
Iterative approaches for a dynamic memory allocation

problem in embedded systems

Maŕıa Soto, André Rossi, Marc Sevaux∗

Université de Bretagne-Sud

Lab-STICC, CNRS, Centre de recherche

BP 92116, F-56321 Lorient, France

Abstract

Memory allocation has a significant impact on energy consumption in
embedded systems. In this paper, we are interested in dynamic memory al-
location for embedded systems with a special emphasis on time performance.
We propose two mid-term iterative approaches which are compared with ex-
isting long-term and short-term approaches, and with an ILP formulation
as well. These approaches rely on solving a static version of the allocation
problem and they take advantage of previous works for addressing the static
problem. A statistic analysis is carried out for showing that the mid-term
approach is the best one in terms of solution quality.

Keywords: Memory allocation, Embedded systems, Metaheuristics, VNS.

1. Introduction

Technology offers more and more features allowing embedded systems
(such as smart phones) to surf the Web or to process HD pictures. As a con-
sequence, the design of embedded systems becomes more and more complex.
There exist some CAD tools such as Gaut [6] to generate the architecture of
a circuit from its specifications. However, the designs produced by a CAD
software are generally not energy aware, which is of course a major draw-
back. An interesting work on buffer minimization for designing embedded
system has been conducted in [14], where the objective is minimizing the

∗Corresponding author
Email address: marc.sevaux@univ-ubs.fr (Maŕıa Soto, André Rossi, Marc Sevaux)

Preprint submitted to European Journal of Operational Research July 22, 2013



total surface of the buffers used for communicating data between two tasks
of the application.

Designers want to minimize power consumption [1], and to some ex-
tent, electronics practitioners consider that minimizing power consumption is
equivalent to minimizing the running time of the application to be executed
by the embedded system [4]. Moreover, the power consumption of a given
application can be estimated using an empirical model as in [9], and paral-
lelization of data access is viewed as the main action point for minimizing
execution time, and consequently power consumption.

Memory allocation and data allocation are among the main challenges in
the design of embedded systems. This paper is focused on memory allocation
in embedded systems because this point has a significant impact on power
consumption as shown by Wuytack et al. in [25]. One has to know that
the process of memory allocation is done off-line, during the design of the
embedded system. Once set, the final embedded system is implemented in
a specific architecture and will not be modified on-line. Thus, it is possible
to spend some time to optimize memory allocation without consequences on
the running time of the final application.

In 2012, Google has suggested a machine reassignment problem as the
topic for the ROADeF/EURO Challenge [16]. This problem is a general
memory allocation problem and may be considered close to the problem
addressed in our study. The machine reassignment problem consists in as-
signing each process to exactly one machine considering the resource capacity
constraints and hard constraints that make some allocations impossible. The
objective is to improve the usage of a set of machines by minimizing the total
cost, which is the sum of a load cost, a balance cost and several move costs.
Thus, the set of machines with a limited resources capacity can be seem as
the set of memory banks, and processes are the data structures to be allo-
cated. The conflicts between the processes of a services are represented by
conflicts between data structures. However, there are three major differences
between the problem addressed in this paper and the machine reassignment
problem proposed by ROADEF/EURO in 2012. The first one is that in the
machine reassignment problem, the processes of a service have to be exe-
cuted on distinct machines whereas no such limitations exist in our problem.
The second one is the cost computation, especially the balance cost, that is
very specific to machine reassignment problem, and that differs significantly
from the cost computation for the problem addressed in this paper. Finally,
the more significant difference is that the problem addressed in this paper

2



is dynamic. As the application requirements vary over time, a solution is
a series of allocations, where each allocation is computed by taking present
and future requirements into account.

A relevant problem of data allocation is addressed in [2, 12], it consists
in finding the optimal allocation of relations to multidisk database such that
the expected query cost is minimized. Each query involves two relations
and has a probability of occurrence. The register allocation problem [10]
is close to the simple version of the memory allocation problem tackled in
[21]. This problem consists in assigning variables in a computer program to
hardware registers in a processor. The objective is to minimize the number
of used registers considering that some variables cannot be assigned to the
same register. In these problems, the relations and variables can be mod-
eled as the data structures. Disks and registers can be represented as the
memory banks. However, the main differences between these problems and
our problem are the external memory available and the objective functions.
Also, these problems relate to static memory allocation, whereas this paper
addresses the dynamic memory allocation.

This work is an extension of the general work conducted by Maŕıa Soto
during her PhD thesis [17]. Related problems are covered in [19, 20, 21, 23].

We have addressed various simpler versions of the memory allocation
problem: in Soto et al. [22], we have proposed a mixed integer linear pro-
gramming formulation for the general memory allocation problem and a vari-
able neighborhood search (VNS) algorithm [13]. We have also studied an even
more simplified version of this problem in Soto et al. [21].

We have dealt with the dynamic memory allocation problem in Soto et al.
[23] for which an integer linear programming formulation and two iterative
approaches have been devised to address this dynamic problem. In this paper,
we propose a new iterative approach which combines these two iterative
approaches. Similar studies with iterative approaches but in a completely
different domain have also been conducted on another problem in [24].

This paper is organized as follows. Section 2 provides a short introduction
to dynamic memory allocation problem. Section 3 briefly recalls the two
previous iterative approaches and introduces the new method. The proposed
approach is compared to previous works in Section 4, and computational
results are also discussed. Finally, Section 5 presents conclusions and future
work on this problem.

3



2. Dynamic memory allocation problem

This section presents the dynamic memory allocation problem. Readers
interested in more details about this problem, about the ILP formulation
and about the NP-hard status of this problem are referred to Soto et al.
[23]. The considered memory architecture is similar to the one of a TI C6201
device [9]. It is composed of m memory banks whose capacity is cj kilo Bytes
(kB) for all j ∈ {1, . . . , m} and an external memory denoted by m+1, which
does not have a practical capacity limit. The processor needs q milliseconds
for accessing data structures located in a memory bank, and it spends an
access time which is p times longer when data structures are in the external
memory.

Time is split into T time intervals whose durations may be different. The
application to be implemented is assumed to be given as C source code,
whose n data structures (i.e. variables, arrays, structures) have to be loaded
in memory banks or external memory. The size of data structure si for
i ∈ {1, . . . , n} is expressed in kB. During each time interval It, the appli-
cation requires accessing a given subset At of its data structures. Thus ei,t
denotes the number of times that data structure si ∈ At is accessed during
time interval It, for all t ∈ {1, . . . , T}. The processor can access all its mem-
ory bank simultaneously, which allows for parallel data loading. Thus, two
data structures can be loaded in parallel provided that they are allocated to
two different memory banks. Two data structures are said to be conflicting
whenever they are required at the same time by the processor. Each conflict
has a cost, which is equal to the number of times the conflict appears in
the current time interval. This cost might be non-integer if the application
source code has been analyzed by a statistic-based code-profiling software
[8, 11]. Thus, the number of conflicts in It is denoted by ot, and dk,t is the
cost of conflict (k, t) = (k1, k2) during time interval It for all k in {1, . . . , ot},
k1 and k2 in At, and t in {1, . . . , T}.

