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Abstract

Abstract. We consider here an elliptic coupled system describing the dynamics of liquid
crystals flows. This system is posed on the whole space Rn with n ≥ 2. We introduce first
the notion of very weak solutions for this system. Then, within the fairly general framework
of the Morrey spaces, we derive some sufficient conditions on the very weak solutions which
improve their regularity. As a bi-product, we also prove a new regularity criterium for the
time-independing Navier-Stokes equations.
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1 Introduction

This article deals with an elliptic coupled system arising from the study of the dynamics in liquid crys-
tal flows. This system, posed on the whole space Rn with n ≥ 2, strongly couples the incompressible
and time-independing Navier-Stokes equations with a harmonic map flow as follows:

−∆~U + div(~U ⊗ ~U) + div(~∇⊗ ~V � ~∇⊗ ~V ) + ~∇P = 0,

−∆~V + div(~V ⊗ ~U)− |~∇⊗ ~V |2 ~V = 0.

div(~U) = 0.

(1)

Here, ~∇⊗ ~V = (∂iVj)1≤i,j≤n, denotes the deformation tensor of the vector field ~V and moreover, for

i = 1, · · · , n, the i-st component of the vector field div(~∇⊗ ~V � ~∇⊗ ~V ) writes down as:[
div(~∇⊗ ~V � ~∇⊗ ~V )

]
i

=
n∑
j=1

n∑
k=1

∂j(∂iVk ∂jVk). (2)
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The fluid velocity ~U : Rn → Rn, and the pressure P : Rn → R, are the classical unknowns of the
fluid mechanics. Moreover, this system also considers a third unknown ~V : Rn → Sn−1, where Sn−1

denotes the unitary sphere in Rn, where the unit vector field ~V represents the macroscopic orienta-
tion of the nematic liquid crystal molecules [17].

The system (1) agrees with the time-independing version of the following parabolic system:{
∂t~u−∆~u+ div(~u⊗ ~u) + div(∇⊗ ~v �∇⊗ ~v) +∇p = 0, div(~u) = 0,

∂t~v −∆~v + div(~v ⊗ ~u)− |∇ ⊗ ~v|2 ~v = 0,
(3)

also known as the simplified Ericksen-Leslie system. This parabolic system was proposed by H.F.
Lin in [14] as a simplification of the general Ericksen-Leslie system which models the hydrodynamic
flow of nematic liquid crystal material [2], [17]. The simplified Ericksen-Leslie system, has been suc-
cessful to model various dynamical behavior for nematic liquid crystals. More precisely, it provides
a well macroscopic description of the evolution of the material under the influence of fluid velocity
field and the macroscopic description of the microscopic orientation of fluid velocity of rod-like liquid
crystals. See the book [5] for more details.

From the mathematical point of view, the simplified Ericksen-Leslie system (3) has recently at-
tired a lot of interest in the research community. It is worth mention that the one of the major
challenges in the mathematical study of this system is due, on one hand, by its strong coupled struc-
ture and, on the other hand, by the presence of the super-critical non-linear term given in (2). Due to
the double derivatives in this term, it is actually more delicate to treat than the classical non-linear
transport term: div(~u⊗ ~u), and this fact makes challenging the study of both (1) and (3). See, e.g.,
the articles [7, 8, 11, 15, 16, 18] and the references therein.

The first works in the studying of (3) were devoted to the study of the existence of global in time
weak solutions, for the cases n = 2 in [16] and the case n = 3 in [11], which physically are more
relevant. On the other hand, in the spirit of the celebrated H. Koch & D. Tatary result [10] for
the incompressible Navier-Stokes equations, other results on the well-posedness of 1) were also estab-
lished in [18] for any spatially dimension n ≥ 1 in the more technical setting of the space BMO−1(Rn).

Concerning the regularity issues of solutions in (3), T. Huang proved in [4] an ε− regularity crite-
rion in the framework of the Lebesgue spaces. This result allow him to establish a sufficient condition
on the solutions to improve their regularity in the temporal and spatial variables. More precisely, it is
proven that if ~u,~v ∈ H1([0, T ]× Rn,Rn × Sn−1) is a weak solution of (3), and moreover, if (~u, ~∇⊗ ~v)

verify ~u, ~∇⊗ ~v ∈ LptLqx([0, T ]× Rn), with p > n and q > n such that n/p + 1/q = 0, then we have
C∞([0, T ]× Rn,Rn × Sn−1).

The time-independing counterpart of system (3), given in the system (1), has still been little
studied and in this article we are interested in studying some regularity issues for the system (1).
More precisely, the main objective of this article is to introduce first a notion of very weak solutions
for the system (1), and then, to give some a priori conditions on these solutions which imply an
important improvement of their regularity.

Let us start by introducing the following notion of very weak solution for the system (1) which,
to the best of our knowledge, have not been considered in the existence literature.
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Definition 1 A very weak solution of the coupled system (1) is a triplet (~U, P, ~V ) where: ~U ∈
L2
loc(Rn), P ∈ D′(Rn), ~V ∈ L∞(Rn) and ~∇⊗ ~V ∈ L2

loc(Rn), such it verifies (1) in the distributional
sense.

Comparing with the notion of weak solution given in [4], which in the setting of the time-

independing system (1) reads as ~U, ~V ∈ H1(Rn,Rn × Sn−1), we may observe that in this definition

we impose minimal conditions on the triplet (~U, P, ~V ) to ensure that all the terms in (1) are well-

defined as distributions. We remark moreover that by the physical model we have |~V | = 1 (since ~V

is a orientation vector field) and thus, the condition ~V ∈ L∞(Rn) is completely natural.

