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Abstract. We consider the integro-differential problem (P):

−(a + b(∫
RN
∣∇u∣pdx)

p−1

)∆pu + V (x)∣u∣
p−2u = f(x,u), x ∈ RN ,

with ∣u(x)∣Ð→ 0, as ∣x∣Ð→ +∞. We assume that a, b > 0, N ≥ 2, 1 < p <

N < +∞, V ∈ C(RN
) with inf(V ) > 0, and that f ∶ RN

×RÐ→ R verifies
conditions introduced by Duan and Huang. We prove the existence of
a non-trivial ground state solution and, by a Ljusternik-Schnirelman
scheme, the existence of infinitely many non-trivial solutions.
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1. Introduction

We consider the following Schrödinger-Kirchhoff-type integro-differential prob-
lem
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−(a + b(∫
RN
∣∇u∣pdx)

p−1
)∆pu + V (x)∣u∣p−2u = f(x,u), x ∈ RN ,

∣u(x)∣Ð→ 0, as ∣x∣Ð→ +∞,
(P)

where a, b > 0, 1 < p < N < +∞ and N ≥ 2.
Non-local problems like (P) with p = 2 have been used to model physical

and biological phenomena where the density u(x) at the point x is affected
by the average of u on its whole domain (see e.g. [1], [7], [10] and [16] and the
references therein). In this context, problem (P) considers a more complicated
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situation where the nonlinear diffusion process is also governed by the p-
Laplace operator,

∆pu = div(∣∇u∣p−2∇u),
which coincides with the Laplace operator ∆ when p = 2.

Equations containing the p-Laplace operator, p > 2, are helpful to study
drift-diffusion models for the electro-thermal behavior of organic semicon-
ductor devices (see e.g. [8] and [9] and the references therein).

Problem (P) is also a generalization of the stationary version of both

a) the nonlinear Schrödinger equation,

ih̵ ut +
h̵2

2
∆u − V0(x)u + f(x,u) = 0,

which appears in natural way e.g. when studying the evolution of Bose-
Einstein condensates (see e.g.[13]) and the propagation of light in non-
linear optical materials, (see e.g. [14] and [6]), and

b) the Kirchhoff equation, [11],

utt − (a + b(∫
RN
∣∇u∣2dx))∆u = f(x,u),

which is a wave equation that considers the lenght changes of a string
that are produced by transverse vibrations.

Grossly speaking, in this paper we extend, for p > 1, the results obtained
in [7] for the case p = 2, that is, we prove - see Theorems 1.1 and 1.2 below
- the existence of a non-trivial ground state solution for (P) as well as the
existence of infinitely many solutions.

We assume that that the potential V ∶ RN Ð→ R verifies

(V) V ∈ C(RN) and θ = inf
x∈RN

V (x) > 0;

and that the nonlinear function f ∶ RN ×RÐ→ R verifies

(F1) there are positive functions β1 ∈ Lp/(p−r1)(RN) and β2 ∈ Lp/(p−r2)(RN),
such that

∀(x, t) ∈ RN ×R ∶ ∣f(x, t)∣ ≤ r1β1(x)∣t∣r1−1 + r2β2(x)∣t∣r2−1,

for some 1 < r1 < r2 < p; and,
(F2) there exist Ω ⊆ RN open bounded and constants δ, η > 0 and r3 ∈]1, p[

such that

∀(x, t) ∈ Ω × [−δ, δ] ∶ F (x, t) ≥ η∣t∣r3 ,

where F (x, t) = ∫
t

0
f(x, s)ds.

Let’s state our main results.

Theorem 1.1. Assume that conditions (V), (F1) and (F2) hold. Then problem
(P) has a non-trivial ground state solution.
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Let’s observe that condition (F1) implies that (P) has the trivial solu-
tion, u ≡ 0. However, the trivial solution is not a ground state solution, i.e., a
weak solution of (P) that minimizes the associated energy functional, given
in (2.3) as

I(u) = 1

p
∫
RN
(a∣∇u∣p + V (x)∣u∣p)dx+ b

p2
(∫

RN
∣∇u∣pdx)

p

−∫
RN

F (x,u(x))dx,

where u varies on Ep, the space of functions u ∈W1,p(RN) such that V 1/p ⋅u ∈
Lp(RN).

In the statement of our second main result, a multiplicity one, we shall
use the following condition.

(F3) f is odd in the second variable, i.e.,

∀(x, t) ∈ RN ×R ∶ f(x, t) = −f(x,−t).

Theorem 1.2. Assume the conditions (V), (F1), (F2) and (F3). Then problem
(P) has infinitely many non-trivial solutions.

