Resolving the chicken-and-egg problem in VO,: a new paradigm for the Mott
transition
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We consider a minimal model to investigate the metal-insulator transition in VOz. We adopt a
Hubbard model with two orbital per unit cell, which captures the competition between Mott and
singlet-dimer localization. We solve the model within Dynamical Mean Field Theory, characterizing
in detail the metal-insulator transition and finding new features in the electronic states. We com-
pare our results with available experimental data obtaining good agreement in the relevant model
parameter range. Crucially, we can account for puzzling optical conductivity data obtained within
the hysteresis region, which we associate to a novel metallic state characterized by a split heavy
quasiparticle band. Our results show that the thermal-driven insulator-to-metal transition in VOq
is entirely compatible with a Mott electronic mechanism, solving a long standing "chicken-and-egg"
debate and calling for further research of “Mottronics” applications of this system.

Vanadate systems have remained at center stage of
condensed matter physics for a long time. In fact, both
vanadium dioxide VO5 and vanadium sesquioxide VoO3
are considered the prototypical examples of systems un-
dergoing a strongly correlated metal-insulator transition
(MIT) [1]. These transition metal oxides are not only
important from a fundamental physics point of view, as
their unusual electronic behavior makes them very at-
tractive materials for novel electronic devices [2, 3]. In
fact, they are intensively investigated in the emerging
field of "Mottronics", which aims to exploit the func-
tionalities associated to the quantum Mott transitions.
A key goal is to create fast and ultra-low power consump-
tion transistors, which may be downsized to the atomic
limit [4-6].

Both, VO, and V5,03 have nominally partially filled
bands, hence are expected to be metals. However, they
undergo a first order metal to insulator transition upon
cooling at ~ 340K and 180K, respectively. Significantly,
this phenomenon has been associated, time and again, to
a Mott transition [1], namely a metal-insulator transition
driven by the competition between kinetic energy and
Coulomb electric repulsion [7]. Yet, that point of view
has also been questioned, almost as often [1, §].

The case of VO3, that has a transition from a high-T
rutile (R) metallic phase to a low-T' monoclinic (M;) in-
sulator, is emblematic. The debate started with the sem-
inal works of Morin and Goodenough [9-11] more than 50
years ago and remains ongoing [12-16]. While many fea-
tures are currently open for debate, the half-century-long
central issue is the nature of the transition and the role
of strong correlations effects. More specifically, whether
the transition is essentially driven by a band-structure
effect due to a spin-Peierls structural instability, or by
the electronic charge localization of the Mott-Hubbard
type. This issue has been under scrutiny using realis-
tic electronic structure calculations [17-21] based on the
combination of Density Functional Theory with Dynam-

ical Mean Field Theory (LDA+DMFT) [22]. In a pio-
neering attempt to solve the problem, Biermann et al.
[17] argued that the metal-insulator transition should be
considered as a renormalized Peierls insulator. Namely, a
band-insulator where the bonding-antibonding bandgap
is driven by dimerization and renormalized down by in-
teractions [17]. Specifically, they observed that within
the monoclinic phase, the splitting of the a;, bonding-
antibonding bands is renormalized from the value ~1.5
eV within the LDA, down to ~0.8 eV when a Hubbard
repulsion term is included. On the other hand, the calcu-
lations showed that within the metallic rutile phase, the
Coulomb interaction failed to produce a MIT for reason-
able values of the interaction. These calculations, done
more than 10 years ago, provided multiple insights even if
they were done at the high temperature of 770 K. More
recently, the problem was reconsidered by Brito et al.
[19] and by Biermann et al. as well [20, 23-25]. Al-
though they employed similar techniques, their results
and emerging scenario is rather different. Brito et al.
found a MIT within a second monoclinic (Ms) phase
of VOg that only has half the dimerization of the stan-
dard My, for the same value of the Coulomb interaction.
Hence, they argued that Mott localization must play the
leading role in both MITs. Nevertheless, they also noted
that the Mott insulator adiabatically connects to the sin-
glet dimer insulator state, and therefore the transition
should be considered as a Mott-Hubbard in the presence
of strong inter-site exchange [19, 20, 23].

