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Abstract

Modelling the statistical fatigue behavior, based on fatigue test results is still
a challenge for researchers and engineers. The model proposed by Castillo et
al. is one alternative to describe this phenomenon, which is based on a three-
parameter Weibull Distribution whose parameters should be estimated. There are
several methods to determine these parameters, however there is no consensus
about which is the most appropriate. In this article, a general formulation of the
Probability Weighted Moments of the Weibull Distribution is presented in order
to estimate the parameters mentioned above. Finally, an application with experi-
mental data from concrete specimens and simulated data is presented.
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1. Introduction

The presence of fatigue failures in metallic structures is a common technical
problem, and the modelling of the fatigue life of these structures is still a research
challenge in the materials science since the 19th century [1]. At that time, August
Wöhler1 recognized, that applying a single load, which is much lower than the
static strength of a structure, does not damage it, but if this load is applied sev-
eral times, it could induce a complete failure of the structure. The failure begins
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Model Wöhler curves

Basquin (1910) logN = A−B log∆σ ; ∆σ ≥ ∆σ∞

Stomeyer (1914) logN = A−B log(∆σ −∆σ∞)

Bastenaire (1972) N = A
∆σ−E exp[−C(∆σ −E)]−B

Pascual & Meeker (1999) logN = A−B log(∆σ −∆σ∞)

Kohout & Věchet (2001) log
(

∆σ

∆σ∞

)
= log

(
N+N1
N+N2

)b

Table 1: Common models to represent the S-N curves.

with the occurrence and growth of micro-cracks which are basis for macro cracks
leading to collapse.

With the stress based approach, several models have been proposed to repre-
sent the S-N curves [2], [3], [4], [5], [6], [7], [8], which play a crucial role for
the structural design; some of them are listened in table 1. Most of them only
consider physical arguments and empiric data, and unfortunately, they only rep-
resent an elementary geometric approach which offers a limited judgement of the
experimental results. Moreover, from the statistical point of view, some models
do not propose a cummulative distribution function, so that, they are not suitable
to extrapolate the results into the high cycle fatigue region [9], [10], [11]. In other
words, it is not possible to predict with a probability p the fatigue life of a structure
under a significant lower stress value as the tested experiments.

Based on a Weibull Distribution, Castillo et al. [12] proposed a probabilistic
methodology for predicting the number of load cycles leading to failure of struc-
tural details. In contrary the traditional methods, this proposal emphasizes the
stochastic nature of fatigue by considering both the stress range and the lifetime
(number of load cycles) as random variables [13], [14], ensures a dimensional
consistency [15] and considers the influence the run-outs obtained during the ex-
periments.

The methodology mentioned above demands the estimation of the three pa-
rameters of the Weibull Distribution. In this article, a general formulation of the
Probability Weighted Moments (PWM) of the Weibull Distribution is presented
and applied to estimate these parameters. The application is based on (a) Experi-
mental data from concrete specimens. (b) Data from computer simulation.
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2. Weibull model

The three-parameter Weibull Distribution denoted by W (a,b,c) is a member
of the family of extreme value distributions. The cumulative distribution function
(CDF) (also called life distribution or failure distribution) of a random variable x
which follows a W (a,b,c) [16] is given by

F(x | a,b,c) = 1− exp
[
−
(

x−a
b

)c]
, x≥ a (1)

where

a ∈ R : Location parameter (minimum life)

b > 0 : Scale parameter (characteristic life)

c > 0 : Shape parameter (slope of F(x | a,b,c))

In the case of fatigue modelling, Castillo et al. consider that the conditional
CDF of the random variables lifetime and stress range are not independent and
must satisfy a compatibility condition which leads to a functional equation [13].
The solution of this functional equation leads to the following probabilistic fatigue
model for a constant stress range, which is based on a Weibull Distribution [14],
where the random variable is x = (logN−B)(log∆σ −C).

Q(N,∆σ) = 1− exp
{
−
[
(logN−B)(log∆σ −C)−a

b

]c}
(2)

where

∆σ : stress range during the test

N : number of load cycles up to failure during the test

B : threshold value of lifetime N

C : endurance limit for ∆σ

The model given by Eq.(2) has two geometrical parameters B and C, and three
Weibull parameters a, b and c, which should be estimated.

