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Abstract. Let p ≥ 2, Ω ⊆ RN smooth bounded domain, V ∈ L∞(Ω)

non-negative, and S1 the space of self-adjoint trace-class operators on
L2

(Ω). We prove that W 1,p, the p-Sobolev-like cone of operators T ∈ S1

having eigenvalues νi, i ∈ N, and an eigenbasis B = {ψi / i ∈ N} of L2
(Ω)

such that

⟪T⟫p,B =∑

i∈N
∣νi∣∫

Ω
[∣∇ψi∣

p
+ V (x)∣ψi∣

p
]dx < +∞,

is compactly embedded in S1. In the path we prove regularity properties
for the density function associated to T as well as Gagliardo-Niremberg
type inequalities departing from Lieb-Thirring type conditions. We ap-
ply the compactness property to minimize free energy functionals where
the entropy term is generated by a Cassimir-class function related to the
eigenvalue problem of the Schrödinger operator −α∆ + V , α > 0, with
Dirichlet condition.
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1. Introduction

Let’s quickly introduce the concept of p-Sobolev-like cone of nuclear operators
and our main result, a compactness property analogous to that of the classical
Sobolev embedding but at operators level. After this we shall present a short
state of the art and some relevant comments.
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Let Ω ⊆ RN be a smooth bounded domain, H = L2(Ω) and T ∶H Ð→H
a compact self-adjoint linear operator. By the Hilbert-Schmidt and Riesz-
Schauder theorems, there exist a Hilbert basis of H, B = {ψi / i ∈ N}, and
(νi)i∈N ⊆ R such that, for each i ∈ N,

T ψi = νiψi. (1.1)

We say that B is an eigenbasis of T , denoted B ∈ BT , as the previous relation
implies that, for each i ∈ N, ψi is an eigenfunction associated to the eigenvalue
νi. We shall say that T is a nuclear operator, denoted T ∈ S1, if, in addition,
(νi)i∈N ∈ l1(R) and, in this case, the values

Tr (T ) =∑
i∈N
νi and ∥T ∥1 = Tr (∣T ∣) =∑

i∈N
∣νi∣

are referred to as the trace and the trace norm of the operator T , respec-
tively, [11]. Whenever T ≥ 0 the numbers νi, i ∈ N, are usually referred to as
occupation numbers and the sequence (νi, ψi)i∈N ⊆ R∗ ×H is called a mixed
state.

Let’s assume that p ≥ 1 and that V ∈ L∞(Ω) is non-negative. Let’s

consider the Banach space W1,p
V (Ω) = (W1,p

0 (Ω), ∥⋅∥V,p), where

∥u∥pV,p = ∥u∥p
W1,p

0 (Ω)
+ ∫

Ω
V (x)∣u(x)∣pdx.

For T ∈ S1, we write Bp
T = {B ∈ BT / B ⊆ W1,p

V (Ω)}. Now we can
introduce the main concept of this work. The p-Sobolev-like cone, W 1,p, is
the set of operators T ∈ S1 such that there exists B = {ψi / i ∈ N} ∈ Bp

T such
that the pB-energetic value of T is finite:

⟪T⟫p,B =∑
i∈N

∣νi∣ ∥ψi∥pV,p < +∞.

The value
⟪T⟫p = inf

B∈Bp
T

⟪T⟫p,B

shall be referred to as the p-energy of T . Our main result is the following.

Theorem 1.1. Let p ≥ 2. The embedding W 1,p ⊆ S1 is compact, i.e., if
(Tn)n∈N ⊆ W 1,p is ⟪⋅⟫p-bounded, then there are a subsequence (Tnk)k∈N and
an operator T ∈ W 1,p such that ∥T − Tnk∥1 Ð→ 0, as k Ð→ +∞.

In the context of quantum mechanics, [13], a physical state of a system
is represented by a positive nuclear operator T ∈ S1, also referred to as a
density matrix operator because of the decomposition

Tφ =∑
i∈N
νi(φ,ψi)ψi, φ ∈H,

where (1.1) is assumed and (⋅, ⋅) denotes the inner product of H.
In a number of works free energy functionals have been considered,

dealing with nuclear operators or mixed states, to obtain insights in quantum
mechanics situations (see e.g. [2], [6] and [8]). These and many other works
deal with p = 2 because that is a natural setting for modeling quantum
systems.
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From the mathematical point of view is quite interesting to extend the
study of [5], [6] and [9] to nuclear operators having eigenfunctions with a

different kind of regularity, say W1,p
V (Ω), W1,p

0 (Ω) ∩ W2,p(Ω), etc. In [8] it
was considered H1

0(Ω) ∩ H2(Ω)-regularity to prove existence and nonlinear
stability of stationary states of the Schrödinger-Poisson system, while in [5]
it was necessary only H1

0(Ω)-regularity to produce, for p = 2, Theorem 1.1
and other results. In other direction, it’s also interesting to replace the pivot
space H = L2(Ω) with other separable Hilbert spaces as a good part of the
machinery we develop seems to be extendable. In this work we undertake the
first path.

It’s well known (see e.g. [6] and [5]) that fixed the potential V , the min-
imization of a given free energy functional is related to Lieb-Thirring type
inequalities while, in other hand, the optimization on V produces interpo-
lation inequalities. Inequalities of these types are interesting by themselves,
in particular to study the stability of many-particle quantum systems (see
e.g. [14] and [4]), and are building blocks in our context. See the description
below.

The paper is organized in the following way.

1. In Section 2.1 we shall present the relevant operators setting.
2. In Section 2.2 we introduce ∥ ⋅ ∥V,p, an equivalent norm for W1,p

0 (Ω),
and state some easy but useful inequalities that help to build up our
the results.

3. The cone W 1,p and initial properties of its elements are stated and
proved in Section 2.3. For example, given T ∈ W 1,p and a suitable con-
tinuous function β such that β(0) = 0, it holds β(T ) ∈ W 1,p. A Poincaré
type inequality, ∥T ∥1 ≤Kp

p ⋅Cp⟪T⟫p, is also proved here.
4. In addition to the p-energy, the concepts of p-kinetic energy, Kp (⋅), and
p-potential energy, Pp (⋅), are introduced in Section 2.4, showing an

intrinsic imbalance of energy, ⟪T⟫p ≥ Kp (T ) +Pp (T ), on W 1,p
+ = {T ∈

W 1,p / T ≥ 0}, which dissapears when p = 2.
5. In Section 2.5 it’s proved a regularity result for the density function

of T ∈ W 1,p
+ , ρT (x) = ∑i∈N νi,T ∣ψi,T (x)∣2, for a.e. x ∈ Ω, that is, ρT ∈

W1,γ(Ω)∩Ls(Ω), for every γ ∈ [1, p] and every s ∈ [1, pN/(2N − 2− p)].
6. In Section 3.1 we will introduce free energy functionals like

Fβ,p(T ) = Tr (β(T )) + ⟪T⟫p, T ∈ W 1,p
+ , (1.2)

where the entropy seed β, will be generated by a Casimir-class function
F by β(s) = F ∗(−s), s ∈ R.

7. Under a suitable condition on the Schrödinger operator −α∆ + V , α >
0, in Section 3.2 we prove that −Tr (F (Ĉ−1(−α∆ + V )p/2)) is a lower
bound for the free energy functional.

