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Abstract

We consider the nonlinear Schr¨odinger equation

ε2�v − V(x)v + |v|p−1v = 0 inRN , (E)

and the limit problem

�u + |u|p−1u = 0 in Ω , (L)

with boundary conditionu = 0 on∂Ω , whereΩ = int{x ∈ RN : V(x) = inf V = 0} is assumed to be non-
empty, connected and smooth. We prove the existence of an infinite number of solutions for(E) and(L)
sharing the topology of their level sets, as seen from the Ljusternik–Schnirelman scheme. Denoting their
solutions as{vk,ε}k∈N and{uk}k∈N, respectively, we show that for fixedk ∈ N and, up to rescalingvk,ε ,
the energy ofvk,ε converges to the energy ofuk. It is also shown that the solutionsvk,ε for (E) concentrate
exponentially aroundΩ and that, up to rescaling and up to a subsequence, they converge to a solution
of (L).
c© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The nonlinear Schr¨odinger equation, which appears frequently in many fields of physics
typically takes the form

i �Ψt + �
2

2
�Ψ − Vo(x)Ψ + |Ψ |p−1Ψ = 0, ∀x ∈ R

N ,∀t ≥ 0, (1.1)
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with p > 1. In this paper we are concerned with the existence and qualitative properties of
standing wave solutions of(1.1), that is solutions having the formΨ (x, t) = v(x) · e−i Et/�.
We are especially interested in studying the behavior of the solutions as� approaches zero, the
semi-classical limit. In terms ofv, theproblem can be written as{

ε2�v − V(x)v + |v|p−1v = 0, in R
N;

v(x) → 0, as|x| → ∞ (Pε)

whereε2 = �
2 /2 andV(x) = V0(x)− E. Here we also assume thatN ≥ 3 and 1+ p ∈ (2,2∗),

with 2∗ = 2N
N−2 .

There has been an enormous amount of research done in the case where the potentialV is
assumed to be positive. This research was started in the seminal work of Floer and Weinstein
[16], where it was shown that in the one dimensional case, forp = 3, there is afamily of
solutions concentrating around a non-degeneratecritical point of the potential. These solutions
vε, which are captured using a Lyapunov–Schmidt reduction method, satisfy

lim inf
ε→0

max
x∈RN

|vε(x)| > 0. (1.2)

Further research and developments have been carried out by many authors, see e.g. Oh [21],
Wang [24], Rabinowitz [23], del Pino and Felmer [11,12], Ambrosetti et al. [1], Gui [17], Li
[20], Dancer and Yan [9], Kang and Wei [19] and manyothers.

In such works, the solutions found satisfy(1.2) and concentrate at certain critical points of
the potential, while decaying to zero exponentially, away from them. These works use different
approaches, based either on the variational method, or the Lyapunov–Schmidt reduction, or a
combination of these. In all these cases, the properties of the positive solutions of the limiting
equation are extensively used to obtain the results. In particular, in the Lyapunov–Schmidt
reduction approach, the uniqueness and non-degeneracy properties of the positive solution of
the limit equation are used.

In contrast with the positive-potential case, there are some recent works by Byeon and Wang
[6,7] where they consider a non-negative potential vanishing in a bounded setΩ ⊂ R

N . The first
important feature is that for the solutions found in [6] and [7], (1.2) no longer holds; actually
the maximum value of the solutions approaches zero. The rate at which these solutions vanish
depends on the nature of the setΩ . The authors distinguish three cases: (1)Ω = int Ω 	= ∅,
which is referred to as theflat case, (2) Ω is a finite set of points, andV vanishes polynomially
at Ω , which is referred to as thefinite case, and (3)Ω is a finite set of points, andV vanishes
exponentially, which is referred to as theinfinite case. These rates are certainly strongly related
to the nature of the limiting equations.

In this paper we consider the flat case: the interior of the setΩ , where thepotentialV vanishes,
is a non-empty bounded set. In this situation the limiting equation is{

�u + |u|p−1u = 0, in Ω ,
u = 0 on∂Ω

(P)

and Byeon and Wang proved in [6] that least energy solutions for(Pε) converge, up to proper
scaling, to a least energy solution for(P). Moreover, they showedthat the least energy solutions
for (Pε) concentrate inΩ , by proving their exponential decay outsideΩ . In thecase whereΩ has
several connected components, the authors can prescribe in which component the concentration
will take place. See also the work of Ding and Tanaka [14].
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If we further analyze the limiting problem(P) we realize that besides the least
energy solutions, there are many more solutions. In particular, the application of the
Ljusternik–Schnirelman theory for even functionals gives the existence of infinitely many
solutions. It is quite natural to ask then if problem(Pε) has infinitely many solutions and what the
relation between them and those of(P) is. In this article we answer this question in the case where
Ω is connected, we prove that(Pε) has infinitely many solutions of Ljusternik–Schnirelman
type, whose critical levels converge to those of(P). Moreover,we prove that these solutions also
concentrate inΩ .

Now we present our results in precise terms. We assume that the potentialV(x) verifies:

(V1) V is a continuous non-negative function onRN ;
(V2) V(x) → ∞, as|x| → ∞;
(V3) Ω = int{x ∈ R

N | V(x) = 0} 	= ∅ is connected and smooth.

We consider the functional

Jε(w) = 1

2

∫
RN

(
|∇w|2 + 1

ε2
V(x)w2

)
dx, (1.3)

defined onMε = {w ∈ Hε : ‖w‖L p+1(RN ) = 1}, where

Hε ≡
{
w ∈ H1(RN) : ‖w‖ε ≡

(∫
RN

|∇w|2 + V(x)

ε2
w2
)1/2

< ∞
}
.

The critical points ofJε onMε give rise, through scaling, to the solutions of(Pε).
In our context, the flat case of Byeon and Wang in [6], the limit equation for(Pε) is (P).

Associated to(P) we consider the functional

J(u) = 1

2

∫
Ω

|∇u|2dx, (1.4)

defined onM = {u ∈ H1
0(Ω) : ‖u‖L p+1(Ω) = 1}. The critical points of J on M are, up to

scaling, the solutions of(P).

