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Aggregated Shapley effects: nearest-neighbor estimation procedure and
confidence intervals. Application to avalanche long term forecasting. *

Maria Belén Heredia, Clémentine Prieurt, and Nicolas Eckert!

Abstract. Dynamic models are simplified representations of some real-world entity that change over time, in
equations or computer code. The outputs produced by dynamic models are typically time and/or
space dependent and due to physical constraints the parameters that are part of the formulation
of such models cannot be considered as independent from each others. Dynamic models provide
essential analytical tools with significant applications, e.g., in environmental and social sciences.
The outputs produced by dynamic models can be significantly sensitive to variations of parameters
entering in their formulation (input parameters), and identifying influential input parameters is one
aim of sensitivity analysis. A global sensitivity analysis (GSA) consists in modeling unknown input
parameters by a probability distribution which propagates through the model to the outputs. Then,
input parameters are ordered according to their contribution on the model outputs by computing
sensitivity measures. In this paper, we extend Shapley effects, a sensitivity measure well suited for
dependent input parameters, to the framework of dynamic models. We also propose an algorithm
to estimate the so-called aggregated Shapley effects and to construct bootstrap confidence intervals
for the estimation of scalar and aggregated Shapley effects. We measure the performances of the
estimation procedure and the accuracy of the probability of coverage of the bootstrap confidence
intervals on toy models. Finally, our procedure is applied to perform a GSA of an avalanche flow
dynamic model, for which the input/output sample we have was obtained from an acceptance-
rejection algorithm. More precisely, we analyze the sensitivity in two different settings. In the first
setting, we consider that we have little knowledge on the input parameter probability distribution.
The second setting focuses on an avalanche corridor already documented by anterior avalanche risk
studies.

Key words. Global sensitivity analysis, dependent inputs, aggregated Shapley effects, bootstrap confidence
intervals, avalanche flow dynamic model
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1. Introduction. Dynamic models are simplified representations of some real-world en-
tity that change over time, in equations or computer code. These models are useful for the
analysis of real-world phenomena, e.g., in environmental or social sciences [32]. For a better
understanding of a phenomenon or for long term forecasting, it might be important to identify
input parameters entering in the formulation of such dynamic models, particularly the ones
which are influential on the outputs of interest. Determining these influential parameters is
one aim of global sensitivity analysis (GSA). A global sensitivity analysis (GSA) consists in
modeling unknown input parameters by a probability distribution which propagates through
the model to the outputs. Then, input parameters are ordered according to their contribution
on the model outputs by computing sensitivity measures. In the literature, there exists differ-
ent global sensitivity measures, e.g., variance based measures such as Sobol’ indices [56, 46],
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2 MB HEREDIA, C. PRIEUR, AND N. ECKERT

density based measures [6, 7, 60], entropy measures [4], etc. A review of global sensitivity
measures can be found in, e.g., [8] or [30].

Due to modeling constraints inherent to many applications, model input parameters might
be dependent. It happens indeed that input parameters are interrelated by physical con-
straints, as for example it is the case for the model presented in [52] modeling the response
of a nuclear reactor. In [40], the input parameters of a natural gas transmission model are
sampled from an acceptance-rejection algorithm thus can not be considered as independent
(see also [35]). A particularity of dynamic models considered in this paper is that the output
they produce are typically time and/or space dependent (see e.g., [1, 38]). More specifically,
the application that motivated our study is an avalanche flow dynamic model which pro-
duces three outputs: the functional flow velocity and depth and the scalar runout distance,
which corresponds to the distance traveled by the avalanche. Samples are obtained from an
acceptation-rejection algorithm thus (i) input parameters are dependent, (ii) input parameters
are not necessarily confined in a rectangular region and (iii) input parameters have unknown
probability distribution. For these reasons, we develop a GSA which can handle complex
input parameter probability distribution and functional outputs (or multivariate outputs if
we discretize functional ones).

Although the independence assumption on input parameters is unrealistic in many appli-
cations, it is traditionally required to interpret or to compute sensitivity measures. In other
words, if input parameters are dependent, some sensitivity measures are difficult to interpret.
E.g., if input parameters are dependent, the functional ANOVA decomposition used for the in-
terpretation of Sobol’ indices is not unique and Sobol’ indices can actually sum to greater than
one. Some authors have proposed strategies to estimate variance based sensitivity measures if
input parameters are dependent (cite, e.g., [62, 39, 11, 41, 36, 42, 64, 61, 27]). However, these
papers do not provide an univocal way of partitioning the influence of input parameters on the
output. In [33], grouped Sobol’ indices are introduced. Grouped Sobol” indices can be defined
if the input parameters can be splitted in independent groups of dependent parameters, then
a Sobol’” index is attributed to each group, but not to each input parameter. Other authors
have proposed alternative sensitivity measures such as moment independent sensitivity mea-
sures (see, e.g., [6]) or have adapted existing procedures to the framework of dependent input
parameters (see, e.g., the screening procedure presented in [26]). A more complete review of
this literature can be found in [31].

The Shapley effects are a variance based sensitivity measure proposed by [46], which are
still meaningful in the framework of dependent input parameters [47]. This measure is based
on the Shapley value which is a cooperative game theory concept. Briefly speaking, Shapley
value ensures a fair distribution of a gain among team players according to their individual
contributions. As a sensitivity measure, [46] adapted the Shapley value into the Shapley
effects by considering model input parameters as players and the gain function as the output
variance. The main advantage of such an approach is that it is possible to attribute a non
negative sensitivity index to each parameter, and the sum of the indices is equal to one [9, 31].