While those LDA+DMFT works provided multiple
useful insights, the issue whether the first order MIT at
340K in VOs is electronically or structurally driven, still
remains. Thus, here we shall try to shed new light on
this classic "chicken-and-egg" problem by adopting a dif-
ferent strategy. We shall avoid the complications of the
realistic crystal structures and orbital degeneracy of VOq
and adopt a basic model Hamiltonian that permits a de-
tailed systematic study. The model is a lattice Hubbard



Hamiltonian with hopping ¢ and Coulomb repulsion U,
which has a two orbital dimer per unit cell with intra-
cell hopping ¢, [26]. Significantly, the quantum impurity
problem of this model treated within DMFT is analo-
gous to that of the above mentioned LDA+DMFT stud-
ies [17, 19, 20, 23](cf Supplemental Material). This model
Hamiltonian, which we shall call Dimer Hubbard model
(DHM), can capture the competition between Mott local-
ization due to Coulomb repulsion and singlet dimeriza-
tion, i.e. Peierls localization. We should emphasize here
that the underlying lattice in this model stays put. There-
fore, we can directly address the issue whether a purely
electronic transition, having a bearing on the physics of
VO,, exists in this model. The specific questions that we
shall address are the following: (i) Does this purely elec-
tronic model predict a first order metal-insulator transi-
tion as a function of the temperature within the relevant
parameter region ? If yes, (it) What is the physical na-
ture of the different states? and, (7)) Can they be related
to key available experiments? These issues are relevant,
since if even this basic model fails to predict an electronic
MIT consistent with the one observed in VOs, then it
would be mandatory to explicitly include the lattice de-
grees of freedom, and the chicken-and-egg question would
be resolved. In the present study we shall provide explicit
answers to these questions. Specifically, we shall show
that the solution of the DHM shall bring the equivalent
physical insight for VO5 as what was obtained with the
single band Hubbard model for V503, which was one of
the significant achievements of DMFT (27, 28|. In fact,
both models are closely related, as the DHM becomes
two identical copies of the single-band Hubbard model
at tLZO.
The dimer Hubbard model is defined as
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where (i,j) denotes n.n. lattice sites, a = {1,2} denote
the dimer orbitals, o is the spin, t is the lattice hopping,
t, is the intra-dimer hopping, and U is the Coulomb
repulsion. For simplicity, we adopt for the model a semi-
circular density of states p(e) = v/4t2 — e2/(27t?). The
energy unit is set by t=1/2, which gives a full bandwidth
of 4t=2D=2, where D is the half-bandwidth. This in-
teresting model has surprisingly received little attention,
and only and partial solutions have been obtained within
DMFT [26, 29-31|. The main results were the identifica-
tion of region of coexistent solutions at moderate U and
small ;. Those were obtained at 7=0 using the IPT
approximation [26] and at finite 7=0.025 by quantum
Monte Carlo[32, 33] (QMC) [29]. Here, we shall obtain
the detailed solution of the problem in the full parameter
space, paying special attention to the MIT and the na-
ture of the coexistent solutions. We solve for the DMFT

equations with hybridization-expansion continuous-time
quantum Monte Carlo (CT-QMC) [34, 35| and exact di-
agonalization, which provide (numerically) exact solu-
tions [27]. We also adopt the IPT approximation [26],
which, remarkably, we find is (numerically) exact in the
atomic limit ¢ = 0 (see Supplemental Material), there-
fore provides reliable solutions of comparable quality as
in the single-band Hubbard model [27]. Furthermore,
IPT is extremely fast and efficient to explore the large
parameter space of the model and provides accurate so-
lutions on the real frequency axis. Extensive comparison
between IPT and the CT-QMC is shown in the Supple-
mental Material. The DMFT equations provide for the
exact solution of the DHM in the limit of large lattice co-
ordination and have been derived elsewhere [26]. Here we
quote the key self-consistency condition of the associated
quantum dimer-impurity model,
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where G, g and £, g (with a, § = 1,2) are respectively
the dimer-impurity Green’s function and self-energy. At
the self consistent point these two quantities become the
respective local quantities of the lattice [27].

