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AsstrRACT. We prove that the L¥ -solvability of the homogeneous Dirichlet problem for an elliptic operator
L = —divAV with real and merely bounded coefficients is equivalent to the L” -solvability of the Poisson
Dirichlet problem Lw = H —div F, which is defined in terms of an L”" estimate on the non-tangential maximal
function, assuming that dist(-, dQ)H and F lie in certain L” -Carleson-type spaces, and that the domain Q c
R™! n > 2, satisfies the corkscrew condition and has n-Ahlfors regular boundary. In turn, we use this result to
show that, in a bounded domain with uniformly n-rectifiable boundary that satisfies the corkscrew condition,
L” -solvability of the homogeneous Dirichlet problem for an operator L = — div AV satisfying the Dahlberg-
Kenig-Pipher condition (of arbitrarily large constant) implies solvability of the L?-regularity problem for the
adjoint operator L* = —divATV, where 1/p + 1/p’ = 1 and AT is the transpose matrix of A. This result for
Dahlberg-Kenig-Pipher operators is new even if Q is the unit ball, despite the fact that the L? -solvability of
the Dirichlet problem for these operators in Lipschitz domains has been known since 2001.

Further novel applications include i) new local estimates for the Green’s function and its gradient in rough
domains, ii) a local T'1-type theorem for the L”-solvability of the “Poisson-Regularity problem”, itself equiv-
alent to the L” -solvability of the homogeneous Dirichlet problem, in terms of certain gradient estimates for
local landscape functions, and iii) new L? estimates for the eigenfunctions (and their gradients) of symmetric
operators L on bounded rough domains.
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1. INTRODUCTION

The L?-solvability of homogeneous boundary value problems for second-order linear elliptic partial dif-
ferential equations with non-smooth coefficients on rough domains has been an area of intense and fruitful
research in the last few decades, culminating in shocking equivalences between certain geometric proper-
ties of domains in the Euclidean space and L”-solvability of the homogeneous Dirichlet problem for the
Laplacian. However, the LP-solvability of corresponding inhomogeneous problems has not been considered
in the literature, even for the Laplacian, and even in the simple geometric setting of the unit ball. Here, by
LP-solvability of a boundary value problem, we mean solvability of the problem together with a natural,
scale-invariant bound on the LP-norm of an appropriate non-tangential maximal function. For instance, a
natural question to consider is to find the quantitative conditions which should be put on H and F so that
the solution w to the problem

(1) { —divAVw = H — div F, in Q,

w=g, on 092,

satisfies that N(w) € LP(0Q), where N is the non-tangential maximal function, defined in Section 1.1.
Assuming that Q has reasonable geometry, if H = 0, F = 0, and A = [, then it is known that g € LP(9Q)
implies that N(w) € LP(0€Y), but the problem for non-trivial H and F' is not well understood, although
energy estimates for solutions of the Poisson problem are well-known if the data lie in Besov spaces (see
also Section 1.2.4 for some related results in the literature).

In this paper, we prove that the LP-solvability of the homogeneous Dirichlet problem (denoted (Dé))
—divAVu =0, in Q,
(12) { e on 50

is equivalent to the LP-solvability of the Poisson problem (1.1), whenever H and F lie in certain Carleson
spaces (see Theorems 1.11 and 1.22). Furthermore, we will see a non-trivial application of this result to the
regularity problem for elliptic PDEs with rough coefficients, which was our initial motivation to study the
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Poisson problem and shows that the question of the LP-solvability of the Poisson problem is far from being
an isolated curiosity.

We use the L?-solvability of the Poisson problem to study the Dirichlet regularity problem for Dahlberg-
Kenig-Pipher operators, which are operators L = —div AV where dist(-, Q) [VA|? satisfies a Carleson mea-
sure condition. More precisely, we show that if Q ¢ R*"!, n > 2 is bounded and uniformly n-rectifiable,
and if A is a real, not necessarily symmetric, DKP matrix in Q (see Definition 1.31), then L -solvability of
the Dirichlet problem (1.2) for the adjoint operator L* = —div ATV implies LP-solvability of the Dirichlet
regularity problem for the operator L (see Theorem 1.33). In particular, if Q is a bounded domain satis-
fying the corkscrew condition which has n-Ahlfors regular boundary and interior big pieces of chord-arc
domains, then for any DKP operator associated with Q, there exists p > 1 such that the regularity problem
for L is L?-solvable (Corollary 1.35). Note that Corollary 1.35 is new even when € is the unit ball, and our
result complements the study of the Dirichlet problem for DKP operators, initiated in 2001 [KPO1].

Briefly, we mention several further novel applications of the L”-solvability of the Poisson problem:

e We present new local L? estimates on the n.t. maximal function of the Green’s function and its gra-
dient (see (1.23) and (1.24)), which are equivalent to the solvability of (Dé,) (Theorem 1.22(g),(h)).

e We establish an equivalence between the solvability of (Dﬁ,) and a certain L? estimate on the non-
tangential maximal function of the gradient of (local) landscape functions of the operator — div ATV
(Theorem 1.22(f) and Remark 1.26). This result may be interpreted as a local T'1 theorem for the
LP-solvability of a problem we call the Poisson-regularity problem, itself also equivalent to the
solvability of (D%,) (Theorem 1.22(d).(e)).

e We furnish new estimates (Corollary 1.28) for eigenfunctions and their gradients on bounded rough
domains, in terms of the landscape function (also known as the torsion function), loosely related to
the Hassell-Tao inequality.

1.1. Definitions and main results. Let us now state the main results more precisely, and in order to do
so, we will need to record some definitions. We always consider domains Q ¢ R™! n > 1 satisfying
the corkscrew condition and with n-Ahlfors regular boundary (see Section 2.1.2 for definitions of these
classical geometric concepts), while A = (A;;) is always a real, not necessarily symmetric (n + 1) X (n + 1)
matrix of merely bounded measurable coefficients in Q verifying the strong ellipticity conditions

n
1
(1.3) VP <y A0k, Al < 5, x€Q, EER,
ij=1
for some A € (0,1). We denote L = —divAV, and L* = —divA”V where AT is the transpose of A.
Moreover, we denote 6(x) = 0g(x) := dist(x, Q°).
Fora > 0, U € R™! and & € 90U, we define the cone with vertex & and aperture a > 0 by

V8@ = (x €U x=¢ < (1 + a)sy(),

and if U = Q, we write y, = y:*. Define the non-tangential maximal function of u € L° (Q) by

loc
No(W)(€) := sup |u(x)|, foré& e dQ.
x€Ya(§)
Following [KP93], we introduce the modified non-tangential maximal function Na’g’r for a given aperture

« > 0, a parameter ¢ € (0, 1/2], and r > 1: for any u € L; (2), we write

~ 1/r
Rozs® = s (f ol ) g o0

XEYa(€)
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The L? norms of non-tangential maximal functions are equivalent under changes of « or the averaging
parameter ¢ (see Lemma 2.1). For ease of notation, we will often write N, , = Ny, if we do not wish to
specify ¢. When we do not need to specify neither o nor ¢, we will write N' = Ny, ¥ = vo, and N, = Nz .

Definition 1.4 (The L? Dirichlet and regularity problems). Let p € (1, o) and p’ its Holder conjugate. We
say that the (homogeneous) Dirichlet problem for the operator L with P data in Q is solvable (write (Dé/)
is solvable in Q), if there exists C > 1 so that for each g € C.(9€), the solution u to the continuous Dirichlet
problem (1.2) with boundary data g satisfies the estimate

(1.5) ”N(M)HLP,((')Q,O-) <C IIgIILn’(an,

where o is the restriction of the n-dimensional Hausdorff measure to dQ2. We call C in (1.5) the (DIL,,)
constant.

Let Q be a bounded domain, and p € (1, 00). We say that the (homogeneous) Dirichlet regularity problem
(or just regularity problem) for the operator L with V.Vl*l’(éﬂ, o) data is solvable in Q (write (Ré) is solvable
in Q), if there exists C > 1 so that for each f € Lip(9€2), the solution u to the continuous Dirichlet problem
for L (1.2) with boundary data f satisfies the estimate

(1.6) N> (Vi) < Oy

Here, Wl’p(aQ) is the Hajtasz-Sobolev space on 0Q; we defer its definition to Section 2.1.4. We call the
constant C in (1.6) the (Rlz;) constant.

From now on we take o0 = H"|sq to be the underlying measure on dQ. The space Wwip (0Q) was
identified in [MT] as the correct space to consider the L? regularity problem in rough domains beyond
the Lipschitz setting; indeed, if Q is Lipschitz, then (Ré) has usually [KP93, DPR17] been defined with
the estimate ||K/2(VM)”LP({)Q) < ClIVifllLroq) taking the place of (1.6), where V, denotes the tangential
derivative. In two-sided chord arc domains, one has that || f ||‘3m,( o [IV:fllLr(aq); for more information on
the geometric conditions that guarantee this bound, see [MT] and [TT].

1.1.1. LP-solvability of the Poisson-Dirichlet problem. Let g > 1 and ¢ € (0, 1/2]. Define the g-Carleson
functional of a function H : Q — R, H € L! (Q) by

loc

1 1/q
(1.7) Gr.qg(H)(E) := sup — (][ |H|q) dm(x),  &€0Q.
B(&,)NQ N B(x,6(x))

>0 T
The L? norms of the Carleson functionals ¢; , defined in (1.7) are equivalent under a change of the averag-
ing parameter ¢ (see Lemma 2.2), and thus we write 6, = 6, if we do not need to specify ¢.
Let us comment on the link between the Carleson functionals ¢, and the modified non tangential max-

imal functions K/,. For any ¢ > 1 and p > 1, let C, , be the Banach space of functions H € L?OC(Q) such
that €,(H) € LP(02), with norm

IHlIc,, = 1€(H)llLro0)-

For any r € [1,00], and p > 1, let N,,, be the Banach space of functions u € L (£2) such that X/,(u) €
LP(0Q) (we identify No = N), with norm

lluli,, == IN-@llLro0)-
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Let p,g € (1,00) and p’,q" the corresponding Holder conjugates. Then (see Proposition 2.4) N, , =
(Cy )", and we have the estimates

(1.8) | /Q Hudm| < 6, (Dl o)Wy @lliraey,  for each H € Cypu € Ny,
IINq(u)IILp(aQ) < sup ’ / Hudm)|, for each u € N p,.
H:G ()l =1 ' /2

The Carleson functionals as defined in (1.7) were introduced by Hytonen and Rosén in [HR13] when
Q is the half-space; they were motivated by the question of identifying the dual space of N, , which has
applications for the solvability of the Neumann problem [KP93, AA11, AR12, Bar21]. Hytonen and Rosén
obtained dyadic versions of the above duality [HR13, Section 2], and in the proof of Proposition 2.4 we
will see that their dyadic results translate to our setting of domains satisfying the corkscrew condition and
with n-Ahlfors regular boundary. Moreover, observe that (1.8) can be understood as a generalization of
Carleson’s theorem (see [Car62, Theorem 2] or [CMS85]). Finally, the spaces N, , and C,  are closely
related to the tent spaces of Coifman, Meyer and Stein [CMS85], and reduce to them for certain choices of
the parameters. Indeed, if we define the area integral operators by

. dm(x) \ & ~ . 9 1 dm(x) \ 1+
(19) A == ( /7 M ) A = ( / ) (]i L MHEdm) )

y
for g > 0 and ¢ € 0Q, then the proof of [CMS85, Theorem 3] implies that, under the assumption that Q is a
Corkscrew domain with n-Ahlfors regular boundary such that either Q is bounded or Q2 is unbounded,

(1.10) G2 (H)llro0) = ”ﬁl((sQH)HLP(éQ), forall p > 1.
Hence, if

TV = {H e L] (Q): A(H) e LP(OQ)}, TP :={H e L}, (Q): A H) € L'(0Q)}, 0<gq<p<oo,

loc loc

then for any p > 1, a given function H € LIZOC(Q) lies in C, ,, if and only if 6oH € Tf .

2(n+1)

We are ready to state the first main result. Write 2* = % and 2, = (2%) = =57,

Theorem 1.11. Let Q ¢ R"™!, n > 2 be a domain satisfying the corkscrew condition and with n-Ahlfors
regular boundary, such that either Q is bounded or 0Q is unbounded. Let p > 1, p’ its Holder conjugate,
and L = —divAV. Assume that (Dé,) is solvable in Q. Let g € C.(0Q), and H,F € L7 (Q). Then there

exists a unique weak solution w € C(Q) N WI’Z(Q) to the problem (1.1) satisfying that

loc
(1-12) ”NZ*(W)”Lp’(aQ) <C ||<52*(5QH)”L17’(,99) + ”CKZ(F)”LP'(QQ) + ”g”Lp’(aQ) .
Here, C depends only on n, A, p’, the corkscrew and n-Ahlfors regularity constants, and the (Dé,) constant.

Remark 1.13. Note that, by the classical De Giorgi-Nash-Moser theory for elliptic equations with non-zero
right-hand side, the use of the exponent 2* for the modified non-tangential maximal function in the left-
hand side of (1.12) is sharp under our quantitative assumptions on H and F. However, as will be clear by

the method of proof in Section 3, if g € [1, %1) and r € [1, %), then we may also show that

(1-14) “N(W)”Lp’(ag) <C [”Cgr’ (6QH)”LP’(()Q) + ||ng’ (F)”Lp’(ag) + ”g||Lp’(aQ)]-

Remark 1.15. The assumption H, F € L?(€2) in Theorem 1.11 can be generalized to F € C ;» and H such
that 6oH € C,, j; see Theorem 3.23.
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Theorem 1.11 is new even when L = —A or Q is a ball. This is the first time that an estimate such as (1.12)
or (1.14) has appeared explicitly in the literature for the solution to a Poisson-Dirichlet problem on a domain
Q € R™!. On the other hand, certain related estimates may be found in the literature [HMM15, Bar21], and
Sobolev and Besov space estimates for solutions to the Poisson problem with right-hand side in Sobolev-
Besov spaces are well-studied and have been considered many times; we will look into the connections of
Theorem 1.11 with these results a little deeper in Section 1.2.4.

The proof of Theorem 1.11 is presented in Section 3.1. The argument contains several novel components;
let us give a very brief sketch of the ideas for the case that g = 0, H = 0. First, we may use Green’s
representation formula to see that we must find appropriate bounds for sup,¢, fQ ViG(x, V) F(y) dm(y),
for any ¢ € 0Q. To achieve the desired bounds, we split Q into four regions tailored to the pole x and a
non-tangential cone y(£). Namely, the first region is a small Whitney ball around x, the second region is a
small Carleson tent over &, the third region is the rest of a large cone y3(£), and the last region corresponds
to a far-away, tangential (with respect to &) portion of Q.

Each of the regions described above is treated separately, using harmonic analysis techniques: for the
first, we use the properties of the solution operators Lél and ngl div (2.15); for the second, we use a dyadic
Carleson embedding result and the weak-RH,, property of the Poisson kernel; for the third, we relate the
bound to an area integral estimate and use (1.10); and finally, we break up the fourth region into annular
regions on which we apply the same ideas as for the second region, but since these annular regions are
tangential and far-away from & and x, we use the boundary Holder inequality and a global weak-RH),
inequality for the Poisson kernel to furnish summable decay. The bounds corresponding to the second and
fourth regions are the most difficult, since it is here where a delicate Carleson embedding is used; indeed,
this is one of the main technical innovations of our paper.

It is natural to wonder how sharp Theorem 1.11 is. This question is solved by our second main result,
which gives several new characterizations of the solvability of (Dé,), a new estimate for the gradient of the
Green’s function, and a certain local T'1 theorem, under very mild geometric assumptions of the domain.
First, we need a few more definitions.

Definition 1.16 (Landscape functions). Given a Whitney cube / in a Whitney decomposition of Q (see
Section 2.1.6 for definitions), we say that the unique weak solution u; € YS’Z(Q) to the equation Lu; = 1; is
the local landscape function subordinate to I. If Q is bounded, then the unique weak solution u € Yé’z(Q)
to the equation Lu = 1 is the landscape function of L.

Up to a rescaling, the landscape function is known in the literature of shape optimization as the torsion
function of L (see, for instance, [BC94]). The landscape function (introduced with this name by Filoche and
Mayboroda in [FM12]) has recently been a subject of heavy interest when L is the Schrodinger operator
L=-divAV +V,V >0, due to applications to mathematical physics and the phenomenon of localization
of eigenfunctions. For related literature, see [FM12, ADFIM19, Pog].

Definition 1.17 ((PDE,) and (PRIL,)). For any p € (1, 00), we say that (PDII;,) is solvable in Q if there exists
C > 0 so that for each H,F € L7’ (Q), the unique weak solution w € YS’Z(Q) (see Section 2.2 for the

definition of this space) to the equation Lw = H — div F satisfies the estimate

(1.18) N2 Wl o) < C[I16. GaFDllr gy + G (F)ll oy

We say that (PDIL,,) is solvable in Q for H = 0 if the estimate (1.18) holds for H = 0 and arbitrary F € L’ (Q).
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We say that (PRIL,) is solvable in Q if there exists C > 0 so that for each H, F' € L"(Q), the unique weak
solution v € Yé’Z(Q) to the equation Lv = H — div F satisfies the estimate

(1.19) IN2 (VI < C I, (BDllron) + 165 (FI6)llron -

We say that (PR;) is solvable for local landscape functions in Q if there exist C > 0, C’ > 2 so that for each
Whitney cube / in a Whitney decomposition of €2, the local landscape function u; satisfies the estimate

(1.20) INS “DVuplipne pgoy < CED'™* 7,

where Q is a boundary cube of I (see (2.22) for the definition of the truncated non-tangential maximal
function N¥).

Remark 1.21. If (PRE) is solvable in €, then an easy variant of [MT, Theorem 7.2] allows for solvability
with general data in the space C,, ,. More precisely, for any H € C;_,, there exists a weak solution

v E Wll.gcz (Q) to the equation Lv = H satisfying (1.19) and the non-tangential limit

1

lim (][ Ivlz* dm) T 0, for o-a.e. & € 0Q.
YE)Px=8 N B(x,8(x)/2)

Similarly, if (Rg) is solvable in €, then by essentially the same argument of [MT, Theorem 7.2], we can
extend the solvability to general data in the space W''P(0Q): for any f € W'P(9Q), there exists a weak
solution u € WIL’CZ(Q) to the equation Lu = 0 satisfying (1.6) and that # — f non-tangentially o-a.e. on 0Q.

Theorem 1.22 (Characterizations of (DIL,)). Let Q € R™! n > 2 be a domain satisfying the corkscrew
condition and with n-Ahlfors regular boundary, such that either Q is bounded, or 0 is unbounded. Let
p € (1,00), p’ its Hilder conjugate, and L = — div AV. The following are equivalent.

(a) (Dﬁ,) is solvable in Q.

(b) (PDﬁ,) is solvable in Q.

(c) (PDﬁ,) is solvable in Q for H = 0.

(d) (PR%) is solvable in Q.

(e) (PRgS) is solvable in Q for F = 0.

) (PRgS) is solvable for local landscape functions in .

(g) There exist C > 0, C' > 2 so that for some q € (1, ":l’—l) and for each x € Q, we have the estimate

(1.23) INE P9 (V2G(x, )l ix.crse.oy < COx) ™7,

where G is the Green’s function for the operator L (see Definition 2.12).

(h) There exist C > 0, C' > 2 so that for some q € (1, %) and for each x € Q, we have the estimate

~ G (X, ‘) _ ’

(1.24) ”ch 6(X)(LT)||LP(B(x,C’6(x)),<r) < Co(x)™P
Theorem 1.22 is proved in Section 3.2. Note that (a) = (b) is directly implied by Theorem 1.11, while
(b) = (¢), (d) = (e) and (e) = (f) follow by definition. The implications (¢) = (d) and (¢) = (c¢)
follow from an application of the N-% duality, while the direction (c) = (a) is proved by combining this
duality with an argument in [MT, Section 9]. The statements (f) = (a), (g) & (a) and (h) &< (a) are

obtained via similar arguments to the proof of (c) = (a).

Let us discuss Theorem 1.22. It shows that one loses no information when switching from the study of
the homogeneous Dirichlet problem with L”" data, to the study of the Poisson problem with inhomogeneous
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data div F with F in the Carleson space C; ;. Perhaps surprisingly, both of these problems are also equiv-
alent to the “Poisson regularity” problem (PRg), even though the implication (Dﬁ,) == (RI[;*) remains an
open problem for arbitrary elliptic operators L on Lipschitz domains. We now emphasize two observations,
important enough to merit their own remarks.

Remark 1.25. The statements (g) and (h) give quantitative characterizations of (Dﬁ,) in terms of new local
boundary estimates on the the Green’s function and its gradient. We have not been able to find either esti-
mate (1.23) or (1.24) written explicitly in the literature even in significantly simpler geometric settings, or
for L = —A. On the other hand, both estimates are natural since they are closely related to the RH), property
of the Poisson kernel. Moreover, observe that a global version of the estimate (1.23) follows formally from
applying that (PRg) is solvable in Q, since L*G(x, ) = dy, and a straightforward computation shows that,
if €(W)(€) := sup,.q rin,u(B(f, r) N Q) for £ € Q and u a measure on Q, then ||€'(6.)l|r() ~ 5(x)™"'?", This
argument can be made rigorous by approximating J, by averages, along the lines of [HKO7].

There has recently been strong interest in studying how estimates for the Green’s function are related to
the geometry of domains [Azz, DLM22, DM22, CHM, FLM], and in this connection, let us point out that,
when coupled with the literature on free boundary results for (D[‘,,A), Theorem 1.22 implies that under its
background assumptions, the estimates (1.23), (1.24) for L = —A characterize the IBPCAD condition (or
uniform rectifiability plus the weak local John condition; see [AHMMT20]).

Remark 1.26. Here, we give context to the statement (f) and why its equivalence to the statements (a) and
(e) is interesting in its own right. As remarked before, if (e) holds, then (f) holds immediately, since

(1.27) 12X Dlr o) = {’(I)H%, for each Whitney box 1.

So (f) = (e) tells us that in order to ascertain that (PRg) is solvable for arbitrary H € C;, and F = 0, it
is enough to obtain the estimate (1.20) (which itself is a local version of the global estimate (1.19)) for the
countable collection H = 1, where I runs over all Whitney boxes in Q. It is easy to interpret this result as
a local T'1 theorem, as follows: if T = V(LB)‘1 (see (2.15)), then the statement (e) is equivalent to asking
that the map T : C, , — Ny, is bounded (by Remark 1.21). But (f) = (e) gives that this map is bounded
if the local estimate (1.20) holds for {71 ;};cqy, which is exactly a local T'1 theorem. We emphasize that an
analogous “local T'1 theorem” result for the classical Dirichlet estimate (1.5), which reduces the testing of
the estimate onto a countable family of data, has not been previously shown in the literature, and the best
previously known reduction is to the uncountable family of characteristic functions on Borel sets on 92
[KKPT16, CDMT?22].

The implications (f) = (a) and (f) = (d) join a family of results in the literature about the landscape
function which say, loosely speaking, that several distinct properties of the operator L can be a priori con-
trolled by properties of the landscape function; see for instance [FM12, Display 3], [ADFIM19, Lemma
4.1, Theorem 4.4, Theorem 5.1] or [Pog, Theorem 1.21, Theorem 1.25]. Finally, we mention that the equiv-
alence (f) < (a) gives the first robust connection between the theory of the landscape/torsion function
(primarily developed for the study of questions in mathematical physics and shape optimization) and the
theory of solvability of the Dirichlet problem with singular data.

We now give an immediate application of Theorems 1.11 and 1.22 toward estimates for eigenfunctions
and their gradients of elliptic operators L = — div AV on rough domains.

Corollary 1.28 (Boundary estimates for eigenfunctions). Retain the setting and assumptions of Theorem
1.22, and moreover, assume that Q is bounded, that A is symmetric, and that (Dﬁ,) is solvable in Q. Let

V/lS Wé’Z(Q) satisfy Lyr = Ey in Q for some eigenvalue E > 0, and let u be the landscape function of L on
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Q. Then there exists C > 0, depending only on n, A, p, the corkscrew condition and n-Ahlfors regularity
constants, and the (Dgf) constant, such that

(1290  INe Wl gy < CEI, (dist(, 0l 5 < CE Wl lIB. (distC, Ol g

(1.30) ||K/2(V¢)||Lp(ag) < CE|G. Wllr@oa) < CEX W@, (Wl o0)-

In particular, if Q is a bounded Lipschitz domain and L = —A, then both estimates (1.29) and (1.30) hold
withp = p’ = 2.

Proof. We prove (1.30). Since (DII;,) is solvable in €, then by Theorem 1.22 we have that (PR;) is solvable
in Q, and so we see that

||N2(Vlﬁ)||u’(aa) S 6, (EW)irre) < ElG, W)l oo)-

Since (see [FM12, Display 3]) |y(x)| < E|lYllz~u(x) for each x € €, the desired estimate (1.30) follows.
The estimate (1.29) follows by an analogous argument, using Theorem 1.11. |

The estimates (1.29) and (1.30) are new even for the eigenfunctions of the Laplacian; although estimates
related to (1.30) controlling the normal derivative of Dirichlet eigenfunctions have been studied heavily,
such as the Hassell-Tao inequality [HT02], when the domain is smooth. On the other hand, the usual tech-
niques in the literature rely on Rellich identities, and thus do not extend to the optimally rough geometric
setting that we consider here. Indeed, since we merely assume that (DIL,/) is solvable (in addition to the
background assumptions that the domain has Corkscrew points and its boundary is n-Ahlfors regular), the
estimates (1.29) and (1.30) hold up to the IBPCAD domains when L = —A, and for certain other specific
L, the estimates hold even for domains with fractal boundaries (see [DM21] for the existence of such an
operator in the complement of the 4-corner Cantor set).

We emphasize that the constant C in the estimates (1.29) and (1.30) does not depend on |€2|, nor on the
eigenvalue E. There is a vast literature studying the geometry of eigenfunctions of —A and estimates of
eigenfunctions near the boundary; for a few related results, see for instance, [LP95, BP99, vdBB99, HT02,
KLS13, SX13] and the survey [GN13].

