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1 Introduction

The principal reason to study PDE involving discontinuous nonlinearities (DNDE)
is due to many free boundary problems which can be reduced to boundary value
problems of DNDE (cf. [Chang1], [Chang2]). In addition, sometimes, it is use-
ful to put the original PDE problem into a large category, for instance, DNDE
([Chang2]).

This paper is about a class of elliptic equations where the nonlinearity is
discontinuous. These equations serve as models in Mathematical Physics prob-
lems; for instance, this type of equations can appear in phenomenons related
with filtration of non newtonian fluids in porous mediums.

In this work we extend results obtained by professors Arcoya and Calahor-
rano, [Arco-Cala].

In concrete, given Ω ⊂ RN , bounded domain, we consider the problem
{ −∆pu = h(x)f(u) + q(x), in Ω

u = 0, on ∂Ω

}
; (1)

where q ∈ Lp′(Ω) and f is a discontinuous nonlinearity which is assumed with
only one upward discontinuity; i.e., ∃!a ∈ R such that f ∈ C(R − {a},R), and
f(a) ∈ [f(a−), f(a+)]; where f(a±) = limε→0+ f(a± ε) and f(a−) < f(a+) <
∞.

Because of the last condition the associated functional, I : W 1,p
0 (Ω) −→ R,

defined by

I(u) =
1
p

∫

Ω

|∇u|pdx−
∫

Ω

q(x)u(x)dx−
∫

Ω

∫ u(x)

0

f(t)h(x)dtdx,

is not Fréchet differentiable and, therefore, the usual critical point theory is not
applicable.
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Then, our objective is find good hipothesis on the functions q, f, h which
permit us to prove existence of weak solutions for (1). In this way, we use
the critical point theory for locally Lipschitz functionals developed by Chang,
[Chang], and the Clarke’s generalized gradient, [Clarke]

Because f is discontinuous, we consider two concepts of solutions for (1). In
the first one, we say that a function u ∈ W 1,p

0 (Ω) is a solution for the multivalued
problem associated to (1), if u satisfies

−∆pu(x)− q(x) ∈ h(x)f̂(u(x)), a.e.Ω (2)

where f̂ is the multivalued function given by

f̂(s) =
{ {f(s)}, if s 6= a

[f(a−), f(a+)] , if s = a

}
.

However, there exists a second, more restictive (but more interesting), cri-
terion of solution. We say that u ∈ W 1,p

0 (Ω) is a solution for (1) provided

−∆pu(x) = h(x)f(u(x)) + q(x), a.e.Ω. (3)

Clearly, such a solution is also a solution in the former sense.

2 Background

Professors Ambrosetti and Badiale, [Ambro-Ba], studied the semilinear elliptic
problem { −∆u = f(u) + q(x), in Ω

u = 0, on ∂Ω

}
(4)

where q ∈ L2(Ω) and f : R −→ R verifies

(f1) There exists a ∈ R such that f ∈ C(R−{a},R) and f(a) ∈ [f(a−), f(a+)]
with f(a−) < f(a+) < ∞.

Clearly, the problem (4) is a particular case of (1); where p = 2 and h(x) =
1,∀x ∈ Ω.

As it was said, the dificulty is that the associated Euler functional I :
H1

0 (Ω) −→ R, given by

I(u) =
1
2

∫

Ω

|∇u|2 dx−
∫

Ω

∫ u(x)

0

f(u(x))dx−
∫

Ω

q(x)u(x)dx,

is not Fréchet differentiable. Hence, professors Ambrosetti and Badiale used the
Clarke dual principle to obtain a dual functional Φ ∈ C1(L2(Ω)) such that its
critical points u are solutions of the multivalued problem associated to (4). They
also showed that if −q(x) 6∈ [f(a−), f(a+)], a.e.Ω, or if u is a local minimum
of Φ, then u satisfies that |{x ∈ Ω : u(x) = a}| = 0, and therefore u is solution
of

−∆u(x) = f(u(x)) + q(x), a.e.Ω.

