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Abstract

In this paper we extend the compactness properties for trace-class operators obtained
by Dolbeault, Felmer & Mayorga-Zambrano to an smooth unbounded domain Ω⊆Rd ,
d ≥ 3. We consider V , a non-negative potential on Ω that blows up at infinity, and the
normed space HV (Ω) =

{
u ∈ H1

0 (Ω) : ‖u‖2
V =

∫
Ω
(|∇u(x)|2 + |u(x)|2V (x))dx < ∞

}
. A

positive self-adjoint trace-class operator R belongs to the Sobolev-like cone H 1
V,+ if

(ψi,R)N ⊆ HV (Ω) and 〈〈R〉〉V =
∞

∑
i=1

νi,R‖ψi,R‖2
V < ∞, where (νi,R)i∈N is the sequence

of occupation numbers of R and (ψi,R)i∈N ⊆ L2(Ω) is a corresponding Hilbertian base
of eigenfunctions. We prove that a sequence in H 1

V,+, bounded in energy 〈〈·〉〉V , has
a subsequence that converges in trace norm; this is analogous to the classical Sobolev
immersion H1(Ω)⊆L2(Ω). We prove the existence of lower bounds for non-linear free
energy functionals and, by doing so, we establish Lieb-Thirring type inequalities as
well some Gagliardo-Nirenberg type interpolation inequalities; then our compactness
result is applied to minimize non-linear free energy functionals working on H 1

V,+.
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1. Introduction

Self-adjoint positive trace-class operators R : L2(Ω) → L2(Ω), Ω ⊆ Rd , appear
quite naturally in the Heisenberg picture of Quantum Mechanics (see e.g. [1]). By
the Riesz-Schauder and Hilbert-Schmidt theorems, there exist a sequence of eigenval-
ues (νi,R)i∈N⊆R+

∗ and a Hilbertian base of eigenfunctions (ψi,R)i∈N⊆ L2(Ω). Because
of their interpretation in Physics, an eigenvalue νi,R is usually refered as an occupation
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number and the corresponding eigenfunction ψi,R is refered as a wave function; a mixed
state is a pair (νi,R,ψi,R)i∈N (see e.g. [4] and [10]).

Along this work we shall assume that Ω ⊆ Rd is an unbounded domain, d ≥ 3,
and that the operators R are such that the corresponding eigenfunctions belong to the
Sobolev space H1

0 (Ω) and it’s energy

∞

∑
i=1
|νi,R|

(∫
Ω

|∇ψi,R(x)|2 + |ψi,R(x)|2V (x)dx
)
,

is finite. Here V : Ω → R is a prescribed non-negative locally-integrable potential
verifying

limess
|x|→∞

V (x) = ∞. (1.1)

We denote H 1
V the set of these operators.

In this paper we extend the results of [5] where Ω was assumed bounded. Our main
result (Theorem 4.1) is a compactness property for the Solobev-like cone

H 1
V,+ = {L ∈H 1

V /L≥ 0},

that is, a sequence in H 1
V,+, bounded in energy 〈〈·〉〉V , has a subsequence that converges

in trace-norm to an operator in H 1
V,+. As it will be seen, the unboundedness of Ω is

compensated by the property (1.1) because it implies the compactness of the immersion
HV (Ω)⊆ Lq(Ω), q ∈ [2,2∗] (see Proposition 2.1).

To achieve our goal, we consider a class of non-linear free energy functionals
(sometimes called generalized entropy functionals) like

FV,β (R) = Tr((−∆+V )R+β (R)), R ∈H 1
V,+, (1.2)

which has been used for a number of applications concerning Partial Differential Equa-
tions (see e.g. [10], [15], [7], [8], [3], [9] and [12]). We prove the existence of
lower bounds for functionals more general than (1.2) and, by doing so, we establish
Lieb-Thirring type inequalities as well some Gagliardo-Nirenberg type interpolation
inequalities.

Our setting could physically correspond to an external potential having a singu-
larity, as it’s the case of some potentials generated by doping charged impurities in
semiconductors. For the relation of the kind of results we obtain with the estimation of
the first eigenvalue of the Schrödinger operator−∆+V and the analysis of the stability
of repulsive Schrödinger-Poisson systems we refer the reader to [4].

