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Abstract

We consider a nonlinear Schrödinger equation with critical frequency, (Pε) :
ε2 ∆v(x)− V(x) v(x) + |v(x)|p−1 v(x) = 0, x ∈ RN , with v(x) → 0 as |x| →
+∞, for the finite case as described by Byeon and Wang. Critical means that
the continuous non-negative potential V verifies Z = {V = 0} = {x0} 6= ∅,
and finite means, grossly speaking, that as one comes close to Z , the potential
decays like an positive even polynomial. As the Planck constant, ε, tends to
zero, the finite case has a characteristic semiclassical limit problem, (Pfin) :
∆u(x)− P(x) u(x) + |u(x)|p−1 u(x) = 0, x ∈ RN , with u(x)→ 0 as |x| → +∞,
which differs from the limit problems corresponding to the flat and infinite
cases. We prove the existence of an infinite number of solutions for both the
original and the limit problem, via a Ljusternik-Schnirelman scheme that uses
Krasnoselskii’s genus. Fixed a topological level k we prove that vk,ε, a solution
of (Pε), subconverges, up to a scaling, to a solution of (Pfin), and that vk,ε
exponentially decays out of Z .
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1. Introduction

A number of phenomena involving atomic and molecular collisions can
be analyzed with enough accuracy by using the asymptotic method known as
semiclassical mechanics. By letting the Planck constant tend to zero, one can
deal with quantum mechanics problems by transforming them into classical
mechanics objects that are mathematically easier to handle, [1].
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The time-dependent nonlinear Schrödinger equation,

ih̄ Ψt +
h̄2

2
∆Ψ−V0(x)Ψ + |Ψ|p−1Ψ = 0, (1)

is an appropriate tool to study the evolution of quantum systems like Bose-
Einstein condensates, [2], as well as to model the propagation of light in some
nonlinear optical materials, [3]. When h̄ is very small, a semi-classical state of
(1) is a standing-wave having the form Ψ(x, t) = v(x) exp (−iEt/h̄), where v
verifies

ε2∆v(x)−V(x) v(x) + |v(x)|p−1v(x) = 0, (2)

with
ε2 = h̄2/2, V(x) = V0(x)− E, E = inf(V0).

Let’s assume that

Z =
{

x ∈ RN / V(x) = inf(V)
}
6= ∅.

The case of inf(V) > 0, referred to as non-critical case, has a unique limit
problem,

∆u− u + |u|p−1u = 0, (3)

which is well-known and was used to study (2) in a number of works (see e.g.
[4], [5], [6], [7], [8], [9], [10]) by using the Lyapunov-Schmidt reduction or the
variational method.

The case of inf(V) < 0 is much less meaningful from the physics point of
view and there is no nice limit problem, [11]. When Z is bounded it’s not pos-
sible to find least energy solutions (mountain-pass solutions) but the problem
can still be treated as in [12] and [13], at least for the one-dimensional and
radial cases, respectively. In this context the case of inf(V) = 0 corresponds
to a critical frequency or energy and, as we shall comment below, the qualita-
tive behaviour of the solutions of (2) changes dramatically compared with its
non-critical counterpart.

In the mentioned works, [4], [5], [6], [7], [8], [9] and [10], several common
characteristics were found for the non-critical case inf(V) > 0:

(N1) v∗ε , a solution of (2), is bounded away from zero,

lim inf
ε→0

max
x
|vε(x)| > 0; (4)

(N2) v∗ε concentrates around some critical points of V;
(N3) v∗ε exponentially decays to zero away from such critical points, as ε→ 0;

and,
(N4) there is a unique limit problem, (3), and, therefore, a unique profile, as

ε→ 0.
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In this paper we continue the analytical study of the critical-frequency
problem {

ε2∆v(x)−V(x) v(x) + |v(x)|p−1v(x) = 0, x ∈ RN ,
v(x)→ 0, as |x| → +∞,

(Pε)

p > 1, that was initiated in [11] and continued in [14]. In [11] it’s proved the
existence of vε, a positive standing wave, a least energy solution, for which

(C1) property (4) stops holding, giving pass to the following behaviour:

lim
ε→0
‖vε‖L∞(RN) = 0, (5)

lim inf
ε→0

‖vε‖L∞(RN)

ε2/(p−1)
> 0; (6)

(C2) vε concentrates around an isolated component of Z = {V = 0};
(C3) vε exponentially decays out of the region Z ; and,
(C4) there is no unique limit problem and, consequently, neither is there a

unique profile; actually it depends on the behavior of V nearby Z .

Three cases were considered: flat case, where int(Z) is non-empty and bounded;
finite case, where Z is finite and V vanishes polynomially around it; and, in-
finite case, where Z is finite and V vanishes exponentially around it. The flat
and infinite cases have their limit problems defined on appropriate regions of
RN , meanwhile the limit problem for the finite case is defined on the whole
space RN . For the three cases it was also shown that

(C5) a scaling of the positive least-energy solution vε converges to u, a positive
least-energy solution of the corresponding limit problem;

(C6) the energy of vε converges to the energy of u.