The previous one motived to professors Arcoya and Calahorrano, [Arco-Cala],
to generalize these results for the p-Laplacian version of (4), i.e., they considered
the problem
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{ −∆pu = f(u) + q(x), in Ω
u = 0, on ∂Ω

}
(5)

where, q ∈ Lp′(Ω) and f : R −→ R satisfies (f1).
Once in this case it does not seem easy to apply the dual line of reasoning,

professors Arcoya and Calahorrano considered the condition

(f2) There exists σ > 0 such that |f(s)| ≤ C1 + C2|s|σ, ∀s ∈ R, where
p ≤ 1 + σ < p∗ and

p∗ =
{ Np

N−p , if p < N,

+∞, if p ≥ N.

}
,

which permits to prove that the associated functional is locally Lipschitz con-
tinuous with generalized gradient ∂I(u), in each u ∈ W 1,p

0 (Ω), [Chang]. Then,
professors Arcoya and Calahorrano showed that

(a) u ∈ W 1,p
0 (Ω) is a critical point of I 1 if and only if

−∆pu(x)− q(x) ∈ f̂(u(x)), a.e.Ω.

(b) If −q(x) 6∈ [f(a−), f(a+)] a.e.Ω and u is a critical point of I, it verifies

|{x ∈ Ω| u(x) = a}| = 0, (6)

and, therefore, u satisfies

−∆pu(x) = q(x) + f(u(x)), a.e.Ω. (7)

(c) If u is a local minimum of I then, (6) and (7) likewise hold.

3 Principal result

Given Ω ⊂ RN , bounded domain, we study the problem
{ −∆pu = h(x)f(u) + q(x), in Ω

u = 0, on ∂Ω

}
(8)

where, ∆p is the p-Laplacian operator defined by

∆pu = div{|∇u|p−2∇u}, 1 < p < ∞.

We assume q ∈ Lp′(Ω), and f : R −→ R verifying

(f1) There exists only one a ∈ R such that f ∈ C(R − {a},R), and f(a) ∈
[f(a−), f(a+)], where f(a−) < f(a+) < ∞.

In addition , for h we suppose

(h1) 0 < m := inf(h(Ω)) ≤ sup(h(Ω)) =: M

1In this case u ∈ W 1,p
0 (Ω) is a critical point of I when 0 ∈ ∂I(u).
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From the condition (h1), it is clear that h ∈ L∞(Ω).
Now we consider the functional I : W 1,p

0 (Ω) −→ R, defined by

I(u) =
1
p

∫

Ω

|∇u|pdx−
∫

Ω

q(x)u(x)dx−
∫

Ω

F (u(x))h(x)dx, (9)

where F : [0,∞[−→ R is given by

F (t) =
∫ t

0

f(s)ds.

The next result, [Mayor], shows the relationship between the functional I and
the problem (8).

Lema 3.1 The functional I : W 1,p
0 (Ω) −→ R defined in (9) has as Euler equa-

tion
−∆pu = h(x)f(u) + q(x),

i.e., the weak derivative of I, in the point u ∈ W 1,p
0 (Ω), is given by

I ′G(u)v =
∫

Ω

[−∆pu− h(x)f(u)− q(x)]v(x)dx, ∀v ∈ W 1,p
0 (Ω).

It is clear, from the discontinuity of f, that I is not Fréchet diferenciable.
However, the following hipothesis is very useful.

(f2) There exists σ > 0 such that

|f(s)| ≤ C1 + C2|s|σ, ∀s ∈ R;

where
p ≤ 1 + σ ≤ p∗

and

p∗ =
{ Np

N−p , si p < N

+∞, si p ≥ N

}
.

Note 3.1 From the condition (f2), it verifies, [Chang, p.107], that the function
Φ : Ω× R −→ R defined by

Φ(x, s) = h(x)F (t),

and the functional N : L1+σ(Ω) −→ R defined by

N(u) =
∫

Ω

h(x)F (u(x))dx,

are locally Lipschitz continuous.

Because of the last observation, it is clear that the functional I is likewise
locally Lipschitz and, therefore, [Chang, p.103,104], I has in each point u ∈
W 1,p

0 (Ω) a generalized gradient ∂I(u).

Note 3.2 We say that u ∈ W 1,p
0 (Ω) is a critical point of I, if 0 ∈ ∂I(u).
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The next one is our principal result.