This paper is organized as follows. In Section 2 we make a short review of def-
initions and present the Sobolev-like cone H 1

V together with some of its properties,
in particular, a regularity result (Proposition 2.3) for the density functions associated
to operators in H 1

V,+. In Section 3, a Casimir class of functions is introduced to de-
fine non-linear free energy functionals; then we prove Lieb-Thirring and Gagliardo-
Nirenberg type inequalities: Propositions 3.1, 3.2 and 3.3, and Theorem 3.1. Section
4 is dedicated to our main result, Theorem 4.1, that stablishes a compactness property
that is analogous to the classical Sobolev immersion but at trace-class operators level.
Finally, we use this result to minimize non-linear free energy functionals in Section 5.
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2. Definitions and preliminary results

Let Ω ⊆ Rd be an unbounded domain, d ≥ 3, with boundary of class C1. We de-
note by L = L (L2(Ω)), the set of bounded linear operators acting on L2(Ω). By
I∞ = I∞(L2(Ω)) and S∞ = S∞(L2(Ω)) we denote, respectively, the spaces of com-
pact operators and compact self-adjoint operators. We also consider the space of trace-
class operators (see e.g. [11])

I1 =

{
R ∈L :

∞

∑
i=1
|(ψi,Rψi)L2(Ω)|< ∞

}
⊆I∞, (2.1)

where (ψi)i∈N is any Hilbertian base of L2(Ω). The trace of an operator R ∈ I1 is
given by

Tr(R) =
∞

∑
i=1

(ψi,Rψi)L2(Ω). (2.2)

Due to the Riesz-Schauder and Hilbert-Schmidt Theorems (see e.g. [2]), for a given
R ∈S∞, there exists (νi,R)i∈N ⊆ R and a Hilbertian base (ψi,R)i∈N ⊆ L2(Ω) such that

Rψi,R = νi,Rψi,R, for all i ∈ N. (2.3)

We shall assume that (|νi,R|)i∈N is ordered, that is

|νi,L| ≥ |ν j,L|, for all i, j ∈ N, i≤ j;

if νi,R and −νi,R are both eigenvalues, then −|νi,R| comes first.
On the space S1 = I1∩S∞ the trace norm ‖ · ‖1 is given by

‖R‖1 ≡ Tr(|R|) =
∞

∑
i=1
|νi,R|< ∞. (2.4)

We consider a potencial V : Ω→ R verifying the conditions

(H1) V (x)≥ 0, a.e. x ∈Ω,
(H2) limess

|x|→∞

V (x) = ∞, and

(H3) V ∈ L1
loc(Ω).

Then we define the linear space

HV (Ω) =

{
u ∈ H1

0 (Ω) : ‖u‖V =

(∫
Ω

(|∇u(x)|2 + |u(x)|2V (x))dx
)1/2

< ∞

}
.

It’s clear that ‖ · ‖V is a norm.
The following result about HV (Ω) is well known and has been used to study non-

linear Schrödinger equations (see e.g. [6]); here it’s presented for completeness (for a
proof see e.g [13]).
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Proposition 2.1. Let V be a potential verifying (H1), (H2) and (H3). The immersion

HV (Ω)⊆ Lq(Ω), (2.5)

is compact for all q ∈ [2,2∗], where
1
2∗

=
1
2
− 1

d
.

Now we are able to present the cone of operators which we shall work on.

Definition 2.1. Let V be a potential verifying (H1), (H2) and (H3). An operator
R ∈S1 is in the Sobolev-like cone H 1

V if the following conditions hold

ψi,R ∈ HV (Ω), for all i ∈ N; (2.6)

〈〈R〉〉V ≡
∞

∑
i=1
|νi,R| · ‖ψi,R‖2

V < ∞. (2.7)

We call 〈〈R〉〉V the energy of the operator R and write

H 1
V,+ =

{
R ∈H 1

V : R≥ 0
}
. (2.8)

Some properties of H 1
V are summarized in the following result.

Proposition 2.2. Let V be a potential verifying (H1), (H2) and (H3). Then

i) For any R ∈H 1
V and for any α ∈ R, we have that αR ∈H 1

V and

〈〈αR〉〉V = |α|〈〈R〉〉V .

ii) For any R ∈H 1
V and for any α ∈ R we have that 〈〈αR〉〉V = 0 if and only if R = 0

or α = 0.
iii) There exists a constant C > 0 such that

‖R‖1 ≤C〈〈R〉〉V , for all R ∈H 1
V .

Proof. Points i) and ii) are quite easy. Let’s prove iii) for R ∈H 1
V . By Proposition 2.1,

there exists C > 0 such that

|νi,R|‖ψi,R‖2
L2(Ω) ≤C|νi,R|‖ψi,R‖2

V , for all i ∈ N,

whence, ‖R‖1 =
∞

∑
i=1
|νi,R| ≤ C〈〈R〉〉V , since (ψi,R)i∈N is a Hilbertian base for L2(Ω).