We start by establishing the detailed phase diagram,
which we show in Fig. 1. We observe that at low T there
is a large coexistent region at moderate U and ¢; below
0.6 [26]. This region gradually shrinks as T is increased,
and fully disappears at T' ~ 0.04. The lower panel shows
the phase diagram in the U-T plane at fixed ¢; . At ¢; =0
we recover the well known single-band Hubbard model
result, where the coexistent region extends in a triangu-
lar region defined by the lines U,1(T) and U (T) [27].
The triangle is tilted to the left, which indicates that
upon warming the correlated metal undergoes a first or-
der transition to a finite-7" Mott insulator. This behavior
was immediately associated to the famous 1st order MIT
observed in Cr-doped V203 [27, 36], which has been long
considered a prime example of a Mott Hubbard transi-
tion [1]. It is noteworthy that this physical feature has
remained relevant even in recent LDA+DMFT studies,
where the full complexity of the lattice and orbital de-
generacy is considered [8, 37]. This underlines the utility
of sorting the detailed behavior of basic model Hamiltoni-
ans. Significantly, as ¢, is increased in the DHM, the tilt
of the triangular region evolves towards the right. This
signals that ¢, fundamentally changes the stability of the
groundstate. In fact, as shown in the lower right panel of
Fig. 1, at t; =0.3 we find that the MIT is reversed with
respect to the previous case, namely, upon warming, an
insulator undergoes a 1st order transition to a (bad) cor-
related metal at finite-7T'. Interestingly, we may connect
several features of this MIT to VOs, both, qualitative
and quantitatively. Firstly, we may consider the energy
scales. The LDA estimate of the bandwidth of the metal-
lic state of VO3 is ~2eV [17], which corresponds in our
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Figure 1. Phase diagram showing the coexistence (grayed)
of metal and insulator states (black lines from IPT and red
from QMC), where the approximate position of the 1st order
lines is indicated. MI denotes Mott insulator and BI bond
insulator, the crossover regions have bad metal behavior (see
text and Ref.40). Top panels show ¢ -U plane. Left one shows
lower temperatures 7=0.001 (IPT) and 1/200 (CT-QMC),
and right one shows higher temperature 7=0.03 (IPT) and
1/64 (CT-QMC). Lower panels show the U-T plane. Left one
is for fixed ¢, =0 ( i.e. single-band Hubbard model), and right
one for t; =0.3 .

model to 4¢, hence ¢t=0.5eV. This is handy, since from our
choice of t=0.5, we may simply read the numerical energy
values of the figures directly in physical units (eV) and
compare to experimental data of VOy;. Moreover, the
value of the tight binding parameter ¢, =0.3, that cor-
responds to 0.3eV is consistent with LDA estimates for
the (average) intra-dimer hopping amplitudes (cf Supple-
mental Material) [38, 39]. Interestingly, from Fig. 1 we
find that the coexistent solution region at t; =0.3, hence
the 1st order transition, extends up to a Thsrr ~ 35meV
~ 400K, consistent with the experimental value ~340K.
Furthermore, this occurs for a value of the Coulomb re-
pulsion U = 2 ~ 3eV, also quite consistent with the val-
ues adopted in the LDA+DMFT studies [17, 19, 38].
We can make further interesting connections with ex-
periments in VOy. The metallic state is unusual and
it can be characterized as a bad metal. Namely, a metal
with an anomalously high scattering rate that approaches
(or may violate) the Ioffe-Regel limit [41]. In Fig. 2
we show the imaginary part of the diagonal self-energy,
whose y-axis intercept indicates the scattering rate (i.e.
inverse scattering time). At T =0.04 (i.e. ~400K) we
observe a large value of the intercept, of order ~ t=1/2,
which signals that the carriers are short lived quasi-
particles. In fact VOg has such an anomalous metallic
state [12]. This anomalous scattering is likely the ori-
gin of the surprising observation that despite the fact
that the lattice structure has 1D vanadium chains run-