8. Assuming that p ≥ 2 and that V bounded away from zero, in Section 3.3
we obtain more useful estimates for free energy functionals. By assuming
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that a Lieb-Thirring type inequality holds,

Tr (F (Ĉ−1(−α∆ + V )p/2)) ≤ ∫
Ω
G(V (x))dx,

we produce a Gagliardo-Niremberg type inequality

Tr (β(T )) +Kp (T ) ≥ inf
B∈Bp

T

∫
Ω
τ(ρp,B(x))dx,

where, for B ∈ Bp
T , the pB-density function associated to T is given by

ρp,B(x) = ∑i∈N νi,T ∣ηi,T (x)∣p, for a.e. x ∈ Ω.
9. In Section 4 we prove Theorem 1.1 for p ≥ 2. This extends the results of

[5] and [9] were it was considered the much simpler case of p = 2.
10. By using Theorem 1.1, in Section 5 we shall prove that several kinds

of free energy functionals, including but not restricting to (1.2), have
operator ground states.

2. Definitions and preliminary results

2.1. General operators setting

Let’s introduce the global setting for our work. For completeness we repeat
some concepts that were already mentioned in Section 1.

Let Ω ⊆ RN a smooth bounded domain and H = L2(Ω). As a separable
Hilbert space, H has a Hilbert basis, i.e., there exists D = {ϕi / i ∈ N} ⊆ H
orthonormal and such that it’s span is dense in H.

We denote by L and I∞ the spaces of bounded and compact linear
operators on H, respectively. We also write LS = {T ∈ L / T is self-adjoint}
and S∞ = I∞ ∩LS . An operator T ∈ L belongs to the trace class I1 iff

∑
i∈N

∣(T ϕi, ϕi)∣ < +∞.

In this case, [11], the values

Tr (T ) =∑
i∈N

(Tϕi, ϕi) and ∥T ∥1 = Tr (∣T ∣) , (2.1)

are actually basis-independent; they are referred to as the trace and the trace
norm of the operator T , respectively. The space (I1, ∥ ⋅ ∥1) is Banach and
contained in I∞. The elements of the Banach space (S1, ∥ ⋅ ∥1),

S1 = I1 ∩LS ⊆ S∞,

are referred to as nuclear operators.

By the Hilbert-Schmidt and Riesz-Schauder theorems (see e.g. [11]), for
an operator T ∈ S∞ there exist B = {ψi,T / i ∈ N} ⊆ H, a Hilbert basis of H,
and σ̃(T ) = {νi,T / i ∈ N} ⊆ R such that, for each i ∈ N,

T ψi,T = νi,T ψi,T . (2.2)
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Because of (2.2), we say that B is an eigenbasis of T , and denote B ∈ BT . In
this case, T belongs to S1 iff (νi,T )i∈N ∈ l1(R). In this case the formulas

Tr (T ) =∑
i∈N
νi,T and ∥T ∥1 = Tr (∣T ∣) =∑

i∈N
∣νi,T ∣ (2.3)

are equivalent to those in (2.1). The density function associated to T is ρT ∈
L1(Ω), given by

ρT (x) =∑
i∈N
νi,T ∣ψi,T (x)∣2, for a.e. x ∈ Ω. (2.4)

We shall always assume that the sequence of eigenvalues (νi,T )i∈N ⊆ R is
ordered: ∣νi,T ∣ ≥ ∣νj,T ∣ if i ≤ j, and if both ν and −ν are eigenvalues, −ν comes
first.

Remark 2.1. If T ∈ S1 is a positive operator, which is denoted T ≥ 0 and
means that (T ψ,ψ) ≥ 0, for every ψ ∈ H, then every eigenvalue νi,T is non-
negative and both values in (2.3) coincide.

Remark 2.2. Since l1(R) ⊆ l2(R), it follows that S1 is contained in the space
of Hilbert-Schmidt operators, [13],

S2 =
⎧⎪⎪⎨⎪⎪⎩
T ∈ S∞ / ∥T ∥2 = (∑

i∈N
∣νi,T ∣2)

1/2

< +∞
⎫⎪⎪⎬⎪⎪⎭
.

S2 is a Hilbert space as its norm is induced by the inner-product given by
(L,R)2 = Tr (R∗L). The action of an operator T ∈ S2 is characterized by
a kernel function KT ∈ L2(Ω × Ω) such that KT (x, y) = KT (y, x), for a.e.
x, y ∈ Ω. In fact, it holds

(Tφ)(x) = ∫
Ω
KT (x, y)φ(y)dy, for a.e. x ∈ Ω,

for φ ∈H, and ∥T ∥2 = ∥KT ∥L2(Ω×Ω).

2.2. An equivalent norm for W1,p
0 (Ω)

Let p ≥ 1. Let’s introduce a norm for W1,p
0 (Ω) which is equivalent to the

classical one,

∥u∥W1,p
0 (Ω) = (∫

Ω
∣∇u(x)∣pdx)

1/p

,

and state some simple but useful properties. From now on we shall assume
that

(V Ω) V ∈ L∞(Ω) is a non-negative potential.

Remark 2.3. Given p ≥ 1 we shall denote p∗ = pN/(N − p) if p < N , and
p∗ = +∞ if p ≥ N . We write p′ ≥ 1 the conjugate of p, 1/p + 1/p′ = 1.

We write
W1,p
V (Ω) = (W1,p

0 (Ω), ∥⋅∥V,p),
where

∥u∥pV,p = ∥u∥p
W1,p

0 (Ω)
+ ∫

Ω
V (x)∣u(x)∣pdx. (2.5)
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Remark 2.4. Let 1 ≤ p < N and q ∈ [1, p∗[. By Rellich-Kondrachov’s theorem,

[3, Th.9.16], the embedding W1,p
V (Ω) ⊆ Lq(Ω) is compact. Then, in particular,

there exists Sp,q > 0 such that

∀u ∈ W1,p
0 (Ω) ∶ ∥u∥Lq(Ω) ≤ Sp,q ∥u∥V,p . (2.6)

Remark 2.5. Let 1 ≤ p < N and q ∈ [1, p∗]. By [7, Sec.5.6.1, Th.3], there exists
Cp,q > 0 such that

∀u ∈ W1,p
0 (Ω) ∶ ∥u∥Lq(Ω) ≤ Cp,q ∥∇u∥Lp(Ω) . (2.7)

Also, for all 1 ≤ p ≤ +∞, we have Poincaré’s inequality,

∀u ∈ W1,p
0 (Ω) ∶ ∥u∥Lp(Ω) ≤ Cp ∥∇u∥Lp(Ω) . (2.8)

Remark 2.6. Let 1 ≤ q ≤ p ≤ +∞. Let’s recall that by Hölder inequality,

∀u ∈ Lp(Ω) ∶ ∥u∥Lq(Ω) ≤Kp,q ∥u∥Lp(Ω) , (2.9)

where Kp,q = ∣Ω∣(p−q)/pq. For future reference we denote Kp = Kp,2 if p ≥ 2,
i.e.,

∀u ∈ Lp(Ω) ∶ ∥u∥L2(Ω) ≤Kp ∥u∥Lp(Ω) . (2.10)

Proposition 2.7. Let 1 ≤ q ≤ p < +∞. Then

∀ψ ∈ W1,p
0 (Ω) ∶ ∥ψ∥V,q ≤ Ĉp,q∥ψ∥V,p, (2.11)

where Ĉqp,q =Kq
p,q(1 + ∥V ∥L∞(Ω)C

q
p). So, if p ≥ 2, denoting Ĉp = Ĉp,2,

∀ψ ∈ W1,p
0 (Ω) ∶ ∥ψ∥V,2 ≤ Ĉp∥ψ∥V,p. (2.12)

Proof. Point (2.11) is obtained by a direct and simple computation using
Hölder inequality and (2.8). ◻

2.3. The p-Sobolev-like cone

Let p ≥ 1. For T ∈ S1, we write Bp
T = {B ∈ BT / B ⊆ W1,p

V (Ω)}.

