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Abstract

We oonsider the nonlinear Sabalinger equation
2Av—Vxv+ P~ lv=0 inRN, (E)
and the limit problem
Au+uPlu=0 ing, (L)

with bounday conditionu = 0 ond {2, wheref? = int{x € RN : V(x) = inf V = 0} isassumed to be non-
empty, connected and smooth. We prove the existence of an infinite number of solutiogs &ord (L)

sharing the topology of their level sets, as seen from the Ljusternik—Schnirelman scheme. Denoting their
solutions agvy ¢ ke and{uglken. resgectively, we show that for fixeld € N and, up to rescalingy .,

the energy ofby . converges to the energy of. Itis also $iown that the solutionsy . for (E) concentrate
exponentially around? and that, up to rescaling and up to a subsequence, they converge to a solution
of (L).

(© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The nonlinear Scludinger equation, which appears frequently in many fields of physics
typically takes the form

2
iﬁy'/t+%u7—vo(x)y7+|y7|p*1w=0, vx € RN, vt > 0, (1.1)
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with p > 1. In this paper we are concerned with the existence and qualitative properties of
standing wave solutions of1.1), that is ®lutions having the formZ(x,t) = v(x) - e 'EV/A,

We are especially interested in studying the behavior of the solutiofisagproaches zero, the
semi-classical limit. In terms af, theproblem can be written as

{82AU—V(X)U+|v|plv =0, inRN; (P.)

v(X) = 0, as|x| - oo

wheres2 = ;2 /2 andV (x) = Vo(x) — E. Here we also asume thaN > 3 and 1+ p € (2, 2%),
with 2* = 2N

There has been an enormous amount of research done in the case where the pbisntial
assumed to be positive. This research was started in the seminal work of Floer and Weinstein
[16], where it was shown that in the one dimensional case,pfoe 3, there is afamily of
sdutions concentrating around a non-degenecatecal point of the potential. These solutions

ve, Which are captured using a Lyapunov—-Schmidt reduction method, satisfy

liminf max|v.(x)| > O. (1.2)
e—>0 xeRN

Further research and developments haserbcarried out by many authors, see e.g. 2, [
Wang P4], Rabinowitz P3|, del Pino and Felmerl[1,12], Ambrosetti et al. 1], Gui [17], Li
[20), Dancer and Yand], Kang and Wei 19 and manyothers.

In such works, the solutions found satigfl.2) and concentrate at certain critical points of
the potential, while decayg to zero exponentially, away from them. These works use different
approaches, based either on the variational method, or the Lyapunov-Schmidt reduction, or a
combination of these. In all these cases, the properties of the positive solutions of the limiting
equation are extensively used to obtain the results. In particular, in the Lyapunov-Schmidt
reduction approach, the uniqgueness and non+uEgey properties of the positive solution of
the limit equation are used.

In contrast with the positive-potential case, there are some recent works by Byeon and Wang
[6,7] where they consider a non-negative potential vanishing in a boundédsekN . The first
important feature is that for the solutions found &} fnd [7], (1.2) no longer holds; actually
the maximum value of the solatis approaches zero. The rate at which these solutions vanish
depends on the nature of the $&t The authors distinguish three cases: )= int2 # ¢,
which is refered to as thélat case (2) 2 is a finite set 6 points, andv vanishes polynomially
at 12, which isreferred to as théinite case and (3)/2 is a finite set & points, andV vanishes
exponentially, which is referred to as tiv#inite case These rates are certainly strongly related
to the nature of the limiting equations.

In this paper we consit the flat case: the interior of the g@t where thepotentialV vanishes,
is a non-empty bounded set. In this situation the limiting equation is

Au+ulPtlu=0, ing,
o )

u=~0 onof?

and Byeon and Wang proved i6][that least energy solutions f@P,) converge, up to proper
scaling, to adast energy solution f@P). Moreover, they showethat the least emgy soltions

for (P;) concentrate irf2, by proving their exponential decay outsidk In thecase wheré? has

several connected components, the authors can prescribe in which component the concentration
will take place. See also the work of Ding and Tanak4.[
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If we further analyze the limiting problenfP) we realize that besides the least
energy solutions, there are many more solutions. In particular, the application of the
Ljusternik—Schnirelman theory for even functionals gives the existence of infinitely many
solutions. Itis quite natural to ask then if probléR) has infinitely many solutions and what the
relation between them and thosgBf is. In this article we answer this question in the case where
2 is connected, we prove th&P.) has infinitely many solutions of Ljusternik—Schnirelman
type, whose critical levels converge to thos€R)f. Moreoverwe prove that thessoltions also
concentrate irf2.

