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SEMICLASSICAL ASYMPTOTICS OF INFINITELY MANY

SOLUTIONS FOR THE INFINITE CASE OF A NONLINEAR

SCHRÖDINGER EQUATION WITH CRITICAL FREQUENCY

Juan Mayorga-Zambrano, Ariel Aguas-Barreno, Jordy Cevallos-Chávez,
and Leonardo Medina-Espinosa

Abstract. We consider a nonlinear Schrödinger equation with critical

frequency, (Pε) : ε2 ∆v(x) − V (x) v(x) + |v(x)|p−1 v(x) = 0, x ∈ RN ,

and v(x) → 0 as |x| → +∞, for the infinite case as described by Byeon
and Wang. Critical means that 0 ≤ V ∈ C(RN ) verifies Z = {V =

0} 6= ∅. Infinite means that Z = {x0} and that, grossly speaking, the

potential V decays at an exponential rate as x→ x0. For the semiclassical
limit, ε → 0, the infinite case has a characteristic limit problem, (Pinf) :

∆u(x)− P (x)u(x) + |u(x)|p−1 u(x) = 0, x ∈ Ω, with u(x) = 0 as x ∈ Ω,

where Ω ⊆ RN is a smooth bounded strictly star-shaped region related to
the potential V . We prove the existence of an infinite number of solutions

for both the original and the limit problem via a Ljusternik-Schnirelman

scheme for even functionals. Fixed a topological level k we show that
vk,ε, a solution of (Pε), subconverges, up to a scaling, to a corresponding

solution of (Pinf), and that vk,ε exponentially decays out of Ω. Finally,

uniform estimates on ∂Ω for scaled solutions of (Pε) are obtained.

1. Introduction

Semiclassical mechanics is an asymptotic method which has helped to study
a number of quantum mechanics situations, e.g., phenomena involving atomic
and mollecular collisions, by transforming them into classical mechanics objects
which are mathematically easier to deal with. This is done by passing to
the limit when the reduced Planck constant is allowed to tend to zero and,
frequently, the accuracy is good enough, [12].

The time-dependent nonlinear Schrödinger equation,

(1) i~Ψt(x, t) +
~2

2
∆Ψ(x, t)− V0(x)Ψ(x, t) + |Ψ(x, t)|p−1Ψ(x, t) = 0,

arises naturally when studying the evolution of Bose-Einstein condensates, [13],
and it’s also the model for the propagation of light in some nonlinear optical
materials, [14]. Now assume that ~ is no longer a constant but a small positive
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parameter which will decrease to zero. Then a semi-classical state of (1) is
a standing-wave having the form Ψ(x, t) = v(x) exp(−iEt/~), where v, the
time-independent component, verifies

(2) ε2∆v(x)− V (x) v(x) + |v(x)|p−1v(x) = 0,

with ε2 = ~2/2 and V (x) = V0(x)− E.
Let’s assume that Z = {x ∈ RN / V (x) = inf(V )} 6= ∅. The case inf(V ) > 0

is referred to as non-critical and the critical frequency situation corresponds to
inf(V ) = 0. We shall see that the term critical is justified as the qualitative
behaviour of the solutions of (2) changes notably.

For the non-critical framework there is a number of works (see e.g. [1],
[6], [8], [10], [15], [17] and [19]) based on the variational method or on the
Lyapunov-Schmidt reduction. The following are common features:

(N1) a solution of (2), say v̌ε, is bounded away from zero, i.e.,

(3) lim inf
ε→0

max
x
|v̌ε(x)| > 0;

(N2) v̌ε concentrates around some critical points of V ;
(N3) v̌ε exponentially decays to zero away from such critical points; and,
(N4) there is a unique limit problem and, therefore, a unique profile, as

ε→ 0.

The present work helps to complete the study of asymptotic profiles and
concentration phenomena for the critical case that was initiated in [5], and
elaborated afterwards in [7] for infinitely many solutions whenever int(Z) 6= ∅.

Concretely, we will be concerned with

(Pε)

{
ε2∆v(x)− V (x) v(x) + |v(x)|p−1v(x) = 0, x ∈ RN ,
v(x)→ 0, as |x| → +∞,

where p > 1 if N = 1, 2, and

(4) 2 < 1 + p < 2∗ =
2N

N − 2
, if N ≥ 3.

In [5] it’s shown the existence of vε, a positive standing wave, a least energy
solution, for which:

(C1) (3) no longer holds and, instead, the following behaviour is verified:

lim
ε→0
‖vε‖L∞(RN ) = 0,(5)

lim inf
ε→0

‖vε‖L∞(RN )

ε2/(p−1)
> 0;(6)

(C2) vε concentrates around an isolated component of Z = {V = 0};
(C3) vε exponentially decays outside Z; and,
(C4) there is not a unique limit problem so that there is no unique profile;

it actually depends on how the potential V behaves nearby Z.
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In [5] three cases were considered: Flat, where int(Z) 6= ∅ is bounded; Finite,
where Z is finite and V vanishes like a polynomial around it; and, Infinite,
where Z is finite and V vanishes like an exponential function around it. The
limit problem for the finite case is defined on the whole space, meanwhile the flat
and infinite cases have their limit problems defined on appropriate subregions
of RN . In addition, for the three cases, it was proved that

(C5) a scaling of vε converges to u, a positive least-energy solution of the
corresponding limit problem;

(C6) the energy of vε converges to the energy of u.

The work [7] deals with the flat case assuming that the potential satisfies
the following conditions:

(V1) V ∈ C(RN ) is non-negative;
(V2) V (x)→ +∞, as |x| → +∞;

(Vflat) int(Z) 6= ∅ is connected and smooth.

The corresponding limit problem is

(Pflat)

{
∆u(x) + |u(x)|p−1u(x) = 0, x ∈ Z,
u(x) = 0, x ∈ ∂Z.

In [7] it was applied a Ljusternik-Schnirelman machinery to natural even fun-
cionals Iε and I, and was showed the existence of sequences of solutions,
(vk,ε)k∈N and (uk)k∈N, for (Pε) and (Pflat), respectively. Fixed k, the authors
proved that, as ε → 0, the solution vk,ε, not necessarily positive, behaves like
vε, the positive solution found in [5]: (C1)-(C3) and (C6) hold. Point (C5)
holds as well: a scaling of vk,ε subconverges to wk a solution of (Pflat) sharing
the energy level of uk, I(wk) = I(uk). In [7] further asymptotic estimates on
the boundary of Z were obtained.

Remark 1.1. Condition (V2) is more restrictive than the one considered in
[5] were it’s required lim inf

|x|→+∞
V (x) > 2β, for some β > 0. In other hand,

condition (V2) allows us to use Theorem 2.11, a Sobolev-like embedding, and,
as a consequence, be able to apply Theorem 3.3, our multiplicity tool.

