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Abstract

In this paper, we consider the heat equation with the natural polynomial non-linear term; and with
two di↵erent cases in the di↵usion term. The first case (anomalous di↵usion) concerns the fractional
Laplacian operator with parameter 1 < ↵ < 2, while, the second case (classical di↵usion) involves the
classical Laplacian operator. When ↵ ! 2, we prove the uniform convergence of the solutions of the
anomalous di↵usion case to a solution of the classical di↵usion case. Moreover, we rigorous derive a
convergence rate, which was experimentally exhibit in previous related works.
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1 Introduction

In this paper, we consider the following multi-dimensional, nonlinear and anomalous di↵usion heat equation
in the whole space Rn, with n � 1:

@tu+ (��)↵/2 u+ ⌘ ·r(ub) = 0, 1 < ↵ < 2. (1)

Here, the function u : [0,+1[⇥Rn ! R is the solution, and (��)↵/2 u is the anomalous di↵usion term,
which concerns the well-known fractional Laplacian operator (��)↵/2. We recall that this operator is defined

in the Fourier variable by \(��)↵/2u(t, ⇠) = cn,↵ |⇠|↵bu(t, ⇠). Moreover, in the spatial variable, the fractional
Laplacian operator is defined as the following non-local operator:

(��)↵/2u(t, x) = cn,↵ p.v.

Z

Rn

u(t, x)� u(t, y)

|x� y|n+↵
dx,

where p.v. denotes the principal value. Finally, in the equation (1), ⌘ 2 Rn is a fixed vector, and moreover,
b 2 N with b � 2, is the parameter in the non-linear term. We may observe that this fully non-linear term
essentially behaves as the derivative of a polynomial of degree b in the variable u. Thus, this term agrees
with the classical assumption for the non-linearity in the qualitative study of the heat equation. See e.g.
[3, 4, 5, 6, 12] and the references therein.
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Nonlinear evolution PDEs involving the fractional Laplacian, which describes the anomalous or ↵�
Lévy stable di↵usion, have been extensively studied in the physical and the mathematical points of view.
From the physical point of view, and for b = 2, the equation (1) deals with a generalized Burgers-type
equation [4] which has been largely used to model a variety of physical phenomena as, for example, the
anomalous homogeneous turbulence [10], applications to hydrodynamics and statistical mechanics [17], and
moreover, applications molecular biology in the modeling of growth of molecular interfaces [19]. In the latter
application, the general algebraic non-linear term u

b, with b � 2, provides a good model for multi-particle
interactions. For more references see the book [16].

From the mathematical point of view, when the solution u(t, ·) is regarded as the density of a probability
distribution for every t > 0, the equation (1) has an important probabilistic interpretation in the theory
of nonlinear Markov processes and propagation of chaos. See, e.g., the works [11], [14] and the references
therein.

Getting back to the expression (1), we observe that for each value of the parameter 1 < ↵ < 2 in the
fractional Laplacian operator (��)↵/2 we get a corresponding fractional PDE. Then, denoting by u↵(t, x)
the solution of each equation, the main objective of this paper is to study the asymptotic behavior of the
family of functions u↵(t, x) when the parameter ↵ goes to 2.

Formally, we may observe that if in the expression (1) we set ↵ = 2, then we get a classical di↵usion
equation involving the Laplacian operator:

@tu��u+ ⌘ ·r(ub) = 0, (2)

and thus, if u(t, x) is a solution of the equation above, we are interesting in given a rigorous understanding
of the expected the convergence u↵(t, x) ! u(t, x), when ↵ ! 2. It is worth mentioning that although
this problem is easily formulated, it is not a trivial study since for each value of the parameter ↵ we have
di↵erent fractional PDE depending on this parameter.

In the particular case of the following linear equation, posed on a smooth and bounded domain ⌦ ⇢ Rn:

@tu↵ + (��)↵/2 u↵ = f↵, 0 < ↵ < 2, (3)

and where the function f↵(t, x) does not depend on the solution u↵, this convergence problem was recently
studied by U. Biccari & V. Hernández-Santamaŕıa in [2]. For a time 0 < T < +1, the authors consider
a family of functions f↵ 2 L

2(0, T,H�↵(⌦)), which is uniformly bounded respect to the parameter ↵:
kf↵(t, ·)kH��(⌦)  C, and such that f↵(t, ·) ! f(t, ·) in the weak topology of the space H�1(⌦) when ↵ ! 2.
Then, using a compactness argument (due to the boundness of the domain ⌦) it is shown that the weak
solutions of equation (3) converge in the strong topology of the space L2(0, T,H1��

0
(⌦)) (with 0 < �  1) to

a weak solution of the corresponding linear heat equation with datum f . Moreover, when the parameter �
is set as � = 1, and then we have a convergence in the space L

2(0, T, L2(⌦)), the authors of [2] numerically
obtain a convergence rate of the order |2� ↵|1/2.

On the other hand, L. Ignat & J.D. Rossi proved in [12], among other things, that weak solutions u(t, x)
to the non-linear heat equation (2) can be obtained as the limit, when " ! 0+, of the weak solutions to the
following non-local convection-di↵usion equation on the whole space Rn:

@tu" +
1

"2
(J" ⇤ u" � u") +

1

"
(G" ⇤ ub" � u

b

") = 0, " > 0. (4)

This equation shares the same scaling properties of equation (2) and here, for suitable non-negative functions
J 2 S(Rn) and G 2 S(Rn), we have J"(x) =

1

"n
J(x/") and G"(x) =

1

"n
G(x/") respectively. Moreover, J is a

radially symmetric function and the key assumption is that its Fourier transform bJ(⇠) satisfies the following
condition:

1

2
@
2

⇠i
bJ"(0) = 1, i = 1, · · · , n, (5)
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which is similarly satisfied for the symbol |⇠|2 of the classical Laplacian operator. In this setting, using
sharp estimates of the kernel associated to the linear problem, and moreover, for the particular vector

⌘ = (⌘1, · · · , ⌘n) in the equation (2), defined by ⌘i =

Z

Rn
xiG(x)dx; for all time 0 < T < +1 it is proven

the following convergence in the natural framework (due to the Plancherel’s identity) of the Lebesgue space
L
2(Rn):

lim
"!0+

sup
0tT

ku"(t, ·)� u(t, ·)kL2(Rn) = 0. (6)

However, it is worth remark the non-local di↵usion operator 1/"2(J" ⇤ (·)� Id) (where Id is the identity
operator) does not contains the fractional Laplacian operator (��)↵/2 as a particular case. More precisely,
we remark that for 1 < ↵ < 2, the symbol |⇠|↵ of the operator (��)↵/2 does not verifies the condition (5).

Consequently, the theory developed in [12] for the equation (4) cannot be applied to case of the equation
(1); and this fact strongly suggest to prove a convergence result analogue to the one given in (6) for this
last equation. For this, we will use a di↵erent approach and we will investigate the convergence of the
strong solutions u↵(t, x) for the anomalous di↵usion equation (1) to a strong solution u(t, x) for the classical
di↵usion equation (2). Our method bases on two main ideas, on the one hand, a fine study on the convergence
of the fundamental solution p↵(t, x) associated to the fractional Laplacian operator (see the expression (12)
for a definition) to the heat kernel h(t, x) and, on the other hand, on some uniform estimates respect to the
parameter ↵ for the family of functions u↵(t, x).

Finally, we think that in further investigations our method could be adapted to the case when the
fractional Laplacian operator (��)↵/2 in the equation (1) is substituted by a more general general Lévy-
type operator L↵. For a definition and some well-known properties of this operator we refer to the book
[13].

2 Main Results

Let us consider the Cauchy problem for both anomalous (when 1 < ↵ < 2) and classical (when ↵ = 2)
non-linear heat equation:

(
@tu↵ + (��)↵/2 u↵ + ⌘ ·r(ub↵) = 0, 1 < ↵  2,

u↵(0, ·) = u0,↵.

(7)

Well-posedness (WP) issues for this equation have been studied in several works [3, 8, 9] and it is well-
known that for an initial datum u0,↵ 2 L

1(Rn) the initial value problem (7) has a unique solution u↵ 2
C([0,+1[, L1(Rn)) which verifies

ku↵(t, ·)kL1  ku0,↵kL1 . (8)

Moreover, for 1  p  +1 this solution also verifies u↵ 2 C(]0,+1[,W 1,p(Rn)), and the following estimate
holds:

ku↵(t, ·)kLp  C t
�n

↵ (1� 1
p ) ku0,↵kL1 .

Finally, under the additional assumption on the initial datum: u0,↵ 2 L
1\Lp(Rn) the corresponding solution

verifies u↵ 2 C([0,+1[, Lp(Rn)), and for all time t � 0 we have the estimate

ku↵(t, ·)kLp  ku0,↵kLp .

In our first theorem below, we complete these previous results providing some regularity properties for
the solutions of the equation (7). We consider here initial data u0,↵ 2 L

1(Rn) which also belong to the
Sobolev space H

s(Rn), with s > n/2. Then, we first obtain the global well-posedness for the equation (7)
in this space, and thereafter, we also obtain an important improvement of the regularity of the solutions
u↵(t, x). More precisely, we prove that these solutions are C1� functions in the temporal variable, and
moreover, they are C1� functions in the spatial variable.
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Theorem 1 Let 1 < ↵  2. For s > n/2, let u0,↵ 2 L
1 \ H

s(Rn) be an initial datum. Then, there
exists a unique solution u↵ 2 C([0,+1[, Hs(Rn)) of the equation (7). Moreover, this solution verifies u↵ 2
C1(]0,+1[, C1(Rn)); and it verifies the equation (7) in the classical sense.