Regarding the estimation of the Shapley effects, [58], [9] and [50] proposed estimation
algorithms. [58] proposed two estimators for Shapley effects. [5] proposed bootstrap confidence
intervals for [58] estimators. [50] proposed an estimation algorithm based on the Mobious
inverse to reduce estimation computational cost. In fact, it is well known that Shapley effects
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AGGREGATED SHAPLEY EFFECTS 3

estimation is costly. In the algorithm proposed in [58], it is assumed that it is possible to sample
from the distribution of a subset of the input parameters conditionally to the complementary
set of input parameters. In [9], the authors proposed given data estimators based on nearest-
neighbor, which can be computed from a i.i.d. sample of input parameters, which is in general
more convenient for real applications. It is worth to mention that give data estimators of Sobol’
indices have also been proposed in the literature: we can cite the EASI spectral method of
[48], [49] which relies on the notion of class-conditional densities, the nonparametric estimation
methods of [13] or [57], the fully Bayesian given data procedure proposed by [3], and more
recently in [23] estimators based on rank statistics. But even if Sobol’ indices estimation is
available when input parameters are dependent, their interpretation is still difficult. Shapley
effects have been studied in other works, e.g., [31] analyzed the effect of linear correlation
between Gaussian inputs on the Shapley effects. Shapley effects have been also used in real
application e.g., in a nuclear application where inputs are correlated [52], and in the multi-
physic coupling modeling of a rod ejection accident in a pressurized water reaction [14]. Finally,
[51] extended Shapley effects to also provide information about input interactions.

In this work, we extend Shapley effects to multivariate or functional outputs in the frame-
work of dependent input parameters. When outputs are multivariate or functional, it is
possible to compute a sensitivity Shapley effect for each component of the output, however
this approach leads to results that are difficult to interpret [1] or particularly redundant if we
consider the case of discretized functional outputs [37]. [37] and [25] extended Sobol’ indices
to multivariate or functional outputs. [1] extended Sobol’ indices to time-dependent outputs.
Following these papers, we introduce and study the properties of what we call aggregated
Shapley effects. If the output dimension is high (as it is the case, e.g., when considering the
discretization of a functional output), a dimension reduction can be applied as a preliminary
step to estimate efficiently aggregated Shapley effects. We use the Karhunen-Love (KL) ex-
pansion as in [37, 1]. More precisely to perform KL expansion, we use the functional principal
component analysis proposed by [63]. The extension of Shapley effects to multivariate outputs
has been early studied in [14], but here we analyze more deeply its definition, properties and
estimation. We also provide a bootstrap algorithm to estimate confidence intervals for scalar
and aggregated Shapley effects motivated by [5].

Our method is motivated by the study of an avalanche flow dynamic model which depends
on some poorly known inputs [17]. This model is employed for elaborating land-use maps or for
designing defense structures [44, 22]. Many of the input parameters entering in the formulation
of the model are uncertain. Understanding the influence of these parameters on the model
outputs is important for the a better comprehension of avalanche phenomenon, but also for
determining the most influential parameter on which effort should be concentrated to provide
more accurate long term forecasting. In our application, the input/output sample is obtained
from an acceptance-rejection algorithm. We analyze the sensitivity in two different settings. In
the first setting, we consider that we have little knowledge on the input parameter probability
distribution. The second setting focuses on an avalanche corridor already documented by
anterior avalanche risk studies [15].

In summary, the main contributions of this work are: (i) to extend Shapley effects to
models with multivariate or functional outputs, (ii) to provide an algorithm to construct
bootstrap confidence intervals for scalar and aggregated Shapley effect estimation (iii) and,
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4 MB HEREDIA, C. PRIEUR, AND N. ECKERT

to apply our GSA procedure to a complex avalanche application where samples are obtained
from an acceptance-rejection algorithm. The paper is organized as follows. In Section 2,
aggregated Shapley effects and their main properties are described. In Section 3, we propose
an estimator for aggregated Shapley effects in a given data framework by extending the Monte-
Carlo nearest-neighbor estimator of scalar Shapley effects introduced in [9]. At the end of the
section, we describe the functional principal components analysis algorithm to perform model
dimension reduction proposed by [63]. In Section 4, we propose a bootstrap algorithm to
construct confidence intervals of the scalar and aggregated Shapley effect estimations based
on [5]. In Section 5, we test our estimation procedure on two toy models: a multivariate
linear Gaussian model and the mass-spring model. Finally in Section 6, our GSA procedure
is applied to an avalanche model. We discuss our conclusions and perspectives in Section 7.

2. Aggregated Shapley effects. Shapley effects are sensitivity measures to quantify input
importance proposed by [46]. These measures are particularly useful when inputs are depen-
dent. Shapley effects are based in the concept of Shapley value, introduced in the framework
of game theory [55], which consists into dividing a game gain among a group of players in an
equitable way. As sensitivity measures, Shapley effects consider model inputs as players and
output variance as game function. Shapley effects can be naturally extended to multivariate
output models by following the ideas presented in [24] and [37] to generalize Sobol’ indices
to multivariate output models (see also [1] for time-dependent models). We call these new
sensitivity measures aggregated Shapley effects.

2.1. Definition. Let us define Y = (Y1,...,Y},...,Y},) = f(X) the p multivariate output
of a model f that depends on d random inputs X = (Xi,...,Xy). The inputs are defined
on some probability space (Q, F,Px) and f € L?(Px). For any u C {1,...,d}, let us define
—u = {1,...,d} \ u its complement. We set X, = (X;)iey. Note that the inputs are not
necessary independent.

In the framework of our application to avalanche long term forecasting, the model produces
outputs of the form Y = (Y1 = f(s1,X),...,Y, = f(sp, X)), with s1,...,s, € R the p
discretization points along the avalanche corridor.

In this section we recall the definition and main properties of the Shapley value, on which
the definition of Shapley effects is based. Given a set of d players in a coalitional game and
a charateristic function val : 2¢ — R, val(@) = 0, the Shapley value (¢1,...,¢q) is the only
distribution of the total gains val({1,...,d}) to the players satisfying the desirable properties
listed below:

Efficiency) Zle ¢ =val({1,...,d}).

Symmetry) If val(uU {i}) = val(uU {¢}) for all u C {1,...,d} — {3, j}, then ¢; = ¢y.