Definition 2.8. The p-Sobolev-like cone, W 1,p, is the set of operators T ∈ S1

for which there exists B = {ψi / i ∈ N} ∈ Bp
T such that the pB-energetic value

of T is finite:
⟪T⟫p,B =∑

i∈N
∣νi,T ∣ ∥ψi∥pV,p < +∞. (2.13)

The value
⟪T⟫p = inf

B∈Bp
T

⟪T⟫p,B (2.14)

shall be referred to as the p-energy (or p-total energy) of T .

As it was already mentioned, the case p = 2 comes in a natural way
for most of the applications to quantum mechanics and, moreover, has the
advantage that the 2-energy is basis-independent, i.e., on T ∈ W 1,2 = H 1 is
unnecessary to take the infimum in (2.14). The term cone in Definition 2.8
is justified by point i) in the following result.

Proposition 2.9. The following properties hold.
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i) For every α ∈ R, αW 1,p ⊆ W 1,p and

∀T ∈ W 1,p ∶ ⟪T⟫p = ∣α∣⟪T⟫p.
ii) Given α ∈ R and T ∈ W 1,p,

⟪αT⟫p = 0 iff α = 0 ∨ T = 0.

iii) Let T ∈ W 1,p, M > 0 and β ∈ C([−M,M]) such that β(0) = 0 and
σ̃(T ) ⊆ [−M,M]. Assume that there exist c1 > 0, α ≥ 1 and t0 ∈]0,M]
such that

∀t ∈ [−t0, t0] ∶ ∣β(t)∣ ≤ c1∣t∣α. (2.15)

Then, for every B ∈ Bp
T such that ⟪T⟫p,B < +∞, there exists CB > 0

such that

⟪β(T )⟫p ≤ CB⟪T⟫p,B. (2.16)

Consequently, β(T ) ∈ W 1,p.

Proof. Points i) and ii) follow from simple computations. Let’s prove iii). Let
B = {ηi / i ∈ N} ∈ Bp

T such that ⟪T⟫p,B < +∞, and t1 = min{1, t0}. Then
#{i ∈ N / ∣νi,T ∣ > t1} < +∞ and we can choose cB > 0 such that

∣β(νj)∣ ≤ cB ∣νj ∣,
for each j ∈ {i ∈ N / ∣νi∣ > t1}. Therefore, by the Spectral Theorem, [11,
Th.VII.2], and (2.15), we get

⟪β(T )⟫B,p =∑
i∈N

∣β(νi)∣∥ηi∥pV,p = ∑
i∈N
∣νi∣≤t1

∣β(νi)∣∥ηi∥pV,p + ∑
i∈N
∣νi∣>t1

∣β(νi)∣∥ηi∥pV,p

≤ c1 ∑
i∈N
∣νi∣≤t1

∣νi∣α∥ηi∥pV,p + cB ∑
i∈N
∣νi∣>t1

∣νi∣∥ηi∥pV,p

≤ CB∑
i∈N

∣νi∣∥ηi∥pV,p = CB⟪T⟫p,B,

where CB = max{cB , c1}. ◻

The following estimate of the trace norm in terms of its p-energy is a
kind of Poincaré inequality at operators level. We use the constants provided
in Remarks 2.4, 2.5 and 2.6.

Proposition 2.10. Let p ≥ 2. Then

∀T ∈ W 1,p ∶ ∥T ∥1 ≤Kp
p ⋅Cp⟪T⟫p. (2.17)

Proof. Let T ∈ W 1,p and B = {ηi / i ∈ N} ∈ Bp
T such that ⟪T⟫p,B < +∞. Then,

by (2.9), (2.8) and (2.5), we have, for i ∈ N,

∣νi,T ∣ = ∣νi,T ∣ ∥ηi∥pL2(Ω) ≤K
p
p ∣νi,T ∣ ∥ηi∥

p
Lp(Ω) ≤K

p
pCp∣νi,T ∣ ∥ηi∥

p
V,p,

whence, by summing over i,

∥T ∥1 =∑
i∈N

∣νi,T ∣ ≤∑
i∈N
Kp
pCp∣νi,T ∣∥ηi∥

p
V,p =K

p
pCp⟪T⟫p,B,

which, by the arbitrariness of B and T , gives (2.17). ◻
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In general, 1 ≤ q ≤ s < +∞ does not imply that W 1,s ⊆ W 1,q. However
we can prove something of the kind, by using sets of the form

W 1,p
b = {T ∈ W 1,p / ∃B ∈ Bp

T ∶ B is bounded in ∥ ⋅ ∥V,p} .

Proposition 2.11. Let 1 ≤ q ≤ p < +∞. Then, W 1,p
b ⊆ W 1,q.

Proof. Let T ∈ W 1,p
b and B = {ηi / i ∈ N} ∈ Bp

T , bounded in the norm ∥ ⋅ ∥V,p.
Then there exists β > 0 such that ∥ηi∥V,p ≤ β, for every i ∈ N. By (2.14),
(2.11) and (2.3) we have that

⟪T⟫q ≤∑
i∈N

∣νi,T ∣ ∥ηi∥qV,q ≤ Ĉ
q
p,q∑

i∈N
∣νi,T ∣ ∥ηi∥qV,p

≤ (βĈp,q)q∑
i∈N

∣νi,T ∣ = (βĈp,q)q∥T ∥1 < +∞,

so that T ∈ W 1,q. Since T was chosen arbitrarily, we are done. ◻

2.4. Imbalance of the p-energy

Now we shall introduce the concepts of p-kinetic and p-potential energy for
operators that belong to the positive cone

W 1,p
+ = {T ∈ W 1,p / T ≥ 0}.

By Remark 2.1 we have ∥T ∥1 = Tr (T ) = ∑i∈N νi,T , for every T ∈ W 1,p
+ .

Let T ∈ W 1,p
+ and B = {ηi / i ∈ N} ∈ Bp

T . The pB-kinetic energetic value
and the pB-potential energetic value of T are given, respectively, by

Kp,B (T ) =∑
i∈N
νi,T ∫

Ω
∣∇ηi(x)∣pdx, Pp,B (T ) =∑

i∈N
νi,T ∫

Ω
V (x)∣ηi(x)∣pdx.

Then, as it was done in (2.14), the p-kinetic energy and the p-potential energy
of T are given, respectively, by

Kp (T ) = inf
B∈Bp

T

Kp,B (T ) , Pp (T ) = inf
B∈Bp

T

Pp,B (T ) . (2.18)

Remark 2.12. Let T ∈ W 1,p
+ . Let’s assume that B = {ηi / i ∈ N} ∈ Bp

T is an
eigenbasis of T and that ⟪T⟫p,B < +∞. Even though −∆p is not a linear
operator, by using (2.1) and integration by parts, we formally have that

TrB[−∆pT ] =∑
i∈N

(ηi,−∆pTηi)L2(Ω) =∑
i∈N
νi,T ∫

Ω
ηi(x) ⋅ [−∆pηi(x)]dx

=∑
i∈N
νi,T ∫

Ω
∣∇ηi(x)∣pdx = Kp,B (T ) . (2.19)

Let’s assume now that p = 2. Then (see e.g. [13]) the following equality is
valid and basis-independent

P2,V (T ) = Tr (V T ) = ∫
Ω
V (x)ρT (x)dx. (2.20)

Here V is interpreted both as a function and as a multiplication operator on
L2(Ω) and we have used (2.4). Moreover, if B ∈ H1

0(Ω) ∩ H2(Ω), as it was
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assumed e.g. in [8], then the computations (2.19) and (2.14) become valid
and basis-independent:

K2 (T ) = Tr (−∆T ) and ⟪T⟫2 = Tr ((−∆ + V )T ) .