A conflict between two data structures is said to be closed if both data
structures are allocated to two different memory banks. In any other case,
the conflict is said to be open and its cost has to be paid.

Initially, all data structures are in the external memory and memory
banks are empty. The time required for moving a data structure from the
external memory to a memory bank (and vice-versa) is v ms/kB. The time
required for moving a data structure from a memory bank to another is ℓ

ms/kB. We suppose that v ≥ ℓ and v < p because a DMA (Direct Memory

4



Access) controller is part of the memory architecture, which allows for a
direct access to data structures.

The cost of an allocation is expressed in milliseconds and is the sum
of two terms. The first term is the access cost for executing operations in
the application which also includes the cost of conflicts cost of all the data
structures that are in a memory bank, plus the access cost of all the data
structures allocated to the external memory minus the closed conflict cost.
The second term is the cost of changing the allocation of structures from a
time interval to the next one.

The dynamic memory allocation problem consists in allocating a memory
bank or the external memory to any data structure of the application for each
time interval, so as to minimize the time spent accessing and moving data
structures while satisfying the memory bank capacity.

3. Iterative Approaches

In Soto et al. [23], we have introduced two heuristic iterative approaches
which iteratively build a solution. They rely on addressing static memory
allocation problems. The first approach called Long-term addresses theMem-
Explorer problem (ME) [22] which consists in finding a memory allocation for
data structures such that the time spent accessing these data is minimized,
for a given number of capacitated memory banks and an external memory.
The second approach named Short-term addresses the MemExplorer-Prime
problem (ME ′)[23] which is similar to MemExplorer but that considers an
initial memory allocation for data structures. Thus, in addition to minimiz-
ing the time spent accessing data, the cost of changing the allocation of these
data is also minimized. Table 1 points out the differences between these two
problems in terms of inputs, outputs, constraints and objective function.

In [23] and [22], these two static problems have been tackled using a Vari-
able Neighborhood Search-based approach hybridized with a Tabu Search.
The VNS starts with greedy and random solutions and explores two different
neighborhoods. The first neighborhood swaps data structures in memory
banks provided that memory banks capacity are not exceeded, whereas the
second one performs new allocations which may lead to exceed the memory
bank capacity (in that case the allocation is repaired afterward). The Tabu
Search procedure uses the same neighborhoods, with a dynamic tabu list
whose tenure is smartly adapted during the search.

5



Table 1: MemExplorer and MemExplorer-Prime summary

Problem Inputs Constraints Objective function Outputs

ME

n,m, q, p,
si, ei, dk,
list of conflicts

memory bank
capacity

access cost single allocation
of all data struc-
tures to memory
banks

ME′

same as above

+ v, ℓ + initial
allocation

same as above access cost +
transitional cost

same as above

For each time interval t, Long-term builds a preliminary allocation Pt

called the seed allocation. The allocation for the time interval t, denoted by
Xt is built upon that seed allocation. Sections 3.1 and 3.2 present two ways
of building a solution based on the seed allocations at each iteration. The
present paragraph focuses on the construction of the seed solution Pt at time
interval t.

The seed allocation is selected among two candidate allocations. The first
one is the seed allocation for the previous time interval Pt−1. The second
candidate is the allocation found by solving MemExplorer on an instance
built by gathering all the data structures, number of accesses to data, conflicts
and cost involved from the current interval t to the last one. The total cost
of both candidate allocations is then computed. This cost is the sum of two
sub-costs. The first sub-cost is the cost that we would have if the candidate
allocation was applied from the current time interval to the last one. The
second sub-cost is the cost that should be paid for changing the memory
mapping from the allocation of the previous time interval to the considered
candidate allocation. The candidate allocation associated with the minimum
total cost is selected as the seed allocation, and referred to as Pt.

Short-term builds an allocation for a time interval by solving MemExplorer-
Prime on an instance built by gathering all the data structures, number of
accesses to data, conflicts and costs involved only in the current time interval,
and also by considering the allocation in the previous time interval.

Long-term takes into account the application’s requirements (data struc-
tures, number of accesses to data, conflicts and costs) for the current and
future time intervals.

We now explain why Short-term and Long-term produce solutions that
tend to have specific features. When the capacity of memory banks is large,

6



Long-term tends to avoid moving data structures from a time interval to
the next one. Indeed, for all t, a good seed allocation found at the first
time intervals has a high probability to reach a total cost lesser than the
other candidate allocation, and to be selected as a seed allocation for the
next intervals. This is partly due to the fact that the changing cost of such
an allocation is zero, as memory bank capacity allows for keeping the same
allocation for all time intervals.

By contrast, Short-term minimizes the cost incurred by accessing data
structures and the cost for changing the current allocation of data structures
from a time interval to the next one. In general, the cost for moving data
structures involved in a conflict is much less than the cost to be paid if the
conflict is open. Thus, Short-term is prone to change the allocation of data
structures from a time interval to the next one, but often at the expense of
global solution quality.

Since Long-term has the advantage of stability over time, and Short-term
has the advantage of flexibility, we are interested in a mid-term approach
that combines the benefits of both approaches. We propose two mid-term
approaches, the first one uses a rolling horizon and the other one weights the
time interval requirements. These approaches are described below.

3.1. Mid-term approach with a rolling horizon

Long-term solves MemExplorer for all time intervals and Short-term ad-
dresses MemExplorer-Prime only once. Therefore, the mid-term approach
should solve MemExplorer and MemExplorer-Prime for an intermediate num-
ber of times intervals. Based on this idea, the first version of mid-term ap-
proach uses a rolling horizon of length h. Algorithm 1 presents Mid-term
with a rolling horizon which proceeds as follows. An allocation of data struc-
tures to memory banks has to be set for each time interval sequentially from
the first time interval to the last one. As in Long term, the allocation at
time interval t is based on a seed allocation (Pt) which is the best one out
of three allocations: the seed allocation of the previous time interval (Pt−1),
the allocation of MemExplorer for the following h time intervals (Mt), and
the allocation of MemExplorer-Prime for the same h time intervals with the
allocation of the previous interval as initial allocation (M ′

t).
A complete solution is represented by a matrix X , which is composed of

T + 1 vectors Xt for all t ∈ {0, . . . , T}. Vector Xt is the memory allocation
at time interval t. Thus element xti of vector Xt represents the allocation
of data structure i at time interval t. Element pti of vector Pt represents