Remark 2.1. Point i) in Proposition 2.2 justifies the term cone for H 1
V and H 1

V,+. In
other hand point ii) implies that

〈〈R〉〉= 0 if and only if R = 0,

which is a property verified by the square of a norm; this helps us to interpret Theorem
4.1 as an analogous of the classical Sobolev immersion but at the level of trace-class
operators.
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Now let’s recall the definition of the density funtion (see e.g. [14]) associated to an
operator R ∈I∞:

ρR(x) =
∞

∑
i=1
|νi,R||ψi,R(x)|2, a.e. x ∈Ω. (2.9)

We have the following regularity result.

Proposition 2.3. Let V be a potencial verifying (H1), (H2) and (H3). For any R∈H 1
V

we have
ρR ∈W 1,r(Ω)∩Lq(Ω), (2.10)

for all q ∈ [1,d/d−2] and all r ∈ [1,d/d−1].

A proof is provided in [13, Lemma 4.1 and Theorem 4.1] and it is similar to that of [5,
Proposition 2.2].

Remark 2.2. We can extend Definition 2.1, Propositions 2.2 and 2.3 as well as a
number of the results presented in the following sections to a more general setting.
Given k ∈ N and p ∈ [1,∞), an operator L ∈S1 is in the Sobolev-like cone W k,p

V if

〈〈R〉〉V,k,p ≡ inf
BR

∞

∑
i=1
|νi,R| · ‖ψi,R‖p

V,k,p < ∞,

where BR is the set of eigenbases (ψi,R)i∈N of L2(Ω) verifying

ψi,R ∈W 1,p
0 (Ω)∩W k,p

V (Ω), for all i ∈ N,

where

W k,p
V (Ω) =

{
u ∈W k,p(Ω) :

∫
Ω

V (x) |u(x)|p < ∞

}
,

‖u‖V,k,p =

(
k

∑
j=1
‖D ju‖p

Lp(Ω)
+
∫

Ω

V (x) |u(x)|p
)1/p

.

To finish this section let’s mention that whenever k1 ≤ k2 and 1 ≤ p ≤ q < ∞, the
immersions W k2,p

V ⊆W k1,p
V , and W k,q

V ⊆W k,p
V are continuous.

3. Free Energy functionals

We start this section by defining the Kinetic and Potential Energy functionals. Then
we shall define a class of Casimir functions to introduce Entropy and Free Energy
functionals.

Definition 3.1. Let V be a potential verifying (H1), (H2) and (H3). The Kinetic
Energy functional is given by

K (R) =
∞

∑
i=1

νi,R

∫
Ω

|∇ψi,R(x)|2 dx, R ∈H 1
V,+. (3.1)
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The V -Potential Energy functional is given by

PV (R) = Tr(V R) =
∫

Ω

ρR(x)V (x)dx, R ∈H 1
V,+. (3.2)

Remark 3.1. It’s not difficult to see that

〈〈R〉〉V = K (R)+PV (R), for all R ∈H 1
V . (3.3)

Moreover, since formally the Kinetic Energy functional verifies K (R) =Tr(−∆R), we
have that the energy is formally given by

〈〈R〉〉V = Tr((−∆+V )R).

To define Casimir classes we shall need the following kind of conditions. We as-
sume that α > 0.

(Vα ) The operator −α∆+V has a sequence of elements{
(λ α

V,i,φ
α
V,i)
}

i∈N ⊆ R×H1
0 (Ω)∩H2(Ω),

such that (φ α
V,i)i∈N is a Hilbertian base of L2(Ω) and (λ α

V,i)i∈N verifies

0 < λ
α
V,1 < λ

α
V,2 ≤ . . .λ α

V,i ≤ . . . , i = 2,3, . . . .

The sequences (λ α
V,i)i∈N and (φ α

V,i)i∈N verify

lim
i→∞

λ
α
V,i = ∞,

and
(−∆+V )φV,i = λV,i φV,i, for all i ∈ N.

In the case of α = 1, for each i ∈N we shall write λV,i and φV,i, instead of λ 1
V,i and φ 1

V,i,
respectively.

Definition 3.2. Let α > 0 and V a potential verifying (Vα). A function F : R →
R∪{+∞} belongs to the Casimir class C α

V if it is convex and

∞

∑
i=1

F(λ α
i,V )< ∞.

In the case of α = 1, we shall write CV .

Example 3.1. Let γ ≥ d/2. The function

F(s) =
{

s−γ , si s≥ 0;
+∞, si s < 0, (3.4)

belongs to C0∩CV (see e.g. [5]).
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Now we introduce the concept of entropy at operators level.