Dummy) If val(u U {i}) = val(u) for all u C {1,...,d}, then ¢; = 0.

Additivity) If val and val’ have Shapley values ¢ and ¢’ respectively, then the game
with characteristic function val 4 val’ has Shapley value ¢; + ¢} for ¢ € {1,...,d}.

It is proved in [55] that according to the Shapley value, the amount that player i gets

1.
2.
3.
4

o~~~ o~
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AGGREGATED SHAPLEY EFFECTS 5

given a coalitional game (val, d) is:

(2.1) b4 :é Z <d|u| 1>_ (val(uU {i}) — val(w)) ¥i € {1,...,d}.

uC—{i}

The Shapley value also satisfies the linearity property:

5. (Linearity) Let A € R, if Aval and val have Shapley values ¢’ and ¢, then ¢, = \¢; for
all i € {1,...,d}.
The linearity property is used to prove some of the nice properties of aggregated Shapley
effects (see Propositions 2.1 and 2.2 further).
The Shapley effects are defined by considering the characteristic function of the game as:

_ Var (E(Y;|Xy))

(2.2) vali() = U N (L d)

in Equation (2.1). Thus, the scalar Shapley effect of input 7 in output j is defined as:

@3 Sh= e 5 () (Ve (B05 X)) - Var (B;1X).

uC—{i}

Shapley effects can be naturally extended to models with multivariate outputs following
ideas from [24] and [37] where authors proposed to extend Sobol” indices to multivariate
outputs. Aggregated Shapley effect of an input 4 is then defined as:

P, Var(v))SH]

2.4 GSh; =
z4 j—1 Var(Yj)

where S hg is the scalar Shapley effect of input X; in output Y. This sensitivity measure
is a weighted sum of the scalar Shapley effects where weights correspond to the proportion of
the variance of each output over the sum of all individual variances.

2.2. Properties. In this section, we prove some nice properties of aggregated Shapley
effects.

Proposition 2.1. The aggregated Shapley effects GSh;, i € {1,...,d}, correspond to the
Shapley value with characteristic function defined as:

S, Var(Y;)val; (i)
?:1 Var(Y;)

(2.5) val(i) =

Proof. The proof is straightforward. It is a direct consequence of the linearity and additiv-
ity properties of the Shapley value. Let i € {1,...,d} and j € {1,...,p}. The characteristic
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6 MB HEREDIA, C. PRIEUR, AND N. ECKERT

function val; (see Equation 2.2) has Shapley value Shf ,1€{1,...,d}. Thanks to the linearity
and additivity properties (see properties 4. and 5. of the Shapley value), the characteristic
P_, Var(Y;)val, (i) >F_, Var(¥;)Shi n

function
f:1 Var(Y;) f:l Var(Y;)

leads to the Shapley value
The characteristic function (2.5) can be written in matricial form:
j=1 Var(Vy)val;(i) — 370, Var(E(Y;|Xi))  tr(3)

20 O =T ) T S vay) o)

where ¥; is the covariance matrix of E(Y|X;) and ¥ is the covariance matrix of Y. Note
that the characteristic function val of aggregated Shapley effects corresponds to the definition
of the aggregated Sobol’ indices introduced in [37, 24]. In the next proposition, we prove
that aggregated Shapley effects accomplish the natural requirements for a sensitivity measure
mentioned in Proposition 3.1 in [24].

Proposition 2.2. Leti € {1,...d}. The following items hold true.
. 0<GSh; <1.
it. GSh; is invariant by left-composition by any nonzero scaling of f, which means, for
any X € R, the aggregated Shapley effect GSh] of Af(X) is GSh;.
1ii. GSh; is invariant by left-composition of f by any isometry of RP, which means, for
any O € RP*P such that O'O = I, the aggregated Shapley effect GSh] of Of(X) is
GSh; for alli e {1,...,d}.

Proof. i. As for all j € {1,...,p} 0 < Sh{ < 1 and as the sum of the non negative
weights Var(Y;)/>-7_, Var(Y;) is one, we deduce that 0 < GSh; < 1. ii. Note that GSh,
>b_, Var(\Y;)Sh

:;:1 Var(AYj)
characteristic function val}. Notice that val(i) = %/W = val;(i). Thus, Sh;j — Shl
from where GSh; = GSh; which means the aggregated Shapley effect is invariant by any
nonzero scaling of f. iii. Let us write g(X) = Of(X) = OY = U. The characteristic function
associated to the aggregated Shapley effect GSh) of U is then (see Equation (2.6)) val’(i) =
tr(29) /tr(XY) where ¥V is the covariance matrix of E(U|X;) and 2V is the covariance matrix
of U. Then,

can be written as GSh], = , where S h;j is the Shapley effect associated to the

(i) — tT(ZZU) B tr(OEzYOt) B tr(ElY) — val(i
vl = 550) = wosYon ~ aey)

As val(i) has an unique Shapley value GSh;, val’(i) has Shapley value G\Sh; which proves
that GSh, = GSh; for all i € {1,...,d}. [ |

In this section, we have proven that aggregated Shapley effects are sensitivity measures.
In the next section, we describe the estimation procedure we propose for aggregated Shapley
effects, based the estimation procedure of scalar Shapley effects proposed in [9, Section 6] when
observing an i.i.d. sample of (X,Y). Such a procedure, which does not require a specific form
for the design of experiments is also called given data procedure.
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AGGREGATED SHAPLEY EFFECTS 7

3. Estimation procedure for scalar and aggregated Shapley effects. The aggregated
Shapley effect estimation procedure we propose in this section is based on the given data
estimation procedure of the scalar Shapley effects introduced in [9, Section 6.1.1.]. In the ap-
plication we consider in Section 6, samples are constructed using acceptance-rejection rules.
Therefore the standard pick-freeze estimation procedure (see, e.g., [34]) can not be used as
it is based on a specific pick-freeze type design of experiments. It is the reason why we turn
to the given data estimation procedure of scalar Shapley effects introduced in [9, Section
6.1.1.]. For sake of clarity, we first present the estimation procedure for scalar Shapley ef-
fects in Subsection 3.1 before extending it to the estimation of aggregated Shapley effects in
Subsection 3.2.