As mentioned, we study here the regularity of the very weak solutions for the system (1) defined
above. Recalling the result obtained in [4] in the framework of the Lebesgue spaces, we observe that
essentially we need certain decaying properties of solutions in order to get a gain of their regularity.

The main idea to state the following result bases on the fact that, within the large framework of
the space L2

loc(Rn), where the very weak solutions are defined, and in order to obtain a gain of their
regularity, we impose some decaying properties on the mean quantities

1

Rn

∫
|x|<R

|~U(x)|2dx, and
1

Rn

∫
|x|<R

|~∇⊗ ~V (x)|2dx,

as long as the ratio R goes to infinity. The decaying rate of these quantities is characterized through
the parameter p, and our main result reads as follows.

Theorem 1 Let (~U, P, ~V ) be a very weak solution of the coupled system (1) given in Definition 1.

If for all R > 0 the functions ~U and ~∇⊗ ~V verify:

1

Rn

∫
|x|<R

|~U(x)|2dx ≤ R−2n/p, and
1

Rn

∫
|x|<R

|~∇⊗ ~V (x)|2dx ≤ R−2n/p, n < p < +∞, (4)

then we have ~U ∈ C∞(Rn), P ∈ C∞(Rn) and ~V ∈ C∞(Rn). Moreover, for all multi-indice α ∈ Nn,

the functions ∂αx ~U, ∂
α
xP and ∂αx ~V are Hölder continuous with exponent 1− n/p.

Some comments are in order. The condition on ~U and ~∇⊗ ~V given in (4), of course means that
these functions belong to the homogeneous Morrey space M2,p(Rn). This space is defined as the
Banach space of functions f ∈ L2

loc(Rn) such that

‖f‖Ṁ2,p = sup
R>0, x0∈Rn

R
n
p

(
1

Rn

∫
|x−x0|<R

|f(x)|2dx
) 1

2

' sup
R>0

R
n
p

(
1

Rn

∫
|x|<R

|f(x)|2dx
) 1

2

< +∞. (5)

The space Ṁ2,p(Rn) is a homogeneous space of degree −n
p
, and moreover, we have the following chain

of continuous embedding Lp(Rn) ⊂ Lp,+∞(Rn) ⊂ Ṁ2,p(Rn), where Lp,+∞(Rn) denotes a Lorentz space
which also describes the decaying properties of functions in a different setting. See the book [1] for
a detailed study of Lorentz spaces.

Due to the embedding chain above, we may observe that the condition (4) used here to improve
the regularity of the very weak solutions is given in a fairly general space describing the decaying
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properties of L2
loc− functions. In particular, for time-independing case, the result obtained in [4]

follows from this theorem. Moreover, our result provides a sharper description of the regularity of
very weak solutions, in the sense that we are able to prove that all the derivatives of these solutions
are actually Hölder continuous functions with the precise exponent 0 < 1− n/p < 1.

On the other hand, we observe that in the particular case when the vector field ~V is a unitary
constant vector, then the system (1) becomes the well-known time-independing and incompressible
Navier-Stokes equations:

−∆~U + div(~U ⊗ ~U) + ~∇P = 0, div(~U) = 0. (6)

Thus, the result stated in the Theorem 1 also holds true for these equations and we are able to
write the following new regularity criterium.

Corollary 1 Let (~U, P ) ∈ L2
loc(Rn) × D′(Rn) a very weak solution of the stationary Navier-Stokes

system (6). If the velocity ~U verifies ~U ∈ Ṁ2,p(Rn), with n < p < +∞, then we have ~U ∈ C∞(Rn)

and P ∈ C∞(Rn). Similarly, ~U , P , and all their derivatives are Hölder continuous functions with
exponent 1− n/p.

To close this introduction, let us briefly explain the general strategy of the proof of Theorem 1.
This proof bases on two main steps. In the first one, using the condition (4) and passing by the frame-

work of a parabolic system we prove that the ~U and ~∇⊗ ~V are bounded functions on Rn. With this
information, and using always the condition (4), in the second step of the proof we use a bootstrap

argument to show that the derivative of any order of ~U and ~V belong to the Morrey space M2,p(Rn).
Using this last information, and some well-known properties of the Morrey space, we finally obtain
the regularity properties stated in Theorem 1. Moreover, by the first equation in (1), we show that the

pressure P is always related to ~U and ~V and this fact also implies a gain of regularity for the pressure.

It is worth mention that this program is not only restricted to the system (1) and it can be applied
to other elliptic systems with a similar structure. In particular, after some technical modifications,
the Theorem 1 also holds true for the time-independing Magneto-hydrodynamic system:{

−∆~U + div(~U ⊗ ~U)− div( ~B ⊗ ~B) + ~∇P = 0, div(~U) = 0

−∆ ~B + div( ~B ⊗ ~U)− div(~U ⊗ ~B) = 0, div( ~B) = 0,

provided that the velocity ~U ∈ L2
loc(Rn) and the magnetic field ~B ∈ L2

loc(Rn) verify:

1

Rn

∫
|x|<R

|~U(x)|2dx ≤ R−2n/p, and
1

Rn

∫
|x|<R

| ~B(x)|2dx ≤ R−2n/p, n < p < +∞.