Definition 3.3. Given R ∈H 1
V,+ and a convex function β : R→R such that β (0) = 0,

we call β−Entropy of R to the number

Eβ (R) = Tr [β (R)] =
∞

∑
i=1

β (νi,R), (3.5)

and β is refered as an entropy seed. Moreover if V is a potential such that (H1), (H2),
(H3) and (Vα) are satisfied, we define the (V,β )-Free Energy of R by

FV,β (R) = Eβ (R)+K (R)+PV (R). (3.6)

We say that an entropy seed β is generated by the convex function F if

β (s) = F∗(−s) = sup
λ∈R
{−sλ −F(λ )}, s ∈ R.

Example 3.2. The entropy seed generated by F in (2.3) is

β (s) =
{
−(1−m)m−1m−msm, si s≥ 0;
+∞, si s < 0, (3.7)

where

m =
γ

γ +1
∈
[

d
d +2

,1
)
.

Next, we obtain a lower bound for FV,β .

Proposition 3.1. Let V be a potencial such that (H1), (H2), (H3) and (V1) are verified.
If β is an entropy seed generated by F ∈ CV , then

Fβ ,V (R)≥−Tr [F(−∆+V )], for all R ∈H 1
V,+. (3.8)

Remark 3.2. To prove Proposition 3.1 we proceed like in the proof of [5, Lem. 3.1],
but in this case, since Ω is unbounded, it verifies that∫

Ω

|∇φV,i(x)|2 dx =
∫

Ω

−∆φV,i(x) ·φV,i(x)dx, for all i ∈ N, (3.9)

due to the condition (V1). In other hand, when Ω is bounded, (3.9) is a consequence of
the Divergence Theorem.

In the same way we obtain the following result. A proof is provided in [13] follow-
ing the ideas of [5].

Proposition 3.2. Let α > 0 and V a potential verifying (H1), (H2), (H3) and (Vα). If
β is an entropy seed generated by F ∈ C α

V , then

Eβ (R)+αK (R)+PV (R)≥−Tr [F(−α∆+V )], for all R ∈H 1
V,+. (3.10)

The interpolation result that follows is similar to [4, Th. 15].
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Theorem 3.1. Let V be a potential verifying (H1), (H2), (H3) and (V1). Let β be an
entropy seed generated by F ∈CV , and G : R→R an strictly convex function such that

Tr [F(−∆+V )]≤
∫

Ω

G(V (x))dx. (3.11)

If τ is a function such that

(−G)∗(−s) =−τ(s), for all s ∈ R, (3.12)

then
K (R)+Eβ (R)≥

∫
Ω

τ(ρR(x))dx, for all R ∈H 1
V,+. (3.13)

Proof. Let R ∈H 1
V,+ be arbitrary. Using Proposition 3.1, we have that

Fβ ,V (R) = Eβ (R)+K (R)+PV (R)≥−Tr [F(−∆+V )],

therefore, due to (3.11)

Eβ (R)+K (R) ≥ −Tr [F(−∆+V )]−PV (R)

≥
∫

Ω

[−G(V (x))−ρR(x)V (x)] dx,

so that (3.13) follows from (3.12).

To finish this section we introduce a generalized free energy functional and some
results about it.

Definition 3.4. Let V be a potential verifying (H1), (H2) and (H3). We say that the
operator −∆+V is ε-coercive, ε ∈ (0,1], if it verifies

λ
(1−ε)
V,1 ≡ sup{u ∈ R : −(1− ε)∆+V ≥ u}>−∞, (3.14)

For λ ≤ λ
(1−ε)
V,1 , the free energy funcional F λ

V,β : H 1
V,+→ R is given by

F λ

V,β (R) = FV,β (R)−λ‖R‖1.

In the sense of operators, relation (3.14) corresponds to−∆+V−λ
(1−ε)
V,1 ≥−ε∆ when-

ever Dirichlet boundary conditions are considered.

Proposition 3.3. Let V be a potential verifying (H1), (H2), (H3) and (V1). Suppose
that −∆+V is ε−coercive, ε ∈ (0,1], and β an entropy seed generated by F ∈ C

ε/2
0 .