7



Algorithm 1: Mid-term with a rolling horizon

1 Input: length of rolling horizon h

2 // Initializations

3

4 Initialize X0: x0i = m+ 1, for all i ∈ {1, . . . , n}
5 P0 ← X0, p0i = x0i

6 for t← 1 to T do

7 // Generate the three candidate allocations

8 Pt−1 ← previous seed allocation
9 Mt ← MemExplorer for h time intervals

10 M ′

t ← MemExplorer-Prime for h time intervals (initial alloc. Xt−1)
11 // Compute the cost and select the seed allocation

12 Compute the cost of candidate allocations Pt−1, Mt and M ′

t

13 Select the minimum cost allocation as the seed allocation Pt

14 // Build the solution for current time interval

15 xti = pti for all i ∈ ∪
j=t
j=0

At and xti = m+ 1 for the remaining data
structures

16 end

the seed allocation of data structure i at time interval t. Initially, all data
structures are allocated to the external memory, hence x0i = m + 1 for all
i ∈ {1, . . . n} (Algo 1 - line 3). As mentioned before, the seed allocation in
the time interval t is denoted by Pt. The initial seed allocation P0 is the
initial memory allocation X0 (line 4).

For each time interval t, this algorithm first generates three candidate
allocations. The first one is the seed allocation Pt−1 used to build the mem-
ory allocation of the previous time interval Xt−1 (line 7). The second one,
Mt is the allocation obtained by solving MemExplorer for data structures,
number of accesses to data, conflicts and access costs involved from the time
interval t to time interval t+h−1 (line 8). The last candidate allocation, M ′

t

is generated by MemExplorer-Prime for h time intervals using the memory
mapping of the previous time interval Xt−1, as the initial allocation. Alloca-
tion M ′

t takes into account the transitional cost for changing the allocation
of data structures from the allocation of the previous time interval and the
access cost (line 9).

For each of the three candidate allocations, the algorithm computes the

8



total cost which is the sum of two sub-costs. The first one is the access cost
that we would have if the candidate allocation was applied from the current
time interval t to the last one. The second sub-cost is the transitional cost
for moving data structures from time interval t− 1 to t that should be paid
if the candidate allocation would be applied (line 11).

The selected allocation is the one whose total cost is minimum (line 12).
The allocation Xt for time interval t is initialized to the seed allocation Pt

(line 13); then, the data structures that are not required until the current
time interval are allocated to the external memory.

3.2. Mid-term approach with weighted future requirements

Long-term is not bound to change data structures allocation, because
future and present requirements are considered equally important. In par-
ticular, a very high cost conflict occurring in a quite distant future will have
a significant impact on all the allocations to be computed before its actual
occurrence. On the contrary, Short-term is prone to move data structures
in order to find an allocation that only minimizes the cost of moving data
structures and access cost incurred by the current time interval. This is of
course done at the expense of anticipation of future requirements that are
totally ignored, and it can be observed that this approach produces too many
moves.

To overcome these drawbacks, we propose another mid-term approach
which attempts to balance the number of moves between two successive time
intervals. We have then weighted the requirements of each time interval.
Future requirements are less and less weighted as they are far away from the
current time interval. This mid-term approach considers future requirements
but giving more importance to the one appearing in the nearest future. Thus,
we avoid the drawbacks of Long-term while taking advantage of the flexible
nature of Short-term. Algorithm 2 shows Mid-term with weighted future
requirements.

First, the decay rate α ∈ [0, 1] has to be set. At time interval t, the cost of
all the conflicts that arise from time interval t+1 are multiplied by α, those
arising from time interval t+2 are multiplied by α2, those arising from time
interval t + k are multiplied by αk, until the end of the horizon. Long-term
corresponds to α = 1 whereas Short-term can be computed with α = 0.

Numerical experiments suggest that the best trade off between these two
extreme strategies can be found based on the ratio between memory bank

9



Algorithm 2: Mid-term with weighted future requirements

1 Input: Decay rate α

2 // Initialization

3 Initialize X0: x0i = m+ 1, for all i ∈ {1, . . . n}
4 P0 ← X0

5 for t← 1 to T do

6 // Generate candidate allocations

7 Pt−1 ← previous seed allocation
8 Mt ← MemExplorer (α-weighted requirements from interval t to T )
9 M ′

t ← MemExplorer-Prime (α-weighted requirements from interval
t to T and initial allocation Xt−1)

10 // Compute the cost and select the seed allocation

11 Compute the cost of candidate allocations Pt−1, Mt and M ′

t

12 Select the minimum cost allocation as the seed allocation Pt

13 // Build final allocation for current time interval

14 xti = pti for all i ∈ ∪
j=t
j=0

At and xti = m+ 1 for the remaining data
structures

15 end

capacity and the size of data structures, but it also depends on p, ℓ and v.
The decay rate is then empirically defined by:

α =































1 if

∑m

j=1
cj

∑n

i=1
si
≥ 1

min

(

1,
v

p · ℓ
·

∑m

j=1
cj

∑n

i=1
si

)

otherwise

(1)

Whenever the memory bank capacity is large enough to accommodate all
data structures, Long-term tends to be very efficient as very few modifications

from a time interval to the next one may be needed. Then, if the ratio
∑m

j=1
cj

∑n
i=1

si

increases, then a large α is suitable. In addition, a high cost for moving
data structures also leads to favor steady assignments for data structures.
Consequently, a large v

ℓ
leads to high values for α. However, a large penalty

cost p makes it more and more costly to access data structures that are in
the external memory. Then, if memory bank capacity is modest, it might be

10



profitable to move the data structures that are required at each time interval
in the memory banks, hence favoring flexibility. So, if p is large, then a
smaller decay rate α should be desirable to reach high-quality solutions.

Initialization is the same as in the Mid-term approach with a rolling
horizon (Algo 2 -line 3-4), and a time interval allocation is generated as in
Algorithm 1.

At each time interval t, Algorithm 2 generates three candidate allocations
(line 7-9). The first one is the seed allocation Pt−1 used to build the memory
allocation of the previous time interval Xt−1 (line 7). The second one, Mt

is the allocation obtained by solving MemExplorer by weighting the require-
ments for the current time interval t to the last one as explained above (line
8). The cost of conflicts occurring at time interval t are multiplied by αr−t for
all r ∈ {t, . . . , T}. Hence, the future requirements are less and less weighted
as they are far away from the current time interval. The last candidate al-
location, M ′

t is the allocation found by MemExplorer-Prime weighting the
requirements and using the memory mapping of the previous time interval
Xt−1 as the initial allocation (line 9). The rest of the algorithm is similar to
Algorithm 1.