2 Proof of Theorem 1

Let (~U, P, ~V ) be a very weak solution of (1) given in Definition 1. We assume that it verifies
~U ∈ Ṁ2,p(Rn) and ~∇⊗ ~V ∈ Ṁ2,p(Rn) with p > n. In order to prove this theorem, the first key idea

is to prove that ~U ∈ L∞(Rn) and ~∇⊗ ~V ∈ L∞(Rn); and for this we will prove the following technical
theorem.
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Theorem 2.1 Let (~U, P, ~V ) be a very weak solution of (1) given in Definition 1. If ~U ∈ Ṁ2,p(Rn)

and ~∇⊗ ~V ∈ Ṁ2,p(Rn) with p > n then we have ~U ∈ L∞(Rn) and ~∇⊗ ~V ∈ L∞(Rn).

Proof. We consider the following initial value problem for a coupled system involving the vector
field ~u = (u1, u2, · · · , un) and the matrix V = (vi,j)1≤i,j≤n. Let us mention that in the first equation

below P denotes the Leray projector, and moreover, in the second equation below ~V ∈ L∞(Rn) is
the solution of (1) given at the beginning of this proof:

∂t~u−∆~u+ P(div(~u⊗ ~u)) + P(div(V�V)) = 0, div(~u) = 0,

∂tV−∆V + ~∇⊗ (~uV)− ~∇⊗ (|V|2 ~V ) = 0,

~u(0, ·) = ~u0, V(0, ·) = V0.

(7)

For a time 0 < T < +∞, we denote C∗([0, T ], Ṁ2,p(Rn)) the functional space of bounded and
weak−∗ continuous functions from [0, T ] with values in the Morrey space Ṁ2,p(Rn). Then we have
the following result.

Proposition 2.1 Consider the system (7). If ~u0 ∈ Ṁ2,p(Rn) and V0 ∈ Ṁ2,p(Rn), with p > n,
then there exists a time 0 < T < +∞, depending on ~u0 and V0, such that (7) has a solution
(~u,V) ∈ C∗([0, T ], Ṁ2,p(Rn)). Moreover this solution verifies

sup
0<t<T

t
n
2p (‖~u(t, ·)‖L∞ + ‖V(t, ·)‖L∞) < +∞. (8)

Proof. We observe that the mild solution (~u,V) of system (7) writes down as the (equivalent)
integral formulations

~u(t, ·) = et∆~u0 +

∫ t

0

e(t−s)∆P(div(~u⊗ ~u))(s, ·)ds︸ ︷︷ ︸
B1(~u,~u)

+

∫ t

0

e(t−s)∆P(div(V�V))(s, ·)ds︸ ︷︷ ︸
B2(V,V)

, (9)

and

V(t, ·) = et∆V0 +

∫ t

0

e(t−s)∆~∇⊗ (~uV)(s, ·)ds︸ ︷︷ ︸
B3(~u,V)

−
∫ t

0

e(t−s)∆~∇⊗ (|V|2 ~V )(s, ·)ds︸ ︷︷ ︸
B4(V,V)

. (10)

The equivalence between the integral formulations above and the system (7) is not only formal and
it can be established rigorously in quite general functional settings. See the Theorem 1.2, page 6, of
the book [12] for this issue in the particular case of the Navier-Stokes equations, which also holds
true for the system (7).

Using the well-known Picard’s fixed point argument, we will solve both problems (9) and (10) in
the Banach space

ET =

{
f ∈ C∗([0, T ], Ṁ2,p(Rn)) : sup

0<t<T
t

n
2p‖f(t, ·)‖L∞ < +∞

}
,

dotted with the norm

‖f‖ET
= sup

0≤t≤T
‖f(t, ·)‖Ṁ2,p + sup

0<t<T
t

n
2p‖f(t, ·)‖L∞ .
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Moreover, let us mention that for f1, f2 ∈ ET , for the sake of simplicity, we shall write ‖(f1, f2)‖ET
=

‖f1‖ET
+ ‖f2‖ET

.

We start by studying the linear terms in (9) and (10). We observe first that as ~u0 ∈ Ṁ2,p(Rn)
and V0 ∈ Ṁ2,p(Rn) then for all 0 ≤ t ≤ T we have ‖(et∆~u0, e

t∆V0)‖Ṁ2,p ≤ c‖(~u0,V0)‖Ṁ2,p , hence
we obtain1 et∆~u0 ∈ C∗([0, T ], Ṁ2,p(Rn)) and et∆V0 ∈ C∗([0, T ], Ṁ2,p(Rn)). On the other hand, by the
smoothing properties of the heat kernel we can write sup

0<t<T
t

n
2p

∥∥(et∆~u0, e
t∆V0

)∥∥
L∞
≤ c‖(~u0,V0)‖Ṁ2,p .

Thus, we have et∆~u0 ∈ ET and et∆V0 ∈ ET , and moreover we can write the estimate

∥∥(et∆~u0, e
t∆V0

)∥∥
ET
≤ c‖(~u0,V0)‖Ṁ2,p . (11)

We study now the bi-linear terms in (9) and (10). To estimate the terms B1(~u, ~u) and B2(V,V)
in (9), it is worth to recall some well-known facts. We recall first that for 1 < r < p < +∞ the Leray
projector P is bounded in the Morrey space Ṁ r,p(Rn) (see the Lemma 4.2 of [9]). Thereafter, we also
recall that for 1 ≤ r < p and p ≥ n, the space M r,p(Rn) is stable under convolution with functions
in the space L1(Rn): we have ‖g ∗ f‖Ṁr,p ≤ c‖g‖L1‖f‖Ṁr,p (see the page 169 of [13]).