For all λ ≤ λ
(1−ε)
V,1 and for all R ∈H 1

V,+ we have

F λ

V,β (R)≥−Tr
[
F
(
−ε

2
∆

)]
+

ε

2
K (R). (3.15)

Moreover, if F ∈ C 1−ε

V−λ
, then for all λ ≤ λ

(1−ε)
V,1 and for all R ∈H 1

V,+ it verifies

F λ

V,β (R)≥−Tr [F(−(1− ε)∆+V −λ )]. (3.16)
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Proof. Let R ∈H 1
V,+ and λ ≤ λ

(1−ε)
V,1 be arbitrary. It is clear that

F λ

V,β (R) =
(
Eβ (R)+

ε

2
K (R)

)
+

ε

2
K (R)+

+ ((1− ε)K (R)+PV (R)−λ‖R‖1). (3.17)

Since F ∈ C
ε/2
0 , by Proposition 3.2 we have that

Eβ (R)+
ε

2
K (R)≥−Tr

[
F
(
−ε

2
∆

)]
, (3.18)

then, it follows from (3.17) and (3.18) that

F λ

V,β (R) ≥ −Tr
[
F
(
−ε

2
∆

)]
+

+
ε

2
K (R)+(1− ε)K (R)+PV (R)−λ‖R‖1. (3.19)

On other hand, since

(1− ε)K (R)+PV (R)−λ‖R‖1 ≥ 0, (3.20)

it follows, by (3.19) and (3.20), that

F λ

V,β (R)≥−Tr
[
F
(
−ε

2
∆

)]
+

ε

2
K (R),

so that (3.15) is proved.
Now, let’s prove (3.16). Once again we use Proposition 3.2, with α = 1− ε and

potential V −λ to get

Eβ (R)+(1− ε)K (R)+PV−λ (R)≥−Tr [F(−(1− ε)∆+V −λ )], (3.21)

whence, since 1− ε ≤ 1, we get

Eβ (R)+K (R)+PV−λ (R)≥ Eβ (R)+(1− ε)K (R)+PV−λ (R). (3.22)

Now, by (3.21) and (3.22), we obtain

Eβ (R)+K (R)+PV−λ (R)≥−Tr [F(−(1− ε)∆+V −λ )], (3.23)

so that, by (3.23), it follows that

F λ

V,β = Eβ (R)+K (R)+PV (R)−λ‖R‖1 ≥−Tr [F(−(1− ε)∆+V −λ )].

Proposition 3.3 allows us to establish the following important result for a family of
operators of H 1

V,+ that is bounded in free energy.

Corollary 3.1. Under the conditions of Proposition 3.3. If (Rσ )σ∈Σ ⊆H 1
V,+ is a family

such that (F λ

V,β (Rσ ))σ∈Σ ⊆ R is bounded, then

(‖Rσ‖)σ∈Σ, (K (Rσ ))σ∈Σ, (Eβ (Rσ ))σ∈Σ and (PV (Rσ ))σ∈Σ,

are also bounded.

The proof is easy and we left it to the reader.
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4. Compact immersion of the Sobolev-like cone

In this section we present our main result. For (Rn)n∈N ⊆H 1
V,+, we denote by

(ν
(n)
i )i∈N and (ψ

(n)
i )i∈N the corresponding sequences of eigenvalues and eigenfunctions

of Rn, for each n ∈ N.

Theorem 4.1. Let m ∈ [d/(d+2),1). Let V be a potential verifying (H1), (H2), (H3)
and (V1). Let (Rn)n∈N ⊆H 1

V,+ be a sequence such that

U∞ = sup
n∈N
〈〈Rn〉〉V < ∞. (4.1)

Up to a subsequence, (Rn)n∈N converges in norm ‖ · ‖1, to some R ∈H 1
V,+.

We divide the proof of Theorem 4.1 in a sequence of Lemmas.

Lemma 4.1. Under the conditions of Theorem 4.1, the sequence (‖Rn‖1)n∈N is bounded
and

sup
n∈N

∞

∑
i=1

(ν
(n)
i )m < ∞, (4.2)

Proof. By part iii) of Proposition 2.2 and (4.1), there exists C > 0 such that

‖Rn‖1 =
∞

∑
i=1

ν
(n)
i ≤C〈〈Rn〉〉V ≤CU∞, for all n ∈ N, (4.3)

so that (‖Rn‖1)n is bounded. To get (4.2) we consider β as in (3.7), that is generated
by F given in (3.4). Using (3.8) we have that

(1−m)m−1m−m
∞

∑
i=1

(ν
(n)
i )m ≤K (Rn)+PV (Rn)+Tr [F(−∆+V )],

whence,

sup
n∈N

∞

∑
i=1

(ν
(n)
i )m < (1−m)1−mmm · (U∞ +Tr [F(−∆+V )])< ∞.