For the particular case of the space dimension n = 1, this theorem has the following corollary when we
improve the regularity of solutions of the equation (7), arising from the initial u0,↵ 2 L

1(R) without any
additional assumption.

Corollary 1 For 1 < ↵  2, let u0,↵ 2 L
1(R) be an initial datum. Then, the solution u↵ 2 C([0,+1[, L1(R))

of the equation (7) verifies u↵ 2 C1(]0,+1[, C1(R)).

As mentioned, our main contribution of this paper is the study of the convergence of solutions u↵(t, x),
in the anomalous di↵usion case for equation (7) when 1 < ↵ < 2, to the solution in the classical di↵usion
case when ↵ = 2, which we denote as u2(t, x).

Let (u0,↵)1<↵<2 ⇢ L
1 \ H

s(Rn) be the family of initial data from which arise each solution u↵(t, x).
Moreover, let u0,2 2 L

1 \ H
s(Rn) be the initial datum from which arise the solution u2(t, x). Then, we

assume that we have the following convergence

u0,↵ ! u0,2, ↵ ! 2�, (9)

in the strong topology of the space L1\Hs(Rn). On the other hand, we recall that by the Sobolev embedding
H

s(Rn) ⇢ L
1(Rn) (as we have s > n/2) we also have the convergence above in the strong topology of the

Lebesgue space L
1(Rn). Thus, we are interested in studying the uniform convergence:

u↵(t, x) ! u2(t, x), ↵ ! 2�, (10)

in the space L
1([0, T ] ⇥ Rn), for 0 < T < +1. Here, we emphasize that this uniform convergence in

the temporal and the spatial variable provides us a di↵erent and fine convergence result, when comparing
from the ones obtained in [2] and [12]. Moreover, as we will observe later in the Corollary 2, this uniform
convergence will also allows us to obtain some convergence results in the framework of the Lebesgue spaces
for another values of the integration parameter.

Going further in the study of the convergence (10), we also investigate a convergence rate. For this, we
assume that the family of initial data u0,↵ converges to u0,2 in the norm of the space L

1(Rn), with a given
convergence rate measured by a parameter � > 0.

Theorem 2 For 1 < ↵  2, let u0,↵ 2 L
1 \ H

s(Rn) be an initial data and let u↵(t, x) be the solution of
the equation (7) given by the Theorem 1. Finally, let 0 < T < +1. We assume (9), and moreover, for a
parameter � > 0 we assume

ku0,↵ � u0,2kL1  c (2� ↵)� , 1 < ↵ < 2. (11)

Then, there exist 0 < " < 1, and there exists a constant C = C(ku0kHs , ⌘, b, ", T ) > 0, such that we have:

sup
0tT

ku↵(t, ·)� u2(t, ·)kL1  C max
⇣
(2� ↵)� , 2� ↵

⌘
, 1 + " < ↵ < 2.

We observe here that the convergence rate of the solutions is determined by a competition between the
two quantities (2 � ↵)� and (2 � ↵). The first quantity (2 � ↵)� is the convergence rate assumed for the
initial data, while the second quantity (2�↵) is the convergence rate of the fundamental solution associated
to the fractional Laplacian operator p↵(t, x) to the heat kernel h(t, x). This convergence rate is rigorous
obtained in the Lemma 5.1.

We also remark that as we have 1 + " < ↵ < 2 then we get 0 < 2� ↵ < 1� ". Thus, we will discuss the
result above by considering two cases of the parameter �.
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• When 0 < �  1. Here we have max
⇣
(2� ↵)� , 2� ↵

⌘
= (2� ↵)� , and consequently, the solutions

u↵(t, x) converge to the solution u2(t, x) with the same convergence rate as for the initial data.

• When � > 1. In this case may observe that the convergence rate of the initial data is faster that

the previous case when 0 < � < 1. Moreover, we have max
⇣
(2� ↵)� , 2� ↵

⌘
= 2� ↵, and thus, it is

interesting to observe that the convergence rate of the solutions does not mimic the one for the initial
date. More precisely, the solutions u↵(t, x) converges to the solution u2(t, x) with a rate of the order
2� ↵, which is slower than the convergence rate of the initial data (2� ↵)� .

Finally, as mentioned above, the convergence result given in the Theorem 2 also allows us to study the
convergence (10) in the following Lebesgue spaces.

Corollary 2 Within the framework of the Theorem 2, for all 1  p  +1 and 1 < q < +1, we have:

ku↵ � u2kLp((0,T ],Lq(Rn))  Cp,q max
⇣
(2� ↵)

�

⇣
1� 1

q

⌘

, (2� ↵)1�
1
q

⌘
, 1 + " < ↵ < 2.

We observe that in the framework of the L
p

t
L
q
x� spaces, the convergence rate is only driven by the

parameter q, which describes the decaying properties of solutions in the spatial variable.

On the other hand, setting the parameter � = 1, and moreover, for the particular values p = q = 2, we
obtain the following convergence rate:

ku↵ � u2kL2
tL

2
x
 C(2� ↵)1/2,

which was experimentally obtained in [2] for the particular case linear (when ⌘ = 0) of the equation (7).

To close this section, let us comment that in this work we have restricted ourselves in the case when
the parameter ↵ verifies 1 < ↵ < 2. However, our results are also valid for the case 2 < ↵ with the minor
technical modifications

Organization of the paper. In the Section 3 we recall some well-known facts on the linear fractional
heat equation that we will use the next sections. The Section 4 is devoted to the proof the Theorem 1 and
the Corollary 1, while, in the Section 5, we give a proof of the Theorem 2 and the Corollary 2.

3 Some well-known facts

In this section, for the completeness of this paper, we quickly summarize some well-known facts on the
linear, homogeneous fractional heat equation

@tp↵ + (��)↵/2p↵ = 0, 1 < ↵ < 2, t > 0.

The fundamental solution of this equation, noted by p↵(t, x), can be computed via the Fourier transform by

cp↵(t, ⇠) = e
�t |⇠|↵

.

Moreover, in the spatial variable the fundamental solution p↵ is given by

p↵(t, x) =
1

t
1
↵

P↵

✓
x

t
1
↵

◆
, (12)

where the function P↵ in the inverse fourier transform of e�|⇠|↵ . See [13], Chapter 3 for more details. It is
well-known that for 1 < ↵ < 2 the functions P↵ is smooth and positive. Moreover, it verifies the following
pointwise inequalities

0 < P↵(x) 
C

(1 + |x|)n+↵
, |rP↵(x)| 

C

(1 + |x|n+↵+1)
,

for a constant C > 0 and for all x 2 Rn. These inequalities allow us to derive the following estimates.
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Proposition 3.1 (L
p�estimates) For 1  p  +1, there exists a constant Cn,p > 0, which depends of

the dimension n 2 N⇤ and the parameter p, such that for every 1 < ↵ < 2 and for every t > 0, we have

1. kp↵(t, ·)kLp  Cn,p t
�n

↵

⇣
1� 1

p

⌘

,

2. krp↵(t, ·)kLp  Cn,p t
� 1+n(1�1/p)

↵ .

Moreover we have:

Proposition 3.2 (L
p�continuity) Let 1  p  +1. For every ' 2 L

p(Rn), we have

lim
t!0+

kp↵(t, ·) ⇤ '� 'k
Lp = 0.

On the other hand, using the identity cp↵(t, ⇠) = e
�t |⇠|↵ , we have the following known results in the

setting of the Sobolev spaces:

Proposition 3.3 (Ḣ
s
and H

s
estimates) Let s1, s2 � 0, there exists a constant Cn,s2 > 0, which depends

of the dimension n 2 N⇤ and the parameter s2, such that for every 1 < ↵  2 and for every t > 0, we have:

1) kp↵(t, ·) ⇤ 'kḢs1+s2  Cn,s2 t
� s2

↵ k'k
Ḣs1 .

2) kp↵(t, ·) ⇤ 'kHs1+s2  Cn,s2

⇣
1 + t

�s2/↵
⌘
k'k

Hs1 .

Proof. In order to verify the point 1 we just write:

kp↵(t, ·) ⇤ 'k2
Ḣs1+s2

=

Z

Rn
|⇠|2(s1+s2)e

�2t|⇠|↵ |b'(⇠)|2 d⇠  t
� 2s2

↵

 
sup
⇠2Rn

|t1/↵⇠|2s2e�2|t1/↵⇠|↵
!Z

Rn
|⇠|2s1 |b'(⇠)|2 d⇠.

On the other hand, to verify the pint 2 we write:

kp↵(t, ·) ⇤ 'kHs1+s2 = kp↵(t, ·) ⇤ 'kL2 + kp↵(t, ·) ⇤ 'kḢs1+s2 .