4. Computational Results

4.1. Implementation

From our experience, it appears that the solution quality of Long-term
and Short-term is very sensitive to the ratio of the memory bank capacity over
the total size of data structures. We have used two groups of instances for
testing our algorithms. Group A is composed of real and artificial instances
for which memory bank capacity is too small for accommodating all the
data structures (hence the external memory is necessary). The instances in
Group B are the same, but the memory bank capacity is large enough for
accommodating all the data structures.

Real instances originate from electronic design problems addressed in the
Lab-STICC laboratory. Artificial instances are composed of the last eleven
instances of Table 2, and originate from DIMACS [15]. They have been en-
riched by randomly generating conflict costs, number and capacity of memory
banks, sizes and number of accesses to data structures. For each instance, we
have divided the conflicts and data structures into different time intervals.
All instances are available online for download [18].

11



We have tested our approaches with artificially large instances to assess
their practical use for forthcoming needs, as technology tends to integrate
more and more functionalities in embedded systems.

All algorithms have been implemented in C++ and compiled with gcc

4.11 in Linux OS 10.04 using an Intel Pentium IV processor system at 3
GHz with 1 GByte RAM. The time q spent by the processor to access data
structures to memory banks is set to 1 ms. We have set factor p to access
data structures to external memory to 16, as with TI C6201. The cost v for
moving a data structure from the external memory to memory banks and
vice versa is set to 4 ms/kB and cost for moving data structures between
memory banks is equal to 1 ms/kB.

From our experiments for the mid-term approach with rolling horizon,
we empirically set h to 2 for the instances with less than 8 conflicts (o < 8),
and for the remaining instances h is set to 3. The decay rate α is calculated
using Equation (1).

4.2. Results

In Tables 2 and 3, we report the results of the ILP formulation [23]. The
instances are sorted by non decreasing number of conflicts.

The first three columns show the main characteristics of instances such
as instance’s name, number of data structures n, conflicts o, memory bank m

and time intervals T . The next columns present the cost reached by the ILP
formulation solved with Xpress-MP. The stopping criterion is set to one hour
after the last integer value is reached. The best solution found so far (if any)
is then returned by the solver. For the ILP we display the lower bound and
the best solution. The solver cannot find any result for some large instances
due to memory issues.

Tables 4 and 5 present the main results concerning the iterative ap-
proaches. For each instance, we have run each iterative approach twelve
times. Table 4 displays the objective function value of the best solution found
and its CPU time. Additionally, we have computed the standard deviation
(σ) and the coefficient of variance (CV ) for each approach. The coefficient of
variance is the ratio of the standard deviation to the mean cost. CV allows
us to compare the variance of approaches using instances which have widely
different means. The coefficient of variance shows that iterative approaches
do not have high variability building solutions. Since all iterative approaches
have very similar values for CV (around 0.01), they are not reported in the
tables.

12



At the bottom of these tables, we report the number of optimal solutions
and the number of best solutions returned by each approach. We also report
the average CPU time and the gap to optimality. A star has been added to the
instance’s name to locate the one for which the optimal value is known. Mid-
term approach with weighted future needs always finds the optimal solution
when it is known. For the other cases, it reaches the best cost except for
the instance mulsol i4dyA in group A and mpeg2enc2dy2B in group B. Mid-
term approach with rolling horizon returns the best solution for the instance
mulsol i4dyA. For the instance mpeg2enc2dy2A Long-term reaches the best
objective function value. The reason why mid-term does not return the best
solution for mpeg2enc2dy2A is that the decay rate α is not one (see the long-
term approach).

In group A, the number of best solutions reported by the mid-term ap-
proach with weighted needs is 35, compared to 12 with the mid-term ap-
proach with rolling horizon, 15 with Short-term, 11 with Long-term and 24
with the ILP model. In group B, the mid-term approach with weighted needs
reaches the best solution for 36 instances, while Long-term does it for 25 in-
stances, the mid-term approach with rolling horizon does it for 22 instances
and Short-term reaches the best solution for only 14 instances.

In group B, the mid-term approach with weighted needs works with α

equals to one, i.e, the future requirements are as important as the present
ones, as in Long-term. However, this mid-term approach reports better re-
sults than Long-term, because it considers three candidate allocations at each
time interval.

In general, Long-term reaches the best results when the capacity of mem-
ory banks is sufficiently large, because it requires less allocation changes from
a time interval to the next one. When the cost of moving data structures is
small enough, then Short-term reaches the best results.

The minimum average gap is reached by the mid-term approach with
weighted needs, which shows the competitiveness of this approach over the
other ones. The highest CPU time is obtained by the ILP formulation and the
lowest one is reached by the Short-term approach, which is not a surprising
result.

In order to assess the benefit of comparing three candidate allocations
in the mid-term approach with weighted future needs, we have tested this
approach using only two candidate allocations. The impact of using three
candidate allocations is significant for large instances only. For this reason,
Table 6 displays the objective value returned by using the approach without

13



Table 2: ILP results for Group A

Instances ILP

Name n\o\m T cost lower bound Optimal (s)

gsm newdyA 6\5\2 2 339.00 339.00 yes 0.05
gsm newdy2A 6\5\2 2 7,808.00 7,808.00 yes 0.03
compressdy2A 6\6\2 3 4,260,352.00 4,260,352.00 yes 0.08
incompressdy2A 10\6\2 3 4,305,152.00 4,305,152.00 yes 0.08
lmsbdy2A 8\7\2 3 38,805,539.00 38,805,539.00 yes 0.13
cjpegdy2A 11\7\2 4 28,099,184.00 28,099,184.00 yes 0.17
incjpegdy2A 11\7\2 4 18,883,184.00 18,883,184.00 yes 0.17
lmsbvdyA 8\8\2 3 4,226,438.00 4,226,438.00 yes 0.14
lmsbvdy2A 8\8\2 3 20,051,919.00 20,051,919.00 yes 0.19
lmsbvdyexpdyA 8\8\2 4 67,250,834.00 67,250,834.00 yes 0.14
lmsbv01dy2A 8\8\2 4 67,250,834.00 67,250,834.00 yes 0.16
spectraldyA 9\8\2 3 29,512.00 29,512.00 yes 0.11
adpcmdy2A 10\8\2 3 44,192.00 44,192.00 yes 0.14
inadpcmdy2A 10\8\2 3 46,420.00 46,420.00 yes 0.17
inspectraldyA 10\8\2 3 41,232.00 41,232.00 yes 0.08
incompressdyA 10\10\2 3 6,714,272.00 6,714,272.00 yes 0.05
inexample10A 10\10\2 3 133.36 133.36 yes 0.13
inlmsbdy2A 16\14\2 4 48,341,034.00 48,341,034.00 yes 0.16
ingsm newdy2A 18\15\2 3 2,266.24 2,266.24 yes 0.05
ingsmdyA 19\18\2 5 7,237.00 7,237.00 yes 0.27
involterradyA 24\18\2 3 411.00 411.00 yes 0.33
inexample50A 50\50\2 5 1,022.47 1,022.47 yes 0.42
treillisdy2A 33\61\2 6 1,805.56 1,805.56 yes 0.83
inturbocodedyA 36\66\3 3 23,052.00 23,052.00 yes 0.22
mpeg2enc2dy2A 130\239\2 12 9,904.09 8,890.37 no 3,615.50
alidy2A 192\960\6 48 108,699.00 79,754.40 no 3,731.87