Lemma 4.2. Under the conditions of Theorem 4.1, for each i∈N, up to a subsequence,
there exists νi ∈ R+

∗ such that
lim
n→∞

ν
(n)
i = νi. (4.4)

Moreover, for each i ∈ N, up to a subsequence, there exists ψi ∈ H1(Ω) such that

lim
n→∞

ψ
(n)
i = ψi, in L2(Ω). (4.5)
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Proof. Let i ∈ N. By (4.3) we have that

ν
(n)
i <CU∞, for all n ∈ N, (4.6)

so that (ν(n)
i )n∈N is a bounded sequence and, therefore, there exists νi ∈ R such that,

up to subsequence,
lim
n→∞

ν
(n)
i = νi, for all i ∈ N. (4.7)

Since (ν
(n)
i )n∈N ⊆ R+

∗ , it follows that

νi ≥ 0, for all i ∈ N. (4.8)

Now let’s prove (4.5). For each i,n ∈ N, we write

E(n)
i = ‖ψ(n)

i ‖
2
V =

∫
Ω

|∇ψ
(n)
i (x)|2 dx+

∫
Ω

V (x)|ψ(n)
i (x)|2 dx. (4.9)

Since (ν
(n)
i )n∈N is bounded, we have by (4.1) that (E(n)

i )n∈N is bounded in HV (Ω).
Then, by Proposition 2.1 there exists ψi ∈ L2(Ω) such that, up to subsequence, it veri-
fies

lim
n→∞

ψ
(n)
i = ψi, in L2(Ω).

Using [2, Prop. IX.3] we prove that ψi ∈ H1(Ω) and then (4.1) implies that ψi ∈
HV (Ω).

Lemma 4.3. Under the conditions of Theorem 4.1, up to a subsequence, we have that

lim
n→∞

∞

∑
i=1

(ν
(n)
i )m =

∞

∑
i=1

(νi)
m. (4.10)

Proof. We have to prove that given ε > 0 there exists N ∈ N such that

∞

∑
i=N

(ν
(n)
i )m ≤ ε, for all n ∈ N. (4.11)

Let’s recall that for p ∈ (0,1) and q ∈ (−∞,0) such that 1
p +

1
q = 1, the reverse Hölder

inequality holds
∞

∑
i=1

ξiηi ≥

(
∞

∑
i=1

ξ
p
i

)1/p(
∞

∑
i=1

η
q
i

)1/q

,

for all (ξi)i∈N ∈ `p(R+) and (ηi)i∈N ∈ `q(R+). Therefore, by choosing p = m and
q =−γ we have that(

∞

∑
i=N
|ν(n)

i |
m

)1/m

≤U∞

(
∞

∑
i=N
|E(n)

i |
−γ

)1/γ

, for all N ∈ N. (4.12)
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Let’s notice that

E(n)
i =

∞

∑
k=1
|(φV,k,ψ

(n)
i )|2λV,k, (4.13)

∞

∑
k=1
|(φV,k,ψ

(n)
i )|2 = 1. (4.14)

Since γ ≥ d/2, then (0,∞) 3 s→ s−γ ∈ R is convex. Therefore, by (4.12) and (4.13),
we get

(E(n)
i )−γ ≤

∞

∑
k=1
|(φV,k,ψ

(n)
i )|2(λV,k)

−γ , for all i ∈ N and n ∈ N. (4.15)

Now, since 0 < λV,1 < λV,2 ≤ . . . ≤ λV,k ≤ . . . and
∞

∑
k=1

(λV,k)
−γ < ∞, by (4.13), (4.14)

and (4.15), we can choose N,M ∈ N such that

∞

∑
i=N

(E(n)
i )−γ =

M−1

∑
k=1

∞

∑
i=N
|(φV,k,ψ

(n)
i )|2(λV,k)

−γ +
∞

∑
k=M

∞

∑
i=N
|(φV,k,ψ

(n)
i )|2(λV,k)

−γ

≤ M−1
(λV,1)γ

∞

∑
i=N
|(φV,k,ψ

(n)
i )|2 +

∞

∑
k=M

∞

∑
i=N
|(φV,k,ψ

(n)
i )|2(λV,k)

−γ

≤
(

ε

U∞

)γ

. (4.16)

We conclude by combining (4.12) and (4.16).