The work [14] focuses on the flat case, assuming that the potential verifies:

(V1) V ∈ C(RN) is non-negative;
(V2) V(x)→ +∞, as |x| → +∞;

(Vflat) int(Z) 6= ∅ is connected and smooth.

Here the limit problem is{
∆u(x) + |u(x)|p−1u(x) = 0, x ∈ int(Z),
u(x) = 0, x ∈ ∂Z .

(Pflat)

The authors showed the existence of sequences of solutions, (vk,ε)k∈N and
(wk)k∈N, for (Pε) and (Pflat), respectively. Fixed k, they proved that, as ε → 0,
a solution vk,ε - not necessarily positive - behaves like the positive solution
found in [11], that is, (C1), (C2) and (C3) hold. Point (C6) also holds:

lim
ε→0

Iε(vk,ε) = I(wk),
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where Iε and I are standard functionals associated to (Pε) and (Pflat), respec-
tively. Point (C5) holds in the sense that a scaling of vk,ε converges, up to
subsequences, to uk a solution of (Pflat) sharing the energy level of wk:

I(wk) = I(uk).

Remark 1.1. Condition (V2) is more restrictive than that assumed in [11] were,
for some γ > 0, lim inf

|x|→+∞
V(x) > 2γ.

In short, in this paper we prove that the type of results of [14] also holds for
the finite case. The general framework which characterize the finite case, see
(V3) and (Vfin), is introduced in Section 2 in a precise way. These conditions
provoke a limit problem that, as was already mentioned, differs from those for
the flat and infinite cases, and creates its own interesting technical difficulties;
in particular, it’s required a control over the potential far away from Z , see
condition (PQ). The main results are detailed in Section 2:

• Theorem 2.8 states the existence of sequences (vk,ε)k∈N and (wk,ε)k∈N of
different solutions, respectively, for (Pε) and its limit problem{

∆u(x)− P(x)u(x) + |u(x)|p−1 · u(x) = 0, x ∈ RN ,
u(x)→ 0, as x → +∞.

(P)

This is dealt with in Section 3 by setting up a Ljusternik-Schnirelman
scheme for the functionals Jε and J associated to (Pε) and (P), respec-
tively.

• Theorem 2.9 states the convergence of ck,ε, the energy of a scaled ver-
sion of vk,ε, to ck, the energy of a scaled version of wk. In the context
of the Ljusternik-Schnirelman machinery, an index k of a critical value
represents the topological characteristic of the level set, as captured by
Krasnoselskii’s genus. Therefore Theorem 2.9 also says that the level sets
of the functionals Jε and J are equivalent. The proof of this property is
the topic of Section 4.

• Theorem 2.10 states the asymptotic profiles as ε→ 0, i.e., up to a scaling
and up to subsequences, vk,ε converges to uk, a solution of (P) which
shares the critical energy ck. The proof of this result is presented in
Section 5.

• In Theorem 2.11 is stated that, up to a scaling, vk,ε exponentially decays
out of Z . The proofs of this and other concentration phenomena are
presented in Section 5.

2. General framework and main results

2.1. Problem setting
As was mentioned, we consider the problem{

ε2∆v(x)−V(x) v(x) + |v(x)|p−1v(x) = 0, x ∈ RN ,
v(x)→ 0, as |x| → +∞,

(Pε)
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where {
2 < 1 + p < 2∗ = 2N/(N − 2), if N ≥ 3;
2 < 1 + p, if N = 1, 2,

(7)

and, in addition to properties (V1) and (V2), we shall assume that the potential
V(·) verifies a couple of conditions which replace (Vflat). One of them is

(V3) Z = {x ∈ RN : V(x) = 0} = {x0}.
Actually for simplicity, we shall assume that x0 = 0. The second condition,
(Vfin) below, differentiates our situation with that of the infinite case and
corresponds, grossly speaking, to V decaying at a polynomial rate as we get
close to Z . For its statement we need the concept of m-homogeneous positive
function, as given in [11].

(Vfin) for each x ∈ R, V (x) = P(x) + Q(x), where, for some m > 0, Q ∈
C(RN) is such that

lim
|x|→0

|x|−mQ(x) = 0, (8)

and P is a m-homogeneous positive function, i.e., P ∈ C(R) and

∀x ∈ R \ {0} : P(x) > 0;
∀x ∈ R, ∀t ≥ 0 : P(tx) = tmP(x). (9)

Given ε > 0 we shall denote

Vε(x) = ε−2m/(m+2) ·V
(

ε2/(m+2)x
)

= P(x) + ε−2m/(m+2) ·Q
(

ε2/(m+2)x
)

. (10)

Therefore, since V is continuous and non-negative, so is Vε.
The following easy result provides a control of P over Q and Vε around

zero that shall be useful.

Lemma 2.1. Let α, β, ε > 0.