From (2.14) and (2.18) the p-total energy is imbalanced:

∀T ∈ W 1,p
+ ∶ ⟪T⟫p ≥ Kp (T ) +Pp (T ) . (2.21)

For the reasons mentioned in Remark 2.12, only the 2-energy is preserved:
⟪T⟫2 = K2 (T ) +P2 (T ), for every T ∈ W 1,2

+ .

2.5. Regularity of the density function

In this section we shall prove that the density function associated to an
element of W 1,p

+ , given by (2.4), belongs to a range of Lebesgue and Sobolev
spaces.

Lemma 2.13. Let N ≥ 3, 2 ≤ p < N and T ∈ W 1,p
+ . Let’s denote I1 =

[p/2, pN/(2N − 2)] and I2 = [1, pN/(2N − 2 − p)].

i) For every r ∈ I1 and every B ∈ Bp
T such that ⟪T⟫B,p < +∞, there exists

Z = Z(B,p,N, r) > 0 such that

∥∇ρL∥Lr(Ω) ≤ Z⟪T⟫2(r−1)/p+1/r
p,B ,

where L = T 2r/p.
ii) For every r ∈ I1 and every s ∈ I2, ρL ∈ W1,r(Ω) ∩ Ls(Ω).

Proof. Let’s assume that T ≠ 0, r ∈ I1 and that B = {ηi / i ∈ N} ∈ Bp
T is

such that ⟪T⟫p,B < +∞. Since 2r/p ≥ 1, it follows, by Proposition 2.9, that

L = T 2r/p ∈ W 1,p
+ . By the Spectral Theorem, νi,L = ν2r/p

i,T , for each i ∈ N.

Since r ≤ pN/2(N − 1) it follows that

P = p
r
≥ 2 − 2

N
≥ 1 and P ′ = p

p − r
.

Then, by the convexity of R ∋ y ↦ ∣y∣r ∈ R, Hölder inequality, (2.16), (2.17)
and (2.7) with q = pr/(p − r), we get

∫
Ω
∣∇ρL(x)∣rdx ≤ 2r ∫

Ω
(∑
i∈N

∣νi,Lηi(x)∇ηi(x)∣)
r

dx

≤
⎛
⎝

2∑
j∈N

νj,L
⎞
⎠

r

∫
Ω
[∑
i∈N

(
νi,L

∑j∈N νj,L
) ∣ηi(x)∣∣∇ηi(x)∣]

r

dx
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≤ 2r∥L∥r1 ∫
Ω
∑
i∈N

(
νi,L

∥L∥1
) ∣ηi(x)∣r ∣∇ηi(x)∣rdx

≤ 2r∥L∥r−1
1 ∑

i∈N
νi,L (∫

Ω
(∣∇ηi∣r)P dx)

1/P

(∫
Ω
(∣ηi∣r)P

′
dx)

1/P ′

≤ 2r∥T ∥2r(r−1)/p
1 ∑

i∈N
νi,L (∫

Ω
∣∇ηi∣pdx)

r/p

(∫
Ω
∣ηi∣pr/(p−r)dx)

(p−r)/p

≤ Z1⟪T⟫2r(r−1)/p
p ∑

i∈N
νi,L (∫

Ω
∣∇ηi∣pdx)

2r/p

= Z1⟪T⟫2r(r−1)/p
p ∑

i∈N
(νi,T ∫

Ω
∣∇ηi∣pdx)

2r/p

, (2.22)

where Z1 = 2rK
2r(r−1)
p C

2r(r−1)/p
p Crp,q. Since (νi,T ∥ηi∥pW1,p

0 (Ω)
)i∈N ⊆ R is bounded,

we take A = A(B) = supi∈N νi,T ∥ηi∥pW1,p
0 (Ω)

< +∞, so that

(A−1 νi,T ∥ηi∥pW1,p
0 (Ω)

)2r/p ≤ A−1 νi,T ∥ηi∥pW1,p
0 (Ω)

as 2r/p ≥ 1. Therefore, from (2.22) we get

∫
Ω
∣∇ρL(x)∣rdx ≤ Z1A

2r/p−1⟪T⟫2r(r−1)/p
p ∑

i∈N
νi,T ∫

Ω
∣∇ηi∣pdx

= Z1A
2r/p−1⟪T⟫2r(r−1)/p+1

p,B ,

whence

∥∇ρT 2r/p∥Lr(Ω) ≤ Z
1/r
1 A2/p−1/r⟪T⟫2(r−1)/p+1/r

p,B ,

i.e., point i) with Z = Z1/r
1 A2r/p−1.

Let’s prove point ii). Observe that we already have that ρL ∈ L1(Ω) ∩
W1,r(Ω), for every r ∈ I1. Now, by choosing P̃ = pN/(N − 2) ≥ 1 and P̃ ∗ =
pN/(2N − 2− p) in Remark 2.5, it follows that ρL ∈ LP̃

∗
(Ω) and we conclude

by interpolation in Lebesgue spaces, [3, pp.93]. ◻

Theorem 2.14. Let N ≥ 3, 2 ≤ p < N and T ∈ W 1,p
+ . Then

∥∇ρT ∥Lp/2(Ω) ≤ Z̃⟪T⟫p,B

with Z̃ = Z̃(B,p,N) > 0. Consequently, ρT ∈ W1,γ(Ω) ∩ Ls(Ω), for every
γ ∈ [1, p/2] and every s ∈ [1, pN/(2N − 2 − p)].

Proof. Simply take r = p/2 in Lemma 2.13 and apply Hölder inequality. ◻

3. Free energy functionals

3.1. Casimir class. Free energy and entropy functionals.

As a first step to introduce free enery functionals we shall present the concept
of entropy of a positive nuclear operator. Recall that the Legendre-Fenchel
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transform of ϕ ∶ R→ R ∪ {+∞}, ϕ /≡ +∞, is given by

ϕ∗(y) = sup
λ∈R

[yλ − ϕ(λ)], y ∈ R. (3.1)

We say that β ∶ R→ R∪{+∞} is an entropy seed iff it’s convex and such
that β(0) = 0. Given T ∈ S1,+ = {L ∈ S1 /L ≥ 0}, the value

Sβ(T ) = Tr (β(T )) ,

is called the β-entropy of T provided Sβ(T ) ∈] − ∞,+∞]. We say that the
entropy seed β is generated by a function F if

β(y) = F ∗(−y), y ∈ R.

Let p ≥ 1 and consider an entropy seed β. The βp-free energy functional,
Fβ,p ∶ W 1,p

+ → R ∪ {+∞}, is given by

Fβ,p(T ) = Sβ(T ) + ⟪T⟫p. (3.2)

Example 1. Let γ > N/p so that m = γ/(γ+1) ∈ ]N/(N + p),1[. The function
βm ∶ R→ R ∪ {+∞}, given by

βm(s) =
⎧⎪⎪⎨⎪⎪⎩

−(1 −m)m−1m−msm , if s ≥ 0,

+∞ , if s < 0,

is an entropy seed generated by the function F ∶ R→ R ∪ {+∞}, defined by

Fγ(s) =
⎧⎪⎪⎨⎪⎪⎩

s−γ , if s ≥ 0,

+∞ , if s < 0.

A nice class of functions that generate entropy seeds is the Casimir class
that we are going to introduce. We shall use the following kind of assumptions
for the operators −α∆ + V .

(GV,α) α is positive and the operator −α∆+ V with Dirichlet boundary condi-

tions has a sequence of eigenelements (λ(α)V,i , φ
(α)
V,i )i∈N ⊆ R ×H1

0(Ω) such

that {φ(α)V,i /i ∈ N} is a Hilbert basis of L2(Ω) and λ
(α)
V,i → +∞, as i→ +∞.

We denote λV,i = λ(1)V,i and φV,i = φ(1)V,i , i ∈ N.

