.1. Let u, be a minimizer for (LI9) then the current j(u,) satisfies

{ div j(4,

j(ﬁp) V=

and curlj(a,) =0 inQ,,

0
0 on 0%2,. (4.2)

Furthermore we have faB,,(ai) j(t,)-m =2md; fori=1,...,k and sz J(t,)-m = ond; € 277,
forl=0,1,...,n.

The proof is similar to the one of Lemma Thanks to the previous lemma we can
apply the generalized Poincaré lemma to obtain:

Proposition 4.2. There exists a unique <i>p € C®(Q,,R) such that

j(ty) = a4, A Vi, = Vi,

and
AD, = 0  inQ,,
Cfﬁp = 0 on I'y
. ~ ’ 4.3
¢, = Bi, onoBya), i=1,...,k, (43)
¢, = Bip, only l=1,...,n,

with B; ,, Bz}p being real constants. Furthermore we have

/ 8,,<i>p:27rdi, fori=1,... k, 8,,<i>p:27rd~l€27rZ, forl=0,1,...,n
9Bp(a;)

V]
k n
Zdi + ZCZ[ = CZ().
=1 =1

Proof. The existence comes from Lemma 2] and the properties of the current j(4,) gath-

ered in Lemma Al The uniqueness follows since <i>p in Proposition is the minimizer
of

k n
1 §
F(p) = 5/9 IVol? + 27> diop, @) + 27 > digpr,
P i=1 =1

in the class
Vp ={p € H(2,,R);p =0 on Iy, = cst. = PloB,(a;) O0 OBp(a;),i=1,...,k
¢ =cst.=q@qp, onlyl=1,...,n}
O

Corollary 4.1. The minimizer 4, for (LI9)) is unique up to a multiplication by a complex
constant of modulus 1.

Proof. It comes from the uniqueness of <i>p and Lemma [2.3] d
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We now define

d;
~ T — Qg .
EN,p = {’U € Hl(Qp,Sl);tr‘aBP(ai) = < ) s 1=1,... ,k}

|z — a;]
and

Wiad (43) = inf 5 [ Vol

vEEN ,p

Thanks to this other variational problem we can show, as in Lemma [3.4]
Lemma 4.2. The map p — Wi ({a;}, {d;}) — = <Zf:1 df) |log p| is mon-increasing, and
the map p — VNVK/({CLZ'}, {d;}) —m (Zle df) |log p| is non-decreasing. Furthermore

W ({a:}, {d:}) < W{({ai}, {di}) and we have that

k
Wi({a;}, {d;}) == [l)ig%] (WK/({ai}, {d;})—m (Z df) | log p|) exists and is finite.

i=1

Proposition 4.3. Let 4, be a solution to the minimization problem (LI9) and let &, be
given by Proposition [[.2. Then there exist g € H} (G \ {a1,...,a;},SY), &9 € HL (G \
{a1,...,ax}) and p, — 0 such that

?lpp — ?AL() m H}OC(@\ {al, - ,ak}), (i)pp — (i)() m H}OC(@\ {al, . ,ak}). (4.4)

In particular, there exist B = [i({a;},{d;}) such that (i)ph‘l = B, = B = i)()‘f‘l for
[=1,...,n.

The proof of this proposition is similar to the proof of Proposition This relies on a
diagonal argument and Lemma

Note that i)()‘f‘l is a constant since it is the limit of constant real numbers. Now we
define &, to be the solution of

Ady = 273F did,, inG,
q)o = 0 on Fo, (45)
®y = [ onIy, I=1,...,n.
Proposition 4.4. The equality <i>0 = <i>0 holds and, up to a subsequence p, — 0, i)pp — <i>o
in C" (G \ {a1,...,ax}) for all m € N.

loc

Proof. We take p, — 0 as in Proposition 3.7 for notational simplicity we denote p = p,.
We apply Lemma 5.2 to v, := ®¢ — ®, which satisfies Av, = 0 in €, faBﬂ(a )8,,11 =0 for

i
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i=1,...,k. Since ®, is constant on dB,(a;) we find

supv mfv < sup v, — inf v, | +supv,—infv
pp F= Z(aBP(I;)p aB(z)p> A TR

< sup &9 — inf &y | +supv, —infu
Z (aB,, (a;) 0By (ai) oc © 9G "