3.1. Double Monte Carlo given data estimation of scalar Shapley effects. As noticed
in [58, Theorem 1], replacing the characteristic function é;(u) = Var(E(Y;|X,)) by the char-
acteristic function ¢;(u) = E(Var(Y;|X_,)) with u C {1,...,d} in Equation (2.3) does not
change the definition of Shapley effects. Moreover, as pointed in [58] (based on the work in
[59]), the double Monte Carlo estimator of ¢;(u) can suffer from a non neglectable bias if the
inner loop sample is small, while in contrast the double Monte Carlo estimator of c;(u) is
unbiased for any sample size. For that reason, we turn to the double Monte Carlo estimator
of ¢j(u). To estimate the scalar Shapley effects from the estimates of ¢;(u), u C {1,...,d},
the two aggregation procedures are discussed in [9, Section 4], the random permutation ag-
gregation procedure, and the subset aggregation procedure. We focus in this work on the
subset aggregation procedure as it allows a variance reduction. Note that ¢;(()) = 0 and
that ¢;({1,...,d}) = Var(Y}), which is assumed to be known in [9], and that is estimated
by the empirical variance in the present paper. As already mentioned, we consider the given
data version for the subset aggregation procedure with double Monte Carlo introduced in [9,
Section 6.1.1.] for the estimation of scalar Shapley effects. More precisely, given a n sample
(X Y@) 1<i<nof (X,Y), we define:

N,
~ I 5 .
(3.1) G =+ > E],, with
Yoe=1
1 - 1 i
- (xRt (sed)) ) - (x (k™ (se,h)

(3.2) Eisé—NI_l;(fJ (X se,i ) NI;JCJ (X s ))
with the notation f;(X) =Y;. For 0 ¢ v ¢ {1,...,d}, the index kJ(I,m) denotes as in [9,
Section 6] the index such that sz(l’m) is the (or one of the) m-th closest element to Xt(,l)
in (ng))lgign and such that (k) (I,m))1<m<n, are two by two distinct and (s¢)1<¢<n, is a
sample of uniformly distributed integers without replacement in {1,...,n}. Ny and N, are

respectively the Monte-Carlo sample sizes for the conditional variance and expectation. The
choice of these two parameters is discussed further. In [9, Theorem 6.6.], it is proved that
under theoretical assumptions, ¢;j(u) converges in probability to ¢;(u) when n and NN, go to co.
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8 MB HEREDIA, C. PRIEUR, AND N. ECKERT

The algorithm that consists in estimating scalar Shapley effects by plugging (3.1) in Equation
(2.3) is called subset aggregation procedure as:

(33) Sl = 1 ) (") @eun-aw)

where (7]2- is the empirical estimator of Var(Y;). Note that, in the subset aggregation procedure,
N, depends on each 0 G u & {1,...,d}.

Finally, we discuss the choice of Ny and N for all @ ¢ u & {1,...,d}. We set as in [9]
N; = 3 and we choose N,, according to the rule proposed in [9, Proposition 4.2.] which aims

at minimizing Zd Var(g’y) for a fixed total cost & Z(Agug (1,..d} N, = Nyy fixed by the user.

Note that the optimal values N} = {Ntot(m)_l(d - 1)_1J, 0 cuc{l,...,d}, donot depend

on 1 < j < p. The optimal values N are computed under theoretical assumptions that are
not satisfied for the given data version of the estimators. However, numerical experiments in
[9] show that this choice performs well in practice. Note that the estimator cost in terms of
number of model evaluations is n while the cost in terms of nearest-neighbors search is Ny.
In [9, Proposition 6.12.], it is proved that under theoretical assumptions the scalar Shapley

effect estimators 5’715 converge to the scalar Shapley effects in probability when n and N go
to 0o. Once more, although theoretical assumptions for the convergence are not guaranteed
in the applications, numerical performance of the estimators have been demonstrated in [9].

3.2. Estimator of the aggregated Shapley effects. Given scalar Shapley effect estimators
whose definition is recalled in the previous section, we propose to estimate the aggregated
Shapley effects by:

3P AZSh 1 P -t , .
(3.4) GSh; = =255 %2 57 =~ ( | ) (G (uu{i}) - &(u),
=193 J=177 j=1uC—

with 6 O’ the empirical estimator of Var(Y;) and with ¢;(u) defined by (3.1).

3.3. Dimension reduction: functional principal component analysis. If model f is space
or time-dependent, inspired by [1] and [37], we perform a Karhunen-Loeve (KL) expansion
to obtain a low-rank model representation. In fact, aggregated Shapley effects might be
computed more effectively in a low-rank representation. To perform KL expansion, we use
the principal component analysis through conditional expectation (PACE) method proposed
by [63] (see also [2] for an illustration of its application). More precisely, we have a collec-
tion of n independent trajectories of a smooth random function f(.,X) with unknown mean
w(s) =E(f(s,X)),s € 7, where 7 is a bounded and closed interval in R, and covariance func-
tion G(s1,s2) = Cov(f(s1,X), f(s2,X)), 51,52 € 7. We assume that G has a L? orthogonal
expansion in terms of eigenfunction &, and non increasing eigenvalues A\ such that:

G(s1,52) = > Mer(s1, X)&(s2,X), 51,82 € 7.
E>1
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AGGREGATED SHAPLEY EFFECTS 9

The KL orthogonal expansion of f(s, X) is:

(3.5) Fls,X) = pls) + ) an(X)&i(s) = u(s) + Y an(X)éu(s),s € 7,
k=1

k>1 —

where o, (X) = [ f(s,X)&(s)ds is the k-th functional principal component (fPC) and ¢
is a truncation level. For fPCs estimation, the authors in [63] propose first to estimate fi(s)
using local linear smoothers and to estimate @(51, s2) using local linear surface smoothers
([21]). The estimates of eigenfunctions and eigenvalues correspond then to the solutions of
the following integral equations:

/@(51, 8)Ex(s1)ds1 = Mg Ex(s), 8 € T,

with [ £(s)ds = 1 and s &1(5)Em(s) = 0 for all m # k < q. The problem is solved by using a
discretization of the smoothed covariance (see further details in [53] and [10]). Finally, fPCs
ap(X) = [ f(s, X )& (s)ds are solved by numerical integration.