As it was already mentioned, Theorems 1.1 and 1.2 extend, for a general
value p > 1, the results obtained by Duan and Huang, [7], for the case p = 2. We
prove Theorem 1.1 by a direct method of the calculus of variations, Theorem
3.1. We prove Theorem 1.2 by a Ljusternik-Schnirelman scheme for even
functionals, see Theorem 4.2. To this purpose, we need to show that the
functional associated to (P) verifies the Palais-Smale condition; and, for this,
the main problem yields in the fact that the Sobolev space W1,p(RN) is not
compactly embedded into the Lebesgue spaces Lα(RN), α ∈ [p, pN/(N − p)[.
To handle this difficulty, it is usual to require a coercivity property on the
potential V like

V (x)Ð→ +∞, as ∣x∣Ð→ +∞, (1.1)

or the weaker one

∀K > 0 ∶ meas (V −1(] −∞,K])) < +∞, (1.2)

because this kind of conditions imply that Ep is compactly contained in
Lα(RN). We produce the proofs of our results without relying on (1.1), (1.2)
or on any other coercitivity condition.

Another situation appears when we deal with the Palais-Smale condi-
tion. In [7] the authors worked on the Hilbert space, E2, which is automaticaly
reflexive and, therefore, allows to extract a weakly converging subsequence
from any bounded sequence. In our case we prove that the Banach space Ep

is actually reflexive (see Lemma 2.2 below).

Remark 1.3. As it will be seen in our arguments, condition (F1) can be
immediately replaced by the following one.

(F1’) For each k = 1, ..., l, there is a positive function βk ∈ Lp/(p−rk)(RN) such
that

∀(x, t) ∈ RN ×R ∶ ∣f(x, t)∣ ≤
l

∑
k=1

rkβk(x)∣t∣rk−1,

for some 1 < r1 < r2 < ... < rl < p.
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It’s also clear that the following condition implies (F2).

(F2’) There exist a bounded open set Ω ⊆ RN and constants δ, η > 0 and
r3 ∈]1, p[ such that

∀(x, t) ∈ Ω × [−δ, δ] ∶ f(x, t) ⋅ t ≥ r3η∣t∣r3−1.

The paper is organized in the following way. In Section 2 we introduce
the functional setting and some preliminaries. In Sections 3 and 4 we prove
Theorems 1.1 and 1.2, respectively.

2. General setting

Let Ep be the Banach space that results from completing C∞0 (RN) in the
norm given by

∥u∥p = (∫
RN
[∣∇u(x)∣p + V (x)∣u(x)∣p]dx)

1/p
,

so that Ep is formed by all the functions u ∈ W1,p(RN) such that V 1/pu ∈
Lp(RN). We denote by ∥ ⋅ ∥p′ the norm on the dual space (Ep)′.

Remark 2.1. Let’s denote by p∗ = pN/(N − p) the critical Sobolev value
from the Sobolev-Gagliardo-Niremberg theorem (see e.g. [5, Th.9.9]). It’s
well-known that the embedding Ep ⊆ L is

a) continuous for L = Lq(RN) with p ≤ q ≤ p∗:

∃Cq > 0,∀u ∈ Ep ∶ ∥u∥Lq(RN ) ≤ Cq∥u∥p; (2.1)

b) compact for L = Lq
loc(R

N) with p ≤ q < p∗;
c) continuous for L =W1,p(RN):

∀u ∈ Ep ∶ ∥u∥W1,p(RN ) ≤max{1, θ−1}1/p∥u∥p. (2.2)

Lemma 2.2. The space Ep is reflexive.

Proof. Let’s consider the Banach space X = Lp
V (R

N) × [Lp(RN)]N , where

∥(u,w)∥X = (∥u∥pLp
V
(RN ) + ∥w∥[Lp(RN )]N )

1/p
,

∥u∥Lp
V
(RN ) = (∫

RN
∣u∣pdµ)

1/p
, dµ = V (x)dx,

∥w∥[Lp(RN )]N = ∥(w1, ...,wN)∥[Lp(RN )]N = (∫
RN
∣w∣pdx)

1/p
.

Since Lp(RN) and Lp
V (R

N) are reflexive (see e.g. [4, Th. 4.7.15 and Cor.
4.7.16]), it follows that X is reflexive. The operator T ∶ Ep Ð→ X, given by
T (u) = (u,∇u), is an isometry. Since Ep is a Banach space, it follows that
T (Ep) is a closed subspace of X and, therefore, by [5, Prop.3.20], T (Ep) is
also reflexive. With the last, we conclude that Ep is reflexive. ◻
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Associated to problem (P) is the functional I ∶ Ep Ð→ R, given by

I(u) = J(u) +G(u) +H(u) −W (u), (2.3)

where

J(u) = a
p
∫
RN
∣∇u∣pdx, G(u) = 1

p
∫
RN

V (x)∣u∣pdx

H(u) = b

p2
(∫

RN
∣∇u∣pdx)

p

, W (u) = ∫
RN

F (x,u(x))dx.

In fact, as a consequence of Theorem 2.3 below, the critical points of I are
weak solutions of (P).

Theorem 2.3. The functional I is of class C1. For every for u,h ∈ Ep, we
have

⟨I ′(u), h⟩ =a∫
RN
∣∇u∣p−2∇u∇hdx + ∫

RN
V (x)∣u∣p−2uhdx

+ b(∫
RN
∣∇u∣p dx)

p−1

∫
RN
∣∇u∣p−2∇u∇hdx − ∫

RN
f(x,u)hdx.