In short, we show in this paper that the type of results of [7] hold for the
infinite case. The document is organized in the following way

• In Section 2.1 we state, in a precise way, the general setting which
characterize the infinite case: conditions (V3) and (Vinf). This allows
us to introduce the main results in Section 2.2.

• In Section 2.3 we present a number of properties of the potential V
derived from (V3) and (Vinf). This is also the place for the important
Theorem 2.11 which states that a kind of Sobolev space, where the
solutions of (Pε) are found, is compactly contained in a range of Lq-
spaces.
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• In Section 3 a Ljusternik-Schnirelman scheme for even functionals is
set up to obtain the multiplicity result, Theorem 2.3.
• In Section 4 we prove Theorem 2.4 which provides energy asymptotics,

i.e., that the energy of each solution vk,ε of (Pε) converges, as ε → 0,
to the energy of a corresponding solution of the limit problem, (Pinf).
In the context of the Ljusternik-Schnirelman theory, the index k rep-
resents the topological characteristic of the level set, so that this result
implies that the k-th level sets of appropriate functionals associated to
(Pε) and (Pinf) are topologically equivalent.
• Section 5 is devoted to the proof of Theorem 2.5, i.e., the asymptotic

profiles of the solutions of (Pε) inside Ω ⊆ RN , a smooth bounded
stricly star-shaped domain related to the potential V .
• Section 6 is dedicated to the proof of Theorem 2.6, an asymptotic

concentration phenomena, the exponential decay of the solutions of
(Pε) out of Ω.
• Finally, Section 7 is the place for the proof of Theorem 2.7, which is a

type of uniform estimate on ∂Ω for scaled solutions of (Pε).

2. Main results and preliminaries

2.1. Infinite case setting

We study the problem (Pε) where, in addition to properties (V1) and (V2),
we shall assume that V verifies two more conditions which replace (Vflat). One
of them is

(V3) Z = {0}.

The second condition, (Vinf) below, differentiates our situation with that of
the finite case. For its statement we need a couple of concepts.

Let Ω ⊆ RN be a smooth bounded stricly star-shaped domain, i.e., there
exists a ball B ⊆ Ω such that given any x ∈ B and any y ∈ Ω, [x, y] ⊆ Ω. It’s
well known, [18], that for q ≥ 1, Ω is a q-Poincaré domain, i.e., there existsMq >

0 such that for every u ∈ C1(Ω), ‖u− uΩ‖Lq(Ω) ≤ Mq

(∫
Ω
|∇u(x)|q dx

)1/q
,

where uΩ denotes the average of u over Ω. We assume that Ω is generated by
a positive function r ∈ C(RN \ {0}) that verifies

t = r(x) ⇒ x/t ∈ ∂Ω,

t > r(x) ⇒ x/t ∈ Ω,

t < r(x) ⇒ x/t ∈ RN \ Ω.

(7)

Point (7) implies that every non-zero point is well determined by a point in the
boundary of Ω, i.e., given x ∈ RN \ {0} there exists a unique s(x) ∈ ∂Ω such
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that x = r(x) s(x). Also observe that

r(x) = 1 ⇔ x ∈ ∂Ω,

r(x) > 1 ⇔ x ∈ RN \ Ω,

r(x) < 1 ⇔ x ∈ Ω,

(8)

and r (x/t) = r(x)/t, for every x ∈ RN \ {0} and every t > 0.
Let’s consider b ∈ C(RN ), an Ω-quasi homogeneous function. This means

that there exists a function β : [0,+∞[→ R such that

b1) b(x) = β(r(x)), for every x ∈ RN ;
b2) β is non-negative and strictly-increasing;
b3) given L = lim

r→0
β(cr)/β(r), it holds L < 1 if c < 1 and L > 1 if c > 1.

We also consider a ∈ C(RN ), an asymptotically (Ω, b)-quasihomogeneous func-
tion, i.e., a is positive and a(x)/b(x) → 1, as |x| → 0. Now we can write the
condition for the potential that characterizes the infinite case:

(Vinf) V (x) = exp (−1/a(x)) if |x| ≤ 1.

Let’s introduce some more objects to state our main results in the following
section. Given ε > 0 and x ∈ RN we put

(9) g(ε) =
1

b−1

(
−1

ln (ε2)

) and Vε(x) =
1

[ε g(ε)]2
V

(
x

g(ε)

)
.

Remark 2.1. The following problems are closely related to (Pε):

(P′ε)

{
∆w(x)− Vε(x)w(x) + |w(x)|p−1w(x) = 0, x ∈ RN ,
w(x)→ 0, as |x| → +∞,

(P̂ε)

{
∆ŵ(x)− Vε(x) ŵ(x) + 2Θ |ŵ(x)|p−1ŵ(x) = 0, x ∈ RN ,
ŵ(x)→ 0, as |x| → +∞,

where Θ = (ŵ, ŵ)ε/2, and

(10) (u, v)ε =

∫
RN

[∇u(x)∇v(x) + Vε(x)u(x)v(x)] dx.

In fact, if ŵ is a solution of (P̂ε), then

w(x) = (2Θ)1/(p−1)ŵ(x), x ∈ RN ,

is a solution of (P′ε), and

v(x) = [ε g(ε)]2/(p−1) w(g(ε)x) =
[
2Θ · (ε g(ε))2

]1/(p−1)
ŵ(g(ε)x),

x ∈ RN , is a solution of (Pε).
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Remark 2.2. Under (V1), (V2), (V3) and (Vinf), the limit problem of (Pε) is

(Pinf)

{
∆w(x) + |w(x)|p−1 w(x) = 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω.

Related to (Pinf) is the problem

(P̂inf)

{
∆ŵ(x) + 2Υ |ŵ(x)|p−1 ŵ(x) = 0, x ∈ Ω,

ŵ(x) = 0, x ∈ ∂Ω,

where Υ = (ŵ, ŵ)H1
0(Ω)/2. In fact, if ŵ is a solution of (P̂inf), then

w(x) = (2Υ)1/(p−1)ŵ(x), x ∈ Ω,

is a solution of (Pinf). Here, as usual, the Sobolev space H1
0(Ω) is equipped

with the inner-product given by

(u, v)H1
0(Ω) =

∫
Ω

∇u(x)∇v(x) dx.

2.2. Main results

Let Hε be the completion of C∞0 (RN ) with the inner-product given by (10).
The corresponding norm is denoted by ‖·‖ε. We consider the functionals Jε :
Mε ⊆ Hε → R and J :M⊆ H1

0(Ω)→ R given by

Jε(u) =
1

2
‖u‖2ε =

1

2

∫
RN

[
|∇u(x)|2 + Vε(x)|u(x)|2

]
dx,(11)

J(u) =
1

2
‖u‖2H1

0(Ω) =
1

2

∫
Ω

|∇u(x)|2dx,

working on the Nehari manifolds Mε = {w ∈ Hε / ‖w‖Lp+1(RN ) = 1} and

M = {w ∈ H1
0(Ω) / ‖w‖Lp+1(RN ) = 1}, respectively.