Now we present our results in precise terms. We assume that the poteptjalerifies:

(V1) V is a mntinuous non-negative function @m;
(V2) V(X) — o0, as|X| — oo;
(V3) 2 =int{x € RN | V(x) = 0} # ¢ is connected and smooth.

We oonsider the functional
1 1
Jo(w) = —/ [Vw|? + SV (x)w? ) dx, (1.3)
2 RN 82

defined onM, = {w € H; : |wll_pr1gny = 1}, where

v 1/2
HSE:wEHl(RN): ||w||55(/ |Vw|2+¥w2) <oo}.
RN &

The critical points of), on M, give rise, through scaling, to the solutions(Bf).
In our context, the flat case of Byeon and Wang 6h [he limit equation for (P;) is (P).
Associated tqdP) we consider th functional

J(u):E/ [Vul?dx, (1.4)
2 )0

defined onM = {u € H%(!Z) o lull p+1¢y = 1}. The citical points of J on M are, up to
scaling, the slutions of(P).

Remark 1.1. A family of functions{ f.}.~ o is said to sub-converge in a space Xgas 0, when
from any sequencén}neny converging to zero it is possible to extract a subsequésieh
suchthat{ fgni liey convergein X, ag — oo.

Let us state our main result:

Theorem 1.1.Under our general assumptions on the potenti@l), (V2) and (V3), and
assuming that N> 3and1l < p < (N + 2)/(N — 2) we have:

(i) Givene > Othe functional J possesses infinitely many critical poir{ik ¢ Jkey € M.
(ii) The limit functional J possesses infinitely many critical pofiitg}keny € M.
(iif) Given ke N, thecritical values satisfy

lim J; (o) = I (). (1.5)
(iv) Moreover, givers, ¢ > 0, thereexids ep > 0 suchthat
c .
|k e(X)] < C - exp{—— - dist(x, !25)} , vx € RN, Ve €10, ¢), (1.6)
&

where C> 0and 2% = {x e RN : dist(x, ) < §}.
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(v) Ontheboundary of(2, the unctionswy . verify
lim max |wk ¢ (X)] =0, vk € N. 1.7)
X€a 2

e—0

It is clear thathe functions
e = (26%Cie) Y P Dy, Cke = Je(ik.e)s
are solutions ofP;) and, as a corollary, they satisfy, for fixkdE N,
!iLno lvk.ellLoomny =0 (18)

and

kel Lo mn
liminf R7)

It is not hard to see that the functiong . = (2cx )Y/ (P~ Dy . satisfy the equation
Aw — e 2VX)w + |w|Plw =0, inRN: (P)
w(X) = 0, as|x| — oo. €

We prove, for every, the exisence of asubsequence aby . converging tavk, a soldion of (P).

The situation described for our sequence of solutions corresponds to the same phenomena as
were discussed byygon and Wang, §, Theorem 2.2]), for (positive) least energy solutions.
Property(1.8)is in contrast to the non-critical case, jpkn V (x) > 0, where all the solutions
of (P,) are bounded away from zero.

In [6] it is shown that the rescaled functiom, = ¢~%/(P~Dy, sub-converges pointwise to a
least energsolution U of (P), in 2, and to 0 inRN \ 2. Moreove, givens > 0, the convergence
is uniform on{x € RN : dist(x, 82) > §}.

Remark 1.2. The potential considered in this article is non-negative and vanishing at an open set
2. This stuation is considered critical since the limiting behavior of solutions is quite different.
For positive potential least energy solutions must concentrate at a point, however for a vanishing
potential concetnation occurs at the whole sé&. When he potential becomes negative in a
bounded set, then least energy simns no longer make sense. However, this situation can still

be well understood, at least in the one dimensional case, and in the radial case, as in the work by
Felmer and Torreslp] and Castrand Felmer§], respectively.

Remark 1.3. We do not say anything about the sign of the solutions we found; however, since
the limit problem(P) may have many positive solutions depending on the geometfy (e
e.g. [L0]), the same could happen witR.).

Remark 1.4. In this article we consider only the case of a potential diverging to infinity as
x| — oo, that is séisfying (V2), and vanishing in aannected, open, smooth set, that is
satisfying (V3). We think that our results holdrfmore general potentials, when the zero set
of V is not connected, and also for the finite and iitércases. Particularly challenging may be
the case of a bounded potential, positive at infinity. In this case the existence of infinitely many
critical points as infheorem 1.{)) may be no longer true. However, the statements, (ii)—(v), with

k fixed, should be true.
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Actually, after we finished this article,eMearned of a recent work of Ding and Szulki8]
where this problem is treated. Insteaccohditions (V2) and (V3) they assume that

(V2') there existd > 0 such thathe set{x € RN : V(x) < b} is nonempty and has finite
measure.