Lemma 4.4. Under the conditions of Theorem 4.1, for all m′ ∈ [m,1], up to a subse-
quence, it verifies that

lim
n→∞

∞

∑
i=1

(ν
(n)
i )m′ =

∞

∑
i=1

(νi)
m′ . (4.17)

Proof. Let m′ ∈ [m,1]. We have to prove that given ε > 0 there exists N ∈ N such that
∞

∑
i=N

(ν
(n)
i )m′ < ε. (4.18)

Since (ν
(n)
i )i∈N is ordered, it verifies that

(ν
(n)
N )m′−m ≥ (ν

(n)
j )m′−m, for all N ≤ j, (4.19)
∞

∑
i=N

(ν
(n)
i )m = ∑

j∈AN

(ν
(n)
i )m,

where AN = {i ∈ N/ i≥ N ∧ ν
(n)
i 6= 0}. Then, by (4.11) and (4.19), we conclude:

∞

∑
i=N

(ν
(n)
i )m′ =

∞

∑
i=N

(ν
(n)
i )m′−m(ν

(n)
i )m ≤ (ν

(n)
N )m′−m

∞

∑
i=N

(ν
(n)
i )m ≤ ε. (4.20)
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We use Lemmas 4.1 - 4.4 to prove Theorem 4.1.

Proof of Theorem 4.1. Let’s prove that the operator R : L2(Ω)→ L2(Ω) given by

Rη =
∞

∑
i=1

νi(ψi,η)ψi.

belongs to H 1
V,+ and

lim
n→∞
‖Rn−R‖1 = 0. (4.21)

It’s not dificult to verify that R is a self-adjoint, positive and trace-class operator. By
Fatou’s Lemma, we have that

K (R)≤ liminf
n→∞

∫
Ω

∞

∑
i=1

ν
(n)
i |∇ψ

(n)
i (x)|2 dx <U∞, (4.22)

P(R)≤ liminf
n→∞

∫
Ω

∞

∑
i=1

ν
(n)
i |ψ

(n)
i (x)|2V (x)dx <U∞, (4.23)

so that R∈H 1
V,+. For each N ∈N we consider the orthogonal projections Pn

N : L2(Ω)→
Fn

N and Qn
N = Id−Pn

N given by

Pn
N(η) =

N

∑
i=1

(η ,ψ
(n)
i )ψ

(n)
i ,

where
Fn

N = span{ψ(n)
i : i = 1, . . . ,N−1}.

Qn
N is the orthogonal projection on (Fn

N)
⊥. We also consider PN : L2(Ω)→ FN and

QN = Id−PN given by

PN(η) =
N

∑
i=1

(η ,ψi)ψi,

where
FN = span{ψi : i = 1, . . . ,N−1}.

Now given ε > 0, we can choose N ∈ N so that

‖Rn−R‖1 ≤ ‖(Rn−R)PN‖1 +‖RnQn
N‖1 +‖RQN‖1 +‖Rn(QN−Qn

N)‖1 ≤ ε,

for n ∈ N large enough.

5. Applications

In this section we apply Theorem 4.1 to minimize two types of non-linear free
energy functional. First we consider a generic free energy functional.
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Theorem 5.1. Let V be a potential verifying (H1), (H2), (H3) and (V1). Assume that
−∆+V is ε−coercive, ε ∈ (0,1]. Let λ ≤ λ

(1−ε)
V,1 . Let β be a lower semicontinuous

entropy seed generated by F ∈ C
ε/2
0 ∩C 1−ε

V−λ
. Then there exists a unique R ∈H 1

V,+ such
that

F λ

V,β (R) = inf
R∈H 1

V,+

F λ

V,β (R). (5.1)

Proof. By Proposition 3.3 we have that

F λ

V,β (R)≥−Tr [F(−(1− ε)∆+V −λ )], for all R ∈H 1
V,+,

i.e. F λ

V,β is bounded from below. Then we choose (Rn)n∈N ⊆H 1
V,+ such that

lim
n→∞

F λ

V,β (Rn) = inf
R∈H 1

V,+

F λ

V,β (R), (5.2)

Since (F λ

V,β (Rn))n∈N⊆R is bounded, Proposition 3.2 implies that the sequences (‖Rn‖1)n∈N,
(K (Rn))n∈N, (PV (Rn))n∈N and (Eβ (Rn))n∈N are bounded. In particular, there exists
U∞ > 0 such that

U∞ = sup
n∈N
{K (Rn)+PV (Rn)}.

Then, by Theorem 3.1, there exists R ∈H 1
V,+ such that, up to subsequences, verifies

lim
n→∞
‖Rn−R‖1 = 0, (5.3)

K (R)≤ liminf
n→∞

K(Rn), (5.4)

PV (R)≤ liminf
n→∞

PV (Rn), (5.5)

by (4.22) and (4.23). On other hand, putting A = supn∈N(Eβ (Rn)), let’s consider on the
convex set

A+ =

{
a = (ai)i∈N ∈ `1(R+) :

∞

∑
i=1

β (ai)< A

}
,

the application D : A+→ R given by

D(a) =
∞

∑
i=1

β (ai).