1. There exists Rε,α,β > 0 such that

∀x ∈ B(0, Rε,α,β) : ε−2m/(m+2)
∣∣∣Q (ε2/(m+2)x

)∣∣∣ ≤ α

β
P(x). (11)

2. There exists Rε,α > 0 such that

∀x ∈ Bε,α : ε−2m/(m+2)
∣∣∣Q (ε2/(m+2)x

)∣∣∣ ≤ αP(x) (12)

as well as

∀x ∈ Bε,α : (1− α)P(x) ≤ Vε(x) ≤ (1 + α)P(x), (13)

where Bε,α = B(0, Rε,α). It also holds

lim
ε→0

Rε,α = +∞.
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Proof. 1. By (8), we have that

∀h > 0, ∃δ(h) > 0 : |x| < δ(h) ⇒ |x|−m |Q(x)| < h. (14)

Then we put δα,β = min {δ (h1) , δ (h2)}, where

h1 =
α

β
min
|z|=1

P(z) > 0, h2 =
α

β
max
|z|=1

P(z) > 0. (15)

Let’s define
Rα,ε,β = δα,β · ε−2/(m+2). (16)

Let x ∈ B(0, Rα,ε,β) \ {0}. Since
∣∣∣ε2/(m+2)x

∣∣∣ < δα,β, point (14) implies that

−|x|mh2 < ε−2m/(m+2) Q
(

ε2/(m+2)x
)
< |x|mh1,

so that, by (9) and (15) and taking z = x/|x|, we get

− α

β
P(x) ≤ ε−2m/(m+2)Q

(
ε2/(m+2)x

)
≤ α

β
P(x). (17)

By the continuity of P and Q, it’s clear that the last relation also holds
for x = 0. Since x was chosen arbitrarily, we have proved (11).

2. In (16) we put
δα = δα,1, Rε,α = Rε,α,1, (18)

so that (17) and (10) provide (13).

Remark 2.2. Observe that by (16), point (13) in Lemma 2.1 can be rewritten as

∀α > 0, ∃δα > 0, ∀x ∈ B(0, δα) : (1− α)P(x) ≤ V(x) ≤ (1 + α)P(x).

The last condition, (PQ), which we immediately introduce, is a technical
one and shall be used in Section 4; it requieres the function Q to be controled
by P far away from zero.

(PQ) Q is non-negative and there exist ρ, η > 0 such that

∀x ∈ RN \ B(0, ρ) : Q(x) ≤ η P(x),

which is equivalent to

∀ε > 0, ∀|x| ≥ ε−2/(m+2)ρ : ε−2m/(m+2) Q(ε2/(m+2)x) ≤ η P(x). (19)

Remark 2.3. The following problems are closely related to (Pε):{
∆w(x)−Vε(x)w(x) + |w(x)|p−1w(x) = 0, x ∈ RN ,
w(x)→ 0, as |x| → +∞,

(P′ε)
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{
∆ŵ(x)−Vε(x) ŵ(x) + 2Λ |ŵ(x)|p−1ŵ(x) = 0, x ∈ RN ,
ŵ(x)→ 0, as |x| → +∞,

(P̂ε)

where Λ = ‖ŵ‖2
ε /2 and ‖·‖ε is given in (22) below. In fact, if ŵ is a solution

of (P̂ε), then
w(x) = (2Λ)1/(p−1)ŵ(x), x ∈ RN ,

is a solution of (P′ε), and

v(x) = ε2m/(m+2)(p−1) w
(

ε−2/(m+2) x
)

=
[
2Λ · ε2m/(m+2)

]1/(p−1)
ŵ
(

ε−2/(m+2) x
)

, x ∈ RN , (20)

is a solution of (Pε).

Remark 2.4. Under conditions (V1), (V2), (V3) and (Vfin) the limit problem
of (Pε) is{

∆w(x)− P(x)w(x) + |w(x)|p−1 · w(x) = 0, x ∈ RN ,
w(x)→ 0, as x → +∞.

(Pfin)

Connected to (Pfin) is the problem{
∆ŵ(x)− P(x)ŵ(x) + 2Γ |ŵ(x)|p−1 ŵ(x), x ∈ RN ,

ŵ(x)→ 0, as |x| → +∞,
(P̂fin)

where Γ = ‖û‖2
P /2 and ‖·‖P is given in (23) below. In fact, if ŵ is a solution

of (P̂fin), then
w(x) = (2Γ)1/(p−1)ŵ(x), x ∈ RN , (21)

is a solution of (Pfin).

2.2. Main results
We shall look for solutions of (Pε) and (Pfin) in the Hilbert spaces Hε and

HP, defined as the completions of C∞
0 (RN) in the norms ‖·‖ε and ‖·‖P in-

duced, respectively, by the inner products

(u, v)ε =
∫

RN
[∇u(x) · ∇v(x) + Vε(x)u(x)v(x)] dx,

(u, v)P =
∫

RN
[∇u(x) · ∇v(x) + P(x)u(x)v(x)] dx.

Remark 2.5. The non-negativity of Q implies that ‖u‖P ≤ ‖u‖ε, for all u ∈ Hε,
so that the embedding Hε ⊆ HP is continuous.