ning along the c-axis, the resistivity is almost isotropic,
within a mere factor of 2 [11]. It is noteworthy that
this lack of anisotropy observed in electronic transport
experiments provides further justification for our sim-
plified model of a lattice of dimers. Thus, this bad
metal behavior, which is a hallmark of Mottness [40, 42],
also indicates that the MIT in VOs should be charac-
terized as a Mott transition[? |. Additional insights on
the mechanism driving the transition can be obtained
from the behavior of the off-diagonal (intra-dimer) self-
energy Y1a(wy, ). From Eq. (2), we observe that the intra-
dimer hopping amplitude is effectively renormalized as
t1 ) =t + Re[X12)(0). In Fig. 2 we show the behav-
ior of this quantity across the transition. We see that in
the metallic state it remains very small, while it becomes
large (>t ) at low T in the insulator [19, 20, 23|. The
physical interpretation is transparent. In the correlated
metal, the two dimer sites are primarily Kondo screened
by their lattice neighbors, as in the single band Hubbard
model each one forms a heavy quasiparticle band. Then
these two bands get split into a bonding and anti-bonding
pair by the small ¢,. Hence, the low energy electronic
structure is qualitatively similar to the non-interacting
one, with a larger effective mass. As T' is lowered, the
dramatic increase in Re[¥12](0) when the Mott gap opens
at the 1st order transition signals that the intra-dimer
interaction is boosted by o t5// ~ Re[L5]. Unlike the
one-band Hubbard model, here the finite ¢t; permits a
large energy gain in the Mott insulator by quenching the
degenerate entropy. This mechanism, already observed in
other cluster-DMFT models [43-45], stabilizes the insu-
lator within the coexistence region, leading to the change
in the tilt seen in Fig.1. Another way of rationalizing the
transition is that at a critical U —dependent ¢, the Kondo
screening in the metal breaks down in favor of the local
dimer-singlet formation in the insulator. In this view,
the large gap opening may be interpreted as a U—driven
enhanced band splitting o 2tif f U).

Further detail is obtained from the comparison of the
electronic structure of the metal and the insulator within
the coexistence region [? |. Within DMFT, the band-
structure is obtained as a function of the single particle
energy €, which in the semicircular DOS lattice adopted
here has a simple linear dispersion [27]. Hence at U =0
the non-interacting bandstructure are two parallel linear
bands split by 2¢; ( i.e. the bonding and anti-bonding
bands). In the correlated metallic state shown in Fig. 3
we find at high energies (~ £U/2) the incoherent Hub-
bard bands, which are signatures of Mott physics. At
lower energies, we also observe a pair of heavy quasipar-
ticle bands crossing the Fermi energy at w=0. Consistent
with our previous discussion, this pair of quasiparticle
bands can be though of as the renormalization of the
non-interacting bandstructure. Significantly, as we shall
discuss later on, this feature may explain the puzzling op-
tical data of Qazilbash et al. [12] within the MIT region



Figure 2. Top: The scattering rate Im[X11(w = 0)] for the
metal (solid) at fixed t; =0.3 values of U from 0 to 3 in steps
of 0.5 (upwards). The experimentally relevant values U=2.5
and 3, are highlighted with thick lines. Inset shows the U
dependence at fixed T=0.04. Bottom: The effective intra-
dimer hopping ¢, ¢/f= ¢, +Re[212](0) (bottom) as a function
of T for the same parameters as the top panel. Metal states
are in solid (blue) lines and the insulator in dashed (red) lines
for U=2.5 and 3. The calculation are done with IPT.

of VO,, which has remained unaccounted for so far. Un-
like the single-band Hubbard model, the effective mass
of these metallic bands does not diverge at the MIT at
the critical U, even at T=0. In fact, the finite ¢, cuts off
the effective mass divergence as expected in a model that
incorporates spin-fluctuations. In fact the DMH may be
considered [26] the simplest non-trivial cluster DMFT
model. It is interesting to note that the realistic values
U = 2.5and t; =0.3 lead to Hubbard bands at ~ £1.5eV
and a quasiparticle residue Z = 0.4, both consistent with
photoemission experiments of Koethe et al. [46].