The proof of Theorem 2.3 is given in the following lemmas.

Lemma 2.4. The functional I is well defined.

Proof. By the definitions of Ep and I, we just have to show that W (u) ∈ R,
for every u ∈ E. By condition (F1) we have, for every x ∈ RN and every t ∈ R,
that

∣F (x, t)∣ ≤ ∫
t

0
∣f(x, s)∣ds ≤ ∫

t

0
[r1β1(x)∣s∣r1−1 + r2β2(x)∣s∣r2−1]ds

≤ β1(x)∣t∣r1 + β2(x)∣t∣r2 ,

so that ∣W (u)∣ ≤M1(u) +M2(u), where

Mk(u) = ∫
RN

βk(x)∣u∣rkdx, k = 1,2.

Then, using (2.1) and Hölder’s inequality for k = 1,2, P = p/(p − rk) and
P ′ = p/rk, we get

Mk(u) ≤ ∥βk∥LP (RN ) ∥∣u∣
rk∥LP ′(RN )

= (∫
RN

β
p/(p−rk)
k (x)dx)

(p−rk)/p
(∫

RN
∣u∣pdx)

rk/p

= ∥βk∥Lp/(p−rk)(RN ) ⋅ ∥u∥
rk
Lp(RN )

≤ Crk
p ∥βk∥Lp/(p−rk)(RN ) ⋅ ∥u∥

rk
p < +∞.

and we are done. ◻

Remark 2.5. From the previous proof, it follows that, for every u ∈ Ep,

∣W (u)∣ ≤
2

∑
k=1

θ−rk/p ∥βk∥Lp/(p−rk)(RN ) ⋅ ∥u∥
rk
p . (2.4)
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Remark 2.6. Let’s write a couple of inequalities, taken from [12], that will be
useful. Given x, y ∈ Rm,

22−p∣y − x∣p−1 ≥ ∣∣y∣p−2y − ∣x∣p−2x∣ , if 1 ≤ p ≤ 2; (2.5)

⟨∣y∣p−2y − ∣x∣p−2x, y − x⟩ ≥ 22−p∣y − x∣p, if 1 ≤ p ≤ 2; (2.6)

⟨∣y∣p−2y − ∣x∣p−2x, y − x⟩ ≥ (p − 1) (1 + ∣y∣2 + ∣x∣2)
p−2
2 ∣y − x∣2, if p ≥ 2. (2.7)

Lemma 2.7. The functionals J , G and H are of class C1.

Proof. This proof is standard so that we omit most of its details.

i) The functionals J and G are Fréchet-differentiable and, for every u,h ∈
Ep,

⟨J ′(u), h⟩ = a∫
RN
∣∇u∣p−2∇u∇hdx, ⟨G′(u), h⟩ = ∫

RN
V (x)∣u∣p−2uhdx.

We shall show that J is of class C1. G is treated in a similar way. Since

H(u) = b

p2
[p
a
J(u)]

p

,

it follows, by the chain rule, that H is also of class C1 and

⟨H ′(u), h⟩ = b(∫
RN
∣∇u∣p dx)

p−1

∫
RN
∣∇u∣p−2∇u∇hdx.

ii) Let’s show that J is of class C1, i.e., that J ′ ∶ Ep Ð→ (Ep)′ is continuous.
Let u0 ∈ Ep. We have to prove that for any τ > 0, there exists δ > 0 such
that ∥u − u0∥p < δ implies that

∀v ∈ Ep ∶ ∣⟨J ′(u) − J ′(u0), v⟩∣ ≤ τ∥v∥p. (2.8)

Assume that 1 < p ≤ 2. Let τ > 0. Let’s pick δ ∈]0, (2p−2τ)1/(p−1)[.
For u, v ∈ Ep with ∥u − u0∥p < δ, we get, by using (2.5) and Hölder’s
inequality, that

∣⟨J ′(u0) − J ′(u), v⟩∣ ≤ ∫
RN
∣∣∇u0∣p−2∇u0 − ∣∇u∣p−2∇u∣ ∣∇v∣dx

≤ 22−p ∫
RN
∣∇u0 −∇u∣p−1∣∇v∣dx

≤ 22−p (∫
RN
∣∇u0 −∇u∣p)

(p−1)/p
∥v∥Lp(RN )

≤ 22−p∥u0 − u∥p−1p ∥v∥p
≤ 22−pδp−1∥v∥p ≤ τ∥v∥p.

The case of p > 2 is dealt with in a similar way.

◻

Remark 2.8. It’s clear that the functional Np ∶ Ep Ð→ R, given by

Np(u) = [J(u) +G(u)]1/p ,
is a norm equivalent to ∥ ⋅ ∥p.
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Remark 2.9. Let’s recall that for t, s ≥ 0,
(t + s)m ≤ tm + sm, m ∈]0,1[;
(t + s)m ≤ 2m(tm + sm), m ∈ [1,+∞[;
tm + sm ≤ (t + s)m, m ∈]0,+∞[.