Now we present our main results. We shall always assume that (V1)-(V3)
and (Vinf) hold. We start with the multiplicity result.

Theorem 2.3. The following points are true.

i) Given ε > 0, the functional Jε has a sequence of different critical points
(ŵk,ε)k∈N ⊆Mε. For each k ∈ N the function given by

(12) vk,ε(x) =
[
2ck,ε (ε g(ε))2

]1/(p−1)
ŵk,ε

(
x

g(ε)

)
, x ∈ RN ,

where ck,ε = Jε(ŵk,ε), is a weak solution of (Pε).
ii) The functional J has a sequence of different critical points (ŵk)k∈N ⊆
M. For each k ∈ N function given by

wk(x) = (2ck)
1/(p−1)

ŵk(x), x ∈ Ω,

where ck = J(ŵk) is a weak solution of (Pinf).
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We apply a Ljusternik-Schnirelman scheme to prove Theorem 2.3. In this
context, the index k of a critical value represents the topological characteristic
of the level set, as captured by Krasnoselskii’s genus. Consequently, the con-
vergence of energies which we are about to state implies that the critical values
of J and Jε are topologically equivalent.

Theorem 2.4. Let k ∈ N. Then, ck,ε → ck, as ε→ 0.

In the following result we provide the asymptotic profiles of the solutions
of (Pε) that we found in Theorem 2.3. To state it, we need the concept of
subconvergence as introduced in [5]. A family of functions (fε)ε>0 is said to
subconverge in a space X, as ε → 0, iff every sequence (εn)n∈N converging
to zero, has a subsequence (εni)i∈N such that

(
fεni

)
i∈N converges in X, as

i→ +∞.

Theorem 2.5. Let k ∈ N. As ε → 0, (wk,ε)ε>0 subconverges in H1(RN ) to
some uk ∈ H1(RN ) such that its restriction to Ω is a solution of (Pinf) and
verifies J(ûk|Ω) = ck, where ûk = (2ck)1/1−puk.

Next, we have the result concernig the exponential decay of the solutions of
(Pε) out of Ω. Given h > 0, let’s denote

(13) Ωh = {x ∈ RN / dist(x,Ω) < h}.

Theorem 2.6. Let k ∈ N and δ > 0. Then there exist εδ > 0 and C =
C(N, k, p, δ) > 0 such that

∀ε ∈]0, εδ[,∀x ∈ RN : |ŵk,ε(x)| < C

(2ck)1/(p−1)
exp

(
γδ,ε dist(x,Ωδ)

)
,

where γδ,ε = γδ,ε(N, k, p)→ −∞, as ε→ 0.

Let’s remark that in the path of proving Theorem 2.6 we show, for each
k ∈ N, that vk,ε verifies (5) and

lim inf
ε→0

‖vk,ε‖L∞(RN )

[2ck,ε(εg(ε)2)]1/(p−1)
> 0,

which is qualitatively analogous to (6).
To finish this section let’s present a type of uniform estimate on ∂Ω that

was first found in [7] for the solutions of (P′ε) in the flat case.

Theorem 2.7. Let k ∈ N. Then, maxx∈∂Ω |wk,ε(x)| = 0, as ε→ 0.

2.3. Preliminary results

Let’s first state some useful properties that involve the functions g, Vε, b
and β which come from points (7), b1), b2) and b3).

The functions g and Vε are given in (9) so that, by (Vinf),

Vε(x) =
1

[ε g(ε)]2
exp

(
− 1

a (x/g(ε))

)
, |x| ≤ g(ε).
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As it’s stated in [5], we have that

lim
ε→0

g(ε) = +∞;

∃α > 0 : lim
r→0

β(r)

rα
= 0 ∧ lim

ε→0

g(ε)

| ln(ε)|1/α
= 0;

∀c > 0 : lim
ε→0

1

g2(ε)
exp

(
c

b (1/g(ε))

)
= lim
ε→0

1

[εcg(ε)]2
= +∞.(14)

The following property is an easy consequence of point (22) in [5].

Proposition 2.8. For every measurable B ⊆ Ω, ‖Vε‖L∞(B) → 0, as ε→ 0.

Now we rewrite point (23) of [5] for our context.

Proposition 2.9. There exists D ∈]0, 1[ such that for all d > 1,

(15) lim
ε→0

min
x∈Rε,D,d

Vε(x) = +∞,

where Rε,D,d = {x ∈ RN / |x| ≤ Dg(ε) ∧ r(x) ≥ d}.

Remark 2.10. By (8), the region Rε,D,d is the set of points in the closed ball
centered at zero and of radius Dg(ε) which are out of the expanded star Ωh0 =
{x ∈ RN / r(x) < d}, where h0 > 0 is the value compatible with (13).

In short, the following result states that a weighted Sobolev space such that
the weight function verifies (V1)-(V2) is compactly contained in a range of Lq

spaces.

Theorem 2.11. Let W ∈ C(RN ) be non-negative and such that W (x)→ +∞
as |x| → +∞ and HW the Hilbert space that results of completing C∞0 (RN )
with the inner-product given by

(v, w)W =

∫
RN

[∇v(x)∇w(x) + U(x) v(x)w(x)] dx.

Then, the embedding HW ⊆ Lq(RN ) is compact for all q ∈ [2, Q[, where Q = 2∗

if N ≥ 3 and Q = +∞ if N = 1, 2.

Theorem 2.11 is well known and has been extended to the context of W1,p(RN )
spaces, [2, Lemma 2.4]. It can be obtained by an application of Fréchet-
Kolmogorov compactness criteria, [3, Cor. 4.26 & 4.27], by compensating the
non-boundedness of the domain with the property of W exploding at infinity.

Given an open set U ⊆ RN , we shall always identify a function u ∈ H1
0(U)

with its extension by zero, u,

u(x) =

{
u(x), if x ∈ U ;

0, if x ∈ RN \ U.

With this identification, it makes sense the following result.
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Proposition 2.12. Let ε > 0. Then the embedding H1
0(Ω) ⊆ Hε is continuous.

On H1
0(Ω) the norms ‖ · ‖ε and ‖·‖H1

0(Ω) are equivalent.

Proof. By a direct computation, we obtain

(16) ∀u ∈ H1
0(Ω) : ‖u‖H1

0(Ω) ≤ ‖u‖ε ≤ CΩ,ε ‖u‖H1
0(Ω) ,

where

(17) CΩ,ε =
(

1 + C2
Ω ‖Vε‖L∞(Ω)

)1/2

> 0,

with CΩ the constant appearing in Poincaré’s inequality, [3, Cor.9.19]. �

To finish this section, let’s recall that, by Hölder inequality, for a measurable
set Λ ⊆ RN such that |Λ| < +∞, it holds

(18) ∀w ∈ Lp+1(Λ) : ‖w‖L2(Λ) ≤ |Λ|
(p−1)/2(p+1) ‖w‖Lp+1(Λ) .