The following result states that a weighted Sobolev space such that the
weight-function verifies (V1) and (V2) is compactly contained in a range of
Lq-spaces.
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Theorem 2.6. Assume that W ∈ C(RN) is non-negative and such that W(x) →
+∞ as |x| → +∞. Let HW be the Hilbert space that results of completing C∞

0 (RN)
whenever is equipped with the interior product given by

(v, w)W =
∫

RN
[∇v(x)∇w(x) + W(x) v(x)w(x)] dx.

Then, the embedding
HW ⊆ Lq(RN),

is compact for all q ∈ [2, r[, where r = 2∗ if N ≥ 3, and r = +∞ if N = 1, 2. For
q = r the embedding is continuous.

Theorem 2.6 is obtained by an application of [15, Cor.4.26 & 4.27], by compen-
sating the non-boundedness of the domain with the property of U exploding
at infinity.

To state our main results we also need to define functionals associated to
the problems (Pε) and (Pfin). Let’s consider Jε : Mε ⊆ Hε → R and J : M ⊆
HP → R given by

Jε(u) =
1
2
‖u‖2

ε =
1
2

∫
RN

[
|∇u(x)|2 + Vε(x)|u(x)|2

]
dx, (22)

J(u) =
1
2
‖u‖2

P =
1
2

∫
RN

[
|∇u(x)|2 + P(x)|u(x)|2

]
dx, (23)

where we are considering the Nehari manifolds

Mε =
{

u ∈ Hε / ‖u‖Lp+1(RN) = 1
}

,

M =
{

u ∈ HP / ‖u‖Lp+1(RN) = 1
}

.

Remark 2.7. Let’s observe that for u ∈ Hε,

‖u‖2
ε = ‖u‖2

P + Θε(u),

where
Θε(u) = ε−2m/(m+2)

∫
RN

Q
(

ε2/(m+2)x
)
· |u(x)|2 dx.

Lemma 2.1 implies that for all α, ε > 0 and all u ∈ Hε,

ε−2m/(m+2)
∫

Bε,α
Q
(

ε2/(m+2)x
)
· |u(x)|2 dx ≤ α

∫
Bε,α

P(x)|u(x)|2dx

≤ α
∫

RN
P(x)|u(x)|2dx,

so that for all α > 0 and u ∈ Hε,

lim
ε→0

Θε(u) = lim
ε→0

ε−2m/(m+2)
∫

Bε,α
Q
(

ε2/(m+2)x
)
· |u(x)|2 dx

≤ α
∫

RN
P(x)|u(x)|2dx.
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Therefore, it also holds, for α > 0 and u ∈ HP,

(1− α) ‖u‖2
P ≤ lim

ε→0
‖u‖2

ε ≤ (1 + α) ‖u‖2
P . (24)

Let’s assume that (V1), (V2), (V3), (Vfin), (PQ) and (7) hold. Our first main
result is a multiplicity one.

Theorem 2.8. The following points are true.

i) Let ε > 0. The functional Jε has a sequence of different critical points (ŵk,ε)k∈N ⊆
Mε. For each k ∈N the function given by

vk,ε(x) =
[
2ck,ε · ε2m/(m+2)

]1/(p−1)
ŵk,ε

(
ε−2/(m+2) x

)
, x ∈ RN , (25)

where ck,ε = Jε(ŵk,ε), is a solution of (Pε).
ii) The functional J has a sequence of different critical points (ŵk)k∈N ⊆M. For

each k ∈N the function given by

wk(x) = (2ck)
1/(p−1) ŵk(x),

where ck = J(ŵk), is a solution of (Pfin).

To prove Theorem 2.8 we shall use a Ljusternik-Schnirelman scheme so
that, in this context, the index k of a critical value represents the topological
characteristic of the level set, as captured by Krasnoselskii’s genus. Therefore,
the convergence of energies, which we are going to write, means that the
critical values of J and Jε are topologically equivalent.

Theorem 2.9. Let k ∈N. Then

lim
ε→0

ck,ε = ck.

To state the following result, let’s recall the concept of subconvergence
introduced in [11]. A family of functions ( fε)ε>0 is said to subconverge in a
space X, as ε → 0, iff from every sequence (εn)n∈N converging to zero, it is

possible to extract a subsequence (εni )i∈N such that
(

fεni

)
i∈N

converges in X,
as i→ ∞.

Theorem 2.10. Let k ∈ N. As ε → 0, (wk,ε)ε>0 subconverges in HP to some
uk ∈ M which is a solution of (Pfin) and verifies

J(ûk) = ck, ûk = (2ck)
1/(1−p)uk.

Finally we have the result concernig the exponential decay out of Z .

Theorem 2.11. Let µ, δ, c > 0. Then there exist ε̊, C > 0 such that for all ε ∈]0, ε̊[

and |x| > µ + δ ε−2/(m+2) it holds

|wk,ε(x)| ≤ C · exp
(
−c ε−m/(m+2)

[
|x| − µ− δ ε−2/(m+2)

])
.
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To finish this section let’s mention that in the path of proving Theorem
2.11, for each k ∈N, we shall get the properties

lim
ε→0

∥∥vk,ε
∥∥

L∞(RN) = 0,

lim inf
ε→0

∥∥vk,ε
∥∥

L∞(RN)

ε2m/[(p−1)(m+2)]
≥ ηk > 0,

which are analogous to (5) and (6).