With these information in mind, and moreover, applying the well-known estimate on the heat

kernel: ‖~∇h(t−s)(·)‖L1 ≤ c

(t− s)1/2
, for the first term in the norm ‖ · ‖ET

we have

sup
0≤t≤T

‖B1(~u, ~u) +B2(V,V)‖Ṁ2,p

= sup
0≤t≤T

∥∥∥∥∫ t

0

e(t−s)∆P(div(~u⊗ ~u))(s, ·)ds+

∫ t

0

e(t−s)∆P(div(V�V))(s, ·)ds
∥∥∥∥
Ṁ2,p

≤c sup
0≤t≤T

∫ t

0

∥∥e(t−s)∆(div(~u⊗ ~u))(s, ·) + e(t−s)∆(div(V�V))(s, ·)
∥∥
Ṁ2,p ds

≤c sup
0≤t≤T

∫ t

0

1

(t− s)1/2
(‖~u(s, ·)⊗ ~u(s, ·)‖Ṁ2,p + ‖V(s, ·)�V(s, ·)‖Ṁ2,p) ds

≤c sup
0≤t≤T

∫ t

0

1

(t− s)1/2s
n
2p

(
(s

n
2p‖~u(s, ·)‖L∞)‖~u(s, ·)‖Ṁ2,p + (s

n
2p‖V(s, ·)‖L∞)‖V(s, ·)‖Ṁ2,p

)
ds

≤c T
1
2
− n

2p ‖(~u,V)‖2
ET
,

(12)

where as p > n then we have 1
2
− n

2p
> 0. Now, to handle the second term in the norm ‖ ·‖ET

, first we

shall need the following remark. Recall that the operator e(t−s)∆P(div(·)) is a matrix of convolutions

operators (in the spatial variable) whose kernels Ki,j verify |Ki,j(t− s, x)| ≤ c

((t− s)1/2 + |x|)n+1
,

1Actually we have et∆~u0 ∈ C(]0, T ], Ṁ2,p(Rn)) and et∆V0 ∈ C(]0, T ], Ṁ2,p(Rn)) due to fact that for f ∈ Ṁ2,p(Rn)
the following estimates hold: ‖et∆f‖Ṁ2,p ≤ c‖f‖Ṁ2,p and ‖∂tet∆f‖Ṁ2,p ≤ c

t‖f‖Ṁ2,p for t > 0.

6



hence we get ‖Ki,j(t− s, ·)‖L1 ≤ c

(t− s)1/2
. With this remark in mind, we can write

sup
0≤t≤T

t
n
2p ‖B1(~u, ~u) +B2(V,V)‖L∞

= sup
0<t<T

t
n
2p

∥∥∥∥∫ t

0

e(t−s)∆P(div(~u⊗ ~u))(s, ·)ds+

∫ t

0

e(t−s)∆P(div(V�V))(s, ·)ds
∥∥∥∥
L∞

≤ sup
0<t<T

t
n
2p

∫ t

0

∥∥e(t−s)∆P(div(~u⊗ ~u))(s, ·)ds+ e(t−s)∆P(div(V�V))(s, ·)
∥∥
L∞

ds

≤c sup
0≤t≤T

t
n
2p

∫ t

0

1

(t− s)1/2
(‖~u(s, ·)⊗ ~u(s, ·)‖L∞ + ‖V(s, ·)�V(s, ·)‖L∞) ds

≤c sup
0≤t≤T

t
n
2p

∫ t

0

ds

(t− s)1/2s
n
p

((
s

n
2p‖~u(s, ·)‖L∞

)2

+
(
s

3
2p‖V(s, ·)‖L∞

)2
)
ds

≤c

(
sup

0≤t≤T
t

n
2p

∫ t

0

ds

(t− s)1/2s
n
p

)
‖(~u,V)‖2

ET
.

≤

(
c sup

0≤t≤T

[
t

n
2p

∫ t/2

0

ds

(t− s)1/2s
n
p

+ t
n
2p

∫ t

t/2

ds

(t− s)1/2s
n
p

])
‖(~u,V)‖2

ET

≤c

(
sup

0≤t≤T

[
t

n
2p
− 1

2

∫ t/2

0

ds

sn/p
+ t

n
2p
−n

p

∫ t

t/2

ds

(t− s)1/2

])
‖(~u,V)‖2

ET

≤c T
1
2
− n

2p ‖(~u,V)‖2
ET
.

(13)

In order to estimate now the terms B3(~u,V) and B4(V,V) in (10), recall that by the physical model

we have the assumption |~V (x)| = 1 and then ‖~V ‖L∞ = 1. Thus, for the first in the norm ‖ · ‖ET
we

have:

sup
0≤t≤T

‖B3(~u,V) +B4(V,V)‖Ṁ2,p

= sup
0≤t≤T

∥∥∥∥∫ t

0

e(t−s)∆~∇⊗ (~uV)(s, ·)ds−
∫ t

0

e(t−s)∆~∇⊗ (|V|2 ~V )(s, ·)ds
∥∥∥∥
Ṁ2,p

≤c sup
0≤t≤T

∫ t

0

1

(t− s)1/2

(
‖~uV(s, ·)‖Ṁ2,p + ‖|V(s, ·)|2~V ‖Ṁ2,p

)
ds

≤c sup
0≤t≤T

∫ t

0

1

(t− s)1/2

(
‖~u(s, ·)‖Ṁ2,p‖V(s, ·)‖L∞ + ‖|V(s, ·)|2‖Ṁ2,p‖~V ‖L∞

)
ds

≤c sup
0≤t≤T

∫ t

0

1

(t− s)1/2

(
‖~u(s, ·)‖Ṁ2,p‖V(s, ·)‖L∞ + ‖|V(s, ·)|2‖Ṁ2,p

)
ds

≤c sup
0≤t≤T

∫ t

0

1

(t− s)1/2
(‖~u(s, ·)‖Ṁ2,p‖V(s, ·)‖L∞ + ‖V(s, ·)‖Ṁ2,p‖V(s, ·)‖L∞) ds

≤c
[

sup
0≤t≤T

∫ t

0

ds

(t− s)1/2sn/2p

]
‖(~u,V)‖2

ET
≤ c T

1
2
− n

2p ‖(~u,V)‖2
ET
.