myciel7dyA 191\2360\4 24 486,449.00 232,212.00 no 3,675.82
zeroin i3dyA 206\3540\15 35 750,128.00 375,064.00 no 4,642.19
zeroin i2dyA 211\3541\15 35 - - no 3,600.00
r125.5dyA 125\3838\18 38 - - no 3,600.00
mulsol i2dyA 188\3885\16 39 764,693.00 281,743.00 no 4,459.82
mulsol i1dyA 197\3925\25 39 - - no 3,600.00
mulsol i4dyA 185\3946\16 39 - - no 3,600.00
mulsol i5dyA 186\3973\16 40 748,781.00 264,240.00 no 4,130.75
zeroin i1dyA 211\4100\25 41 - - no 3,600.00
r125.1cdyA 125\7501\23 75 - - no 3,600.00
fpsol2i3dyA 425\8688\15 87 - - no 3,600.00

Number of optimal solutions 24
Average cpu (s) 1,374.60

14



Table 3: ILP results for Group B

Instances ILP

Name n\o\m T cost lower bound Optimal (s)

gsm newdyB 6\5\2 2 336.00 336.00 yes 0.016
gsm newdy2B 6\5\2 2 7,808.00 7,808.00 yes 0.016
compressdy2B 6\6\2 3 334,400.00 334,400.00 yes 0.016
incompressdy2B 10\6\2 3 356,608.00 356,608.00 yes 0.109
lmsbdy2B 8\7\2 3 7,393,285.00 7,393,285.00 yes 0.032
cjpegdy2B 11\7\2 4 4,466,800.00 4,466,800.00 yes 0.093
incjpegdy2B 11\7\2 4 4,466,800.00 4,466,800.00 yes 0.156
lmsbvdyB 8\8\2 3 4,196,158.00 4,196,158.00 yes 0.031
lmsbvdy2B 8\8\2 3 4,323,294.00 4,323,294.00 yes 0.031
lmsbvdyexpdyB 8\8\2 4 4,334,256.00 4,334,256.00 yes 0.078
lmsbv01dy2B 8\8\2 4 4,334,256.00 4,334,256.00 yes 0.093
spectraldyB 9\8\2 3 7,604.00 7,604.00 yes 0.031
adpcmdy2B 10\8\2 3 44,192.00 44,192.00 yes 0.055
inadpcmdy2B 10\8\2 3 46,420.00 46,420.00 yes 0.078
inspectraldyB 10\8\2 3 9,488.00 9,488.00 yes 0.145
incompressdyB 10\10\2 3 695,476.00 695,476.00 yes 0.218
inexample10B 10\10\2 3 109.36 109.36 yes 0.093
inlmsbdy2B 16\14\2 4 16,879,628.00 16,879,628.00 yes 0.465
ingsm newdy2B 18\15\2 3 2,266.24 2,266.24 yes 0.07
ingsmdyB 19\18\2 5 5,067.00 5,067.00 yes 0.805
involterradyB 24\18\2 3 411.00 411.00 yes 0.175
inexample50B 50\50\2 5 511.59 255.80 no 3,647.01
treillisdy2B 33\61\2 6 1,805.56 1,805.56 yes 0.515
inturbocodedyB 36\66\3 3 6,402.00 6,402.00 yes 1.15
mpeg2enc2dy2B 130\239\2 12 9,830.44 4,915.22 no 3,637.47
alidy2B 192\960\6 48 93,330.00 46,665.00 no 3,767.53

myciel7dyB 191\2360\4 24 300,127.00 147,560.00 no 3,610.73
zeroin i3dyB 206\3540\15 35 - - no 3,600.00
zeroin i2dyB 211\3541\15 35 - - no 3,600.00
r125.5dyB 125\3838\18 38 - - no 3,600.00
mulsol i2dyB 188\3885\16 39 440,887.00 215,011.00 no 3,704.72
mulsol i1dyB 197\3925\25 39 - - no 3,600.00
mulsol i4dyB 185\3946\16 39 - - no 3,600.00
mulsol i5dyB 186\3973\16 40 430,690.00 220,528.00 no 3,693.96
zeroin i1dyB 211\4100\25 41 - - no 3,600.00
r125.1cdyB 125\7501\23 75 - - no 3,600.00
fpsol2i3dyB 425\8688\15 87 - - no 3,600.00

Number of optimal solutions 23
Average cpu (s) 1,418.00

15



Table 4: Iterative approaches results for Group A
Instance Long-term Short-term Mid-term rolling horizon Mid-term weighted needs