3. Multiplicity

In this section we show how a Ljusternik-Schnirelman scheme provides
Theorem 2.8 in a very direct way. Given E, a Banach space, we write

ΣE =
{

A ⊆ E : A = A, A = −A, 0 /∈ A
}

.

The genus of A ∈ ΣE, denoted by γ(A) is the least natural number k for which
there exists a continuous odd function f : A → Rk\{0}, see e.g. [16] and [9]).
If there is not such k, then γ(A) = +∞, and, by definition, γ(∅) = 0.

Remark 3.1. It’s important to keep in mind that if A ∈ ΣE, then A is closed in
the ‖ · ‖E-norm.

Krasnoselskii’s genus generalizes the notion of dimension: γ
(
Sm−1) = m

and γ
(
S∞

Y
)
= +∞, where Sm−1 is the unit-sphere in Rm and S∞

Y is the unit-
sphere in an infinite-dimensional Banach space Y. In the following proposi-
tion (see e.g. [16]) the basic properties of γ are stated.

Proposition 3.2. Let A, B ∈ ΣE. Then

x 6= 0 ⇒ γ({x} ∪ {−x}) = 1,
f ∈ C(A, B) odd ⇒ γ(A) ≤ γ(B),

A ⊆ B ⇒ γ(A) ≤ γ(B), (26)
γ(A ∪ B) ≤ γ(A) + γ(B),

A compact ⇒ γ(A) < +∞.

Remark 3.3. Let M be a C1 manifold in X, a Banach space, and φ ∈ C1(M).
Let’s recall that (yn)n∈N ⊆ M is a Palais-Smale (PS) sequence iff (φ(yn))n∈N ⊆
R is bounded, and

∥∥φ′(yn)
∥∥

X∗ → 0, as n → +∞. We say that (M, φ) verifies
(PS) condition if any (PS) sequence has a converging subsequence.

The following theorem, [16], is our main tool.

Theorem 3.4. Let M ∈ ΣE be a C1 manifold of E and let f ∈ C1(E) be even.
Suppose that (M, f ) satisfy the Palais-Smale (PS) condition and let

Ck( f ) = inf
A∈Ak(M)

max
u∈A

f (u),

Ak(M) = {A ∈ ΣE ∩M : γ(A) ≥ k} .

Let’s denote by Kc the set of critical points of f corresponding to the value c. Then
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a) γ(M) ≤ ∑
c∈R

γ(Kc) so that f has at least γ(M) pairs of critical points on M.

b) If Ck( f ) ∈ R, then Ck( f ) is a critical value for f . Moreover, if

c = Ck( f ) = · · · = Ck+m( f ),

then γ (Kc) ≥ m + 1. In particular, if m > 1, then Kc contains infinitely many
elements.

The potentials P, V and Vε verify the conditions of Theorem 2.6 so that, in
particular, the result holds for HP and Hε = HVε . With this ingredient, it is
proved that the functionals J and Jε are of class C1 and satisfy the Palais-Smale
condition on M and Mε, respectively. Then, in the context of Theorem 3.4
and having in mind Remark 3.1, we write, for k ∈N and ε > 0,

Σε = ΣHε =
{

A ⊆ Hε / A = A, A = −A, 0 /∈ A
}

,

Σ = ΣHP =
{

A ⊆ HP / A = A, A = −A, 0 /∈ A
}

,

Ak,ε = Ak(Mε) =
{

A ∈ Σε / γ(A) ≥ k ∧ ∀u ∈ A : ‖u‖Lp+1(RN) = 1
}

,

Ak = Ak(M) =
{

A ∈ Σ / γ(A) ≥ k ∧ ∀u ∈ A : ‖u‖Lp+1(RN) = 1
}

.

The k-th critical values are achieved:

ck,ε = Ck(Jε) = inf
A∈Ak,ε

max
u∈A

Jε(u) = Jε(ŵk,ε), (27)

ck = Ck(J) = inf
A∈Ak

max
u∈A

J(u) = J(ŵk). (28)

Remark 3.5. In the context just presented we have used the fact that γ(M) =
γ(Mε) = +∞. The assertion that vk,ε and wk are solutions of (Pε) and (Pfin),
in Theorem 2.8, comes by the changes of variables (20) and (21), respectively.
Also observe that in the proof of Theorem 2.8 we didn’t use condition (PQ).

4. Convergence of energies

The proof of Theorem 2.9,

∀k ∈N : lim
ε→0

ck,ε = ck, (29)

is given by Propositions 4.2 and 4.3, below.

Lemma 4.1. Let k ∈N and α, ε > 0. Then, HP = Hε and the norms ‖·‖ε and ‖·‖P
are equivalent.