<C’ supv, — inf v,,.
- p+5£” aGq

But since <i> and & are constants on each connected components of G and (@0 —d P, —

0 for every l =0,1,...,n we find that SUPyG Vp — infapgv, — 0 as p — 0. Now we use that
v, =Py — P, =0 on Fo to obtain that ||®g — pHLoo ©,) = 0p(1). The conclusion follows
from elliptic estimates, cf. [I7, Theorem 2.10]. O

Proposition 4.5. Let 4, be a solution to the minimization problem (LI9). Then, up to
a subsequence p, — 0, we have that t,, — U in Cjp.(G \ {a1,...,ar}) for every m € N,
where Ug is given by Proposition [{.3

Proof. This follows from Proposition 4] and Proposition O

We call Gy the solution to (IL20) and Ry the regular part of this Green function defined
by (L2I). Then we can write

k n
= diloglz —ai| +>_ Bigi(x) + Ro(x), (4.6)
i=1 =1
where the functions ¢; are defined in (LI0). We are ready to prove Theorem

Proof. (proof of Theorem [[.2]) From Lemma [£.2] we know that the limit of W§ ({a;},{d;}) —
T <Zf:1 df) |log p| as p — 0 exists and is finite. To compute this limit we can use a special

subsequence p, — 0 such that Proposition 4.4 and Proposition hold. For simplicity of
notation, in the rest of the proof we let p = p,. We compute

k n

/ Vi, = / VG, 2 = / 80,8, -3 / $,0,%, / $,0,%,.
Q, Q Ty =1 /9B, (ai) I

P
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Since i)p =0on Iy and <i>p is constant on 0B,(a;) we can write, for z; € 0B,(a;):

/ |Vup|2——27rzq) IEzd—Z/q)aq)
=—27TZ<1>0 () _2/ G000 + 0,(1)
k

=2 Z d?|log p| — 27 Z did;logla; — aj| — 2w Z d;Ro(a;)
i=1 i#j i=1

—ZWZZdlﬁlgpl a;) Z/ o0, <I>0+op 1).

=1 i=1

We now use that <i>0 = (; on I'; and we observe that
n
0,%0 = Z BmOyom + ORy forl=1,...,n
1—‘l Fl Fl

We conclude that

1
/\Vup\2—7r<2d2>\logp\—772ddlog\al CL]’—T(ZdR()CLZ

i=1 1#] 1=1

eSS () — ZZ@%/ aysom——Z@/aRwOpl (4.7)

=1 i=1 =1 m=1

This yields (L27) with the expression of War({a;},{d;}) given by (L28). We now turn to
the task of expressing the coefficients 5, = 5;({a;},{d;}). Recall that we have

j(ig) = Vo = V* (Go + Zﬁl‘ﬁl) :

=1

We take the inner product with V¢, and integrate by parts to find that

k n
[ ti)- Vo =20y digi(a) + [ 0.Go+ S 6 [ O
G i=1 I m=1 I
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On the other hand, we have

/G j(@0) - VEr = — /G curl j (@) g1 + /a ali(io) -]
k
= —27r;di<pl(ai) + /Flj(uo) T

k
= -9 Z digpl(ai) -+ 27TCZ1.
i=1

Thus we find that the coefficients [3; solve the linear system

n k n
27TCZI = / 8I/GO + Z /Bm/ 81/90771 - 27T'Zdi90l(ai) + Z Bm/ auﬁpm-
1y m=1 1y i=1 m=1 Iy

The last equality being obtained by multiplying AGy by ¢; and integrating by parts.

It remains to show that 4 is given by (L.26]). We call d = deg(tp,T),1=0,1,...,n.We
have that > ", JH—Zf:l d; = dp. Again, by using the same arguments as in Proposition [3.1]
we can see that there exists a minimizer Uj,.a, of the Dirichlet energy in 7 d,.d; where this
class is defined in ([.23]). We write the Euler-Lagrange equations for U d.d; and we use

Lemma 2.1] to prove that j(U. i di) = V+&;. We use again the Euler-Lagrange equations
on U d.d; 1o obtain that <i>U satisfies

Ady = 0 in G,
®;; = cst. on each connected component of 0G, (4.8)
sz 0,2y = 2md; forl=1,...,n.