In Fig. 3 we also show the results for insulator elec-
tronic dispersion at the same values of the parameters.
The comparison of the insulator and the metal illus-
trate the significant changes that undergo at the 1st or-
der MIT. We see that the metallic pair of quasiparti-
cle band suddenly open a large gap. More precisely, in
contrast to the one-band case, here the Hubbard bands
acquire a non-trivial structure, with sharp bands coexist-
ing with incoherent ones. The coherent part dispersion
can be traced to those of a lattice of singlet-dimers (see
Sup. Mat.). Hence, the insulator can be characterized
as a novel type of Mott-singlet state where the Hubbard
bands have a mix character with both coherent and in-
coherent electronic-structure contributions. It is also in-
teresting to note that the gap in the density of states is
A ~0.6eV, again consistent with the photoemission ex-
periments [46].

In order to gain further insight and make further con-

Figure 3. Electronic dispersion for the metal (left top) and
insulator (left bottom) in the coexistence region for parameter
values ¢ =0.3, U=2.5 and T=0.01. Right panels show the
respective DOS(w). The calculations are done with IPT.

tact with key experiments, we now consider the optical
conductivity response o(w) within the MIT coexistence
region. A set of remarkable data was obtained in this
regime by Qazilbash et al. [12], bearing directly on the
issue of the driving force behind the transition. They
systematically investigated the o(w) as a function of T
using nano-imaging spectroscopy. They clearly identified
within the 7" range of the MIT the electronic coexistence
of insulator and metallic regions, characteristic of a 1st
order transition. A crucial observation was that upon
warming the insulator in the M1 phase, metallic puddles
emerge with a o(w) that was significantly different from
the signal of the normal metallic R phase. Thus, the data
provided a strong indication of a purely electronic driven
transition. Regarding this point we would like to mention
also the works of Arcangeletti et al. [15] and Laverock et
al. [16] that reported the observation of metallic states
within the monoclinic phase under pressure and strain,
respectively. Coming back to the experiment of Qazil-
bash et al., a key point that we want to emphasize here
is that o(w) in the putative M1-metallic state was charac-
terized by a intriguing mid-infra-red (MIR) peak wy;» ~
1800 cm~! = 0.22 eV, whose origin was not understood.
From our results on the electronic structure within the co-
existence region, we find a natural interpretation for the
puzzling MIR peak: It should correspond to excitations
between the split metallic quasiparticle bands. Since they
are parallel, they would produce a significant contribu-
tion to o(w), which enabled its detection. In Fig. 4 we
show the calculated optical conductivity response (see
Sup. Mat. section 7) that corresponds to the spectra of
Fig. 3. In the metal we see that, in fact, a prominent MIR
peak is present at w.,;- ~ 0.22 €V, in excellent agreement
with the experimental value. On the other hand, the op-
tical conductivity of the insulator shows a maximum at
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Figure 4. The optical conductivity o(w) of metal and insu-
lator within the coexistence region for parameters t; =0.3,
U=2.5 and T=0.01. The calculations are done with IPT.
Inset: The experimental optical conductivity adapted from
Ref. 12.

Wins =~ 2 €V in both, theory and experiment. Moreover,
we also note the good agreement of the relative spectral
strengths of the main features in the two phases.

In conclusion, we showed that the detailed solution of a
minimal dimer model treated within DMFT can success-
fully account for a number of experimental features ob-
served in VOs. The minimal model has an impurity prob-
lem which is analogue to that of LDA+DMFT methods,
yet the simplicity of this approach allowed for a detailed
solution that permitted a transparent understanding of
many physical aspects of the electronic first order tran-
sition in this problem. It exposed a novel dimer-Mott-
transition mechanism, where the effective intra-dimer ex-
change is controlled by correlations, it is weakened in
the metal and strongly enhanced in the Mott insulator.
In the metal, this leads to a pair of split quasiparti-
cle bands, which then in the insulator further separate,
to join and coexist with the usual incoherent Hubbard
bands. We made semi-quantitative connections to sev-
eral experimental data in VO, including a crucial optical
conductivity study within the 1st order transition, that
remained unaccounted for. Our work, sheds new light
on the long-standing question of the driving force behind
the metal-insulator transition of VO, indicating that it
is driven by a Mott mechanism. The present approach
may be considered the counterpart for VOo, of the DMFT
studies of the Mott transition in paramagnetic Cr-doped