Fixedk € N, they pove that for somelx > 0, problem(P;) has at leask pairs of solutions
in H: whene € ]0, A;l/z[. In contrast we prove the existence of an infinite number of solutions,
at least a pair for each level of energy. If, for evenye N, un, is a solution of(P;,,), where
liMm- oo em = 0, thenthey show thati, converges irH; to some solutioru of (P) assuming
the boundedness af|um|l¢,)men- IN Lemma 3.1we prove this last condition for each lewebdf
energy and, inLemma 4.2 we piove that oursolutions(wy ¢) subconverge in A®RN) to some
solution of(P).

Weobserve that as far as the existence and the number of solutions are concerned, the problern

{Av —VoX)v+ [v/Plv =0, inRN;

v(X) = 0, as|x| — oo, (P3)

whereV, = AV, is equivalent to(P,). In fact, puttings2 = 271 itis clear thaw is a solution
of (P,) if and only if v = A~Y(P~2y is a solution of(P,). In some recent work, Bartsch and
Wang [B] and Bartsch et al.Z] dealt with problem(P;) whenV, (X) = ap(X) + Aa(x), where
ap € L*(RN) is bounded away from zero, arade L>°(RN) is non-negative and such that for
someMg > 0 and som& = Z c RN with non-empty interior,

a(x) =0, VxeZ and a(x) > 0, aexe Z°
and
[{x € RN : a(x) < Mg}| < oo.

They show that for every integdér € N, thereexids Ak suchthat (P,) has at leask pairs

of (weak) solutions when > Ay; with additional conditions these solutions have exponential
decay at infinity. They prove that a sequefigg} < Of solutions for(P,,,), A\n —> oo, converge

in HY(RN) to a solution of

—Au+ag(x)u = [ulP71, inintz,
u=_0, in Z¢,

provided there is uniform boundedness of the energy normis¢fcn and inf|[un|[_pgny > O.

We finally mention that in our work we not onlgbtain exponential decay of the solutions at
infinity, but we also get further asymptotic estimates on their behavior on the boundary of the
domain, se&ection 5

We devotethe paper to provingrheorem 1.1 In Section 2we set up the Ljsterrik—
Sdhnirelman scheme to prove parts (i) and (ii) Dfieorem 1.11In Section 3 we sudy the
asymptotic behavior of the critical values proving (iii) Dfieorem 1.1In Section 4we analyze
the decay of the solutions away frafhand inSection 5we study the behavior on the boundary,
proving (iv) and (v), respectively.

2. Ljusternik—Schnirelman setting: Multiplicity

In this section we set up the Ljusternik+8drelman scheme in order to prove the
first two statements inmrheorem 1.1 In gereral terms, given a Banach spaE&e we write
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JE={ACE:A=AA=—-A0¢ A} and consider ing Krasnoselsks genusy
(see e.g. Rabinowit2p]). The following theorem is proved ir2p].

Theorem 2.1.Let M € X beC! sub-manifold of E and let fe¢ C'(E) be even. Suppose that
(M,f) satisfy the Palais—Smale condition and let

Ck(f) = Aejé?kf(M) rInEaAXf(u), (2.2)
where

AM) ={Ae ZenNM:y(A) > k. (2.2)
If Ck(f) € R, then G(f) is a critical value for f. Moreover, if = Cy(f) = --- = Cyym( ),

theny (K¢) > m+ 1. In particular, if m > 1, then K, the set of critical points corresponding to
the valie ¢, contains infinitely many elements.

It is clear thatthe functional(1.4) verifies theconditions ofTheorem 2.1 Then we wiite
Y= ZHé(Q), and for eactk € N,

A = Ak(M)  and ¢ = Ck(J) = (k) € (0, 00),
Remark 2.1. With this it is clear that

we = (2601 PV Ly
is a solution of(P).

In our study it will be convenient to lva an inermediate problem. Giveh > 0 we write
2% = {x e RN : dist(x, £2) < 8}, and ©nsider the problem

Au+ulP"lu=0, in2?, (P%)
u=0, ond°
with the functional
1
) = E/m |Vul|?dx (2.3)

defined onM°® = {u € HJ(12°) : |lu]l_p+1s) = 1}. Here ve wiite X% = Zyqn)» and for each
keN

A= AM®  and ¢ =Ck(J%) = I%(id) € (0, +00).

Itis clear thathe functionw} = (2c})¥P=D ¢ is a solution of(P?).