Theorem 3.1 If the conditions (f1), (f2) and (h1) hold, then

(1) u ∈ W 1,p
0 (Ω) is a critical point of I if and only if

−∆pu(x)− q(x) ∈ h(x)f̂(u(x)), a.e.Ω,

where f̂ is the multivalued function

f̂(s) =
{ {f(s)}, s 6= a

[f(a−), f(a+)] , s = a

}
.

(2) If u ∈ W 1,p
0 (Ω) is a critical point of I and

−q(x) 6∈ [α−, α+], a.e.Ω,

where
α− = min{mf(a−),Mf(a−)},
α+ = max{mf(a+),Mf(a+)},

then
|{x ∈ Ω|u(x) = a}| = 0 (10)

and, hence, u ∈ W 1,p
0 (Ω) satisfies

−∆pu(x) = q(x) + h(x)f(u(x)), a.e.Ω. (11)

(3) If u ∈ W 1,p
0 (Ω) is a local minimum of I, then (10) and (11) likewise hold.

PROOF
We consider well known the tools of [Chang].
(1) For u ∈ W 1,p

0 (Ω), the generalized gradient is given by

∂I(u) = {Au} − ∂J(u) + {Bu};

where A,B, J : W 1,p
0 (Ω) −→ W−1,p′(Ω) are the functionals defined by

< Au, v >=
∫

Ω

|∇u|p−2∇u∇v dx, ∀v ∈ W 1,p
0 (Ω),

< Bu, v >= −
∫

Ω

q(x)v(x) dx, ∀v ∈ W 1,p
0 (Ω),

< Ju, v >=
∫

Ω

h(x)F (u(x))v(x) dx, ∀v ∈ W 1,p
0 (Ω).

Moreover, we have ∂J(u) ⊂ [h(·)f(u−), h(·)f(u+)].
In this way, u ∈ W 1,p

0 (Ω) is a critical point of I iff there exists w ∈ ∂J(u)
such that

Au + Bu = w,

and
w ∈ h(x)f̂(u(x)), a.e.Ω.
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Observe that if w−Bu ∈ (L1+σ(Ω))′ ⊂ W−1,p′(Ω) then, Au ∈ L(1+σ)/σ(Ω).
But if Lp′(Ω) ⊂ (L1+σ(Ω))′ ⊂ W−1,p′(Ω), then we have

< Au, v >=< w −Bu, v >, ∀v ∈ W 1,p
0 (Ω);

i.e.,
∫

Ω

|∇u|p−2∇u∇vdx =
∫

Ω

q(x)v(x)dx +
∫

Ω

w(x)v(x)dx, ∀v ∈ W 1,p
0 (Ω);

and according with this,
∫

Ω

|∇u|p−2∇u∇vdx =
∫

Ω

(q(x) + w(x))v(x)dx, ∀v ∈ W 1,p
0 (Ω).

It follows that
−∆pu = w + q ∈ L(1+σ)/σ(Ω), a.e.Ω

and
−∆pu− q(x) ∈ h(x)f̂(u(x)), a.e.Ω.

(2) Suppose that u ∈ W 1,p
0 (Ω) is a critical point of I.

Let Γ be the level set:

Γ = {x ∈ Ω|u(x) = a}.

From the part (1) of the proof we have

−∆pu(x)− q(x) ∈ h(x)[f(a−), f(a+)], a.e.Γ;

and, for the definition of α− and α+, it follows

−∆pu(x)− q(x) ∈ [α−, α+], a.e.Γ.

Now, using a Morrey—Stampacchia theorem, [Morrey, Th. 3.2.2, p.69], we have

−∆pu(x) = 0, a.e.Γ,

and
−q(x) ∈ [α−, α+], a.e.Γ.

In this way, if −q(x) 6∈ [α−, α+], a.e.Ω, then, |Γ| = 0.
From the part (1) of the proff, it is likewise clear that

−∆pu(x)− q(x) = h(x)f(u(x)), a.e.Ω− Γ;

and from this,
−∆pu(x)− q(x) = f(u(x)), a.e.Ω.

(3) Suppose that u ∈ W 1,p
0 (Ω) is a local minimum of I. Using a similar

argument, as the one of the part (2) of the proof, we show that −q(x) ∈
[α−, α+], a.e.Γ.