Remark 1.1. A family of f unctions{ fε}ε>0 is said to sub-converge in a space X, asε → 0, when
from any sequence{εn}n∈N converging to zero it is possible to extract a subsequence{εni }i∈N
suchthat{ fεni

}i∈N converge in X, asi → ∞.

Let us state our main result:

Theorem 1.1.Under our general assumptions on the potential,(V1), (V2) and (V3), and
assuming that N≥ 3 and1< p < (N + 2)/(N − 2) we have:

(i) Givenε > 0 the functional Jε possesses infinitely many critical points{ŵk,ε}k∈N ⊂ Mε.
(ii) The limit functional J possesses infinitely many critical points{ŵk}k∈N ⊂ M.
(iii) Given k∈ N, thecritical values satisfy

lim
ε→0

Jε(ŵk,ε) = J(ŵk). (1.5)

(iv) Moreover, givenδ, c > 0, thereexists ε0 > 0 suchthat

|ŵk,ε(x)| < C · exp
{
−c

ε
· dist(x,Ω δ)

}
, ∀x ∈ R

N , ∀ε ∈ ]0, ε0), (1.6)

where C> 0 andΩ δ = {x ∈ R
N : dist(x,Ω) < δ}.
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(v) On theboundary ofΩ , the functionsŵk,ε verify

lim
ε→0

max
x∈∂Ω

|ŵk,ε(x)| = 0, ∀k ∈ N. (1.7)

It is clear thatthe functions

vk,ε = (2ε2ck,ε)
1/(p−1)ŵk,ε, ck,ε = Jε(ŵk,ε),

are solutions of(Pε) and, as a corollary, they satisfy, for fixedk ∈ N,

lim
ε→0

‖vk,ε‖L∞(RN) = 0 (1.8)

and

lim inf
ε→0

‖vk,ε‖L∞(RN)

ε2/(p−1)
> 0. (1.9)

It is not hard to see that the functionswk,ε = (2ck,ε)
1/(p−1)ŵk,ε satisfy the equation{

�w − ε−2V(x)w + |w|p−1w = 0, in R
N;

w(x) → 0, as|x| → ∞.
(P′
ε)

We prove, for everyk, the existence of asubsequence ofwk,ε converging towk, a solution of (P).
The situation described for our sequence of solutions corresponds to the same phenomena as

were discussed by Byeon and Wang, ([6, Theorem 2.2]), for (positive) least energy solutions.
Property(1.8) is in contrast to the non-critical case, infx∈RN V(x) > 0, where all the solutions
of (Pε) are bounded away from zero.

In [6] it is shown that the rescaled functionwε = ε−2/(p−1)vε sub-converges pointwise to a
least energy solution U of (P), in Ω , and to 0 inRN \Ω . Moreover, givenδ > 0, the convergence
is uniform on{x ∈ R

N : dist(x, ∂Ω) ≥ δ}.
Remark 1.2. The potential considered in this article is non-negative and vanishing at an open set
Ω . This situation is considered critical since the limiting behavior of solutions is quite different.
Forpositive potential least energy solutions must concentrate at a point, however for a vanishing
potential concentration occurs at the whole setΩ . When the potential becomes negative in a
bounded set, then least energy solutions no longer make sense. However, this situation can still
be well understood, at least in the one dimensional case, and in the radial case, as in the work by
Felmer and Torres [15] and Castroand Felmer [8], respectively.

Remark 1.3. We do not say anything about the sign of the solutions we found; however, since
the limit problem(P) may have many positive solutions depending on the geometry ofΩ (see
e.g. [10]), the same could happen with(Pε).

Remark 1.4. In this article we consider only the case of a potential diverging to infinity as
|x| → ∞, that is satisfying (V2), and vanishing in a connected, open, smooth set, that is
satisfying (V3). We think that our results hold for more general potentials, when the zero set
of V is not connected, and also for the finite and infinite cases. Particularly challenging may be
the case of a bounded potential, positive at infinity. In this case the existence of infinitely many
critical points as inTheorem 1.1(i) may be no longer true. However, the statements, (ii)–(v), with
k fixed, should be true.
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Actually, after we finished this article, we learned of a recent work of Ding and Szulkin [13]
where this problem is treated. Instead ofconditions (V2) and (V3) they assume that

(V2′) there existsb > 0 such that the set{x ∈ R
N : V(x) < b} is nonempty and has finite

measure.

Fixedk ∈ N, they prove that for someΛk > 0, problem(Pε) has at leastk pairs of solutions
in Hε whenε ∈ ]0,Λ−1/2

k [. In contrast we prove the existence of an infinite number of solutions,
at least a pair for each level of energy. If, for everym ∈ N, um is a solution of(Pεm), where
limm→∞ εm = 0, thenthey show thatum converges inH1 to some solutionu of (P) assuming
theboundedness of(‖um‖εm)m∈N. In Lemma 3.1we prove this last condition for each levelk of
energy and, inLemma 4.2, we prove that oursolutions(wk,ε) subconverge in H1(RN) to some
solution of(P).

Weobserve that as far as the existence and the number of solutions are concerned, the problem{
�v − Vλ(x)v + |v|p−1v = 0, in R

N;
v(x) → 0, as|x| → ∞,

(Pλ)

whereVλ = λV , is equivalent to(Pε). In fact, puttingε2 = λ−1, it is clear thatu is a solution
of (Pλ) if and only if v = λ−1/(p−2)u is a solution of(Pε). In some recent work, Bartsch and
Wang [3] and Bartsch et al. [2] dealt with problem(Pλ) whenVλ(x) = a0(x) + λa(x), where
a0 ∈ L∞(RN) is bounded away from zero, anda ∈ L∞(RN) is non-negative and such that for
someM0 > 0 and someZ = Z ⊂ R

N with non-empty interior,

a(x) = 0, ∀x ∈ Z and a(x) > 0, a.e.x ∈ Zc,

and

|{x ∈ R
N : a(x) < M0}| < ∞.