Remark 3.1. Condition (G0,1) holds by [3, Th. 9.31]. This corresponds to the
classical eigenvalue problem of the Laplacian operator −∆. Moreover, since
in our context 0 ≤ V ∈ L∞(Ω), we have λ0,i ≤ λV,i, for every i ∈ N, and,
therefore, (GV,1) also holds.

Definition 3.2. Assume (GV,α) and p ≥ 2. A function F ∶ R → R ∪ {+∞}
belongs to the Casimir class C α

p,V if it is convex, non-increasing on ]0,+∞[
and

Tr(F (Ĉ−1(−∆ + V ))
p/2

) =∑
i∈N
F ([Ĉ−1λ

(α)
V,i ]

p/2) < +∞, (3.3)

where Ĉ = Ĉpp comes from (2.12). We write CV,p = C 1
p,V .
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Example 2. Let p ≥ 2 and γ > N/p. The function Fγ defined in Example 1
belongs to Cp,0 ∩ Cp,V . In fact, by [10, Th.1.3.1], there are c(Ω),C(Ω) > 0

such that c(Ω)i2/N ≤ λ0,i ≤ C(Ω)i2/N , for each i ∈ N, and so, by Remark 3.1,
we get

∑
i∈N

(Ĉ−1λV,i)−γp/2 ≤∑
i∈N

(Ĉ−1λ0,i)−γp/2 < +∞.

Example 3. A sufficient condition for (3.3) to hold is that for some q > N/p,
(1/λ(α)V,i )i∈N ⊆ lq(R) and, for some M ′ > 0,

∀y ∈]M ′,+∞[∶ F (y) ≤M ′∣y∣−2q/p.

This is an extension of the situation in Example 2, where it was assumed
α = 1.

3.2. Lower bounds for basic free energy functionals

The following theorem gives a lower bound for Fp,β . This result is very
important as it allows us to prove some Gagliardo-Nirenberg type inequalities
in the context of the cone W 1,p

+ and, therefore, it’s a building block to prove
our main result, Theorem 1.1.

Remark 3.3 (Important). Keep in mind that by saying that a function F
belongs to the class C α

p,V we are immediately implying that condition (GV,α)
holds, p ≥ 2 and α > 0.

Theorem 3.4. Let β be an entropy seed generated by F ∈ CV,p. Then

∀T ∈ W 1,p
+ ∶ Fβ,p(T ) ≥ −Tr(F ((−∆ + V

Ĉ
)
p/2

)) .

Proof. Let T ∈ W 1,p
+ and B = {ηi / i ∈ N} ∈ Bp

T . Let i ∈ N. We have that

ηi = ∑
j∈N

µijφV,j , ∑
j∈N

µ2
ij = 1,

where µij = (φV,j , ηi). Since F is non-increasing on ]0,+∞[ it follows from
(2.12) that

F (∥ηi∥pV,p) ≤ F (Ĉ−1∥ηi∥pV,2). (3.4)

By the convexity of F and R ∋ y ↦ ∣y∣p/2 ∈ R, it follows that

F (Ĉ−1∥ηi∥pV,2) = F ((µ2
i,jĈ

−1λV,j)
p/2

) ≤ ∑
j∈N

µ2
ijF ((Ĉ−1λV,j)

p/2
) . (3.5)

Then, since the Spectral Theorem provides

F ((Ĉ−1 (−∆ + V ))p/2) φ̂V,j = F ((Ĉ−1λ̂V,j)
p/2

) φ̂V,j ,
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for each j ∈ N, we get

∑
j∈N

µ2
ijF ((Ĉ−1λV,j)

p/2
) = ∑

j∈N
µ2
ijF ((Ĉ−1λV,j)

p/2
) (φV,j , φV,j)

=
⎛
⎝∑j∈N

µijφV,j ,∑
j∈N

µijF ((Ĉ−1λV,j)
p/2

)φV,j
⎞
⎠

= (ηi, F ((−∆ + V
Ĉ

)
p/2

)ηi) . (3.6)

Therefore, by (3.4), (3.5), (3.6) and (2.1), adding over i ∈ N yields

∑
i∈N
F (∥ηi∥pV,p) ≤ Tr(F ((−∆ + V

Ĉ
)
p/2

)) . (3.7)

Since the entropy seed β is generated by F , we have that β(ν)+ νy ≥ −F (y),
for all ν, y ∈ R. Therefore, using (3.7) with ν = νi,T and y = ∥ηi∥pV,p, and
adding over i ∈ N , we get

∑
i∈N
β(νi,T ) +∑

i∈N
νi,T ∥ηi∥pV,p ≥ −∑

i∈N
F (∥ηi∥pV,p) ≥ −Tr(F ((−∆ + V

Ĉ
)
p/2

)) .

We conclude by (3.2) and the arbitrariness of B and T . ◻

Proposition 3.5. Let β be an entropy seed generated by F ∈ C
(α)
p,V . Then,

for every T ∈ W 1,p
+ ,

Sβ(T ) + (α + 1)p/2⟪T⟫p ≥ −Tr(F ((−α∆ + V
Ĉ

)
p/2

)) . (3.8)

Proof. The proof follows exactly the scheme of the proof of Theorem 3.4. We

just have to observe that the elements of the Hilbert basis {φ(α)V,j / j ∈ N}
verify

F ((−α∆ + V
Ĉ

)
p/2

) φ̂αV,j = F ((Ĉ−1λ̂
(α)
V,j )

p/2

) φ̂(α)V,j .

◻

Remark 3.6. Let β be an entropy seed generated by F ∈ C
(α)
p,0 , V ≡ 0. Then,

Sβ(T ) + αKp (T ) ≥ −Tr(F ((−α∆

Ĉ
)
p/2

)) . (3.9)

3.3. Gagliardo-Niremberg type inequalities

Let p ≥ 2. When we say that V is bounded away from zero, inf{V (x) / x ∈
Ω} > 0, we mean that there exists γ

(p)
V > 0 such that

V (x) ≥Kp
pγ
(p)
V > 0, x ∈ Ω.

In this case, for λ ≤ γ(p)V , we define a generalized free energy functional F
(λ)
β,p ∶

W 1,p
+ → R ∪ {+∞} by

F
(λ)
β,p (T ) = Fβ,p(T ) − λ∥T ∥1 = Sβ(T ) + ⟪T⟫p − λ∥T ∥1.
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The next result proves, given some conditions, that F
(λ)
β,p is bounded

from below, i.e., the negative term −∥T ∥1 can be controled.

Theorem 3.7. Assume that V is bounded away from zero and that λ ≤ γ(p)V .

Let β be an entropy seed generated by F ∈ C
ε/2
p,0 for some ε ∈]0,1]. Then, for

every T ∈ W 1,p
+ ,

F
(λ)
β,p (T ) ≥ −Tr(F (( −ε

2Ĉ
∆)

p/2

)) + ε

2
Kp (T ) . (3.10)

Proof. Let T ∈ W 1,p
+ . Using (2.21) we get

F
(λ)
β,p (T ) ≥ Kp (T ) +Pp (T ) + Sβ(T ) − λ∥T ∥1 ± εKp (T )

= [ ε
2
Kp (T ) + Sβ(T )] + ε

2
Kp (T ) + (1 − ε)Kp (T )+

+Pp (T ) − λ∥T ∥1.

Since F ∈ C
ε/2
p,0 , by Proposition 3.5, we have that

ε

2
Kp (T ) + Sβ(T ) ≥ −Tr(F (( −ε

2Ĉ
∆)

p/2

)) ,

whence,

F
(λ)
β,p (T ) ≥ −Tr(F (( −ε

2Ĉ
∆)

p/2

)) + ε

2
Kp (T )

+ (1 − ε)Kp (T ) +Pp (T ) − λ∥T ∥1. (3.11)

Now we claim that

(1 − ε)Kp (T ) +Pp (T ) − λ∥T ∥1 ≥ 0, (3.12)

which, together with (3.11), imply (3.10).