The estimation of these parameters is done in two steps. First, the geometrical
parameters are determined and second the Weibull parameters.
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3. Parameter estimation

Consider that n experimental data points from stress ranges and load cycles
are given as follows

Ni = N1,N2, . . .Nn

∆σi = ∆σ1,∆σ2, . . .∆σn

The geometrical parameters B, C and the mean2 µ of W (a,b,c) are estimated
by solving the following non-linear optimization problem [12].

min
B,C,µ∈R

n

∑
i=1

(
logNi−B− µ

log∆σi−C

)2

(3)

Within this paper, the PWMs introduced by Greenwood at all [17] and applied to
the Extreme Value Distribution [18] are considered.

The PWMs of a random variable X with CDF F are the quantities

Mp,r,s =

1∫
0

[
x(F)

]pFr(1−F)s dF, (4)

where p,r,s ∈ N.
In the subsequent subsections, the deduction and properties of M1,0,s, M1,r,0,

M1,r,s and Mp,r,s from a Weibull Distribution are presented.

3.1. Moments M1,0,s

The inverse function of Eq.(1) is given by

x(F) = a+b
[
− log(1−F)

] 1
c , (5)

replacing p = 1 and r = 0 in Eq.(4) gives the following PWMs.

M1,0,s = a
1∫

0

(1−F)s dF +b
1∫

0

[
− log(1−F)

] 1
c (1−F)s dF. (6)

2Theoretically the mean of W (a,b,c) is given by µ = a+bΓ(1+1/c)
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The first integral of Eq.(6) is equal to a
s+1 .

Substituting u =− log(1−F) in the second integral of Eq.(6) leads to

b
∞∫

0

u
1
c e−(s+1)u du, (7)

substituting x = (s+1)u in Eq.(7) leads to

b

(s+1)1+ 1
c

∞∫
0

x
1
c e−x dx =

b

(s+1)1+ 1
c

Γ

(
1+

1
c

)
, (8)

where, Γ(z) is de Gamma function defined by

Γ(z) =
∞∫

0

xz−1e−x dx, z > 0. (9)

Therefore, the PWM M1,0,s for the three-parameters Weibull Distribution are
given by

M1,0,s =
a

s+1
+

b

(s+1)1+ 1
c

Γ

(
1+

1
c

)
, c > 0. (10)

Now, the first three PWMs are considered in order to estimate the Weibull
parameters a, b and c.
Denoting Ms = M1,0,s, s = 0, 1, 2 and Γc = Γ(1 + 1

c ) in Eq.(10) the following
system of equations is obtained

M0 = a+bΓc (11)

M1 =
a
2
+

b

21+ 1
c

Γc (12)

M2 =
a
3
+

b

31+ 1
c

Γc. (13)

Combining Eq.(11) and (12) gives
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2M1−M0 = bΓc

(
2
−1
c −1

)
. (14)

Combining Eq.(11) and (13) gives

3M2−M0 = bΓc

(
3
−1
c −1

)
. (15)

Then dividing Eq.(15) by Eq.(14), leads to an equation for the parameter c.

3M2−M0

2M1−M0
=

3
−1
c −1

2
−1
c −1

(16)

which should be solved by numerical methods.
From Eq.(14), the value of the parameter b is

b =
2M1−M0

(2
−1
c −1)Γc

. (17)

From Eq.(11), the value of the parameter a is

a = M0−bΓc. (18)

It is necessary to know the value of the PWMs M0, M1, M2 to solve the equa-
tions (16)-(18). For this reason, their estimators which depend on the ordered
experimental data are used.
Let x1 < x2 < .. . < xn be the order sample of the experimental data points. Then
the estimators of the first three PWMs Ms [16] are given by

M̂0 =
1
n

n

∑
i=1

xi (19)

M̂1 =
1

n(n−1)

n−1

∑
i=1

(n− i)xi (20)

M̂2 =
1

n(n−1)(n−2)

n−2

∑
i=1

(n− i)(n− i−1)xi. (21)

By substituting the estimators given by equations (19)-(21) in the equations
(16)-(18) the value of the Weibull parameters can be determined.
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3.2. Moments M1,r,0

Replacing the Eq.(5) into Eq.(4) for p = 1 and s = 0 gives the following
PWMs.