Remark 2.10. LetX and Y be Banach spaces,O ⊆X open and T ∶ O ⊆X → Y
Gateaux differentiable at u0 ∈ O. It’s well-known (see e.g. [2]) that if T ′G is
continuous at u0, then T is Fréchet differentiable at u0 and T ′(u0) = T ′G(u0).

Lemma 2.11. The functional W is of class C1.

Proof. Let µ, t ∈]0,1[ and u,h ∈ E.

i) We have, by (F1) and Remark 2.9, that

∫
RN
∣f(x,u(x) + tµh(x))h(x)∣dx ≤ ∫

RN
max
t∈[0,1]

∣f(x,u(x) + tµh(x))∣ ∣h(x)∣dx

≤ ∫
RN

max
t∈[0,1]

[r1β1(x)∣u + µth∣r1−1 + r2β2(x)∣u + µth∣r2−1] ∣h∣dx.

≤
2

∑
k=1

rk ∫
RN

βk(x) (∣u∣ + ∣h∣)rk−1 ∣h∣dx

≤
2

∑
k=1

2rk−1rk ∫
RN

βk(x) (∣u∣rk−1 + ∣h∣rk−1) ∣h∣dx (2.9)

By Hölder’s inequality with

p1 =
p

p − rk
, p2 =

p

rk − 1
, p3 = p,

1

p1
+ 1

p2
+ 1

p3
= 1,

we get, for k = 1,2,

∫
RN

βk(x)∣u∣rk−1∣h∣dx ≤ ∥βk∥Lp1(RN ) ∥∣u∣
rk−1∥

Lp2(RN ) ∥h∥Lp3(RN )

≤ ∥βk∥Lp/(p−rk)(RN ) ∥u∥
rk−1
Lp(RN ) ∥h∥Lp(RN )

≤ θ−rk/p ∥βk∥Lp/(p−rk)(RN ) ∥V
1/pu∥

rk−1
Lp(RN ) ∥V

1/ph∥
Lp(RN )

≤ θ−rk/p ∥βk∥Lp/(p−rk)(RN ) ∥u∥
rk−1
p ∥h∥p. (2.10)

By Hölder’s inequality with P = p/(p − rk) and P ′ = p/rk, we get

∫
RN

βk(x)∣h∣rkdx ≤ ∥βk∥LP (RN ) ∥∣h∣
rk∥LP ′(RN )

≤ ∥βk∥Lp/(p−rk)(RN ) ∥h∥
rk
Lp(RN )

≤ θ−rk/p ∥βk∥Lp/(p−rk)(RN ) ∥h∥
rk
p . (2.11)

By (2.9), (2.10) and (2.11), we get

∫
RN
∣f(x,u(x) + tµh(x))h(x)∣dx ≤

≤
2

∑
k=1

2rk−1rkθ
−rk/p ∥βk∥Lp/(p−rk)(RN ) (∥u∥

rk−1
p + ∥h∥rk−1p ) ∥h∥p,
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which, together with the dominated convergence theorem (see e.g. [5,
Th.4.2]), provides the Gateaux differentiability of W at u:

⟨W ′
G(u), h⟩ = lim

t↓0

1

t
∫
RN
[F (x,u(x) + th(x)) − F (x,u(x))]dx

= lim
t↓0

1

t
∫
RN

f(x,u(x) + tµh(x))h(x)dx

= ∫
RN

f(x,u(x))h(x)dx.

By Remark 2.10 and the arbitrariness of u, it remains to show that W ′
G

is continuous at u.
ii) Let u0, v ∈ E. By Hölder inequality and working as in the line before to

(2.10), we get

∣⟨W ′(u) −W ′(u0), v⟩∣ = ∣∫
RN
[f(x,u(x)) − f(x,u0(x))] v(x)dx∣

≤ (∫
RN
∣f (x,u0(x)) − f(x,u(x))∣p/(p−1) dx)

(p−1)/p
∥v∥Lp(RN )

≤ θ−1/p (∫
RN
∣f (x,u0(x)) − f(x,u(x))∣p/(p−1) dx)

(p−1)/p
∥v∥p,

so that, by the arbitrariness of v,

∥W ′(u) −W ′(u0)∥p′ ≤ θ−1/p (∫
RN
∣f (x,u0) − f(x,u)∣p/(p−1) dx)

(p−1)/p
.

iii) Let (un)n∈N ⊆ E such that

∥un − u∥p Ð→ 0, as nÐ→ +∞. (2.12)

By point ii), to show that W ′ is continuous at u, it’s enough to show
that

∫
RN

ϕn(x)dxÐ→ 0, as nÐ→ +∞, (2.13)

where ϕn(x) = ∣f (x,un(x)) − f(x,u(x))∣p/(p−1). By (2.12) and (2.1),

∥un − u∥Lp(RN ) Ð→ 0, as nÐ→ +∞,

so that, by [5, Th.4.9], up to a subsequence (um)m∈N = (unm)m∈N,

um(x)Ð→ u(x), for a.e. x ∈ RN .