V30s3.
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Supplementary Material

DIMER HUBBARD MODEL REPRESENTATION

In figure S1 we show on the left panel the schematic representation of our model Hamiltonian. The blue lines
correspond the inter-dimer hopping matrix t and the purple line the intra-dimer hopping t;. For simplicity the
model is depicted in 3D, but it is mathematically formulated in the limit of a large coordination lattice. The right
hand side panel shows the corresponding DMFT quantum impurity problem, where the dimer is embedded in a self

consistent medium.

VALIDATION OF IPT AGAINST THE EXACTLY SOLVABLE ISOLATED DIMER LIMIT (IE ATOMIC
LIMIT OF THE LATTICE MODEL)

We numerically demonstrate that the IPT method exactly captures the atomic limit of the lattice model. The
fact that a perturbative calculation captures the atomic limit (ie, U/t — 00) is not to be expected, but, interestingly
enough, is analogous to the well known property of the IPT solution of the one band Hubbard model. This is shown



Figure S1. Left panel: schematic representation of the lattice Hamiltonian. Right panel: Asociated self-consistent quantum
impurity problem, where the dimer is embedded in a self-consistent medium. .

in figure S2 where we compare the exact Self-Energy of the atomic limit (isolated dimer) with the respective IPT
solution.
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Figure S2. Comparison between the exact Self-Energy of an isolated dimer(solid lines) and the approximation from IPT(black
crosses) (Left panel)Self-Energy for various values of U and fixed t; = 0.3. U = 1.5 blue, U = 2 green, U = 2.5 red, U = 3
cyan, U = 3.5 purple, U = 4 yellow, U = 4.5 black. (Center) Various values of ¢, and fixed U = 3. ¢, = 0.3 blue, t; = 0.5
green, t| = 0.7 red, t; = 0.9 cyan, t; = 1.1 purple. (Right) Various values of U and ¢,. (U = 1, t, = 0) blue, (U = 0.7,
t1 =0.3) green, (U =10.5,t, =0.5) red, (U =0.2, t; =0.8) cyan.

COMPARISON OF IPT WITH NUMERICAL SOLUTIONS (CT-QMC AND EXACT
DIAGONALIZATION)

Solutions in the Matsubara axis

The most stringent test for the comparison is done within the coexistence region, since there the structure of the
Green’s functions and Self-Energies are very non-trivial. Figure S3 shows the numerically exact CT-QMC Green’s
functions and Self-Energies in the Matsubara axis. The data is shown along with fits obtained from the IPT solution
at suitably close values of the parameters.

The very good agreement between QMC and IPT is also found in the whole phase diagram. This is shown in figure
S4 where IPT and CT-QMC are compared at two parameter values away from the coexistence region.
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Figure S3. Comparison of the (numerically) exact CT-QMC solution and IPT within the coexistence region for metal (top)
and insulator (bottom). Left panels: the local Im[G11] (green) and Re[Gi2| (blue). Right panels: the local Im[X;:] (green)
and Re[¥12] (blue). Circular and square symbols are CT-QMC data at U=2.15 and ¢, =0.3, and black solid lines are IPT at
U=2.55 (metal) and U=2.21 (insulator) with ¢; =0.3. Notice that, as in the one band Hubbard model case, the best quantitative
agreement between QMC and IPT is found for values of U that are slightly different.
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Figure S4. Comparison of the (numerically) exact CT-QMC solution and IPT away from the coexistence region for metal (top)
and insulator (bottom). Left panels: the local Im|[G11] (green) and Re[G12] (blue). Right panels: the local Im[X11] (green) and
Re[X12] (blue). Circular and square symbols are CT-QMC data at U=1.8 (metal) and 3.3 (insulator), and black solid lines
are IPT at U=2 (metal) and 3.35 (insulator). The intra-dimer hopping is always fixed at ¢; =0.3. Notice that, as in the one
band Hubbard model case, the best quantitative agreement between QMC and IPT is found for values of U that are slightly

different.