If λ ≤ 0, (3.12) is immediate. So let’s assume that λ > 0. Let B = {ηi / i ∈
N} ∈ Bp

T . Then, by using (2.10) and ∥ηi∥L2(Ω) = 1, for each i ∈ N, we have

that

Pp,B (T ) − λ∥T ∥1 =∑
i∈N
νi,T ∫

Ω
V (x)∣ηi(x)∣pdx − λ∑

i∈N
νi,T

=∑
i∈N
νi,T

⎛
⎝∫Ω

V (x)∣ηi(x)∣pdx −
λ

∥ηi∥pLp(Ω)
∫

Ω
∣ηi(x)∣pdx

⎞
⎠

≥∑
i∈N
νi,T (∫

Ω
(V (x) − λKp

p) ∣ηi(x)∣pdx) ≥ 0,

which, by the arbitrariness of B, implies (3.12). ◻

A useful consequence of Theorem 3.5 is the following corollary which
will be used in Section 5 to minimize free energy functionals.
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Corollary 3.8. Assume that V is bounded away from zero and that λ ≤ γ(p)V .

Let β be an entropy seed generated by F ∈ C
ε/2
p,0 for some ε ∈]0,1]. Let’s

assume that (Tσ)σ∈Λ ⊆ W 1,p
+ is such that (F (λ)

β,p (Tσ))σ∈Λ ⊆ R is bounded.
Then the families (Kp (Tσ))σ∈Λ, (Sβ(Tσ))σ∈Λ, (∥Tσ∥1)σ∈Λ, (⟪Tσ⟫p)σ∈Λ and
(Pp (Tσ))σ∈Λ are also bounded in R.

Proof. By taking advantage of the boundedness of (F (λ)
β,p (Tσ))σ∈Λ and of the

estimates appearing in the proof of Theorem 3.5 we first prove that there
exists A > 0 such that

Tr(F (( −ε
2Ĉ

∆)
p/2

)) ≤ A.

With this it’s proved the boundedness from above of (Kp (Tσ))σ∈Λ which,
with help of (3.12), allows to prove the same for (Sβ(Tσ))σ∈Λ. Then with
help of (2.10) and (2.8) it’s proved that

∀σ ∈ Λ ∶ ∥Tσ∥1 ≤ CppKp
pKp (Tσ) ,

so that (∥Tσ∥1)σ∈Λ is also bounded. This easily gives the boundedness of
(⟪Tσ⟫p)σ∈Λ and (Pp (Tσ))σ∈Λ.

◻

Now that we have proved boundedness from below for the kind of
free energy functionals under consideration, we shall obtain some Gagliardo-
Nirenberg type inequalities for operators. The following result is an extension
of [6, Th.15] and [5, Th.3.2] to the Sobolev-like cone W 1,p

+ , for p ≥ 2.

Remark 3.9. Let p ≥ 1, T ∈ W 1,p
+ and B = {ηi / i ∈ N} ∈ Bp

T . The pB-density
function associated to T is formally given by

ρp,B(x) =∑
i∈N
νi,T ∣ηi,T (x)∣p, for a.e. x ∈ Ω.

Theorem 3.10. Let β be an entropy seed generated by F ∈ Cp,V . Let’s assume

that the functions τ,G are such that τ(s) = −(−G)∗(s), s ∈ R, and

Tr(F ((−∆ + V
Ĉ

)
p/2

)) ≤ ∫
Ω
G(V (x))dx. (3.13)

Then, for every T ∈ W 1,p
+ ,

Sβ(T ) +Kp (T ) ≥ inf
B∈Bp

T

∫
Ω
τ(ρp,B(x))dx.

Proof. Let T ∈ W 1,p
+ and B = {ηi / i ∈ N} ∈ Bp

T . By (3.1), for s, λ ∈ R,

−λs −G(λ) ≥ −(−G)∗(s) = τ(s).
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Therefore, by choosing λ = V (x) and s = ρp,B(x), we get, by (3.13) and
Theorem 3.4, that

Sβ(T ) +Kp,B (T ) ≥ −Pp,B (T ) − ∫
Ω
G(V (x))dx

= ∫
Ω
[−V (x)ρp,B(x) −G(V (x))]dx

≥ ∫
Ω
τ (ρp,B(x))dx ≥ inf

D∈Bp
T

∫
Ω
τ (ρp,D(x))dx.

We conclude by the arbitrariness of T and B. ◻

Example 4. Let g ∶ R+ → R+ such that

∫
+∞

0

g(t)
t

(1 + t−N/2)dt < +∞.

Moreover, consider the convex non-increasing functions Fg,Gg ∶ R→ R∪{+∞}
given by

Fg(s) = ∫
+∞

0
e−tsg(t)dt

t
, Gg(s) = ∫

+∞

0
e−ts(4πt)−N/2g(t)dt

t
.

For the case p = 2, it was proved in [6] that Fg,Gg satisfy the conditions of
Theorem 3.10.

Example 5. Let’s retake Example 1 for the case of p = 2. Then we consider
γ > N/2 so that m = γ/(γ+1) ∈ ]N/(N + 2),1[ and the entropy seed βm ∶ R→
R ∪ {+∞}, given by βm(s) = −(1 −m)m−1m−msm if s ≥ 0, and βm(s) = +∞
if s < 0. Then, as in [6, Ex.2], there exists a constant µ = µ(γ,N,Ω) > 0 such
that the following interpolation inequality holds

∀T ∈ W 1,p
+ ∶ K2 (T ) + Sβm(T ) ≥ −µ∫

Ω
ρqT (x)dx,

where q = (2γ −N)/[2(γ + 1) −N] ∈]0,1[.

4. Compactness

In this section we prove our main result, Theorem 1.1. Given p ≥ 2, it states
that the embedding W 1,p ⊆ S1 is compact.

Along this section we shall assume that a given sequence (Tn)n∈N ⊆ W 1,p
+

is p-energetically bounded:

K∞ = sup
n∈N

⟪Tn⟫p < +∞. (4.1)

Then we shall prove that there are a subsequence (Tnk)k∈N and an operator

T ∈ W 1,p
+ such that ∥T − Tnk∥1 Ð→ 0, as k Ð→ +∞.
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Remark 4.1. It’s enough to deal with positive operators as any T ∈ W 1,p can

be written as the diference of two operators T1, T2 ∈ W 1,p
+ :

Tφ =∑
i∈N
νi,T (φ,ψi,T )ψi,T

= ∑
i∈N
νi≥0

νi,T (φ,ψi,T )ψi,T − ∑
i∈N
νi<0

(−νi,T )(φ,ψi,T )ψi,T = T1φ − T2φ,

where φ ∈H and {ψi,T / i ∈ N} is an eigenbasis of T .

Let’s introduce some necessary notation. For each n ∈ N, we shall denote

by (ν(n)i )i∈N the sequence of eigenvalues of Tn. We shall assume that, for each

n ∈ N, Bn = {η(n)i / i ∈ N} ∈ Bp
Tn

verifies ⟪Tn⟫p,Bn < +∞.
To prove Theorem 1.1 we have some technical steps.

Lemma 4.2. Assume (4.1). Then

i) (∥Tn∥1)n∈N is bounded and

sup
n∈N
∑
i∈N

(ν(n)i )m < +∞,

where m = γ/(γ + 1) ∈ ]N/(N + p),1[, with γ > N/p.

ii) Up to a subsequence, for each i ∈ N, ν
(n)
i → νi ∈ R+ ∪ {0}, as n→ +∞.