Aggregated Shapley effects are approximated using the low rank KL model representation
with truncation level g, in other words, they are computed with only the ¢ first fPCs:

e 1 ! d—1\"
(3.6) GShi:m;@Zf( ] ) (E(Var (o (X)[Xyuiy)) — E(Var(ax(X)[Xy))) -

Remark 3.1. (3.6) can be estimated as (3.4).

In unreported numerical test cases, we noticed that using the same sample to perform
fPCA and to estimate the Shapley effects provides better results than splitting the sample in
two parts.

4. Bootstrap confidence intervals with percentile bias correction. Confidence intervals
are a valuable tool to quantify uncertainty in estimation. We consider non parametric boot-
strap confidence intervals with bias percentile correction (see, e.g., [19, 20]). More precisely,
we propose to construct confidence intervals, with a block bootstrap procedure, following ideas
in [5]. Indeed, bootstrap by blocks is necessary to preserve the nearest-neighbor structure in
Equation (3.2) and to avoid potential equalities in distance (see Assumption 6.3 in [9]). We
describe in Algorithm 4.1 how to create B bootstrap samples for scalar Shapley effect estima-

tors g?cz and aggregated Shapley effect estimators 55’\111-, and then we describe the percentile
bias correction method.

If model output is scalar, only Steps 1 to 3 of Algorithm 4.1 should be used. The block
bootstrap procedure is described by Steps 3.1 to 3.3. Also, the same sample (x,y) is used to
estimate the variance of the outputs Y, 1 < j < p, and the Shapley effects. In unreported
numerical experiments, we noticed once more that using one sample gives better results than
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10 MB HEREDIA, C. PRIEUR, AND N. ECKERT

Algorithm 4.1 B bootstrap samples for §7LZ and @zz
Inputs: (i) A n i.i.d. random sample (kayk)ke{l,...,n} with x* € R? and y* € RP. (ii) For
each 0 G u ¢ {1,...,d}, a Ny random sample (s¢)1<¢<n, from {1,...,n}.
Outputs: B bootstrap samples for gﬁz and @zz
for b=1tob= B do
1. Create a n bootstrap sample y(*) by sampling with replacement from the rows of y.

2. Compute, for 1 < j < p, a 520 the empirical variance of y( )
3. For each j € {1,...,p}:

3.1. For all u and for all (s7)1<¢<n, compute Eﬂ',w using (3.2).

3.2. For all u, create a N, bootstrap sample Eﬂ:g) by sampling with replacement from
El ) ted in Step 3.1.
( W) e computed in Step

3.3. 6or;pute @(b) (u) = 1 EN“ E} g; for all u using (3.1).
3.4. Compute the b bootstrap sample of Shi according to (3.3):

/-\j7

Shi Ag w2 ( u ) (GY@u{in-G%w).

uC—1q

4. Compute the b bootstrap sample of @Ll using (3.4):

asi ! - A=\ o — e ®

end for

splitting the sample in two parts: one for estimating the variance of the outputs, and the
other to estimate the Shapley effects.
(B
For 1<i<d 1<j<p,let Ri = {GSh, ,....GSh '} and RI = {5i)", ... 5w},
the bias-corrected percentile method presented in [20] is apphed Let us denote by ® the

standard normal cumulative distribution function and by ®~! its inverse. A bias correction

b
#{GSh" e R, s. t. GSR. <TSh:}
B

constant zg, estimated as 2y = &1 ( ) is computed (similar for

§LZ) Then, the corrected quantile estimate ¢(5) for 5 €]0, 1] is defined as ¢;(3) = ®(220+25),
where zg satisfies ®(zg) = 8. Corrected bootstrap confidence interval of level 1 —c is estimated
by the interval whose endpoints are ¢;(a/2) and §;(1 — «/2).

To guarantee the validity of the previous BC corrected confidence interval [¢;(a/2), ¢;(1 —
«/2)], there must exist an increasing transformation g, zp € R and 7 > 0 such that g(@zl) ~
N(GSh; — 729, 72) and g(C/JS\h:) ~ N’(@Z — 720, 72) where C/JS\h: is the bootstrapped GSh;
for fixed sample (see [19]). Normality hypothesis can be tested using traditional normality
tests as Shapiro test or using graphical methods as empirical normal quantile-quantile plots.
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AGGREGATED SHAPLEY EFFECTS 11

In our application and test cases, we observed that g can be chosen as the identity. To prove
empirically the performance of the procedure described in Algorithm 4.1, we compute the
empirical probability of coverage (POC) of simultaneous intervals using Bonferroni correction.
The POC with Bonferroni correction is the probability that the interval [§;(a/(2d)),Gi(1 —
a/(2d))] contains GSh; for all i € {1,...,d} simultaneously. To be more precise, if the
confidence intervals are computed in N independent samples of size n of (X,Y). The POC is
estimated as POC = S “’Wk, where w is equal to 1 if ¢;(a/(2d)) < GSh; < ¢;(1 — a/(2d))
for all ¢, and 0 otherwise.

5. Test cases. In this section, we numerically study the performance of the estimation
procedure and the probability coverage of the boostrap confidence intervals we introduced in
the previous section. We consider two test cases: a multivariate linear Gaussian model and
the functional mass spring model proposed in the work of [24]. To estimate the scalar Shapley
effects, we use the function shapleySubsetMc of the R package sensitivity corresponding
to the estimation procedure defined by (3.1), (3.2) and (3.3). Functional PCA is performed
using the R package FPCA [12].