M1,r,0 = a
1∫

0

Fr dF +b
1∫

0

[
− log(1−F)

] 1
c Fr dF. (22)

The first integral of Eq.(22) is equal to a
r+1 .

Substituting u =− log(1−F) in the second integral of Eq.(22) gives

b
∞∫

0

u
1
c
(
1− e−u)re−u du (23)

now, applying the binomial theorem given by

(1−a)n =
n

∑
k=0

(
n
k

)
ak(−1)k, (24)

it can be proved that

(1− e−u)r =
r

∑
k=0

(
r
k

)
e−uk(−1)k. (25)

Then, the integral of Eq.(23) becomes

b
∞∫

0

r

∑
k=0

(−1)k
(

r
k

)
u

1
c e−(k+1)u du = b

r

∑
k=0

(−1)k
(

r
k

) ∞∫
0

u
1
c e−(k+1)u du. (26)

Substituting x = (k+1)u in the integral of Eq.(26) gives

1

(k+1)1+ 1
c

∞∫
0

x
1
c e−x dx =

1

(k+1)1+ 1
c

Γ

(
1+

1
c

)
. (27)

Thus, the integral of Eq.(23) becomes

I4 = bΓ

(
1+

1
c

) r

∑
k=0

(−1)k(r
k

)
(k+1)1+ 1

c
. (28)
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Finally, the PWM M1,r,0 for the three-parameters Weibull Distribution are
given by

M1,r,0 =
a

r+1
+bΓ

(
1+

1
c

) r

∑
k=0

(−1)k(r
k

)
(k+1)1+ 1

c
, c > 0. (29)

Similar to the previous case, consider the following first three PWMs.
Denoting Mr = M1,r,0, r = 0, 1, 2 and Γc = Γ(1 + 1

c ) in Eq.(29) the following
system of equations is obtained

M0 = a+bΓc (30)

M1 =
a
2
+

(
1− 1

21+ 1
c

)
bΓc (31)

M2 =
a
3
+

(
1− 1

21+ 1
c
+

1

31+ 1
c

)
bΓc (32)

Combining Eq.(30) and (31) leads to

2M1−M0 =
(

1−2
−1
c

)
bΓc. (33)

Combining Eq.(30) and (32) gives

3M2−M0 =
(

2−3 ·2
−1
c +3

−1
c

)
bΓc. (34)

By dividing Eq.(34) by Eq.(33) an equation for the parameter c is obtained

3M2−M0

2M1−M0
=

2−3 ·2− 1
c +3−

1
c

1−2−
1
c

, (35)

which should be solved by numerical methods.
From Eq.(33) the value of the parameter b is obtained

b =
2M1−M0

(1−2−
1
c )Γc

. (36)

From Eq.(30) the value of the parameter a is given by
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a = M0−bΓc. (37)

Finally, it is necessary again to know the values of the PWMs M0, M1, M2 to
solve the equations (35)-(37). Thus, their estimators which depend on the ordered
experimental data points are used.
Let x1 < x2 < .. . < xn be the order sample of the experimental data points. Then,
the estimators of the first three PWMs Mr [19], [20] are given by

M̂0 =
1
n

n

∑
i=1

xi (38)

M̂1 =
1

n(n−1)

n

∑
i=1

(i−1)xi (39)

M̂2 =
1

n(n−1)(n−2)

n

∑
i=1

(i−1)(i−2)xi. (40)

By substituting the estimators given by equations (38)-(40) in the equations
(35)-(37) the value of the Weibull parameters can be determined.

3.3. Moments M1,r,s

Replacing Eq.(5) in Eq.(4) for p= 1 gives the following quasi general equation
of the PWMs.

M1,r,s = a
1∫

0

Fr(1−F)s dF +b
1∫

0

[
− log(1−F)

] 1
c Fr(1−F)s dF. (41)

Applying the binomial theorem given by Eq.(24), the first integral of Eq.(41) be-
comes

a
1∫

0

Fr
s

∑
k=0

(
s
k

)
Fk(−1)k dF = a

s

∑
k=0

(
s
k

)
(−1)k

k+ r+1
. (42)

On the second integral of Eq.(41) making the substitution u = − log(1−F)
and applying also the binomial theorem results in
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b
∞∫

0

u
1
c
(
1− e−u)re−(s+1)u du

= b
∞∫

0

u
1
c e−(s+1)u

r

∑
k=0

(
r
k

)
e−ku(−1)k

= b
r

∑
k=0

(
r
k

)
(−1)k

∞∫
0

u
1
c e−(k+s+1)u du.