(14)
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Finally, for the second term in the norm ‖ · ‖ET
, following the same computations done in (13) we

have

sup
0≤t≤T

t
n
2p ‖B3(~u,V) +B4(V,V)‖L∞

sup
0≤t≤T

t
n
2p

∥∥∥∥∫ t

0

e(t−s)∆~∇⊗ (~uV)(s, ·)ds−
∫ t

0

e(t−s)∆~∇⊗ (|V|2 ~V )(s, ·)ds
∥∥∥∥
L∞

≤c T
1
2
− n

2p ‖(~u,V)‖2
ET
.

(15)

With estimates (12), (13), (14) and (15) at hand, we are able to write

‖B1(~u, ~u)‖ET
+ ‖B2(V,V)‖ET

+ ‖B3(~u,V)‖ET
+ ‖B4(V,V)‖ET

≤ c T
1
2
− n

2p ‖(~u,V)‖2
ET
. (16)

Once we have the estimates (11) and (16), we set a time 0 < T = T (~u0,V0) < +∞ small enough
and the existence of a solution (~u,V) for equations (9) and (10) follows from standard arguments.
�

In the second step, for (~U, ~V ) the solution of (1) given at the beginning of the proof, in the Cauchy

problem (7) we set the initial data (~u0, ~∇⊗ ~v0) = (~U, ~∇⊗ ~V ). Then, by Proposition 2.1 there exists

a time 0 < T < +∞ and there exists a solution (~u, ~∇⊗ ~v) ∈ C∗([0, T ], Ṁ2,p(Rn)) of (7) arising from

(~U, ~∇⊗ ~V ).

On the other hand, since (~U, ~∇⊗ ~V ) is a solution of (1) then, applying the Leray projector

in the first equation of (1), thereafter, applying the operator ~∇ ⊗ (·) in the second equations of

(1), and moreover, as ∂t~U = 0 and ∂t~V = 0, we have that (~U, ~∇⊗ ~V ) is also a solution of the

Cauchy problem (7) with the initial data (~u0, ~∇⊗ ~v0) = (~U, ~∇⊗ ~V ). Remark that we also have

(~U, ~∇⊗ ~V ) ∈ C∗([0, T ], Ṁ2,p(Rn)).

Thus, in the space C∗([0, T ], Ṁ2,p(Rn)) we have two solutions of the Cauchy problem (7) with ini-

tial data (~u0, ~∇⊗ ~v0) = (~U, ~∇⊗ ~V ): the solution (~u,V) given by Proposition 2.1 and the stationary

solution (~U, ~∇⊗ ~V ). We shall prove that both solutions are equal and for this we have the following
uniqueness result.

Proposition 2.2 Let (~u1,V1) and (~u2,V2) be two solutions of (7) in the space C∗([0, T ], Ṁ2,p(Rn))
arising from the same initial data. Then we have (~u1,V1) = (~u2,V2).

Proof. We define the set

E = {τ ∈ [0, T ] : ‖(~u1(t, ·),V1(t, ·))− (~u2(t, ·),V2(t, ·))‖Ṁ2,p = 0, for all t ∈ [0, τ ]} ,

and let T ∗ = sup
τ∈E

τ . Let us remark that T ∗ exists since E is a bounded and non empty set. Indeed,

we have E ⊂ [0, T ] and moreover we have 0 ∈ E.

We have T ∗ ≤ T and we will prove that T ∗ = T . For this, we will assume that T ∗ < T to obtain
a contradiction. First, we shall verify that T ∗ ∈ E. Indeed, as (~u1,V1) and (~u2,V2) belong to the
space C∗([0, T ], Ṁ2,p(Rn)) then we can write

‖(~u1(T ∗, ·),V1(T ∗, ·))−(~u2(T ∗, ·),V2(T ∗, ·))‖Ṁ2,p ≤ lim inf
t→(T ∗)−

‖(~u1(t, ·),V1(t, ·))−(~u2(t, ·),V2(t, ·))‖Ṁ2,p ,
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hence we get ‖(~u1(T ∗, ·),V1(T ∗, ·))− (~u2(T ∗, ·),V2(T ∗, ·))‖Ṁ2,p = 0.

Once we have in information T ∗ ∈ E, and moreover, as we have assumed T ∗ < T , in the the
interval of time ]T ∗, T [ we will study the equations

~u(t, ·) =

∫ t

T ∗
e(t−s)∆P(div(~u⊗ ~u))(s, ·)ds︸ ︷︷ ︸

B1(~u,~u)

+

∫ t

T ∗
e(t−s)∆P(div(V�V))(s, ·)ds︸ ︷︷ ︸

B2(V,V)

, (17)

and

V(t, ·) =

∫ t

T ∗
e(t−s)∆~∇⊗ (~uV)(s, ·)ds︸ ︷︷ ︸

B3(~u,V)

−
∫ t

T ∗
e(t−s)∆~∇⊗ (|V|2 ~V )(s, ·)ds︸ ︷︷ ︸

B4(V,V)

. (18)

We define ~w = ~u1 − ~u2 and W = V1 −V2 and by the equations above we may observe that (~w,W)
solve the following equations:

~w = B1(~w, ~u1) +B1(~u2, ~w) +B2(W,V1) +B2(V2,W),

W = B3(~w,V1) +B3(~u2,W) +B4(W,V1) +B4(V2,W).