5.1. Multivariate linear Gaussian model. We consider a multivariate linear model with
two Gaussian inputs based on the example from [31]. To this toy function, there is an analytical
expression of the scalar and aggregated Shapley effects (see [31]).

The model f is defined as Y = f(X) = BTX with X ~ N (p,T), T' € R¥9 a positive-
definite matrix and B € R?*P. In this example, we consider d = 2 and p = 3 which means
Y = (Y1,Y2,Y3). The variance of the centered random variables X; and Xy are equal to
0? =1 and 03 = 3, respectively and their correlation p = 0.4. Thus the covariance matrix of
X is given by:

r— o?  poiog _ 1 0.69
pPO109 J% 069 3 |’
and the coefficients of B = (8;;) € R?*3 are chosen as:
1 4 0.1
b= [1 3 0.9} '

The variance of the output Y; with j € {1,2,3} is 032/], = B%]U% + 2ppB1; 6250102 + 5223-0%.
The scalar Shapley effects are:

S

. 2 2
J;Q/jcﬁjl = Bijo1 <1 - ) + pPrjP2jo102 + 5303%7

o |

2

|

2
' p
0326'92% = 03,03 <1 - ) + pB1jfajoroe + B%a%?.

Then, the aggregated Shapley effects for i € {1,2} are calculated according to (3.4).
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Figure 1. Linear Gaussian model: mean absolute error of the estimation of scalar Shapley effects of the
output Y1 in N=300 i.i.d. samples in function of Nio using different sample sizes a) n = 1000, b) n = 2000
and ¢) n = 5000. The 0.05 and 0.95 pointwise quantiles of the absolute error are drawn with gray polygons. The
probability of coverage of the 90% bootstrap simultaneous intervals is displayed with dotted lines. The theoretical
probability of coverage 0.9 is also shown with a plain gray line. The bootstrap sample size is fixed to B = 500.

First, we focus on scalar Shapley effect estimation and the associated confidence intervals,
for example scalar Shapley effects for Y; output. For Y7 output, the most important input
is Xo with a Shapley effect of 0.66. In Figure 1, we analyze estimation accuracy and POC
evolution in function of n and Ni,:. n and Ny values are fixed according to our computation
budget. For each combination of n and Ny, N = 300 independent random samples are used.
To estimate the bootstrap confidence intervals, we use B = 500 bootstrap samples. The 95%
quantile of the absolute error are displayed. Scalar Shapley effects estimation depends on n
and N;.:. As expected, bias decreases when n and Ny, increase. If n is fixed, bias decreases
when Ny increases. In particular, bias is the smallest with n = 5000 and N, = 1000.
Regardless sample sizes, POCs estimated vary around 0.9 as expected.

The estimation of the bias for aggregated Shapley effects and the POC evolution by
varying n and Ny are displayed in Figure 2. Similarly as for scalar effects, POC is close to
0.9, regardless the sample size and, bias reduces when n and Ny increase.

We estimate Shapley effects and aggregated Shapley effects if inputs correlation is higher
(p =0.9). POC and bias results are also satisfactory (not shown). In fact, POC values vary
also around 0.9 and bias decreases and goes to 0 when n and Ny increases. For this simple
test case, we have shown that confidence intervals using Algorithm 4.1 reach accurate coverage
probability and that bias reduces when n and N, increase. Nevertheless in this test case,
estimation is effortless because d = 2.

5.2. Mass-spring model. The method is illustrated on a test case with discretized func-
tional output: the functional mass-spring model proposed by [24], where the displacement of
a mass connected to a spring is considered:

(5.1) ml"(t) + ' (t) + kL(t) = 0,

with initial conditions ¢(0) = [, ¢(0) = 0, and ¢ € [1,40]. There exists an analytical
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Figure 2. Linear Gaussian model: mean absolute error of the estimation of aggregated Shapley effects in
N=800i.i.d. samples in function of Niot using different sample sizes a) n = 1000, b) n = 2000 and c¢) n = 5000.
The 0.05 and 0.95 pointwise quantiles of the absolute error are drawn with gray polygons. The probability of
coverage of the 90% bootstrap simultaneous intervals is displayed with dotted lines. The theoretical probability
of coverage 0.9 is also shown with a gray plain line. The bootstrap sample size is fired to B = 500.

Input | Description Distribution
m | mass (kg) U[10,12]
c damping constant (Nm~!s) | /[0.4,0.8]
k spring constant (Nm~1) U[70,90]
l initial elongation (m) Ul—1,-0.25]
Table 1

Mass spring model: Inputs description and uncertainty intervals. U denotes the uniform distribution.

solution to Equation (5.1). This model has four inputs (see more details in Table 1). The
model output is the vector Y = f(X) = ({(t1),...,4(tso0)), t; =0.05i with i € {1,...,800}.

Inputs are considered independent. The true aggregated Shapley effects are unknown but
they are approximated using a high sample size n = 25000 and N = 10000. Then, the
Shapley effects estimated are GSm = 0.38, GS’C = 0.01, GSk 0.51 and, GSZ = 0.09. Given
these results, inputs ranking is: k, m, [ and ¢ which corresponds to the same ranking obtained
using Sobol’ indices (see Table 3 of [24]).