They show that for every integerk ∈ N, thereexists Λk suchthat (Pλ) has at leastk pairs
of (weak) solutions whenλ > Λk; with additional conditions these solutions have exponential
decay at infinity. They prove that a sequence{un}n∈N of solutions for(Pλn), λn −→ ∞, converge
in H1(RN) to a solution of{−�u + a0(x)u = |u|p−1, in int Z,

u = 0, in Zc,

provided there is uniform boundedness of the energy norms of{un}n∈N and inf‖un‖L p(RN) > 0.
We finally mention that in our work we not onlyobtain exponential decay of the solutions at

infinity, but we also get further asymptotic estimates on their behavior on the boundary of the
domain, seeSection 5.

We devotethe paper to provingTheorem 1.1. In Section 2we set up the Ljusternik–
Schnirelman scheme to prove parts (i) and (ii) ofTheorem 1.1. In Section 3, we study the
asymptotic behavior of the critical values proving (iii) ofTheorem 1.1. In Section 4we analyze
the decay of the solutions away fromΩ and inSection 5westudy the behavior on the boundary,
proving (iv) and (v), respectively.

2. Ljusternik–Schnirelman setting: Multiplicity

In this section we set up the Ljusternik–Schnirelman scheme in order to prove the
first two statements inTheorem 1.1. In general terms, given a Banach spaceE, we write
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ΣE = {A ⊂ E : A = A, A = −A,0 	∈ A} and consider inΣE Krasnoselski’s genusγ
(see e.g. Rabinowitz [22]). The following theorem is proved in [22].

Theorem 2.1.Let M ∈ ΣE beC1 sub-manifold of E and let f∈ C1(E) be even. Suppose that
(M,f) satisfy the Palais–Smale condition and let

Ck( f ) = inf
A∈Ak(M)

max
u∈A

f (u), (2.1)

where

Ak(M) = {A ∈ ΣE ∩ M : γ (A) ≥ k}. (2.2)

If Ck( f ) ∈ R, then Ck( f ) is a critical value for f. Moreover, if c≡ Ck( f ) = · · · = Ck+m( f ),
thenγ (Kc) ≥ m+ 1. In particular, if m> 1, then Kc, the set of critical points corresponding to
the value c, contains infinitely many elements.

It is clear thatthe functional(1.4) verifies theconditions ofTheorem 2.1. Then we write
Σ = ΣH1

0(Ω)
, and for eachk ∈ N,

Ak = Ak(M) and ck = Ck(J) = J(ŵk) ∈ (0,∞),

Remark 2.1. With this it is clear that

wk ≡ (2ck)
1/(p−1) · ŵk

is a solution of(P).

In our study it will be convenient to have an intermediate problem. Givenδ > 0 we write
Ω δ = {x ∈ R

N : dist(x,Ω) < δ}, and consider the problem{
�u + |u|p−1u = 0, in Ω δ,

u = 0, on∂Ω δ (Pδ)

with the functional

Jδ(u) ≡ 1

2

∫
Ω δ

|∇u|2dx (2.3)

defined onMδ = {u ∈ H1
0(Ω

δ) : ‖u‖L p+1(Ω δ) = 1}. Here we write Σ δ = ΣH1
0(Ω

δ), and for each
k ∈ N

Aδ
k = Ak(Mδ) and cδk = Ck(J

δ) = Jδ(ŵδk) ∈ (0,+∞).

It is clear thatthe functionwδk = (2cδk)
1/(p−1)ŵδk is a solution of(Pδ).

Theorem 2.1can also be applied to(Pε). In fact, thecompactness of the embeddingHε ⊂
Lq(RN), q ∈ [2,2∗), can be proved applying the Fr´echet–Kolmogorov theorem ([4, Corollary
IV.26]); and with this, it is proved that the corresponding functional is C1 and satisfies the
Palais–Smale condition in the manifoldMε. Weput

Σε = ΣHε , ∀ε > 0,

and, for everyk ∈ N and everyε > 0,

Ak,ε = Ak(Mε) and ck,ε = Ck(Jε) = Jε(ŵk,ε).
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Remark 2.2. With this it is clear that

vk,ε = (2ε2ck,ε)
1/(p−1) · ŵk,ε

is a solution of(Pε) and

wk,ε ≡ (2ck,ε)
1/(p−1) · ŵk,ε

is a solution of(P′
ε).

Remark 2.3. Assuming further that the potential is of class Cα , using the well-known regularity
theory, it can be proved that each ‘solution’ which appears in this paper is a classical one and
belongs to the class C2,α.

3. Limits for the critical values

This section is devoted to proving (iii) ofTheorem 1.1. As discussed in the last section,
the multiplicity result is based on the Ljusternik–Schnirelman theory for even functionals. The
indicesk of the critical values represent the topological characteristic of the level set, as captured
by the Krasnoselski genus.

Thus, our main result in this section corresponds to proving that the level sets ofJε andJ for
the Ljusternik–Schnirelman values are topologically equivalent. Actually we prove

Theorem 3.1.For every k∈ N, wehave

lim
ε→0

ck,ε = ck. (3.1)

The proof of this theorem is divided into several steps as given by the following lemmas.