For the first term in the right side, by the Young’s inequalities and the point 1 in the Proposition 3.1, we
have:

kp↵(t, ·) ⇤ 'kL2  kp↵(t, ·)kL1 k'kL2  c k'k
L2  c k'k

Hs1 . (13)

Then, for the second term in the right side, by the pint 1 above we can write:

kp↵(t, ·) ⇤ 'kḢs1+s2  cn,s2t
�s2/↵ k'k

Hs1 . (14)

Thus, the desired estimate directly follows from (13) and (14). ⌅

Proposition 3.4 (H
s� and Ḣ

s�continuity) Let s1, s2 � 0 and " > 0. There exists a constant Cn,s2," >

0, which depends of the dimension n 2 N⇤, the parameters s2 and ", such that for every 1 < ↵ < 2 and for
every t1, t2 > ", we have

1. kp↵(t1, ·) ⇤ '� p↵(t2, ·) ⇤ 'kḢs1+s2  Cn,s2," |t1 � t2|1/2 k'kḢs1 ,

2. kp↵(t1, ·) ⇤ '� p↵(t2, ·) ⇤ 'kHs1+s2  Cn,s2," |t1 � t2|1/2 k'kHs1 .
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Proof. To verify the point 1 we assume, without loss of generality, that we have t1 > t2 > ". Then we write

kp↵(t1, ·) ⇤ '� p↵(t2, ·) ⇤ 'k2
Ḣs1+s2

=

Z

Rn
|⇠|2(s1+s2)|e�t1|⇠|↵ � e

�t2|⇠|↵ |2|b'(⇠)|2 d⇠

=

Z

Rn
|⇠|2s2e�2t2|⇠|↵ |e�(t1�t2)|⇠|↵ � 1|2 |⇠|2s1 |b'(⇠)|2 d⇠

t
� 2s2

↵
2

 
sup
⇠2Rn

|t1/↵
2

⇠|2s2e�|t1/↵2 ⇠|↵
! Z

Rn
e
�t2|⇠|↵ |e�(t1�t2)|⇠|↵ � 1|2 |⇠|2s1 |b'(⇠)|2 d⇠

"
� 2s2

↵ Cn,s2

Z

Rn
e
�"|⇠|↵ |e�(t1�t2)|⇠|↵ � 1|2 |⇠|2s1 |b'(⇠)|2 d⇠

Cn,s2,"

Z

Rn
e
�"|⇠|↵ |e�(t1�t2)|⇠|↵ � 1|2 |⇠|2s1 |b'(⇠)|2 d⇠.

We study now the expression |e�(t1�t2)|⇠|↵ � 1|2. We remark first that as we have t1 > t2 then the expression
|e�(t1�t2)|⇠|↵ � 1| is uniformly bounded and we can write

|e�(t1�t2)|⇠|↵ � 1|2 = |e�(t1�t2)|⇠|↵ � 1| |e�(t1�t2)|⇠|↵ � 1|  C|e�(t1�t2)|⇠|↵ � 1|.

Now, by the mean value theorem in the temporal variable we have |e�(t1�t2)|⇠|↵ � 1|  C |⇠|↵ |t1 � t2|. Thus,
gathering these estimates we get

|e�(t1�t2)|⇠|↵ � 1|2  C |⇠|↵|t1 � t2|.

Getting back to the last integral we finally have:

kp↵(t1, ·) ⇤ '� p↵(t2, ·) ⇤ 'k2
Ḣs1+s2

Cn,s2," |t1 � t2|
Z

Rn
e
�"|⇠|↵ |⇠|↵ |⇠|2s1 |b'(⇠)|2 d⇠

Cn,s2," |t1 � t2|
 
sup
⇠2Rn

e
�"|⇠|↵ |⇠|↵

!
k'k2

Ḣs1

Cn,s2," |t1 � t2| k'k2
Ḣs1

,

hence, the estimate stated in the point 1 is verified. The estimate stated in the point 2 essentially follows
these sames lines. ⌅

4 Global well-posedness and regularity

4.1 Proof of the Theorem 1

Let 1 < ↵  2 fixed, and let u0,↵ 2 L
1 \H

s(Rn) be an initial datum. The result stated in the Theorem 1 is
well-known for the case ↵ = 2, see for instance [3], [8] and [9], where we have the classical non linear heat
equation (2). So, we only consider the values 1 < ↵ < 2. We will prove this theorem in five steps, which we
detail below.

Step 1: Local in time existence. Note that by Duhamel’s principle the solution of the problem (7)
can be write as follows:

u↵(t, ·) = p↵(t, ·) ⇤ u0,↵ +

Z
t

0

p↵(t� ⌧, ·) ⇤ ⌘ ·r(ub↵)(⌧, ·) d⌧. (15)

7



Here p↵ denotes the fundamental solution of the fractional heat equation. Also, we can see that the
nonlinear term defines a multi-linear form in the variable u, therefore, in order to construct a solution of
(15) we will use Picard’s contraction principle. For this, for a time 0 < T < +1 we consider the Banach
space

ET = C
�
[0, T ], L1(Rn)

�
\ C
�
[0, T ], Hs(Rn)

�
, (16)

endowed with the norm

kuk
ET

= sup
0tT

ku(t, ·)k
L1 + sup

0tT

ku(t, ·)k
Hs . (17)

Then, we have the following technical result:

Theorem 4.1 For s > n/2, let u0,↵ 2 L
1(Rn) \ H

s(Rn) be the initial datum. Then, there exists a time
T = T (↵, ku0,↵kL1 , ku0,↵kHs) > 0 given by:

T =
1

2

2

64
1� 1/↵

2bc |⌘|
⇣
ku0,↵kL1 + ku0,↵kHs

⌘
b�1

3

75

↵
↵�1

, (18)

where c > 0 is a numerical constant. Moreover, there exists a function u↵ 2 ET which is a solution of the
equation (15).

Proof. We will prove the following estimates. For the linear term in (15) we have:

Proposition 4.1 We have p↵(t, ·) ⇤ u0,↵ 2 ET and kp↵(t, ·) ⇤ u0,↵kET  c (ku0,↵kL1 + ku0,↵kHs).

Proof. We observe first that, due to the Proposition 3.2 and the first point of the Proposition 3.3, the
quantities kp↵(t, ·) ⇤ u0,↵kL1 and kp↵(t, ·) ⇤ u0,↵kHs are continuous in the temporal variable respectively.

By the Young’s inequalities and the point 1 in Proposition 3.1 (with p = 1) we write

kp↵(t, ·) ⇤ u0,↵kL1  kp↵(t, ·)kL1 ku0,↵kL1  c ku0,↵kL1 .

Moreover, we also write

kp↵(t, ·) ⇤ u0,↵kHs  kcp↵(t, ·)kL1ku0,↵kHs  kp↵(t, ·)kL1ku0,↵kHs  cku0,↵kHs .

Then, the desired estimate holds. ⌅

We study now the non linear term in (15). For b 2 N with b � 2, we denote the multi-linear form

Mb(u) =

Z
t

0

p↵(t� ⌧, ·) ⇤ ⌘ ·r(ub)(⌧, ·)d⌧,

where, to simplify the writing, we have written the function u instead of u↵. We thus have the following
result.

Proposition 4.2 For u 2 ET we have Mb(u) 2 ET . Moreover, the following estimated holds:

kMb(u)kET  c |⌘| T
1�1/↵

1� 1/↵
kukbET

.
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Proof. Let us start by noting that thanks to [6] we have Mb(u) 2 C
�
[0, T ], L1(Rn)

�
, so, it remains to

prove that Mb(u) 2 C
�
[0, T ], Hs(Rn)

�
. Indeed, let t1, t2 > 0. Without loss of generality we assume that

0 < t1 < t2  T . Then we write:
����
Z

t1

0

p↵(t1 � ⌧, ·) ⇤ ⌘ ·r(ub)(⌧, ·)d⌧ �
Z

t2

0

p↵(t2 � ⌧, ·) ⇤ ⌘ ·r(ub)(⌧, ·)d⌧
����
Hs


����
Z

t1

0

p↵(t1 � ⌧, ·) ⇤ ⌘ ·r(ub)(⌧, ·)d⌧ �
Z

t1

0

p↵(t2 � ⌧, ·) ⇤ ⌘ ·r(ub)(⌧, ·)d⌧
����
Hs

+

����
Z

t1

0

p↵(t2 � ⌧, ·) ⇤ ⌘ ·r(ub)(⌧, ·)d⌧ �
Z

t2

0

p↵(t2 � ⌧, ·) ⇤ ⌘ ·r(ub)(⌧, ·)d⌧
����
Hs


Z

t1

0

���p↵(t1 � ⌧, ·) ⇤ ⌘ub(⌧, ·)� p↵(t2 � ⌧, ·) ⇤ ⌘ub(⌧, ·)
���
Hs+1

d⌧

+

Z
t2

t1

���rp↵(t2 � ⌧, ·) ⇤ ⌘ub(⌧, ·)
���
Hs

d⌧

=R↵,1(t1, t2) +R↵,2(t1, t2).

(19)

For the first term on the right-hand side, by the point 2 of Proposition 3.4 (with s1 = s and s2 = 1),
and moreover, as s > n/2 by the product laws in the Sobolev spaces we obtain:

R↵,1(t1, t2)  c

Z
t1

0

|t1 � t2|1/2 |⌘|
���ub(⌧, ·)

���
Hs

d⌧  c |⌘| |t1 � t2|1/2
Z

t1

0

ku(⌧, ·)kbHsd⌧  c |⌘| |t1 � t2|1/2 TkukbET
.