Thus dy is uniquely determined up to a constant, since it is a minimizer of F(yp) =
% I |Vp|> —2m >0, dioyr, in the space
{o € HY(G,R); ¢ = cst. on each connected component of G}.

This minimizer is unique up to a constant by a convexity argument. By Lemma 23] the
uniqueness of U d,.d; holds, up to a constant. We then set

k

d;
A L ai 17 -~
V.= UOH<|x_ai|2> Udz,di'

1=1

As in the proof of Theorem [I.I] we can show that

x —a;)t A
J(V) = i) = > d; <M> — Vi, (4.9)
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Thus we can show that

divj(V)=0in G, curlj(V)=0in G,
R (- a)t .
j(V)-V:—Zdiil-VonaG, / jV)y-r=0forl=0,1,...,n.
i=1 I

A

By Lemma [2.1] we can find v such that j(V)) = V1. We can also see that 1 satisfies
AyY =01in G and 0,9 = — Zle dl%:— -v on OG. By uniqueness, up to a constant of
such boundary value problem we can assume that ¢ = 1¥pr where 15 is defined in ([.22)).
By using Lemma [2.3] this prove that, up to a multiplication by a constant V = e~ and

this yields (L26]). O
We conclude this section by two remarks:

Remark 4.1. We were not able to decide if the optimal degree configuration for g is
deg(to,I')) =0 forl =1,...,n and deg(dp, o) = Zle d;. This is the situation assumed
in [13] where the authors can suppose that since their goal is to find a critical point of the
Ginzburg-Landau energy with homogeneous Neumann boundary condition.

Remark 4.2. FExcept for the Dirichlet and the Neumann boundary problems, a third bound-
ary condition is sometimes considered in the Ginzburg-Landau literature. This is the so-
called semi-stiff problem where one prescribes |u| = 1 on OG with fized degrees on each
components of OG, cf. e.g., [3, 2, B, 14, 23], 14, 29| 15| 28]. In this case, minimizers of the
Ginzburg-Landau energy do not always exist. However, a natural renormalized energy that
we can associate to this problem is the same as in the homogeneous Neumann boundary
condition but with fixed degrees, i.e., the degrees of a limiting maps are fized and we do not
optimize the energy on these degrees. Hence the expression of the renormalized energy is
given by (L28]) where the coefficients B are determined by the same system ([L29) but with
d; = deg(ug,I';) fized in advance for 1 =1,...,n. Also, the limiting locations of vortices of
the Ginzburg-Landau energy are minimizers of this renormalized energy on all G and these
vortices can escape through the boundary. When it happens, it is shown in [6] that vortices
tend to escape through points of maximal curvature of the boundary.

) ANOTHER APPROACH TO RENORMALIZED ENERGIES

In this section, we propose an alternative approach to define the renormalized energies.
We first define particular singular harmonic maps with prescribed singularities and then
associate a renormalized energy to these maps by taking the Dirichlet energy outside of
small balls around the singularities minus the diverging part of this energy. The renormal-
ized energy derived in the previous section is then the infimum of the renormalized energies
among all singular harmonic maps with prescribed singularities. This is the approach of
[19]. We note that when G is simply connected, our singular harmonic map with prescribed
singularities is unique (modulo a phase for the Neumann problem) and corresponds to the
canonical harmonic map defined in [7]. Due to the multiply connectedness of the domain,
uniqueness does not hold in our case.
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5.1 Dirichlet boundary conditions. Let g € C}(9G,S'). Let u, € WHH(G,Sh), we
say that u, is a singular harmonic map with prescribed singularities
(a1,d1), ..., (ag,dy) if u, satisfies
curl j(uy) = 27 Zle dide, in G, divj(u,) =01in G,
Jj(uy) -7 =gA0rg on 0G.

Proposition 5.1. Let u, € WHY(G,SY) satisfying (5.1)), then we can write
j(us) = V+do + VH, (5.2)
where ®q is the solution to (LY)) and H, a solution to
AH, = 0 inG,
H, = 0 only, (5.3)
H, = of only l=1,...,n.