Name cost (s) cost (s) cost (s) cost (s) α

*gsm newdyA 339.00 0.21 339.00 0.05 339.00 0.21 339.00 0.21 0.17
*gsm newdy2A 7,808.00 0.02 7,808.00 0.03 7,808.00 0.04 7,808.00 0.04 0.17
*compressdy2A 4,262,400.00 0.43 4,260,352.00 0.43 4,260,352.00 0.64 4,260,352.00 0.69 0.14
*incompressdy2A 4,305,152.00 0.44 4,305,152.00 0.22 4,305,152.00 0.59 4,305,152.00 0.63 0.05
*lmsbdy2A 54,510,627.00 0.51 38,823,971.00 0.27 38,807,587.00 0.74 38,805,539.00 0.77 0.14
*cjpegdy2A 50,049,648.00 0.73 28,099,184.00 0.31 50,049,648.00 0.99 28,099,184.00 1.20 0.07
*incjpegdy2A 40,850,032.00 0.68 18,883,184.00 0.26 40,833,648.00 0.92 18,883,184.00 1.21 0.07
*lmsbvdyA 4,226,438.00 0.55 4,226,795.00 0.31 4,226,438.00 0.78 4,226,438.00 0.89 0.12
*lmsbvdy2A 20,074,461.00 0.39 20,051,919.00 0.16 20,051,919.00 0.55 20,051,919.00 0.55 0.14
*lmsbvdyexpdyA 67,300,041.00 0.82 67,285,680.00 0.52 67,300,041.00 1.32 67,250,834.00 1.43 0.10
*lmsbv01dy2A 67,300,041.00 0.81 67,285,680.00 0.55 67,300,041.00 1.32 67,250,834.00 1.42 0.10
*spectraldyA 43,560.00 0.58 29,551.00 0.31 41,254.00 0.75 29,512.00 0.79 0.10
*adpcmdy2A 44,192.00 0.06 49,120.00 0.08 44,192.00 0.10 44,192.00 0.13 0.11
*inadpcmdy2A 46,420.00 0.06 46,420.00 0.06 46,420.00 0.10 46,420.00 0.11 0.11
*inspectraldyA 73,088.00 0.64 41,232.00 0.39 73,088.00 0.92 41,232.00 1.18 0.05
*incompressdyA 6,714,272.00 0.61 6,714,272.00 0.39 6,714,272.00 0.92 6,714,272.00 1.07 0.05
*inexample10A 525.66 0.78 133.36 0.38 390.31 1.20 133.36 1.20 0.10
*inlmsbdy2A 205,299,844.00 1.02 48,341,034.00 0.41 172,857,445.00 1.44 48,341,034.00 1.82 0.06
*ingsm newdy2A 2,266.24 0.07 2,266.24 0.07 2,266.24 0.12 2,266.24 0.12 0.06
*ingsmdyA 34,344.00 1.28 7,237.00 0.37 23,752.00 1.59 7,237.00 2.01 0.05
*involterradyA 411.00 0.12 411.00 0.13 411.00 0.20 411.00 0.18 0.06
*inexample50A 3,502.88 3.64 1,025.21 1.43 2,649.09 4.84 1,022.47 6.46 0.04
*treillisdy2A 1,805.56 0.50 1,867.00 0.57 1,810.19 0.76 1,805.56 0.96 0.15
*inturbocodedyA 51,864.00 2.02 23,070.00 0.87 48,360.00 2.79 23,052.00 3.03 0.06
mpeg2enc2dy2A 9,812.31 4.20 10,264.03 3.01 10,190.31 5.44 10,190.56 5.53 0.05
alidy2A 1,116,698.00 160.48 111,382.00 29.91 305,380.00 124.62 108,693.00 64.08 0.03

myciel7dyA 800,622.00 377.08 555,610.00 41.07 547,066.00 265.90 472,091.00 179.89 0.10
zeroin i3dyA 997,617.00 1,463.72 903,824.00 107.05 706,531.00 688.82 703,390.00 483.15 0.10
zeroin i2dyA 935,763.00 1,186.34 817,312.00 114.28 641,684.95 708.22 634,366.00 457.12 0.10
r125.5dyA 1,521,866.00 1,028.86 689,553.00 78.90 672,984.00 471.11 621,773.00 332.45 0.13
mulsol i2dyA 1,271,960.00 1,286.69 1,120,751.00 129.82 746,079.80 790.90 743,182.00 541.44 0.11
mulsol i1dyA 1,276,746.00 1,396.13 1,124,113.00 153.04 740,119.00 768.76 709,795.00 649.39 0.08
mulsol i4dyA 1,175,568.00 1,657.35 1,091,936.00 137.00 661,234.00 734.38 695,340.00 596.88 0.11
mulsol i5dyA 1,270,156.00 1,480.78 1,160,151.00 143.35 703,946.00 781.72 685,759.00 617.17 0.11
zeroin i1dyA 860,190.00 1,691.16 881,192.00 165.62 648,437.00 806.58 647,422.00 620.25 0.08
r125.1cdyA 2,339,105.00 950.50 954,699.00 152.10 931,199.00 726.73 919,103.00 627.80 0.16
fpsol2i3dyA 4,137,879.00 1,062.37 3,565,114.00 479.62 3,640,869.00 1,453.46 3,150,378.00 1,784.11 0.05

Optimal sol. 10 15 11 24
Best sol. 11 15 12 35
Aver. cpu 371.96 47.12 225.69 188.85
Aver. gap (%) 96 5 49 1

16



Table 5: Iterative approaches results for Group B
Instance Long-term Short-term Mid-term rolling horizon Mid-term weighted needs

Name cost (s) cost (s) cost (s) cost (s) α

*gsm newdyB 336.00 0.03 338.00 0.04 336.00 0.05 336.00 0.05 1.00
*gsm newdy2B 7,808.00 0.03 7,808.00 0.03 7,808.00 0.04 7,808.00 0.04 1.00
*compressdy2B 334,400.00 0.05 334,912.00 0.06 334,400.00 0.08 334,400.00 0.09 1.00
*incompressdy2B 356,608.00 0.08 357,120.00 0.07 356,608.00 0.11 356,608.00 0.12 1.00
*lmsbdy2B 7,393,285.00 0.06 7,395,333.00 0.08 7,393,285.00 0.12 7,393,285.00 0.12 1.00
*cjpegdy2B 4,466,800.00 0.10 4,466,800.00 0.10 4,466,800.00 0.16 4,466,800.00 0.18 1.00
*incjpegdy2B 4,466,800.00 0.09 4,466,800.00 0.11 4,466,800.00 0.17 4,466,800.00 0.18 1.00
*lmsbvdyB 4,196,158.00 0.07 4,196,158.00 0.07 4,196,158.00 0.11 4,196,158.00 0.12 1.00
*lmsbvdy2B 4,323,294.00 0.06 4,323,294.00 0.07 4,323,294.00 0.10 4,323,294.00 0.10 1.00
*lmsbvdyexpdyB 4,334,256.00 0.09 4,334,256.00 0.10 4,334,256.00 0.16 4,334,256.00 0.16 1.00
*lmsbv01dy2B 4,334,256.00 0.09 4,334,256.00 0.10 4,334,256.00 0.16 4,334,256.00 0.16 1.00
*spectraldyB 7,604.00 0.07 7,604.00 0.07 7,604.00 0.12 7,604.00 0.12 1.00
*adpcmdy2B 44,192.00 0.06 49,120.00 0.07 44,192.00 0.10 44,192.00 0.11 1.00
*inadpcmdy2B 46,420.00 0.06 46,420.00 0.06 46,420.00 0.10 46,420.00 0.10 1.00
*inspectraldyB 9,488.00 0.92 9,608.00 0.30 9,488.00 1.30 9,488.00 1.27 1.00
*incompressdyB 695,476.00 0.96 695,536.00 0.49 695,476.00 1.38 695,476.00 1.39 1.00
*inexample10B 109.36 1.42 109.36 0.47 109.36 1.91 109.36 1.94 1.00
*inlmsbdy2B 16,879,628.00 0.62 16,879,628.00 0.29 16,879,628.00 0.73 16,879,628.00 1.10 1.00
*ingsm newdy2B 2,266.24 0.07 2,266.24 0.08 2,266.24 0.11 2,266.24 0.12 1.00
*ingsmdyB 5,067.00 0.88 5,067.00 0.34 5,067.00 0.91 5,067.00 1,65 1.00
*involterradyB 411.00 0.11 411.00 0.13 411.00 0.20 411.00 0,18 1.00
inexample50B 516.04 9.77 511.59 1.63 510.93 7.97 510.59 10.40 0.80
*treillisdy2B 1,805.56 0.52 1,867.00 0.57 1,810.19 0.72 1,805.56 0.90 1.00
*inturbocodedyB 6,402.00 0.26 6,501.00 0.25 6,402.00 0.42 6,402.00 0.41 1.00
mpeg2enc2dy2B 9,812.31 4.14 10,264.03 3.05 10,190.56 5.64 10,190.31 5.43 0.93
alidy2B 60,573.00 352.48 60,602.00 18.41 60,571.00 41.28 59648.00 38.97 0.51