3. Multiplicity

In this section we show how the Ljusternik-Schnirelman theory provides our
multiplicity result, Theorem 2.3, in a very straightforward way. Starting in this
section we focus on the case N ≥ 3 as the alternatives N = 1, 2 are easier to
deal with.

Let E be a Banach space. We write

ΣE =
{
A ⊆ E / A = A, A = −A, 0 /∈ A

}
.

The genus of A ∈ ΣE , denoted by γ(A) is the least natural number k for
which there exists an odd function f ∈ C

(
A,Rk\{0}

)
. If there is not such

k, then γ(A) = +∞; and, by definition, γ(∅) = 0. The concept of genus,
introduced by Krasnoselskii, generalizes the notion of dimension: γ(Sm−1) = m
and γ(S∞Y ) = +∞, where Sm−1 and S∞Y are the unit-spheres of Rm and Y ,
an infinite-dimensional Banach space, respectively. A proof of the following
properties can be found in [16].

Proposition 3.1. Let A,B ∈ ΣE. Then

f ∈ C(A,B) odd ⇒ γ(A) ≤ γ(B);(19)

A ⊆ B ⇒ γ(A) ≤ γ(B);

A compact ⇒ γ(A) < +∞.

Remark 3.2. Let M be a C1 manifold in the Banach space X and φ ∈ C1(M).
Recall that (yn)n∈N ⊆M is a Palais-Smale (PS) sequence iff (φ(yn))n∈N ⊆ R is

bounded and ‖φ′(yn)‖X∗ → 0, as n → +∞. We say that (M,φ) verifies (PS)
condition iff every (PS) sequence has a converging subsequence.

The following theorem, stated and proved in [16], is our main tool.
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Theorem 3.3. Let M ∈ ΣE be a C1 manifold of E and let f ∈ C1(E) be even.
Suppose that (M,f) satisfy the Palais-Smale (PS) condition and let

Ck(f) = inf
A∈Ak(M)

max
u∈A

f(u),

where Ak(M) = {A ∈ ΣE ∩M / γ(A) ≥ k}. Let’s denote by Kc the set of
critical points of f corresponding to the value c. Then

i) γ(M) ≤
∑
c∈R

γ(Kc) so that f |M has at least γ(M) pairs of critical

points;
ii) if Ck(f) ∈ R, then Ck(f) is a critical value of f . Moreover, if c =

Ck(f) = · · · = Ck+m(f), then γ (Kc) ≥ m+ 1. In particular, if m > 1,
then Kc contains infinitely many elements.

The potentials V and Vε verify the conditions of Theorem 2.11 so that, in
particular, the result holds for Hε = HVε . With the last, it is proved that the
functional Jε is of class C1 and satisfies the Palais-Smale condition on Mε.
Then, in the context of Theorem 3.3, we write, for k ∈ N and ε > 0,

Σε = ΣHε , Ak,ε = Ak(Mε), ck,ε = Ck(Jε) = J(ŵk,ε) ∈]0,+∞[.

It’s clear that the functional J also satisfies the hypothesis of Theorem 3.3. For
k ∈ N, we write

Σ = ΣH1
0(Ω), Ak = Ak(M), ck = Ck(J) = J(ŵk) ∈]0,+∞[.

The proof of Theorem 2.3 is then completed by the changes of variables pre-
sented in Remarks 2.1 and 2.2.

Remark 3.4. In the coming sections, the following intermediate problem will
be useful:

(Pδinf)

{
∆u(x) + |u(x)|p−1 u(x), x ∈ Ωδ,

u(x) = 0, x ∈ ∂Ωδ.

We put Mδ = {u ∈ H1
0(Ωδ) / ‖u‖Lp(Ωδ) = 1}. The functional Jδ : Mδ → R,

given by Jδ(u) = ‖u‖2H1
0(Ωδ) /2 also satisfies the conditions of Theorem 3.3 so

that we write, for k ∈ N,

Σδ = ΣH1
0(Ωδ), Aδk = Ak(Mδ), cδk = Ck(Jδ) = Jδ(ŵδk) ∈]0,+∞[.

The function wδk =
(
2cδk
)1/(p−1)

ŵδk is a solution of (Pδinf).

4. Energy asymptotics

This section is devoted to the proof of Theorem 2.4, i.e., the energy asymp-
totics ck,ε → ck, as ε→ 0, for every k ∈ N, where

ck,ε = inf
A∈Ak,ε

max
u∈A

Jε(u),(20)

ck = inf
A∈Ak

max
u∈A

J(u).(21)
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By the Ljusternik-Schnirelman scheme that was used in Section 3, this means
that the k-th level sets of Jε and J are topologically equivalent. Also recall
that k represents the topological characteristic of the level set, as captured by
Krasnoselskii’s genus.

Proposition 4.1. Let k ∈ N. Then the following points hold

∀ε > 0 : Ak ⊆ Ak,ε ∧ ck,ε ≤ ck CΩ,ε,(22)

lim sup
ε→0

ck,ε ≤ ck,(23)

where CΩ,ε > 0 is given in (17).

Proof. Let ε > 0. By Proposition 2.12, the norms ‖·‖ε and ‖·‖H1
0(Ω) induce the

same topology. This immediately implies that Ak ⊆ Ak,ε. Moreover, by (20),
(21) and (16),

ck,ε = inf
A∈Ak,ε

max
u∈A

Jε(u) = inf
A∈Ak

max
u∈A

Jε(u)

≤ CΩ,ε inf
A∈Ak

max
u∈A

J(u) = CΩ,ε ck.(24)

By Proposition 2.8 we have that ‖Vε‖L∞(Ω) → 0, as ε → 0, so that (16) and

(24) imply (23). �

For the next step let’s observe that for k ∈ N and δ > 0,

cδk = inf
A∈Aδk

max
u∈A

Jδ(u).

Proposition 4.2. Let k ∈ N and σ > 0. There exist δ0, ε2 > 0 such that

(25) ∀δ ∈]0, δ0[, ∀ε ∈]0, ε2[: cδk ≤ ck,ε + σ.

Proof. This is the longest proof of this paper so that we shall divide it in several
steps.

i) Let ε > 0 and δ ∈]0, 1[. By (20) there exists Aσ(ε) ∈ Ak,ε such that

(26) max
u∈Aσ(ε)

Jε(u) ≤ ck,ε +
σ

4
.

By Proposition 2.8 we have that

(27) ∀µ > 0,∃ε̌ = ε̌(µ) > 0 : ε ∈]0, ε̌[ ⇒ ‖Vε‖L∞(Ω) < µ.