Let ψ ∈ W 1,p
0 (Ω) be a positive continuous function. From the hipothesis of

minimum of u ∈ W 1,p
0 (Ω), there exists δ > 0 such that

I(u + εψ)− I(u) ≥ 0, ∀|ε| ≤ δ. (12)
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It is evident that for all ε 6= 0, we have

I(u + εψ)− I(u)
ε

=
1
p

∫

Ω

|∇u + ε∇ψ|p − |∇u|p
ε

dx−

−
∫

Ω

F (u + εψ)− F (u)
ε

h(x)dx−
∫

Ω

q(x)ψ(x).

Now we will prove that |Γ| = 0.
(a) First, we should prove that |{x ∈ Γ|−q(x) 6= α+}| = 0. To do it, suppose

the opposite; e.d.,
|{x ∈ Γ| − q(x) 6= α+}| > 0.

Then, because of the Lebesgue dominated convergence and (12), we have:

0 ≤ lim
ε→0+

I(u + εψ)− I(u)
ε

=

=
∫

Ω

|∇u|p−2∇u∇ψdx−
∫

Ω

f(u+)ψ(x)dx−
∫

Ω

q(x)ψ(x)dx

= −
∫

Ω

[∆pu + h(x)f(u+) + q(x)]ψ(x)dx

= −
∫

Γ

[∆pu + h(x)f(u+) + q(x)]ψ(x)dx

= −
∫

Γ

[α+ + q(x)]ψ(x)dx;

and, how we have that q(x) ≤ α+, a.e.Γ and |{x ∈ Γ| − q(x) < α+}| > 0, it
follows the contradiction

0 ≤ −
∫

Γ

[α+ + q(x)]ψ(x)dx < 0.

(b) In similar form, it is proved that |{x ∈ Γ| − q(x) 6= α−}| = 0.
How Γ = {x ∈ Γ| − q(x) 6= α+} ∪ {x ∈ Γ| − q(x) 6= α−}, it follows, from (a)

and (b), that |Γ| = 0.
¥

4 Application

Here, we present a simple application of the before theorem.
We consider the problem (8) with h satisfying (h1) and the nonlinearity f

satisfying (f1) and the following condition

(f2’) There exist α, β > 0 such that

f(s) ≤ α|s|p−1 + β, ∀s ∈ R,

with
α <

λ1

M
;

where λ1 is the first eigenvalue of −∆p.
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We have the following result

Theorem 4.1 The problem (8), where f verifies (f1) and (f2’), has at least one
solution u ∈ W 1,p

0 (Ω) satisfying

−∆pu(x) = q(x) + h(x)f(u(x)), a.e.Ω,

with
|{x ∈ Ω|u(x) = a}| = 0.

PROOF
By the characteristic of λ1, [Ana], we have

λ1 = inf
{∫

Ω
|∇u|pdx∫

Ω
|u|pdx

: u ∈ W 1,p
0 (Ω)− {0}

}
;

which implies
∫

Ω

|∇u|pdx ≥ λ1

∫

Ω

|u|pdx, ∀u ∈ W 1,p
0 (Ω).

Using this and (f2’), we have for u ∈ W 1,p
0 (Ω)

I(u) =
1
p

∫

Ω

|∇u|pdx−
∫

Ω

h(x)F (u(x))dx−
∫

Ω

q(x)u(x)dx

≥ 1
p
||∇u||pLp(Ω)dx− ||q||Lp′ (Ω)||u||Lp(Ω) −M

∫

Ω

|F (u(x))|dx;

which implies

I(u) ≥ 1
p
||∇u||pLp(Ω)dx− ||q||Lp′ (Ω)||u||Lp(Ω) −

Mα

pλ1

∫

Ω

|∇u|pdx.

Then, we have proved that

I(u) ≥ 1− (αM)/λ1

p
||∇u||pLp(Ω) − k||u||Lp(Ω), ∀u ∈ W 1,p

0 (Ω);

where k ∈ R. From the last one and considering that 0 < α < λ1/M implies
1− (αM)/λ1 > 0, it follows that I is coercive.

Let {un}n∈N be a sequence in W 1,p
0 (Ω) such that un ⇀ u. It is clear that

I(u) ≤ lim inf
n

f(un).

Then, the functional I is coercive and weakly lower semicontinuous. From this,
it follows that there exists u ∈ W 1,p

0 (Ω), local minimum of I. We conclude with
the part (3) of the theorem (3.1).

¥
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