myciel7dyB 162,011.00 41.86 166,429.00 9.85 166,209.00 23.81 161,684.00 62.45 1.00
zeroin i3dyB 211,585.00 470.51 219,654.00 22.73 215,089.00 46.81 211,581.00 505.04 1.00
zeroin i2dyB 210,077.00 332.42 216,326.00 23.83 212,504.00 47.43 210,077.00 437.17 1.00
r125.5dyB 219,977.00 331.59 221,419.00 11.35 220,735.00 25.66 219,910.00 481.68 1.00
mulsol i2dyB 231,671.00 408.25 238,770.00 18.72 235,755.00 38.79 231,650.00 496.25 1.00
mulsol i1dyB 222,293.00 420.03 230,076.00 25.38 225,071.00 50.87 222,291.00 574.03 1.00
mulsol i4dyB 231,178.00 387.62 239,978.00 17.69 234,676.00 38.54 231,154.00 452.40 1.00
mulsol i5dyB 235,038.00 353.40 242,198.00 18.71 239,640.00 40.15 235,011.00 439.18 1.00
zeroin i1dyB 231,057.00 567.14 237,775.00 28.38 233,821.00 57.82 231,036.00 645.84 1.00
r125.1cdyB 403,032.00 828.94 404,687.00 26.31 403,410.00 58.85 402,724.00 1,269.46 1.00
fpsol2i3dyB 515,555.00 1,374.28 527,995.00 111.67 525,609.00 237.13 515,404.00 1,999.16 1.00

Optimal sol. 23 14 22 23
Best sol. 25 14 22 36
Aver. cpu 159.17 9.23 19.73 200.76
Aver. gap (%) 6 7 6 6

17



the previous seed allocation Pt−1, without MemExplorer Mt and without
MemExplorer-Prime for the largest instances of Group A.

The gap in Table 6 measures the impact of not using one of the candidate
allocation in the mid-term approach. If the approach does not consider the
MemExplorer allocation as a candidate allocation, then the quality of mid-
term solution decreases on average by 28%. If MemExplorer-Prime is not
used, the solution quality drops by an average of 10%. Finally, if the previous
seed allocation is turned off, the quality solution decreases by an average of
2%.

Table 6: Assessing mid-term approach with weighted future needs

Instance Mid weighted without Pt−1 gap without Mt gap without M ′

t gap

*treillisdy2A 1,805.56 1,810.19 0.00 1,810.25 0.00 1,986.56 0.10
mpeg2enc2dy2A 10,190.56 10,190.56 0.00 10,190.56 0.00 12,046.34 0.18
alidy2A 108,693.00 108,860.00 0.00 111,849.00 0.03 109,475.00 0.01
myciel7dyA 472,091.00 480,514.00 0.02 571,190.00 0.21 540,903.00 0.15
zeroin i3dyA 703,390.00 700,728.00 0.00 939,445.00 0.34 806,031.00 0.15
zeroin i2dyA 634,366.00 642,026.00 0.01 832,730.00 0.31 685,407.00 0.08
r125.5dyA 621,773.00 624,884.00 0.01 687,131.00 0.11 647,384.00 0.04
mulsol i2dyA 743,182.00 746,763.00 0.00 1,146,375.00 0.54 830,451.00 0.12
mulsol i1dyA 709,795.00 729,262.00 0.03 1,092,377.00 0.54 786,813.00 0.11
mulsol i4dyA 695,340.00 732,603.00 0.05 1,131,758.00 0.63 746,599.00 0.07
mulsol i5dyA 685,759.00 732,451.00 0.07 1,150,778.00 0.68 769,228.00 0.12
zeroin i1dyA 647,422.00 670,385.00 0.04 855,477.00 0.32 713,735.00 0.10
r125.1cdyA 919,103.00 914,700.00 0.00 944,898.00 0.03 1,018,998.00 0.11
fpsol2i3dyA 3,150,378.00 3,185,194.00 0.01 3,594,043.00 0.14 3,215,902.00 0.02

Average gap (%) 1.77 27.66 9.69

4.3. Statistic analysis

Cost analysis. In order to achieve a fair comparison, we use the non paramet-
ric Friedman test [7]. We use this test to detect differences in the performance
of iterative approaches and ILP formulation using the results presented by
the above tables. We can use this test because the result over instances are
mutually independent. Thus we apply the Friedman test for costs comparing
(univariate model [3]) the performance in terms of solution quality.

The null hypothesis assumes that for each instance, the ranking of the
approaches is equally likely. The null hypothesis is rejected at the level of
significance 0.95 if the p-value is less than 0.05. Friedman test is 6.9488 for
the cost and its p-value is 1.364 × 10−11. We can reject the null hypothesis

18



for the cost at the level of significance 0.95. Then, there exists at least one
approach whose performance is different from at least one of the other ones.

As the null hypothesis of Friedman test was rejected, we can use a Post-
Hoc paired comparison to know if two metaheuristics are different [5]. Table
7 summarizes p-values for the paired comparisons for the cost. The bold
values means the approaches are different in terms of cost.

Table 7: p-value for Post-Hoc paired comparison for the cost

Long-term Short-term Mid rolling Mid weighted
ILP 8.54× 10−1 5.28× 10−1 9.20 ×10−1 3.41× 10−7

Long-term - 9.90× 10−1 3.52 ×10−1 4.60× 10−10

Short-term - - 1.43 ×10−1 1.38× 10−11

Mid rolling - - - 3.01× 10−5

For these two groups of instances, we conclude that mid-term approach
with weighted future needs has the best performance in terms of cost. There
does not exist a significant difference between the performance of the ILP
formulation, Long-term, Short-term and mid-term with rolling horizon ap-
proaches.