The discretized output is high-dimensional (p = 800). We perform fPCA (see Subsec-
tion 3.3) to estimate the effects using the first ¢ < p fPCs. Figure 3 shows the POC and bias
evolution if different values for n and Ny are used for the aggregated effects estimation. We
use the first 6 fPCs which explain 95% of the output variance (see Figure 3 a). For each n
and Ny, combination, the aggregated Shapley effects are estimated for NV = 100 independent
samples and confidence intervals are estimated with B = 500 bootstrap samples. Bias is large
if sample size is small n = 1000 (see Figure 3 b). However, it reduces drastically when sample
sizes increases as expected. In particular, if n = 5000 and Ni,; = 2002 bias is the smallest
(see Figure 3 d). If n and Ny are too small, POC estimated values are lower than 0.9. This
might be a consequence of bias in the estimation (see Figure 3 b). But when Ny, increases,
POC is close to 0.9. In general in our experiments, confidence intervals are correct because
POC values are around 0.9 when Ny, increases.
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Figure 3. Mass spring model: a) Explained variance as a function of the decomposition basis size. The gray
line is displayed at 95% of the variance explained which corresponds to 6 eigenfunctions. The mean absolute
error of the estimation of aggregated Shapley effects using the first 6 eigenfunctions in N = 100 i.i.d. samples
in function of Niot using sample of size b) n = 1000, ¢) n = 2000 and d) n = 5000. The 0.05 and 0.95 pointwise
quantiles of the absolute error are drawn with gray polygons. The probability of coverage of the 90% bootstrap
stmultaneous intervals is displayed with a dotted line. The 0.9 value is also highlighted with a plain gray line.
The bootstrap sample size is fized to B = 500.

6. Avalanche long term forecasting. Our GSA method is applied to the avalanche model
proposed by [45] in a general framework for a better understanding of the numerical model
and in a context of risk management focusing on a well documented avalanche corridor. The
objective is to determine which are the most influential input parameters on specific outputs
of interest.

6.1. Model. The avalanche model is based on depth-averaged Saint-Venant equations
and considers the avalanche as a fluid in motion. In more detail, the Saint-Venant model
considers only the dense layer of the avalanche. The flow depth is then small compared to its
length. The model assumes the avalanche is flowing on a curvilinear profile z = [(x), where
z is the elevation and x is the projected runout length distance measured from the avalanche
starting abscissa. Under these assumptions, shallow-water approximations of the mass and
momentum equations can be used:

oh n Ohv 0

ot oxr

ohv 0 h?

— 4+ — (h*+ =) =h(gsing —F

Er +8x<v+2) (gsing — F)

where v = ||V|| is the flow velocity, h is the flow depth, ¢ is the local angle, ¢ is the time,

g is the gravity constant and F = ||F|| is a frictional force. The model uses the Voellmy

frictional force F = ugcos¢ + 5%112, where p and £ are friction parameters. The equations are
solved with a finite volumes scheme [43].

The numerical model depends on six inputs: the friction parameters p and &, the length

lstart Of the avalanche release zone, the snow depth hgat within the release zone, the begining

of the release zone denoted by xgtart and the discretized topography of the flow path, denoted
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Input Description Distribution
i Static friction coefficient U[0.05,0.65]
13 Turbulent friction [m/s?] 400, 10000]

Ul
lstart  Length of the release zone [m)] Uls,300]
hgtart  Flow depth at the release zone [m] ¢£[0.05, 3]
Xstart  Release abscissa [m] U0, 1600]
Table 2
Avalanche model, scenario 1: Input description and uncertainty intervals. In the computation of the GSA
measures, we consider Volsart = lstart X Rstart X 72.3/ cos(35°).

by D = (x,z) € RV*2 where x € RV is the vector of projected runout length from the
starting point of the avalanche release zone and z = [(x) € RYs is the elevation vector. Nj is
the number of points of the discretized path. We use for D the topography of a path located in
Bessans, France. We chose this particular path because it has been well studied in other works
for example, in [16, 15, 18]. The model outputs are the flow velocity, flow depth trajectories in
the path D and runout distance of an avalanche, the last one corresponds to the avalanche’s
distance traveled. Note that the model has two functional and one scalar outputs and these
three outputs are the objects of the GSA study.

We develop our GSA in two contexts or scenarios by considering different input distri-
butions. In the first one, input distributions are uniforms, thus GSA is applied in a general
context. In the second one, input distributions are more precise and based on the results of a
propagation model, then GSA is developed in the context of local avalanche risk assessment.
For hazard zoning, return periods derived from rounout distances are usually considered [15].
Rougly speaking, a return period is the mean time in which a given runout distance is reached
or exceeded at a given path’s position [54]. In our GSAs, we put a particular emphasis on
locations where avalanche events are significant with return periods varying from 10 to 10000
years, according to the preliminary study in [15].

6.2. Scenario 1. We wish here to determine the most influential input parameters in a
general context with few knowledge on input parameter distribution. We expect from GSA a
better understanding of the numerical model.

6.2.1. Description. Uniform distributions are used for all the inputs. Inputs p, £ vary
in their physical value ranges. Inputs lstart and hgart vary in their spectrum of reasonable
values given by the avalanche path characteristics. The xgapt input distribution is determined
by calculating the abscissa interval where the release zone average slope is superior to 30°.
Indeed, the slope remains above 30° during the first 1600m of the path. A good approximation
of avalanche release zones is commonly obtained this way. In the following we consider that
inputs lsgart and hgart are related by the equation: volsiart = lstart X Rstart X 72.3/ cos(35°),
where volgart 18 an approximation of the avalanche volume at the release zone, with the mean
width and slope of the release zone equal to 72.3m and 35°, respectively. We then replace
inputs lgtart and hgeape in the analysis by a single input volgart. These input scenario and their
uncertainty intervals are described in Table 2. The input correlations are close to 0 since we
assume they are a priori independent.
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For a given avalanche simulation, its functional velocity and flow depth outputs have a
high number of zeros because they are null before the release zone and after the runout zone.
Also, there might be some avalanche simulations that are meaningless in physical or risk terms.
Therefore to perform GSA, we select simulations that accomplish the following acceptance-
rejection (AR) rules: (i) avalanche simulation is flowing in the interval [1600m,2412m], (ii)
its volume is superior to 7000 m® and, (iii) avalanche runout zone is inferior to 2500m which
corresponds to the end of the path. Indeed physically and in terms of risk assessment, only
this set of avalanches is interesting for the GSA study because first, the return periods in the
interval [1600m,2412m] vary from 1 to 10000 years. Second, we focus on medium, large and
very large avalanches which have a high potential damage and third, our GSA is focus on
topography D, thus runout zones outside the path are not useful for our study purpose. From
the initial simulations, we only keep the ones satisfying (i) to (iii), which is the AR sample
used to carry out the GSA.