Proof. Let n ∈ N. By Proposition 2.10 we get ∥Tn∥1 = ∑i∈N ν
(n)
i ≤Kp

pCpK∞ <
+∞, which, by the arbitrariness of n, immediately provides point ii). Let’s
consider the functions βm and Fγ as in Example 1. By Theorem 3.4, we have,

for V ≡ 0, that Fβm,p(Tn) ≥ Tr (Fγ((−Ĉ−1∆)p/2)) so that, by (4.1),

(1 −m)m−1m−m∑
i∈N

(ν(n)i )m ≤∑
i∈N
Fγ ((Ĉ−1λ0,i)

p/2
) +Kp (Tn) < +∞.

Since n was arbitrary, this implies point i). ◻

Remark 4.3. To facilitate several computations, from now on, we shall assume
that νi ≠ 0, for every i ∈ N.

Lemma 4.4. Let us assume (4.1). Then, there exists B = {ηi / i ∈ N} ⊆
W1,p

0 (Ω), a Hilbert basis of H, such that for every i ∈ N and t ∈ [1, p],

∥η(n)i − ηi∥
Lt(Ω)

Ð→ 0, as n→ +∞, (4.2)

up to a subsequence.

Proof. Let i, n ∈ N. Let µ > 0. By (2.14) we can assume that Bn verifies
⟪Tn⟫p,Bn ≤ ⟪Tn⟫p + µ. Then, by (4.1), we have that

∥η(n)i ∥
p

W1,p
0 (Ω)

≤ ∥η(n)i ∥pV,p ≤
1

ν
(n)
i

∑
j∈N

ν
(n)
j ∥η(n)j ∥pV,p

= 1

ν
(n)
i

⟪Tn⟫p,Bn ≤
⟪Tn⟫p + µ
ν
(n)
i

,
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which implies that (η(n)i )n∈N is bounded in W1,p
0 (Ω). Therefore, up to a sub-

sequence, (η(n)i )n∈N converges in Lp(Ω), and (4.2) holds.

Since for every n ∈ N and φ ∈ H, φ = ∑j∈N(φ, η
(n)
j )η(n)j , it’s quite clear

that B is a Hilbert basis of H. That B is contained in W1,p
0 (Ω) follows from

a standard application of [3, Prop. 9.18], i.e., fixed i ∈ N we find C > 0 such
that

∀ψ ∈ C1
0(RN),∀j ∈ {1, ...,N}∶ ∣∫

Ω
ηi(x)

∂ψ(x)
∂xj

dx∣ ≤ C ∥ψ∥Lp′(Ω) . (4.3)

For this we use (4.2) and the fact that, again by [3, Prop. 9.18], for each n ∈ N
there exists Cn > 0 such that (4.3) is verified with ηi and C replaced by η

(n)
i

and Cn, respectively. ◻

Remark 4.5. Let’s recall a reverse Hölder inequality. Let p ∈]0,1[ and q ∈
] − ∞,0[ such that 1/p + 1/q = 1. Then, for any (xi)i∈N ∈ `p(R+) and any
(yi)i∈N ∈ `q(R+),

∑
i∈N
xiyi ≥ (∑

i∈N
xpi )

1/p

(∑
i∈N
yqi )

1/q

. (4.4)

Lemma 4.6. Let us assume (4.1). Then, for every ε > 0 there exists M0 ∈ N
such that

sup
n∈N

+∞

∑
i=M0

(ν(n)i )m ≤ ε, (4.5)

where m = γ/(γ + 1) ∈ ]N/(N + p),1[ with γ > N/p. Moreover, up to a subse-
quence,

lim
n→+∞

∑
i∈N

∣ν(n)i ∣m =∑
i∈N

∣νi∣m. (4.6)

Proof. Let ε > 0. By Example 2, we know that

∀ε0 > 0,∃N ′ ∈ N∶
+∞

∑
`=N ′

(λ0,`)−γp/2 < ε0. (4.7)

For each i, n ∈ N let’s consider the expansion

η
(n)
i = ∑

k∈N
µikφ0,k, µik = (η(n)i , φ0,k) , ∑

k∈N
∣µik ∣2 = 1. (4.8)

By (4.4), we have, for an arbitrary N0 ∈ N, that

+∞

∑
i=N0

ν
(n)
i ∥η(n)i ∥

p

H1
0(Ω)

≥
⎛
⎝

+∞

∑
i=N0

(ν(n)i )m
⎞
⎠

1/m
⎛
⎝

+∞

∑
i=N0

∥η(n)i ∥
−γp

H1
0(Ω)

⎞
⎠

−1/γ

,

⎛
⎝

∞

∑
i=N0

(ν(n)i )m
⎞
⎠

1/m

≤ Ĉpp
⎛
⎝

+∞

∑
i=N0

ν
(n)
i ∥η(n)i ∥

p

V,p

⎞
⎠
⎛
⎝

+∞

∑
i=N0

∥η(n)i ∥
−γp

H1
0(Ω)

⎞
⎠

1/γ

. (4.9)
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Now using the equality ∥η(n)i ∥
2

H1
0(Ω)

=∑
`∈N

∣µi`∣2λ0,`, we get by the convexity of

]0,+∞[∋ s↦ s−γp/2 ∈ R and (4.8) that

∥η(n)i ∥
−γp

H1
0(Ω)

≤∑
`∈N

∣µi`∣2λ−γp/20,` . (4.10)

Then, since (λ0,`)`∈N is non-decreasing we get, for a fixed M ∈ N ∖ {1},

+∞

∑
i=N0

∥η(n)i ∥
−γp

H1
0(Ω)

≤
+∞

∑
i=N0

∑
`∈N

∣µi`∣2λ−γp/20,` =
M−1

∑
`=1

+∞

∑
i=N0

⋅ ⋅ ⋅ +
+∞

∑
`=M

+∞

∑
i=N0

. . .

≤ M − 1

(λ̂0,1)γp/2
+∞

∑
i=N0

∣µi`∣2 +
+∞

∑
`=M

+∞

∑
i=N0

∣µi`∣2λ−γp/20,` . (4.11)

Since B is a Hilbert basis of H, for each ` ∈ N, ∑+∞i=1 ∣(ηi, φ0,`)∣2 = ∥φ0,`∥L2(Ω) =
1. Therefore given any ε1 > 0, there exists N1 ∈ N such that for some n0 ∈ N
and ` = 1, ...,N1 − 1,

+∞

∑
i=N1

∣µi`∣2 < ε1, n ≥ n0.

Then, by taking M = N ′, N0 = N1 in (4.11), and choosing ε0, ε1 > 0 such that

ε1 ((M − 1)λ−γp/20,1 + ε0) < ε, we get

+∞

∑
i=N1

∥η(n)i ∥
−γp

H1
0(Ω)

≤ M − 1

(λ0,1)γp/2
ε1 + ε0ε1 < ε,

which together with (4.9) provides (4.5) as well as (4.6), up to a subsequence.
◻

Remark 4.7. Under the conditions of Lemma 4.6 and working as in the proof
of [5, Th. 3.4-ii] it’s proved that, for every m′ ∈]m,1], up to a subsequence,

lim
n→+∞

∑
i∈N

∣ν(n)i ∣m
′
=∑
i∈N

∣νi∣m
′
.