Theorem 2.1can also be applied t@P;). In fact, thecompactness of the embeddikty C
LI®RN), q € [2,2%), can be proved applying the &het—Kolmogorov theorem4][ Corollary
IV.26]); and with this, it is proved that the corresponding functional fsa@d satisfies the
Pdais—Smale condition in the manifolit,. We put

Ye = Xn,, Ve > 0,
and, for everk € N and everyg > 0,

Ak,s = AK(MS) and Ck,e = Ck(Js) = Js(li)k,s)~
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Remark 2.2. With this it is clear that
e = (26%Cie) Y P iy
is a solution of(P,) and
wie = (20) Y Py,
is a solution of(P,).
Remark 2.3. Assuming furthethat e potential is of classC using the vell-known regularity

theory, it can be proved that each ‘solution’ isn appears in this paper is a classical one and
belongs to the class?@.

3. Limits for the critical values

This section is devoted to proving (iii) dfheorem 1.1 As discissed in the last section,
the multiplicity result is based on the Ljusternik—Schnirelman theory for even functionals. The
indicesk of the critical values represent the topological characteristic of the level set, as captured
by the Krasnoselski genus.

Thus, our main result in this section corresponds to proving that the level s&tsndl J for
the Ljusternik—Schnirelman values are topologically equivalent. Actually we prove

Theorem 3.1.For every ke N, wehave

lim ¢, = Ck. (3.1
e—0
The proof of this theorem is divided into several steps as given by the following lemmas.

Lemma 3.1. For every ke N and everyg > 0, wehave
Cke < Ck. 3.2
Proof. If we identify eachu Hé(()) with its extension by zero outsid® then we have

H3(£2) C H.. We also have thaul|, = Ul ) for all u e H3(£2), and cearly Ax C Ay ..
Hencecy . < ¢k, foreveryk e N. O

Now thecrucial lemma

Lemma3.2. Let ke Nando > 0. Givens > 0 small, there exists as > 0 suchthat
A <cke +o, (3.3)

for everye € (0, &5).

Proof. According to the definition of thex ., givene > 0 (in principle without restrictions), we

chooseA; (¢) € Ax_ in such a way that

o

max Je(v) < Cke +
) 3

veAs (e
holds. Then, byemma 3.1

(3.4)

M@§q+%smm Vo e A, (e). (3.5)
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Fromhere we directly obtain that

1
ML Ty e (3.6)
2 RN '
and
1 Vv Vv
by s > —/ (;) 2> > / (;) vz, Yv e As(g) 8.7
2 RN\ € 2 RN\28 €

V§ > 0. Here we notice that the constamt, does not depend os. Now, putting V, =
infyerny 0 V (X), we have

Dby \ /2
vl 2rny 28y < ( V(; ) &, Vs > 0, Vv € As(e). (3.8)

From(3.6)and using the Sobolev—Gagliardo—Nirenberg inequality we get

1/2
loll 2 @ny < CBZZ, Vv e Ag(e), (3.9)
for some constar€. Thus, we onclude

I|m0v€mA?x vl prr Ny 28y = O, Vvé > 0. (3.10)
In fact, gettingx € (0, 1) suchthat — p+l = 4 “) + 7%, it follows by interpolation, considering
(3.8)and(3.9), that
lvll L prarny o) < ne™, Vv € Ay (s), V8 > 0, (3.11)
with
1/2
bk o
n:n(é,k,o,Q):C( 1—) .
Ve
From(3.10)it is clear that, gives > 0 ands > 0, we can get a; = ¢1(8, S) > 0 such that
U?A?é) ||U||Lp+1(RN\_Q(S < 85, Ve € (O, 81[ (312)
and thus, in particular fes = 1,
[ollpricsy = 1 =8, Vv € A, (g), Ve € (0, &1, V8 > 0. (3.13)

From now on we will assume that@ § < 1. We choose a cut-off functiops € C3° (RN) such
thatgs = 1in 2%2 andgs = 0 in RN \ 29,

1 R
O<ps(x) <1 and |Vegs(X)| < 5 Vx e 20\ 29/2, (3.14)
for somer > 1. Now we define fou € M,
u
poluj= — P4 (3.15)

l@sullLp+1rNy

and we claim that

os[As(e)] € AL, Ve e (0, e1). (3.16)
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In fact, as a consequence of the concentration property givghif) for all v € A, (¢), for all
e € (0,¢e1),

5 p+1
f |psv|PTL =/ |v|p+1+/ |psv| P > (1— —) , V8 €]0,1],
08 02572 25\ %2 2

so that
lpsvllp+1cs) = 1= 6, (3.17)

and in particular we see thag[-] is well defined and we further conclude that it is continuous.
Then, sinceps[-] is odd, from genus properties we have that

Y (@s[As(e)]) = K, Ve € (0, e1).
Hence, considerin(B.16)and the definition o€}, we get

< max J(), Ve € (0, 7). (3.18)
veps[As (e)]

Let us take now an elemeunte A, (¢) suchthatv = ¢, [u] satisfies
1
max J°(v) < J%@) + Zo. (3.19)
ves[As (e)] 3

At this stage, we observe that in order to complete the proof of the lemma it is enough to prove
the existence of an elememte A, (¢) satisfying

1
J3@) < Je(w) + 3% (3.20)
In fact, from(3.4)and(3.18)—(3.20)we have
5 s 1 2 2
G <JW+z0=<Iw+-0=< max JU)+ 0 <C,+o.
3 3 ueh; (¢) 3
We devotehe rest oflhe proof to finding such a. Forv = ¢, [u], a direct computation gives

Ul pi1 gy I° (@) < /Q U Veps|? + 2us VUV s + 65| Vul?