1.1.2. The regularity problem for Dahlberg-Kenig-Pipher operators. We now pass to an important appli-
cation of Theorem 1.11. We will see that Theorem 1.11 helps us solve the regularity problem for certain
elliptic operators whose gradient satisfies a Carleson measure condition. Denote

0SCB(xs/2)(A) = sup  |A(y) — A(2).
¥,2€B(x,5(x)/2)

Definition 1.31 (DKP and DPR conditions). We say that a real matrix function A in Q C R no> 1,
satisfies the K-Dahlberg-Kenig-Pipher condition (K-DKP) in Q if A € Lip, .(£2) and

(1.32) du(x) := Lo(x) esssup {5a(2)IVAQ)I* : z € B(x, 60(x)/2) } dm(x)
is a K-Carleson measure with respect to H"|sq. That is, for any ball B centered in 9Q,
u(BNQ) < KH"(BNIQ).
We say that A satisfies the 7-Dindos-Pipher-Rule condition (t-DPR) in Q if the measure
du(x) 1= La(x) 50(x)™ 05Cp(xda(/2)(A)” dm(x)

is a T7-Carleson measure with respect to H"|3q.
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We will say that A is a DKP (DPR) matrix and that L = — div AV is a DKP (DPR) operator if A satisfies
the K-DKP (7-DPR) condition for some K > 0 (7 > 0). It is easy to see that if A satisfies the K-DKP
condition, then it also satisfies the 7-DPR condition, with 7 < K. The DKP operators first arose in the
literature as pullbacks of the Laplacian under a mapping of Dahlberg-Kenig-Stein [Dah86]. The well-
posedness of the LP-Dirichlet problem for DKP operators in Lipschitz domains was shown in [KPO1], and
their result carries over to chord-arc domains, and more generally to domains with interior big pieces of
chord-arc domains considered in [AHMMT20] (see Section 2.1.2 for the definition), by the methods of
[JK82a, DJ90] (see for instance the remarks following Theorem 1.1 in [AHMMT?20]).

The question of establishing that (Ré) is solvable for some p > 1 when L is a DKP operator has remained
open since 2001, even when Q is the unit ball. The closest result in the published literature is from [DPR17],
where the authors show that for any p € (1, o), (RIL,) is solvable if Q is a Lipschitz domain with small enough
Lipschitz constant € and if A satisfies the 7-DPR condition with small enough T > 0, depending on p.

The following theorem is our third main result, which establishes that (Dg) = (Ré) for DKP operators
on bounded Corkscrew domains with uniformly n-rectifiable boundaries (see Section 2.1.2 for the definition
of uniform n-rectifiability). This solves the question posed in the previous paragraph.

Theorem 1.33 ((DIL; ) = (R[L,) for DKP operators). Let Q ¢ R"™! n > 2, be a bounded domain satisfying
the corkscrew condition and with uniformly n-rectifiable boundary. Let p € (1, 0), p’ its Holder conjugate,
and L = —div AV, where A is a DKP matrix in Q. Suppose that (Dg ) is solvable in Q. Then (Ré) is solvable

in Q, and the (R;) constant depends only on p, n, A, the corkscrew constant, the uniform n-rectifiability
constants, the DKP constant, and the (D[L;) constant.

Remark 1.34. In the case of the Laplacian, a result analogous to Theorem 1.33 was recently obtained in
[MT, Theorem 1.2] by two of us for p € (1,2 + &), but the proof relied heavily on the L? boundedness of
the Riesz transform and the double layer potential on uniformly n-rectifiable sets, while this theory is not
available for layer potentials associated to DKP operators. Because of this, our proof of Theorem 1.33 must
by necessity be substantially different from the argument in [MT]. In fact, our proof of Theorem 1.33 gives
an alternative argument to [MT, Theorem 1.2] and improves upon it, since our result holds for p € (1, o0).

As mentioned before, for any DKP matrix A there exists p > 1 so that (Dg) is solvable in ) whenever
Q satisfies the corkscrew condition and the IBPCAD condition, and its boundary dQ is n-Ahlfors regular
[KPO1, DJ90, AHMMT20]; and moreover, if Q satisfies the IBPCAD condition and 9Q is n-Ahlfors regular,
then 0Q is uniformly n-rectifiable [AHMMT?20, Theorem 1.5] (see Section 2.1.2 for the definitions). Hence
we have the following corollary.

Corollary 1.35 ((Rl‘;) for DKP operators in IBPCAD domains). Let Q ¢ R™!, n > 2, be a bounded domain
satisfying the corkscrew condition and the IBPCAD condition, and assume that 0) is n-Ahlfors regular. Let
L = —div AV where A is a DKP matrix in Q. Then there exists p > 1 such that (RIL,) is solvable in Q.

Corollary 1.35 fully answers the question of the solvability of (Rﬁ) for some p > 1 when L is a DKP
operator on a bounded rough domain, but we mention again that this problem had been open even when
Q) is the unit ball. If, in addition to the hypothesis of Corollary 1.35, we have that Q satisfies the Harnack
chain condition, then Q is a chord-arc domain [AHMNT17] (see Section 2.1.2 for definitions), and in this
case we can use the theory of Carleson perturbations for the regularity problem [KP95, DFM] to deduce
the following improvement to Corollary 1.35.

Corollary 1.36 ((RIL,) for DPR operators). Let Q ¢ R"™!, n > 2, be a bounded chord-arc domain, and let
L = —div AV where A is a DPR matrix in Q. Then there exists p > 1 such that (Ré) is solvable in Q.
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Let us now give an overview on the method of proof of Theorem 1.33, which is presented in Section
6. First, as a main innovation, we use the duality between non-tangential maximal functions and Carleson
functionals (Proposition 2.4) to reduce the regularity problem to the study of the conormal derivative of
solutions to Poisson Dirichlet problems. Indeed, for a solution w to the Poisson-Dirichlet problem (1.1)
with H = 0, we show in Proposition 6.2 that the variational conormal derivative d,,w (see Section 6 for
the definition) is a bounded linear functional on the Hajtasz-Sobolev space Wwlp (0QY), and the new estimate
(6.3) is the main ingredient in our proof of Theorem 1.33, since it replaces a 1-sided Rellich estimate.

Given Proposition 6.2, Theorem 1.33 follows rather easily from the duality between N and % and the
LP-solvability of the Poisson-Dirichlet problem, as shown early in Section 6. However, the main estimate
(6.3) of Proposition 6.2 requires a completely new argument, even if one were to cut out the sharp geometric
considerations.

To prove Proposition 6.2, first we conceive of an appropriate corona decomposition which is able to
invoke the results of [DPR17] as “black boxes” on each corona subdomain. With the corona decomposi-
tion at hand, we construct an “almost L-elliptic” extension of Lipschitz boundary data. Both the corona
decomposition and the construction of the almost L-elliptic extension are based on analogous ideas from
[MT] where the regularity problem for the Laplace equation in uniformly n-rectifiable domains was solved.
Nevertheless, the corona decomposition in the present manuscript requires highly non-trivial modifications
from the one in [MT] to ensure that the hypotheses of [DPR17, Theorem 2.10] are satisfied by L on each
corona subdomain.

The next step in the proof is to show Proposition 6.9, which is an L? estimate on the modified non-
tangential maximal function of the gradient of the almost L-elliptic extension. This estimate is interesting
in its own right, since it illustrates the naturality of the almost L-elliptic extension, and it is new even for
the Laplacian. Indeed, Proposition 6.9 together with [MT, Lemma 4.7] imply that the almost harmonic
extension is a correct analogue of the Varopoulos extension for one “smoothness level” up. However, the
proof is very delicate, and the tools which we use to achieve it are quite sharp, such as the localization
theorem for the regularity problem, and the dyadic Carleson embedding results that we also invoked in the
proof of Theorem 1.11.

The last step in the proof of Proposition 6.2 is to show the estimate

(1.37) | / AV, dm| < Il ooy + G2 P )l ooy IV plracn,
Q

where F' € Cy v, ¢ € Lip(9Q), w is the unique weak solution to the problem (1.1) with H = 0, and v, is the
almost L*-elliptic extension of ¢. To prove (1.37), we combine the L? -solvability of the Poisson-Dirichlet
problem (it is only here where we use that (DIL,T ) is solvable in Q) with the N-% duality and the heuristic
that L*v; should belong to C,, ,. Related estimates were shown in Sections 4 and 5 of [MT], although
our argument for (1.37) is different and does not follow from the arguments in [MT]; instead, we appeal
substantially to the proof of Proposition 6.9.

Our manuscript is the first paper that considers the natural connections between the N-% duality, the
LP-solvability of the Poisson problem, and the duality between (Dg) and (Rﬁ). It is the new marriage of
these ideas that affords us the solution of the regularity problem for DKP operators in such large geometric
generality.

1.2. Historical remarks. Let us provide some historical context to our investigation. For elliptic operators
L = —div AV, solvability of (DIL,,) and (Rﬁ) in rough domains has garnered a lot of attention in the last
several decades. For a historical overview of the case L = —A in rough domains, we refer the reader to the
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introduction of [MT]. Hence we shall focus now on the rich history related to the boundary value problems
for the operators L with rough (real) coefficients. The problems are always homogeneous, unless stated
otherwise.

1.2.1. Early history of the homogeneous problems with singular data. In 1924, the celebrated result of
Wiener characterized the domains for which the continuous Dirichlet problem for the Laplacian is solvable
(now known as Wiener regular domains). At the end of the 1950s, the De Giorgi-Nash-Moser theory
opened the door for the systematic study of boundary value problems for elliptic operators L = —divAV
whose matrices A are merely bounded and elliptic, and only a few years later, Littman, Stampacchia, and
Weinberger [LSW63] proved that the continuous Dirichlet problem for L with merely bounded and elliptic
coefficients is well-posed on a domain if and only if the domain is Wiener regular. In other words, the
continuous Dirichlet problem is well-posed for the Laplacian if and only if it is well-posed for L.

Near the end of the 1970s, Dahlberg proved that (D A) is solvable in Lipschitz domains [Dah77, Dah79],
and it was then understood that in Lipschitz domains, the solvability of (Dz,) for some p > 1 is equivalent
to quantitative absolute continuity of the L-elliptic measure w; (namely, that w; € A (o) in a local sense).
Despite the results of Caffarelli, Fabes, Mortola, and Salsa [CFMS81], who proved that non-negative solu-
tions # to Lu = 0 in the unit ball have nontangential limits at w;-a.e. point in the boundary for symmetric
operators L with merely bounded and elliptic coefficients, examples were soon found by Caffarelli, Fabes,
Kenig [CFK81], and independently by Modica and Mortola [MMS81], of elliptic measures which were mu-
tually singular with respect to the surface measure on smooth domains, in contrast to the situation of the
continuous Dirichlet problem described earlier.

In the positive direction, for symmetric operators L with smooth and bounded coefficients, Jerison and
Kenig [JK81] solved (D%) in Lipschitz domains, relying on a so-called Rellich identity, available only in
the symmetric case. On C' domains and for symmetric, globally continuous operators, the solvability of
(Dé) for any p > 1 became completely understood in the work of Fabes, Jerison, and Kenig [FJK84], who
characterized the symmetric operators L for which w; < o in terms of a Dini condition; this condition also
guaranteed that (DIL,) is solvable for any p > 1.

Although [FJK84] had completely characterized the case of symmetric, globally continuous operators
on C! domains, the characterization remained open for non-symmetric elliptic operators with rough coef-
ficients, and perhaps more importantly, it was hard to verify the Dini-type condition of [FJK84] for certain
important operators that arose in practice, except for z-independent operators, which we will briefly discuss
a bit later.

1.2.2. Dahlberg’s conjectures. As mentioned in [KPO1, DPP07], Dahlberg posed two conjectures in 1984.
The first conjecture concerned whether the LP-solvability of the Dirichlet problem was stable under certain
perturbations of the coefficients. More precisely, if Ly = —divAyV and L = —divAV are two elliptic
operators, such that (Dso) is solvable in the half-space R"*! and

€SS SUPyep(x,6(x)/2) |A(y) - AO(Y)|2
o(x)

(1.38) dx is a Carleson measure,

does it follow that (Dg) is solvable in R"*!, for some ¢ > 1 possibly larger than p? This question was
resolved in the affirmative by Fefferman, Kenig, and Pipher in [FKP91]. The condition (1.38) has come
to be known as the Fefferman-Kenig-Pipher condition (FKP), and its applicability in rough domains has
continued to be heavily studied in recent years [MPT14, CHM19, CHMT20, AHMT, MP21, FP]. For a
more thorough review of these results, see [AHMT] or [FP]. Let us also remark that the FKP condition
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is known to also preserve the solvability of (Ré) (with some g perhaps larger than p); this was shown for
symmetric operators on the ball by Kenig and Pipher in [KP95], and it has been recently extended to the
case of rough domains with Harnack chains and non-symmetric operators by Dai, Feneuil and Mayboroda
in [DFEM].

Dahlberg’s second conjecture asked whether for some p > 1, (Dé) is solvable in the half-space when L
is a DKP operator (see Definition 1.31). As mentioned in Section 1.1.2, this question was resolved in the
affirmative by Kenig and Pipher in [KPO1]. Dindos, Petermichl, and Pipher later proved in [DPP0O7] that
for any p > 1, if A is a (possibly non-symmetric) K-DKP matrix with small enough constant K = K(p) > 0
and Q is a Lipschitz domain with small enough Lipschitz constant £ = £(p) > 0, then (DIL,) is solvable in
Q; under the same assumptions, (RIL,) is also solvable in €, but this was shown a decade later by Dindos,
Pipher, and Rule [DPR17]. Via the theory of FKP perturbations described above, the respective results of
[DPPO7, DPR17] were also generalized in the respective articles to the 7-DPR operators with 7 = 7(p) > 0
small enough.

1.2.3. Further results. Let us return to the case of f-independent real operators. Although the symmetric
t-independent case was already understood by the work of [JK81], the first non-trivial positive result for
non-symmetric #-independent operators on the half-space R"*! was obtained by Kenig, Koch, Pipher, and
Toro [KKPTO00] when n = 1. There, the authors showed that there exists p > 1 such that (DIL,,) is solvable,
and unlike the symmetric -independent case, p may not be made precise. Later, Kenig and Rule showed in
[KRO9] that (Dﬁf) = (Rle) for the #-independent operators when n = 1, and thus it followed that (Ré) was
solvable for some p > 1. These results of [KKPTO00] and [KR09] were generalized to n > 2 by Hofmann,
Kenig, Mayboroda, and Pipher in [HKMP15b] and [HKMP15a], where the solution to the Kato problem
[HLMO02, AHLMTO2] played a role in the proof. We remark that there is an extensive literature regarding
solvability of boundary value problems in the complex, t-independent case, which we do not review. For a
recent review in this direction, see [BHLMP20].

We now comment on the solvability of the boundary value problems for DKP operators in rough domains
beyond the Lipschitz setting. As mentioned in Section 1.1.2, it has been known from [KPO1, JK82a, DJ9O,
AHMMT?20] that if L is a DKP operator and Q satisfies the corkscrew condition and the IBPCAD condition,
then there exists p > 1 so that (DIL,f ) is solvable in Q. However, the solvability of (R;A) beyond the Lipschitz
setting remained an open problem for over 30 years until the recent work of the first and third author of this
manuscript [MT], where it was shown that (DI‘,,A) — (R;A) whenever the bounded domain Q satisfies
the corkscrew condition and has n-Ahlfors regular boundary, extending the duality between the Dirichlet
problem and regularity problem for the Laplacian shown by Jerison and Kenig in the Lipschitz setting
[JK82b].

We turn to a few words on the duality between (Dﬁf ) and (Ré). In the case that € is a star-like Lipschitz
domain, Kenig and Pipher showed in [KP93] that (RII;) = (Dg), but the converse direction has remained
an open problem. Shen proved in [She07] that if (Dg) is solvable and (Ré) is solvable for some g > 1,
then (Ré) is solvable; later this result was extended by Dindo$ and Kirsch [DK12]. Complex analogues of
the duality result of [KP93] are hopeless in the full generality, as was shown by Mayboroda in [May10];
however, Hofmann, Kenig, Mayboroda, and Pipher [HKMP15a] proved (Dé,*) & (R}) in the range
p € (1,2 + &) for elliptic equations with bounded #-independent coefficients under the assumption that
De Giorgi-Nash-Moser estimates hold, and Auscher and one of us [AM14] proved the equivalence for
P € (po, 2] for elliptic systems with #-independent complex coefficients assuming De Giorgi-Nash-Moser
estimates, for some py < 1 determined by the exponent in the assumed interior Holder condition.
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1.2.4. Connections to the literature on the Poisson problem. So far, we have discussed results only for
the homogeneous problem (1.2). As remarked in Section 1.1.1, estimates controlling the left-hand side
of (1.12) have never appeared explicitly for the Poisson-Dirichlet problem (1.1) in a domain Q ¢ R
Nevertheless, related estimates for the inhomogeneous case have been studied extensively [JK95, FMMO98,
MMO07, MM11, HMM15, BM16, Bar21]. Let us briefly describe some of these results and explain their
connection to our Theorem 1.11. Given p € [1, o0] and 6 € (—o0, +00), the Bessel potential space is defined
by L) :={(I - A)%?H : H € LP(R™")} with norm

”W”Lg = ||(I - A)H/ZW”L;J(RnH).

For 6 > 0, define the Sobolev space L} (Q) as the space of restrictions of functions in L to Q. For 6 > 0 and
p € (1,00), let Lg:O(Q) be the space of functions in Lg/ supported on Q, and let L” 0(Q) = (Lg:o(Q))*. By layer
potential techniques and the Calderén-Zygmund theory of singular integrals, one has the following result
on C* bounded domains [JK95, Theorem 0.3]: if p € (1,00) and 6 > 1/p, then for every H € Lg_Z(Q),
there is a unique solution w € Lg (Q) to the problem —Aw = H in Q, w = 0 on 0Q2; and moreover,

(1.39) ||W||Lg(Q) < CIIHIILZJ(Q), for each H € Lg_z(Q).

Note that when p = 2 and 8 = 1, (1.39) reduces to a very simple estimate obtained via the Lax-Milgram
theorem. Furthermore, the estimates (1.39) are equivalent to estimates on L? for singular integral operators
whose kernels are fractional gradients of the Green’s function G(x,y). However, in the case of Lipschitz
domains, the estimates (1.39) do not hold anymore for the full range p € (1,00) and 6 > 1/p. The sharp
ranges of p and 6 for which (1.39) holds in Lipschitz domains were found by Jerison and Kenig in [JK95].

The estimates (1.39) are linked to the solvability of the homogeneous Dirichlet problem (1.2) with bound-
ary data in Besov spaces ég’p (09Q), 6 € (0,1) (for a definition, see [BM16, Chapter 2]). These boundary
value problems with fractional data constitute a scale between the homogeneous Dirichlet problem at one
end, and the homogeneous regularity problem at the other end. For p > 1 and 8 € (0, 1), define Z(p, 6) as
the space of functions F € L2 (Q) for which

P
(1.40) o= ([ (F 15 am) ot an) < oo
Q VY B(x,0(x)/2)

IfQ = Rﬁ“, n > 2, and A is a real, r-independent matrix, then for certain choices of p € (1, 0) and
6 € (0, 1), it was shown in [BM 16, Corollary 3.24] that there exists a unique solution u to the problem (1.2)

with g € BY?(8Q) and such that ||[Vullz.e) < llgl e a0
6

Similar solvability results in Besov spaces were already known for the Laplacian in Lipschitz domains
[JK95, FMM98, MMO07, MM11]. Barton and Mayboroda also obtained the well-posedness of the inhomo-
geneous Dirichlet problem with Besov boundary data: they show in [BM16, Theorem 3.25] that for the
same choices of p and 6 as for the homogeneous problem, the problem Lw = —div F in Q, w = g on 0Q for

g€ ég,p (0Q) and F € Z(p, 6) is uniquely solvable, and
(1.41) IVWlizipo) < W8llgrr g + 1Fllzip.0)-

Note that (1.41) is an estimate on a weighted energy integral of w, and is quite different in nature from our
L” estimate on Na-(w) (1.12).

We now turn to results in the literature which are close to (1.12) and (1.19). In the case that Q = RTI,
n > 1, if L and L* are complex bounded elliptic operators with #-independent coefficients satisfying De
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Giorgi-Nash-Moser bounds, it was shown in [HMM15] that if Lﬂ‘giﬂ is the operator whose integral kernel is

the fundamental solution of L in R**!, then [HMM 15, Propositions 4.6 and 5.1]
(1.42) ”NZ (VL]?R}H] (H —div F))”LP(BRTI) S ||ﬁl(tH)”Lp(aRg+l) + ”ﬂZ(F)”Lp(gRTI), pe,2+e).

This estimate is related to (1.19), in light of (1.10). They used (1.42) to eventually obtain non-tangential and
area-integral estimates for the boundary layer potentials of complex elliptic operators whose coefficients
satisfy a small Carleson measure condition. Finally, in [Bar21], for Q = R"*! and L a bounded elliptic
operator with t-independent complex coefficients, Barton also obtained (1.42) in the case that H = 0, and
the estimate ||)A\V/2(LITR,1+1 div F)|| @GRy S |65 (F )”LP’(aRz“) (see [Bar21, Corollary 4.27]), for essentially
optimal ranges of p. Note that this last estimate is related to (1.18) when H = 0. In fact, Barton’s estimates

are more general, since she considers higher-order elliptic equations and square function estimates as well.

1.3. Related results. As we were finishing the first version of this manuscript, we learned that M. Din-
dos, S. Hofmann, and J. Pipher [DHP] had simultaneously and independently obtained the conclusion of
Corollary 1.36 in unbounded Lipschitz graph domains in R"*!, n > 1, when L is a DPR operator, via a
different method. Both the first version of this manuscript [MPT] and the first version of the paper of M.
Dindos, S. Hofmann, and J. Pipher [DHP] were posted on arXiv.org on July 21, 2022. Their proof of their
analogue of Corollary 1.36 is significantly shorter than ours, owing to the more restrictive geometric set-
ting that they study. Indeed, they perform a clever reduction of the problem to the solvability of (Rgo) for
some g > 1, where Ly is a block form operator, but this approach does not work in more general domains
since it necessitates the existence of a uniform “preferred direction” at the boundary, as occurs in a domain
above a Lipschitz graph. The passage from Lipschitz graph domains to uniformly n-rectifiable domains, or
even to chord-arc domains, is highly non-trivial, and requires a novel approach via the Poisson-Dirichlet
problem. Even in the case of the Laplacian, the same problem had remained open for over 30 years until its
solution in [MT], illustrating that the geometry of the domain creates significant difficulties which are hard
to overcome.

1.4. Outline. The rest of the paper is organized as follows. In Section 2, we provide basic definitions and
lemmas. In Section 3, we prove Theorems 1.11 and 1.22 on the L”-solvability of the Poisson problem. In
Section 4, we construct the corona decomposition tailored to exploit the results of [DPR17] on each corona
subdomain. In Section 5, we define the almost L-elliptic extension based on the corona decomposition of
Section 4. Then, in Section 6 we prove Theorem 1.33 on the regularity problem for DKP operators. Finally,
in Appendix A we provide proofs for some lemmas of Section 2.

2. PRELIMINARIES

We write a < b if there exists a constant C > 0 so that a < Cb and a <; b if C depends on the parameter
t. We write a = b to mean a < b < a and define a ~; b similarly.

All measures in this paper are assumed to be Radon measures. We denote by m = m,,;| the Lebesgue
measure on R"*!. Given a measure u on R"*!, the Hardy-Littlewood maximal function of a measurable
function f on supp u is defined as

1
M€= sup o [ (fldu < supp
e M(B) Jp

where the supremum is taken over all possible balls B centered at supp p.
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Given g € (0, 0], aset U ¢ R"™!, a measure x4 on R""!, and a function H € LY(U, u), denote the LI(y)
mean of H over U as

1 1/
mawt) = (5 /U HO du) .

If u is the Lebesgue measure, we write my y = mgyy. If g = 1, we write my, = mg yy,.
2.1. Geometric preliminaries.

2.1.1. Lipschitz domains. We say that Z ¢ R™! is an {-cylinder of diameter d if there is a coordinate
system (x,f) € R" X R such that Z = {(x, 1) : |x| < d,-2{d < || < 2¢d}. Also, for all s > 0, we denote
sZ ={(x,1) : |x| < sd, -2¢d < |t] < 20d}.

We say that Q is LLipschitz domain with Lipschitz character (¢, N, Cy) if there is ry > 0 and at most N
{-cylinders Z;, j = 1, N of diameter d with C;; 7o < d < Cyry such that!

e 8Z; N 0Q is the graph of a Lipschitz function ¢; with [|Vé |l < ¢, ¢;(0) = 0,
e 0Q = Uj(Zj N oQ),
e We have that 8Z; N Q = {(x,1) € 8Z; : ¢j(x) > t}.

We also say that Q is a Lipschitz domain with Lipschitz constant ¢.

2.1.2. Quantitative conditions on the geometry of domains. A measure u in R"*! is called n-Ahlfors regular
if there exists some constant Cy > 0 such that

C51r" < u(B(x,r)) < Cor for all x € suppu and 0 < r < diam(supp w).

A measure u is uniformly n-rectifiable if it is n-Ahlfors regular and there exist constants 8, M > 0 such that
for each x € supp u and each r € (0, diam(supp u)], there is a Lipschitz mapping g from the n-dimensional
ball B,(0,R) to R™! with Lip(g) < M and satisfying the bound u(B(x,7) N g(B4(0,7r))) > 6r". A set
E c R™! is n-Ahlfors regular if H"|g is n-Ahlfors regular, where H" is the n-dimensional HausdorfF
measure, which we assume to be normalized so that it coincides with m, in R". Also, E is uniformly n-
rectifiable if H"|g is uniformly n-rectifiable. The notion of uniform rectifiability was introduced in [DS91]
and [DS93], and it should be considered a quantification of rectifiability.

By a domain we mean a connected open set. In this paper, Q is always a domain in R"*! with n > 2.
As mentioned in the introduction, we denote the restriction of the n-Hausdorff measure to 9Q by o, and we
call it the surface measure on 0€QQ.

We say that Q satisfies the corkscrew condition if there exists ¢ > 0 such that for each x € 9Q and every
r € (0,2 diam Q), there exists a ball B C B(x, r) N L so that r(B) > cr.

Given two points x, x' € Q, and a pair of numbers M, N > 1, an (M, N)-Harnack chain connecting x
to x’', is a chain of open balls By,...,By C Q, with x € B;,x’ € By, By N By # @ and M~"diam B, <
dist(By, 0Q) < M diam By. We say that Q satisfies the Harnack chain condition if there is a uniform constant
M such that for any x, x’ € Q, there exists an (M, N)-Harnack chain connecting them, with N depending
only on M and on |x — x’|/ min{é(x), 6(x")}.

We say that Q is a chord-arc domain if Q satisfies the Harnack chain condition, if both Q and R"*'\Q
satisfy the corkscrew condition, and if Q2 is n-Ahlfors regular.