Lemma 3.1. For every k∈ N and everyε > 0, wehave

ck,ε ≤ ck. (3.2)

Proof. If we identify eachu ∈ H1
0(Ω) with its extension by zero outsideΩ then we have

H1
0(Ω) ⊂ Hε. We also have that‖u‖ε = ‖u‖H1

0 (Ω)
, for all u ∈ H1

0(Ω), and clearlyAk ⊂ Ak,ε.
Henceck,ε ≤ ck, for everyk ∈ N. �

Now thecrucial lemma

Lemma 3.2. Let k ∈ N andσ > 0. Givenδ > 0 small, there exists aεδ > 0 suchthat

cδk ≤ ck,ε + σ, (3.3)

for everyε ∈ (0, εδ).
Proof. According to the definition of theck,ε, givenε > 0 (in principle without restrictions), we
chooseAσ (ε) ∈ Ak,ε in such a way that

max
v∈Aσ (ε)

Jε(v) ≤ ck,ε + σ

3
(3.4)

holds. Then, byLemma 3.1,

Jε(v) ≤ ck + σ

3
≡ bk,σ , ∀v ∈ Aσ (ε). (3.5)
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Fromhere we directly obtain that

1

2

∫
RN

|∇v|2 ≤ bk,σ , ∀v ∈ Aσ (ε) (3.6)

and

bk,σ ≥ 1

2

∫
RN\Ω

V(x)

ε2 v2 ≥ 1

2

∫
RN\Ω δ

V(x)

ε2 v2, ∀v ∈ Aσ (ε) (3.7)

∀δ > 0. Here we notice that the constantbk,σ does not depend onε. Now, putting Vρ ≡
infx∈RN\Ωρ V(x), we have

‖v‖L2(RN\Ω δ) ≤
(

2bk,σ

Vδ

)1/2

ε, ∀δ > 0, ∀v ∈ Aσ (ε). (3.8)

From(3.6)and using the Sobolev–Gagliardo–Nirenberg inequality we get

‖v‖L2∗
(RN) ≤ Cb1/2

k,σ , ∀v ∈ Aσ (ε), (3.9)

for some constantC. Thus, we conclude

lim
ε→0

max
v∈Aσ (ε)

‖v‖L p+1(RN\Ω δ) = 0, ∀δ > 0. (3.10)

In fact, gettingα ∈ (0,1) suchthat 1
p+1 = (1−α)

2 + α
2∗ , it follows by interpolation, considering

(3.8)and(3.9), that

‖v‖L p+1(RN\Ω δ) ≤ ηε1−α, ∀v ∈ Aσ (ε), ∀δ > 0, (3.11)

with

η = η(δ, k, σ,q) = C

(
bk,σ

V1−α
δ

)1/2

.

From(3.10)it is clear that, givenδ > 0 ands> 0, we can get aε1 = ε1(δ, s) > 0 such that

max
v∈Aσ (ε)

‖v‖L p+1(RN\Ω δ) ≤ δs, ∀ε ∈ (0, ε1[ (3.12)

and thus, in particular fors = 1,

‖v‖L p+1(Ω δ) ≥ 1 − δ, ∀v ∈ Aσ (ε), ∀ε ∈ (0, ε1[,∀δ > 0. (3.13)

From now on we will assume that 0< δ < 1. We choose a cut-off functionφδ ∈ C∞
0 (R

N) such
thatφδ ≡ 1 in Ω δ/2 andφδ ≡ 0 in R

N \ Ω δ,

0< φδ(x) < 1 and |∇φδ(x)| ≤ 1

δr
∀x ∈ Ω δ \ Ω δ/2, (3.14)

for somer > 1. Now we define foru ∈ Mε

φδ[u] ≡ φδu

‖φδu‖L p+1(RN)

, (3.15)

and we claim that

φδ[Aσ (ε)] ∈ Aδ
k, ∀ε ∈ (0, ε1). (3.16)
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In fact, as a consequence of the concentration property given in(3.13), for all v ∈ Aσ (ε), for all
ε ∈ (0, ε1),∫

Ω δ

|φδv|p+1 =
∫
Ω δ/2

|v|p+1 +
∫
Ω δ\Ω δ/2

|φδv|p+1 ≥
(

1 − δ

2

)p+1

, ∀δ ∈ ]0,1[,

so that

‖φδv‖L p+1(Ω δ) ≥ 1 − δ, (3.17)

and in particular we see thatφδ[·] is well defined and we further conclude that it is continuous.
Then, sinceφδ[·] is odd, from genus properties we have that

γ (φδ[Aσ (ε)]) ≥ k, ∀ε ∈ (0, ε1).

Hence, considering(3.16)and the definition ofcδk, we get

cδk ≤ max
v∈φδ[Aσ (ε)]

Jδ(v), ∀ε ∈ (0, ε1). (3.18)

Let us take now an elementu ∈ Aσ (ε) suchthatv̄ ≡ φσ [u] satisfies

max
v∈φδ[Aσ (ε)]

Jδ(v) ≤ Jδ(v̄)+ 1

3
σ. (3.19)

At this stage, we observe that in order to complete the proof of the lemma it is enough to prove
the existence of an elementw ∈ Aσ (ε) satisfying

Jδ(v̄) ≤ Jε(w)+ 1

3
σ. (3.20)

In fact, from(3.4)and(3.18)–(3.20), we have

cδk ≤ Jδ(v̄)+ 1

3
σ ≤ Jε(w)+ 2

3
σ ≤ max

u∈Aσ (ε)
Jε(u)+ 2

3
σ ≤ ck,ε + σ.

We devotethe rest of the proof to finding such aw. For v̄ = φσ [u], a direct computation gives

‖φδu‖2
L p+1(R)

Jδ(v̄) ≤
∫
Ω δ

u2|∇φδ|2 + 2uφδ∇u∇φδ + φ2
δ |∇u|2

≤
∫
Ω δ

u2|∇φδ|2 + 2uφδ∇u∇φδ +
∫
RN

|∇u|2 + V(x)

ε2
u2

whence

(1 − δ)2Jδ(v̄) ≤ Jε(u)+
∫
Ω δ\Ω δ/2

u2|∇φδ|2 + 2u|∇u||∇φδ|

≤ Jε(u)+ 1

δ2r

∫
Ω δ\Ω δ/2

u2 + 2

δr

∫
Ω δ\Ω δ/2

u|∇u|

≤ Jε(u)+ C

δ2r

(∫
Ω δ\Ω δ/2

u2
)1/2

where we have used(3.14), (3.17), (1.3), (3.6)and the Cauchy–Schwartz inequality. We observe
that the constantC depends onk throughbk,σ . Then, using Hölder inequality, considering(3.12)
and takings> 2r , we get decreasingε1 if necessary

(1 − δ)2Jδ(v̄) ≤ Jε(u)+ Cδs−2r , ∀ε ∈ (0, ε1). (3.21)
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Here, ifδ ∈
(
0, 1

4

)
then 1

2 Jδ(v̄) ≤ Jε(u)+ Cδs−2r ≤ bk,σ + Cδs−2r . So,from (3.21)we get

Jδ(v̄) ≤ Jε(u)+ Cδs−2r + 2δ(bk,σ + Cδs−2r ).