Hence, lim
t1!t2

R↵,1(t1, t2) = 0. Then, for the second term on the right-hand side, we write

R↵,2(t1, t2) =

Z
t2

t1

���rp↵(t2 � ⌧, ·) ⇤ ⌘ ub(⌧, ·)
���
L2

+
���rp↵(t2 � ⌧, ·) ⇤ ⌘ u

b(⌧, ·)
���
Ḣs

d⌧

 |⌘|
Z

t2

t1

krp↵(t2 � ⌧, ·)k
L1

���ub(⌧, ·)
���
L2

d⌧ + |⌘|
Z

t1

t1

���p↵(t2 � ⌧, ·) ⇤ ub(⌧, ·)
���
Ḣs+1

d⌧

= R↵,2,1(t1, t2) +R↵,2,2(t1, t2).

In order to estimate the term R↵,2,1(t1, t2), by the Hölder inequalities, the second point of Proposition 3.1,
and moreover, the product laws in the Sobolev spaces, we write:

R↵,2,1(t1, t2) c |⌘|
Z

t2

t1

(t2 � ⌧)�1/↵kub(⌧, ·)kL2 d⌧  c |⌘|
Z

t2

t1

(t2 � ⌧)�1/↵kub(⌧, ·)kHs d⌧

c |⌘| kukb
ET

|t2 � t1|1�
1/↵

1� 1/↵
.

Moreover, in order to estimate the R↵,2,2, by Proposition 3.3 (with s1 = s and s2 = 1), and using always
the product laws in the Sobolev spaces, we can write

R↵,2,2(t1, t2)  c |⌘|
Z

t2

t1

(t2 � ⌧)�1/↵kub(⌧, ·)k
Ḣsd⌧  c |⌘| kukb

ET

|t2 � t1|1�
1/↵

1� 1/↵
.

Gathering the estimates made for the terms R↵,2,1(t1, t2) and R↵,2,2(t1, t2), we obtain lim
t1!t2

R↵,2(t1, t2) = 0.

We thus have Mb(u) 2 C((0, T ], Hs(Rn)). We prove now the continuity at t = 0. For this we shall verify the
estimate

����
Z

t

0

p↵(t� ⌧, ·) ⇤ ⌘ ·r(ub)(⌧, ·)d⌧
����
Hs

 c|⌘|kukbET

t
1�1/↵

1� 1/↵
. (20)
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Indeed, by the Young inequalities, the second point of the Proposition 3.1, the Proposition 3.3, and
moreover, the product laws in the Sobolev spaces we can write:

����
Z

t

0

p↵(t� ⌧, ·) ⇤ ⌘ ·r(ub)(⌧, ·) d⌧
����
Hs


Z

t

0

krp↵(t� ⌧, ·)k
L1

���⌘ u
b(⌧, ·)

���
L2

+
���p↵(t� ⌧, ·) ⇤ ⌘ u

b(⌧, ·)
���
Ḣs+1

d⌧


Z

t

0

c(t� ⌧)�
1/↵ |⌘|

���ub(⌧, ·)
���
L2

+ c(t� ⌧)�
1/↵ |⌘|

���ub(⌧, ·)
���
Ḣs

d⌧

 c |⌘| kukb
ET

Z
t

0

(t� ⌧)�
1/↵

d⌧  c|⌘|kukbET

t
1�1/↵

1� 1/↵
.

We will verify now the estimate kMb(u)kET  c |⌘|T 1� 1
↵ /(1� 1/↵) kukbET

. We remark first that by the
estimate (20) we write directly

sup
t2[0,T ]

����
Z

t

0

p↵(t� ⌧, ·) ⇤ ⌘ ·r(ub)(⌧, ·)d⌧
����
Hs

 c|⌘| T
1�1/↵

1� 1/↵
kukbET

. (21)

On the other hand, applying the Young inequalities and the point 2 of the Proposition 3.1 we have
����
Z

t

0

p↵(t� ⌧, ·) ⇤ ⌘ ·r(ub)(⌧, ·)d⌧
����
L1


Z

t

0

���rp↵(t� ⌧, ·) ⇤ ⌘ u
b(⌧, ·)

���
L1

d⌧

c |⌘|
Z

t

0

(t� ⌧)�
1/↵

���ub(⌧, ·)
���
L1

d⌧  c |⌘|
Z

t

0

(t� ⌧)�
1/↵ku(⌧, ·)kb�1

L1 ku(⌧, ·)k
L1 d⌧.

As s > n/2 we have the embedding H
s(Rn) ⇢ L

1(Rn), and thus we can write

c |⌘|
Z

t

0

(t� ⌧)�
1/↵ku(⌧, ·)kb�1

L1 ku(⌧, ·)k
L1 d⌧  c |⌘|

Z
t

0

(t� ⌧)�
1/↵ku(⌧, ·)kb�1

Hs ku(⌧, ·)k
L1 d⌧

c|⌘|
 

sup
⌧2[0,T ]

ku(⌧, ·)kb�1

Hs

! 
sup

⌧2[0,T ]

ku(⌧, ·)kL1

!
T
1�1/↵

1� 1/↵
 c|⌘| T

1�1/↵

1� 1/↵
kukbET

.

Then, we have

sup
t2[0,T ]

����
Z

t

0

p↵(t� ⌧, ·) ⇤ ⌘ ·r(ub)(⌧, ·)d⌧
����
L1


Z

t

0

���rp↵(t� ⌧, ·) ⇤ ⌘ u
b(⌧, ·)

���
L1

d⌧  c|⌘| T
1�1/↵

1� 1/↵
kukbET

.

(22)
Finally, by (21) and (22) we obtain the desired estimate. This proposition is proven. ⌅

Once we have the Propositions 4.1 and 4.2 at hand, for a time T small enough set in (18), by the standard
fixed point iterative schema we construct a solution u↵ 2 ET of the equation (15). ⌅

Step 2: Uniqueness.

Theorem 4.2 The solution u↵ 2 ET of the equation (15) given by the Theorem 4.1 is the unique one.

Proof. Let v↵ 2 ET be a solution of the equation (15), arising from the same initial data u0,↵ 2 L
1(Rn) \

H
s(Rn). We define w↵ = u↵ � v↵, where the functions w↵ solves the problem:

w↵(t, ·) =
Z

t

0

p↵(t� ⌧, ·) ⇤ ⌘ ·r(ub↵ � v
b

↵)(⌧, ·) d⌧.
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Now, we define the time 0  T1  T as the maximal time such that kw↵kET1
= 0 and we will prove that

T1 = T . By contradiction, we suppose that T1 < T0 and we can set a time T1 < T2 < T .

Hence, by definition of the time T1, on the interval of time [T1, T2] we have that w↵ solves the equation:

w↵(t, ·) =
Z

t

T1

p↵(t� ⌧, ·) ⇤ ⌘ ·r(ub↵ � v
b

↵)(⌧, ·) d⌧.

Hereinafter, we will consider the space

E[T1,T2]
= C

�
[T1, T2], L

1(Rn)
�
\ C
�
[T1, T2], H

s(Rn)
�
, (23)

endowed with the norm

kuk
E[T1,T2]

= sup
T1tT2

ku(t, ·)k
L1 + sup

T1tT2

ku(t, ·)k
Hs . (24)

We estimate now the quantity kw↵kE[T1,T2]
. For the term kw↵(t, ·)kL1 , by the Young inequalities and the

second point of the Proposition 3.1 we write1

kw↵(t, ·)kL1 c|⌘|
Z

t

T1

krp↵(t� ⌧, ·)k
L1

���
⇣
u
b

↵ � v
b

↵

⌘
(⌧, ·)

���
L1

d⌧

c|⌘|
Z

t

T1

(t� ⌧)�
1/↵

������

2

4(u↵ � v↵)
b�1X

j=0

u
b�1�j

↵ v
j

↵

3

5 (⌧, ·)

������
L1

d⌧ = (a).

Then, by the Hölder inequalities, and moreover, by the continuous embedding H
s(Rn) ⇢ L

1(Rn) for
s > n/2, we have:

(a)  c|⌘|
Z

t

T1

(t� ⌧)�
1/↵ |⌘| k(u↵ � v↵) (⌧, ·)kL1

2

4
b�1X

j=0

���ub�1�j

↵ (⌧, ·)
���
L1

��vj↵(⌧, ·)
��
L1

3

5 d⌧

 c|⌘|
Z

t

T1

(t� ⌧)�
1/↵ |⌘| k(u↵ � v↵) (⌧, ·)kL1

2

4
b�1X

j=0

���ub�1�j

↵ (⌧, ·)
���
Hs

��vj↵(⌧, ·)
��
Hs

3

5 d⌧

 c |⌘| ku↵ � v↵kE[T1,T2]

2

4
b�1X

j=0

ku↵kb�1�j

E[T1,T2]
kv↵kjE[T1,T2]

3

5
Z

t

T1

(t� ⌧)�
1/↵

d⌧.