Proof. To ease the proof let’s introduce the following notation for annular re-
gions of RN . For ε > 0 and µ2 > µ1 > 0,

Gµ1,µ2 = B(0, µ2) \ B(0, µ1), Gε
µ1,µ2

= B(0, µ2 · ε−2/m+2) \ B(0, µ1 · ε−2/m+2).
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Let’s assume that δα < ρ, where δα is given in (18). The case of ρ ≤ δα is
easier so that it’s omitted. Let u ∈ HP. Then, by (12) and (19), it follows that

Θε(u) = ε−2m/(m+2)
∫

RN
Q
(

ε2/(m+2)x
)
· |u(x)|2 dx

= ε−2m/(m+2)

[∫
Bε,α
· · ·+

∫
Gε

δα ,ρ

· · ·+
∫

RN\B(0,ρ ε−2/(m+2))
. . .

]
≤ α

∫
Bε,α

P(x)|u(x)|2dx + η
∫

RN\B(0,ρ ε−2/(m+2))
P(x)|u(x)|2dx +

+ε−2m/(m+2) ‖Q‖L∞(Gδα ,ρ)
·
∫

Gε
δα ,ρ

|u(x)|2dx

≤ τ
∫

RN
P(x) |u(x)|2 dx, (30)

where

τ = max

α, η,
‖Q‖L∞(Gδα ,ρ)

inf
y∈Gδα ,ρ

P(y)

 ,

and we have used the relation

0 < inf
y∈Gε

δα ,ρ

P(y) = ε−2m/(m+2) inf
y∈Gδα ,ρ

P(y),

which directly comes from the homegeneity of P. Then, by (30), we get

‖u‖2
ε = ‖u‖2

P + Θε(u)

≤ ‖u‖2
P + τ

∫
RN

P(x) |u(x)|2 dx

≤ (1 + τ) ‖u‖2
P ,

which shows that the immersion HP ⊆ Hε is continuous as u was chosen
arbitrarily. The last together with Remark 2.5 let us conclude the proof.

Proposition 4.2. Let k ∈N and ε > 0. Then, it holds

ck ≤ ck,ε.

Proof. By Lemma 4.1, a set W ⊆ HP open (closed) in the ‖·‖ε-norm is also
open (closed) in the ‖·‖P-sense. Then, having in mind Remarks 2.5 and 3.1 as
well as point (26), it follows that Ak,ε ⊆ Ak and

ck = inf
A∈Ak

max
u∈A

J(u)

≤ inf
A∈Ak,ε

max
u∈A

J(u)

≤ inf
A∈Ak,ε

max
u∈A

Jε(u)

= ck,ε.
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Proposition 4.3. Let k ∈N and σ > 0. Then

lim sup
ε→0

ck,ε ≤ ck + σ.

Proof. Let ε > 0. By Lemma 4.1, a set W ⊆ HP = Hε open (closed) in the ‖·‖P-
norm is also open (closed) in the ‖·‖ε-sense. Then it follows that Ak ⊆ Ak,ε
and, for all Ã ∈ Ak,

ck,ε = inf
A∈Ak,ε

max
u∈A

Jε(u)

≤ inf
A∈Ak

max
u∈A

Jε(u)

≤ max
u∈Ã

Jε(u). (31)

Now we choose Aσ ∈ Ak such that

max
u∈Aσ

J(u) ≤ inf
A∈Ak

max
u∈A

J(u) +
σ

2
= ck +

σ

2
. (32)

Let’s pick

α =
σ/2

ck + σ/2
> 0. (33)

Then, by (24), (31), (32) and (33), we get

lim sup
ε→0

ck,ε ≤ lim sup
ε→0

max
u∈Aσ

Jε(u)

≤ max
u∈Aσ

lim sup
ε→0

Jε(u)

≤ (1 + α) max
u∈Aσ

J(u)

≤
(

1 +
σ/2

ck + σ/2

)
· (ck + σ/2)

= ck + σ, (34)

where we have used the relation

lim sup
ε→0

max
u∈Aσ

Jε(u) ≤ max
u∈Aσ

lim sup
ε→0

Jε(u). (35)

To show (35) let’s pick (Mr)r∈N ⊆ R such that

∀r ∈N : max
u∈Aσ

lim sup
ε→0

Jε(u) < Mr,

and
lim

r→+∞
Mr = max

u∈Aσ

lim sup
ε→0

Jε(u).

Let’s fix r ∈N. Then, for all u ∈ Aσ,

lim sup
ε→0

Jε(u) < Mr.
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Therefore, for all u ∈ Aσ there exists εu > 0 such that

∀ε ∈]0, εu[: Jε(u) < Mr.

By a contradiction argument we prove that εσ = inf
u∈Aσ

εu > 0. Then

∀ε ∈]0, εσ[, ∀u ∈ Aσ : Jε(u) < Mr,

and
∀ε ∈]0, εσ[: lim sup

ε→0
max
u∈Aσ

Jε(u) ≤ Mr,

whence we obtain (35) by letting r → +∞.