Fromhere we obtain(3.20)putting u = w whenδ ∈
(
0, 1

4

)
is small enough andε ∈ (0, ε1). �

Lemma 3.3. Given k∈ N andδ > 0, wehave

cδk ≤ ck.

Proof. We identify eachu ∈ H1
0(Ω) with its extension by zero toΩ δ \ Ω . In this sense we have

H1
0(Ω) ⊂ H1

0(Ω
δ) and‖u‖H1

0 (Ω
δ) = ‖u‖H1

0 (Ω)
, for all u ∈ H1

0(Ω). Thus, it is clear thatAk ⊂ Aδ
k

and thencδk ≤ ck, for everyk ∈ N. �

Lemma 3.4. Given k∈ N andσ > 0, thereexists δσ > 0 suchthat

ck ≤ cδk + σ,

for everyδ ∈ (0, δσ ).
Proof. According to the definition ofcδk, givenδ > 0 we may chooseBσ (δ) ∈ Aδ

k suchthat

max
v∈Bσ (δ)

Jδ(v) ≤ cδk + σ

3
. (3.22)

Then, fromLemma 3.3, we get

Jδ(v) ≤ ck + σ

3
≡ bk,σ , ∀v ∈ Bσ (δ). (3.23)

Now we choose aδ0 = δ0(Ω) > 0 so that for every δ ∈ (0, δ0) we can associate a
diffeomorphismψδ = (ψ

(1)
δ , . . . , ψ

(N)
δ ) ∈ C1(Ω; Ω δ) suchthat

|ψδ(x)− x| ≤ O(δ) and |Dψδ(x)− IN | ≤ O(δ) ∀x ∈ Ω, (3.24)

and

ψδ(∂Ω) = ∂Ω δ. (3.25)

Here IN denotes theN × N identity matrix. Now we define the applicationΓδ[·] : H1
0(Ω

δ) →
H1

0(Ω) as

Γδ[v](x) = v ◦ ψδ(x)
‖v ◦ ψδ‖L p+1(Ω)

, x ∈ Ω ,

for all v ∈ H1
0(Ω

δ) \ {0}. We claim that there existsδ1 ∈ (0, δ0) suchthat

Γδ[Bσ (δ)] ∈ Ak, ∀δ ∈ (0, δ1). (3.26)

We see that in order toprove(3.26)it suffices to show thatΓδ is well defined and continuous,
since clearlyΓδ is odd. We do this now.

First, weobserve that from(3.24), for everyη > 0, there exists aδ2 = δ2(η) > 0, δ2 ≤ δ1,
suchthat

1 − η ≤ detDψδ(x) ≤ 1 + η, ∀x ∈ Ω, ∀δ ∈ (0, δ2). (3.27)



ARTICLE  IN  PRESS
P. Felmer, J. Mayorga-Zambrano / Nonlinear Analysis( ) – 11

Fromnow on we assume thatδ ∈ (0, δ2). Let v be an arbitrary element in H1
0(Ω

δ) \ {0}. Then,
from (3.27)and the formula of change of variables we get

‖v ◦ ψδ‖p+1
L p+1(Ω)

≥ |1 + η|−1
∫
Ω

|v ◦ ψδ|p+1detDψδ(x)

≥ |1 + η|−1
∫
Ω δ

|v|p+1.

Thus, in particularv ◦ ψδ 	= 0, for everyv ∈ H1
0(Ω

δ). Usingagain(3.27)we obtain that for all
v ∈ H1

0(Ω
δ) \ {0}

‖v‖L p+1(Ω δ)

|1 + η|1/(p+1)
≤ ‖v ◦ ψδ‖L p+1(Ω) ≤ ‖v‖L p+1(Ω δ)

|1 − η|1/(p+1)
.

Let us prove next that

Γδ(v) ∈ H1
0(Ω) \ {0}, ∀v ∈ H1

0(Ω
δ) \ {0}. (3.28)

Let i ∈ {1, . . . , N} andw ∈ C∞
0 (Ω

δ) \ {0}, then we have

Di Γδ[w](x) =

N∑
j =1

gi, j (x)

‖w ◦ ψδ‖L p+1(Ω)
, x ∈ Ω,

wheregi, j (x) = Djw(ψδ(x)) · Diψ
( j )
δ (x). Then, from (3.27)and using the formula of change

of variables again, we get

∫
Ω

∣∣∣∣∣
N∑

j =1

gi, j (x)

∣∣∣∣∣
2

≤
∫
ψ−1
δ (Ω δ)

N∑
j =1

|gi, j (x)|2detDψδ(x)

detDψδ(x)

≤ C
∫
Ω δ

N∑
j =1

|Djw|2,

whereC = (1−η)−1
(

max x∈Ω
j =1,...,N

|Diψ
( j )
δ (x)|2

)
. Moreover, from(3.25)we haveΓδ[w]|∂Ω = 0

and thenΓδ[w] ∈ H1
0(Ω). Thus we have proved thatΓδ[w] ∈ H1

0(Ω) \ {0} and

‖Γδ(w)‖H1
0 (Ω)

≤ K‖w‖H1
0 (Ω

δ), ∀w ∈ C∞
0 (Ω

δ), (3.29)

for certain K = K (η, δ, N). Using a density argument we extend this inequality to all H1
0(Ω

δ).
Fromhere we obtain(3.28)and the continuity ofΓδ[·]. Finally, from (3.28)and(3.29), weobtain
(3.26)proving the claim.