Thus, we get the estimate:

kw↵(t, ·)kL1  c |⌘| kw↵kE[T1,T2]

2

4
b�1X

j=0

ku↵kb�1�j

E[T1,T2]
kv↵kjE[T1,T2]

3

5 (T2 � T1)
1�1/↵

1� 1/↵
. (25)

For the term kw↵(t, ·)kHs , we write

kw↵(t, ·)kHs 
Z

t

T1

kp↵(t� ⌧, ·) ⇤ ⌘ ·r(ub↵� v
b

↵)(⌧, ·)kL2 d⌧ +

Z
t

T1

kp↵(t� ⌧, ·) ⇤ ⌘ ·r(ub↵� v
b

↵)(⌧, ·)kḢs d⌧ = (b).

1
Here, we use the identity ub � vb = (u� v)

b�1X

j=0

ub�1�jvj , b � 2.
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Then, to estimate the first term in the right side, we use the Young inequalities and the second point of the
Proposition 3.1. Moreover, to estimate the second term in the right side, we use the Proposition 3.3. We
thus get:

(b)  c|⌘|
Z

t

T1

krp↵(t� ⌧, ·)k
L1

���(ub↵ � v
b

↵)(⌧, ·)
���
L2

d⌧ + c|⌘|
Z

t

T1

���p↵(t� ⌧, ·) ⇤ ⌘ (ub↵ � v
b

↵)(⌧, ·)
���
Ḣs+1

d⌧

 c|⌘|
Z

t

T1

(t� ⌧)�
1/↵ |⌘|

���(ub↵ � v
b

↵)(⌧, ·)
���
L2

d⌧ + c|⌘|
Z

t

T1

(t� ⌧)�
1/↵ |⌘|

���(ub↵ � v
b

↵)(⌧, ·)
���
Ḣs

d⌧

 c |⌘|
Z

t

T1

(t� ⌧)�
1/↵

������

2

4(u↵ � v↵)
b�1X

j=0

u
b�1�j

↵ v
j

↵

3

5 (⌧, ·)

������
Hs

d⌧ = (c).

Now, by the product law in the Sobolev spaces, since we have s > n/2 then we write:

(c)  c |⌘|
Z

t

T1

(t� ⌧)�
1/↵ k(u↵ � v↵) (⌧, ·)kHs

2

4
b�1X

j=0

���ub�1�j

↵ (⌧, ·)
���
Hs

��vj↵(⌧, ·)
��
Hs

3

5 d⌧

 c |⌘| ku↵ � v↵kE[T1,T2]

2

4
b�1X

j=0

ku↵kb�1�j

E[T1,T2]
kv↵kjE[T1,T2]

3

5
Z

t

T1

(t� ⌧)�
1/↵

d⌧

 c |⌘| ku↵ � v↵kE[T1,T2]

2

4
b�1X

j=0

ku↵kb�1�j

E[T1,T2]
kv↵kjE[T1,T2]

3

5 (T2 � T1)
1�1/↵

1� 1/↵
.

Finally, gathering all these estimates, we are able to write:

kw↵(t, ·)kHs  c |⌘| kw↵kE[T1,T2]

2

4
b�1X

j=0

ku↵kb�1�j

E[T1,T2]
kv↵kjE[T1,T2]

3

5 (T2 � T1)
1�1/↵

1� 1/↵
. (26)

By equations (25) and (26), we have:

kw↵kE[T1,T2]


0

@c |⌘|

2

4
b�1X

j=0

ku↵kb�1�j

E[T1,T2]
kv↵kjE[T1,T2]

3

5 (T2 � T1)
1�1/↵

1� 1/↵

1

A kw↵kE[T1,T2]
.

But, as 1� 1/↵ > 0, we can set T2 close enough to T1 such that:

c |⌘|

2

4
b�1X

j=0

ku↵kb�1�j

E[T1,T2]
kv↵kjE[T1,T2]

3

5 (T2 � T1)
1�1/↵

1� 1/↵
 1

2
.

We thus obtain kw↵kE[T1,T2]
= 0, which is a contradiction to the definition of the time T1. Therefore, we

have T1 = T . ⌅

Step 3: Regularity The goal of this section is to prove the following regularity result. For this, we

will define the space H
1(Rn) as H1(Rn) =

\

s�0

H
s(Rn).

Theorem 4.3 Let u↵ 2 ET be the unique solution of the equation (15). Then, this solution verifies u↵ 2
C
�
(0, T ], H1(Rn)

�
. Moreover, we have u↵ 2 C1((0, T ], C1(Rn)); and for 0 < t  T , the solution u↵ verifies

the di↵erential equation (7) in the classical sense.
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Proof. We will verify that each term in the right side of the equation (15) belong to the space
C
�
[0, T0], H1(Rn)

�
. For the first term in the right side, by the second point of the Proposition 3.3, and

moreover, by the second point of the Proposition 3.4, we directly have p↵ ⇤ u0,↵ 2 C
�
(0, T ], H1(Rn)

�
.

For the second term in the right side of (15), recall that for all time 0 < t  T , by (20) we haveZ
t

0

p↵(t� ⌧, ·) ⇤ ⌘ ·r(ub↵)(⌧, ·)d⌧ 2 H
s(Rn). Then, we will prove that for � > 0 small enough, we have:

Z
t

0

p↵(t� ⌧, ·) ⇤ ⌘ ·r(ub↵)(⌧, ·)d⌧ 2 H
s+�(Rn). Indeed, for � > 0, which we will set later, by the second

point of the Proposition 3.3 we have:

����
Z

t

0

p↵(t� ⌧, ·) ⇤ ⌘ ·r(ub↵)(⌧, ·)d⌧
����
Hs+�

 c |⌘|
Z

t

0

���p↵(t� ⌧, ·) ⇤ ub↵(⌧, ·)
���
Hs+�+1

d⌧

 c |⌘|
Z

t

0

h
1 + (t� ⌧)�

(�+1)/↵
i ���ub↵(⌧, ·)

���
Hs

d⌧

 c |⌘| ku↵kbET

Z
t

0

h
1 + (t� ⌧)�

(�+1)/↵
i
d⌧,

where, setting 0 < � < ↵� 1 (recall that we have 1 < ↵ < 2), this last integral computes down as

Z
t

0

1 + (t� ⌧)�
(�+1)/↵

d⌧ = t+
t
1�(�+1)/↵

1� (�+1)/↵
.

Thus, for all time 0 < t  T we obtain the estimate:

����
Z

t

0

p↵(t� ⌧, ·) ⇤ ⌘ ·r(ub↵)(⌧, ·)d⌧
����
Hs+�

 c |⌘| ku↵kbET

"
t+

t
1�(�+1)/↵

1� (�+1)/↵

#
.

We will prove now that we have

Z
t

0

p↵(t� ⌧, ·) ⇤ ⌘ ·r(ub↵)(⌧, ·)d⌧ 2 C
�
(0, T ], Hs+�(Rn)

�
. Let 0 < t1, t2 <

T , where, always without loss of generality, we assume t1 < t2. Then we write:

����
Z

t2

0

p↵(t2 � ⌧, ·) ⇤ ⌘ ·r(ub↵)(⌧, ·) d⌧ �
Z

t1

0

p↵(t1 � ⌧, ·) ⇤ ⌘ ·r(ub↵)(⌧, ·) d⌧
����
Hs+�


����
Z

t2

0

p↵(t2 � ⌧, ·) ⇤ ⌘ ·r(ub↵)(⌧, ·) d⌧ �
Z

t1

0

p↵(t2 � ⌧, ·) ⇤ ⌘ ·r(ub↵)(⌧, ·) d⌧
����
Hs+�

+

����
Z

t1

0

p↵(t2 � ⌧, ·) ⇤ ⌘ ·r(ub↵)(⌧, ·) d⌧ �
Z

t1

0

p↵(t1 � ⌧, ·) ⇤ ⌘ ·r(ub↵)(⌧, ·) d⌧
����
Hs+�

= R̃↵,1(t1, t2) + R̃↵,2(t1, t2), (27)

where, we must study the terms R̃↵,1(t1, t2) and R̃↵,2(t1, t2). For the term R̃↵,1(t1, t2), by the second point
of the Proposition 3.3 we can write:

R̃↵,1(t1, t2) 
Z

t2

t1

���p↵(t2 � ⌧, ·) ⇤ ⌘ (ub↵)(⌧, ·)
���
Hs+�+1

d⌧  C

Z
t2

t1

h
1 + (t2 � ⌧)�

(�+1)/↵
i ���⌘ (ub↵)(⌧, ·)

���
Hs

d⌧.

Here, as we have 0 < � < ↵� 1, analogously as before, the integral writes down as

Z
t2

t1

1 + (t2 � ⌧)�
(�+1)/↵

d⌧ = (t2 � t1) +
(t2 � t1)1�

(�+1)/↵

1� (�+1)/↵
.
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Hence, we have:

R̃↵,1(t1, t2)  c |⌘| kukb
ET

"
(t2 � t1) +

(t2 � t1)1�
(�+1)/↵

1� (�+1)/↵

#
. (28)

For the term R̃↵,2(t1, t2), always by the second point of the Proposition 3.4, we can write:

R̃↵,2(t1, t2) c |⌘|,
Z

t1

0

���p↵(t2 � ⌧, ·)⌘ (ub↵)(⌧, ·)� p↵(t1 � ⌧, ·) ⇤ (ub↵)(⌧, ·)
���
Hs+�+1

d⌧

 c |⌘| |t1 � t2|1/2
Z

t1

0

���ub↵(⌧, ·)
���
Hs

d⌧  c |⌘| |t1 � t2|1/2 T kukb
ET

. (29)

Therefore, for 0 < � < ↵� 1, by (28) and (29) we have

Z
t

0

p↵(t� ⌧, ·) ⇤ ⌘ ·r(ub↵)(⌧, ·) d⌧ 2 C
�
(0, T ], Hs+�(Rn)

�
.