Electronic Structure

In figure S5 we show the electronic dispersion (ie, € and w resolved density of states A(e,w)) of the metallic and
insulating states obtained by the IPT, CT-QMC and ED methods, respectively. As seen in the figure, all the three
methods provide the key qualitative features that are discussed in the text. Namely, the split quasiparticle bands in
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Figure S5. Comparison of the electronic structures in the Metal and Insulator phases at ¢t; = 0.3. Left CT-QMC in the
coexistence U = 2.15, center IPT taken from main text U = 2.5, right results from ED metal at U = 1.8, insulator at U = 3

the metal and in the insulating states.

CHOICE OF PARAMETERS IN THE DIMER LATTICE

The dimer Hubbard Model has very few parameters inter-dimer (or lattice) hopping ¢, intra-dimer hopping ¢ , local
Coulomb repulsion U, and the temperature. The lattice hopping provides the bandwidth of our model Hamiltonian
W =4t [S1, S2]. In the case of VO, reference LDA calculations agree that both, e, and a1, bands have an approximate
bandwidth of 2eV [S3-S6], hence we have set t = 0.5eV.

The intra-dimmer hopping quoted in ref. [S3] is ~ 0.68e¢V, which is about a factor of 2 larger than our adopted
value 0.3eV. However, that value concerns solely the a1y (dxy) orbital. There are in fact also two additional intra-
dimer hopping amplitudes (associated to e, states), which are 0.22¢V and a smaller value.The values for the hopping
amplitudes found in later works [S4-S6| are consistent with this findings. Since we are considering a unit cell with
two sites and one orbital each, we have a single intra-dimer hopping parameter. Therefore, and in the spirit of a mean
field theory, we chose a value that is the approximate average of the 3 hopping amplitudes.

In regard to the value of U, we adopted the value of U = 2.5¢V for the semi-quantitative comparison with
experiments. This is quite consistent with the values considered in [S6], who systematically explored the range
of U = 2.2 to 3.5eV, and found the MIT between 2.7 and 3eV at the lowest temperatures considered. The values
adopted in ref. [S3, S4] are U = 4eV and J = 0.68. These values are in fact higher than ours, however, Biermann
et al dedicate the last paragraph of their Letter to discuss their choice of the value of U and J. They mention that
smaller values, such as U = 2eV are also compatible with their findings. This is also consistent with our choice of
U =2.5eV.

MOTT INSULATOR IN THE DIMER LATTICE

The Mott insulating state is signaled by the divergence of the Self-Energy in the Mott gap. This divergence is
clearly visible on the real axis in figure S6(middle and bottom rows). In the left column we show the well known case
of a single-band Hubbard model (¢, = 0) with particle-hole symmetry. In this case the Self-Energy diverges at zero
frequency, and this is therefore visible in the Matsubara axis too. eg. in figure S2 above (the t; = 0 blue squares on
the top most right panel). In the case of the dimer lattice (¢, = 0.3), with two atoms per unit cell, the dimerization
splits the divergence of the Self-Energy into two poles, symmetric around zero frequency, as displayed on the right
right column on figure S6. In this case the divergence is no more visible on the Matsubara axis, and in particular
Smq1 goes smoothly to zero as w — 0.
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Figure S6. Local Spectral function(top Panel), Real Part of the Self-Energy(middle) and minus Imaginary part of the self-
energy. Left column corresponds to the known DMFT solution of the single band Hubbard model(t; = 0). The right column
corresponds to the dimer lattice at ¢; = 0.3. For both figures U = 3.5

The electronic structure of the dimer model

The dimer Hubbard Model is not a single band model despite being a single orbital per site system. Since it has
two sites (the dimer) in the unit cell, there are two bands. The two sites are related by symmetry thus the two bands
are degenerate in the atomic-site representation but are distinct in the bonding/antibonding basis. The physics of
the system is independent of the choice of the representation. To further clarify this point we show in figure S7 the
DOS from our model calculation from Fig. 3 of the manuscript in the atomic-site basis, along with the bonding and
antibonding DOS. The average of the latter two gives the former one (which has degeneracy 2).