V (X
E/ U2|V¢5|2+2u¢5VuV¢5+/ |Vu|2+¥u2
2 RN &
whence
(1-523°) < Js(u)—i-/ W2V 4+ 20[VUl| V|
Q032
1 2
< JS(U)+T ¥ _ulvul
84 Jan iz 8" Jongir
=<

c 12
JeU) + = / _uw?
52 QN2

where we lave used3.14) (3.17) (1.3), (3.6)and the Cauchy—Schwartz inequality. We observe
that the constar®@ depends ok throughby . Then, using Hilder inequdity, considering(3.12)
and takings > 2r, we get @écreasing1 if necessary

1—6)23°@) < J(U)+C85 %,  Vee(0e). (3.21)
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Here, if§ € (0, 711) then3J8(v) < J.(u) + C85 % < by, + C852. So,from (3.21)we get

(@) < Je(u) + C85% 4+ 25(by, + C85 ).

Fromhere we obtai§3.20)puttingu = w whens € (O, %1) issmall enough and € (0,¢7). O

Lemma 3.3. Given ke N and§ > 0, wehave
Q<.

Proof. We identify eachu € H3(2) with its extension by zero t®° \ (2. In this sese we have
H3(2) C H3(£2%) and|[ullyz s = llullyy ) forallu e H3(£2). Thus, itis clear thatl, C A2
and therc) < c, foreveryk e N. [

Lemma 3.4. Given ke N ando > 0, thereexids, > 0 suchthat
& <C+o,
for everys € (0, 8,).

Proof. According to the definition o€}, givens > 0 we may chooseB, (8) € A} suchthat

max Jw) < + <. 3.22
veB, (8) W) =G+ 3 (3.22)

Then, fromLemma 3.3we get

Pw) <o+ % =bco,  Vve By (3.23)
Now we choose adg = 8o(f2) > 0 so that ér everys e (0,8 we can associate a
diffeomorphismy; = (v, ..., w{") e CL(%2; 2%) suchthat

[Ys() —x| < O©) and  [Dys(x)—In|=O©B)  Vxel, (3.24)
and

Vs(092) = 042°. (3.25)
Hereln denotes théN x N identity matrix. Now we define the applicatidiy[] : Hé((ﬁ) —
H3(£2) as

v o Ys(X)

IsvlX) = —————,
Ll v o wsllLeicn

X € 2,

forall v e Hj(£2%) \ {0}. We cldm that there exist8; € (0, §p) suchthat
I5[By(8)] € A, ¥ € (0, 81). (3.26)

We see that in @er toprove (3.26)it suffices to show thaf’s is well defined and continuous,
since ¢early I's is odd. We do this now.

First, weobserve that fronf3.24) for everyn > 0, there exists d; = 82(n) > 0, 82 < 61,
suchthat

1—n <deDys(x) <1+, vx € 2, V8 € (0, 87). (3.27)
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Fromnow on we asume thas € (0, §2). Letv be an arbitray element in H%(Q‘s) \ {0}. Then,
from (3.27)and the formula of change of variables we get

1 —
v o ¥slP g = 11+l 1/9|v0¢5|p+1d9113¢5(x)
2|1+n|’1/ |o[PHE,
29

Thus, in particulaw o s # 0, for everyv € H3(£2%). Usingagain(3.27)we obtain that for all
v € H5(2%) \ {0}

||U|||_p+1(m) ||U|||_p+1(96)
= W) < < = vt
13 gern = VeVl = 1 w6

Let us prove next that
I5() e HE(D\ (0}, Vv e H3(2%)\ (0} (3.28)
Leti € {1,..., N} andw € CJ°(£2) \ {0}, then we have
N
>0
j=1 —

Dis[wl(X) = —————, X € {2,
lwo l/f5|||_p+1((2)

whereg; j (X) = Djw(ys(X)) - D ng)(x). Then, from (3.27)and using the formula of change
of variables again, we get

N detDys (x)
2
/;21_1 / Z|glj()| detDl//(x)

sc/ Djuwl
9121 |

and thenl's[w] € HO(Q). Thus we have proved thak[w] € Hé(()) \ {0} and
”F5(w)”H&(Q) < KIIwIIHé(m), Yw € CSO(Q‘S), (3.29)

for cettain K = K (n, §, N). Using a density argument we extend this inequality to %HJBF).
Fromhere we obtaitf3.28)and the continuity of s[-]. Findly, from (3.28)and(3.29) weobtain
(3.26)proving the claim.