(19)

For a time T ∗ < T1 < T , we will estimate the quantities sup
T ∗≤t≤T1

‖~w(t, ·)‖Ṁ2,p , and sup
T ∗≤t≤T1

‖W(t, ·)‖Ṁ2,p ;

and for this we need the following technical lemma.

Lemma 2.1 Let f, g ∈ L∞([T ∗, T1], Ṁ2,p(Rn)). For i = 1, · · · , 4, let Bi(·, ·) be the bilinear forms
given in (17) and (18). Then, we have

sup
T ∗≤t≤T1

‖Bi(f, g)(t, ·)‖Ṁ2,p ≤ c(T1 − T ∗)1/2(1−n/p)
(

sup
T ∗≤t≤T1

‖f(t, ·)‖Ṁ2,p

)(
sup

T ∗≤t≤T1
‖g(t, ·)‖Ṁ2,p

)
.

(20)

Proof. Remark first that each term bilinear term Bi(·, ·) essentially writes down as

B(f, g)(t, ·) =

∫ t

T ∗
K(t− s, ·) ∗ (fg)(s, ·)ds, (21)

where the kernel K(t − s, x) verifies |K(t− s, x)| ≤ c

(
√
t− s+ |x|)n+1

. Thus, it is enough to study

the generic bilinear form B(f, g)(t, ·) for t ∈ [T ∗, T1]. First, using the interpolation inequalities we
write

‖B(f, g)(t, ·)‖Ṁ2,p ≤ c‖B(f, g)(t, ·)‖1/2

Ṁ1,p/2 ‖B(f, g)(t, ·)‖1/2
L∞ , (22)
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where we must study each term in the right side separately. For the first term, recalling that the
Morrey space Ṁ1,p/2(Rn) is stable under convolution with L1− functions, we have

‖B(f, g)(t, ·)‖Ṁ1,p/2 ≤
∫ t

T ∗
‖K(t− s, ·) ∗ (fg)(s, ·)‖Ṁ1,p/2ds

≤
∫ t

T ∗
‖K(t− s, ·)‖L1‖fg(s, ·)‖Ṁ1,p/2ds

≤
∫ t

T ∗
‖K(t− s, ·)‖L1‖f(s, ·)‖Ṁ2,p‖g(s, ·)‖Ṁ2,pds

≤
∫ t

T ∗
‖K(t− s, ·)‖ds

(
sup

T ∗≤s≤T1
‖f(s, ·)‖Ṁ2,p

)(
sup

T ∗≤s≤T1
‖g(s, ·)‖Ṁ2,p

)
.

Moreover, since we have |K(t− s, x)| ≤ c

(
√
t− s+ |x|)n+1

then we get∫ t

T ∗
‖K(t− s, ·)‖ds ≤ c

∫ t

T ∗

ds√
t− s

≤ c(t− T ∗)1/2.

Thus, we can write

‖B(f, g)(t, ·)‖Ṁ1,p/2 ≤ c(t− T ∗)1/2

(
sup

T ∗≤t≤T1
‖f(t, ·)‖Ṁ2,p

)(
sup

T ∗≤t≤T1
‖g(t, ·)‖Ṁ2,p

)
. (23)

For the second term in the right side in (22), by point ii) of Proposition 3.2 in page 590 of [6] we
have

‖B(f, g)(t, ·)‖L∞ ≤
∫ t

T ∗
‖K(t− s, ·) ∗ (fg)(s, ·)‖L∞ds

≤c
∫ t

T ∗

1

(t− s)n/p+1/2
‖fg(s, ·)‖Ṁ1,p/2ds

≤c
∫ t

T ∗

1

(t− s)n/p+1/2
‖f(s, ·)‖Ṁ2,p‖g(s, ·)‖Ṁ2,pds

≤c
∫ t

T ∗

1

(t− s)n/p+1/2

(
sup

T ∗≤s≤T1
‖f(s, ·)‖Ṁ2,p

)(
sup

T ∗≤s≤T1
‖g(s, ·)‖Ṁ2,p

)
≤c(t− T ∗)−n/p+1/2

(
sup

T ∗≤s≤T1
‖f(s, ·)‖Ṁ2,p

)(
sup

T ∗≤s≤T1
‖g(s, ·)‖Ṁ2,p

)
.

(24)

With estimates (23) and (24) we get back to (22) to write

‖B(f, g)(t, ·)‖Ṁ2,p ≤ c(t− T ∗)1/2(1−n/p)
(

sup
T ∗≤t≤T1

‖f(t, ·)‖Ṁ2,p

)(
sup

T ∗≤t≤T1
‖g(t, ·)‖Ṁ2,p

)
,

hence, as p > n then we have 1/2(1− n/p) > 0 and we get the desired estimate (20). �

Once we have the estimate (20), we apply this estimate in each term at the right side in the equations
given in (19) to get

sup
T ∗≤t≤T1

‖(~w(t, ·),W(t, ·))‖Ṁ2,p ≤ c(T1 − T ∗)1/2(1−n/p)
(

sup
T ∗≤t≤T1

‖(~w(t, ·),W(t, ·))‖Ṁ2,p

)
×
(

sup
T ∗≤t≤T1

‖(~u1(t, ·),V1(t, ·))‖Ṁ2,p + sup
T ∗≤t≤T1

‖(~u2(t, ·),V2(t, ·))‖Ṁ2,p

) ,
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hence we can write

sup
T ∗≤t≤T1

‖(~w(t, ·),W(t, ·))‖Ṁ2,p ≤ c(T1 − T ∗)1/2(1−n/p)
(

sup
T ∗≤t≤T1

‖(~w(t, ·),W(t, ·))‖Ṁ2,p

)
×
(

sup
0≤t≤T

‖(~u1(t, ·),V1(t, ·))‖Ṁ2,p + sup
0≤t≤T

‖(~u2(t, ·),V2(t, ·))‖Ṁ2,p

) .