We choose

(28) µ =
8σck + σ2

16C2
Ω c

2
k

, ε0 = ε̌(µ) = ε0(σ, k).

From now on we assume that ε ∈]0, ε0[. Then, by (22), (28), (27)
and (17), we get

c2k,ε ≤ c2k + C2
Ω ‖Vε‖L∞(Ω) c

2
k

≤ c2k +
σ

2
ck +

σ2

16
=
(
ck +

σ

4

)2

.(29)
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Let’s denote bk,σ = ck + σ/4. Then, by (26) and (29), it follows that

(30) ∀v ∈ Aσ(ε) : Jε(v) ≤ bk,σ,

which, by (11), implies that

∀v ∈ Aσ(ε) :

∫
RN
|∇v(x)|2 dx ≤ 2bk,σ,(31)

∀v ∈ Aσ(ε) :

∫
RN

Vε(x) · |v(x)|2 dx ≤ 2bk,σ.(32)

For ρ > 0, let’s denote

(33) Vρ,ε = inf
x∈RN\Ωρ

Vε(x).

Points (15) and (V2) imply that

(34) lim
ε→0

Vδ,ε = +∞.

ii) From (32) we get

(35) ∀v ∈ Aσ(ε) : ‖v‖2L2(RN\Ωδ) =

∫
RN\Ωδ

|v(x)|2dx ≤ 2bk,σ
Vδ,ε

.

In other hand, by (31) and Sobolev-Gagliardo-Niremberg inequality,
[3, Th. 9.9], it follows that

∀v ∈ Aσ(ε) : ‖v‖L2∗ (RN ) ≤ θ ‖∇v‖L2(RN ) ≤ θ(2bk,σ)1/2,

where θ = θN > 0. Therefore,

(36) ∀v ∈ Aσ(ε) : ‖v‖L2∗ (RN\Ωδ) ≤ θ(2bk,σ)1/2.

Now, by (4), we choose α ∈]0, 1[ such that 1/(p+1) = (1−α)/2+α/2∗.
Then, by (35), (36) and the interpolation inequality for Lq-spaces, [3,
pg.93], it follows, for v ∈ Aσ(ε), that

‖v‖Lp+1(RN\Ωδ) ≤ ‖v‖
1−α
L2(RN\Ωδ) ‖v‖

α
L2∗ (RN\Ωδ)

≤
(

2bk,σ
Vδ,ε

)(1−α)/2

θα(2bk,σ)α/2 =
θα(2bk,σ)1/2

V
(1−α)/2
δ,ε

,

which, by (34), implies that max
v∈Aσ(ε)

‖v‖Lp+1(RN\Ωδ) → 0, as ε → 0.

Therefore, given s > 0, there exists ε1 = ε1(δ, s; σ, k) ∈]0, ε0[ such that

(37) ∀ε ∈]0, ε1[: max
v∈Aσ(ε)

‖v‖Lp+1(RN\Ωδ) < δs.

In particular, for s = 1 and ε̂1 = ε1(δ, 1;σ, k) ∈]0, ε0[, we get

(38) ∀ε ∈]0, ε̂1[, ∀v ∈ Aσ(ε) : ‖v‖Lp+1(Ωδ) ≥ 1− δ.
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iii) Now let’s pick a cut-off function φδ ∈ C∞0 (RN ) such that

∀x ∈ Ωδ/2 : φδ(x) = 1;

∀x ∈ RN \ Ωδ : φδ(x) = 0;

∀x ∈ Gδ : 0 < φδ(x) < 1;

∀x ∈ Gδ : |∇φδ(x)| ≤ 1

δr
,

(39)

for some r > 1 and

(40) Gδ = Ωδ \ Ωδ/2.

Let’s prove that Φδ : Aσ(ε) ⊆Mε →Mδ, given by

(41) Φδ[u] =
uφδ

‖uφδ‖Lp+1(Ωδ)

,

is well defined and Lipschitz continuous. From now on we assume that
ε ∈]0, ε̃1[, where ε̃1 = min{ε̂1, ε1(δ/2, 1;σ, k)}.
(a) By (38) we have, for v ∈ Aσ(ε), that

1 ≥ ‖vφδ‖p+1
Lp+1(Ωδ) =

∫
Ωδ/2
|v(x)|p+1dx+

∫
Gδ
|φδ(x)v(x)|p+1dx

≥
∫

Ωδ/2
|v(x)|p+1dx ≥

(
1− δ

2

)p+1

≥ (1− δ)p+1,(42)

so that Φδ is well defined.
(b) Let u, v ∈ Aσ(ε) ⊆Mε. Then, by (42),

‖Φδ[u]− Φδ[v]‖H1
0(Ωδ) ≤

1

1− δ
‖∇(φδ (u− v))‖L2(Ωδ)

≤ 1

1− δ

[
‖φδ∇(u− v)‖L2(Ωδ) + ‖(u− v)∇φδ‖L2(Ωδ)

]
.(43)

Let’s observe that (16) is still true if we replace Ω by any U ⊆ RN
open and bounded. Then, by (39), we get

‖φδ∇(u− v)‖L2(Ωδ) =

(∫
Ωδ
φ2
δ(x) |∇(u− v)(x)|2dx

)1/2

≤ ‖u− v‖H1
0(Ωδ) ≤ ‖u− v‖ε .(44)

In other hand, by (39) and (33), we have that

‖(u− v)∇φδ‖L2(Ωδ) =

(∫
Gδ
|u(x)− v(x)|2|∇φδ(x)|2dx

)1/2

≤ 1

δr inf
y∈Gδ

Vε(y)

(∫
Gδ
Vε(x) |u(x)− v(x)|2dx

)1/2

≤
‖u− v‖ε
δrVδ/2,ε
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which together with (43) and (44) imply

‖Φδ[u]− Φδ[v]‖H1
0(Ωδ) ≤

1

1− δ

(
1 +

1

δrVδ/2,ε

)
‖u− v‖ε .

Since u and v were chosen arbitrarily, we have proved that Φδ is
Lipschitz continuous.

iv) The operator Φδ is odd and continuous so that, by (19), Φδ[Aσ(ε)] ∈ Aδk
and, consequently, cδk ≤ max

v∈Φδ[Aσ(ε)]
Jδ(v). Then we can pick u ∈ Aσ(ε)

such that v = Φδ[u] ∈ Φδ[Aσ(ε)] verifies

(45) cδk ≤ max
v∈Φδ[Aσ(ε)]

Jδ(v) ≤ Jδ(v) +
σ

4
.

Now we claim that

(46) ∃w ∈ Aσ(ε) : Jδ(v) ≤ Jε(w) +
σ

2
.