Now, considering(3.26)and the definition ofck, it follows that

ck ≤ max
u∈Γδ[Bσ (δ)]

J(u). (3.30)

On the other hand, let us takev ∈ Bσ (δ) suchthatu = Γδ[v] satisfies

max
u∗∈Γδ[Bσ (δ)]

J(u∗) ≤ J(u)+ σ

3
. (3.31)
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At this stage, if we find an elementw ∈ Bσ (δ) suchthat J(u) ≤ Jδ(w) + σ
3 then we complete

the proof of the lemma. In fact, from(3.22), (3.30)and(3.31),

ck ≤ J(u)+ σ

3
≤ Jδ(w)+ 2σ

3

≤ max
w∈Bσ (δ)

Jδ(w)+ 2σ

3
≤ cδk + σ. (3.32)

To finish then, let us find such aw. Choosingδ ∈ (0, δ2) small enough, foru = Γδ[v] we have

J(u) = 1

2
‖v ◦ ψδ‖−1

L p+1(Ω)

∫
Ω

N∑
i=1

N∑
j =1

|gi, j |2

≤ 1

2
(1 + η)1/(p+1)

∫
Ω

N∑
i=1

N∑
j =1

[δi, j + O(δ)]2|Dj v(ψδ(x))|2

≤ (1 + η)1/(p+1)[1 + O(δ)]2
∫
Ω

N∑
j =1

|Dj v(ψδ(x))|2detDψδ(x)

(1 − η)

≤ (1 + η)1/(p+1) [1 + O(δ)]2
(1 − η)

Jδ(v). (3.33)

We see that we can choosew = v. Here we used(3.23)and(3.24)and the fact that‖v‖L p+1(Ω δ)

= 1. �

Proof of Theorem 3.1.Letσ > 0 be small. ConsideringLemma 3.4, we choose aδ ∈ (0, δσ/2);
then, from Lemma 3.2, there exists a εδ > 0 (implicitly depending onσ ) such that ck ≤
cδk + σ/2 ≤ ck,ε + σ , for everyε ∈ (0, εδ). Because ofLemma 3.1, we conclude sinceσ > 0 is
arbitrary. �

4. Asymptotic profiles andconcentration phenomena

In this section we study the asymptotic behavior of the solutions, both insideΩ and outside
Ω . Throughout this section we use the notation introduced inSection 2.

Lemma 4.1. For every k ∈ N, asε → 0, wk,ε sub-converges weakly to a uk ∈ H1(RN) such
that its restriction toΩ is a solution of(P), with J(ûk|Ω ) = ck, for ûk = (2ck)

1/(1−p)uk.

Proof. First, we prove that forεδ small we have that

‖ŵk,ε‖H1(RN) ≤ K1, ∀ε ∈ (0, εδ), (4.1)

whereK1 > 0 is a constant, depending only onk. FromLemma 3.1, we get

‖∇ŵk,ε‖2
L2(RN )

≤ 2ck, ∀ε ∈ (0, εδ), (4.2)

that is∫
RN

|∇ŵk,ε|2 ≤
∫
RN

|∇ŵk|2, (4.3)

and then, as a consequence of Gagliardo–Nirenberg inequality,

‖ŵk,ε‖L2∗
(RN) ≤ Cc1/2

k , (4.4)
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for some constantC only depending onN. GivenR ≥ 1, we have

‖ŵk,ε‖2
L2(RN)

= ‖ŵk,ε‖2
L2(RN\Ω R)

+ ‖ŵk,ε‖2
L2(Ω R)

≤ 2ck

VR
ε2 + ‖ŵk,ε‖2

L2∗
(Ω R)

· |Ω R|2/N

≤ 2ck

VR
+ ‖ŵk,ε‖2

L2∗
(RN)

· |Ω R|2/N, (4.5)

where we have used the H¨older inequality and the relation

‖ŵk,ε‖L2(RN\Ω δ) ≤
(

2ck

Vδ

)1/2

ε, ∀ε ∈ (0, εδ),∀δ > 0, (4.6)

which comes from(3.8). Then, because of(4.2), (4.4)and puttingR = 1,

‖ŵk,ε‖2
H1(RN)

= ‖∇ŵk,ε‖2
L2(RN)

+ ‖ŵk,ε‖2
L2(RN)

≤ K1.

From the estimate(4.1), there exists aûk ∈ H1(RN) suchthat ŵk,ε sub-converge weakly and
pointwise toûk ∈ H1(RN), asε → 0.

Now we prove thatuk is a solution of(P). Sinceŵk,ε ∈ Mε is a critical point forJε, we have∫
RN

∇ŵk,ε∇φ + V(x)

ε2
ŵk,εφ = λk,ε

∫
RN

|ŵk,ε|p−1ŵk,εφ, ∀φ ∈ H1(RN), (4.7)

whereλk,ε = 2ck,ε is the Lagrange multiplier. Then, since∫
RN

V(x)

ε2
ŵk,εφ = 0, for all φ ∈ C∞

0 (Ω),

passing to the limit whenε → 0, we have∫
Ω

∇ûk∇φ = λk

∫
Ω

|ûk|p−1ûkφ, ∀φ ∈ C∞
0 (Ω), (4.8)

whereλk = 2ck. Here we have used the fact thatŵk,ε sub-converge in Lp+1(RN) to ûk, which
comes fromLemma 3.1and the compactness of the embeddingHε ⊂ L p+1(RN).

Considering(4.8)and [4, Proposition IX.18], we would be done if we proved that

ûk(x) = 0, a.e.RN \ Ω . (4.9)

In fact, ûk|Ω ∈ H1
0(Ω) would hold, and from(4.8), J(ûk|Ω ) = ck.