5. Asymptotic profiles and concentration phenomena

Let’s prove the asymptotic profiles stated in Theorem 2.10, that is, for a
fixed k ∈ N, as ε → 0, (wk,ε)ε>0 subconverges in HP to some uk ∈ M which
is a solution of (Pfin) and verifies

J(ûk) = ck,

uk = (2ck)
1/(1−p)ûk. (36)

Proof of Theorem 2.10. 1. Let us prove that wk,ε weakly subconverges to
some uk ∈ HP. Let δ > 0. By (29) there is εδ > 0 such that

∀ε ∈]0, εδ[: ck,ε ≤ ck + δ, (37)

whence,

∀ε ∈]0, εδ[: ‖ŵk,ε‖2
P ≤ ‖ŵk,ε‖2

ε = 2ck,ε ≤ 2(ck + δ),

so that (ŵk,ε)ε∈(0,εδ)
is bounded in HP. By [15, Th.3.18], ŵk,ε weakly

subconverges to some ûk ∈ HP, as ε → 0. By Remarks 2.3 and 2.4 and
point (29) we have that wk,ε = (2ck)

1/(p−1)ŵk,ε weakly subconverges to
uk, given by (36), as ε→ 0.

2. Let us prove that uk is a weak solution of (Pfin). Point 1 implies that ŵk,ε
subconverges to ûk point-wise almost everywhere. From Theorem 2.8
and Remark 2.3, we have for φ ∈ C∞

0 (RN) that∫
RN

(∇ŵk,ε · ∇φ + Vεŵk,εφ dx) = 2ck,ε

∫
RN
|ŵk,ε|p−1ŵk,εφ dx. (38)

Since Q is o(hm), it immediately follows, for all φ ∈ C∞
0 (RN), that

lim
ε→0

∫
RN

ε
−2m
m+2 Q

(
ε

2
m+2 x

)
ŵk,ε(x)φ(x) dx =

= lim
ε→0

∫
supp(φ)

ε
−2m
m+2 Q

(
ε

2
m+2 x

)
ŵk,ε(x)φ(x) dx = 0. (39)
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Therefore, by passing to the limit when ε → 0 in (38), we have by (29)
and (39), that∫

RN
(∇ûk · ∇φ + Pûkφ dx) = 2ck

∫
RN
|ûk|p−1ûkφ dx, (40)

for any φ ∈ C∞
0 (RN), i.e., uk is a weak solution of (Pfin). By a density

argument, (40) holds for all φ ∈ HP. Therefore, by taking φ = ûk in (40),
we get that J(ûk) = ck.

3. By Proposition 4.3 and the non-negativeness of Q, we get that

lim sup
ε→0

‖ŵk,ε‖2
P ≤ lim sup

ε→0
‖ŵk,ε‖2

ε ≤ 2 lim sup
ε→0

ck,ε

≤ 2 ck = ‖ûk‖2
P. (41)

Since HP is a Hilbert space, it is also a uniformly convex Banach space.
This, together with (41) and point 1 provide, by [15, Prop.3.32], the sub-
convergence of wk,ε to uk in the norm HP, as ε→ 0.

For the last part of this paper, devoted to the proof of Theorem 2.11, let’s
strengthen the assumption (V1) by requiring that

(V1η) For some η > 0, V ∈ Cη(RN).

Then, by using standard regularity arguments, it follows that vk,ε and wk be-
long to C2,η(RN) and that they are classical solutions of (Pε) and (Pfin), respec-
tively.

We shall use the following result.

Proposition 5.1. Let D be an open and connected subset of RN . If w ∈ H1
0(D) is a

classical subsolution of the elliptic problem
∆w− f (w) ≥ 0, in D,
w > 0, in D,
w = 0, on ∂D,

where N ≥ 3, p + 1 ∈]2, 2∗[ and for all t ∈ R+

t f (t) ≤ ctp+1,

for some c > 0, there exists C = C(c, p, N) > 0 such that

‖w‖L∞(D) ≤ C‖w‖4/[N+2−p(N−2)]
L2∗ (D)

.

A proof of Proposition 5.1 is provided in [13] under the conditions that A is
smooth and bounded. Nevertheless, as it’s mentioned in [14], the proof can
be modified to release the constraints of boundedness and regularity of the
domain.
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Proposition 5.2. Let k ∈N, δ > 0 and εδ > 0 as in (37). Then there exists Kδ > 0
such that

∀ε ∈ (0, εδ) :
∥∥wk,ε

∥∥
L∞(RN) ≤ Kδ. (42)

Proof. Let’s assume that N ≥ 3 as the cases N = 1, 2 are easier. Let ε ∈ (0, εδ)
and D+

ε a connected component of W+
k,ε = {x ∈ RN / wk,ε > 0}. Then, since

wk,ε is a solution of (P′ε), we have that
∆wk,ε + wp

k,ε ≥ 0, in D+
ε ,

wk,ε > 0, in D+
ε ,

wk,ε = 0, on ∂D+
ε .