At this point, we have proved that u↵ 2 C((0, T0], H
s+�(Rn)) and repeating this process (in order to

obtain a gain of regularity for the non linear term) we conclude that u↵ 2 C((0, T ], H1(Rn)).

With this information we can verify now that for all 0 < t  T , and for all multi-index a 2 Nn, we
have @

a
xu↵(t, ·) 2 C((0, T ], C \ L

1(Rn)). Indeed, let a = (a1, · · · , an) 2 Nn be a multi-index, where we
denote by |a| = a1 + · · · + an its size. Then, for n

2
< s1 <

n

2
+ 1 we set s = |a| + s1. Thus, as we have

u↵ 2 C((0, T ], H1(Rn)) then we get @
a
xu↵(t, ·) 2 H

s1(Rn). As n

2
< s1 we have the continuous embedding

H
s1(Rn) ⇢ L

1(Rn), hence we conclude that @a
xu↵(t, ·) 2 L

1(Rn).

On the other hand, recall that we have the identification H
s1(Rn) = B

s1
2,2

(Rn) (where B
s1
2,2

(Rn) de-
notes a non homogeneous Besov space [1]). Moreover, we also have the continuous embedding B

s1
2,2

(Rn) ⇢
B

s1�n/1

1,1 (Rn) ⇢ Ḃ
s1�n/2

1,1 (Rn).

We thus have @
a
xu↵(t, ·) 2 Ḃ

s1�n/2

1,1 (Rn). But, since n

2
< s1 <

n

2
+ 1 then we have 0 < s1 � n

2
< 1, and

thereafter, by definition of the homogeneous Besov space Ḃs1�n/2

1,1 (Rn) (see always [1]) we get that @a
xu↵(t, ·)

is a �� Hölder continuous functions with parameter � = s1 � n

2
2 (0, 1).

We thus have u↵ 2 C((0, T ], C1(Rn)). Moreover, writing

@tu↵ = �(��)↵/2u↵ � ⌘ ·r(ub↵),

we obtain that @tu↵ 2 C((0, T ], C1(Rn)), hence, we conclude that u↵ 2 C1((0, T ], C1(Rn)).
⌅

Step 4: Global in time existence To finish the proof of the Theorem 1, we will prove that the unique
and regular solution u↵ of the equation (7) can be extended to a global in time solution. Following similar
arguments of [7] (see the proof of Theorem 2, page 9) we have the following result.

Theorem 4.4 Let T ⇤
> 0 be the maximal time of existence of a unique solution u↵ 2 ET ⇤ for the problem

(15). Then, we have T
⇤ = +1.

Proof. By contradiction, we will assume that T
⇤

< +1. By (18), we define the following function
T : [0,+1[! [0,+1[, such that for each initial datum u0,↵ 2 L

1 \H
s(Rn) we have

T
�
ku0,↵kL1

�
=

1

2

"
1� 1/↵

2bc |⌘|
�
ku0,↵kL1 + ku0,↵kHs

�
b�1

# ↵
↵�1

,
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the time of existence of a solution u↵ to the equation (15) associated to the initial datum u0. Additionally,
we can observe that this function is decreasing in the variable ku0,↵kL1 .

On the other hand, by [6], for every initial datum u0,↵ 2 L
1 \ H

s(Rn) we have a solution u↵ 2
C
�
[0,+1[, L1(Rn)

�
. Moreover, for every time t > 0 we have

ku↵(t, ·)kL1  ku0,↵kL1 . (30)

In addition, since the function T defined above is decreasing in the variable ku0,↵kL1 , given an initial datum
v0,↵ 2 L

1 \H
s(Rn) there exists a time T1 > 0 such that

T
�
kv0,↵kL1

�
� T1, (31)

for every u0,↵ 2 L
1 \H

s(Rn) which verifies kv0,↵kL1  ku0,↵kL1 .

By definition of the time T
⇤ we have T1 < T

⇤. Then, for 0 < " < T1, we consider the time T
⇤ � " > 0

and we set the initial datum v0 = u↵(T ⇤ � ", ·). We denote v↵ the solution associated to v0, which exists at
least until the time T

�
kv0,↵kL1

�
.

Therefore, the function

ũ↵(t, ·) =

8
<

:

u↵(t, ·), t 2
⇥
0, T ⇤ � "

⇤
,

v↵(t, ·), t 2
⇥
T
⇤ � ", T

⇤ � "+ T
�
kv0,↵kL1

�⇤
.

is the solution to (7), associated to the initial datum u0,↵, which is defined on
⇥
0, T ⇤ � " + T

�
kv0kL1

�⇤
.

Moreover, by (30) we have kv0,↵kL1 = ku↵(T ⇤ � ", ·)k
L1  ku0kL1 , hence, by 31 we get T

�
kv0,↵kL1

�
� T1.

Thus, we can write T ⇤�"+T
�
kv0,↵kL1

�
� T

⇤�"+T1. Finally, since 0 < " < T1, we obtain T
⇤�"+T1 > T

⇤,
which is a contradiction to the definition of the time T

⇤. So, we have T
⇤ = +1. ⌅

The Theorem 1 is now proven. ⌅

4.2 Proof of the Corollary 1

Let u0,↵ 2 L
1(R) be an initial datum, and let u↵ 2 C([0,+1[, L1(R)) be the corresponding unique solution

of the equation (7). For a time t1 > 0 fixed, we have that u↵ 2 C([t1,+1[, L1(R)) is the unique solution
of the equation (7) arising from new initial datum u↵(t1, ·) 2 L

1(R). Moreover, since for 1  p  +1 this
solution also verifies u↵ 2 C(]0,+1[,W 1,p(R)), setting the value p = 2 we have u↵(t1, ) 2 L

1(R) \ H
1(R).

Then we can apply the Theorem 1 to obtain u↵ 2 C1(]0,+1[, C1(R)). ⌅

5 From anomalous to classical di↵usion

5.1 Proof of the Theorem 2

For 1 < ↵  2 let u↵ 2 C([0,+1[, L1 \ H
s(Rn)) be the solution of the equation (7) given by Theorem 1.

Thus, for 1 < ↵ < 2 we have

u↵(t, ·) = p↵(t, ·) ⇤ u0,↵ +

Z
t

0

p↵(t� s, ·) ⇤ ⌘ ·r(ub↵)(s, ·)ds, (32)
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where p↵(t, x) is given in (12); and moreover, for ↵ = 2 we also have

u2(t, ·) = h(t, ·) ⇤ u0,2 +
Z

t

0

h(t� s, ·) ⇤ ⌘ ·r(ub2)(s, ·)ds, (33)

where h(t, x) always denotes the heat kernel. Then, for a time 0 < T < +1 fixed we write

sup
0tT

ku↵(t, ·)� u2(t, ·)kL1  sup
0tT

kp↵(t, ·) ⇤ u0,↵ � h(t, ·) ⇤ u0,2kL1

+ sup
0tT

����
Z

t

0

p↵(t� s, ·) ⇤ ⌘ ·r(ub↵)(s, ·)ds�
Z

t

0

h(t� s, ·) ⇤ ⌘ ·r(ub2)(s, ·)ds
����
L1

= I↵ + J↵,

(34)

where we must estimate each term in the right side. For the term I↵, we write

I↵  sup
0tT

k(p↵(t, ·)� h(t, ·)) ⇤ u0,↵kL1 + sup
0tT

kh(t, ·) ⇤ (u0,↵ � u0,2)kL1 = I↵,1 + I↵,2. (35)

In order to estimate the term I↵,1, using the Bessel potential operators (1 � �)�s/2 and (1 � �)s/2, we
obtain:

I↵,1 = sup
0tT

���(1��)�s/2

⇣
p↵(t, ·)� h(t, ·)

⌘
⇤ (1��)s/2u0,↵

���
L1

= (a).

Then, applying the Young inequalities (with 1 + 1/1 = 1/2 + 1/2) we have:

(a)  c sup
0tT

⇣���(1��)�s/2

⇣
p↵(t, ·)� h(t, ·)

⌘���
L2

���(1��)s/2u0,↵
���
L2

⌘

 c

 
sup

0tT

kp↵(t, ·)� h(t, ·)k
H�s

! ✓
sup

1<↵<2

ku0,↵kHs

◆
.

(36)

Here, we study first the term sup
0tT

kp↵(t, ·)� h(t, ·)k
H�s , and for this we have the following result.

Lemma 5.1 For s > n/2 and 0 < T < +1, there exists a constant C = C(s, T ) > 0, such that for all
1 < ↵ < 2 we have:

sup
0tT

kp↵(t, ·)� h(t, ·)k
H�s  C|2� ↵|.

Proof. First, we verify the the quantity kp↵(t, ·)� h(t, ·)k2
H�s is continuous in the temporal variable t.