IWe could also say that Q has character (¢, N, ry, Cy). However, notice that, since dQ is covered by at most N cylinders of
diameter comparable to ry, we have ry > diam(dQ)/N. So ry/ diam(dQ) depends on N.
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We say that Q has Interior Big Pieces of Chord-Arc Domains, or that Q satisfies the IBPCAD condition,
if there exist positive constants 7 and C, and N > 2, such that for every x € Q, with dg(x) < diam(0Q),
there is a chord-arc domain Q, C Q satisfying

x € Q,.

dist(x, 0Qy) > nda(x).

diam(Q,) < Coq(x).

a(0Q, N B(x, N6q(x))) = no(B(x, N6q(x))) #n nda(x)".
The chord-arc constants of the domains Q, are uniform in x.

2.1.3. Dyadic lattices and the B numbers. Given an n-Ahlfors regular measure y in R"*!, we consider
the dyadic lattice D, of “cubes” built by David and Semmes [DS93, Chapter 3 of Part I]. The properties
satisfied by D, are the following. Assume first, for simplicity, that diam(supp ¢) = co. Then for each j € Z
there exists a family D, ; of Borel subsets of supp u (the dyadic cubes of the j-th generation) such that:

(a) each D, ; is a partition of supp u, i.e. suppu = UQez)w, Qand QN Q' = @ whenever 0, 0" € D, ;

and Q # Q’;

(b) if Qe D, ;and Q' € Dy, with k < j, then either Q C Q" or O N Q' = @;

(c) ifforall j € Zand Q € D, ;, we have 27/ < diam(Q) < 27/ and u(Q) ~ 277",

(d) there exists C > 0 such that, forall j€ Z, 0 € D, ;,and 0 <7 < 1,

p({x € Q : dist(x, supp\Q) < 7277}) + p({x € supp p\Q : dist(x, Q) < 7277}) < /€2,

This property is known as the thin boundary condition, and it implies the existence of a point

xg € Q (the center of Q) such that dist(xg, supp u\Q) 2 27/ (see [DS93, Lemma 3.5 of Part I]).
We set D, = Ujez
27J0 ~ diam(supp u), and the same properties above hold for Dy, =1

D, j. If diam(suppu) < oo, the families D, ; are only defined for j > jo, with
ij() Dﬂ’j'

Givenacube Q € D, ;, we say that its side length is 27/ and denote it by £(Q). Notice that diam Q < £(Q).
We also denote

B(Q) := B(xg, c1€(Q)), Bg := B(xg, {(Q)) > 0,
where ¢ > 0 is chosen so that B(Q) Nsuppu C Q, for all Q € D,,. For 4 > 1, we write

A0 = {x e suppu : dist(x, Q) < (1 - D €(Q)}.

The side length of a “true cube” P ¢ R™! is also denoted by £(P). On the other hand, given a ball
B c R™! its radius is denoted by r(B). For A > 0, AB is the ball concentric with B with radius A r(B).

Given E c R™! aball B, and a hyperplane L, we denote

dist(y, L) dist(x, E)
bBr(B,L) = sup ————+ sup ———
£ yeeng  1(B) yernB  T(B)

We set bBe(B,L) = inf; bBE(x,r, L), where the infimum is taken over all hyperplanes L C R™!. For
B = B(x,r), we also write bBg(x, r, L) = bBg(B, L), and bBr(x,r) = bBr(B).

For p > 1, a measure y, a ball B, and a hyperplane L, we set

N dist(x, L)\ ” lip
g ””’(B’L)_<r<3)"/3<r<m> . (x)> '
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We define g, ,(B) = infy B, ,(B, L), where the infimum is taken over all hyperplanes L. For B = B(x, r), we
also write B, ,(x,r, L) = B, ,(B, L), and B, ,(x, ) = B, ,(B). For a given cube Q € D,,, we define:

Bup(Q. L) =Bup(Bo, L), Bup(2Q,L) = By p(ABg, L),
IB,u,p(Q) = ﬁy,p(BQ)a B,u,p(/lQ) = ﬁy,p(/lBQ)-

Also, we define similarly

bB.(Q.L), bB.(10.L), bB.(Q), bB.(AQ),

by identifying these coefficients with the analogous ones in terms of Bg. These coefficients are defined in
the same way as bBsupp (B, L) and bBsypp u(B), replacing again B by Q € D, or 1Q.

2.1.4. The Hajtasz-Sobolev spaces. Let (X, 0) be a metric space with o a doubling measure on X, which
means that there is a uniform constant C, > 1 such that o"(B(x, 2r)) < C, 0(B(x, 1)), forall x € X and r > 0.

For a Borel function f : £ — R, we say that a non-negative Borel function g : ¥ — R is a Hajtasz upper

gradient of f if
() = fOl < |x =yl (g(x) + g(y)) foro-ae. x,y € X.
We denote the collection of all the Hajtasz upper gradients of f by D(f). For p > 1, we denote by Wwir =)
the space of Borel functions f which have a Hajtasz upper gradient in L”(c"), and we let W'”(Z) be the space
of functions f € LP(0) which have a Hajtasz upper gradient in LP(o); that is, whr(z) = wlp &) N LP (o).
We define the semi-norm
1Ay = geig(ff) gllzrcs)
and the scale-invariant norm
. 1 .
Ifllwiry = diamE) " || fllLe) + gelggf) llgllzr)-

For any metric space X, if p € (1, o), from the uniform convexity of L”(o0), one easily deduces that the

infima in the definitions of || - [|y1.,(z) and || - ”V'Vl*l’ ) are uniquely attained. We denote by Vp ;, f the function

g which attains the infimum. The spaces Wwlp () and W'P(Z) were introduced in [Ha96], and are known
as the Hajlasz-Sobolev spaces.

2.1.5. Properties of the Carleson and non-tangential maximal operators. First we state the well-known
change-of-aperture lemma for the non-tangential maximal functions.

Lemma 2.1. Fixp> 1, a,8> 0, and ¢, ¢, € (0,1/2]. We have that
[INwe r(WllLro0) agnpesen INge (Wllir@a), for any u € Lj, .(Q).

The L? norms of the Carleson functionals ¢;, defined in (1.7) are equivalent under a change of the
parameter ¢, as the next lemma states. We defer its proof to Appendix A.1.

Lemma 2.2, Let ¢1,¢, € (0,1/2], g € [1,00), and p > 1. Then
(2.3) 162, . (FDllzr00) Rng.pessen) 1C2.q(HDILr o), forany H € LL (Q).

As remarked in the introduction, there is a duality between the operators N and €. The precise results
which we shall use are stated in Proposition 2.4 below. When Q is the half-space, these results were shown
by Hytonen and Rosén in [HR13, Theorem 3.1, Theorem 3.2]. For the benefit of the reader, in Appendix
A.2, we give the proof of the proposition in our setting, by appealing to the discrete vector-valued model in
[HR13].
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Proposition 2.4 (Duality between € and N). Let Q ¢ R n > 1, be a domain satisfying the corkscrew
condition and such that 0 is n-Ahlfors regular. Suppose that either Q is bounded, or that 0C2 is unbounded.
Let p,q € (1,00) and p’, q’ their Holder conjugates. Then N, , = (Cy )", and moreover,

luH|lp1 o) < ||K/q(u)||Lp(og)||(5q'HIIU'(ag), ue Ll (Q),H e L (),

loc

Nyl s sup | / Hudn|, e L@,
Gy ()l =1 ' 02
Gy HllLr 90y < sup ‘/QHudm‘, HequOC(Q).

w:|INgullLp a0)y=1

Remark 2.5. For any p,q € (1, 00), the space C, , is not reflexive; indeed, we have that C, ,» C (Ng, )"
See [HR13, Theorems 2.4 and 3.2].

To obtain the L” -solvability of the Poisson-Dirichlet problem with general data, we need the following
approximation lemma. Its proof is deferred to Appendix A.3.

Lemma 2.6. Fix p,q € (1,00) and H € C .

(i) There exists a sequence of functions {Hijren C Cy p, such that each Hy is compactly supported in
Q, H, — H strongly in L?OC(Q), Hy — H pointwise a.e. in Q, and H, — H strongly in C, ), as
k — oo.

(ii) Suppose that H is compactly supported in €. Then there exists a family of functions {Hg}e>0 C
Lip(Q) N C, ,, each of which is compactly supported in Q, such that H, — H strongly in L?OC(Q),
and ||H, — H||Cq_p —0ase— 0.

2.1.6. Whitney decompositions. Given an open set U € R™! and a number ¢ € (0,4], let k € N be the
unique integer such that 27% < ¢/4 < 27%*1 and we say that a collection of closed cubes, W;(U), is

a ¢-Whitney decomposition of U if the interiors of the cubes in W(U) = W;(U) are pairwise disjoint,
Urew(w)! = U, and moreover

22 diam ] < dist(l,0U) < 2" diam1,  foreach I e W(U).
Such a ¢-Whitney decomposition always exists; this can be attained by dyadically subdividing k + 2 times

each Whitney cube from the standard decomposition.

Suppose that 0Q2 is n-Ahlfors regular and consider the dyadic lattice D, defined in Section 2.1.3. Then
for each I € W = W(Q) there is some cube Q € D, such that

Q2.7) 0Q) =60, and  dist(Z, Q) < 2%6 diam 1.

For any I € W(Q), we let b(I) = bqg(I) be the collection of all cubes Q € D, which satisfy (2.7). If
0 € b(l), we say that Q is a boundary cube of 1. There is a uniformly bounded number of Q € b(I),
depending only on n and the n-Ahlfors regularity of 0Q). Conversely, given Q € D, we let

w@ = (J L
IeW:Qeb(I)

It is easy to check that w(Q) is made up of at most a uniformly bounded number of cubes /, but it may
happen that w(Q) = @. Moreover, if I € ‘W and I N w(Q) # @, then I C w(Q) since the Whitney cubes are
disjoint.
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Given a Whitney cube I € ‘W(U), we use the notation I* for the slightly larger cube of same center as /
and such that diam I* = (1 + 8) diam /, where 8 € (0, 1/10) is a small fixed constant. We also define

(2.8) wi@= J I

IeW:Qeb(I)

2.2. Elliptic PDE preliminaries. Throughout this subsection, we assume only that Q is a domain in R"*!,

A 2(nt]) _ ey 20n+])
n > 2. We write 2* = === and that 2, = (2) = = 5*.

Recall that C°(Q) is the space of compactly supported smooth functions in Q, and that for p € [1, c0),
WIP(Q) is the Sobolev space of p-th integrable functions in Q whose weak derivatives exist in Q and

are p-th integrable functions, while Wé’p (€2) is the completion of C°(€2) under the norm |lully1.rq) =

lullzr@) + IVullrr@). Moreover, W“’(Q) consists of the LIIOC(Q) functions whose weak gradient is p-th
integrable over Q, and we denote by L’ () the space of p-th integrable functions with compact support in
Q. We let YS’Z(Q) be the completion of C:°(€2) under the norm [|ully12(q) := lleell 2 () + IVull 2y

We assume throughout that A is a real, not necessarily symmetric matrix satisfying (1.3). Define the
elliptic operator L acting formally on real-valued functions u by

n+1 9 ou
Lu=—divAVu) = - > = (aij—).
=1 axl- (9xj

We write AT for the transpose of A, and L* = —div A’ V.

2.2.1. Properties of weak solutions. Given H € L* (Q) and F € L (Q), we say that a function w €

loc loc
Wllo’c2 (QQ) solves Lw = H—div F in the weak sense, or that w is a weak solution of the equation Lw = H—div F,

if for any ¢ € C7°(€2), we have that
/ AVWY$ dm = / [H(;S + FV¢} dm.
Q Q

The proof of the following basic inequality which weak solutions verify is standard.

Lemma 2.9 (Caccioppoli inequality). Let B be a ball in Q and let w € WIL’CZ(B*) be a weak solution to the
equation Lw = H — div F in B* = (1 + 0)B, where F € L*(B*), H € L**(B*), and 0 € (0, 1). Then

1 2
/ Vol S0~ [ Wwldm+ ([ 1HPdm) "+ / \FI2 dm.
B r(B)” Jp- B B

The next lemma comprises the conclusions of the De Giorgi-Nash-Moser theory, a capstone result in the
regularity of elliptic PDEs with rough coefficients.

Lemma 2.10. Let B be a ball in Q, B* = (1 + 0)B for some 0 € (0,11, and let u € W'>(B*) be a weak
solution to the equation Lu = 0 in B*. Then there exists n € (0, 1) so that u is Holder continuous with
exponent 1 in B*. Moreover, for any g > 0,

1

max |[u(x)| Sonq <][ [ua] dm)" < min |u(x)],
xeB B* )CE%B

and

b JuCx) —u@)l _ (H(B))" (][ 1 dm>§‘
B

x,yE%B b — y|’7
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When A is Lipschitz, we have a control on the size of the gradient of the solution. The precise technical
result which we shall use is the following; it is a consequence of the proof of [GM12, Theorem 5.19].

Lemma 2.11. Let B be a ball in Q, L = —div AV, with A a Lipschitz matrix function verifying (1.3) on 2B,

and suppose that ||VA||r=op) < %. Let u solve Lu = 0 in 2B. Then Vu is continuous on 2B, and

sup(¥u(ol < (f FuP dmy)”

x€B

2.2.2. Green’s function and elliptic measure. We start with the definition and properties of the integral
kernel to the solution operator L~!, known as the Green’s function.

Definition 2.12 (Green’s function). Assume that Q c R"*! is an open, connected set, and let L = —divAV
where A is a real, strongly elliptic, not necessarily symmetric matrix of bounded measurable coefficients.
There exists a unique non-negative function G : Q X Q — R, called Green’s function for L, satisfying the
following properties:
(i) Foreach x,y € Q, G1(x,y) < |x—y/'™, and G1(x,y) > 01in Q.

(i1) Foreach ¢ € (0,1), x € Q and any y € B(x, ¢5(x)), we have |x — I <o Gr(x, y).

(iii) For each x € Q, G1(x,-) € C(Q\{x}) N W:2(Q\{x}) and G (x, -)laq = 0.

(iv) For each x € Q, the identity LG (-, x) = J, holds in the distributional sense; that is,

/ AOV,GL(y, x)VO(y) dm(y) = (), for any ® € C°(Q).
Q

(v) If H € L31(Q) and F € L™ (Q), we have that the function
2.13) W) = /Q Gu(y. DH() dm(y) + /Q V,G1(v 0F(y) dm(y)

solves the equation L*w = H — div F in the weak sense in Q, w € YS’Z(Q), and |wllz=@) <
Il 310 + IE Nl -
(vi) For each x,y € Q with x # y,
(2.14) Grx,y) = G- (y, ).

(vii) Define the operators Lg‘z1 and Lél div by
(2.15) (LEZIH)(x) = / Gr(x,y)H®©Y)dm(y), (ng1 div F)(x) := / VyGr(x, ) F(y) dm(y), x € Q.
Q Q
Then we have that LEZI maps L*(Q) into L (Q), and the operator Lél div maps L2(Q) into L (Q).

The construction of the Green’s function in bounded domains for real non-symmetric elliptic matrices
with bounded and measurable coefficients may be found in [GW82], while the unbounded case is shown in
[HKO7]. The sharp representation formula (2.13) for H and F' in Lorentz spaces has been shown in [Mou].

To define the elliptic measure, we borrow the setting of [AGMT22]. Assume that 0 is n-Ahlfors regular;
in this setting, Q) is Wiener regular, so that the continuous Dirichlet problem for L is solvable in . By the
maximum principle and the Riesz Representation Theorem, there exists a family of probability measures
{w] }xeq on 0Q so that for each f € C.(0Q) and each x € Q, the solution u to the continuous Dirichlet
problem with data f satisfies that u(x) = |, a0 J(&) dw*(€). We call wy the L-elliptic measure with pole at x.

We now turn to several well-known estimates that the L-elliptic measure verifies, see [CFMS81] and
[HKMO3]. For a proof of the next lemma, see [HKM93, Lemma 11.21].



22 M. MOURGOGLOU, B. POGGI, AND X. TOLSA

Lemma 2.16 (Bourgain’s estimate). Let Q C R™! be open with n-Ahlfors regular boundary. Then there
exists ¢ > 0 depending only on n, A, and the n-Ahlfors regularity constant, such that for any & € 0Q and
r € (0,diam(9Q)/2], we have that w*(B(&,2r) N 0Q) > ¢, for all x € Q N B(&, 7).

Moreover, the preceding lemma implies the following result via a standard argument involving the max-
imum principle and the pointwise upper bound for the Green’s function in Definition 2.12 (i). For a proof
in the case that L = —A, which is readily generalized to our setting, see [AHMMMTV 16, Lemma 3.3].

Lemma 2.17. Let Q € R™! be open with n-Ahlfors regular boundary. Let B = B(xo, r) be a closed ball
with xg € 0Q and 0 < r < diam(0Q). Then
w*(4B)

rn—l

Gr(x,y) < , forall x e Q\2Bandy € BN Q,

where the implicit constant depends only on n, A, and the n-Ahlfors regularity constant.

The following generalization of the formula (2.13) is well-known; for a detailed proof in our setting, see
[AGMT?22, Lemma 2.6].

Lemma 2.18. Let Q C R"™! be an open, connected set with n-Ahlfors regular boundary. For any ® €
C(R™1Y, we have that

Dd(x) = / Odw* + / AT(y)VyGL(x, V)VO(y) dm(y), for m-a.e. x € Q.
4Q Q

A boundary version of the Holder continuity of solutions will prove useful; see [HKM93, Chapter 6].

Lemma 2.19. Let Q ¢ R"™! be open with n-Ahlfors regular boundary, and let & € 0Q, r € (0, diam 0Q).
Suppose that u is a non-negative solution of Lu = 0 in Q N B(&,2r), which vanishes continuously on
B(&,2r) N 0Q. Then there exist n € (0,1) and C > 1, depending only on n, A, and the n-Ahlfors regularity
constant, so that

da(x)\7 1
ulx)<C udm, orall x € QN B, r).
( r ) IB(&,2r)| JBe2nn0 f ¢

Now, we record a well-known equivalence between the solvability of (DI[;,) and a weak-RH,, property
of the Poisson kernel. Under our lax geometric assumptions, the proposition is essentially shown in [MT,
Theorem 9.2] for the case of the Laplacian. The direction (b) = (a) in the proposition below is already
shown in [HL18]; for completeness, we give a full proof of the direction (a) = (b), but we defer it to
Appendix A.4.

Proposition 2.20. Ler Q C R™! be open with n-Ahlfors regular boundary and satisfying the corkscrew
condition. Fix p € (1, ), % + [% = 1. The following are equivalent.

(a) (DY) is solvable in Q.
(b) The L-elliptic measure wy, is absolutely continuous with respect to o, and for every ball B centered
at 0Q satisfying that diam B < 2 diam(0Q),

201 dwj wy (8B)
(2.21) <]{3‘da o(B) ’

(c) The L-elliptic measure wy, is absolutely continuous with respect to o and there is some A > 1 big
enough such that, for every ball B centered in 0€Q) with diam(B) < 2 diam(0QQ) and all x € AB such

» 1
do-) "< for all x € Q\2B.
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that dist(x, 0Q) > A~'r(B), it holds that
( ][ dwy
AB do
In Section 6, we will make use of the following powerful localization result for the regularity problem,
shown in the proof of [KP93, Theorem 5.24]. Define

P 1/p 1
d <SA ——.
‘7) >N 7 (B)

~ 1/r
@22 K@= sp (f  woranm)’.  econ
xX€Ya(ENB(E,s) YV B(x,86(x))

Theorem 2.23 ([Ken94, Theorem 1.8.13]). Let Q be a bounded star-like Lipschitz domain in R, n > 2,
and L = —div AV, where A is a matrix function in Q verifying (1.3). Suppose that (R%) is solvable in Q,
that f € wlp (0QY) and that u is the solution to the Dirichlet problem Lu = 0 in Q, u = f on 0Q. Let
s € (0,diam(0Q)/4), & € 0Q. Then,

~ 2
][ N2V do < c[ ]/ V. /P do + (s—<"+1> / |Vu|dm) }
B(£.5/2) B(£.25) B£25)NQ\B(E,s)

3. THE Po1ssoN-DIRICHLET PROBLEM

In this section we prove Theorems 1.11 and 1.22. Recall that ¢ := dist(-,0Q), 2* = % and that

2* — (2*)/ — 2(n+l)‘

n+3

3.1. Proof of Theorem 1.11. Retain the setting of Theorem 1.11. Set

w(x) = /6 SO0’ + /Q VaG(x,)F(y) dm(y) + /Q G HG) dm(y) = wi(x) + wa(x) + ws(x),

where G = Gy, is the Green’s function for L, w” is the L-elliptic measure on dQ with pole at x, and V,
denotes the gradient in the second variable. Under our qualitative assumptions on the data, it is known (see
Section 2.2.2, (2.13), and (2.14)) that Lw = H —div F holds in the weak sense in €, and that w is continuous
on Q, so that w = g on Q. It remains to show that (1.12) holds. Since (DIL,,) is solvable, we have that

G N2 Wl agy < N2 WDl oy + N2 WDl gy + N2 W)l 0

< CHg”Lp’(aQ) + ”NZ*(WZ)”Lp’(()Q) + ||N2*(W3)||Lp’(()g)-

3.1.1. Step 1: A decomposition of Q. We will now focus our attention on estimating the second term
on the right-hand side of (3.1). Fix an aperture @« > 0 and & € 0Q, and for each x € y,(£) denote
B* := B(£,76(x)) N Q and By := B(x,d(x)/8), where 7 € (0, 2710y is a small constant to be determined
later. We think of B* as a “shrunk” Carleson region associated to x, and of B, as a small Whitney region
associated to x. With this notation, we claim that

2" =
| va6enFean)| dn)

X€yo(€)

(3:2) INpas 2 W)@l < sup {(]i< 1)

+ s | / Va6 WFG)dm(y)| + | / V26 F» dm)| |}

2€B(x,0(x)/32) O\(B*UBy)

= sup {T1(x)+ To(x) + T3(x)}.
XE€Ya(€)
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To see (3.2), simply note that,

1
*

2

y
WDy, 6) (oo | Jo V26 WF@) dm()| dm(@)
2 &
U, 6) (Fogea | [, V26 WFG)dmy)| dm(2))’
’ 2* >
45Uy, (Fesn | S V26 0F@) dmy)| dm@))’

2 =
+ sup (Facen | Jongsromy V26 0EG dm| dm(a))’
XY

INy 25 20 (W2)(€)]

IA

IA

2 =
D ey (Foe s | fs, V26 DF @Yty dm(2))’
+SUP. ) (&) SUPeBxs(n)32) | Jpr V2G (@ Y)F(y) dm(y)‘
+SUPey, &) SUP-eB(x5(0/32) | Jonsrum, V2@ VF() dm(y)’

3.1.2. Step 2: Estimate for T1. Note that
L
T1(x) < Coto D/ ( / o @F dm() ",
Q

where wy; := LEzl div(F1p ) (see (2.15)), and C depends only on n. By the mapping properties of ngl (see
Definition 2.12 (vii)), it follows that
. 1/2 12
T)(x) < 6007 / PP, dm) < Cox) (]1 [FPdm)
Q B(x,6(x)/8)
1

) 12
. <][ IF| dm) dm(z)
()" JBxs)/8) VB(x5(x)/8)

1 1/2
: (f  wwpam) " ane <, @ 00,
()" Jpecsonne VBs@)2) 2

where we used the fact that B, C B(y,6(y)/2) for each y € B, and the definition of € 1 2(F). Hence

<

<

(3.3) I sup T (x)”Lp/(aQ,do-(g)) < ||652(F)||Lp’(ag)-
XG?’a’(f) ’

3.1.3. Step 3: Estimate for T. Let ‘W be a (1/2)-Whitney decomposition of Q (see Section 2.1.6), let ‘W,
consist of I € ‘W such that IN B* # @, and let ¥ be the collection of Q € D, for which there exists I € W,
with Q € b(I). Then,

(3.4) nws sp 3 [96EIF0Idne)

2€B(x,6(x)/32) TeW, 1

< s S ([ mGefane) " ( [IFoRn) "

z€B(x,0(x)/32) TeW,

5 12 1 el
< s (] Gaydm) oD S m ()
€B(x0(0)/32) jeqy NI I 0))

12 .
DD /( oy G ) D S s ()

QeF IeW,:Qeb(])
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where we have used the Holder inequality, (2.14), Lemma 2.9, and Lemma 2.10. Note that if Q € ¥, then
Q c 2°B*N0Q, and £(Q) < (32 Vn + 1)"'76(x); moreover, if I N w(Q) # @, then (1 +26)I ¢ 2!°By. Using
these facts, we may guarantee that x € Q\2”BQ if 7 is chosen smaller than 27, Hence, for any I € ‘W,
and any Q € D, which satisfies Q € b(I), we apply Lemma 2.17 with B = 210BQ to see that

wX(212BQ)

(3.5) G(x,y) < Wy

for each y € (1 + 20)1.

We thus obtain that

X 212B w* 212B
36) T(x) <), W ¢ Do) > / ma (F)dm(@) s > v ¢ Bo) / M2, Bz,5(/2) (F) dm(2)
w(Q)

QcF aor Loan o {(Q)
w*(212Bg)\ P 1 L

QeF
7
1

x (QEZ;%%(F)@»)P’I* /

w(Q)

m2 B(z.6(z)/2)(F) dm(Z))

where p; > p will be determined later. Next we let
1
aQ = M2 B(z,5(2)/2)(F) dm(z),
¢ infeg YD Jugy T

and remark that {ap}ges satisfies a Carleson packing condition: For any S € D,

1
(3.7) Z ag < ——————> Z / M2, B(z,5(:)/2)(F) dm(2)
oerocs infzes G2(F)(Q) ocrocs M@

1
S Q0 oo
infzes 62(F)() Jeng
where By is a ball with center in § and radius €(S'), and we have used that there is uniformly bounded
overlap of the w(Q)’s when summing over all dyadic cubes Q C S, C is chosen large enough to contain

Upcs w(Q), and in the last inequality we used the definition of 6>(F). By the dyadic Carleson’s embedding
theorem (see [Toll4, Theorem 5.8]), we deduce that

w*(2"2Bp)\» / w*(2"2Bg)\ P
3.8 —_— ——— d
oY Q%“Q{ T Y WINPT I b v S

dw* i
S MO’ —1 816(x (g) dO—({)
/l';(f,Z(’T(S(x)) ( ( dO' B(g.2%7o( ))m&Q) )

m B(z,6(2)/2)(F) dm(z) < o (S),

On the other hand,

69 SO [ macsanPrane = 3 (f w5 o) e,
oer ¢ Q) QeF

</ wp | 6rdnd)" dow
B(£,2676(x)) Q‘E?‘(EQ

= / (Mo (Ga(F )13(5,2676()0)069) )pl do({),
B(£.2676(x))



26 M. MOURGOGLOU, B. POGGI, AND X. TOLSA

where we used Carleson’s embedding theorem. From (3.6), (3.8), and (3.9), it follows that

(310) T2 5 /

B(£,2875(x))

“of" )" ( [ o, BN art0) g

do
S(f . @Eeraoo)”.
B(£,2076(x))

where in the last estimate we used Proposition 2.20 with p; > p sufficiently close to p. Finally, we have
that

L
7

.
GAD) I sup Toll 1y 9040 S (/ sup <][ GH(F)P dO‘) " d0'(§)> !
0 B(£,2576(x))

XEYa(§) Q xey(é)
P

= (/89 (MG.(CKZ(F)PE)@))P'/PE dO'(f)) < 1)l g

3.1.4. Step 4: Estimate for T5. It remains to estimate 7'3. To this end, we split it further as follows:

(3.12) T3(x)<  sup / IV2G(z, ) F ()l dm(y)
2€B(x.8(x)/32) Jy5E)\(B*UB,)

+ sup | / V2G (@ () dm(y)| =: T31(x0) + T(x),
2€B(x,6(x)/32) © J Q\(yp()UBY)

where 8 > « will be determined soon. We control T3, first. For each integer m > -3, let ¥ be the family

of cubes Q € D,, verifying 2"7(x) < dist(Q, &) < 2™*176(x) and £(Q) < ¢2™16(x) for a small ¢ € (0, 1) to
be determined later. We claim that, for large enough £,

(3.13) O\(yp(€) U BY) € U,pp=_3 Ugegn w(Q).
To see this, let y € Q\(yg(§) U BY), and let I € W be such that y € I; we show that if Q € b(I), then Q € F"
for some m > —3. For any Q € b(I), it is easy to see that

dist(Z, Q) + diam Q < 56(y) < 5(1 + B) "'y - &,

On the other hand, we have that dist(/, ¢) > %Iy — &|. By fixing 8 > a large enough that (1 +8)~! < %, we
thus guarantee that

dist(Q, &) > dist(1, &) — (dist(1, Q) + diam Q) > |y — &|/4 > 16(x)/4 > 27376(x).