Impact of the seed solution. We also apply Friedman test to complete the
assessment of the mid-term approach with weighted future requirements us-
ing the data in Table 6. The value for this test is 5.3358 whose p-value is
6.546× 10−7. Then we can conclude that there exists at least one candidate
solution whose impact in the mid-term approach is different from at least one
of the other ones. Table 8 presents the Post-Hoc comparison for evaluating
the mid-term approach with weighted approach.

Table 8: p-value for Post-Hoc for assessing mid-term with weighted needs

Pt−1 Mt M ′

t

Mid weighted 4.28 ×10−1 2.42× 10−6 4.79× 10−7

Pt−1 - 2.79× 10−3 7.47× 10−4

Mt - - 9.90 ×10−1

From Tables 6 and 8, we can deduce that the candidate solutions produced
by MemExplorer and MemExplorer-Prime have the same impact on the mid-
term approach with weighted needs. The statistic analysis confirms that the

19



previous seed solution has quite a small impact on solution quality. Indeed,
Table 6 shows that the improvement due to this candidate is on average 2%,
which is worth keeping.

5. Conclusion

We have presented two mid-term approaches for iteratively building a so-
lution for the dynamic memory allocation problem that arises in the design
of embedded systems. These approaches are based on two static subproblems
for addressing memory allocation that have been devised earlier for address-
ing simplified problem versions. The first approach builds a solution for a
time interval by taking into account the requirements involved during the
rolling horizon. The other mid-term approach integrates the future needs
through a decay rate. The statistic tests show that the mid-term approach
with a rolling horizon has not a significant performance in terms of cost
and running time. Mid-term approach with weighted future requirements
reached the best performance in terms of cost but not in terms of CPU time.
Indeed, the main drawback of these approaches is that they do not con-
sider the complete problem in all time intervals. Consequently, future work
should concentrate on designing a global approach that builds a solution for
all time intervals such as a Greedy Randomized Adaptive Search Procedure
or a Variable Neighborhood Search.

References

[1] D. Atienza, S. Mamagkakis, F. Poletti, J. Mendias, F. Catthoor,
L. Benini, and D. Soudris. Efficient system-level prototyping of power-
aware dynamic memory managers for embedded systems. Integration,
the VLSI Journal, 39(2):113–130, 2006.

[2] C-T. Chang. Optimization approach for data allocation in multidisk
database. European Journal of Operational Research, 143(1):210–217,
2002.

[3] M. Chiarandini, L. Paquete, M. Preuss, and E. Ridge. Experiments
on metaheuristics: Methodological overview and open issues. Technical
Report DMF-2007-03-003, The Danish Mathematical Society, Denmark,
2007.

20



[4] A. Chimientia, L. Fanucci, R. Locatellic, and S. Saponarac. VLSI archi-
tecture for a low-power video codec system. Microelectronics Journal,
33(5):417–427, 2002.

[5] W.J. Conover. Practical nonparametric statistic. Wiley, New York, USA,
third edition, 1999.

[6] P. Coussy, E. Casseau, P. Bomel, A. Baganne, and E. Martin. A formal
method for hardware IP design and integration under I/O and tim-
ing constraints. ACM Transactions on Embedded Computing System,
5(1):29–53, 2006.

[7] M. Friedman. The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the American Statistical
Association, 32:675–701, 1937.

[8] M. Iverson, F. Ozguner, and L. Potter. Statistical prediction of task ex-
ecution times through analytic benchmarking for scheduling in a hetero-
geneous environment. IEEE Transactions on Computers, 48(12):1374–
1379, 1999.

[9] N. Julien, J. Laurent, E. Senn, and E. Martin. Power consumption
modeling and characterization of the TI C6201. IEEE Micro, 23(5):40–
49, 2003.

[10] P.K. Krause. The complexity of register allocation. Discrete Applied
Mathematics, 2013.

[11] W. Lee and M. Chang. A study of dynamic memory management in
C++ programs. Comp. Languages Systems and Structures, 28(3):237–
272, 2002.

[12] M-H. Lin. An optimal workload-based data allocation approach for
multidisk databases. Data and Knowledge Engineering, 68(5):499 – 508,
2009.

[13] N. Mladenović and P. Hansen. Variable neighbourhood decomposition
search. Computers and Operations Research, 24(11):1097–1100, 1997.

[14] A. Munier-Kordon and J-B. Note. A buffer minimization problem for the
design of embedded systems. European Journal of Operational Research,
164(3):669–679, 2005.

21



[15] D. Porumbel. DIMACS graphs: Benchmark instances and best upper
bound, 2009.

[16] Roadef/EURO. Challenge 2012: Machine reassignment.

[17] M. Soto. Optimization methods for the memory allocation problems in
embedded systems. PhD thesis, Université de Bretagne-Sud, Lorient,
France, 2011.

[18] M. Soto, A. Rossi, and M. Sevaux. Instances for the dynamic memory
allocation problem. Available for download.

[19] M. Soto, A. Rossi, and M. Sevaux. Two upper bounds on the chromatic
number. In Proc. CTW09 8th Cologne-Twente Workshop on Graphs and
Combinatorial Optimization, pages 191–194, Paris, France, 2009.

[20] M. Soto, A. Rossi, and M. Sevaux. Exact and metaheuristic approaches
for a memory allocation problem. In Proc. EU/MEeting, workshop on
the metaheuristics community, pages 25–29, Lorient, France, 2010.

[21] M. Soto, A. Rossi, and M. Sevaux. Métaheuristiques pour l’allocation de
mémoire dans les systèmes embarqués. In Proc. ROADEF 11e congrès de
la société Française de Recherche Opérationelle est d’Aide à la Décision,
pages 35–43, Toulouse, France, 2010.

[22] M. Soto, A. Rossi, and M. Sevaux. A mathematical model and a meta-
heuristic approach for a memory allocation problem. Journal of Heuris-
tics, 18(1):149–167, mar 2011.

[23] M. Soto, A. Rossi, and M. Sevaux. Two iterative metaheuristic ap-
proaches to dynamic memory allocation for embedded systems. In
P. Merz and J-K. Hao, editors, Evolutionary Computation in Combina-
torial Optimization - 11th European Conference, EvoCOP 2011, Torino,
Italy, April 27-29, 2011. Proceedings, volume 6622 of Lecture Notes in
Computer Science, pages 250–261. Springer, 2011.

[24] C. Wilbaut, S. Salhi, and S. Hanafi. An iterative variable-based fixa-
tion heuristic for the 0-1 multidimensional knapsack problem. European
Journal of Operational Research, 199(2):339–348, 2009.

22



[25] S. Wuytack, F. Catthoor, L. Nachtergaele, and H. De Man. Power ex-
ploration for data dominated video application. In Proc. IEEE Interna-
tional Symposium on Low Power Electronics and Design, pages 359–364,
Monterey, CA, USA, 1996.

23