Therefore, by Proposition 5.1, we get

‖wk,ε‖L∞(D+
ε ) ≤ C‖wk,ε‖

4/[N+2−p(N−2)]
L2∗ (D+

ε )
. (43)

On the other hand, by Theorem 2.6 and (37), we have that

1
2

∥∥ŵk,ε
∥∥2

L2∗(D+
ε )
≤
∥∥ŵk,ε

∥∥2
L2∗(RN) ≤

K1

2
‖ŵk,ε‖2

ε = K1ck,ε ≤ K1(ck + δ).

From this and (43), there is Kδ > 0 such that

∀ε ∈ (0, εδ) :
∥∥wk,ε

∥∥
L∞
(

W+
k,ε

) ≤ Kδ,

because D+
ε was chosen arbitrarily. The same result can be worked out for

W−k,ε = {x ∈ RN / wk,ε < 0} .

Remark 5.3. By the definition of vk,ε, (25), we see that Proposition 5.2 imme-
diately implies that

lim
ε→0

∥∥vk,ε
∥∥

L∞(RN) = 0.

Moreover, since for all k ∈ N and all ε > 0,
∥∥ŵk,ε

∥∥
Lp+1(RN) = 1, it’s possible

to find ηk > 0 such that

lim inf
ε→0

∥∥vk,ε
∥∥

L∞(RN)

ε2m/[(p−1)(m+2)]
≥ ηk > 0.

Remark 5.4. To prove Theorem 2.11, the exponential decay of wk,ε, out of Z
we shall use the following comparison result. Given a, b, d > 0 and D ⊆ RN

bounded, let U be a positive solution of the problem
∆U − 2 b U = 0, x ∈ RN \ Dd,
U = a, x ∈ ∂Dd,

lim
|x|→+∞

U(x) = 0.
(44)
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Then U verifies

U(x) ≤ C · exp{−b · dist(x, Dd)}, x ∈ RN \ Dd,

where C = C(a, d) and

Dd = {x ∈ RN / dist(x, D) < d}.

Let’s recall the statement of Theorem 2.11. Given µ, δ, c > 0, there are
values ε̊, C > 0 such that for all ε ∈]0, ε̊[ and |x| > µ + δ ε−2/(m+2) it holds

|wk,ε(x)| ≤ C · exp
(
−c ε−m/(m+2)

[
|x| − µ− δ ε−2/(m+2)

])
.

Proof of Theorem 2.11. Let us consider εδ > 0 as in (37) and Kδ as in Proposi-
tion 5.2. Let’s pick ε̊ ∈]0, εδ[ such that

Pδ = inf
|x|>δ

P(x) >
(

Kδ + 2 c ε̊
−m
m+2

)
ε̊

2m
m+2 . (45)

Let ε ∈]0, ε̊[. By (45) and the homogeneity of P it holds

Pδ,ε = inf{P(x) : |x| > δ ε−2/(m+2)} = inf
|y|>δ

P
(

ε−2/(m+2)y
)

= ε−2m/(m+2) inf
|y|>δ

P(y) = ε−2m/(m+2)Pδ

> Kδ + 2 c ε−m/(m+2)

From this and Proposition 5.2, we have, for |x| > δε−2/(m+2), that

Tk,ε(x) = Vε(x)− |wk,ε|p−1

≥ P(x)− |wk,ε|p−1

≥ Pδ,ε − |wk,ε|p−1

≥ Pδ,ε − Kδ

> 2 c ε−m/(m+2). (46)

Let us now consider U, a positive solution of (44), with

a = Kδ, b = c ε−m/(m+2), d = δε−2/(m+2),

and, for some µ > 0

D = B(0, µ), Dd = B(0, µ + δε−2/(m+2)),

i.e., 
∆U − 2c ε−m/(m+2)U = 0, |x| > µ + δε−2/(m+2),
U = Kδ, |x| = µ + δε−2/(m+2),

lim
|x|→+∞

U(x) = 0.
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Thus, by (46), 
∆U − Tk,ε(x)U ≤ 0, |x| > µ + δε−2/(m+2),
U = Kδ, |x| = µ + δε−2/(m+2),

lim
|x|→+∞

U(x) = 0.
(47)

Since wk,ε solves (P′ε), from (47) and (42) it holds
∆(U − wk,ε)− Tk,ε(x)(U − wk,ε) ≤ 0, |x| > µ + δε−2/(m+2),
U − wk,ε > 0, |x| = µ + δε−2/(m+2),

lim
|x|→+∞

(U(x)− wk,ε) = 0.
(48)

From (48), we get by the weak maximum principle (see e.g. [17]),

wk,ε(x) ≤ U(x), |x| > µ + δε−2/(m+2).

In an analogous way it is proved that

−U(x) ≤ −wk,ε(x), |x| > µ + δε−2/(m+2).

Therefore, by Remark 5.4, there exists C = C(δ, ε) > 0 such that, for |x| >
µ + δ ε−2/(m+2), it holds

|wk,ε(x)| < U(x) ≤ C · exp
(
−c ε−m/(m+2)

[
|x| − µ− δ ε−2/(m+2)

])
.

We conclude by the arbitrariness of ε.
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