Now let m = mp > -3 be the unique integer such that 2" 76(x) < dist(Q, &) < 2"*+116(x), and suppose that
£(Q) = ¢2"16(x). Then
(1+p)Q) <

& { diam 7 + dist(Q, I) + diam Q + dist(Q, &)} < %f(Q),

1 1
7| — < ——
25\/n+1y 25Vn+1
which gives a contradiction if 8 is chosen large enough (depending on ¢). Thus we have that £(Q) <
c2™16(x), so that Q € F™, finishing the proof of (3.13).

With the claim at hand, for each m > -3 we let {Q}”} ; be the smallest family of cubes of uniform

generation k with 27% < 2"76(x) < 27%*! such that for each Q € 7™, there exists Q7 with Q € Q. We
write 7—7” for the family of cubes contained in Q;’?. We now claim that for any m > -3, j, and Q € 7—'}”,
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we have that x € Q\2'“By. Fix a large integer my > —3 to be determined later. If m > my, the triangle
inequality implies that
2=l —2(1 + @)

lx — xp| > dist(Q, &) — [x =& > 2m_17'6(x) - (1 +a)d(x) > s

(o,

so that if we choose mg large enough so that 27072 > M, we may guarantee that 2"~ '7—2(1 +a) > 2" 21

for each m > my. Then, by choosing ¢ < 27!°, we obtain that |x — xg| > 2'46(Q) for all m > mq. If m < my,
we have that |x — xg| > 6(x) > =—€(Q) > 1@2™7)71¢(Q), so that if ¢ < (2"™*147)"!, we obtain that
lx — xol > 214¢(Q) for all =3 < m < my.

We have thus shown that for any m > -3, any j, and any Q € ", we have that x € Q\214BQ. Proceed-
ing as in (3.4) and (3.6), and using the preceding claim to apply Lemma 2.17 and obtain the appropriate
analogue of (3.5), we deduce that

X 212B
(3.14) s Y Y Y “W o s () dm)

m=-3 j QeFI"

Arguing as in the proof of (3.10), for fixed m and j we may show that

X 2123
(315) Z wé(Q)nQ) o m2,B(z,6(z)/2)(F) di’l’l(Z) < (/

213B
07y o

1
s w'(2'°Boy) (][ G(FY dor)
1N B2 2es(x))

where we used the n-Ahlfors regularity of 0€Q, the fact that f(Q;f’) ~ 2™1d(x), and Proposition 2.20. It
follows from (3.14) and (3.15) that

(3.16) T < (Y o (U;2%0) ) (Mo(@Fyine) .

m>-3

(dwx

N d) [, eriio) g

Let E := | i 2lf’BQr]zz. By choosing ¢ small enough, we may guarantee that dist(E, &) > 2" 276(x), and

therefore w'(E) = 0 on B(¢, 2" 216(x)) N dQ. Moreover, for all m large enough such that 2" > 8/1, we
have that x € B(&,2"216(x)), and for such m, since v(x) := w*(E) solves Lv = 0 in Q, the boundary Holder

n
inequality, Lemma 2.19, implies that w*(E) < (“*"Wx) ) < 27150 that

2m=21§(x)
Y wiE)s ) 2mM<C
m>-3 m>-3
Using this result on (3.16), it follows that
’ 1/ 4
(3.17) Il sup T32(x)||Ll"(6Q,da-(§)) < ||(M()_(ng(F)l71)) pl”LP'((’)Q) s ||%2(F)||Lp’(ag)-

xey(§)

For T31, let ‘W be the collection of Whitney cubes I € W such that I N (yg(£)\(B*U B,)) # @. Itis easy
to see that Uzeqy, I C y5445(¢). For any I € ‘W; and y € I*, we distinguish two cases: either 6(y) < Ko(x)
or 6(y) > Kd&(x), for K large to be specified. If 6(y) < Kd(x), then |y — x| > 27%6(x) > 2_4K_16(y). If
o(y) > Ko6(x), then

=2 > Iy =&l =[x = € 2 6() = (1 + )8(x) > 6(y) = (1 + K 6(y),
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so if we choose K large enough that lin < %, then we have that [y — x| > 6(y)/2. Thus, in any case we have

that [y — x| > 6(y), and similarly, |y — z| 2 6(y) for all z € B(x, 6(x)/32). With this in mind, we see that

1/2 1/2
18 Tuws s 3 ([ maGenfanm) ([0 dne)

2€B(x(0/32) ey,
) 1/2 1 ntl
s sp 3 ([ Geytamm) Tl maF)
€B(S(/32) feqp, 1 o)

<> an™ /1 my.i(F) 5 / o 5" MEGIM2.B(y.60/2)(F)} dm(y),
Y5+4p

IeW1

where we have used that G(z,y) < ly—z]'™ < 6(y)! ™ for eachy € y5(£)\(B*UB,) and each z € B(x, 5(x)/32).
From (3.18) it follows that

Q- x€y,(€)

1oy [ | s ral do@s [ | [ o7 0 mmsn @) dn)|” doe
0 0Q " Jys,4p()

< / FGF)E do(©) < / GENE do(e),
oQ oQ

where in the last inequality we have used (1.10).

3.1.5. Conclusion. From the estimates (3.3), (3.11), (3.17) and (3.19), we deduce that
(3.20) IN2 Wl oy S IGEN L oy

It remains only to estimate the last term in the right-hand side of (3.1). However, this term is almost
completely analogous to the term we have just bounded in (3.20), thus let us only comment on the changes.
First, as in (3.2) we break up IK/Q,Qfs,Z* (w3)(&)| into three analogous parts 77,75, T5. The term T is con-
trolled in the same way as 7| was controlled, except now we use the fact that ngl CL2(Q) » LY (Q).
The term T is controlled similarly as 7> was controlled, but now we do not need to use the Caccioppoli
inequality; instead, for instance in the analogue of (3.4) we use the basic estimate

1
oIy

and mimic the proof of (3.11) to finish the estimate for 7. The term T3 is split into two terms 73, and
T3, analogously as in (3.12), and we bound each of these separately; the only difference with the detailed
proofs above will be the use of (3.21) instead of the Caccioppoli inequality at the very beginning. As such,
we control all three terms T, T; and T35 in the expected ways, and obtain the estimate

(3.22) IN2 W3l oy S 162, GEDII L ay-

From (3.1), (3.20), and (3.22), the desired bound (1.12) follows. ]
We now consider an extension of Theorem 1.11 to the case of F' € C; ;y and H with 6oH € C;_ .

oy my, ((6H),

(3.21) /I G MIHG)| dm() < (]{ Gy dm(y) ™

Theorem 3.23. Let Q € R™!, n > 2 be a domain satisfying the corkscrew condition and with n-Ahlfors
regular boundary. Let p > 1, p’ its Holder conjugate, and L = — div AV. Assume that (Dé,) is solvable in Q.

Let g € LP (0Q), H such that 5oH € Cy, p, and F € Cy . Then there exists a weak solution w € WIL’CZ(Q)
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to the problem (1.1) satisfying the estimate (1.12). The equation w = g on 0Q is understood as

lim wdm = g(£), for o-a.e. £ € 0Q.
YE3x=E) Bx.60(x)/2)

Proof. Since (Dé,) is solvable in Q, it is well-known that for any g € L”' (9Q), there exists a weak solution
ueE WI’Z(Q) NC (Q) to the equation Lu = 0 in Q satisfying that limy )5 xe u(x) = g(&), for o-a.e. & € 0Q.

loc loc
Hence, by linearity, it is enough for us to consider the case g = 0. By Lemma 2.6, there exist sequences {Fy},
{h«} of compactly supported Lipschitz functions on Q such that Fy — F strongly in C, ,» and hy — 6oH
strongly in C,, ,v, as k — oco. Let wy be the unique weak solution in c(Q)n YJ’Z(Q) to the equation

Lwy = 55‘2] hy — div Fy. For any k, £ € N, we have that
L(wg = we) = 65 (hx = he) = div(Fi = Fy),

and wy —wy € Yé’z(Q). Therefore, since we have already shown the bound (1.12) for the case of compactly
supported Lipschitz data, we see that

(3.24) ”K{Z*(Wk - WK)”Lp’(aQ) < ||(52*(hk - hf)”Lp’(aQ) + ”sz(Fk - Ff)”Lp’(aQ) — 0,

as k — oo. This shows that the sequence {wy} is strongly convergent in the Banach space N»: ,, defined
in Section 1.1.1. Let w € Np: » be the limit of {wy} in Ny« ;», and furthermore, note that wy — w strongly

in LIZSC(Q) as k — oo. Let us remark that since we also have that F; — F strongly in LIZOC(Q) and that
2.

10c(€2), then by the Caccioppoli inequality (Lemma 2.9), we see that the sequence
{V(wr — we)} is strongly convergent in LIZOC(Q). Then it is an exercise to check that w € WIIO’CZ(Q) with
Vwi — Vw strongly in LIZOC(Q). From this fact, it easily follows that the equation Lw = H — div F holds in
the weak sense in Q.

hy — 0qoH strongly in L

Finally, we claim that

1
lim (][ |w|2*dm)2 -0, foro-ae £e€dQ.
Y3328 N B(x,8(x)/2)

However, this follows easily since Kfz*(w —wp)(€) — 0 pointwise o-a.e. on 9 as k' — oo (after passing to
a subsequence {wy}), and by boundary Holder continuity applied to the solution wy in small enough balls
centered at the boundary. O

3.2. Proof of Theorem 1.22. The implication (a) = (b) is contained in Theorem 1.11 already, while
(b) = (c¢) and (d) = (e) follow immediately by definition. We will show (¢) = (a), () = (c¢),
() = (d), (e) = (D), (f) = (a), (2) = (a), (a) = (g), (h) = (a), (a) = (h).

Proof of (c) = (a). We follow part of the argument for [MT, Theorem 1.5]. Assume that (c) holds, and
we show that (a) holds by proving that the assumptions in Proposition 2.20 (c) hold. To this end, we prove
that for B, A, and x € Q as in Proposition 2.20 (c),

1/p
(3.25) <][ (Mmowi)pd0'> <a (B,
AB

where M, is the truncated maximal operator defined by

|7I(B(£, 1))

Myo 1) = ,
07E) 0<r<dist(x.00Q)/4 O (B(, 1))

for any signed Radon measure 7.
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Given a ball B; = B(&,r), withé € 0Q N AB, 0 < r < dist(x, 9Q2)/4, (so that x ¢ 4B;), consider a smooth
non-negative function ¢pg, which equals 1 on B, and vanishes away from 2B;. Then we have that

(3.26) wj(Be) < ][ w§ dm(z) < / op, dwi dm(z)
B(x,6(x)/8) B(x,6(x)/8) JoQ

1
—-f AT manmana s ) [ || 96 dn@|dno)
B(x,0(x)/8) JQ r 235 B(x,6(x)/8)

,C’ 5
< | Np W <1Q\B(x,6<x)/4) ][

V2G1(z, ) dm(z)) dor,
CB; B(x.3(x)/8)

where we used Lemma 2.10, (2.13), and Fubini’s theorem. Therefore,
wi (B, 1)) ][ ~C8(x)
" g N. <ﬂg\3 5(x)/4)
o(B(&, 1)) B&Cr) : ro B(x.8(x)/8)

Taking the supremum over 0 < r < dist(x, 9Q2)/4, we derive

V2G1(z,9) dm(z)) dor

C' S
Moo wi(€) € Mo (11B<x,c'6<x>>Nz 0 (]19\3<x,6(x)/4> 7[
B(x.6(x)/8)

V2612, ) dm(@)) ) @),

so that

SC6
(3.27) |IMop willriase) < HMU— (h(x,c'a(x))Nz ) (1Q\B(x,5(x)/4) ][

B(x,6(x)/8)
< HNZ 6(X)<]IQ\B()C,6(X)/4) ][ VoGi(z, ')dm(Z)>
B(x,6(x)/8)

VoGir(z, ) dm@)) Hu«r)

LP(B(x,C'8(x)).0)

Next, we use the N-% duality to control the right-hand side of (3.27). We have that

628) [Re(loucsn f 92616 dn)

HU’(G’)

(x,0(x)/8)
s s (tosesono V2Giz,) dm(@) | F(3) dm()|
FECy i Ga(B)ll oy =1 ' /2 B(x,6(x)/8)
= sup ‘ ][ ( / V26 ) { Fla\seocs § dM(y)) dm(z)|,
FEC, il (Pl 0, =1 / Bx.3(x)/8) /0

where we used Proposition 2.4 and Fubini’s theorem. By Lemma 2.6, we may assume without loss of
generality that the supremum in the right-hand side of (3.28) runs over the compactly supported Lipschitz
functions F such that [|[€2(F)Il;» 5q) = 1. Then, let

Wy r(2) i= /Q VoG r(z, ) { FO)La\Brons ) | dm(y), 7€,

so that Lwy r = —div F1o\B(x,5(x)/4)> Wx,F € Yé’z(Q), and by hypothesis, we have

||N2*(Wx,F)||Lp’(aQ) < ||%2(F]1Q\B(x,é(x)/4))”Lp’(ag) < ||%2(F)||Lp’(ag)-
Therefore, if { € 0Q satisfies that |x — | = dq(x), then

62 [f ([ DG FOmmusns )} dnt)) dn)
B(x,6(x)/8) Q
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1
S ‘][ Wy F dm‘ < <][ wr? dm)2
Bxd()/®) B(x6(x)/8)
s][ No(w ) do < 8 [Ga(F)ll oy ~ 60077,
B(.C5(x)

so that from (3.27) and (3.28) we conclude that
(3.30) Moo Willrage) < 87 <a o(B)7,
which readily implies the desired bound (3.25).

Proof of (¢) = (c). Fix F € L7 () and let w be the unique weak solution in YS’Z(Q) to the equation
Lw = —div F given by the Green’s representation formula (2.13) (with the Green’s function G). Using
Proposition 2.4, we see that

(3.31) N W)l 50 < sup ‘ / Hw dm‘.
HeCy, p:ll62, (Dl ony=1" v/ Q

By Lemma 2.6, we may assume without loss of generality that the supremum in the estimate above runs
over all compactly supported Lipschitz functions H in Q satisfying that |62, (H)||zr@a) = 1. Letv € Yé’z(Q)
be the unique weak solution to the equation L*v = H. Then we have that

/dem:/ATVvadm:/AVwVvdm:/FVvdm,
Q Q Q Q

where we used that v, w € YS’Z(Q). Using this identity in (3.31) and Proposition 2.4 again, we obtain that

o Dlrgm € sup 1GE L e Na)llen
H:||C2, (H)lILp o) =1

s swp G ElrealEE L e = Gl o
H:||G2, ()|l a)y=1
where we used that the estimate (1.19) holds (with F = 0).

Proof of (c) = (d). First, let us note that one may prove (c) = (e) in a perfectly analogous manner to
the proof of (¢) = (c) shown just above, and for all other applications in this paper, only the equivalence
(c) & (e) is needed. Nevertheless, we prefer to show the stronger result (1.19) with non-trivial F, and
that is what we account for in this argument. Fix H, F' € L’(€) and let v be the unique weak solution in
YS’Z(Q) to the equation L*v = H — div F. Using Proposition 2.4, we see that

(3.32) N2V < sup / GVv dm‘.
=1 Q

GECo GG 4

By Lemma 2.6, we may assume without loss of generality that the supremum in the estimate above runs
over all compactly supported Lipschitz functions G in Q satisfying that [|€2(G)ll» 5q) = 1. Letw € YOI’Q(Q)
be the unique weak solution to the equation Lw = —div G. Then we have that

(3.33) /GVvdm=/AVwVvdm=/ATVvadm=/dem+/Fdem,
Q Q Q Q Q

where we used that v, w € YS’Z(Q). Next, using Proposition 2.4 again, we see that

(334 | / Hw dm| < 165, (EDllraeyl N2 09y, < 16, (EDlr ol 6@l gy = 165, (EDlla
Q
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where we used that (PDII;,) is solvable in Q. Furthermore,

(3.35) | /Q FVwdm| < 1 15)laen NGVl
Assume for the time being the following estimate:

(3.36) Kfa’%,2(6VW)(§) < /ﬁ\v/m,%’z(w)(f) + %%’Z(G)(‘f), o —ae. £ €09,
for some a7 > a. If (3.36) holds, then we have that

(3.37) IN2EVWI gy S N2 oy + IG5y S GG oy = 1

From (3.32)-(3.37), the desired estimate (1.19) follows. It remains to show that (3.36) holds. Fix & € 0Q,
X € Y4(€), and write B = B(x, 5(x)/8), B* = 1.1B. By the Caccioppoli inequality (Lemma 2.9),

(]i 6Vwl dm ) e (]i Il dm) e (]i 6P dm)é S Ny 12 00(E) + 60 (]i IGP dm) g

and note that

1

1 1
6 (f 16GPdm) 56007 (f ieran)” dnoy
B* B(x,6(x)/8) Y B(y,6(y)/2)

1

<
0(X)" J B, 2+a)s(x)NQ

(f  iam) ano < €, 606,
B(y.6(y)/2)

which completes the proof of (3.36).
Proof of (¢) = (f). This follows from definition, using (1.27).

Proof of (f) = (a). We show that (a) holds by proving that the assumptions in Proposition 2.20 (c) hold.
Thus we endeavor to prove (3.25), and to do this, we mimic the argument of (¢) = (a) written above with
some small changes. Given B, A, and x € Q as in Proposition 2.20 (¢), £ € QN AB, r € (0, dist(x, 0Q2)/4),
then similarly to (3.26) we obtain the estimate

wj(By) ][ widm@) s [ Ny P <V2][ Gz, ->dm<z>) do < (™" [ NSOV do
1 1

CB; CB;

where I is a Whitney cube such that x € I and u; is the local landscape function (for the operator L*)
subordinate to /. Proceeding as in the proof of (¢) = (a), we use that (f) holds to deduce that

Moo Wil s ED ™ DINS “CVupllee sper s CDMVUD™ 7 ~ Qy™?" ~ s(x) ™7,
The desired result follows.

Proof of (g) = (a). This is very similar to the proof of (f) = (a); we omit further details.
Proof of (a) = (g). We use Proposition 2.4 to see that

INg (V2GL(x, ) o) sup ‘ / VyGL(x, »)F(y) dm(y)|.
FECq/wp/Z”(é)q/ (F)”Ll’/(ﬁﬂ)zl Q
Let w = L' div F. Then, we have that
| [ G PG )] =l < Ny 800 ING o
Q B(x.C"5(x))

Since (a) holds, then by Theorem 1.11 (more specifically, Remark 1.13), we have that
INWIL oy S 1 (Pl oy = 1
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which yields (g) by the estimates above. |

Proof of (h) < (a). This is shown very similarly to the proofs of (f) = (a) (using the Caccioppoli
inequality) and (a) = (g) (using Theorem 1.11), we leave the details to the interested reader.

4. A CORONA DECOMPOSITION INTO LIPSCHITZ SUBDOMAINS ADAPTED TO THE DKP PROPERTY

Throughout this section we assume that Q@ ¢ R™! »n > 1, is a bounded open set with uniformly n-
rectifiable boundary satisfying the corkscrew condition, and that A is a real, not necessarily symmetric
(n + 1) X (n + 1) matrix in Q with measurable coefficients satisfying (1.3) and the DKP condition in €.
Our objective in this section is to show that, if £,7 > 0 are arbitrary parameters, then there exists a corona
decomposition of Q into Lipschitz subdomains Qg, with R € Top € D,, and a buffer region 5 like the
one in [MT, Section 3.3] such that

Q=) @uor,  where ' =Q\ | Q.
ReTop ReTop

Moreover, the domains Qg have uniform Lipschitz character and Lipschitz constant £ and the matrix A
satisfies the 7-DPR condition in each Qg. Obviously, we allow the packing condition of the corona decom-
position to depend on 7 and ¢.

We will follow very closely the arguments in Section 3 from [MT]. The main difference is that in the
construction below we introduce another stopping condition to ensure that A satisfies the 7-DPR condition
in each domain Qg, with R € Top.

Let us begin. For each O € D, and a fixed M > 2 large to be chosen below, we let
A0(Q) = £(Q) sup{IVAM)I : x € Bxg, MU(Q)) N Q, Sa(x) > M~ U(Q)}.
Lemma 4.1. Suppose that A satisfies the DKP condition in Q. Then there exists C(M) > 0 such that
4.2) Z Ao(Q)o(Q) < C(M) o(R), forany R € D,.
0€D,:0OCR
Proof. For a > 0, we denote
4.3) Q,={xeQ:da(x)>al.

Given Q € D, applying the Besicovitch covering theorem we can cover B(xg, M{(Q)) N Qy-14) by a
family of balls B;, i € I, centered in points x; € B(xg, M{(Q)) N Qys-14g), With radii r; = 6a(x;)/8, so that
moreover the family {B;}ie/, has finite superposition. From the fact that r; ~ €(Q) for each i and the finite
superposition, it easily follows that #/p < 1. Then we have

/ sup  (6(x) [VA)?) dm(z) 2p €(Q) Z / sup VAW dm(z)
B(xg.MUQ)NQ,, 1) ¥€B(z00(2)/2) ielg * Bi 7<B(.00(2)/2)
> £(0))  sup VAW m(B;) =y €(Q)* Y _ sup VA o(Q)
iEIQ xeB; iEIQ XEB;
> ((Q) sup IVA@)P 0(Q) = 1a(Q) 0(Q),
Blxg.MUQINQ,-1 40,
where in the second inequality we took into account that B; C B(z,q(z)/2) for any z € B;. Therefore,
> w@e@sn > | Sup () IVAWP) dm(2)
B

QeD,:0CR 0eD,:QcR 7/ Bxo-MUDNQy -1 ) ¥€B(2.00(2)/2)
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- / sup (9o (x) [VA)?) dm(z) sy o(R),
B(xg,C(M)t(R)) x€B(z,00(2)/2)

by the finite superposition of B(xg, M{(Q)) N Q14> With Q € D>, O C R, and the DKP condition. O

4.1. The approximating Lipschitz graph. In this subsection we describe how to associate an approxi-
mating Lipschitz graph to a cube R € D, assuming bS,(k1R) to be small enough for some big constant
ki > 2 (where we denoted b, = bfsupp)- The construction is based on the arguments in [DS91, Chapters
7,8, 12, 13, 14]. The first step consists in defining suitable stopping cubes.

Given x € R"™! we write x = (x’, x,11). For a given cube R € D, we denote by Lg a best approximating
hyperplane for bB,(k;R). We also assume, without loss of generality, that

Lg is the horizontal hyperplane {x,.; = 0}.
We let x% be the orthogonal projection of xz on Ly (i.e., x% = ((xg)’,0)). For a given y € (0, 1/4) to be
chosen below, we let
% = (R, (3 =VrBRY), 1k = (), (=3 + NrBR)),
and we consider the balls
B*(R) = B(xz, ;r(B)), B (R) = B(xg, y7(B)),
and the cylinders

CR) = {x e R™ ¥ — (xg)'] < 2y 2H(BR)), |xus1] < ¥ r(BR))},

C'(R) = {x e R"™" : [¥' = (xg)'| < §r(B(R)), |xns1] <y r(B(R))}.
It is easy to check that C(R) c B*(R) N B~(R) c C’(R). Also, in the case when dist(xg, Lg) < r(B(R))/4,
say, we have

4.4) B*(R)U B (R) c B(R).

We consider constants €,9, and 6 suchthat ) < e < § < ¥y < 1/4and 0 < 6 <« 1 to be chosen later
(depending on the corkscrew condition and the uniform rectifiability constants), k; > 2, and we denote by
B or B(e, ) the family of cubes Q € D, such that either B, (k1 Q) > € or Ao(Q) > 6.

We consider now R € D, \ B. Notice that in this case (4.4) holds, and also
(4.5) {xeR: ¥ - ()| < Iy'*rBR)} c CR).
We let Stop(R) be the family of maximal cubes Q € D, (R) such that at least one of the following holds:
(@) ONB*(R)YN B (R) = 2.
(b) O € B(s,0),1.e., by (k1 Q) > € or Aa(Q) > 6.
(¢) Z(Lg,Lg) > 0, where Ly, Lg are best approximating hyperplanes for B, «(k1 Q) and Sy« (k1R),
respectively, and Z(Lg, Lg) denotes the angle between Ly and Lg.
() > pep,:gcpcr A(P) > 6.

We denote by Tree(R) the family of cubes in D (R) which are not strictly contained in any cube from
Stop(R). We also consider the function

dp() = inf (dist(x, Q) + diam(Q)).

Notice that dg is 1-Lipschitz. Assuming k; big enough (but independent of & and ¢) and arguing as in the
proof of [DS91, Proposition 8.2], the following holds:
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Lemma 4.6. Denote by Il the orthogonal projection on Lg. There is a Lipschitz function A : Lg — L
with slope at most C6 such that

dist(x, I1g(x), AlIg(x)))) < C1edr(x) forall x € kiR.

Remark that in this lemma, and in the whole subsection, we assume that R is as above, so that, in
particular, b8, (k1 R) < €.