Let us prove(4.9). We associate to eachδ > 0,

ε∗δ = min

{
εδ,

Vδ
(2ck)1/2

}
. (4.10)

For every(δ, α) ∈ R
+∗ × R

+∗ we writeSδ,α = {x ∈ R
N \ Ω δ : |ûk(x)| ≥ α}. Let usassume that

there existδ∗, α∗, η > 0 such that |Sδ∗,α∗ | ≥ η > 0. Then, asSδ∗,α∗ ⊂ Sδ,α∗ , for all δ ∈ (0, δ∗)
we have

|Sδ,α∗ | ≥ η > 0, ∀δ ∈ (0, δ∗). (4.11)

Considering (V3), we obtainδ′ ∈ (0, δ∗) suchthat

Vδ <
α2∗η
2
, ∀δ ∈ (0, δ′). (4.12)
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Let δ0 ∈ (0, δ′) be fixed, then we have that∫
Sδ0,α∗

|ûk|2 ≥ α2∗η. (4.13)

On the other hand, for everyσ > 0 there exists aεσ ∈ (0, ε∗δ ) suchthat

‖ûk‖2
L2(Sδ0,α∗ )

≤ ‖ŵk,ε‖2
L2(Sδ0,α∗ )

+ σ, ∀ε ∈ (0, εσ ).

Thus, forσ = α2∗η
3 andε ∈ (0, εσ [, using(4.6), (4.10)and(4.12), we get∫

Sδ0,α∗
|ûk|2 ≤ σ +

∫
Sδ0,α∗

|wk,ε|2 ≤ α2∗η
3

+
(

2ck

Vδ

)
ε2 <

α2∗η
3

+ Vδ <
5

6
α∗η, (4.14)

which contradicts(4.13). Hence, |Sδ,α| = 0, for all (α, δ) ∈ R
+∗ × R

+∗ , that is,we proved
(4.9). �

Actually we have strongconvergence as the following lemma asserts.

Lemma 4.2. For every k∈ N, asε → 0,wk,ε sub-converge in the norm ofH1(RN) to uk.

Proof. From the compactness of the embeddingHε ⊂ L2(RN), it follows thatŵk,ε sub-converge
in L2(RN) to ûk asε → 0; so

lim
ε→0

∫
RN

|ŵk,ε|2 =
∫
Ω

|ûk|2.

This and(4.3)let us show that

lim sup
ε→0

‖ŵk,ε‖H1(RN) ≤ ‖ûk‖H1(RN),

concluding the proof. �

Our next goal is to obtain an exponential control of the decay of the family{wk,ε} outsideΩ .
For thispurpose we obtain a generalL∞ estimate for solutions of an elliptic inequality, following
the Moser iteration technique. We have

Proposition 4.1. Let D ⊂ R
N be open and connected. Ifw is a classical solution of the elliptic

inequality

�w − f (w) ≥ 0 in D,
w > 0 in D,
w = 0 on ∂D,

(4.15)

where N≥ 3, p + 1 ∈ (2,2∗) and f satisfies

t f (t) ≤ ctp+1, ∀t ∈ R
+, (4.16)

for some constant c > 0 and if moreoverw ∈ H1
0(D) then there exists a constant C=

C(c, p, N) > 0 suchthat

‖w‖L∞(D) ≤ C‖w‖4/[(N+2)−p(N−2)]
L2∗

(D)
. (4.17)
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This result was proved in [5] assuming thatD ⊂ R
N is smooth and bounded. It can be

extended to a not necessarily boundedD or regular∂D. We can follow the step in [5], by
choosing a slightly modified test function depending on a parameter, in order to avoid the possible
non-regularity of the boundary. We omit the details.

Lemma 4.3. For every k∈ N there exists a K2 > 0 suchthat

‖wk,ε‖L∞(RN) < K2, ∀ε ∈ (0, εδ). (4.18)

Proof. Givenε ∈ (0, εδ), we considerD+
ε a connected component of the set{x ∈ R

N : wk,ε >

0}. So, wehave

�wk,ε +w

p
k,ε ≥ 0 in D+

ε ,

wk,ε > 0 in D+
ε ,

wk,ε = 0 on∂D+
ε ,

(4.19)

hence, from(4.4)andProposition 4.1,

‖wk,ε‖L∞(D+
ε )

≤ K2, ∀ε ∈ (0, εδ), (4.20)

where theconstantK2 depends onN, k and p. Since D+
ε is arbitrary, the inequality holds

in {x ∈ R
N : wk,ε > 0}. By a similar argument we also show that the inequality holds in

{x ∈ R
N : wk,ε < 0}. �

Remark 4.1. Sincevk,ε = ε2/(p−1)wk,ε, it follows fromLemma 4.3that

lim
ε→0

‖vk,ε‖L∞(RN) = 0, ∀k ∈ N. (4.21)

Moreover, since‖uk‖L p+1(RN) 	= 0 for all k ∈ N, it is clear that there exists a constantηk > 0
suchthat

lim inf
ε→0

‖vk,ε‖L∞(RN)

ε2/(p−1)
≥ ηk > 0. (4.22)

In order to obtain the exponential decay ofwk,ε, we shallgive a comparison argument as in
[6]. We consider a positivesolution for the problem


�U − 2bU = 0 in R

N \ Ω δ,

U = a on∂Ω δ,

lim|x|→∞ U(x) = 0,
(4.23)

wherea,b> 0. Such a solution satisfies

U(x) ≤ C exp{−b · dist(x,Ω δ)}, ∀x ∈ R
N \ Ω δ (4.24)

for some constantC depending ona andΩ δ, see [6, Lemma 2.7].

Lemma 4.4. For every k∈ N, δ, c > 0, thereexists ε∗∗ ∈ (0, εδ) suchthat

|wk,ε(x)| < C · exp
{
−c

ε
· dist(x,Ω δ)

}
, ∀x ∈ R

N ,∀ε ∈ (0, ε∗∗), (4.25)

where C depends on K2 andΩ δ.
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Proof. Let ε∗ ∈ (0, εδ) suchthat Vδ > (K2 + 2c/ε∗)ε2∗. Then, from Lemma 4.3and for all
ε ∈ (0, ε∗) andx ∈ R

N \ Ω δ, we have that

Fk,ε(x) ≡ V(x)

ε2 − |wk,ε|p−1 ≥ Vδ
ε2 − K2 > 2

c

ε
.