(43)

Substituting x = (k+ s+1)u in the integral of Eq.(43) gives

1

(k+ s+1)1+ 1
c

∞∫
0

x
1
c e−x dx =

1

(k+ s+1)1+ 1
c

Γ

(
1+

1
c

)
, (44)

then, Eq.(43) becomes

bΓ

(
1+

1
c

) r

∑
k=0

(
r
k

)
(−1)k

(k+ s+1)1+ 1
c

(45)

Therefore, the PWM M1,r,s for the three-parameters Weibull Distribution are
obtained

M1,r,s = a
s

∑
k=0

(
s
k

)
(−1)k

k+ r+1

+ bΓ

(
1+

1
c

) r

∑
k=0

(
r
k

)
(−1)k

(k+ s+1)1+ 1
c

c > 0.
(46)

3.4. Moments Mp,r,s

Replacing Eq.(5) into Eq.(4) gives a general equation of the PWMs.

Mp,r,s =

1∫
0

{
a+b

[
− log(1−F)

] 1
c

}p

Fr(1−F)s dF. (47)

Making the substitution u =− log(1−F) into Eq.(47) results in

Mp,r,s =

∞∫
0

[
a+bu

1
c
]p
(1− e−u)re−(s+1)u du. (48)
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Applying the binomial theorem given by Eq.(24) in the first term of the inte-
gral of Eq.(48) leads to

Mp,r,s =
p

∑
i=0

(
p
i

)
ap−ibi

∞∫
0

u
i
c (1− e−u)re−(s+1)u du. (49)

Then, applying again the binomial theorem, the integral of Eq.(49) becomes

∞∫
0

u
i
c e−(s+1)u

r

∑
k=0

(
r
k

)
e−ku(−1)k

=
r

∑
k=0

(
r
k

)
(−1)k

∞∫
0

u
i
c e−(k+s+1)u du

=
r

∑
k=0

(
r
k

)
(−1)k Γ

(
1+ i

c

)
(s+ k+1)1+ i

c
.

(50)

Finally, the general PWM Mp,r,s for the three-parameters Weibull Distribution
can be calculated from

Mp,r,s =
p

∑
i=0

(
p
i

)
ap−ibi

r

∑
k=0

(
r
k

)
(−1)k Γ

(
1+ i

c

)
(s+ k+1)1+ i

c
, c > 0. (51)

4. Application and results

In this section the method of the PWMs is applied in order to estimate the three
parameters of a Weibull Distribution. The data arise from two different sources.
a) The experimental data reported by Holmen (1979). b) Simulated data which
were generated with Matlab.

In every case, a comparison between the results is presented.

4.1. Experimental data from Holmen
These 75 data are described by Holmen [21]. A sample of 15 concrete speci-

mens was tested at each of the five levels ∆σi = {0.675, 0.75, 0.825, 0.90, 0.95}.
Here ∆σi is the ratio Smax/S f where Smax is the maximum applied stress and S f
is the stress leading to static failure. The lifetimes are measured as the number of
cycles to failure divided by 1000. The data are shown in Table 2.
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The values of the geometrical parameters are already given as B = −20.783
and C =−1.10607, which are taken from [12].

The S-N curves obtained from Castillo-Hadi method [19] in Figure 1 and from
the PWM method in Figure 2 have a similar geometry, however the S-N per-
centiles in Figure 2 are more narrow than the percentiles in Figure 1.

Holmen Data
∆σ N

0.95
0.257 0.217 0.206 0.203 0.143
0.123 0.120 0.109 0.105 0.085
0.083 0.076 0.074 0.072 0.037

0.90
1.129 0.680 0.540 0.509 0.457
0.451 0.356 0.342 0.311 0.295
0.257 0.252 0.226 0.216 0.201

0.825
5.598 5.560 4.820 4.110 3.847
3.590 3.330 2.903 2.590 2.410
2.400 1.492 1.460 1.258 1.246

0.750
67.340 50.090 48.420 36.350 27.940
26.260 24.900 20.300 18.620 17.280
16.190 15.580 12.600 9.930 6.710

0.675
11748 11748 3295 1459 1400
1330 1250 1242 896 659
486 367 340 280 103

Table 2: Holmen data. Fatigue results with concrete specimen.