In this estimate, we set the time T1 close enough to the time T ∗ such that

≤ c(T1 − T ∗)1/2(1−n/p)
(

sup
0≤t≤T

‖(~u1(t, ·),V1(t, ·))‖Ṁ2,p + sup
0≤t≤T

‖(~u2(t, ·),V2(t, ·))‖Ṁ2,p

)
≤ 1/2,

hence we obtain that ~w = 0 and W = 0 also in the interval of time ]T ∗, T1[, which contradicts the
definition of the time T ∗. Thus, we have T ∗ = T . �

We continue with the proof of Theorem 2.1. Let us recall that in the space C∗([0, T [, Ṁ2,p(Rn))
we consider two solutions of equations (7): the solution (~u,V) given by Proposition 2.1 and the

stationary solution (~U, ~∇⊗ ~V ). Then, by Proposition 2.2 we have the identity (~u,V) = (~U, ~∇⊗ ~V ).
Moreover, as the solution (~u,V) verifies (8) then, by the identity above we can write

sup
0<t<T

t
n
2p

(
‖~U‖L∞ + ‖~∇⊗ ~V ‖L∞

)
< +∞,

hence, as the solution (~U, ~∇⊗ ~V ) does not depend on time variable we finally get ~U ∈ L∞(Rn) and
~∇⊗ ~V ∈ L∞(Rn). Theorem 2.1 is proven. �

Now, the second key idea is to use the information ~U ∈ L∞(Rn) and ~∇⊗ ~V ∈ L∞(R3) to prove
the following technical theorem.

Theorem 2.2 Let (~U, P, ~V ) be a very weak solution of (1) given in Definition 1. We assume that
~U ∈ Ṁ2,p(Rn) and ~∇⊗ ~V ∈ Ṁ2,p(Rn) with p > n, hence, by Theorem 2.1 we get ~U ∈ L∞(Rn) and
~∇⊗~V ∈ L∞(Rn). Then, for all multi-indice α ∈ Nn\{0}, we have ∂α~U ∈ Ṁ2,p(Rn), ∂αP ∈ Ṁ2,p(Rn)

and ∂α~V ∈ Ṁ2,p(Rn).

Proof. We will study first the functions ~U and ~V ; and for this we (temporally) get rid of the
pressure term by applying the Leray projector R in the first equation in (1) to get:

−∆~U + P(div(~U ⊗ ~U)) + P(div(~∇⊗ ~V � ~∇⊗ ~V )) = 0,

−∆~V + div(~V ⊗ ~U)− |~∇⊗ ~V |2 ~V = 0,

div(~U) = 0,

(25)

As ~U and ~V solve this system, we may observe that these functions can be written as the equivalent
integral formulation.

~U = − 1

−∆

(
P(div(~U ⊗ ~U))

)
− 1

−∆

(
P(div(~∇⊗ ~V � ~∇⊗ ~V ))

)
,

~V = − 1

−∆

(
div(~V ⊗ ~U)

)
+

1

−∆

(
|~∇⊗ ~V |2 ~V

)
,

(26)
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Using this integral formulation for ~U and ~V , we will show that for all multi-indice α ∈ Nn, the
functions ∂α~U and ∂α~V belong to the homogeneous Morrey space Ṁ2σ,pσ(Rn) with σ ≥ 1.

This fact can be easily proven by a iterative argument on the order of the multi-indice α, that
we will denote as |α| = k. Let k = 1. We start by proving that ∂α~U ∈ Ṁ2σ,pσ(Rn). Indeed, from the
equation in (26) we have the identity

∂α~U = − 1

−∆

(
P(∂αdiv(~U ⊗ ~U))

)
− 1

−∆

(
P(∂αdiv(~∇⊗ ~V � ~∇⊗ ~V ))

)
, (27)

For the term
1

−∆

(
P(∂αdiv(~U ⊗ ~U))

)
, recalling that by hypothesis of Theorem 1 we have ~U ∈

Ṁ2,p(Rn), moreover, recalling that by 2.1 we also have ~U ∈ L∞(Rn), then, for all σ ≥ 1 we get
~U ∈ Ṁ2σ,pσ(Rn). Thus, we have ~U × ~U ∈ Ṁ2σ,pσ(Rn). On the other hand, we observe that the

operator
1

−∆
(P(∂αdiv(·)) writes down as a linear combination of the Riesz transforms RiRj with

i, j = 1, · · · , n. Then, by the continuity of the operator RiRj in the space Ṁ2σ,pσ(Rn) (ref) we obtain

that
1

−∆

(
P(∂αdiv(~U ⊗ ~U))

)
∈ Ṁ2σ,pσ(Rn).