We denote

Dr(x) = inf dg(y).
yellg! (x)

It is immediate to check that Dy is also a 1-Lipschitz function. Further, as shown in [DS91, Lemma 8.21],
there is some fixed constant C, such that

4.7) Cz_ldR(x) < Dr(x) <dr(x) forall x € 3B(R).

We denote by Z(R) the set of points x € R such that dg(x) = 0. The following lemma is an easy
consequence of the results in [DS91, Chapters 7, 12-14], although it is not stated explicitly in [DS91].

Lemma 4.8. There are some constants C3(g,06) > 0 and ky > 2 such that

4.9) 0(R) =, 0(C(R)) £20(Z(R)) +2 Z a(0)
QeStop(R)NB(&,0)
+C3 Y BrikiQPa(@ +2670 D 2a(Q) (0.
Q€Tree(R) Q€Tree(R)

Proof. The fact that o(R) ~,, o7(C(R)) is an immediate consequence of the inclusion (4.5) and the n-Ahlfors
regularity of o. Denote | = {R € Dy - G(UQE&OP(R)Q(C) Q) > O'(C(R))/Z}, where Q € Stop(R) N (¢)
means that Q satisfies the condition (c) in the above definition of Stop(R). Notice that ¥ is very similar
to the analogous set ¥ defined in [DS91, p.39]. A (harmless) difference is that we wrote o(C(R))/2 in
the definition above, instead of o"(R)/2 as in [DS91]. Assuming & > 0 small enough (depending on 9) in
the definition of B(g, 0), in equation (12.2) from [DS91] (proved along the Chapters 12-14) it is shown that
there exists some k > 1 (independent of € and ) such that if R € ¥, then

f f B (x, k) d"(f) s (R,
X

where X = {(x, 1) € suppo X (0,+00) : x € kR, K ldg(x) <t < kt’(R)}. It is easy to check that, choosing
k1 > k large enough,

d d
[[ Braer T S pratoP o)

Q€cTree(R)
Hence, (4.9) holds when R € .
In the case R ¢ ¥, by the definition of Stop(R), taking into account that C(R) C B*(R) N B~ (R), we have

o(R) ~, 0(C(R)) < o(Z(R) N C(R)) + Y o@NCR®)
QeStop(R)NB(&,,0)

+ ). d@NCRY+ > (QNCR).

QeStop(R)N(c) QeStop(R)N(d)
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Since the third sum on the right hand side does not exceed o (C(R))/2, we deduce that

1
(4.10) 5 T(CR)) < o(ZR) N C(R) + Z (0 N CR)) + Z (0 N C(R)).

QeStop(RINB(s.0) QeStop(R)N(d)
finally with the last sum. By condition (d) we have

S s@ncry<et > Y AP o)

QeStop(R)N(d) QeStop(R) PeD,:QCPCR
=07 ) @ D> @< ) AP)oP).
PeTree(R) QeStop(R):QcP PeTree(R)
Plugging this equation into (4.10), the lemma follows. m|

4.2. The starlike Lipschitz subdomains Q. Abusing notation, we write Dg(x") = Dg(x) for x = (X', xp11).

Lemma 4.11. Let
Ur = {x € B"(R) : xp11 > A(X') + C1C26Dr(x")},
Vr ={x € B (R) : Xp41 < A(x") — C1CreDr(x")},
and
Wg = {x € B(R) : A(x') — C1C2Dg(x") < X541 < A(X") + C1CreDp(x")}.
Then dQ N B(R) € Wg. Also, Ug is either contained in Q or in R\ Q, and the same happens with Vp.
Further, at least one of the sets Ug, Vi is contained in Q.

Remark that it may happen that Ug and Vi are both contained in €, or that one set is contained in € and
the other in R"*! \ Q.

Proof. Let us see that 9Q N B(R) ¢ W(R). Indeed, we have 9Q N B(R) C R, by the definition of B(R). Then,
by Lemma 4.6 and (4.7), for all x € 9Q N B(R) we have

lx — (X", A(X")| < C1edr(x) < C1Cre DR(x),
which is equivalent to saying that x € Wkg.

Next we claim that if UgNQ # @, then Ug C Q. This follows from connectivity, taking into account that
if x € Ugp N Q and r = dist(x, dUg), then B(x,r) C Q. Otherwise, there exists some point y € B(x, r) \ €,
and thus there exists some z € dQ which belongs to the segment Xy. This would contradict the fact that
0Q C Wg. The same argument works replacing Ug and/or Q by Vg and/or R"! \ Q, and thus we deduce
that any of the sets Ug, Vg is contained either in Q or in R\ Q.

Finally, from the corkscrew condition we can find a point y € B(xg, r(B(R))) N Q with dist(y, 0Q2) =
r(B(R)). So if g,0 are small enough we deduce that y € (Ug U Vg) N Q because bB,(k1R) < & and both

0QNB(R) and the graphs of A in B(R) are contained in a Cé¢(R)-neighborhood of the hyperplane {x,,; = 0}.
Then by the discussion in the previous paragraph, we infer that either Ur € Q or Vg C Q. m|

Suppose that Ug ¢ Q. We denote B°(R) = B(x%, 7(B(R))) and we let T’} be the Lipschitz graph of the
function B®(R) N Lg 3 X’ — A(x’) + 6 Dg(x’). Notice that this is a Lipschitz function with slope at most
C6 < 1 (assuming 6 small enough). Then we define

Qf = {x =, x041) € B"R) : xp01 > AX') + 6 Dr(x') }.

Observe that Qj is a starlike Lipschitz domain (with uniform Lipschitz character) and that Qf c Ug,
assuming that C;Cre < 6.
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In case that Vz C Q, we define I'; and € analogously, replacing the above function A(x") + 6 Dr(x) by
A(x") — 6 Dr(x"). If Vg ¢ R"™1\ Q, then we set Qp = @. In any case, we define
Qg = Qp U Q.

From Lemma 4.11 and the assumption that C1Cre < 6, it is immediate to check that
0
4.12) dist(x, 0Q) > 2 Dg(x) forall x € Q.

For a given a > 1, we say that two cubes Q, Q' are a-close if

a”'t(Q) < {(Q) < at(Q) and dist(Q, Q") < a(t(Q) + £(Q)).
We say that Q € D, is a-close to Tree(R) if there exists some Q' € Tree(R) such that Q and Q’ are a-close.
For 1 < a* < a* to be fixed below, we define the augmented trees
Tree"(R) = {Q € D, : Qis a*-close to Tree(R)},
Tree™(R) = {Q € D, : Q is a**-close to Tree(R)}.

Obviously, Tree(R) c Tree*(R) C Tree*™(R). Notice also that the families of cubes from Tree*(R) or
Tree™(R) may not be trees.

We now let ‘W(U) be a (1/4)-Whitney decomposition of Q (see Section 2.1.6).

Lemma 4.13. Assuming a* > 1 to be big enough, we have

%nQc |J wo.

Q€Tree*(R)

Recall that w(Q) is the Whitney region associated with Q (see Section 2.1.6). Notice that if Qp # @, it
may happen that w(Q) is the union of some Whitney cubes contained in Qj and others in Qj, for example.

Proof. Let P € ‘W(Q) be such that P N Qg # @ and fix Q € b(P). It suffices to show that Q € Tree*(R) if
a* is taken big enough. To this end, we show that there exists some Q' € Tree(R) which is a*-close to Q.

Notice first that £(P) < Cs€(R) for some fixed constant Cs, because P intersects Qg and thus B(R).
Let x € P N Qg. Then by (4.12) we have gDR(x) < dist(x,0Q2) ~ {(P) = €(Q), for Q as above. Thus,
dr(xg) = Dr(xg) < Dgr(x) + C4(Q) < 5‘1{’(Q). From the definition of dg we infer that there exists some
cube Q' € Tree(R) such that £(Q’) + dist(Q, Q") < C6~14(Q).

If£(Q") > C5 Le(R), welet Q” = Q'. Otherwise, we let Q" be an ancestor of Q’ belonging to Tree(R) and
satisfying C5 LeQ) < ¢(Q”") < 2C5 1£(Q). The above condition £(Q) = £(P) < Cs £(R) ensures the existence
of Q”. Then, in any case, it follows that Q’ is a*-close to Q, for a* big enough depending on §. O

In the rest of the lemmas in this subsection, we assume, without loss of generality, that Q+ c Ur C Q.

Lemma 4.14. If Q € Tree(R), then dist(w(Q), Q) < C £(Q). Also, if Oz # @, dist(w(Q), Qg) < C £(Q).

Proof. We will prove the first statement. The second one follows by the same arguments. It is clear that
dist(w(Q), Qi) < C{(R), and so the statement above holds if £(Q) 2 £(R).

So we may assume that £(Q) < c; €(R) for some small c; to be fixed below. By construction, the parent
Q of Q satisfies Q N B*(R) N B~ (R) # @. Thus there exists z € B*(R) N B~(R) such that [z — xg| < €(Q).
Clearly, it holds dist(z, Q) < €(Q). On the other hand, we consider the point x = (7', z,+1 + 2£(Q)), so that

(4.15) dist(x, 0Q UT}) > €(Q).
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By definition of dg and Dg, Dr(xp) < dr(xg) < €(Q). Hence, Dgr(x) < Dr(xg) + C£(Q) < €(Q) < da(x).
Assuming ¢ small enough, we deduce that 106 Dg(x) < dist(x, 0Q) < C€(Q) < c1C{(R). By the definition
of QF, it is easy to check that this implies that x € Qj, if ¢ is small enough. Indeed, since z € B*(R)NB™(R),
by (4.15) and the last estimate, A(x") + 6 Dr(x") < Xp+1 <¢, €(R). |

We denote dTree™ (R) := {Q € Tree*™ (R) : w(Q) ¢ Qg}.
Lemma 4.16. Forall S € D, we have
Y o) e T(S).

Q€edTree™ (R):QcCS
Proof. We will prove the following:

Claim 1. For each Q € dTree*(R) there exists some cube P = P(Q) € ‘W(Q) such that
PNoQr# @,  UP)~gg Q)  dist(P.Q) o L(Q).

The lemma follows easily from this claim. Indeed, using that Qg is either a Lipschitz domain or a union
of two Lipschitz domains, that

4.17) H"(2P N IQg) = €(P)" =g~ 0(Q),

the finite superposition of the cubes 2P, and the fact that #{P € W(Q) : P = P(Q)} < C(a*™, 6) for every
Q0 € dTree™(R), we get

Y. o@ses ), H'@QPNIR) s H' (09N Blxs, C'(a™)S)) < S
Q€edTree* (R):QCS PeW(Q):
PCB(xs,C(a™){(S))

To prove the claim we distinguish several cases:

Case 1. If €(Q) > c(a™, 6)¢(R) (with c(a**, 6) to be chosen), we let P(Q) be any Whitney cube that intersects
the upper half of B*(R). It is immediate to check that this choice satisfies the properties described in (4.17).
Case 2. Suppose now that £(Q) < c(a*™, 6)¢(R) and that dist(Q, d(B*(R) U B~(R))) > Cg £(Q) for some big
Ce(a™) > 1 to be chosen below. Let us see that this implies that xp € C(R). Indeed, from the definition of
Tree™(R) there exists some S € Tree(R) such that Q and S are a**-close. Since S N (B*(R) N B~(R)) # @,
there exists some Xg € S N B*(R) N B"(R). If xp ¢ (B*(R) U B™(R)), by continuity the segment xQTNS
intersects d(B*(R) U B~(R)) at some point z. So we have

dist(xp, (B (R) U B~ (R))) < |xg — 2l < |xg — x5l < A(E(Q) + £(S)) + diam(Q) < C(a™){(Q),
which contradicts the assumption above if Cg(a™) is big enough. In particular, the conditions that xp € C(R)
and dist(Q, d(B*(R) U B~(R))) > Ce £(Q) imply that w(Q) C (B*(R) U B~ (R)) if Cg is taken big enough.

If w(Q) N Qg # @, then we take a Whitney cube P with £(P) = £(Q) contained in w(Q) that intersects
Qg. Otherwise, w(Q) C Q \ Qpg, and from the fact that £(Q) < c(a**, §){(R) we infer that w(Q) lies below
the Lipschitz graph I';, that defines the bottom of dQg, and above the graph I'y in case that Q; # @. Then
we take x € w(Q) and x* = IT5!(x) N T}, and also x~ = [g!(x) N Tk in case that Qf # @.

When Q; = @, we let P be the Whitney that contains x*. Since Vg C R™1\ Q, there exists y =
5! (x) NdQ N BY(R). Then we deduce £(P) ~ dist(x*,0Q) ~ |x* —y| > H'(w(Q) NTIx' (x*)) > £(Q). Using
again that there exists some S € Tree(R) such that Q and S are a**-close we get

(4.18) €(P) ~ dist(x*,0Q) < Dr(x™) = Dgr(x) < Dg(xg) + C€(Q)
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< Dr(xs) +|xg — xs| + C £(Q) < C(a™, 6)L(Q).
Further,
(4.19) dist(P, Q) < |xg — x"| < |xg — x| + |x = x| 5 €(Q),
and so P satisfies the properties in the claim.

If Qp # @ (i.e., Vg C Q), we let P be the largest Whitney cube that intersects {x*, x™}. From the fact that
bBs(k1 Q) < € and the stopping condition (c) we easily infer that there exists some point y € 1'[1}1 (x")NB°(R)
such that dist(y, 0Q) < £€(Q). Then it follows £(P) 2 |x* — x7| > H'(w(Q) N [Tz (x*)) > £(Q). Also the
estimates (4.18) and (4.19) are still valid, replacing x* by x™ if x~ € P. So P satisfies the required properties.
Case 3. Suppose that £(Q) < c(a**, §)¢(R) and that dist(Q, d(B*(R) U B~(R))) < C¢ £(Q) for Ce(a™) > 1 as

above. So there exists z € d(B*(R) U B™(R)) such that |xg — z|] <4~ £(Q). We also denote z* = I-(z) NT3.
As above, we take S € Tree(R) such that Q and S are a**-close, so that since Dg is 1-Lipschitz, we have

dist(z", 0Q) ~ Dr(z") = Dr(z) < Dr(xs) + |z = xol + [xg = xs| Sa= £(Q).

From this fact we infer that there exists some point y € dQg such that [z — y| = |Zp+1 — Yu+1| Se €(Q) and
dist(y, 0Q) =4~ €(Q). This point satisfies |xgp — y| < |xp — 2| + |z — y| <o €(Q), and so letting P be the
Whitney cube that contains y we are done. m|

4.3. The corona decomposition of Q2. We will now perform a corona decomposition of € using the Lip-
schitz subdomains Qg constructed above. We define inductively a family Top C D, as follows. First we
let Ry € D, be a cube such that b3, (k1 Ry) < € having maximal side length. Assuming Ry, Ry, ..., R; to be
defined, we let R; € D, be a cube from D, \ y<i<; Tree™ (Ry) such that bB(kiRis1) < & with maximal
side length. We set

Top = {Ri}iz0.
For each R € Top we consider the subdomain Qp constructed in the previous subsection. We split
(4.20) Q= |J Qrus#, where =0\ |
ReTop ReTop

Lemma 4.21. The sets Qr N Q, with R € Top, are pairwise disjoint, assuming that the constant a** is big
enough (possibly depending on a*).

In particular, from this lemma it follows that the union in (4.20) is a partition into disjoint sets. The
constants a* and a** depend on ¢; however, this dependence is harmless for our purposes.

Proof. Suppose that R,R’ € Top satisfy Qg N Qg N Q # @. Suppose also that R = R;, R = R, with
J > i, so that in particular £(R’) < ¢(R). From Lemma 4.13 we infer that there exist cubes Q € Tree*(R)
and Q' € Tree*(R’) such that w(Q) N w(Q') # @. Clearly, this implies that £(Q) ~ £(Q’), and from
the definition of Tree*(R) and Tree*(R’) we deduce that there are two cubes S € Tree(R), S’ € Tree(R’)
such that dist(S,S") S, £(S) ~4 €(S"). Let S be the ancestor of § with £(S) = {(R') (or take § = S if
£(S) > €(R")). Clearly, S € Tree(R) and dist(S,R’) <4 €(R’). So R’ € Tree™ (R) if a** = a**(a”) is chosen
big enough, which contradicts the construction of Top. m|

Lemma 4.22. The family Top satisfies the packing condition

Y R <es o(S)  forall S € Dy
ReTop:RcCS
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Proof. By Lemma 4.8 we have

423) ) o®s Y. c@Z®y+ >, Y. O

ReTop:RcS ReTop:RcCS ReTop QeStop(R)NB(&,0)
2
+ YD (BrakQ) + 1a(0)) 0(Q).
ReTop:RcS QeTree(R)

By construction, the sets Z(R) are disjoint, and thus the first sum does not exceed o(S). The second
term does not exceed ZQGDU(S)OB(S,Q) 0(Q) Seo 0(S), by the uniform rectifiability of dQ and the DKP
condition (4.2). Concerning the last term in (4.23), the families Tree(R), with R € Top, are also disjoint by
construction. Therefore, again by the uniform rectifiability of 0Q,

Yo Y Briq QP () £ Beik1 Q) 0(Q) Ses 7(S).
ReTop:RCS Q€eTree(R) QocS
Analogously, by (4.2),
YD @@ <D Q) 0(Q) S F(S).

ReTop:cS QcTree(R) Qcs

Lemma 4.24. There is a subfamily H C D, such that

(4.25) A | w)
QeH
which satisfies the packing condition
(4.26) Y (@ =50(S) forallS € Dy,
QeH:QcS

with the implicit constant depending on &, 6, a™*.

Proof. By construction, Dy C BU (Ugerop Tree™ (R), and thus

aclJwou [ U wou U o

QeB ReTop QedTree* (R) ReTop
So (4.25) holds if we define
H:=8BU U O0Tree™(R).
ReTop
It remains to prove the packing condition (4.26). From the uniform rectifiability of 0Q, the family 8
satisfies a Carleson packing condition, and so it suffices to show that the same holds for (e, Tree™ (R).

This is an immediate consequence of Lemmas 4.16 and 4.22. Indeed, for any S € D, let Tp = {R € Top :
Tree"™ " (R)N D, (S) = }and Ty ={Re€ Ty : E(R) < €(S)}, Tr ={R € Ty : £(R) > £(S)}, so that

> oo a@<dY > q@+> D ()}

ReTop Q€dTree™ (R)ND,(S) ReT| QedTree™ (R) ReT> QedTree™ (R)IND(S)

Since all the cubes from dTree* (R) are contained in C(a**)R, it follows that the cubes from T’ are contained

in C’(a**)S, and thus
Y. Y @5 ) TR $e5 0(S).

ReT) QedTree™ (R) ReT,
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Also, it is immediate to check that the number of cubes from 7> is uniformly bounded by some constant
depending on a**. Therefore,

YooY @S Yy o(S) se o).

ReTy QedTree™ (R)IND(S) ReT,

4.4. The properties of Q.

Lemma 4.27. Assume that g, 8, and y are small enough. Then, for each R € Top, Qg is a t-Lipschitz
domain or a disjoint union of two t-Lipschitz domains, with uniform Lipschitz character.

Proof. This is an easy consequence of the definition of Q. Indeed, notice that in the bottom part of B}, (in
a neighborhood of the cylinder C’(R), say), 0Qf, can be written as a Lipschitz graph with slope bounded by
C max(8,y) (namely the maximum of the graph defining the bottom part of dB*(R) and the graph defined
by x,+1 = A(xX") + 6 Dgr(x")). The same happens with 0Q. We leave the details for the reader. O

Lemma 4.28. For each R € Top, Qg is a Lipschitz domain satisfying the T-DKP condition, assuming 0, €, 0
small enough and M big enough.

Remark that, under the assumptions of the previous lemma, Q also satisfies the C7-DPR condition.

Proof. Let B = B(&,r) be a ball centered in Qg with radius » < diam(Qg). Denote by “W(CQg) the family
of Whitney cubes of Qg. By standard arguments, it is enough to show that

(4.29) > s UQ)" <t

QeW(Qg):QNB+2

where we denoted syp(A) = SUP,er0 I[VA(x)| £(Q). Suppose first that » < C7 160(&), for some big constant
C7 > 1 to be chosen momentarily. In this case, for any cube Q € W(Qp) that intersects B(¢, r) (which
implies that £(Q) < r), we have Cyr < dist(&,9Q) < dist(2Q, 0Q) — dist(&,20Q) < dist(2Q,0Q) — Cr. So
dist(2Q,9Q) > r = £(Q), choosing C7 big enough. This implies that 2Q is contained in a finite union of
Whitney cubes P € ‘W(Q) with £(P) ~ dist(2Q, 02). We denote by I the family of such cubes P.

Recall now that, by Lemma 4.13, Qg N Q C Uoetreerry W(Q). Hence for any P € Ip there exists
S € Tree*(R), with £(S) = €(P) such that P C w(S). By the definition of Tree*(R) and the properties of
Whitney cubes, this implies that there exists some cube S’ which is a*-close to S such that, for M big
enough, depending on a* and the properties of Whitney cubes,

(4.30) P Cw(S) C Blxs, ME(S™)) N Q1451
Remark that here we have used the notation in (4.3) and that M is the constant appearing in the definition
of the coefficients Aq(-). Observe also that the parameter a* is independent of M.

By construction, for any cube S’ € Tree(R) we have that either 1o(S’) < 0, or 1o(S”’) < 6, being "’
the parent of S§’. By choosing a larger M if necessary, we can assume that the inclusion in (4.30) also holds
replacing S’ by S”’. Then, from both inclusions and by the definition of 1o(S”) and 1o(S”") we infer that
IVA(x)| < €(S")710 ~4 €(P)~'0 < 10, for any x € P. Since this holds for all the cubes P € Iy, the estimate
above holds for all x € 20Q. Hence, $30(A) <4+ 0 @, for any Q € W(Qg) such that Q N B # @. Therefore,
denoting by Ip the family of cubes Q € W (Qg) such that O N B # @&, we have

(4.31) 3 520(A) €Q)" S f: S ot < gm(B(f, Cr) < 07",

Qelp Qelp
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so that (4.29) holds for 6 small enough.

We consider now the case r > C5 169(§). For any cube Q € Ip, let g € 0Qg be such that dist(£p, Q) =
dist(Q, 0Qg). Notice that £y € CgB N 0, for some fixed Cg > 1. Let I}; be the family of cubes Q € Ip
such that dist(Q, 9Qg) < %71 dist(ég, 0Q), and set I3 = Ig \ I. Denote U = U,c¢,pran, BO» C7'60()/5).
By applying Vitali’s covering theorem, there is a family of balls B}, j € J, centered in y; € dQg, with radius
rj = C;lég(yj), so that the balls %Bj are pairwise disjoint and U C Uje] Bj. Observe that if Q € 1}, then
Q intersects the ball B(§p, C7 1ch(fQ) /5), and so it also intersects at least one of the balls B;, j € J. In this
case, we write Q € Ip,. We split

D 50A2 U0 <D D spA UQY + D s29(A UQ)" =1 51 + S

Qelp JjeJ Qelg, el

To deal with S| we apply the estimate (4.31) to each ball B; and we take into account that all the balls %B |
are contained in CyB, for some Cy > 1, because r; = C;lég(yj) S 0(é) + € —yjl < r. Then we get

S1 800 rix0Y H'(:B;N0Qk) S OH"(CoB N Q) < 01"

Jj€JB JjesB

Let us turn our attention to the sum S,. We claim that Q € I% = dist(2Q, 0Q) =4+ €(Q). One inequality
follows from the fact that Q is a Whitney cube for Qg: dist(2Q, Q) > dist(2Q, 0Qg) = €(Q). To see the
converse inequality, notice that by the definition of 1%, dist(2Q, 9Q) < dist(Q, 0Q) < dist(§p, Q) +6a(&p) <
(1 +5Cy) dist(Q, 0Qg) =~ £(Q), which proves the claim.

From the claim and the properties of Whitney cubes for Q, it follows that for each Q € I3 there is
subfamily Ip € W(Q) such that 2Q C UPGIQ P, with #/p < 1, and £(P) ~ €(Q) for each P € Ip. By
the same arguments as above, we know that for every P € Iy there exists § € Tree*(R), with £(S) = £(P)
such that P C w(S). As in (4.30), by the definition of Tree*(R), this implies that there exists some cube S’
which is a*-close to S such that, for M big enough, depending on a* and the properties of Whitney cubes,
P Ccw(S) C B(xg:, M{(S")) N Qpp-14(s). Further, by choosing a larger M if necessary, we can assume that
S’ € Tree(R) \ Stop(R).

Let Iy be the family of S” € Tree(R) \ Stop(R) associated in this way to some Q € 1,23. Then we have
(4.32) D 0@ UQ" DD spAP P < > DT Y sap(A) P

Q€I§ Qellz; Pelg S’ely QEIl% Pely:PcS

By pigeonholing, it is easy to check that each S’ € Iy is associated, at most, to a bounded number of cubes
from 1123 (with a bound depending on a*). Therefore, by the definition of 1q(S”),

D s20A QY = > IVAIZs ) Q"™ £ YD VA, P

Qel Qel} Qel’ Pelg
<> > IVAIZp) €PY™ Sar D Aa(S) ().
S’ely Qelé Pelp: S’ely

PCB(xgr ,MUS NNy -1 451

We will estimate the last sum above using the stopping condition (d) for the corona decomposition.

First notice that there are constants C,C’,C"”",C"”" > 1, possibly depending on a*, such that if Q € I3,
Pelp,and S € Tree"(R) and S’ € I} are associated with Q and P as above, then S’ ¢ CS c C'P c C"Q C
C’”B. Since 8q(¢) < Cyr, we deduce that there exists some ball B’ centered in dQ, with radius r =, r,
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such that C"’B c B’. Thus, ZQE,I% $20(A)? €(Q)" <ar > sreTree®\Stop(Ry:s i A0(S) 0°(S). To deal with the
last sum, suppose first that the cubes from Stop(R) cover R up to a set of zero o-measure. Then we have

Yoo a®as)= Y > AaS)a(P)

S’€Tree(R)\Stop(R): S’€eTree(R)\Stop(R): PeStop(R)
S’'cB’ S
< Y oP > a(S).