Then, points (46), (45) and (26) imply

cδk ≤ Jδ(v) +
σ

4
≤ Jε(w) +

3σ

4
≤ max
u∈Aσ(ε)

Jε(u) +
3σ

4
≤ ck,ε + σ.

v) To conclude we have to prove (46). Actually, we shall prove that choos-
ing w = u is enough. By (42) we have that

2(1− δ)2 Jδ(v) ≤ 2 ‖φδu‖2Lp+1(Ωδ) J
δ(v)

= ‖φδu‖2Lp+1(Ωδ)

∥∥∥∥∥ φδ u

‖φδ u‖Lp+1(Ωδ)

∥∥∥∥∥
2

H1
0(Ωδ)

=

∫
Ωδ

[
u2|∇φδ|2 + 2uφδ∇u∇φδ + φ2

δ |∇u|2
]
dx.(47)

First, we have that

(48)

∫
Ωδ
φ2
δ(x)|∇u(x)|2 ≤

∫
Ωδ
|∇u(x)|2dx ≤ 2Jε(u).

Second, we get by using (18) and (40),∫
Ωδ
u2(x)|∇φδ(x)|2dx =

∫
Gδ
u2(x)|∇φδ(x)|2dx ≤ 1

δ2r

∫
Gδ
u2(x)dx

≤ 1

δ2r
|Gδ|(p−1)/(p+1) ‖u‖2Lp+1(Gδ) .(49)

Third, by using (31), (18) and Cauchy-Schwartz inequalities for RN
and L2, we have that∫

Ωδ
2uφδ∇u∇φδdx ≤ 2

∫
Ωδ
|u| |φδ| |∇u| |∇φδ| dx ≤

2

δr

∫
Gδ
|u| |∇u| dx

≤ 2

δr

(∫
Gδ
|∇u|2dx

)1/2(∫
Gδ
|u|2dx

)1/2
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≤ 2

δr
(2bk,σ)1/2|Gδ|(p−1)/2(p+1) ‖u‖Lp+1(Gδ) .(50)

From now on we assume that ε ∈]0, ε2[, where, for some s∗ > 2r,
ε2 = min{ε̃1, ε1(δ, s∗;σ, k)}. By observing that δ2s∗ < δs∗ and using
(37), we get from (47), (48), (49) and (50),

(51) (1− δ)2Jδ(v) ≤ Jε(u) +
ζ

2
δs∗−2r,

where ζ = |Gδ|(p−1)/(p+1)+2(2bk,σ)1/2|Gδ|(p−1)/2(p+1). Now we assume

that δ ∈]0, δ1[ where δ1 = 1−
√

2/2. Then, by (51) and (30), we get

(52)
1

2
Jδ(v) ≤ Jε(u) +

ζ

2
δs∗−2r ≤ bk,σ +

ζ

2
δs∗−2r.

Then, by combining (51) and (52) we get

Jδ(v) ≤ Jε(u) +
ζ

2
δs∗−2r + 2δ Jδ(v)− δ2 Jδ(v)

≤ Jε(u) +
3ζ

2
δs∗−2r + 4δbk,σ,

whence it’s clear that we can find δ0 ∈]0, δ1[, perhaps adjusting ε2, such
that (46) holds for all δ ∈]0, δ0[ and ε ∈]0, ε2[ .

�

Now we are in condition to prove the convergence of critical values.

Proof of Theorem 2.4. By [7, Lem. 3.3 & 3.4] we have, for k ∈ N,

∀δ > 0 : cδk ≤ ck,(53)

∀σ > 0,∃δσ > 0,∀δ ∈]0, δσ[: ck ≤ cδk + σ.(54)

Let σ > 0 be small. We choose δσ > 0 from (54). Now we take δ0 = δ0(σ) > 0

and ε2 = ε2(σ) from Proposition 4.2.. Finally we put δ̂σ = min{δσ, δ0}. Then,

by using (54), (25) and (22), we have, for all δ ∈]0, δ̂σ[ and all ε ∈]0, ε2[,

ck ≤ cδk + σ ≤ ck,ε + 2σ ≤ ck · CΩ,ε + 2σ.

Since σ was arbitrary, the last shows that ck,ε → ck, as ε→ 0. �

5. Asymptotic profiles

In this section we prove Theorem 2.5, that is we study the asymptotic be-
haviour of the solutions of (Pε) inside of Ω.

Let’s recall that, given k ∈ N, Theorem 2.5 states that, as ε→ 0, the family
(wk,ε)ε>0 subconverges in H1(RN ) to some uk ∈ H1(RN ) such that uk|Ω is a

solution of (Pinf) and verifies J(ûk|Ω) = ck, where ûk = (2ck)1/1−puk.

Lemma 5.1. Let k ∈ N. Then (ŵk,ε)ε>0 weakly and pointwise subconverges to
some ûk ∈ H1(RN ), as ε→ 0.
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Proof. By Theorem 2.4, given σ > 0, there exists εσ,1 > 0 such that, for every
ε ∈]0, εσ,1[,

(55)

∫
RN

[
|∇ŵk,ε(x)|2 + Vε(x)|ŵk,ε(x)|2

]
dx = 2ck,ε ≤ 2ck + σ ≡ Bk,ε.

Then, by Sobolev-Gagliardo-Niremberg theorem, [3, Th. 9.9], there is CN > 0
such that, for all ε ∈]0, εσ,1[,

(56) ‖ŵk,ε‖2L2∗ (RN ) ≤ C
2
N

∫
RN
|∇ŵk,ε(x)|2dx ≤ C2

NBk,σ.

Let 0 < δ < 1. Then, by Hölder inequality and (56), for all ε ∈]0, εσ,1[,

‖ŵk,ε‖2L2(Ωδ) ≤ |Ω
δ|2/N ‖ŵk,ε‖2L2∗ (Ωδ) ≤ |Ω

δ|2/N · ‖ŵk,ε‖2L2∗ (RN )

≤ C2
N |Ωδ|2/NBk,σ.(57)

In other hand, by (34), there exists εσ,2 ∈]0, εσ,1[ such that, for all ε ∈]0, εσ,2[,

it verifies V −1
δ,ε < 1. Then, by (55),

(58) ‖ŵk,ε‖2L2(RN\Ωδ) ≤
∫
RN\Ωδ

Vε(x)

Vδ,ε
|ŵk,ε(x)|2dx ≤ Bk,σ.

From (56), (57) and (58) it follows, for ε ∈]0, εσ,2[, that

‖ŵk,ε‖2H1(RN ) =

∫
RN

[
|∇ŵk,ε(x)|2 + |ŵk,ε(x)|2

]
dx

≤ Bk,σ + C2
N |Ωδ|2/NBk,σ +Bk,σ = Bk,σ(2 + C2

N |Ω1|2/N ).(59)

By (59) and [3, Th. 3.18 & 4.9], there exists ûk ∈ H1(RN ) toward which
(ŵk,ε)ε>0 subconverges H1(RN )-weakly and pointwise. �

Lemma 5.2. Let k ∈ N. The function ûk is a weak solution of (Pinf) and
verifies J(ûk|Ω) = ck.