The coefficients of are given as the solution to the linear system

Za}‘/@,,gpm:/ Jjluy) v form=1,... n, (5.4)

=1 Iy Im

where the functions ¢; are defined in (LI0). Moreover, there exist 0; = 6;(g,{a;},{d;}) €
[—m, 7w, | = 1,...,n such that for every u. satisfying ([B.1)), the associated coefficients

af = of(g9,{ai}, {d;}) defined by (B4) verify of = 6, + 27Z.

Proof. We observe that curl(j(u,) — V+®q) = 0 in G and (j(us) — V+®q) -7 = 0 on 9G.
We can apply Lemma 2] to find H* such that (5.2]) holds. By using that divj(u.) =0
in G and (j(usx) — V+®q) - 7 = 0 on G, we find that there exist constant coefficients
a; such that (53] holds. To express these coefficients, we multiply (5.2) by Ve, and
integrate by parts for m = 1,...,n with ¢, defined in (I.I0). To see that the coefficients
a; satisfy the quantization property, we recall from Lemma [3.3] that there exists vy €
C=(G \‘{al,...,ak},Sl) such that j(vg) = V+®q and vy = g on T'5. We also have that
vy = e g for some 6; € [—7, 7] for [ =1,...,n because we have that 0,P¢9 = g A 0,9 on
OG. But we can check that j(voe'*) = j(uy). Indeed
voe T A V(voeiH*) = e A (Vo + iUOVH*)eiH*
=g A Vg + VH, = V=& + VH,.

Since we also have that u, = vpe'* on I'y we necessarily find that u, = vge!’ in G. This

implies that of = 0; +27Z on each I'j,l =1,...,n.
O

We now show that we can define the renormalized energy of such a map wu..

Proposition 5.2. For u, € WhY(G,S) satisfying (6.1))

k
1 1
Wy (uy) = iim 2/, |V, | — <§ d?) log; (5.5)
14

i=1
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exists, is finite and is equal to (LIG]) where the coefficients oy are replaced by o . Further-
more

W,({a:}, {d;}) = Wy(up) = min{ W, (u.); us € WHH(G,SY) satisfies (G} (5.6)
Proof. The same kind of computations as in the proof of Theorem [T show that Wy (u,) <
+oo for every u, € WH(G,S!) satisfying (5.1) and give an expression of this quantity
similar to (LI6). Now, since ug satisfies (5.1)) we have that

W, (ug) > inf{W (uy); us € WHHG,S") satisfies (510)}.
If there exists u, € Wh1(G,S!) satisfying (5.1]) such that Wy(u.) < W,(ug), then we can
set Uy p 1= Ux|q,. For p small enough we have W (u.,) — 7 (Zle df) |log p| < Wy(up).
But, this implies that, for p small enough,

k k
Wg({ai}, {di}) — = <Z d?) [log p| < Wg(usp) — (Z d?) |log p| < Wy(uo).

i=1 i=1
Passing to the limit as p — 0 in the previous equation we obtain Wy(ug) < Wy(us) <
Wy (up) which is a contradiction. O

5.2 Neumann boundary conditions. Analogous results can be stated for homoge-
neous Neumann boundary conditions and we leave it to the reader.

APPENDIX

We recall here two lemmas that we use in the proofs of the main results. For the proofs
of these lemmas we refer to [7, Lemma I.3-1.4].

Lemma 5.1. Let G C R? be a smooth bounded domain, let U;, i = 1,...,k be smooth
subdomains of G, such that Q := G\ UleUi 1s connected. Let v be a function satisfying

Av = 0 inQ,
faUz- ov = 0 forechi=1,... k, (5.7)
dv = 0 ondG.
Then

k
supv — infv < <supv — inf v) . 5.8
Q Q ZZ:; aU; oU; ( )

Lemma 5.2. Let G C R? be a smooth bounded domain, let U;, 1 = 1,...,k be smooth
bounded subdomains of G, such that Q = G\ UleUi is connected. Let v be a function
satisfying

Av = 0 nQ,
{fan v = 0 foreachi=1,... k. (5.9)
Then
k
owo—igfv s 3 (supo g ) + v ppo (510)
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