’ CB/
PeStop(R):PCB’ S’€Tree(R)\Stop(R):
PcS’cR

By the condition (d), taking into account that S’ ¢ Stop(R), we have ) S’eTree(R)\Stop(R): 10(S) < 6. Hence
PcS’CR

(4.33) Z A0(S)T(S) <00 (B) ~ ()" ~4 07",
S’eTree(R)\Stop(R):
S’'cB

In the case when the cubes from Stop(R) do not cover R, for each k > 1 we let Stop,(R) be the subfamily of
maximal cubes from Stop(R) U Di(R). By the same arguments as above, replacing the sum ) pegion(r) DY
_ pestop, (k) We deduce that

> Aa(S) o (S) < 61",
S’€eTree(R)\Stop(R):
S’'CB, €(S")=27F{(R)
and letting k — oo we infer that (4.33) holds in any case. Together with (4.32) and the previous estimate
for §1, this shows that (4.29) is also satisfied in the case r > C7 160(&), for § small enough. ]

5. THE ALMOST L-ELLIPTIC EXTENSION

Throughout this section we assume that Q@ ¢ R™! »n > 1, is a bounded open set with uniformly n-
rectifiable boundary satisfying the interior corkscrew condition, and that A is a real, not necessarily sym-
metric (n + 1) X (n + 1) matrix function in Q with measurable coefficients satisfying (1.3) and the DKP
condition in Q. Recall that we write L = —div AV.

Let f : dQ — R be a Lipschitz function, so that in particular f € WH?(Q) for any p € [1, o). In this
brief section we define the “almost L-elliptic extension” of f to €, following closely [MT, Section 4] where
the case L = —A is considered. We omit proofs of the properties of the almost L-elliptic extension, since
these are essentially the same as in [MT, Section 4].

First, we define the auxiliary extension f of f; this is done exactly the same way as in [MT, Section 4].
Given a ball B c R"*! centered in dQ and an affine map A : R"*! — R, we consider the coefficient

, lf = Al
B) :=inf ( |[VA| + do |,
Ys(B) int (I I B 9
where the infimums are taken over all affine maps A : R™*! — R. We denote by A an affine map that
minimizes y¢(B). Next, given a ¢-Whitney decomposition ‘W(€2), for each Whitney cube I € W(Q) we
consider a C* bump function ¢; supported on 1.1/ such that the functions ¢, I € W(Q), form a partition
of unity of yq. That is, ) lew(@) I = xo. We define the extension f : Q — R of f as follows:

flaa = f, fla = Z @1 Azpy -

IeEW(Q)
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It is clear that f is smooth in Q. Here, b(I) is any fixed boundary cube of [ satisfying (2.7), and By, is the

ball concentric with b(I) that contains b(I); see Sections 2.1.3 and 2.1.6. If f € Lip(dQ), then f € Lip(Q)
with Lip(f) < Lip(f) [MT, Lemma 4.2]. Let us also record the following useful fact.

Lemma 5.1 ([MT, Lemma 4.6]). For each p € (1, o), there exists C > 0 so that
(5.2) IVﬂx)I < mcgé(l),(r(VH,pf), foreachx €I, I € W(Q).

Given the corona construction in terms of the family Top from Section 4, for each R € Top we denote by
vr the solution of the continuous Dirichlet problem for the operator L in Qg with boundary data flsq,. We
define the function v = vy : Q — Rby

]? inQ\ UReTop Qg,

vg in each Qg, with R € Top,
and we call it the almost L-elliptic extension of f.

If f is Lipschitz on 9dQ, then v is continuous on Q, and moreover, v € V.VI’Z(Q) with ||Vv||Lz(Q) <
Lip(f)m(€)!/? (these facts follow by essentially the same argument that yields [MT, Lemma 4.3]). Fur-
thermore, for each R € Top, by virtue of the properties of Qr in Section 4.4 and the main result of Dindos,
Pipher, and Rule in [DPR17], we have that vg is the solution of the Regularity problem (R)IL7 with boundary

data ﬁag. Let us be more precise; define

NQr 2 172
@ = sup (f uPdm) . e a0,
xey?R ©) B(x.60,(x)/2)

and let V,, be the tangential derivative in Qg.

Theorem 5.3 ([DPR17, Theorem 2.10]). Fix p € (1,00). For eagh R € Top and q € (1, max{2, p}], the
problem (Ré) is solvable in Qg. In particular, if f € Lip(0Q) and f, vg are as above, then

~ 0 _
NS (VRN Lao0r H1s0,) S IV i fllLso0k H50,)-

6. THE REGULARITY PROBLEM FOR DKP OPERATORS

Throughout this section we assume that Q is a bounded domain in R"*!, n > 2, satisfying the corkscrew
condition and with uniformly n-rectifiable boundary. The goal of this section is to prove Theorem 1.33. To
do so, it turns out that the essential step is to study the conormal derivative of solutions to Poisson-Dirichlet
problems. Given a weak solution w to the Poisson-Dirichlet problem (1.1), define the functional

6.1 {y(p) = Blw, @] := /

AVWVO dm — / HDdm — / FVO®dm, ¢ € Lip(0QY),
Q Q Q

where @ € Lip(ﬁ) is a Lipschitz extension of ¢ to Q, with ®lsgg = ¢. It is easy to see that £, (p) is
well-defined, since w solves the equation Lw = H — div F in the weak sense. We call ¢,,(¢) the conormal
derivative of w, and denote d,,w = {,,.

The following proposition shows that the conormal derivative d,,w is a bounded linear functional on

W' It is the main ingredient for our solution to the regularity problem with non-smooth coeflicients, as it
completely takes the place of a 1-sided Rellich estimate. Indeed, the result can be seen as an alternative to
Lemmas 5.1 and 5.2 of [MT] (see also Remark 6.4).
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Proposition 6.2 (Conormal derivative of the Poisson-Dirichlet problem). Let Q ¢ R™!, n > 2 be a bounded
domain satisfying the corkscrew condition and with uniformly n-rectifiable boundary. Let p > 1, p’ its
Holder conjugate, and L = —div AV, where A is a DKP matrix in Q. Assume that the homogeneous
Dirichlet problem (DIL,,) is solvable in Q, that g € LV (dQ) and that F € Cy,pr. Let w be the unique solution
to the Poisson Dirichlet problem (1.1) with H = 0. Then there exists a constant C > 0 such that

(6.3) 10, (@) < C[llgll ey + 162 Pl o0 IV rpllr 00

Remark 6.4. Although Proposition 6.2 has a similar flavor to results in Section 5 of [MT], our proof is quite
different, in that we do not study the properties of the signed measure L*v, for v, the almost L*-elliptic
extension of ¢ € Lip(0Q) defined in Section 5.

Remark 6.5. One detail that may seem purely technical but is in fact quite important for our choreography
is that we show (6.3) with the Carleson functional %, in the right-hand side, and not merely with %,
although controlling the latter is easier for the relevant term 75,,, defined in (6.13) and studied in Section
6.1.4. Since 6>(F) < €, (F) pointwise on dQ for p € (1, 2], the result with %5 is stronger.

Proposition 6.2 is proved in Section 6.2 below, after proving an important auxiliary estimate in Section
6.1. For now, let us show how its conclusion gives us Theorem 1.33.

Proof of Theorem 1.33. First we assume that f € Lip(dQ2), and let u the unique solution to the problem
Lu=0in Qand u = f on 0Q. By Proposition 2.4, we have that

(6.6) INa(Villr@oy € sup / FVudn].
Q

F G =]
By Lemma 2.6, we may assume without loss of generality that the above supremum runs F € L (€2) with

F € C, ;. Fix such F, and let w be the unique weak solution to the equation L*w = —div F in the space
Yy (Q). It follows that

(6.7) / FVudm = / ATVwWVudm - 6VATW(f) = —(9VAT w(f),
Q o)

where in the last identity we used that Lu = 0 in Q and that w € YS’Z(Q). Note that, since A is a DKP
matrix, then so is A”. Therefore, by (6.6), (6.7), and Proposition 6.2, we have that

IN2(Vi)llrr o0y < sup 12 1 91V i p fllr o) = IVEp e,

F: ”(KZ(F)llLI’,(aQ):l

as desired. O
Remark 6.8. As seen above, for the purpose of proving Theorem 1.33, it is enough to show Proposition

6.2 for the case that g = 0. In this case, the term T5; treated in Section 6.2.3 is identically O and may be
skipped.

6.1. A n.t. maximal function estimate for the almost L-elliptic extension. For the proof of Proposition
6.2, we will need the following fact regarding the almost L-elliptic extension. It tells us that the almost
L-elliptic extension satisfies a similar estimate to (1.6).

Proposition 6.9. Let p > 1 and L = —div AV, where A is a DKP matrix in Q. Let ¢ € Lip(0Q2) and v, the
almost L-elliptic extension of ¢ (see Section 5). Then we have that

(6.10) IN2(Vv)llzragy < IVap@lliran).
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Proof. Let p’ be the Holder conjugate of p. We show that

(6.11) ‘ / FVV(,D dm‘ < ||%2(F)||L1"(BQ)“VHaP¢”L”(‘9Q)’ for any F € Cz’pz.
Q

Once we show that the above estimate holds, then (6.10) follows immediately by Proposition 2.4. Fix
F € Cy ), and denote? T, = | fQ FVv, dm‘. We split T, up as follows:

Ty < ‘/ Fvadm’+ S
I

’/ FVdem‘ = T21 + T22,
ReTop Qr

where 7 := Q\ Ugerop Qg and Top, Qg are defined in the corona construction in Section 4, and @, Vg are
defined in Section 5.

6.1.1. Estimate for T»1. We estimate T first:

©12) T<y Y (/|F|2dm>l/2(/|V¢|2dm)”2
QeH INw(Q)+2 1 1
<> ¥ (]lc o9 dor) /1 ma.1(F) dm

QeH INw(Q)+#2
1
S Vipeldo) —— (F)dm(y)| €(Q)"
Q2€;{[<]£BQOBQ| i (r> ooy /W(Q) 2, F) m(y)} @

1
< \Y d (F)d d
</an Qeﬁﬁeg{(iéggmfag' o) s /w@ (P ()} do 0

< /a My OENO o) S 1P IVl on

where in the second line we used Lemma 5.1, and in the fourth line we used Carleson’s Theorem and that
the family H satisfies a Carleson packing condition (Lemma 4.24).

6.1.2. Estimate for Ty. We now consider T5;. For each R € Top, let Insg be the family of 7 € ‘W(Q) such
that I* C Qg and let Bdryy, consist of all I € “W(£2) which intersect Q and do not belong to Insg. With this
notation, we split T, further:

6.13) Tp< > (Z /I|F||Vledm+ 3

ReTop  I€lnsg IeBdryp

[ 119t am)
INQg

= E (T1,r + ToooR) = Tt + Tonp.
ReTop

6.1.3. Estimate for T»y1. By Holder’s inequality and arguing as in (6.12), it is not hard to see that

1/2
(6.14) Toves 3 (f vl am) " [msn ().
1 1

Ielnsp
Let ¥ be the family of cubes Q € D, such that Q € bg(I) for some I € Insg. Let o be the n-dimensional
Hausdorff measure restricted to dQg, and define D, as in Section 2.1.3, with the oldest generation jy € Z
verifying 2770 > %. Let us show that for any Q € ¥, there exists P € D, such that £(P) = {(Q) and

2The choice of the subscript 2 in T, will be apparent in the proof of Proposition 6.2.
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dist(P, Q) < K€(Q). Let { € 0Qp verify that dist({, Q) = dist(Q, Qr), and take P € D, to be the largest
dyadic cube such that £ € P and £(P) < £(Q). On the other hand, since Q € bq(I), we have that

Q) = ) = dj;%(ll) < \/,% diam(Qg) < : diam(0Qg) < 277,

where we have used that Qp is a bounded domain. Hence there are dyadic cubes of length £(Q) in D, and
therefore we have £(P) = £(Q). Now, using (2.7), it is easy to see that dist(P, Q) < K{(Q) for K depending
only on n and ¢.

Given Q € Fg, if P € Dy, satisfies that £(P) = £(Q) and dist(P, Q) < K{(Q), we denote it by P = L(Q)
(P is a lift of Q). It is not hard to see that

(6.15) card{P : P = L(Q)} £ Ny,
where Ny depends only on 7, K, and the n-Ahlfors regularity constant of 0Qg.
We let G be the family of all P € D, such that P = L(Q) for some Q € Fg. Furthermore, let

~ 1/2
(6.16) NS @ = sup (]1 dm) " g eogy,
xR ONB(&s) VB0 (0/2)

and given [ € Insg, let us show that
2 . \/? NCUP S
6.17) ( vzl dm) < Cyinf N9 (WVup) (). for each P = L(Q). Q € ba(l).
1

with C; and By depending only on n, 6, and ¢, and C depending only on ¢ and n. Since I € Insg, then
I* = (1 +6)I C Qg, whence 0¢(I) < dist(P,I) < {(I). Let ¢ = 2%, where k¢ € N is the smallest integer with

@ < % Partition [ into subcubes J of equal length £(J) = c£(I). Then

(6.18) ][ VoglPdm = "> ]1 IVvgl? dm.
1 7 JJ

Note that card{J} = 2k+D Tt is easy to see that for each x € J, J C B(x, dq,(x)/2), and therefore
(6.19) ][leRl dm N,,gC][ IVvgl* dm, for each x € J.
B(x,00,(x)/2)

However, for each x € J and each { € P, we have that x € yg({), for By large enough depending only on n,
6 and ¢. It follows that

1/2
(6.20) <][ Vvl? dm) < inf NEAPOR (V) ), foreach x € .
B(x60,(0/2)

Using (6.18), (6.19), and (6.20), the estimate (6.17) follows.
Using (6.17) and the properties of the family Gg, from (6.14) we deduce that

©2) Tmirs Y, Y ][ (f N (Vv dore ) (inf 2(F)(&))

OeFr Ielnsg:0ebo(l)

<> ag ][ NA P28 () dorr) ( inf €2(F)(E)
0<Fr feQ

’

aQ ][ NELo: QR(VVR)dO'R)p};){ 3 ag <][Q @(F) dU)p }”1'
QcFr
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where
1
ap = —————— m2 B(z.5(z)/2)(F) dm(z2),
¢ it GFNQD) Jug) PO

P is any cube such that P = L(Q), and in the second line we used that there are at most a uniform number
of Whitney cubes I with Q € bq(l). It was shown in (3.7) that the family {ap}oep, satisfies the following
Carleson packing condition:

Z ag < o(S), for any § € D,
0eD,:0CS

Given P € Gg, one can easily prove that card{Q € Fr : P = L(Q)} < C, where C depends only on K, n, and
the n-Ahlfors regularity constant of 0Q. For any P € Gg, define

ap = Z agp.
QeFr:P=L(Q)

We now claim that {ap}pcg, satisfies a Carleson packing condition. Given S € Gg, fix a cube Q(S) € Fr
which satisfies that S = L(Q(S )) Fix P € Gg with P C §, and let Q € ¥ with P = L(Q). Let us show that
there exists Q € D, with O C Q K(Q) =£(Q(S)) and dlSt(Q 0(S)) < €(Q(S)). Indeed, let Q € D, be the
unique ancestor of Q verifying ¢ (Q) £(Q(S)). By construction, we have that Q C Q and finally, note that

dist(Q, 0(S)) < dist(Q, O(S)) < dist(Q, ) + diam S + dist(S, O(S))
< dist(Q, P) + €(S) + KL(Q(S)) < KL(P) + €(O(S)) + KE(Q(S))
< 2K + DHXQ(S)),

as desired. Now let 75 consist of all cubes Q € D, such that f(Q) = £(Q(S)) and dist(Q, 0(@8)) <
2K + 1)X(Q(S)). Itis easy to show that

(6.22) card{Q € F5} < C.

With these observations, we deduce that

(6.23) dooap= > > ags > Y ags > Q) £ 0(QS)) s (),

PeGr:PCS PEGR:PCS QeFr:P=L(Q) OeFS 0ch DeFs

where we used (6.15), the properties of the family 75, the Carleson packing condition of {ap}, (6.22), and
the fact that Q is n-Ahlfors regular. This completes the proof of the claim that {ap}pcg, satisfies a Carleson
packing condition.

With this fact at hand, we see that

~ p
6.24) ) ag (][ NSO (7, )do-R "< ][ NP (g, dUR> S 4
Qer  VPPEHO) PeGr QFr:P=L(Q)

=Y G ][ NEEPn (7 dO'R)p < / sup ][ NPy dO'R)de'R({)
Qg

Pegn PeGr:(ePJ P

< [ Mo NSE(VWR) dog < INSE Va0 S 170l 00
0Qr

where in the third line we used (6.23) and Carleson’s theorem, and in the last line we used Theorem 5.3 for
L*. With (6.21) and (6.24), another application of Holder’s inequality for sums yields
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629 Y Tonw s { 3 Wadllany ) { 3 X a0 ][ Grydo) V7

ReTop ReTop ReTop QeFr
’ 1
~ » P
Y Wl { 2 aQ(][ G(Fdo) |
ReTop QeD, 0
1 1
{3 Wadton ) { | (s ][ “F)dr) do}’
ReTop 0:4eQ

1 1
< {0 Vadrang | IMAGEDrao < { D INapn, | I o0y

ReTop ReTop

where in the second line we used that a given cube O € D, belongs to at most a uniformly bounded number
of the families F, and in the third line we used Carleson’s theorem and the Carleson packing condition of
{ap}. Finally, since the sets dQg N JQ are pairwise disjoint, and following the argument of [MT, Lemma
4.7], we note that

626) > IV @m0, < IVapelToom + > 1Y@l g00na0
ReTop ReTop

< Wl + 3 €07 (f

)4
il dor)” < Vi p#la
QeH Q

where once again we used Carleson’s theorem. From (6.25) and (6.26), we conclude that

(6.27) Too1 S 6Pl 90 IV i pellLrog)-

6.1.4. Estimate for Typ. Fix I € Bdryg, and by Holder’s inequality, note that

) 1/2 ) 1/2
(6.28) / \F|[Vvg|dm < ( / IF| dm) ( / Vgl dm)
INQg 1 INQg

Let ‘W(CQg) be a 4-Whitney decomposition of Qr (see Section 2.1.6), and observe that
(6.29) / VorPdm< > / VorPdms > ) / N3 ER(Vvp)? dog
INQg JEW(QR):INI#D JEW(QR):INI#D CINoQk

40)) ~ClQ ~ G0
<> > & N "y dor s €0 | Ny " (Vvg)® dog
keN JeW(Qg):-INT£@,0(T)=2"*H0 £(T) CINdQk CINdQk

where C, C, ko, and [ are uniform constants depending only on the parameters of D,,, and N was defined
in (6.16). In the last estimate of (6.29), we used that the uniform dilations of Whitney cubes J € W (Qg) of
a given generation which intersect / have uniformly bounded overlap. Now, we take ¢ to be small enough
that Cé < 1/2, and this guarantees that

(6.30) %dist(l, 8Q) < dist(16C1,dQ) < dist(l, dQ).

Using the localization result for the regularity problem, Theorem 2.23, we obtain that

~ = 2
6.31) [ NEDLR (v derg < / V@l dog + ) (][ _ [vgldm)
CINoQg 16CINOQg 4CINQR
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Next, let Q € bo([), and by (6.30), Lemma 5.1, and standard computations, it is easy to show that
IV@()| < Cime,py.s(Vapp),  foreach x € 16CI,

with the constants C, C; depending on ¢. It follows that

~ 2
(632) [ WugRdon s €0 (s )
16CINIQR
On the other hand, by essentially the same argument as in (6.29), we have that
(6.33) f IVvgldm < ][ K/E%Z(I)’QR(VVR) dog.
4CINQg CoInoQg
Putting together (6.28), (6.29), (6.31), (6.32), and (6.33), we see that
(6.34) / |FI[Vvgl dm < mo (F)CIY"™! [mCQBQp(VH,,,so) - ]{ NG DO (Vvg) dorg|.
INQg CrIN0QR
Therefore,

635) > /1

FIVveldn s ey Vi) [ maan (Frdme)
1

IeBdryg NQr IeBdryg
a1 R Y %
" 2 / ma.ap,(F) dm(x) p L) ][ N (V) dor
IeBdryR{ (" J; B }{ ( &I 82 VVR R) }

=: T g + Toooo R,

where 139(1 ) is any boundary cube of I (see Section 2.1.6).

Note that the term ) ReTop T2221 r may be handled exactly the same way as how we handled 75, before;
as such, we have that

(6.36) > Tonigr S 1GE) oI Vapellreo).
ReTop

We study now the term 72222 . Note that if I € Bdryy and Q € bq(I), then Q € H. Let Hp be the family
of Q € H such that Q € bg(I) for some I € Bdryg. By Holder’s inequality, we obtain

637 Tamns (X @[ [manErane]" )" ([ Rgsoraoe)”

IeBdryp f([)”

’

1 P\
~ f " F d VtRN 4 R
s <sz ©" oy /W oy man D) dm|” ) 9oy

where in the first line we used that the sets C»/ have uniformly bounded overlap, and in the last line we
used the solvability of (R), in the Lipschitz domain Qg. Using (6.37) and Holder’s inequality once again,
we see that

638) 3 Tomrs (Y €0y f(é)n / (Q)mz,wx(F)dm(x)}p')"l/( S ilany)”

ReTop QeH ReTop

1

S ( /a e [5(;)" /B(:f,Cé’(Q))ﬂQ m2’4BX(F) dm} ' do-(f)) ”i, ( Z ||VtR¢||€p(3QR)) ’

Q QeH:£€Q ReTop
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, 1/p’
< ([ @y dr) " Wupplion,
0Q

where in the second line we used Carleson’s theorem and the fact that H satisfies a Carleson packing
condition, and in the last line we used the definition of %5, and (6.26). From (6.35), (6.36), and (6.38), we
conclude that

(6.39) T2 S NGl 901V HpPllLr90)-
Putting (6.12), (6.27), and (6.39) together, we have shown the desired estimate (6.11). ]

6.2. Proof of Proposition 6.2. Let v, be the almost L*-elliptic extension of ¢ defined in Section 5. Since
w solves Lw = —div F, it follows that B[w, ®] = B[w, v, ]. Hence

(6.40) 6l < | / AV Vv, dm| + | / FWvgdm| =Ty + T,
Q Q

From Proposition 2.4 and Proposition 6.9, we see that

(6.41) T2 S Gl ooV pellr @)

Hence we need only control T';. Fortunately, several parts of the argument to control 7 may be reduced to
terms considered in the proof of Proposition 6.9. We split up 7 as follows:

(6.42) T, < ‘ / AVwV&dm‘ -
I

’/ AVwVvg dm’ =T + Z Tior=T11+Ti2,
ReTop Qr

ReTop

6.2.1. Estimate for T1;. By the Caccioppoli inequality (Lemma 2.9), we have that

©43) ThsY Y ( /1 |Vw|2dm>£< /1 |V¢|2dm>;

QeH INw(Q)+2
1 1 1 1
DY f(l)"(][ |w|2dm)2(][ VeRam) + > > ( / FPdm)” ( / VG dm)’
OeH INW(Q)#0 F I OeH Inw(Q)zo 71 1

=T+ T
The term 771, is estimated in exactly the same way as the term T, which was controlled in Section 6.1.1.
Thus we obtain that
(6.44) T112 S Gl oo)IVEpPlliLroe)-

We consider the term 7’111 now. Recall that the truncated non-tangential maximal function was defined in
(2.22). It is not hard to show that for any Q € D,

1 ~
(6.45) (][ w|? dm) <q gng N3 @w)&),  foreach I € W(Q)s.t. INw(Q) # @,
I* € ’
where C; and C; depend only on n, and ¢, and we may take 81 = 17. Now, using (6.45), Lemma 5.1, and
the fact that card{/ : I N w(Q) # @} < C, we obtain that

6400 Tin s 3 {4 m A Con@ @i (f  Wapldo)}

O CBoNiQ

1

< ( S woy <][Q NE1Q ) d(r>P'> 4 ( S «oy <][

OeH OeH CBQQBQ

1

PNy
Vipelder)" )
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1

£ ~
< ([ MetReny’ do)” (| MoFapr der)” s N2y ¥l
0Q 0Q

< [gll oy + 16l o) IV a1 pelliracys

where in the second line we used Holder’s inequality, in the third line we used Carleson’s theorem and the
fact that the family H satisfies a Carleson packing condition, and in the last line we used (1.12). From
(6.44) and (6.46), we conclude that

(6.47) Tii s (I8l gy + 16 0 IV i@l

6.2.2. Estimate for T1>. Write w = we+wp, where w, solves the homogeneous problem with Dirichlet data
g on 0Q, and wr solves the Poisson problem with source data — div F' and O Dirichlet data on the boundary.
With these definitions, note that

(6.48) Tiog < ‘/ AVw, Vg dm) + ’/ AVwEVvg dm‘ =Ti21r + T122r-
QR QR

6.2.3. Estimate for Ty := ZReTOp T121r Let us see how to control Tjo;. Let N be the unit outer normal
on 0Qg, which is well defined og-almost everywhere. We will argue similarly as in the proof of [MT,
Lemma 5.1], with some small technical differences. For each k € N, let Gy = Ggy be the family of dyadic
cubes I ¢ R"*! with side length 2k such that 31 N 0Qg # @, and let

Q= Qps =\ | J T
1eGy,
It is easy to see that 9 C Qg, that 9 is n-Ahlfors regular uniformly on k and R, and that dist(x, 0Qg) ~
2% for each x € 9. Since fQR IATVvRng dm| < +oo, then by the Lebesgue Dominated Convergence
Theorem and the facts that A7 € Lip,;,.(€2) and L*vg = 0 pointwise a.e. in {, we have that

(6.49) / ATVvgVwedm = lim [ ATVygVwedm = lim [ div((AT Vvr)w,) dm.
QR k—)oo Qk k—)oo Qk
Seeing as the vector field (ATVvR)wg is continuous in Q, we use the divergence theorem to obtain
(6.50) / div((AT Vvg)wg)dm = (ATVvg) - Nwy dH", for each k.
Qi 0Q

From (6.49), (6.50), and Holder’s inequality, we obtain that

1 1
Tk < {hm sup ( / Vol dw") ’}{ lim sup ( / el dﬂ”) ’ } = Tioiig X Tionag,
an k— o0 6Qk

k—o0

and so

(6.51) Z Tioir < ( Z T1211R) ( Z T1212R) " = Tip X Tiano.
ReTop ReTop ReTop

Let us control the factor T'j212. Since w, € C (Qg) and Qg is bounded, we have that

(6.52) T .= / wel? dH™ = ||gll”’ / wel? dH".
1212,R 90 8 LY (0QRNOQ) 902100 8

Note that
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>l ane
1INoQR

IeBdryp

S X Wty s X (f miPan)” s 3 aor(f Ratwpar)”

IeBdry IeBdryp ! QeHp

(6.53) / el dH" <
IQR\OQ

where we have used the interior Moser estimate for w, and (6.45). From (6.52) and (6.53) and the fact that
the sets Qg N 0Q are disjoint, we see that

ry L
7

(6.54) Ti212 5 IIglle'(ag) + ( Z (9% <][Q Nz(wg) d0'>p ) ’
QeH

L
7

S ”g“Lr”/(OQ) + (/99 MO’(NZ(Wg))p dO’) ! < ||g||Lp’(ﬁQ) + ”NZ(Wg)”Lp/({)Q) < ||g||Lp’(ag),
C

where we used that H satisfies a Carleson packing condition, Carleson’s theorem, and (1.12).