D is convex and lower semicontinuous so that

Eβ (R)≤ liminf
n→∞

Eβ (Rn). (5.6)

Therefore, by (5.3), (5.4), (5.5) and (5.6), it verifies

F λ

V,β (R) = Eβ (R)+K (R)+PV (R)−λ‖R‖1

≤ liminf
n→∞

[Eβ (Rn)+K (Rn)+PV (Rn)−λ‖Rn‖1]

= inf
R∈H 1

V,+

F λ

V,β (R), (5.7)
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so that R verifies (5.1). Using mixed states, we stablish the uniqueness of R as it’s done
in the proof of [5, Th. 4.1].

Remark 5.1. Since formally F λ

V,β (R) = Tr((−∆+V−λ )R+β (R)), as a critical point

of F λ

V,β in Theorem 5.1, R should have the form

R = (β ′)−1(−(−∆+V )+λ ).

Now let’s consider a free energy functional involving a non-linear but local function
of the density. Let g be a real function. Formally, for R ∈H 1

V,+, we write

G (R) =
∫

Ω

g(ρR(x))dx,

F λ ,g
V,β (R) = F λ

V,β (R)+G (R).

Theorem 5.2. Let V be a potential verifying (H1), (H2), (H3) and (V1). Assume that
−∆+V is ε−coercive, ε ∈ (0,1]. Let λ ≤ λ

(1−ε)
V,1 . Let β be a lower semicontinuous

seed entropy generated by F ∈ C
ε/2
0 ∩C 1−ε

V−λ
and g ∈C([0,+∞)) such that

C1 ≤ g(s)≤C2sq, for all s≥ 0, (5.8)

for some constants C1,C2 > 0 and some q ∈ [1,d/d−2]. Then there exists a unique
R ∈H 1

V,+ such that

F λ ,g
V,β (R) = inf

R∈H 1
V,+

F λ ,g
V,β (R). (5.9)

Proof. We proceed as in the proof of Theorem 5.1 and observe that for a sequence
(Rn)n∈N ⊆H 1

V,+ minimizing F λ ,g
V,β , it holds by (5.8) and Proposition 2.3, that

G (R)≤ liminf
n→∞

G (Rn), (5.10)

where, up to subsequence, lim
n→∞
‖Rn−R‖1 = 0, with R ∈H 1

V,+. Then, by (5.3), (5.4),
(5.5), (5.6) and (5.10) we have that

F λ ,g
V,β (R) = inf

R∈H 1
V,+

F λ ,g
V,β (R).

Remark 5.2. Formally, the minimizer of F λ ,g
V,β is a fixed point of the aplication Y :

H 1
V,+→H 1

V,+ given by

Y (R) = (β ′)−1(−(−∆+V )+λ −g′ ◦ρR).
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6. Conclusions

Given an smooth unbounded domain Ω⊆ Rd , d ≥ 3, we have extended the results
obtained in [5] (where Ω was assumed to be bounded). Our setting could physically
correspond to an external potential having a singularity, as it’s the case of some poten-
tials generated by doping charged impurities in semiconductors.

A positive self-adjoint trace-class operator R belongs to the Sobolev-like cone H 1
V,+

if its Hilbertian eigenbase (for L2(Ω)) is included in the normed space HV (Ω) and has
finite energy

〈〈R〉〉V =
∞

∑
i=1

νi,R‖ψi,R‖2
V ,

where (νi,R)i∈N is the sequence of eigenvalues of R. Here

HV (Ω) =

{
u ∈ H1

0 (Ω) : ‖u‖2
V =

∫
Ω

(|∇u(x)|2 + |u(x)|2V (x))dx < ∞

}
,

where the potential V is non-negative on Ω and blowing up at infinity. For us it was a
key the well known property that HV (Ω) immerses compactly in Lq(Ω), q ∈ [2,2∗].

We proved that a sequence in H 1
V,+, bounded in energy 〈〈·〉〉V , has a subsequence

that converges in trace norm; this is analogous to the classical Sobolev immersion
H1(Ω) ⊆ L2(Ω). By proving the lower boundedness of non-linear free energy func-
tionals more general than the one given by

FV,β (R) = Tr((−∆+V )R+β (R)), R ∈H 1
V,+,

we established Lieb-Thirring type inequalities as well some Gagliardo-Nirenberg type
interpolation inequalities. Then our compactness result was applied to minimize those
non-linear free energy functionals.
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