Now, considering3.26)and the definition o€y, it follows that

k< max J(u). (3.30)
uel’s[By(8)]

On the other hand, let us takes B, (§) suchthatu = I's5[v] satisfies

max  JU*) < J(U) + <. (3.31)
u*els[Bs(8)] 3
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At this stage, if we find an element € B, (§) suchthat J(u) < J%(w) + 3 then we complete
the poof of the lemma. In fact, fron(3.22) (3.30)and(3.31)

JU) + 3 < Pw)+ %G

20
max J° — <c 3.32
w2 (w) + 3 x+o. ( )

To finish then, let us find such &. Choosings € (0, §2) small enough, folu = I's[v] we have

Ck

IA

IA

Jw = _||vom||Lp+1(m/ IX;JDg. i
1 N N
=5+ n)lf(p“)f X;ij 8. + O Dj (s (X))
1/(p+1) 2 pdeDys (x)
<@Q+n [1+ O] ZIDJU(I//S(X))I a—n
2
< 1+ n)l/(p+1)w\]5(v). (3.33)
1-mn
We see that we can choose = v. Here we use@3.23)and(3.24)and the fact thatvl|_p+1(0s)
=1. 0O

Proof of Theorem 3.1.Leto > 0 be smé. Considering_.emma 3.4we dhoose & € (0, §5,2);
then, from Lemma 3.2 there eists ags > 0 (implicitly depending ons) such hatcx <
cﬁ +0/2 < ¢ + o, foreverye € (0, g5). Because oEemma 3.1we mnclude sincer > 0 is
arbitrary. O

4. Asymptotic profiles andconcentration phenomena

In this section we study the asymptotic behavior of the solutions, both ifsided outside
£2. Throughout this section we use the notation introducegkiation 2

Lemma4.1. For every k € N, ase — 0, wy . sub-converges weakly to a.ue HX(RN) such
that its restriction tof2 is a solution of(P), with J(0k| ) = ¢k, for Ok = (2c)Y =Py,

Proof. First, we prove that fogs small we have that

kel iy < Ka, Ve € (0, &5), (4.1)
whereK; > 0 is a @nstant, depending only da FromLemma 3.1 we get

IVikellf2gny < 20, Ve € (0,65), (4.2)
that is

/ﬂéN Vi | < /];QN |Vikl?, (4.3)

and then, as a consequence of Gagliardo—Nirenberg inequality,

~ 1/2
||wk,s|||_2*(RN) = CCk/ > (4.4)
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for some constar® only depending ofN. GivenR > 1, we have

A2 A2 A2
”wk,S”LZ(RN) - ”wk,S”LZ(RN\QR) + ”wkS”LZ(QR)
< — %
= VR £ + ||wk,€|||_2 (QR)
2ck
VR

where we have used thedlder inequdity and the relation

RN

< oo kel g, - 12512/, (4.5)

A 20\ /2
”wk,SHLZ(RN\QS) =< <78> g, Ve € (0,&5),V8 > 0, (4.6)

which comes fron{3.8). Then, because @¢#.2), (4.4)and puttingR = 1,

~ 2 ~ 2 ~ 2
ke 121y = 190k e N2, + I1Dice N2 en, < K.

From the estimaté4.1), there eists alx € HY(RN) suchthat iy . sub-converge weakly and
pointwise tolx € HY(RN), ase — 0.
Now we piove thatuy is a solution of P). Sincewy . € M. is a critical point forJ,, we have

. V(X) . ~ip—ln
[ Vievo s T o = nee [ il Hicg, Ve e HEY, @)
RN & RN
whereiry . = 2¢ . is the Lagrange multiplier. Then, since
V(X
/ %ﬁ)k,gqs =0, forall ¢ € C3°(12),
RN &
passing to talimit whene — 0, we have
/Q ViV = Ak /Q |0k P~ L0k, Vo € C3°(92), (4.8)

wherexx = 2c. Here we have usedie fact thatiy . sub-converge in BY(RN) to Ok, which
comes fromLemma 3.1and the compactness of the embeddihgc LPHL(RN).
Considering4.8)and {4, Proposition 1X.18], we would be done if we proved that

Ok(X) = 0, a.eRN\ 0. (4.9)
In fact, (|, € H3(£2) would hold, and fron{4.8), J (k| ) = k.
Let us pove(4.9). We sssciate to eacld > 0,