We turn to the factor Tj1; in (6.51). Note that [VAT| < C/éq in Q, and since for each x € Qg we
have that dq,(x) < dq(x), then it follows that IVAT| < C/dq, in Qg. For each J € W(Qg), there exists
a boundary cube bq,(J) € Dy, such that £(J) = {(ba,(J)) and dist(J, bo,(J)) ~ £(J). Let G = G1.r be
the family of cubes P € D, such that there exists some J € W(Qg) with P = EQR(J) and J N 0, # @.
Consider the estimate

(6.55) Ty g < > / IVvgl? dH" < > IVVRIGe ) ECT)"
JeW(Qg)Inoyzo /N0 JEW(Qp):JN0y #0

g ~
s 2 (][ Voeldm) oy s 30 (inf (NPHTR@) )
JeW@Qp:inouzo VT Jew@udnozo S
: AR p n
<
~1§ (inf N3" (VvR)(@) €Y',
1

where we used Lemma 2.11 and a similar estimate to (6.17). In the proof of [MT, Lemma 5.1], it is shown
that the family G, satisfies the Carleson packing condition

(6.56) > oupy s sy
PeG,:PcCS

Hence, from (6.55), (6.56), and Carleson’s theorem, we see that

(6.57) Thiig S /a . MANSEVVR)P dH" < INSH (TRl pa0,) S IVi@llir@on).
R
where in the last estimate we used Theorem 5.3 for L*. Therefore, from (6.57) and (6.26),
1
(6.58) Tion 5 (2 Vudlgny ) < IVnpelion:
ReTop

Combining (6.51), (6.54), and (6.58), we deduce that

(6.59) > Tk < I8l oo)IVHpelr oo
ReTop
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6.2.4. Estimate for Tiyp = ZReTOp T2,k Recall that T2, g has been defined in (6.48); it remains to
bound 7'17;. Recall that for each R € Top, we denote by Insg the family of Whitney cubes I € W(L) such
that I* = (1 + ) C Qg, and we denote by Bdry all the cubes J € W(Q)\Insg which intersect Qg. For
each I € Insg, let o ; € C2°(1*) be such that oy = 1 on / and |Vo 4| < ﬁ(,). Letng := ZleInSR no.1, and note
that 7o > 0 on Ujemns,I*. For each I € Insg, let ny := % and define ng := ZleInSR n7. Then ng € C*(Qg),
0<ng <1,nr = 10n e, I, and

6.60)  supp((l —ne)loy) c ) 4 Vil <
JeBdryp

1
o) on J, for each J € Bdryy,.

Moreover, ng = 0 on 0Qx\0Q. Now note that

(6.61) / AVwpVvgrdm = / AV(wrnr)Vvg dm + / AV(wr(1 —ng))Vvg dm
Qr Qp Qr

= / ATVvRV(anR) dm + / AVwp(1 —ng))Vvg dm = / AV(wg(1 —ng))Vvg dm,
Qr fo fo

where we used that L*vg = 0 in Qg and that wrng € Wé’Z(QR). Next, we see that

660 Timas Y [ W0l = ne)¥veldm
IeBdryg InQg

2 2 2 % / ) %
: Ie;r:yR (/mQR (WFIVan " IVWF| ) dm) ( INQg |VVR| dm)
1 1 !
> ap(forbam) ([, e am)

IeBdryp
1

1
2 2 2 2
+ Z ( |F| dm) (/ Vgl dm) = T21r + T1222,8s
IeBdry, I INQg

where we have used (6.60), Lemma 2.9, Lemma 2.9. Note that the term ) ReTop T1222, r may be controlled
in exactly the same way which we controlled the term 755, in Section 6.1.4. Hence, we have that

(6.63) > Tk S 1GE) L oo Vapelio.-
ReTop

We turn our attention to Typp1 := Y ReTop T1221 r. For fixed R € Top, we see that

- 1
(6.64) Timir < E f(])”( inf Nz(wF)(g)) (][~ Nﬁc’g(l),QR(VvR)z do_R)z
IeBdryR &ebq(l) CINOQg

< Y ' (inf Nowp)@)mess; o (Vi p)
IeBdry geba(l)
R

" 2 (it NZ(WF)@))][N N3 DO (Vvg) dog = Tioai1 + Tiaiogs
IeBdryp §eba(l) CoINd%

where in the first estimate we used (6.45) and (6.29), and in the second we used (6.31), (6.32), and (6.33).
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We control Tjp211 := Y ReTop T12211,8 NOW. Let Hg be the family of Q € H such that Q € bq(I) for some
I € Bdryg. Note that

665 > Taairs Y. Y {€Q7 inf Natwr)(© {00 messoar (Vi) }

ReTop ReTop QeHy

< 2 {407 inf Nawr)(© [ { €@ mespr (Vi) |
QeH ’

< (Y aor <][ Na(wr) do ) ”') v (X «or (mCZBQ,g(VH,p«a))”);
OcH o QcH

1

< </asz Mo (No(wi))” dU) y (/69 Mo(Vipp)” d(r) '

S IN2WRl L 91V Ep#llr ) S G2 90y IVHplILr 00)s

where in the second line we used that any given Q may only belong to a uniformly bounded number of the
families Hg, in the third line we used Holder’s inequality, in the fourth line we used Carleson’s theorem
and the fact that the family H satisfies a Carleson packing condition, and in the last line we used (1.12).

One last term remains to bound, T2 1= > ReTop T12212,r- Actually, this term is similar to term 72227
which was defined in (6.35). Indeed, note that

666  Toaors Y {f(l)v"'giglfmﬁm)(f)}x{f(l)ﬁ][ NS3 D28 Tve) dore ).

IEBdI‘yR CrINOQR

We control the first factor of (6.66) similarly as (6.65), while we control the second factor of (6.66) similarly
as in the proof of (6.39). Putting the arguments together, one arrives at the estimate

(6.67) Z T1212.8 S NGy 90V pellLro0)-
ReTop
From the splits (6.48), (6.62), (6.64), and the estimates (6.59), (6.63), (6.65), and (6.67), it follows

(6.68) T12 < [llgl @ay + 1G2F)lr ooy IV ap#llLr o) -
From (6.42), (6.47), and (6.68), we conclude that

(6-69) Tl S [Hg”[ﬂ'(ag) + ”CKZ(F)”U’(aQ)] ||VH,p‘P||LP(0Q)-
Finally, from (6.40), (6.41) and (6.69), the desired estimate (6.3) follows. |

APPENDIX A. PROOFS OF AUXILIARY RESULTS

A.1. Proof of Lemma 2.2. Assume without loss of generality that ¢; < ¢, and then in this case, the
direction < in (2.3) is straightforward. Thus it suffices to prove the direction > in (2.3). Let B be the unit
ball centered at the origin in R"*!, and let {B j}?’: | be a family of balls of radius 2% < 1 centered at points
ej € B, such that B C U;B; and the B;’s have uniformly bounded overlap (depending only on n); we have
that N depends only on n and ¢;/(2¢;). Foreach x € Q and j = 1,...,N, let B;? be the ball of radius
C10(x)/2 centered at x; := x + C20(x)ej; clearly we have that {B; }7:1 is an open cover of B(x, ¢20(x)). Then
we see that
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1 1
(A1) 6z, q(H)(E) < sup — I
r>0 " JanBEr) m(B(x, 020(x)))4 =1

1 i
< sup— / (][ |H|9 dm)ldm(x)
—1 >0 " JanBEr) VB(x;.e16(x))

where in the second estimate we used the Minkowski inequality. To continue, we claim that for each
j=1,...,nand each r > 0, we have that

1 1
(A2) / <][ |H|9 dm) “dm(x) <2 / (][ |H|? dm) “dm(y).
QNB,r) B(x_/-,ﬁ']é(Xj)) QNB(&,2r) B(y,¢16(y))

Using (A.2) in (A.1) immediately yields the estimate 6z, ,(H)(£) < 6z,,4(H)(€), from which the desired
bound follows. Thus it remains only to prove (A.2), which we do via a change of variables. First, define
the map F; : R"™! — R™*! a5

T[] =

( . |H|? dm)'l’ dm(x)

E

~

X+ Co0a(x)e;, if x € Q,
Fito = { x, " itxe RO,

and the non-negative function Q : R™*! — R as

My B(F(x).e16(F (o) (F),  if x € QN B, r),

0(x) = { 0, if x € R™1\(Q N B, ).

Note that x; = F;(x) whenever x € Q. It is not hard to see that F; is Lipschitz continuous in R™!, with
Lipschitz constant 1 + ¢, < 3/2. Denote by JF; the Jacobian of the map F; (see [EGY2, Definition 3.6]);
then by the matrix determinant lemma, we have that

1
JFj(x) = 1+ ;Voqa(x)e; > 5 for m,-a.e. x € Q,

since [Voq| < 1, |ej| < 1, and ¢, < 1/2. Next we claim that F; is injective: Indeed, say that xi,x; € R+l
satisfy that F;(x1) = Fj(x2). If both x1,x; € R™1\Q, then it trivially follows that x; = x,. Suppose now
that both x1, x, € Q. Then Fj(X]) = Fj()cz) implies that |x; — xp| = 62|ej||69(x1) —0a(x)| < |x1 — x1/2,
which implies that x; = x,. Finally, if x| € R™N\Q and x, € Q, then |x; — x| = Calejloa(x2) < |x1 — x2l/2,
which is a contradiction. Thus F; is injective.

Let us define F]‘»1 : Fi(Q N B, r)) — QN B, r) the inverse map in Q N B(¢, r), so that Fj(ijl )=y
for each y € F;(Q N B(£,r)). We observe that

/ (][ |H|‘1dm)5dm(x): / 0(x) dm(x) < 2 / Q()JF j(x) dm(x)
QNBEr) N B(xj216(x)) Q Q

~2 [ owirwane =2 [ [ 3 ow]dnm=2[ 0w edno
Rr+1 R+l xeFJTI o) Fj(QﬂB(f,F))

1
<2 / (][ (HIY dm) " dm(),
QNBE2r) Y B(y.é16(y)

where in the third line we used the change of variables for Lipschitz maps [EG92, Theorem 3.9], and in the
last line we used the definition of Q and the fact that F/;(Q N B(£, 7)) € Q N B(¢, 2r). From these estimates,
the claim (A.2) follows. m]
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A.2. Proof of Proposition 2.4. To prove the proposition, we will show that the operators N and €, as
defined in Section 1.1, can be discretized. After this, we will appeal to the discrete duality result of Hytdnen
and Rosén [HR13, Theorem 2.2] to finish the proof.

Before we get started though, let us record a technical lemma, which is Lemma 3.5 in [HR13] when
Q = R This lemma is what essentially allows us to obtain “change of aperture” results, and it is needed
in the proofs of Lemmas A.9 and A.22. Its proof in our case is very similar to that of [HR13, Lemma 3.5],
and thus we omit it.

Lemma A.3. Let f,g be two non-negative functions on 0Q. Assume that there exist constants c1,Cy €
(0, 00) such that for every & € 0Q, the bound f(&) > T implies that there exists a Borel set E = E(£) C 0Q
such that g > ¢t on E, and

(A4) 0< (iug £ - &))" < Cro(E).

Then there exists C3 € (0, 00) such that for any p € [1, o], ||fllzr@aq) < C3lIgllzro0)-

A.2.1. The discrete model of Hytonen and Rosén. Let us quickly describe the particular version of Theorem
2.2 of [HR13] which we shall use. Let ‘W be a 1/2-Whitney decomposition of Q (see Section 2.1.6), and
define w*(Q) as in (2.8) for 6 small enough. For fixed g € [1, 0], let (1) = (ug)gep, be a sequence of
functions up € LY(w*(Q)), and define the discrete non-tangential maximal function (acting on sequences
(u)) by

Ny = sup  mw (@) lluglliowgy. € € 0K
Q€D :6€Q

For a sequence (H) = (Hgp)opep, Where Hg € LY (w*(Q)), we define the discrete Carleson functional (acting
on sequences (H)) by

1
CS(H)(E) = sup — v RN Wl e cean
! 0eD, 0 0(Q) REZ;QQ 0 RILS (w(R)

Let p € [1, c0) and p’ its Holder conjugate. Then ([HR13, Theorem 2.2])
(A.S5)

> \ / ugHg dm| <INl €5 (Dl a).  for any ug € LYw*(Q)), Hg € LY (w*(Q)).
QeD,, w*(Q)

(A.6) ||N;(M)”Lp({)g) < sup Z ) / uQHQ dm|, ug € Lq(w*(Q))’

65 Dyt oy =1 Ge, | W)

. HgeL(w(Q)).

(A7) G Dl o S sup Y ‘ / ugHg dm
ING @Iz a0 =1 oepn, WD

A.2.2. Passing from functions to sequences and viceversa. In order to use the estimates (A.5)-(A.7) to
prove Proposition 2.4, we need to pass from the discrete model to our setting. As a first step, we need a
natural way to identify sequences (u#p)gep, With functions u € L (Q).

Given u € LI

loc
10c(€2), we define a sequence S (u) = (ug)pep, as follows: for each Q € Dy, let ug :=
uly+0) € LI(W*(Q)). Given a sequence (ug)oep, With ug € LI(w*(Q)), we construct a function F(u) €
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Ll (Q) as follows:

F = 1, , Q.
(u)(x) S oep. Lo Q%J u() 1y (0)(x) x€

Note that 1 < 3 5cp L+ (g)(x) < C for every x € Q. Moreover, for any function u € Ll (©), we have that
F(S (1)) = u pointwise in Q, but S o F is not the identity on sequences.

Let us now see that with these maps, we are able to extend the estimates (A.5)-(A.7) to dyadic versions
of N and % acting on functions. Let

Niu@ = sup  mw Q) ullaroy. & €0Que Ll (),
0eD:£€0

L ’
COHE = sup —— > mw R VIHl gy £ € OQH € LY (Q).
0en,60 7(D) p A%
It is easy to see then that

(A8) NS@w) = Niu,  €3S(H) =€y H,

pointwise on 0Q, for any u € LI (Q),H € L7 (Q). The behavior of F(x) is a bit more subtle in our setting;

loc loc
we record it in the following lemma.

Lemma A.9. Let p € [1,), g € [1,0], and p’,q’ the Holder conjugates. Suppose that either Q is bounded,
or 0Q is unbounded. Then

(A.10) ”NgF(M)”LI’(aQ) ~ |INguller o0, for each (u) = (ug)oeop,
and
(A.11) ”ngd’F(H)”LP’([)Q) ~ ||(€qS’H||LP'({jQ)7 Jor each (Hg)gep,

Proof. Proof of (A.10). Let us prove the direction > first; in fact, we show that
(A.12) Nyu < NgF(u) pointwise on Q.
Without loss of generality, we may assume that up > 0 for each Q € D,, and then, by the definition of
F(u),
(A.13) up(x) < F(u)(x), for all x € Q.
Fix £ € 0Q and Q € D,; such that &£ € Q. Then
1

(A.14) (/W*(Q) luol? dm>‘]? < (/W*(Q) |F ()| dm)a7

so that (A.12) follows.

We now consider the direction < in (A.10). We will show that the hypotheses of Lemma A.3 are verified.
Without loss of generality, we may again assume that up > 0 for each Q € D,,. Fix £ € 0Q and 7 > 0, and
assume that NgF (u)(¢) > 7. Then there exists Q € D, with £ € O so that

1

(A15) T < (][ o [Pt dm) " s movy7e 3 ( / o sl am)”

SeD,
w*(S)Nw*(Q)#2

where we used the Minkowski inequality and the definition of F. Let F be the family of all S € D, such
that w*(S) N w*(Q) # @. If § € Fp, then by standard geometric arguments, we may see that £(S) = £(Q)
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and dist(S, Q) < €(Q); these facts imply that card Fp ~ 1 and that m(w" (S ) = m(w*(Q)) forall § € Fp.
With these observations in mind, from (A.15) we deduce that there exists S e ¥ so that

1

r< (][ gl dm)q < inf N2u(0).
w*(S) zeS

In other words, there exists ¢; > 0 so that N(j u > cyTon S. On the other hand, since

sup|{ — &| < diam S + dist(S, Q) + diam Q < 4(S) + £(Q) = €(S),

§e§
it follows that the hypotheses of Lemma A.3 are satisfied, and we immediately conclude the desired esti-
mate.

Proof of (A.11). The direction > is straightforward by applying the estimate (A.14). We show the
direction <; once again, our strategy is to show that the hypotheses of Lemma A.3 are verified. We assume
without loss of generality that Hp > O for each Q € D,. Fix £ € dQ and v > 0, and assume that
%q‘{ F(H)(&) > 1. Then there exists Q € D, with € € O so that

1 cpyl-d
g 2 o ®) (f

(A.16) T<

1
\F(H)Y dm)
w*(R)
RCO

(Q) S mws)' (/W*(S) (Hs[? dm) ",

REZ) SeFr
RSO

where we used a similar estimate as in (A.15), and ¥ is the family of all § € D, such that w*(S)Nw*(R) #
2. If S € Fg, then £(S) < 26(R) < 2((Q), and
dist(S, Q) < dist(S, R) < €(R) < £(Q).

Forany § € Frand R € D, with R C Q, let Os € D, be the unique cube satisfying that S C Qg
and €(Qs) = 26(Q). By the previous remarks, there is a uniformly bounded number of distinct Qg; more
precisely Ur{QOs }ser = {Qj}?’:l. Moreover, forany j=1,...,Nand § € D, with § C Q;, we have that
cardfRe€ D, : RC Q,S € Fr} < 1. With these facts in mind, from (A.16) we obtain that

1
(A17) 75— Z S mw ()" (/ \Hg|? dm)
=1 SeD, *(5)
Sco;
1 —_ = ’ L’
< ——= > mow' ®)' 7 / HRl? dm)” < inf G HQ),
o (Qk) FeD, W (R) ek
RC Qi
for some k € {1,...,N}. It is also not hard to see that SUPseq, | — & < €(Qr), so that the hypotheses of
Lemma A.3 are satisfied. The desired estimate follows. m]

With Lemma A.9 at hand, we are ready to interpret the estimates (A.5)-(A.7) for the dyadic operators
acting on functions. The following lemma is an analogue of [HR13, Corollary 2.3].

Lemma A.18. Let p € [1,0), g € [1, o0] and % + # = é + i = 1. Assume that either Q is bounded, or 0Q
is unbounded. Then

(A.19) luH ) S INCUllrooy |l Co N gy € LY (@), H € LY (),

loc loc



60 M. MOURGOGLOU, B. POGGI, AND X. TOLSA

(A.20) INSullroay s sup luHlp), — we Ll (),
4 HI, o=
q 0Q)

(A.21) 1Co 0y S sup  uHllp, — HeLl (Q.

INGullLp oy =1

Proof. Proof of (A.19). We may assume that # > 0 and H > 0. Then we see that

/ wlidm~ S / wldm="3" / ugHg dm < INSS i€ S DIl ooy,
Q 0eD, w*(Q) 0eD, w*(Q)

where we used (A.5). Then (A.19) follows from the above bound and (A.8).
Proof of (A.20). Assume without loss of generality that u# > 0. We have that

1
INGulamy = INGS @llsoy < sup i / ugHo dm
HYIES D, oy <o 1G5 Bl 00y 5o S )
: /
uF(H)dm
<00 ||(5;{F(H)||Lp’(ag) QEZ@U- w*(Q)

1

S sup
(A DI

< sup

< / uH dm < sup uH dm,
H:||<5;,H|| w*(Q) |

d
<o 1€ NIy 0 5o, 6 H e

17 60) Il o

where first we used (A.8), in the second line we used (A.6) and the definition of S (1), in the third line we

used (A.11) and (A.13) (we have that Hy > 0 since up > 0), and in the last estimate we used the uniformly
bounded overlap of the Whitney regions w*(Q).

Proof of (A.21). This estimate is obtained similarly as (A.20), but using (A.7) and (A.10) instead of
(A.6) and (A.11), respectively. We omit further details. ]

A.2.3. Discretization of N and €. The following lemma shows that the dyadic versions of N and € are
compatible with the non-dyadic versions that we use throughout this manuscript. In the case that Q is the
half-space, the lemma is shown in Propositions 3.6 and 3.7 in [HR13]. Our proof has some similarities to
that of [HR13]; let us give the details for the benefit of the reader.

Lemma A.22. Let p € [1,00), g € [1,00], and p’,q’ the Holder conjugates. Suppose that either Q is
bounded, or 0Q is unbounded. Then

(A.23) ||K/qM||LP(aQ) ~ ||N5M||Lp<ag), for each u € L (),
and
(A.24) Gy Hllyr oy ~ 162 Hlly oys for each H € LY ().

Proof. Proof of (A.23). Fix u € L _(Q), and let us show the direction > first. In fact, we show that

loc
(A.25) N;l us /ﬁ\v/m 1gH pointwise on 0C for large enough a.
Fix £ € 0Q), and let Q € D, be any cube with £ € Q. Note that

1 1 1

(A.20) <][ [ua| dm>5 ~ ( Z [ua| dm)a ~ max ( u|? dm)a,
wH(Q) rew:0ebny’ ' IeW:Qeb(I) \Jp
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where we used the definition of w*(Q), the fact that m(w*(Q)) ~ m(I*) for any I € W with I N w(Q) # @,
that the I* have uniformly bounded overlap depending only on n, and that there exists Ny € N so that for
any Q € Dg, card{l € ‘W : Q € b(I)} < Ny. Now fix I € W such that Q € b(I), and let x € I. Then it
is not hard to see that for some o > 0 large enough depending only on n, we have that x € y,(£). Since
I" € B(x,0(x)/2) and €(I*) = 6(x), it follows that

1

1 1 1
(A27) (][ |u|qdm>" < (][ lul? dm)" < sup (][ luf? dm>"
I B(x,6(x)/2) B(y,0(y)/2)

YEYa(§)
and so from this estimate and (A.26), the estimate (A.25) follows.
We turn to the direction < in (A.23); actually we show that

(A.28) K/m%qu < N;lu pointwise on d€ for small enough «a, cgy.

Fix £ € 0Q and x € y,(¢) for @ € (0, %). Let I € ‘W be the unique Whitney cube such that x € I, and
0 € D, the unique boundary cube such that £(Q) = £(I) and £ € Q. We claim that Q € b(I). To see this,
from (2.7) we only need to show that dist(/, Q) < 29 diam 7, and indeed,

dist(1, Q) < |x — & < (1 + @)8(x) < (1 + @)257 diam [ < 2° diam I.

Thus Q € b(I), and so B(x, cyd(x)) C I* C w*(Q) for some cy small depending only on n and 6. Since we
also have that m(B(x, cyd(x))) ~¢ m(I*) =~ m(w*(Q)), we deduce that

1

1 1
(A.29) (][ uf? dm) ‘< (][ lul? dm) .
B(x,c90(x)) w*(0Q)

from which (A.28) follows.
Finally, (A.23) follows from (A.25), (A.28), and Lemma 2.1.

Proof of (A.24). Fix H € L (Q), and we show the direction >. We prove that

loc

(A.30) CyH <€) ,H,  pointwise on JQ.

Fix € € 0Q and Q € D, with ¢ € Q. Given any R € D, with R C Q, let Ir be any one Whitney cube such
that Iz N w(R) # @. Consider that

L L
7 7

S mo@n(f i an) s S maw(f e an)’
ReD,:RCQ w*(R) ReD,:RCO w(R)
1 1
< Y / (][ \H|7 dm)q dm(x) < / (][ \H|? dm)q dm(x),
Iz VY B(x,0(x)/2) B(.CLONNQ YV B(x,6(x)/2)

ReD,:RCQ

where we used that m(w*(R)) = m(lg), and in the second line we used (A.26) and (A.27). From the above
bound and the fact that o(Q) =~ €(Q)", the estimate (A.30) follows.

We now consider the direction < in (A.24). Here, it is not possible to prove a pointwise estimate; instead,
we will verify that the hypotheses of Lemma A.3 are satisfied. Fix £ € 0Q and assume that ¢, ,H(¢) > T,
where ¢q € (0, 1/2] is small. By definition of 6, . H, there exists r € (0, diam Q) so that

1
s

1
(A31) 1 < / (][ \H|< a’m)q dmn< Y / (][ \H|” dm)“ dm(x)
B(&,r)NQ B(x,ce0(x)) 1 B(x,c90(x))

[eW:INB(E, )2
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1
’ o . _i’
< Z / : (][ ( )lqu dm)" dm(x) < Z m(w (R))l ; ||H||L!I’(W*(R)),
w(R) Yw*(R

ReDy:wR)NB(E,r)#0 ReDy:w(R)NB(,r)#D

where in the third estimate we used (A.29), the uniformly bounded overlap of the “Whitney regions” w(R),
and the assumption that either Q is bounded or 9€ is unbounded. Let # be the family of R € D, such that
w(R)NB(&,r) # @. Then itis easy to see that £(R) < r/(32 Vn + 1) and that R C B(¢, Cr)ndQforany R € F.
For any R € F, let Qg € D, be the unique cube such that R C Qg and nlﬁ’” <{€(Qp) < ﬁmr. By the

previous observations, we have that {Qr}rer = {0 j}?’: | for a universal constant N € N, and Q; C B(&, Cr).
Hence, from (A.31) we see that

N
1 « oy 1—
r< = E E m(w*(R)) ¢ ||H||Lq’(w*(R))

j=1 ReD,:RCQ;
1
o (Or)

for some k € {1,...,N}. In other words, we have that ‘K;H > ci7 on Q. By the definition of O, it is
straightforward to see that (sup,c, £ — &))" < C20(Qx). Consequently, the hypotheses of Lemma A.3 are

5 1-4 . d
< > mw R TV NHl Ly ey < Jnf (67H)O),

ReD,:RCOy

verified, and therefore it follows that ||€., o Hllzr00) < II%q‘f H||zr50), as desired. O

A.2.4. Conclusion. The estimates in Proposition 2.4 follow from the estimates in Lemmas A.18 and A.22.
Finally, the fact that N, , = (C ;)" is proven similarly as in [HR13, Theorem 2.4(iii)], using the density
of compactly supported functions in C ,» (Lemma 2.6 (i)). We omit further details. This finishes the proof
of Proposition 2.4. |

A.3. Proof of Lemma 2.6. We show (i) first. Fix H € C,,. Let S and F be the maps defined in Section
A.2.2 which pass between sequences and functions. By [HR13, Lemma 2.5], we may find a sequence
{Hher with B = (W) geo, . 1€ MM Ir@) < oo, so that |6 (S (H) — B)llrraa) — 0 as k — oco. For
each k € N, it is straightforward that F(h*) is compactly supported in Q and that {F(h*)}; c C,,p- Since
H = F(S(H)), by Lemmas A.9 and A.22 we have that

16, (H = FU oo ~ IEAF (S H) = F Do ~ 165 (H) = B)lea) — O,

as k — oo. Hence F(h*) - H strongly in C, ,, as desired.