4.2. Simulated data
In this subsection, 75 data points of a Weibull Distribution W (18,1.5,3) ob-

tained through a Matlab numerical simulation are considered. In order to compare
easily the results of the PWM method, the simulation of the data took into consid-
eration the same values of the geometrical parameters given by B =−20.783 and
C = −1.10607 from Holmen’s data [12]. The simulated data are shown in Table
3.

In this case the S-N curve based on the PWM method has a quite similar geom-
etry to the simulated curve. Particularly, the estimation of the location parameter
a and scale parameter b do not differ too much from the theoretical values.
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c = 3.40031

Figure 1: S-N curves from Holmen data from Table 2 based on the Castillo-Hadi estimators.
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Figure 2: S-N curves from Holmen from Table 2 based on the PWMs estimators.
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Simulated Data
∆σ N

0.95
0.1122 0.0797 0.3518 0.0665 0.1154
0.1085 0.0830 0.0578 0.0409 0.0865
0.0623 0.1277 0.0812 0.1552 0.1293

0.90
0.2846 0.1638 0.6243 0.1893 0.5415
0.1774 0.2203 0.1348 0.3122 0.1649
0.1173 0.3521 0.2127 0.3212 0.2234

0.825
2.0085 0.6152 3.5572 2.6906 2.4286
2.7607 1.4175 1.9787 1.8619 1.7452
1.2023 1.1509 1.5627 1.1102 2.7119

0.750
79.5209 7.0670 21.5250 9.1130 34.7267
84.1532 8.4761 53.6530 6.4612 27.5026
33.3542 21.4731 43.2928 45.3180 24.9048

0.675
331.7648 407.5034 373.9940 226.5447 301.0640
873.9784 2152.8246 540.3167 599.9790 3271.1257

2232.2824 982.9569 3535.9388 1195.1812 522.2521

Table 3: Simulated data from a Weibull distribution W (18,1.5,3)
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Theoretical Values

a = 18
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c = 3

Figure 3: S-N curves from the simulated data from Table 3.
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Figure 4: S-N curves from the simulated data from Table 3 based on the PWMs estimators.

5. Conclusions and future work

The PWM method offers a good alternative to estimate the three parameters
of the Weibull Distribution. The obtained estimations do not differ significantly
from the values of the simulated distribution, see Figures 3, 4.

The corresponding S-N curves of both applications are quite similar in the
high cycle region. These curves describe properly the fatigue’s properties such as
the existence of endurance limit ∆σ∞.

The endurance limit and the extrapolation of the S-N curves in the high cy-
cle region are estimated in a better way than in the traditional linear regression
model [6] which is currently used to represent the S-N curves and the fatigue data
respectively. This linear regression do not allow to consider the existence of the
endurance limit. In other words, the asymptotic behaviour obtained from the low
stress values is neglected.

The Weibull model produces good results because of its statistical approach,
which can be extrapolated if the experimental data points are abundant and come
from the high cycles region as it is seen in Figures 1-4.

One of the problems regarding fatigue experiments on notched steel details is
that the specimens and their tests are very expensive and take a very long time.
This situation becomes more complicated if we want to apply the Weibull model,
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because it demands more data particularly from the high cycle region.
In the future in order to overcome this problem, the following situation is

assumed.
Several run-outs are obtained from specimens which resisted the first fatigue test
after a predetermined maximum number of applied load cycles.
Then, these resistant specimens are re-tested again with a higher stress value. If
the specimen breaks, an additional value of failure is obtained. Otherwise, the
specimen can be re-tested once again with a higher stress value.

Therefore, it would be interesting to establish if it is possible, to use the infor-
mation obtained from the subsequent experiments in order to improve the estima-
tion of the Weibull fatigue model. For this purpose it is mandatory to define two
aspects: (a) A suitable definition of a damage accumulation function which con-
siders (where pertinent): the influence of the coaxing effect, material properties,
frequency of the test machine, etc. This function will allow taking into account
the accumulated damage on a run-out for the subsequent tests. (b) A censoring
sample model and the method to estimate the Weibull parameters based on it.
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