. \

For every(s, a) € R x R} wewriteSs o = {x € RN\ £29 : |Gk(X)| > «}. Let usassume that
there exis®y, oy, n > 0 such hat|S, o.| > n > 0. Then, asy, o, C $.q,, forall s € (0, §)
we have

S$5.0,] =1 >0, V5 € (0, 84). (4.11)

Considering ¥3), we obtain’ € (0, §,) suchthat

2

Vs < “;’7, Vs e (0,8). (4.12)
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Let§g € (0, 8') be fixed, then we have that

/Sé |0k > . (4.13)

0>

On the other had, for everyo > 0 there eists as, € (0, £5) suchthat

10z s, ) = IkelEas, )+ 00 Ye €02

Thus, fore = “g” ande € (0, &, [, using(4.6), (4.10)and(4.12) we get

2 2c 2 5
/ 0k|? <o +/ lwi.e|? < Bl ()2 < 04y, < — 1], (4.14)
Sig.n Sip.as ’ 3 Vs 3 6

which contradicts(4.13) Herce, |S5.«| = O, for all (¢,8) € R} x R}, that is,we proved
4.9 O

Actually we have strongonvergence as the following lemma asserts.

Lemma4.2. For every ke N, ase — 0, wg . sub-converge in the norm dd*(RN) to uy.

Proof. From the ompactness of the embeddibg c L%(RN), it follows thatwy . sub-converge
in L2(RN) to Ok ase — 0; so

Iim/ |uﬁk,g|2=/ |02,
e—>0 JRN I?)
This and(4.3)let us shav that

lim Sup”ﬁ)k,s I HL(RN) =< ||0k|| HL(RN)»

e—0
concluding the proof. O
Our next goal is to obtain an exponential control of the decay of the family.} outsidef?.

For thispurpose we obtain a genetdl® estimate for solutions of an elliptic inequality, following
the Moser iteration technique. We have

Proposition 4.1. Let D ¢ RN be open and connected. f is a classical solution of the elliptic
inequality

Aw— f(w)>0 inD,
w >0 in D, (4.15)
w=20 onadD,

where N> 3, p+ 1€ (2,2*) and f satisfies
tf(t) <ctPtl,  vteRT, (4.16)

for some onstant ¢ > 0 and if moreoverw € H%(D) then there exists a constant &
C(c, p, N) > Osuchthat

4/[(N+2)—p(N-2)] (4.17)

lwllLee(py < CllwIILz*(D) )
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This result was proved in5] assuming thatD ¢ RN is smooth and bounded. It can be
extended to a not necessarily bound®dor regularaD. We can follow the step inj], by
choosing a slightly modified test function depending on a parameter, in order to avoid the possible
non-regularity of the boundary. We omit the details.

Lemma 4.3. For every ke N there exists a K > 0 suchthat
lw e llLso@mny < Kz, Ve € (0, ss). (4.18)

Proof. Givene € (0, &5), we mnsiderD; a mnnected component of the Jete RN : Wke >
0}. So, wehave

Awy s + wﬁs >0 inDJ,
wke > 0 in D:, (4.19)
wke =0 ondD],

hence, from{(4.4)andProposition 4.1
||wk,8||LC>0(D:') S K25 V8 S (Oa 85)5 (4'20)

where theconstantK, depends orN, k and p. Since D} is arbitrary, the inequality holds
in {x € RN : wx, > 0}. By asimilar argument we also show that the inequality holds in
xeRN:wy, <0}. O
Remark 4.1. Sincevy . = 2/(P~Dyy ,, it follows from Lemma 4.%hat

|im0 ||Uk,s|||_00(RN) =0, vk € N. (421)

£—>
Moreover, since|ukll pr1gny # O forallk € N, it is clear that there exists a constant> 0
suchthat

ke llLoorN
liminf )

mint — e >k > 0. (4.22)

In order to obtain the exponential decaywaf ., we shallgive a comparison argument as in
[6]. We consider a positiveolution for the problem

AU —2bU =0 inRN\ Q¢
U=a ona’, (4.23)
lim UX) =0,

|X|—00
wherea, b > 0. Such a soliion satisfies
U(x) < Cexp(—b-distx, 2%)},  ¥x e RN\ 2° (4.24)
for some constar@ depending ora and2?, see p, Lemma 2.7].
Lemma4.4. Forevery ke N, §, ¢ > 0, thereexids e, € (0, g5) suchthat

e ()] < C - exp{—g distx, @)}, vx e RY, Ve € (0, ), (4.25)

where C dpends on I and £2°.
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Proof. Let e, € (O, &5) sg:hthatv(; > (Kz + 2C/8*)8£. Then, from Lemma 4.3and for all
e € (0, g,) andx € RN \ 23, we hae that

V (X) _ Vs C
Fre() = —5 — lukelP ™ 2 5 — Ko > 2-.