Clearly we can also assume that
+∞
∑
m=1
∥um − u∥pLp(RN ) < +∞.

Thefore, w ∈ Lp(RN), where

w(x) =
+∞
∑
m=1
∣um(x) − u(x)∣, x ∈ RN . (2.14)

Since f is continuous, it holds that

ϕm(x)Ð→ ϕ(x), for a.e. x ∈ RN ,
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so that, to prove (2.13) via the dominated convergence theorem, we need
to find a function ψ ∈ L1(RN) such that, for every m ∈ N,

ϕm(x) ≤ ψ(x), for a.e. x ∈ RN .

We have, by (2.14), Remark 2.9, the Lipschitz continuity of the absolute
value and putting

λk =
p(rk − 1)
p − 1

,

that, for every x ∈ RN and every m ∈ N,

ϕm(x) ≤ 2p/(p−1) [∣f(x,um(x))∣
p

p−1 + ∣f(x,u(x))∣
p

p−1 ]

≤ 2p/(p−1)
2

∑
k=1
[(rkβk(x)∣um(x)∣rk−1)p/(p−1) + (rkβk(x)∣u(x)∣rk−1)p/(p−1)]

=
2

∑
k=1
(2rk)p/(p−1)βp/(p−1)

k (x) [∣um(x)∣λk + ∣u(x)∣λk]

=
2

∑
k=1
(2rk)p/(p−1)βp/(p−1)

k (x) [(∣um(x)∣ − ∣(u(x)∣ + ∣u(x)∣)λk + ∣u(x)∣λk]

≤
2

∑
k=1
(2rk)p/(p−1)βp/(p−1)

k (x) [2λk(wλk(x) + ∣u(x)∣λk) + ∣u(x)∣λk]

=
2

∑
k=1
(2rk)p/(p−1) [2λkwλk(x) + (2λk + 1)∣u(x)∣λk]βp/(p−1)

k (x)

= ψ(x).

We have that ψ ∈ L1(RN). In fact, by using Hölder’s inequality with
P = (p − 1)/(rk − 1) and P ′ = (p − 1)/(p − rk), we get

∫
RN
ψ(x)dx ≤

2

∑
k=1
(2rk)p/(p−1)⋅

⋅ [2λk ∥wλk∥
LP (RN ) + (2

λk + 1) ∥uλk∥
LP (RN )] ∥β

p/(p−1)
k ∥

LP ′(RN )

=
2

∑
k=1
(2rk)p/(p−1)⋅

⋅ [2λk ∥w∥p(rk−1)/(p−1)
Lp(RN ) + (2λk + 1) ∥u∥p(rk−1)/(p−1)

Lp(RN ) ] ∥βk∥p/(p−1)Lp/(p−rk)(RN )

< +∞.

Therefore we have proved that the subsequence (unm) verifies (2.13).
By a contradiction argument, it can be proved that (2.13) holds also for
the original sequence (un)n∈N.

◻

Corollary 2.12. For every u ∈ Ep, it holds

Np(u) ≤ [
1

p
(⟨I ′(u), u⟩ + ∫

RN
f(x,u(x))u(x)dx)]

1/p
. (2.15)
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Proof. By Theorem 2.3 and (2.3), we have that

⟨I ′(u), u⟩ = pN p
p (u) + p2H(u) − ∫RN

f(x,u(x))u(x)dx,

whence it immediately follows (2.15). ◻

3. Existence of a ground state

Let’s prove Theorem 1.1. It states that, under conditions (V), (F1) and (F2),
problem (P) possesses a non-trivial ground state solution. We shall apply
Theorem 3.1 below, as given in [2].

Let X be a Banach space and I ∈ C1(X). Given c ∈ R we denote

Kc = {u ∈X / I ′(u) = 0 ∧ I(u) = c}, Ic = {u ∈X / I(u) ≤ c}.
A sequence (un)n∈N ⊆X is a Palais-Smale sequence for the functional I iff

a) (I(un))n∈N ⊆ R is bounded, and
b) I ′(un)Ð→ 0, as nÐ→ +∞, in X ′.

If for some ν ∈ R, it holds I(un) → ν, as n Ð→ +∞, we say that (un)n∈N ⊆ X
is a (PS)ν sequence.

We say that the functional I verifies the condition (PS) iff every Palais-
Smale sequence has a converging subsequence, or the condition (PS)ν iff every
(PS)ν sequence has a converging subsequence; in this case, the critical level
Kν is compact.

Theorem 3.1. Assume that the functional I is bounded from below and verifies
the (PS) condition. Then

c = inf
u∈X

I(u)

is a critical value of I.

The proof of Theorem 1.1 is built in the following results.

Lemma 3.2. The functional I is bounded from below, i.e., there exists c∗ ∈ R
such that

∀u ∈ Ep ∶ I(u) ≥ c∗.