For the term
1

−∆

(
P(∂αdiv(~∇⊗ ~V � ~∇⊗ ~V ))

)
, since we have ~∇⊗ ~V ∈ Ṁ2,p(Rn), and moreover,

since by Theorem 2.1 we have ~∇⊗ ~V ∈ L∞(Rn), then we get ~∇⊗ ~V ∈ Ṁ2σ,pσ(Rn) and following the

same ideas above we are able to write
1

−∆

(
P(∂αdiv(~∇⊗ ~V � ~∇⊗ ~V ))

)
∈ Ṁ2σ,pσ(Rn).

We thus have ∂α~U ∈ Ṁ2σ,pσ(Rn). On the other hand, always by the information ~∇⊗~V ∈ Ṁ2,p(Rn)

and ~∇⊗ ~V ∈ L∞(Rn), we also have ∂α~V ∈ Ṁ2σ,pσ(Rn), for σ ≥ 1 and |α| = 1.

Let k > 1. We assume that for all multi-indice β such that |β| ≤ k−1 we have ∂β ~U ∈ Ṁ2σ,pσ(Rn)

and ∂β ~V ∈ Ṁ2σ,pσ(Rn). Then, for |α| = k we will show that ∂α~U ∈ Ṁ2σ,pσ(Rn) and ∂α~V ∈ Ṁ2σ,pσ(Rn).
For this, we start by writing α = α1 +α1 where the multi-indice α1 verifies |α1| = 1 while the multi-
indice α2 satisfies |α2| = k − 1.

For the function ∂α~U given in (27), we will study the two terms in the right side of this identity.
For the first term we write

1

−∆

(
P(∂αdiv(~U ⊗ ~U))

)
=

1

−∆

(
P(∂α1div ∂α2(~U ⊗ ~U))

)
,

where, we the operator
1

−∆
(P(∂α1div(·))), always writes down as a linear combination of the Riesz

transforms RiRi. It remains to study the term ∂α2(~U ⊗ ~U). More precisely, we will show that this
term belongs to the space Ṁ2σ,pσ(Rn). Indeed, i, j = 1, · · · , n, applying the Leibinz’s rule we write

∂α2(UiUj) =
∑
|β|≤k−1

cα2,β ∂
α2−βUi ∂

βUj.

By the recurrence hypothesis (writing 2δ instead of δ) we have ∂α2−βUi ∈ Ṁ2σ,2pσ(Rn) and ∂βUj ∈ Ṁ2σ,2pσ(Rn),

hence we get ∂α2(~U ⊗ ~U) ∈ Ṁ2σ,pσ(Rn). Finally, we are able to write
1

−∆

(
P(∂αdiv(~U ⊗ ~U))

)
∈ Ṁ2σ,pσ(Rn).
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The second term in the right side of (27) follows the same computations above (with ~∇ ⊗ ~V

instead of ~U) and we also have
1

−∆

(
P(∂αdiv(~∇⊗ ~V � ~∇⊗ ~V ))

)
∈ Ṁ2σ,pσ(Rn). Then we obtain

∂α~U ∈ Ṁ2σ,pσ(Rn).

For the function ∂α~V , we remark first that by the second identity in equation (26) we have

∂α~V = − 1

−∆

(
∂αdiv(~V ⊗ ~U)

)
+

1

−∆

(
∂α(|~∇⊗ ~V |2 ~V )

)
, (28)

hence, always following the same computations performed above we can prove that ∂α~V ∈ Ṁ2σ,pσ(Rn).

Finally, we study the function ∂αP . We observe first that applying the divergence operator in
the first equation of the system (1), we get that the pressure P is necessary related to ~U and ~∇⊗ ~V
through the Riesz transforms Ri = ∂i√

−∆
by the formula

P =
n∑

i,j=1

RiRj(Ui Uj) +
n∑

i,j,k=1

RiRj (∂iVk ∂jVk) .

From this identity, performing essentially the same computations above and using the information
∂α~U ∈ Ṁ2σ,pσ(Rn) ∩ L∞(R3) and ∂α~V ∈ Ṁ2σ,pσ(Rn) ∩ L∞(Rn), we get that ∂αP ∈ Ṁ2σ,pσ(Rn), for
all α ∈ Nn \ {0}.

We thus set σ = 1, to obtain ∂α~U ∈ Ṁ2,p(Rn), ∂αP ∈ Ṁ2,p(Rn) and ∂α~V ∈ Ṁ2,p(Rn), for all
multi-indice α ∈ Nn \ {0}. �

Now we are able to finish the proof of Theorem 1. We just recall the following well-known
properties of the homogeneous Morrey spaces. First we have the embedding Ṁ2,p(Rn) ⊂ Ṁ1,p, and

then, by Theorem 2.2, and for all α ∈ Nn \ {0}, we get that ∂α~U ∈ Ṁ1,p(Rn), ∂αP ∈ Ṁ1,p(Rn) and

∂α~V ∈ Ṁ1,p(Rn). Thereafter, we use the following result which links the Morrey spaces and the
Hölder regularity of functions. For a proof see the Proposition 3.4, page 594 in [6].

Proposition 2.3 Let p > n and let f ∈ S ′(Rn) such that ~∇f ∈ Ṁ1,p(Rn). Then, f is a Hölder
continuous function with exponent β = 1− n/p, and we have

|f(x)− f(y)| ≤ C ‖~∇f‖Ṁ1,p |x− y|β,

for all x, y ∈ R with a constant C > 0 independent of f .

Applying this result to the functions ∂α~U ∈ Ṁ2,p(Rn), ∂αP ∈ Ṁ2,p(Rn) and ∂α~V ∈ Ṁ2,p(Rn) we
finally obtain the regularity stated in Theorem 1. This theorem is proven. �
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