Proof of Theorem 1.1. By point ii) of Lemma 4.2 and Remark 4.7 with
m′ = 1, we have that ∑i∈N νi < +∞. Let’s write, for η ∈ L2(Ω),

Tη =∑
i∈N

(η, ηi)L2(Ω) νiηi

and observe that, by Cauchy-Schwarz, ∥Tη∥
L2(Ω)

≤ ∥η∥L2(Ω)∑i∈N νi < +∞, so

that the operator T ∶L2(Ω)→ L2(Ω) is well defined. Moreover, for each i ∈ N,

Tηi = νiηi, so that, by Lemma 4.4, B = {ηi / i ∈ N} ∈ Bp

T
. It’s quite easy to

show that T is self-adjoint and positive.
Let’s prove that ⟪T⟫p < +∞. For the moment let’s fix N0 ∈ N. For n ∈ N

and Bn ∈ Bp
Tn

we write

fn(x) =
N0

∑
i=1

ν
(n)
i (∣∇η(n)i (x)∣p + V (x)∣η(n)i (x)∣p), for a.e. x ∈ Ω.
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It’s clear that sup
n∈N
∫

Ω
fn(x)dx ≥ 0. Hence, by Fatou’s lemma (see e.g.[15]),

Lemma 4.2 and Lemma 4.4, we get

∫
Ω

N0

∑
i=1

[νi(∣∇ηi∣p + V (x)∣ηi∣p)]dx ≤ lim inf
n→+∞

∫
Ω
fn(x)dx. (4.12)

Given ε > 0, we can choose Bn ∈ Bp
Tn

such that

lim inf
n→+∞

inf
Bn∈B

p
Tn

∫
Ω
fn(x)dx ≤ lim inf

n→+∞
∫

Ω
fn(x)dx

≤ lim inf
n→+∞

inf
Bn∈B

p
Tn

∫
Ω
fn(x)dx + ε (4.13)

Thus, by (4.12) and (4.13), we have that

∫
Ω

N0

∑
i=1

[νi(∣∇ηi(x)∣p + V (x)∣ηi(x)∣p)]dx ≤ lim inf
n→+∞

inf
Bn∈B

p
Tn

∫
Ω
fn(x)dx

≤ lim inf
n→+∞

⟪Tn⟫p,

whence, by doing N0 → +∞, we get

⟪T⟫p ≤ lim inf
n→+∞

⟪Tn⟫p ≤K∞ < +∞, (4.14)

so that T ∈ W 1,p
+ . Finally, to prove that ∥T − Tn∥1 → 0, as n → +∞, we work

as in the proof of [5, Th. 3.4-iii]. ◻

5. Ground states for free energy functionals

Let’s use our main result, Theorem 1.1, to minimize free energy functionals.

Theorem 5.1. Let p ≥ 2. Assume that V is bounded away from 0 and let

λ ≤ γ
(p)
V and that β is an entropy seed generated by F ∈ C

(ε/2)

p,0 , for some

ε ∈]0,1]. Then there exists a unique T∞ ∈ W 1,p
+ such that

F
(λ)
β,p (T∞) = inf

T ∈W 1,p
+

F
(λ)
β,p (T ) (5.1)

Proof. By Proposition 3.7, F
(λ)
β,p is bounded from below on W 1,p. Let (Tn)n∈N ⊆

W 1,p
+ be a minimizing sequence for F

(λ)
β,p (⋅). Since (F (λ)

β,p (Tn))n∈N is bounded,
Corollary 3.8 implies that (⟪Tn⟫p)n∈N, (Sβ(Tn))n∈N and (∥Tn∥n∈N)n∈N are
bounded and K∞ = supn∈N⟪Tn⟫p < +∞. Then we can apply Theorem 1.1 and

extract a subsequence, still denoted (Tn)n∈N, such that ∥Tn − T ∥1 → 0, as

n→ +∞, for some T ∈ W 1,p
+ . This implies that ∥Tn∥1 → ∥T ∥1, as n→ +∞ and,

moreover, by (4.14), we have that

⟪T⟫p ≤ lim inf
n→+∞

⟪Tn⟫p.

Let’s prove that

Sβ(T ) ≤ lim inf
n→+∞

Sβ(Tn). (5.2)
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The convexity of β implies the convexity of the set

Λ+ = {θ = (θi)i∈N ∈ `1(R+) / ∑
i∈N
β(θi) < sup

n∈N
Sβ(Tn)}

and of the mapping J ∶ Λ+ → R given by J(θ) = ∑i∈N β(θi). Since J is lower
semi-continuous we have that

Sβ(T ) = J((νi)i∈N) ≤ lim inf
n→+∞

J((ν(n)i )i∈N) = lim inf
n→+∞

Sβ(Tn).

Then, by the superadditivity of lim inf, we get

F
(λ)
β,p (T ) = Sβ(T ) + ⟪T⟫p − λ∥T ∥1

≤ lim inf
n→+∞

Sβ(Tn) + lim inf
n→+∞

⟪Tn⟫p − λ lim
n→∞

∥Tn∥1

≤ lim inf
n→+∞

F
(λ)
β,p (Tn) = inf

T ∈W 1,p
+

F
(λ)
β,p (T ),

so that T is a minimizer for F
(λ)
β,p . As it’s worked out in [6], the minimizer of

(5.1) at mixed states level is unique, up to a choice of a basis for non-simple
eigenvalues. Therefore the operator T∞ is the unique minimizer of (5.1). ◻

Remark 5.2. Using the scheme of the proof of [6, Prop.4], for p = 2 the
minimizer in Theorem 5.1 has the explicit form T∞ = (β′)−1(∆ − V + λ),
provided β is strictly convex and differentiable on the interior of its support.

Whenever it makes sense, let’s write for T ∈ W 1,p
+ and for some function

z ∶ [0,+∞[→ R,

Z (T ) = ∫
Ω
z(ρT (x))dx and Fλ,z

β,p (T ) = F
(λ)
β,p (T ) +Z (T ).

Corollary 5.3. Assume the conditions of Theorem 5.1 and that for some
s ∈ [1, pN/(2N − 2 − p)] and c1, c2 ≥ 0,

∀y ∈ [0,+∞[∶ c1 ≤ z(y) ≤ c2ys. (5.3)

Then there exists T∗ ∈ W 1,p
+ such that

Fλ,z
β,p (T∗) = inf

T ∈W 1,p
+

Fλ,z
β,p (T ).

Proof. The proof is similar to that of Theorem 5.1. Observe that, by (5.3)

and Theorem 2.14, Z (⋅) is well defined on W 1,p
+ . By using (5.3) and Fatou’s

lemma, it’s obtained that Z (T∗) ≤ lim inf
n→+∞

Z (Tn), where (Tn)n∈N ⊆ W 1,p
+ is a

minimizing sequence for Fλ,z
β,p (⋅). ◻

Remark 5.4. Using the scheme of the proof of [6, Prop.4], for p = 2, it can
be proved that the minimizer in Theorem 5.1 has the explicit form T∞ =
(β′)−1(∆ − V + λ), provided β is strictly convex and differentiable on the
interior of its support. In the same way, T∗, the minimizer in Corollary 5.3,
is a fixed point of the map W ∶ W 1,2

+ → W 1,2
+ , given by W (T ) = (β′)−1(∆ −

V + λ − g′ ○ ρT ), assuming that g is of class C1.



22 Mayorga-Z., Castillo-J. and Burbano-G.

Acknowledgments. The authors thank Yachay Tech community for its support during

the whole project.

Funding. This research did not receive any specific grant from funding agencies in the

public, commercial, or not-for-profit sectors.

Conflicts of interest/Competing interests. The authors declare that they have no

known competing financial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Availability of data and material. Not applicable.

Code availability. Not applicable.

References

[1] V. Ambrosio and T. Isernia, Multiplicity and concentration results for some
nonlinear Schrödinger equations with the fractional p-Laplacian, Discrete Con-
tin. Dyn. Syst. 38(2018), No. 11, 5835–5881.
https://doi.org/10.3934/dcds.2018254

[2] G.L. Aki, J. Dolbeault and C. Sparber,Thermal Effects in Gravitational Hartree
Systems, Annales Henry Poincaré12 (2011), 1055-1079
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