ELECTRONIC STRUCTURE OF THE ATOMIC (ISOLATED DIMER) LIMIT OF THE LATTICE
MODEL

In order to identify the electronic structure of the insulator state of the model, we obtained the corresponding
quantity in the atomic limit, which can be analytically solved in the real frequency axis (the impurity model is an
isolated dimer). In this limit the lattice Green’s function is obtained as,

_ w—¢€ —t IRTEDY
Gutx [ - R S s1)

—tL w—e 212 211:| dimer

The electronic structure in this limit is shown in figure S8 at 2 different temperatures. The left panel is at inverse
temperature S = 100, where we see two highly dispersive bands along with two flatter ones. At high temperature
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Figure S7. Top panel shows the DOS in the atomic-site basis (from Fig.3 of manuscript) This DOS is doubly degenerate (the
same at each of the two atoms of the unit cell). Bottom panel show the DOS in the bonding (blue) and antibonding (green)
combinations, respectively. The average of the bottom two DOS gives the top one. Red arrow in bottom left panel indicates
the origin of th MIR peak which appears at w ~ 0.22eV (cf. fig. S9)

B = 5 more excitations are apparent as the first excited state of the dimer becomes thermally populated. This
dramatically enriches the electronic structure. Interestingly, these multiple excitations can be readily identified in the
actual model results shown in the Main Text.

OPTICAL CONDUCTIVITY

To calculate the optical conductivity one requires a geometrical definition of the lattice. As a common practice, one
turns to the hypercube in infinite dimensions to keep on with the exact limit of the DMFT approximation [S7]. Using
the Peierls ansatz to find the current operator and aligning our dimer along the, say, x direction in the hypercube one
finds the current operator along the x direction to be:

~ t . Srs N . - . At
Jo = Z e [Qam sin (kza) (b;wabkng + aLmaakI,U) +anty (bzzyaakz,g - aLz’aka,U)} (S2)

where e is the electron charge, 7 is the imaginary unit, a is the lattice unit cell length, and 1 € (0, a) is the separation
between atoms of the dimer. When one diagonalizes the lattice Hamiltonian one can see it in terms of quasiparticles
that form a bonding (b) and an anti-bonding (@) band, one uses then the operators bzz’o, (bk, o) to create (annihilate)



Figure S8. Lattice dispersion approximated with the isolated dimer Self-energy. Setup is (U = 2.15,¢, = 0.3). Left panel at
B = 100 only ground state excitations, right panel § = 5 presents excitations out of ground state and first excited states.

quasiparticles in the bonding band with momentum k, and spin ¢ and analogously the operators diwo, (G, o) for the

anti-bonding band. In infinite dimensions to keep the kinetic energy constant one has to scale the hopping amplitude

t— \/% [S1]. Then following the procedure established in [S7] we arrive to the expression

Tox(w) =

2me?a?t? (W) — flw +w)
e ¥ .

/dEp(E) [Aa(Ea w)Aa(an + w/) + Ab(E’w)Ab(va + w,)}

+ 2me*n’t3 /dw’f(w/) — W tw) X

w

/ dEp(E) [Ay(E, ) Aa(E,w + ') + Aa(E, w) Ap(E,w + )] (S3)

Where p(E) = % is the density of states of the hypercube, and Ay, A, are the spectral functions of the

bonding and anti-bonding bands. From the previous equation we find that, in general, both intra-band and inter-band
transitions are present. Notice that the latter are usually disregarded (e.g. Ref. [S8]). The two contributions are
weighted with different factors that depend on the specific geometry. For the sake of simplicity, we set those geometric
prefactors equal to unity, as they are expected to be of the same order (a ~n, t ~t; and d =3 ). In figure S9, we
plot for the metal and the insulator case the individual contribution of the interband transitions from the bonding to
antibonding bands(refer to figure S7) and of the intraband excitations.
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Figure S9. Decomposition of Optical conductivity contributions for metal and insulator. Blue dashed lines are the intraband
response, dotted green is the interband excitations, and red is the sum of the two. In the metal there is a MIR peak from
interband transitions(cf. figure S7)
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