Proof. Let ε > 0. Since ŵk,ε ∈Mε is a critical point of Jε we have by Remark
2.1 that, for every φ ∈ C∞0 (RN ),

(60)

∫
RN

[∇ŵk,ε∇φ+ Vε(x)ŵk,εφ] dx = 2ck,ε

∫
RN
|ŵk,ε|p−1ŵk,εφdx.

Let φ ∈ C∞0 (Ω) and σ > 0. By (57) and (58), we have, for ε ∈]0, εσ,2[,∣∣∣∣∫
RN

Vε(x)ŵk,εφ(x)

∣∣∣∣ ≤ ‖ŵk,ε‖L2(Ω) ‖φ‖L2(Ω) ‖Vε‖L∞(Ω)

≤
[
1 + C2

N |Ω1|2/N
]1/2
‖φ‖L2(Ω) ‖Vε‖L∞(Ω) ,

whence, by Proposition 2.8,

(61)

∫
RN

Vε(x)ŵk,εφ(x)→ 0, as ε→ 0.
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By Theorem 2.11 we have that (ŵk,ε)ε>0 subconverges in Lp+1(RN ) to ûk.
Therefore, by (60), (61), Theorem 2.4 and the arbitrariness of φ, we get

(62) ∀φ ∈ C∞0 (Ω) :

∫
Ω

∇ûk∇φdx = 2ck

∫
Ω

|ûk|p−1ûkφdx.

Let’s take (φn)n∈N ⊆ C∞0 (Ω) that converges in Lp+1(Ω) to ûk|Ω. Then, by
replacing φ = φn in (62) and letting n → +∞, we get, by Lemma 5.1, that
ck = J(ûk|Ω).

For δ, α > 0 we write Γδ,α = {x ∈ RN \ Ωδ / |ûk(x)| ≥ α}. By contradiction
it’s not hard to prove that |Γδ,α| = 0, for every δ, α > 0, so that

(63) ûk(x) = 0, for a.e. x ∈ RN \ Ω,

which, by [3, Prop.9.18], implies that ûk|Ω ∈ H1
0(Ω). We conclude by this and

(62). �

Proof of Theorem 2.5. Since the injection Hε ⊆ L2(RN ) is compact, Lemma
5.1 and point (63) imply that

(64) lim
ε→0
‖ŵk,ε‖2L2(RN ) = ‖ûk‖2L2(RN ) .

By (23) and (63) we have that

(65) lim sup
ε→0

∫
RN
|∇ŵk,ε|2dx ≤ 2 lim sup

ε→0
ck,ε ≤ 2ck =

∫
RN
|∇ûk|2dx.

Points (64) and (65) provide

lim sup
ε→0

‖ŵk,ε‖H1(RN ) ≤ ‖ûk‖H1(RN ) ,

so that, by [3, Prop. 3.32], we have that (ŵk,ε)ε>0 subconverges in H1(RN ) to
ûk, as ε→ 0. We conclude by Lemma 5.2. �

6. Asymptotic concentration

In this section we prove Theorem 2.6, that is, we study the asymptotic
behaviour of the solutions of (Pε) outside of Ω. Let’s recall that, given k ∈ N
and δ > 0, Theorem 2.6 states that, for ε > 0 small enough and x ∈ RN , it
verifies

(66) |ŵk,ε(x)| < C

(2ck)1/(p−1)
exp

(
γδ,ε · dist(x,Ωδ)

)
,

where C = C(N, k, p, δ) > 0 and γδ,ε = γδ,ε(N, k, p)→ −∞, as ε→ 0.
To this purpose let’s strengthen the assumption (V1) by requiring the fol-

lowing condition.

(V1η) For some η > 0, V ∈ Cη(RN ).

Then, by using standard regularity arguments, [9], it follows that vk,ε and wk
belong to C2,η(RN ) and are classical solutions of (Pε) and (Pinf), respectively.

The following L∞-estimate shall be useful.
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Proposition 6.1. Let D ⊆ RN be open and connected. Assume that

∃c > 0,∀t > 0 : tf(t) ≤ ctp+1,

and that w ∈ H1
0(Ω) is a classical solution of the elliptic problem

(67)


∆w(x)− f(w(x)) ≥ 0, x ∈ D,

w(x) > 0, x ∈ D,
w(x) = 0 x ∈ ∂D,

where N ≥ 3 and p+1 ∈]2, 2∗[. Then there exists C = C(c, p,N) > 0 such that

(68) ‖w‖L∞(D) ≤ C ‖w‖
4/[(N+2)−p(N−2)]

L2∗ (D)
.

Proposition 6.1 was obtained in [7] by using the Moser iteration technique,
extending a result of [4] where, in addition, it was assumed that D is smooth
and bounded.

Lemma 6.2. Let k ∈ N and σ > 0. Then there exists εσ,2 > 0 and K =
K(σ,N, k, p) > 0 such that

(69) ∀ε ∈]0, εσ,2[: ‖wk,ε‖L∞(RN ) ≤ K.

The following points hold

(70) lim
ε→0
‖vk,ε‖L∞(RN ) = 0, and lim inf

ε→0

‖vk,ε‖L∞(RN )

[2ck,ε(εg(ε)2)]1/(p−1)
> 0.

Proof. We pick εσ,2 > 0 as in the proof of Lemma 5.1. Let ε ∈]0, εσ,2[ and A+
ε

a connected component of W+
ε = {x ∈ RN /wk,ε > 0}. Since wk,ε is a solution

of (P′ε) and Vε is non-negative, it follows that
∆wk,ε(x) + wpk,ε(x) ≥ 0 x ∈ A+

ε ,

wk,ε(x) > 0, x ∈ A+
ε ,

wk,ε(x) = 0, x ∈ ∂A+
ε .

Then, by Proposition 6.1 and (56) we get

‖wk,ε‖L∞(A+
ε ) ≤ C ‖wk,ε‖

4/[(N+2)−p(N−2)]

L2∗(A+
ε )

≤ C[C2
N Bk,σ]2/[(N+2)−p(N−2)] ≡ K.

The arbitrariness of A+
ε shows that ‖wk,ε‖L∞(W+

ε ) ≤ K. In the same way it’s

proved that ‖wk,ε‖L∞(W−ε ) ≤ K, where W−ε = {x ∈ RN /wk,ε < 0}. So we get

(69).
By (12), Remark 2.1 and (69) we have that

|vk,ε(x)|p−1 ≤ [εg(ε)]2Kp−1, x ∈ RN ,

whence it immediately follows the first limit of (70). The second limit of (70)
is obtained having in consideration (12) and that ‖ŵk,ε‖Lp+1(RN ) = 1, for every

ε ∈]0, εσ,2[. �
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To obtain the estimate (66) we shall apply a comparison argument as in the
proof of [5, Lem. 2.7]. Given a, b > 0 and ω ⊆ RN smooth and bounded, it’s
known that there exists a positive solution of the problem

(71)


∆ϕ(x)− 2b ϕ(x) = 0, x ∈ RN \ ω,
ϕ(x) = a, x ∈ ∂ω,
ϕ(x)→ 0, as |x| → +∞,

and that, for some C = C(a, ω) > 0, it verifies

(72) ∀x ∈ RN \ ω : ϕ(x) ≤ C exp(−b dist(x, ω)).