We turn to (i1). Fix H € C,, such that H is compactly supported in Q, and fix a bump function ¢ €
C2(B(0, 1)) satisfying that 0 < ¢ < 1. For each 7 > 0, let ¢-(x) := —r¢(%) and then given ¢ € (0, 1/6], for
each € € (0, 1) define

1 y )
—_— dm(y), € Q.
(5(x)ey ! /R tooe) MO X
For fixed € € (0, 1), since the function ¢¢s.). is locally Lipschitz in Q and H is compactly supported in €, it
follows that H, is Lipschitz continuous and compactly supported in Q. We will show that H, — Hin C,
as € — 0. First, let us prove that

Hs(x) = (H * ¢66(x)8)(x) =

HGx =g (

1 1
(A32) sup (][ |H, | dm)q < (][ |H|qdm)", for each x € Q.
£€(0,1) YV B(x,86(x)) B(x,3¢6(x))

Fix x € Q, and note that
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y—z q
]{?wa(y)s) H(Z)¢<é5(y)£) d’"(z)‘ dm(y)

< 1B, 1>|q][ ][ HE)I dm(z) dm(y) < 27130040, 1>|q][ HE dm(z),
B(x,¢6(x)) B(y,c6(y)€) B(x,3¢6(x))

(A33) HL)I dm(y) = |BO, 1)|q][

B(x,¢6(x)) B(x,66(x))

where we used Fubini’s theorem and the fact that 6(x) < 26(y) whenever y € B(x, ¢6(x)).

We now show that 63 ,(H.—H) — 0 pointwise o-almost everywhere in 0Q. Since H € C, ,, we have that
C4(H) € LP(0Q, o), whence Lemma 2.2 implies that €3¢ 4(H) is finite on a set S € 90Q with o7(0Q\S) = 0.
Now fix £ € §, and let us prove that 63 ,(H; — H)(¢) — 0as & — 0.

Since H € L%(Q), then by the properties of convolution, we have that for any bounded open set K
compactly contained in Q, ||H; — H||zs(x) — 0 as € — 0. In particular, for any x € Q, we have that

1
<][ |H€—H|qdm>q 50,  ase— 0.
B(x,c0(x))

In other words, the sequence {my (. ¢5(.))(He — H)}e>0 converges pointwise to 0 in Q. On the other hand, by
(A.32) we have that

mq,B(.’eg(.))(Hg - H) < mq’B(.’%{g(.))(H) € L1 (.Q N B(f, r)), forall r > 0,

since & € §. By the Lebesgue Dominated Convergence Theorem, it follows that

O.(H: - H) := /

1
(][ \H, — H dm) “dm(x) — 0,  forany r > 0,
QNB,r) B(x,c6(x))

Next, since H is compactly supported in €, there exists s > 0 so that €7 ,(He—H)(§) = SUp,¢(.1/s] ri,, O,(H.—
H), for any & > 0. We thus see that ¢ ,(H; — H)(§) < xinQ%(Hg —H) — 0,as & — 0. Since ¢ € § was
arbitrary, it follows that ¢; ,(H; — H) — 0 pointwise o-almost everywhere in Q2. Furthermore, by (A.32)
we have that 63 ,(H,; — H) < €z 4(H) € LP(0Q), so that by the Lebesgue Dominated Convergence Theorem
we conclude that 6z ,(H; — H) — 0 in LP(0Q). This finishes the proof of (ii). ]

A.4. Proof of Proposition 2.20. The direction (b) = (a) is shown in [HL18], while the argument for
(b) & (c) is the same as that for [MT, Theorem 9.2 (b) <= (c)]. Thus we only need to prove (a) =
(b). Fix & € 90Q, r € (0,diam0Q), and x € Q\2B. Write B = B(¢,r). First, let us show that for any
f € C.(BNoQ) with f > 0, we have that

L

(A34) | /B fde| 5 Wl

Let u(y) := |, g J dw” for each y € Q, so that u solves the continuous Dirichlet problem for L in Q with data
fondQ. Since f > 0, then u > 0 in Q by the maximum principle. Let ‘W be a 1/2-Whitney decomposition
of Q (see Section 2.1.6), and let / € ‘W be the unique Whitney cube such that x € I. Let Q € bg(I), and
note that £(Q) = ¢(I) = 6(x).

Fix a large constant M > 1 to be specified later, and we distinguish two cases: either 6(x) > r/M or
o(x) < r/M. If 5(x) = r/M, then note that

. , v 1 1
(A.35) u(x) < gggNa(u)(() < (][Q INa @)l da) < Wllﬂlm/w) <M Wllﬂlum,

where we have used an aperture « large enough, Holder’s inequality, the fact that (DII;,) is solvable in Q, the
n-Ahlfors regularity of 9€, and the fact that £(Q) = d(x) > r/M.
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If instead we have that 6(x) < r/M, let O be the unique ancestor of Q such that r/M < Q) < 2r/M, and
K =2"vn+1. Then x € KBQ, and if M > 8K, then we have that KBQ N B = @, since x € Q\2B. Using
the boundary Holder continuity, Lemma 2.19, on the ball K BQ for the solution u, we see that

0(x) )n 1
KU(Q)

(A.36) u(x)s( wdm <4 N do

2KByl Jakpyne KB,

/ i 1 1
(L W@l do)” s Wl ~ i Wl
kB, a(KBy)!lr P (B A7 @

where K ~ K. From (A.35) and (A.36), the estimate (A.34) follows for any x € Q\2B.

Although we obtained (A.34) for f > 0, we can obtain the same estimate for general f € C.(B) by
simply splitting f into the non-negative and negative parts. Let us see how to obtain (2.21) from (A.34).
First, for any x € Q N J(2B), by Lemma 2.16 we have that w*(8B) =~ 1, and hence (A.34) implies that

(A37) lu(x)| < C Iflly 5w'(8B),  forall x € QN A2B).

1
o (B
Let

v(y) = C————|fllr (B)wy(SB) —u(y), for any y € Q\2B,

1
o(B)V/P
and note that v > 0 on d(Q2\2B) due to (A.37), the fact that u = 0 on dQ\B, and the fact that w”(8B) > 0
on Q. Moreover, by linearity we have that Lv = 0 in Q\2B. Then, by the maximum principle (see, for
example, [HKM93, Chapter 6]), we have that v > 0 on Q\2B. In other words, we have the bound

(A.38) /fd ();;iiz A1 (B) for each x € Q\2B and f € C.(B).

From (A.38), since C.(B) is dense in L” (B), it follows that the functional £,,:(f) := f g J dw" is bounded

on L”'(B); hence there exists g € LP(B) so that {,:(f) = f g fgdo for every f € L” (B). It follows
immediately that w* <« o for any x € Q, that dw*/do = g o-a.e. in B, and the estimate (2.21) is obtained

directly from (A.38). m|
REFERENCES
[AHMT] M. Akman, S. Hofmann, J. M. Martell, and T. Toro. Perturbation of elliptic operators in 1-sided NTA domains
satisfying the capacity density condition. Preprint. January 2019. arXiv:1901.08261. (p. 12)
[ADFIM19] D. N. Amnold, G. David, M. Filoche, D. Jerison, and S. Mayboroda. Localization of eigenfunctions via an
effective potential. Comm. Partial Differential Equations, 44(11):1186-1216, 2019. (p. 6, 8)
[AA11] P. Auscher and A. Axelsson. Weighted maximal regularity estimates and solvability of non-smooth elliptic

systems 1. Invent. Math., 184(1):47-115, 2011. (p. 5)
[AHLMTO02] P. Auscher, S. Hofmann, M. Lacey, A. Mclntosh, and P. Tchamitchian. The solution of the Kato square root
problem for second order elliptic operators on R". Ann. of Math. (2), 156(2):633-654, 2002. (p. 13)

[AM14] P. Auscher and M. Mourgoglou. Boundary layers, Rellich estimates and extrapolation of solvability for elliptic
systems. Proc. Lond. Math. Soc. (3), 109(2):446—482, 2014. (p. 13)

[AR12] P. Auscher and A. Rosén. Weighted maximal regularity estimates and solvability of nonsmooth elliptic systems,
1. Anal. PDE, 5(5):983-1061, 2012. (p. 5)

[Azz] J. Azzam. Harmonic Measure and the Analyst’s Traveling Salesman Theorem. Preprint. November 2019. (p. 8)

[AGMT?22] J. Azzam, J. Garnett, M. Mourgoglou, and X. Tolsa. Uniform rectifiability, elliptic measure, square functions,

and e-approximability via an ACF monotonicity formula. Inz. Math. Res. Not., 06 2022. rnab095. (p. 21, 22)
[AHMMMTV16] J. Azzam, S. Hofmann, J. M. Martell, S. Mayboroda, M. Mourgoglou, X. Tolsa, and A. Volberg. Rectifiability
of harmonic measure. Geom. Funct. Anal., 26(3):703-728, 2016. (p. 22)



[AHMMT?20]

[AHMNTI17]
[BCY4]
[BP99]
[Bar21]
[BM16]

[BHLMP20]

[CFMSS81]
[CFK81]

[CDMT22]

[CHM]
[Car62]

[CHM19]

[CHMT20]

[CMS85]

[Dah77]
[Dah79]

[Dah86]
[DFM]
[DI90]
[DS91]
[DLM22]
[DM21]
[DM22]

[DS93]

LP-SOLVABILITY OF THE POISSON-DIRICHLET PROBLEM 65

J. Azzam, S. Hofmann, J. M. Martell, M. Mourgoglou, and X. Tolsa. Harmonic measure and quantitative con-
nectivity: geometric characterization of the L”-solvability of the Dirichlet problem. Invent. Math., 222(3):881—
993, 2020. (p. 8, 10, 13)

J. Azzam, S. Hofmann, J. M. Martell, K. Nystrom, and T. Toro. A new characterization of chord-arc domains.
J. Eur. Math. Soc. (JEMS), 19(4):967-981, 2017. (p. 10)

R. Baiiuelos and T. Carroll. Brownian motion and the fundamental frequency of a drum. Duke Math. J.,
75(3):575-602, 1994. (p. 6)

R. Bafiuelos and M. M. H. Pang. Lower bound gradient estimates for solutions of Schrodinger equations and
heat kernels. Comm. Partial Differential Equations, 24(3-4):499-543, 1999. (p. 9)

A. Barton. The W~'» Neumann problem for higher order elliptic equations. Comm. Partial Differential Equa-
tions, 46(7):1195-1245, 2021. (p. 5, 6, 14, 15)

A. Barton and S. Mayboroda. Layer potentials and boundary-value problems for second order elliptic operators
with data in Besov spaces. Mem. Amer. Math. Soc., 243(1149):v+110, 2016. (p. 14)

S. Bortz, S. Hofmann, J. Luna Garcia, S. Mayboroda, and B. Poggi. Critical perturbations for second order el-
liptic operators. Part i: Square function bounds for layer potentials. Analysis & PDE, 2020. Accepted December
2020. (p. 13)

L. Caffarelli, E. Fabes, S. Mortola, and S. Salsa. Boundary behavior of nonnegative solutions of elliptic opera-
tors in divergence form. Indiana Univ. Math. J., 30(4):621-640, 1981. (p. 12, 21)

L. A. Caffarelli, E. B. Fabes, and C. E. Kenig. Completely singular elliptic-harmonic measures. Indiana Uniyv.
Math. J., 30(6):917-924, 1981. (p. 12)

M. Cao, O. Dominguez, J. M. Martell, and P. Tradacete. On the A, condition for elliptic operators in 1-sided
nontangentially accessible domains satisfying the capacity density condition. Forum Math. Sigma, 10:Paper
No. 59, 57, 2022. (p. 8)

M. Cao, P. Hidalgo-Palencia, and J. Martell. Carleson measure estimates, corona decompositions, and pertur-
bation of elliptic operators without connectivity. Preprint. arXiv:2202.06363. (p. 8)

L. Carleson. Interpolations by bounded analytic functions and the corona problem. Ann. of Math. (2), 76:547—
559, 1962. (p. 5)

J. Cavero, S. Hofmann, and J. M. Martell. Perturbations of elliptic operators in 1-sided chord-arc domains. Part
I: Small and large perturbation for symmetric operators. Trans. Amer. Math. Soc., 371(4):2797-2835, 2019. (p.
12)

J. Cavero, S. Hofmann, J. M. Martell, and T. Toro. Perturbations of elliptic operators in 1-sided chord-
arc domains. Part II: Non-symmetric operators and Carleson measure estimates. Trans. Amer. Math. Soc.,
373(11):7901-7935, 2020. (p. 12)

R. R. Coifman, Y. Meyer, and E. M. Stein. Some new function spaces and their applications to harmonic
analysis. J. Funct. Anal., 62(2):304-335, 1985. (p. 5)

B. E. J. Dahlberg. Estimates of harmonic measure. Arch. Rational Mech. Anal., 65(3):275-288, 1977. (p. 12)
B. E. J. Dahlberg. On the Poisson integral for Lipschitz and C'-domains. Studia Math., 66(1):13-24, 1979. (p.
12)

B. E. J. Dahlberg. Poisson semigroups and singular integrals. Proc. Amer. Math. Soc., 97(1):41-48, 1986. (p.
10)

Z. Dai, J. Feneuil, and S. Mayboroda. Carleson perturbations for the regularity problem. Preprint.
arXiv:2203.07992. (p. 10, 13)

G. David and D. Jerison. Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals.
Indiana Univ. Math. J., 39(3):831-845, 1990. (p. 10, 13)

G. David and S. Semmes. Singular integrals and rectifiable sets in R": Beyond Lipschitz graphs. Astérisque,
193:152, 1991. (p. 16, 34, 35)

G. David, L. Li, and S. Mayboroda. Carleson measure estimates for the Green function. Arch. Ration. Mech.
Anal., 243(3):1525-1563, 2022. (p. 8)

G. David and S. Mayboroda. Good elliptic operators on Cantor sets. Adv. Math., 383:Paper No. 107687, 21,
2021. (p. 9)

G. David and S. Mayboroda. Approximation of Green functions and domains with uniformly rectifiable bound-
aries of all dimensions. Adv. Math., 410:Paper No. 108717, 2022. (p. 8)

G. David and S. Semmes. Analysis of and on uniformly rectifiable sets, volume 38 of Mathematical Surveys
and Monographs. American Mathematical Society, Providence, RI, 1993. (p. 16, 17)



66
[DHP]
[DK12]
[DPPO7]
[DPR17]
[EG92]
[FMMO98]
[FIK84]
[FKP91]

[FLM]
[FP]

[FM12]

[GM12]

[GN13]
[GW82]

[Ha96]
[HTO02]

[HKM93]

[HKMP15a]

[HKMP15b]

[HK07]
[HLMO2]
[HL18]

[HMM15]

[HR13]
[JK95]

[JK81]

M. MOURGOGLOU, B. POGGI, AND X. TOLSA

M. Dindo§, S. Hofmann, and J. Pipher. Regularity and Neumann problems for operators with real coefficients
satisfying Carleson condition. Preprint. July 2022 (v1), December 2022 (v2). arXiv: 2207.10366. (p. 15)

M. Dindo$ and J. Kirsch. The regularity problem for elliptic operators with boundary data in Hardy-Sobolev
space HS'. Math. Res. Lett., 19(3):699-717, 2012. (p. 13)

M. Dindos, S. Petermichl, and J. Pipher. The L” Dirichlet problem for second order elliptic operators and a
p-adapted square function. J. Funct. Anal., 249(2):372-392, 2007. (p. 12, 13)

M. Dindos, J. Pipher, and D. Rule. Boundary value problems for second-order elliptic operators satisfying a
Carleson condition. Comm. Pure Appl. Math., 70(7):1316-1365, 2017. (p. 4, 10, 11, 13, 15, 44)

L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Studies in Advanced Mathe-
matics. CRC Press, Boca Raton, FL, 1 edition, 1992. (p. 56)

E. Fabes, O. Mendez, and M. Mitrea. Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the
Laplacian in Lipschitz domains. J. Funct. Anal., 159(2):323-368, 1998. (p. 14)

E. B. Fabes, D. S. Jerison, and C. E. Kenig. Necessary and sufficient conditions for absolute continuity of
elliptic-harmonic measure. Ann. of Math. (2), 119(1):121-141, 1984. (p. 12)

R. A. Fefferman, C. E. Kenig, and J. Pipher. The theory of weights and the Dirichlet problem for elliptic
equations. Ann. of Math. (2), 134(1):65-124, 1991. (p. 12)

J. Feneuil, L. Li, and S. Mayboroda. Green functions and smooth distances. Preprint. arXiv:2211.05318. (p. 8)
J. Feneuil and B. Poggi. Generalized Carleson perturbations of elliptic operators and applications. To appear in
Transactions of the American Mathematical Society. (p. 12)

M. Filoche and S. Mayboroda. Universal mechanism for Anderson and weak localization. Proc. Natl. Acad.
Sci. USA, 109(37):14761-14766, 2012. (p. 6, 8, 9)

M. Giaquinta and L. Martinazzi. An introduction to the regularity theory for elliptic systems, harmonic maps
and minimal graphs, volume 11 of Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes.
Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa, second edition, 2012. (p. 21)
D. S. Grebenkov and B.-T. Nguyen. Geometrical structure of Laplacian eigenfunctions. SIAM Rev., 55(4):601—
667, 2013. (p. 9)

M. Griiter and K.-O. Widman. The Green function for uniformly elliptic equations. Manuscripta Math.,
37(3):303-342, 1982. (p. 21)

P. Hajt asz. Sobolev spaces on an arbitrary metric space. Potential Anal., 5(4):403—415, 1996. (p. 18)

A. Hassell and T. Tao. Upper and lower bounds for normal derivatives of Dirichlet eigenfunctions. Math. Res.
Lett., 9(2-3):289-305, 2002. (p. 9)

J. Heinonen, T. Kilpelédinen, and O. Martio. Nonlinear potential theory of degenerate elliptic equations. Oxford
Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science
Publications. (p. 21, 22, 64)

S. Hofmann, C. Kenig, S. Mayboroda, and J. Pipher. The regularity problem for second order elliptic operators
with complex-valued bounded measurable coefficients. Math. Ann., 361(3-4):863-907, 2015. (p. 13)

S. Hofmann, C. Kenig, S. Mayboroda, and J. Pipher. Square function/non-tangential maximal function estimates
and the Dirichlet problem for non-symmetric elliptic operators. J. Amer. Math. Soc., 28(2):483-529, 2015. (p.
13)

S. Hofmann and S. Kim. The Green function estimates for strongly elliptic systems of second order.
Manuscripta Math., 124(2):139-172, 2007. (p. 8, 21)

S. Hofmann, M. Lacey, and A. McIntosh. The solution of the Kato problem for divergence form elliptic opera-
tors with Gaussian heat kernel bounds. Ann. of Math. (2), 156(2):623-631, 2002. (p. 13)

S. Hofmann and P. Le. BMO solvability and absolute continuity of harmonic measure. J. Geom. Anal.,
28(4):3278-3299, 2018. (p. 22, 63)

S. Hofmann, S. Mayboroda, and M. Mourgoglou. Layer potentials and boundary value problems for elliptic
equations with complex L™ coefficients satisfying the small Carleson measure norm condition. Adv. Math.,
270:480-564, 2015. (p. 6, 14, 15)

T. Hytonen and A. Rosén. On the Carleson duality. Ark. Mat., 51(2):293-313, 2013. (p. 5, 18, 19, 57, 59, 60,
62)

D. Jerison and C. E. Kenig. The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal.,
130(1):161-219, 1995. (p. 14)

D. S. Jerison and C. E. Kenig. The Dirichlet problem in nonsmooth domains. Ann. of Math. (2), 113(2):367—
382, 1981. (p. 12, 13)



[JK82a]
[JK82b]
[KKPT16]
[KKPT00]
[KLS13]

[Ken94]

[KP93]
[KP95]
[KPO1]
[KR09]
[LP95]
[LSW63]
[MP21]
[May10]

[MPT14]

[MM11]
[MMO7]
[MMS81]
[Mou]
[MPT]
[MT]
[Pog]
[She07]
[SX13]

[TT]
[Tol14]

LP-SOLVABILITY OF THE POISSON-DIRICHLET PROBLEM 67

D. S. Jerison and C. E. Kenig. Boundary behavior of harmonic functions in nontangentially accessible domains.
Adv. in Math., 46(1):80-147, 1982. (p. 10, 13)

D. S. Jerison and C. E. Kenig. Hardy spaces, A, and singular integrals on chord-arc domains. Math. Scand.,
50(2):221-247, 1982. (p. 13)

C. Kenig, B. Kirchheim, J. Pipher, and T. Toro. Square functions and the A., property of elliptic measures. J.
Geom. Anal., 26(3):2383-2410, 2016. (p. 8)

C. Kenig, H. Koch, J. Pipher, and T. Toro. A new approach to absolute continuity of elliptic measure, with
applications to non-symmetric equations. Adv. Math., 153(2):231-298, 2000. (p. 13)

C. Kenig, F. Lin, and Z. Shen. Estimates of eigenvalues and eigenfunctions in periodic homogenization. J. Eur.
Math. Soc. (JEMS), 15(5):1901-1925, 2013. (p. 9)

C. E. Kenig. Harmonic analysis techniques for second order elliptic boundary value problems, volume 83 of
CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical
Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1994. (p. 23)

C. E. Kenig and J. Pipher. The Neumann problem for elliptic equations with nonsmooth coefficients. Invent.
Math., 113(3):447-509, 1993. (p. 3, 4, 5, 13, 23)

C. E. Kenig and J. Pipher. The Neumann problem for elliptic equations with nonsmooth coefficients. II. Duke
Math. J., 81(1):227-250 (1996), 1995. A celebration of John F. Nash, Jr. (p. 10, 13)

C. E. Kenig and J. Pipher. The Dirichlet problem for elliptic equations with drift terms. Publ. Mat., 45(1):199—
217,2001. (p. 3, 10, 12, 13)

C. E. Kenig and D. J. Rule. The regularity and Neumann problem for non-symmetric elliptic operators. Trans.
Amer. Math. Soc., 361(1):125-160, 2009. (p. 13)

M. L. Lapidus and M. M. H. Pang. Eigenfunctions of the Koch snowflake domain. Comm. Math. Phys.,
172(2):359-376, 1995. (p. 9)

W. Littman, G. Stampacchia, and H. F. Weinberger. Regular points for elliptic equations with discontinuous
coefficients. Ann. Scuola Norm. Sup. Pisa CI. Sci. (3), 17:43-77, 1963. (p. 12)

S. Mayboroda and B. Poggi. Carleson perturbations of elliptic operators on domains with low dimensional
boundaries. J. Funct. Anal., 280(8):108930, 91, 2021. (p. 12)

S. Mayboroda. The connections between Dirichlet, regularity and Neumann problems for second order elliptic
operators with complex bounded measurable coefficients. Adv. Math., 225(4):1786-1819, 2010. (p. 13)

E. Milakis, J. Pipher, and T. Toro. Perturbations of elliptic operators in chord arc domains. In Harmonic anal-
ysis and partial differential equations, volume 612 of Contemp. Math., pages 143-161. Amer. Math. Soc.,
Providence, RI, 2014. (p. 12)

D. Mitrea and I. Mitrea. On the regularity of Green functions in Lipschitz domains. Comm. Partial Differential
Equations, 36(2):304-327, 2011. (p. 14)

I. Mitrea and M. Mitrea. The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in
non-smooth domains. Trans. Amer. Math. Soc., 359(9):4143-4182, 2007. (p. 14)

L. Modica and S. Mortola. Construction of a singular elliptic-harmonic measure. Manuscripta Math., 33(1):81-
98, 1980/81. (p. 12)

M. Mourgoglou. Regularity theory and Green’s function for elliptic equations with lower order terms in un-
bounded domains. Preprint. April 2019. (p. 21)

M. Mourgoglou, B. Poggi, and X. Tolsa. L”-solvability of the Poisson-Dirichlet problem and its applications to
the regularity problem. Preprint. July 2022 (v1). arXiv: 2207.10554. (p. 15)

M. Mourgoglou and X. Tolsa. The regularity problem for the Laplace equation in rough domains. Preprint.
February 2022. arXiv:2110.02205. (p. 4, 7, 10, 11, 12, 13, 15, 22, 29, 33, 43, 44, 45, 49, 52, 53, 63)

B. Poggi. Applications of the landscape function for Schrédinger operators with singular potentials and irregular
magnetic fields. Preprint. July 2021. (p. 6, 8)

Z. Shen. A relationship between the Dirichlet and regularity problems for elliptic equations. Math. Res. Lett.,
14(2):205-213, 2007. (p. 13)

Y. Shi and B. Xu. Gradient estimate of a Dirichlet eigenfunction on a compact manifold with boundary. Forum
Math., 25(2):229-240, 2013. (p. 9)

O. Tapiola and X. Tolsa. Connectivity conditions and boundary Poincaré inequalities. Preprint. (p. 4)

X. Tolsa. Analytic capacity, the Cauchy transform, and non-homogeneous Calderén-Zygmund theory, volume
307 of Progress in Mathematics. Birkhduser/Springer, Cham, 2014. (p. 25)



68 M. MOURGOGLOU, B. POGGI, AND X. TOLSA

[vdBB99] M. van den Berg and E. Bolthausen. Estimates for Dirichlet eigenfunctions. J. London Math. Soc. (2),
59(2):607-619, 1999. (p. 9)

Email address: michail .mourgoglou@ehu.eus

DEPARTAMENTO DE MATEMATICAS, UNIVERSIDAD DEL PAfs Vasco, UPV/EHU, BARRIO SARRIENA S/N 48940 LEioa, SpaiN anDp, IKER-
BASQUE, BasQuE FOUNDATION FOR SCIENCE, BILBAO, SPAIN

Email address: poggi@mat.uab.cat
DEPARTAMENT DE MATEMATIQUES, UNIVERSITAT AUTONOMA DE BARCELONA, BELLATERRA, CATALONIA
Email address: xtolsa@mat.uab.cat

ICREA, BARCELONA, DEPARTAMENT DE M ATEMATIQUES, UNIVERSITAT AUTONOMA DE BARCELONA, AND CENTRE DE RECERCA MATEMATICA,
BARCELONA, CATALONIA



	1. Introduction
	2. Preliminaries
	3. The Poisson-Dirichlet problem
	4. A corona decomposition into Lipschitz subdomains adapted to the DKP property
	5. The almost L-elliptic extension
	6. The Regularity Problem for DKP operators
	Appendix A. Proofs of auxiliary results
	References