Indeed, for 0  t0, t  T we have

kp↵(t, ·)� h(t, ·)k2
H�s � kp↵(t0, ·)� h(t0, ·)k2H�s

=

Z

Rn

���e�|⇠|↵t � e
�|⇠|2t

���
2 d⇠

(1 + |⇠|2)s �
Z

Rn

���e�|⇠|↵t0 � e
�|⇠|2t0

���
2 d⇠

(1 + |⇠|2)s

=

Z

Rn

✓���e�|⇠|↵t � e
�|⇠|2t

���
2

�
���e�|⇠|↵t0 � e

�|⇠|2t0
���
2
◆

d⇠

(1 + |⇠|2)s .

As s > n/2 we have

Z

Rn

d⇠

(1 + |⇠|2)s < +1; and then, can apply the dominated convergence theorem to

obtain lim
t!t0

⇣
kp↵(t, ·)� h(t, ·)k2

H�s � kp↵(t0, ·)� h(t0, ·)k2H�s

⌘
= 0.

Thereafter, by the continuity of the quantity kp↵(t, ·)� h(t, ·)k2
H�s respect to the variable t, there exists

a time 0 < t1  T such that sup
0tT

kp↵(t, ·)� h(t, ·)k
H�s = kp↵(t1, ·)� h(t1, ·)kH�s .

16



Now, we will prove now the estimate kp↵(t1, ·)� h(t1, ·)kH�s  C|2� ↵|. For this we write:

kp↵(t1, ·)� h(t1, ·)k2H�s =

Z

Rn
|e�|⇠|↵t1 � e

�|⇠|2t1 |2 d⇠

(1 + |⇠|2)s . (37)

Here, for ⇠ 2 Rn \ {0} fixed, and for 1 < ↵ < 2 + � (with � > 0) we define the function

f⇠(↵) = e
�t1|⇠|↵ , (38)

where, computing its derivative respect to the variable ↵ we get

f
0
⇠
(↵) = �t1 e

�t1|⇠|↵ |⇠|↵ ln(|⇠|).

Thus, by the mean value theorem we can write

|f⇠(↵)� f⇠(2)|  kf 0
⇠
kL1([1,2+�]) |2� ↵|.

Moreover, we can also prove the uniform estimate respect to the variable ⇠:
���kf

0
⇠
kL1([1,2+�])

���
L1(Rn)

 c T. (39)

The proof of this estimate is not di�cult and it is given in detail in the Appendix B. We thus have,

|f⇠(↵)� f⇠(2)|  c T |2� ↵|.

Then, getting back to the identity (37), we can write

kp↵(t1, ·)� h(t1, ·)k2H�s =

Z

Rn
|f⇠(↵)� f⇠(2)|2

d⇠

(1 + |⇠|2)s  c T
2 |2� ↵|2

Z

Rn

d⇠

(1 + |⇠|2)s  C(s, T ) |2� ↵|2.

⌅

Getting back to (36), in order to estimate the term sup
1<↵<2

ku0,↵kHs , we recall that by (9) the family

(u0,↵)1<↵<2 is bounded in H
s(Rn).

Thus, we can write:
I↵,1  C |2� ↵|. (40)

On the other hand, for the term I↵,2 given in (35), by the Young inequalities (with 1 + 1/1 = 1 + 1/1),
the well-known properties of the heat kernel, and moreover, by (11) we have:

I↵,2  C(2� ↵)� . (41)

Thus, gathering the estimates (40) and (41) we obtain:

I↵  C max
⇣
(2� ↵)� , 2� ↵

⌘
. (42)

We study now the term J↵ given in (34). For this we write

J↵  sup
0tT

����
Z

t

0

p↵(t� s, ·) ⇤ ⌘ ·r(ub↵)(s, ·)ds�
Z

t

0

h↵(t� s, ·) ⇤ ⌘ ·r(ub↵)(s, ·)ds
����
L1

+ sup
0tT

����
Z

t

0

h(t� s, ·) ⇤ ⌘ ·r(ub↵)(s, ·)ds�
Z

t

0

h(t� s, ·) ⇤ ⌘ ·r(ub2)(s, ·)ds
����
L1

 sup
0tT

����
Z

t

0

⇣
p↵(t� s, ·)� h(t� s, ·)

⌘
⇤ ⌘ ·r(ub↵)(s, ·)ds

����
L1

+ sup
0tT

����
Z

t

0

h(t� s, ·) ⇤ ⌘ ·r
⇣
u
b

↵ � u
b

2

⌘
(s, ·)ds

����
L1

= J↵,1 + J↵,2,

(43)
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where, we will study the terms J↵,1 and J↵,2 separately. For the term J↵,1, we apply first the operators
(1��)�s/2 and (1��)s/2, and moreover, by the Young inequalities (with 1 + 1/1 = 1/2 + 1/2) we have

J↵,1  sup
0tT

✓Z
t

0

���
⇣
p↵(t� s, ·)� h(t� s, ·)

⌘
⇤ ⌘ ·r(ub↵)(s, ·)

���
L1

ds

◆

 |⌘| sup
0tT

✓Z
t

0

krp↵(t� s, ·)�rh(t� s, ·)k
H�s

���ub↵(s, ·)
���
Hs

ds

◆

 |⌘|T
 

sup
0tT

krp↵(t, ·)�rh(t, ·)k
H�s

! 
sup

0tT

kub↵(s, ·)kHs

!
.

(44)

Here, we need to obtain an uniformly upper bound on the term sup
0tT

kub↵(s, ·)kHs respect to the parameter

↵. This is the aim of the following technical result.

Lemma 5.2 There exists 0 < " ⌧ 1, and there exists a constant C = C(", T, b, ku0,2kL1 , ku0,2kHs) > 0,
such that for all 1 + " < ↵ < 2 we have:

sup
0tT

kub↵(s, ·)kHs  C.

Proof. For the initial data u0,↵ 2 L
1 \H

s(Rn), with 1 < ↵ < 2, we recall that by the Theorem 4.1 there
exists a time T↵ (depending on ↵) defined in (18) and a (unique) solution u↵ 2 ET↵ (for a definition of the
space ET↵ see (16) and (17) ) of the equation (15). Our staring point is to obtain a lower bound for the
time T↵ which does not depend on ↵. For this, by (9) we can set 0 < " ⌧ 1 such that for all 1 + " < ↵ < 2
we have: ���

⇣
ku0,↵kL1 + ku0,↵kHs

⌘
�
⇣
ku0,2kL1 + ku0,2kHs

⌘��� 
1

2

⇣
ku0,2kL1 + ku0,2kHs

⌘
,

hence we get the lower bound:

1

2

⇣
ku0,2kL1 + ku0,2kHs

⌘

⇣
ku0,↵kL1 + ku0,↵kHs

⌘
,

and then, we can write:

1

2


1� 1/↵

2b c|⌘|(ku0,2kL1 + ku0,2kHs)b�1

�↵/↵�1

 T↵.

Moreover, as we also have 1 + " < ↵ < 2, then the expression in the left side in the estimate above can be
lowered by the following quantity:

T0 = max

 
1

2


1� 1/1+"

2b c|⌘|(ku0,2kL1 + ku0,2kHs)b�1

�2/"
,
1

2


1� 1/1+"

2b c|⌘|(ku0,2kL1 + ku0,2kHs)b�1

�1+"
!
.

The proof of this fact is easy, see the Appendix A for all the details. Thus, for all 1 + " < ↵ < 2 we have
T0  T↵.

We recall now that for the time T0 the unique solution u↵ 2 ET0 is constructed by the Picard’s fixed
point argument. Then, for a constant c0 > 0 this solution verifies ku↵kET0

 c0(ku0,↵kL1 + ku0,↵kHs).

On the other hand, by the Theorem 4.4 we know that we obtain a global in time solution by repeating this
argument in the intervals of the form [kT0, (k+1)T0], with k 2 N⇤, as follows: in each interval we consider the
initial datum u↵(kT0, ·). Then, always by the Picard’s fixed point schema, there exists unique solution u↵ 2
E[kT0,(k+1)T0]

(for a definition of the space E[kT0,(k+1)T0]
see (23) and (24)) of the equation ((15)), and more-

over, there exists a constant ck > 0 such that we have ku↵kE[kT0,(k+1)T0]
 ck(ku↵(kT0, ·)kL1 + ku↵(kT0, ·)kHs).
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In the last estimate, we study now the expression ck(ku↵(kT0, ·)kL1 + ku↵(kT0, ·)kHs). For the quantity
ku↵(kT0, ·)kL1 , by (30) we have ku↵(kT0, ·)kL1  ku0,↵kL1 . Then, we can write

ck(ku↵(kT0, ·)kL1 + ku↵(kT0, ·)kHs)  ck(ku0,↵kL1 + ku↵(kT0, ·)kHs).

On the other hand, for the quantity ku↵(kT0, ·)kHs , we remark that we have

ku↵(kT0, ·)kHs  sup
(k�1)T0tkT0

ku↵(t, ·)kHs  ku↵kE[(k�1)T0,kT0]
 ck�1(ku0,↵kL1 + ku↵((k � 1)T0, ·))kHs .