Proof of Theorem 2.6. Let σ > 0. By (34) and Lemma 6.2, we can pick εσ,3 ∈
]0, εσ,2[ such that

(73) ∀ε ∈]0, εσ,3[: Vδ,ε > K

Then, by Lemma 6.2, (73) and (33), we get

fk,ε(x) ≡ Vε(x)− |wk,ε(x)|p−1 ≥ Vδ,ε −K > 0, x ∈ RN \ Ωδ.

Now we take ϕ, a solution of (71) with ω = Ωδ, a = K and b = (Vδ,ε−K)/2 ≡
−γδ,ε, so that, by (71),

∆ϕ(x)− fk,ε(x)ϕ(x) ≤ 0, x ∈ RN \ Ωδ,

ϕ(x) = K, x ∈ ∂Ωδ,

ϕ(x)→ 0, as |x| → +∞,

whence, since wk,ε is a solution of (P′ε),
∆[ϕ(x)− wk,ε(x)]− fk,ε(x)[ϕ(x)− wk,ε(x)] = 0, x ∈ RN \ Ωδ,

ϕ(x)− wk,ε(x) > 0, x ∈ ∂Ωδ,

ϕ(x)− wk,ε(x)→ 0, as |x| → +∞.

Therefore, by [9, Th. 3.1], it holds wk,ε ≤ ϕ(x), for every x ∈ RN \ Ωδ. In the
same way it’s proved that −ϕ(x) ≤ wk,ε, for every x ∈ RN \ Ωδ, whence, by
(72), it follows that

(74) ∀x ∈ RN \ Ωδ : |wk,ε(x)| ≤ ϕ(x) ≤ C

(2ck,ε)
exp

(
γδ,ε dist(x,Ωδ)

)
,

where C = C(K, δ) = C(σ,N, k, p, δ) > 0. Finally, we obtain (66) by fixing
σ > 0 small and enlarging C > 0 so to make it independent of σ and in a way
that makes (74) valid for x ∈ Ωδ. �
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7. Asymptotic behavior on the boundary

For completeness of the document, in this last part we present a scheme of
the proof of Theorem 2.7:

(75) ∀k ∈ N : lim
ε→0

max
x∈∂Ω

|wk,ε(x)| = 0.

This is a kind of uniform estimate on ∂Ω that was first found in [7] and whose
guidelines we introduce.

As in Theorem 3.3, Kck denotes the set of critical points of J that share the
critical level ck.

Proof of Theorem 2.7. Let’s choose δ1 > 0 such that, for every δ ∈]0, δ1[, the
sets Ωδ = {x ∈ Ω / dist(x, ∂Ω) > δ} and Uδ = Ωδ \ Ωδ are non-empty. We also
denote Uδ,± = {x ∈ Uδ / ± wk,ε(x) > 0}.

i) First we prove that for any µ > 0 there exists δµ ∈]0, δ1[ such that

(76) ∀δ ∈]0, δµ[: ‖wk,ε‖L∞(Uδ)
≤ Hε,δ + µ,

where Hε,δ = max{|wk,ε(x)| / x ∈ ∂Uδ}.
Take µ > 0 and δ ∈]0, δ1[. We have that

(M±)

{
±∆wk,ε(x)± |wk,ε(x)|p−1wk,ε(x) ≥ 0, x ∈ Uδ,±,
wk,ε(x) ≥ 0, x ∈ ∂Uδ,±.

Then, by writting φk,ε(x) = wk,ε−Hε,δ and V(x) = −|wk,ε(x)|p−1(Hε,δ+
φk,ε(x)), we get{

∆φk,ε(x) ≥ V(x), x ∈ Uδ,+,
φk,ε(x) ≤ 0, x ∈ ∂Uδ,+.

Therefore, by Alexandroff’s Maximum Principle (see e.g. [11]) and
Hölder inequality, we get, for c1 = c1(N, diam(Ω)) > 0,

‖wk,ε‖L∞(Uδ,+) = sup
x∈Uδ,+

wk,ε(x)

≤ c1
∥∥V−∥∥

LN (Uδ,+)

≤ c1|Uδ,+|1/Ncp−1
2

[
Hε,δ + ‖φk,ε‖L∞(Uδ,+)

]
.

Therefore, by choosing δµ ∈]0, δ1[ small enough, we get

(77) ∀δ ∈]0, δµ[: ‖wk,ε‖L∞(Uδ,+) ≤ Hε,δ + µ.

Dealing with problem (M−) in a similar way and, perhaps, adjusting
δµ, we get

(78) ∀δ ∈]0, δµ[: −‖wk,ε‖L∞(Uδ,−) = inf
x∈Uδ,−

wk,ε(x) ≤ −Hε,δ − µ.

By (77) and (78) we obtain (76).



SCHRÖDINGER EQ. WITH CRITICAL FREQUENCY FREQUENCY 21

ii) Let’s observe that

max
x∈∂Ω

|wk,ε(x)| ≤ Hε,δ = max{ĥε,δ, ȟε,δ},

where ĥε,δ = maxx∈∂Ωδ |wk,ε(x)| and ȟε,δ = maxx∈∂Ωδ |wk,ε(x)|. By

Theorem 2.6, we get that ĥε,δ → 0, as ε → 0. Therefore, by (76), to
conclude (75) it is enough to show that

(79) ȟε,δ → 0, as ε→ 0.

By Theorem 2.5, there exists u ∈ Kck and (εn)n∈N ⊆]0,+∞[ such
that εn → 0 and wk,εn → uk in H1(RN ) and pointwise, as n→ +∞.

Let α > 0 small so that (∂Ωδ)
α = {x ∈ RN/ dist(x, ∂Ωδ) < α} is

contained in int(Ω). Since the convergence of wk,εn to uk is uniform on
each compact subregion of Ω, we can find n∗ = n∗(α) ∈ N such that,
for n > n∗,

(80) ‖wk,εn(x)− uk(x)‖L∞((∂Ωδ)
α) <

α

2
.

Here the compactness of the critical level set Kck is a key to find n∗
depending only on α. Points (63) and (80) and the arbitrariness of α
imply that (79) holds for δ ∈]0, δµ[ small enough.

�
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Math. Soc. 319 (1990), no. 1, 67–100.
[19] X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations,

Comm. Math. Phys. 153 (1993), no. 2, 229–244.

Juan Mayorga-Zambrano
Yachay Tech University
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