Now we onsiderJ a soltion to problem(4.23)with a = Kz andb = ¢/¢. Then,

AU — F (U <0 inRN\ 2%,

U=Ks onan?’, (4.26)
lim U(x) =0,

[X]—00

from where it follows that

AU —wie) — Fe U —wk ) <0 inRN\ 27,
U—wke>0 ond s’ (4.27)
lim (U(X) — wge(X)) =0.

[X]— 00

Now it is clear that

we(X) <UMX),  VxeRN\ Q2
Analogously we can prove that

—U(X) < wke(X), vx e RN\ 2°.
Then, using4.24)we obtain

c
lwie (X)] < Cexp[——dist(x, 95)} . VxeRN\ 0P,
&
and enlargingC is necessary, we finally get the inequality in&l. O
5. Asymptotic behavior at the boundary

We already know that the sequeneg . convergesin Hi(R) to a functionu which is a solution
of (P) in £2. By dlliptic regularity it is not hard to prove that on each compactBet {2, the
convergence of . to U is uniform onD. On theother hand, outsid€, narrely in 2%, we have
exponential decay according keemma 4.4 Theuniform behavior ofw . on the boundary of?
is not covered by these two arguments. In this section we prove

Proposition 5.1. The family of solutionsy . verifies

lim max|wg(X)] =0, vk € N. (5.1)
X€a {2

e—0

For proving this proposition we see two preliminary lemmas. et 0 be snall enough that
the setfs = {x € £ : dist(x,d(2) > &} is not empty. We define the ring around? as
R(8) = 2%\ 25 and we consideM, (§) = MmaxeaRres) |wk, e (X)] for k € N fixed. First we show
that

Lemmab5.1. Giveno > 0, thereexids§, > 0 suchthat

max |wk.e(X)| < Mg(8) + o, Vs € (0, 65). (5.2)
xeR()
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Proof. For notational convenience we write = wx . and R (8) = {x € R(S) : +w > 0}.
Then we have

+Aw £ |[wP"lw >0, in RE(),

+w >0, ondR*(s). (D%)
We consider only(D ™) since the other case is analogous. Weipst w — M, (§) to get
in RT
S50, omoR () 63
where f = —|w|P~1(M:(8) + v). Then, using the Alexandroff Maximum Principle 1§,
Theorem 2.21]), we obtain
supv < C- ||~ llLn(rey < CIRTOMNKE (M (8) + sup v,
R+ (5) R*(8)
whereC = C(N, diam(£2)) > 0. Now choosing, > 0 small enough, we get
sup w < M(8) + o, Vs € (0, 85). (5.4)
R*(8)
In a similar way, decreasinty if necessary, we find also
Ri_n(fs)w >—M.(8) —a,  Vse(0,8,), (5.5)
completing the proof of the lemma.O
Next we ontrol the values ofv ondR(8), that is
Lemma5.2. Giveno > 0, there exist’, ¢’ > 0 suchthat
M:(8) < o, Ve € (0, ). (5.6)

We observe thawvith this lemma and.emma 5.1we can complete the proof &froposition 5.1
Infactd 2 C R(8) and ® maxcyn |wk,e (X)| < MaXer(s) |wk,e (X)].

Proof of Lemma 5.2. Denoting

ms(e) = max jwke(x)) and  m’(e) = max |wie(X)],
Xxed 25 Xed 28

we see that we need to show thag(¢) andm® (¢) are controlled by . First, we seethat
lim m’(e) = 0.
e—0

In fact, outsidef2%/2, wy . decay exponentially, as proved lremma 4.4 then wx, — O

uniformly in 82%. Second, we studyns(¢). We deote byK¢, the set of crittal points of the
functionalJ corresponding to the critical valug. According toLemmas 4.5and4.2, thereexigs

u € K and a sequencn}nen such that lim_ o en = 0 andwy ¢, = wn — U in HY(RN)

and pointwise. We choosg > 0 such thatRs(n) = 25—, \ {254, verifiesRs(n) N 02 = 0.

From elliptic estimates, we see that for each compadDset (2, the cowvergance ofwy, to u is

uniformin D. Then, in particular, giverr > 0, there exists an* = n*(o, w) € N suchthat

max |wn(X) —U(X)| < Z.  ¥n=>n*. (5.7)
xeRs () 2
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On other hand, since|RN\§ = 0 andu is a solution of(P), there eists a8’ = §'(o, w) > 0
suchthat

max |u(x)| < <. (5.8)
xeRy (1) 2

Then, from(5.7)and(5.8), we get

my (en) < o, vn > n*. (5.9)

We see thatte values* ands’ may depend on. Howeverpone can argue using the compactness
of the setK, , that hey can be chosen so they actually depend only, dutnot on the particular
ueKeg. 0O
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