Now we considerU a solution to problem(4.23)with a = K2 andb = c/ε. Then,

�U − Fk,ε(x)U ≤ 0 in R

N \ Ω δ,

U = K2 on∂Ω δ,

lim|x|→∞ U(x) = 0,
(4.26)

from where it follows that

�(U −wk,ε)− Fk,ε(x)(U − wk,ε) ≤ 0 in R

N \ Ω δ,

U −wk,ε > 0 on∂Ω δ,

lim|x|→∞(U(x)−wk,ε(x)) = 0.
(4.27)

Now it is clear that

wk,ε(x) ≤ U(x), ∀x ∈ R
N \ Ω δ.

Analogously we can prove that

−U(x) ≤ wk,ε(x), ∀x ∈ R
N \ Ω δ.

Then, using(4.24)weobtain

|wk,ε(x)| ≤ C exp
{
−c

ε
dist(x,Ω δ)

}
, ∀x ∈ R

N \ Ω δ,

and enlargingC is necessary, we finally get the inequality in allR
N . �

5. Asymptotic behavior at the boundary

We already know that the sequencewk,ε converges in H1(R) to a functionu which is a solution
of (P) in Ω . By elliptic regularity it is not hard to prove that on each compact setD ⊂ Ω , the
convergence ofwk,ε to u is uniform onD. On theother hand, outsideΩ , namely in Ω δ, we have
exponential decay according toLemma 4.4. Theuniform behavior ofwk,ε on the boundary ofΩ
is not covered by these two arguments. In this section we prove

Proposition 5.1. The family of solutionswk,ε verifies

lim
ε→0

max
x∈∂Ω

|wk,ε(x)| = 0, ∀k ∈ N. (5.1)

For proving this proposition we see two preliminary lemmas. Letδ > 0 be small enough that
the setΩδ ≡ {x ∈ Ω : dist(x, ∂Ω) > δ} is not empty. We define the ring around∂Ω as
R(δ) = Ω δ \ Ωδ and we considerMε(δ) = maxx∈∂R(δ) |wk,ε(x)| for k ∈ N fixed. First we show
that

Lemma 5.1. Givenσ > 0, thereexists δσ > 0 suchthat

max
x∈R(δ)

|wk,ε(x)| ≤ Mε(δ)+ σ, ∀δ ∈ (0, δσ ). (5.2)
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Proof. For notational convenience we writew = wk,ε and R±(δ) = {x ∈ R(δ) : ±w > 0}.
Then we have{±�w ± |w|p−1w ≥ 0, in R±(δ),

±w ≥ 0, on∂R±(δ). (D±)

We consider only(D+) since the other case is analogous. We putv = w − Mε(δ) to get{
�v ≥ f, in R+(δ),
v ≤ 0, on∂R+(δ) (5.3)

where f ≡ −|w|p−1(Mε(δ) + v). Then, using the Alexandroff Maximum Principle ([18,
Theorem 2.21]), we obtain

sup
R+(δ)

v ≤ C · ‖ f −‖L N(R+(δ)) ≤ C|R+(δ)|1/N K p−1
2 (Mε(δ)+ sup

R+(δ)
v),

whereC = C(N,diam(Ω)) > 0. Now choosingδσ > 0 small enough, we get

sup
R+(δ)

w ≤ Mε(δ)+ σ, ∀δ ∈ (0, δσ ). (5.4)

In a similar way, decreasingδσ if necessary, we find also

inf
R−(δ)

w ≥ −Mε(δ)− σ, ∀δ ∈ (0, δσ ), (5.5)

completing the proof of the lemma.�

Next we control the values ofw on∂R(δ), that is

Lemma 5.2. Givenσ > 0, there existδ′, ε′ > 0 suchthat

Mε(δ
′) < σ, ∀ε ∈ (0, ε′). (5.6)

We observe thatwith this lemma andLemma 5.1we can complete the proof ofProposition 5.1.
In fact∂Ω ⊂ R(δ) and so maxx∈∂Ω |wk,ε(x)| ≤ maxx∈R(δ) |wk,ε(x)|.
Proof of Lemma 5.2. Denoting

mδ(ε) = max
x∈∂Ωδ

|wk,ε(x)| and mδ(ε) = max
x∈∂Ω δ

|wk,ε(x)|,

we see that we need to show thatmδ(ε) andmδ(ε) are controlled byσ . First, we seethat

lim
ε−→0

mδ(ε) = 0.

In fact, outsideΩ δ/2, wk,ε decay exponentially, as proved inLemma 4.4; thenwk,ε → 0
uniformly in ∂Ω δ. Second, we studymδ(ε). We denote byKck the set of critical points of the
functionalJ corresponding to the critical valueck. According toLemmas 4.1and4.2, thereexists
u ∈ Kck and a sequence{εn}n∈N such that limn→∞ εn = 0 andwk,εn ≡ wn → u in H1(RN)

and pointwise. We chooseη > 0 such thatRδ(η) = Ωδ−η \ Ωδ+η verifies Rδ(η) ∩ ∂Ω = ∅.
From elliptic estimates, we see that for each compact setD ⊂ Ω , the convergence ofwn to u is
uniform in D. Then, in particular, givenσ > 0, there exists ann∗ = n∗(σ,w) ∈ N suchthat

max
x∈Rδ(η)

|wn(x)− u(x)| < σ

2
, ∀n > n∗. (5.7)
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On other hand, sinceu|
RN\Ω = 0 andu is a solution of(P), there exists aδ′ = δ′(σ,w) > 0

suchthat

max
x∈Rδ′ (η)

|u(x)| < σ

2
. (5.8)

Then, from(5.7)and(5.8), we get

mδ′(εn) < σ, ∀n > n∗. (5.9)

We see that the valuesn∗ andδ′ may depend onu. However,one can argue using the compactness
of the setKck , that they can be chosen so they actually depend only onk, butnot on the particular
u ∈ Kck . �
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