Proof. By (2.3) and (2.4), we have, for u ∈ Ep, that

I(u) = J(u) +G(u) +H(u) −W (u)

≥ 1

p
min{a,1}∥u∥pp −

2

∑
k=1

θ−rk/p ∥βk∥Lp/(p−rk)(RN ) ∥u∥
rk
p . (3.1)

Since 1 < r1 < r2 < p, the last inequality implies that

I(u)Ð→∞, as ∥u∥p Ð→ +∞, (3.2)

so that I is bounded from below. ◻

Proposition 3.3. The functional I verifies the (PS) condition.

Proof. Let’s assume that (un)n∈N ⊆ Ep is such that
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a) (I(un))n∈N ⊆ R is bounded;
b) I ′(un)Ð→ 0, as nÐ→ +∞.

We have to show that (un)n∈N has a converging subsequence.

i) Let’s prove that (un)n∈N ⊆ Ep is bounded, i.e., that there exists c∗∗ > 0
such that

∀n ∈ N ∶ ∥un∥p ≤ c∗∗, (3.3)

and, therefore, we also have that

∀n ∈ N ∶ ∥un∥Lp(RN ) ≤ θ
−1/p∥up∥p ≤ θ−1/pc∗∗. (3.4)

By a), Lemma 3.2 and (3.2), there exists C∗ > 0 such that c∗ ≤ I(un) ≤
C∗, n ∈ N. Then, by (3.1), it follows that

1

p
min{a,1}∥un∥pp −

2

∑
k=1

θ−rk/p ∥βk∥Lp/(p−rk)(RN ) ⋅ ∥un∥
rk
p ≤ I(un) ≤ C∗,

∥un∥pp ≤
p

min{a,1}
[C∗ +

2

∑
k=1

θ−rk/p ∥βk∥Lp/(p−rk)(RN ) ⋅ ∥un∥
rk
p ] . (3.5)

In case of ∥un∥ ≥ 1 we have that 1 ≤ ∥un∥r1 ≤ ∥un∥r2 and so, by (3.5), it
follows that

∥un∥p−r2p ≤ p

min{a,1}
[C∗ +

2

∑
k=1

θ−rk/p ∥βk∥Lp/(p−rk)(RN )] .

Therefore, we get (3.3) with

c∗∗ =max{1, p

min{a,1}
[C∗ +

2

∑
k=1

θ−rk/p ∥βk∥Lp/(p−rk)(RN )]}
1/(p−r2)

.

ii) By Lemma 2.2 and [5, Th. 3.8], there exists a subsequence (unm)m∈N =
(um)m∈N ⊆ Ep that converges weakly to some u0 ∈ Ep, i.e.,

um ⇀ u0, as mÐ→ +∞. (3.6)

Let ϵ > 0. By (F1), we can choose Rϵ > 0 such that

∫
Bc

ϵ

∣βk(x)∣
p

p−rk dx < ϵp/(p−rk), k = 1,2, (3.7)

where Bϵ = B(0,Rϵ) ⊆ RN . By Remark 2.1, the embedding Ep ⊆
Lp
loc(R

N) is compact and, therefore, point (3.6) implies that um Ð→ u0,

as mÐ→ +∞, in Lp
loc(R

N), and, consequently,

lim
m→+∞∫Bϵ

∣um(x) − u0(x)∣p dx = 0.

Then there exists m0 ∈ N such that

∫
Bϵ

∣um(x) − u0(x)∣p dx ≤ ϵp, for m ≥m0. (3.8)
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iii) Now let’s show that, as mÐ→ +∞,

∫
RN
(f(x,um(x)) − f(x,u0(x)))(um(x) − u0(x))dxÐ→ 0. (3.9)

First, let’s estimate the left side of (3.9) in the ball Bϵ. By Hölder’s
inequality with P = (p − 1)/(p − rk) and P ′ = (p − 1)/(rk − 1), we have
that

∫
Bϵ

∣βk ∣p/(p−1)∣u0∣p(rk−1)/(p−1)dx ≤

≤ ∥∣βk ∣p/(p−1)∥LP (Bϵ)
∥∣u0∣p(rk−1)/(p−1)∥LP ′(Bϵ)

≤ ∥βk∥p/(p−1)Lp/(p−rk)(RN ) ∥u0∥
p(rk−1)/(p−1)
Lp(RN ) . (3.10)

In the same way, using (3.4), we get

∫
Bϵ

∣βk ∣p/(p−1)∣um∣p(rk−1)/(p−1)dx ≤

≤ ∥βk∥p/(p−1)Lp/(p−rk)(RN ) ∥um∥
p(rk−1)/(p−1)
Lp(RN )

≤ [θ−1/pc∗∗]
p(rk−1)/(p−1) ∥βk∥p/(p−1)Lp/(p−rk)(RN ) . (3.11)

By (F1), Remark 2.9, (3.8), (3.10), (3.11) and Hölder’s inequality, we
have, for m ≥m0, that

∫
Bϵ

∣f(x,um(x)) − f(x,u0(x))∣ ⋅ ∣um(x) − u0(x)∣dx

≤ (∫
Bϵ

∣f(x,um(x)) − f(x,u0(x))∣p/(p−1)dx)
(p−1)/p

∥um − uo∥Lp(RN )