Iterating these estimates, we can find a constant Ck > 0 big enough (in particular we have Ck >

kY

j=0

cj)

such that we have:
ku↵(kT0, ·)kHs  Ck(ku0,↵kL1 + ku0,↵kHs).

Gathering these estimates, for all k 2 N⇤ we obtain:

ku↵kE[kT0,(k+1)T0]
 Ck(ku0,↵kL1 + ku0,↵kHs).

We have now all we need to prove the upper bound stated in this lemma. Let T > 0. Then, there exists
k = kT 2 N such that we have kTT0  T  (kT + 1)T0. Then, by (9) we can write

sup
0tT

kub↵(t, ·)kHs  sup
0tT

ku↵(t, ·)kbHs 
 

sup
0tT

ku↵(t, ·)kHs

!
b



0

@
kTX

j=0

sup
jT0(j+1)T0

ku↵(t, ·)kHs

1

A
b



0

@
kTX

j=0

ku↵kE[jT0,(j+1)T0

1

A
b



0

@
kTX

j=0

Cj(ku0,↵kL1 + ku0,↵kHs)

1

A
b



0

@
kTX

j=0

Cj

1

A
b

(ku0,↵kL1 + ku0,↵kHs)b 

0

@
kTX

j=0

Cj

1

A
b

c (ku0,2kL1 + ku0kHs)b

=C(", b, ku0,2kL1 , ku0kHs , T ).

To finish this proof of this lemma, we just remark that the constant defined above also depends on the
parameter " since the time T0 (from which we set kT such that kTT0  T  (kT + 1)T0) depends on the
parameter ". ⌅

We get back to the estimate (44), where, by the Lemma 5.2 we can write

J↵,1  |⌘|T
 

sup
0tT

krp↵(t, ·)�rh(t, ·)k
H�s

!
C.

Moreover, we may observe that in the proof of the Lemma 5.1, by considering now the function f⇠(↵) given

in (38) as f⇠(↵) = i⇠j e
�t1|⇠|↵ , with j = 1, 2, · · · , n, then we have

sup
0tT

krp↵(t, ·)�rh(t, ·)k
H�s  C |2� ↵|.

Thus, we can write:

J↵,1  C |⌘|T |2� ↵|  C |⌘|T max
⇣
(2� ↵)� , 2� ↵

⌘
. (45)
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We must study now the term J↵,2 defined in (43). For this, by the Young inequalities we write:

J↵,2  c |⌘| sup
0tT

Z
t

0

krh(t� s, ·)kL1kub↵(s, ·)� u
b

2(s, ·)kL1ds = (a).

In order to estimate the term krh(t� s, ·)kL1 , by the well-known properties of the heat kernel h(t, ·) we have
krh(t� s, ·)kL1  c(t� s)�1/2. On the other hand, in order to estimate the term kub↵(s, ·)� u

b

2(s, ·)kL1 , as
we have s+ 1 > n/2, and moreover, by the Lemma 5.1, for a constant C > 0 which does not depend on ↵

we can write

kub↵(s, ·)� u
b

2(s, ·)kL1 =

������
(u↵(s, ·)� u2(s, ·))

b�1X

j=0

u
b�1�j

↵ (s, ·)uj
2
(s, ·)

������
L1

ku↵(s, ·)� u2(s, ·)kL1

b�1X

j=0

ku↵(s, ·)kb�1�j

L1 ku2(s, ·)kjL1

ku↵(s, ·)� u2(s, ·)kL1

b�1X

j=0

ku↵(s, ·)kb�1�j

Hs ku2(s, ·)kjHs

C ku↵(s, ·)� u2(s, ·)kL1 .

With these estimates we obtain:

(a) C |⌘| sup
0tT

Z
t

0

(t� s)�1/2 ku↵(s, ·)� u2(s, ·)kL1ds  C |⌘|T 1/2

 
sup

0sT

ku↵(s, ·)� u2(s, ·)kL1

!
.

Once we have studied the terms I↵, J↵,1 and J↵,2, getting back to (34) we can write

sup
0tT

ku↵(t, ·)� u2(t, ·)kL1  I↵ + J↵,1 + J↵,2  I↵ + J↵,1 + C |⌘|T 1/2

 
sup

0sT

ku↵(s, ·)� u2(s, ·)kL1

!
.

In this estimate, for a first time T1 small enough such that it verifies

C |⌘|T 1/2

1
 1

2
, (46)

we get:

sup
0tT1

ku↵(t, ·)� u2(t, ·)kL1  I↵ + J↵,1 +
1

2

 
sup

0sT1

ku↵(s, ·)� u2(s, ·)kL1

!
,

and then we can write
1

2
sup

0tT1

ku↵(t, ·)� u2(t, ·)kL1  I↵ + J↵,1.

Hence, by (42) and (45) we obtain:

sup
0tT1

ku↵(t, ·)� u2(t, ·)kL1  C |2� ↵|.

Finally, by iterating this argument on the intervals of the for [kT1, (k + 1)T1], with k 2 N, for all time
0 < T < +1 we have

sup
0tT

ku↵(t, ·)� u2(t, ·)kL1  C max
⇣
(2� ↵)� , 2� ↵

⌘
.

The Theorem 2 is now proven. ⌅
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5.2 Proof of the Corollary 2

For 0 < T < +1 fixed, and moreover, for 1  q < +1 and 1 < p < +1, using the interpolation inequalities
(with ✓ = 1/q) we write

✓Z
T

0

ku↵(t, ·)� u2(t, ·)kqLpdt

◆1/q


✓Z

T

0

ku↵(t, ·)� u2(t, ·)kq ✓L1 ku↵(t, ·)� u2(t, ·)kq(1�✓)

L1 dt

◆1/q

= (a).

Where, by (8) and (9) we have the uniform estimate ku↵(t, ·)� u2(t, ·)kL1  C. Then, we have:

(a)  C
✓

✓Z
T

0

ku↵(t, ·)� u2(t, ·)kq(1�✓)

L1 dt

◆1/q

 C
✓ku↵(t, ·)� u2(t, ·)k(1�✓)

L1 T
1/q

,

hence, the convergence result is a direct consequence of the Theorem 2. Moreover, the case when q = +1
follows the same lines above with the obvious modifications. ⌅

A Appendix

Here we give a proof of the estimate

max

 
1

2


1� 1/1+"

2b c|⌘|(ku0,2kL1 + ku0,2kHs)b�1

�2/"
,
1

2


1� 1/1+"

2b c|⌘|(ku0,2kL1 + ku0,2kHs)b�1

�1+"
!

1

2


1� 1/↵

2b c|⌘|(ku0,2kL1 + ku0,2kHs)b�1

�↵/↵�1

.

First, as we have 1 + " < ↵ < 2, then we get 1� 1

1+"
< 1� 1

↵
, and we can write

1

2


1� 1/1+"

2bc|⌘|(ku0,2kL1 + ku0,2kHs)b�1

� ↵
↵�1

 1

2


1� 1/↵

2b c|⌘|(ku0,2kL1 + ku0,2kHs)b�1

�↵/↵�1

.

Thereafter, by the sake of simplicity, we denote

1� 1/1+"

2bc|⌘|(ku0,2kL1 + ku0,2kHs)b�1
= (a),

and we have
1

2
[(a)]

↵
↵�1  1

2


1� 1/↵

2b c|⌘|(ku0,2kL1 + ku0,2kHs)b�1

�↵/↵�1

.

We study now the expression ↵

↵�1
, where, always as we have 1 + " < ↵ < 2 then we get 1 + " <

↵

↵�1
<

2

"
.

Thus, on the one hand, if the quantity (a) above verifies (a)  1 then we have
1

2
[(a)]

2
"  1

2
[(a)]

↵
↵�1 . On the

other hand, if the quantity (a) verifies (a) > 1 then we have
1

2
[(a)]1+"  1

2
[(a)]

↵
↵�1 .

B Appendix

We proof here the estimate (39). We recall the expression

f
0
⇠
(↵) = �t1e

�t1|⇠|↵ |⇠|↵ ln(|⇠|), 1 < ↵ < 2 + �, 0 < t1  T.
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Then, we write

���kf
0
⇠
kL1([1,2+�])

���
L1(Rn)


���kf

0
⇠
kL1([1,2+�])

���
L1(|⇠|1)

+
���kf

0
⇠
kL1([1,2+�])

���
L1(|⇠|>1)

= A+B,

where, we shall estimate the terms A and B separately. For the term A, as we have |⇠|  1, 1 < ↵ < 2 + �,
and moreover, as we have lim

|⇠|!0+
|⇠| ln(|⇠|) = 0, then we can write:

A  T

 
sup
⇠2Rn

e
�t1|⇠|2+� |⇠| ln(|⇠|)

!
 C T.

For the term B, as we have |⇠| > 1 then we can write

B  T

 
sup
⇠2Rn

e
�t1|⇠||⇠|2+� ln(|⇠|)

!
 C T.
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Notes in Physics, Vol. 450, Springer�Verlag, Berlin (1995).

[18] G. M. Zaslavsky. Fractional kinetic equations for Hamiltonian chaos. Physica D 76, 110-122 (1994).

[19] G. M. Zaslavsky & S. S. Abdullaev. Scaling properties and anomalous transport of particles inside the
stochastic layer. Phys. Rev. E 51, No. 5 3901-3910 (1995).

23