≤ ϵ [2p/(p−1) ∫
Bϵ

[∣f(x,um(x))∣p/(p−1) + ∣f(x,u0(x))∣p/(p−1)]dx]
(p−1)/p

≤ 2ϵ
⎡⎢⎢⎢⎢⎣
∫
Bϵ

⎛
⎝
∣

2

∑
k=1

rkβk ∣um∣rk−1∣
p/(p−1)

+ ∣
2

∑
k=1

rkβk ∣u0∣rk−1∣
p/(p−1)⎞

⎠
dx

⎤⎥⎥⎥⎥⎦

(p−1)/p

≤ 4ϵ(
2

∑
k=1

r
p/(p−1)
k ∫

Bϵ

∣βk ∣p/(p−1) [∣um∣p(rk−1)/(p−1) + ∣u0∣p(rk−1)/(p−1)]dx)
(p−1)/p

≤ 4ϵ{
2

∑
k=1

r
p/(p−1)
k ∥βk∥p/(p−1)Lp/(p−rk)(RN ) [(θ

−1/pc∗∗)
p(rk−1)

p−1 + ∥u0∥
p(rk−1)

p−1
Lp(RN )]}

p−1
p

≤ ϵ ⋅ 22+2(p−1)/p
2

∑
k=1

rk ∥βk∥Lp/(p−rk)(RN ) [(θ
−1/pc∗∗)

rk−1 + ∥u0∥rk−1Lp(RN )] (3.12)

Now let’s estimate (3.9) out of the ball Bϵ. By using (F1), Remark
2.9, (2.9), (3.7), (3.4) and Hölder’s inequality with P = p/(p − rk) and
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P ′ = p/rk, we get

∫
Bc

ϵ

∣f(x,um(x)) − f(x,u0(x))∣ ⋅ ∣um(x) − u0(x)∣dx

≤
2

∑
k=1

rk ∫
Bc

ϵ

βk [∣um∣rk−1 + ∣u0∣rk−1] (∣um∣ + ∣u0∣)dx

≤
2

∑
k=1

rk ∫
Bc

ϵ

βk [∣um∣rk + ∣u0∣rk]dx

≤
2

∑
k=1
∥βk∥LP (Bc

ϵ)
[∥∣um∣rk∥LP ′(Bc

ϵ)
+ ∥∣u0∣rk∥LP ′(Bc

ϵ)
]

≤ ϵ
2

∑
k=1

rk [∥um∥Lrk/p(RN ) + ∥u0∥Lrk/p(RN )]

≤ ϵ
2

∑
k=1

rk [(θ−1/pc∗∗)
rk/p + ∥u0∥Lrk/p(RN )] . (3.13)

By (3.12) and (3.13) and the arbitrariness of ϵ, we obtain (3.9).
iv) By (2.15), we have that

pN p
p (um − u0) ≤ ⟨I ′(um − u0), um − u0⟩ + ∫RN

f(x,um − u0) ⋅ (um − u0)dx,

where the first term in the right-side tends to zero, as mÐ→ 0, by (3.6)
and I ′(um − u0) ∈ Ep. By using (3.9), (2.2), (2.6) or (2.7), and using
estimates like those in the proof of Lemma 2.11 we get

∫
RN

f(x,um − u0) ⋅ (um − u0)dxÐ→ 0, as mÐ→ +∞,

so that Np(um − u0)Ð→ 0, as mÐ→ +∞. We conclude by Remark 2.8.

◻

Proof of Theorem 1.1. i) By Lemma 3.2, Proposition 3.3 and Theorem
3.1, c = inf

u∈E
I(u) is a critical value of I, so that there exists u∗ ∈ Ep

such that

I ′(u∗) = 0 and I(u∗) = c.
So it remains to show that u∗ is a non-trivial critical point of I.

ii) Let u0 ∈ C∞0 (RN)∖{0} such that supp(u0) ⊆ Ω and s > 0. Then, by (F2)
and (2.3), we have

I (su0) ≤
sp

p
max{a,1} ∥u0∥pE +

bsp
2

p2
∥u0∥p

2

E − ∫
Ω
F (x, su0(x))dx

≤ s
p

p
max{a,1} ∥u0∥pE +

bsp
2

p2
∥u0∥p

2

E − ηs
r3 ∫

J
∣u0(x)∣r3 dx.

Since 1 < r3 < p, the last imples thatI(su0) < 0 for s > 0 small enough.
Therefore, I(u∗) = c ≤ I(su0) < 0, so that u∗ is a nontrivial critical point
of I.

◻
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4. Multiplicity

Our second main result, Theorem 1.2, states that, under conditions (V ), (F1)−
(F3), there exist infinitely many pairs of solutions for problem (P). We
achieve our goal by means of a Ljusternik-Schnirelman scheme for even func-
tionals: we shall apply Theorem 4.2 below, as given in [15].

Let X be an infinite-dimensional Banach space and

ΣX = {A ⊆X /A = A, A = −A, 0 ∉ A} .
By γ(A) we denote the genus of A ∈ ΣX , that is, the least natural number
n for which there exists an odd function φ ∈ C (A,Rn ∖ {0}). If there is not
such n, then γ(A) = +∞; and, by definition, γ(∅) = 0. It’s well-known that
Krasnoselskii’s genus generalizes the notion of dimension: γ(SRl−1) = l and
γ(SX) = +∞, where SRl−1 and SX denote the unit-spheres of Rl and X,
respectively.

The following properties are useful. Their proof can be found e.g. in [3].

Proposition 4.1. Let A,B ∈ ΣX . Then

η ∈ C(A,B) odd ⇒ γ(A) ≤ γ(B);
A ⊆ B ⇒ γ(A) ≤ γ(B);

A compact ⇒ γ(A) < +∞.

We denote, for n ∈ N,
An = {A ∈ ΣX / γ(A) ≥ n}.

Now we can state our abstract tool.

Theorem 4.2. Assume that I ∈ C1(X) is even and verifies the (PS) condition.
For n ∈ N we put

cn = inf
A∈An

sup
u∈A

I(u). (4.1)

i) If An ≠ ∅ and cn ∈ R, then cn is a critical value of I.
ii) If I(0) ≠ cn = cn+1 = ... = cn+l ∈ R, then γ(Kc) ≥ l + 1.

Proof of Theorem 1.2. By Theorems 2.3 and 3.1, the functional I is of class
C1, bounded from below and verifies (PS). By (2.3) and (F3), the functional
I is even and I(0) = 0. We claim that for every n ∈ N, there exists ε > 0 such
that

γ (I−ε) ≥ n. (4.2)

Then, by (4.1), it follows that −∞ < cn ≤ −ε < 0, whence, by point i) in
Theorem 4.2, for every n ∈ N, cn is a negative critical value of I.

i) Let’s prove the claim. Let n ∈ N. Let’s pick n disjoint open sets Ωi ⊆

RN , i = 1, ..., n, such that
n

⋃
i=1

Ωi ⊆ Ω. For each i = 1, ..., n, we take

ui ∈ C∞0 (RN) such that supp(ui) ⊆ Ωi and ∥ui∥p = 1. We put

Ep
n = span{u1, u2, . . . , un} and Sn = {u ∈ Ep

n / ∥u∥p = 1} .
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ii) Given u ∈ Ep
n, there exist λ1, ..., λn ∈ R such that

u = λ1u1 + ... + λnun. (4.3)

Then,

∥u∥Lr3(RN ) = (
n

∑
i=1
∣λi∣r3 ∫

Ωi

∣u∣r3dx)
1/r3

, (4.4)

and

∥u∥pp =
n

∑
j=1

λpj ∫
Jj

(∣∇uj ∣p + V (x) ∣uj ∣p)dx

=
n

∑
j=1

λpj ∥uj∥
p
p =

n

∑
j=1

λpj . (4.5)

iii) Since Ep
n is finite-dimensional, all its norms are equivalent. In particular,

there exists a constant c̃ > 0 such that

c̃∥u∥E ≤ ∥u∥r3 , for u ∈ Ep
n. (4.6)

By (2.3) and (4.3)-(4.6), for u ∈ Sn, we have

I(su) ≤ s
p

p
max{a,1}∥u∥pp +

bsp
2

p2
∥u∥p

2

p −
n

∑
j=1
∫
Ωj

F (x, sλjuj(x))dx

≤ s
p

p
max{a,1}∥u∥pp +

bsp
2

p2
∥u∥p

2

p − ηsr3
n

∑
j=1
∣λj ∣r3 ∫

Ωj

∣uj(x)∣r3 dx

= s
p

p
max{a,1}∥u∥pp +

bsp
2

p2
∥u∥p

2

p − ηsr3∥u∥r3r3

≤ s
p

p
max{a,1}∥u∥pp +

bsp
2

p2
∥u∥p

2

p − η (c̃s)
r3 ∥u∥r3p

= s
p

p
max{a,1} + bs

p2

p2
− η (c̃s)r3 ,

whence, since 1 < r3 < p and u was arbitrary, it follows that for some
ϵ, σ > 0 it holds

∀u ∈ Sn ∶ I(σu) < −ϵ. (4.7)

iv) Let Sσn = σSn and Q =
⎧⎪⎪⎨⎪⎪⎩
(λ1, λ2, . . . , λn) ∈ RN ∶

n

∑
j=1

λpj < σ
p
⎫⎪⎪⎬⎪⎪⎭
. Then, by

(4.7), it follows that I(v) < −ϵ, for every v ∈ Sσn, so that

Sσn ⊆ I−ϵ ∈ Σ.

On the other hand, it follows from (4.3) and (4.5) that the mapping ϕ ∈
C (Sσn, ∂Q), given by ϕ(u) = σ ⋅ (λ1, ..., λn), is an odd homeomorphism.
Then, by Proposition 4.1, it follows that γ (I−ϵ) ≥ γ (Sσn) = γ(∂Q) = n,
and so we get (4.2).

◻
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Josué Murillo-Tobar
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