u g Xstart VOlgtart
g2 correlation correlation correlation
= - original / AR original / AR original / AR
o= 0/0.31 0.01/-0.06 0/0.53

04 =
w H correlation correlation
e original / AR original / AR
00100 = 0/-0.12 0/-0.43
1 1 1 1 1
o 2500 5000 7500 10000
i :
000100 =
< 000075 =
s .
3 § j 000050 = Cf)r.relatlon
000025 = original / AR
000000 = 0/-0.13
1 1 1 1
0 50 1000 1500
s005 =
% 60000 == o5 )
o 5 z
g § 40000 == E % 2e-05 =

20000 = 10-05 =

08+00 =
oo
0 20000400006000080000

[ R T |
0 2500 5000 7500 10000

Vol

Figure 4. Avalanche model, scenario 1: scatter-plots of initial (black points) and acceptance rejection (gray
points) samples. In the figure’s diagonal, the density function of the initial (gray color) and AR (transparent)
samples are displayed. Input correlations of the original and AR samples are shown. 1000 subsamples of
original and AR samples are used for illustration purpose.

6.2.2. Global sensitivity analysis results. We first ran ng = 100 000 avalanche simulations
from an i.i.d. sample of input distributions described in Table 2. Then, by applying (i) to (iii)
our AR sample size was reduced to n; = 6152. The main characteristics of the AR sampling
can be observed on Figure 4, on which we have drawn the initial sample with black points
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and the AR sample with gray points. Even if the initial sample size is high ng = 100000
and if the corresponding input parameter sample does not present any significant correlation
structure, the AR sample size is low and we can observe a correlation structure. For example,
inputs p and & were independent for the initial sample but the correlation computed after
the AR algorithm is 0.31. Note that the input parameter correlations induced by the AR
algorithm were the main motivation to compute Shapley effects and not Sobol’ indices in this
first scenario.

On Figure 5 are plotted highest density region (HDR) boxplots for the velocity and the
snow depth curves in the GSA studied interval, obtained by using the R package rainbow
developed by [29]. The HDR boxplot is a vizualization tool for functional data based on the
density estimation of the first two components of the PCA decomposition of the observed
functions (see [28] for further details). In the interval, the avalanche velocity ranges from
0.1ms~! to 71.56ms~! and avalanches are in deceleration phase (see Figure 5 a). Flow depths
vary from 0.03m to 7.52m. The flow depth curves exhibit high fluctuations in [2100m, 2300m)]
(see Figure 5 b) which corresponds to a path’s convexity region. Runout distances vary from
815.2m to 2478.2m (see Figure 5 ¢). Long runout distances characterize very large avalanches.

a) b) c)

60
|
15

40
|
10
|

velocity [m/s]
flow depth [m]

20
1
runout distance [m]

1000 1500 2000 2500

——
o o e ——
T T T T T T T T T T

1600 1800 2000 2200 2400 1600 1800 2000 2200 2400

Projected runout length [m] Projected runout length [m]

Figure 5. Awalanche model, scenario 1: a) and b) functional HDR boxplots of velocity and flow depth
curves, resp. It is shown 50% HDR (light gray), 100% HDR(dark gray) and modal curve (black line). c)
runout distance borplot. The AR sample size is n1 = 6152.

On Figure 6 panels a and b, ubiquitous (pointwise) Shapley effects of velocity and flow
depth curves are shown, respectively. Depending on the output, results are quite different. For
velocity, Xstart 1S the most relevant during a large part of the track but its importance decreases
along the path and conversely, the importance of the other inputs increases. For snow depth
output, the most important input is volgay¢ since the corresponding Shapley effects vary from
0.4 to 0.2 along the path. Nevertheless, other inputs are not completely negligible. Input
importance also varies according to the topography. In fact, the ubiquitous effect variation
corresponds to local slope changes (see Figure 6 a and b). Correlations between ubiquitous
effects and local slope have been computed and are rather high. For example, for the velocity,
the absolute value of the correlation is higher than 0.51 for all input parameters. This implies
that local slope changes play an important role on the input contribution to output variations.
For runout distance, the most relevant input is Xggart.
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Figure 6. Avalanche model, scenario 1: a) and b) ubiquitous Shapley effects of velocity and flow depth
curves, resp. and, c) runout distance Shapley effects. Shapley effects are estimated with a sample of size 6152
and Ntot=2000. The local slope is displayed with a white line. A gray dotted rectangle box is displayed at
interval [2017, 2412] where return periods vary from 10 to 10000 years. The bootstrap sample size is fized to
B = 500.

Figure 7 shows aggregated Shapley effects and 90% confidence intervals computed over
space intervals [z,2412] where x € {1600,1700,...,2412}. The aggregated effects are com-
puted in the first fPCs explaining more than 95% of the output variance. Aggregated effects
seem more robust than ubiquitous effects, specially in local slope high variation regions (see
Figure 7 compared to Figure 6). For explaining more than 95% of the velocity output variance,
2 fPCs are required, while, or explaining more than 95% of the flow depth output variance,
at most 4 fPCs are required, depending on z. Note that on Figure 7, the Shapley effects that
are computed are integrated on the interval [z, 2412m]. For the velocity output, the most im-
portant input is Xgare in the interval [1600m,2100m] but its importance decreases along the
path. In the interval [2017m,2412m] where return periods are non trivial, Xgtar and volggart
are the most important followed by p and £. For the flow depth output, volgiar is the most
relevant but its importance decreases along the path. At the end of the path from 2300m
to 2412m where return periods are high (between 100 to 10000 years), confidence intervals
intersect. It seems thus difficult to deduce a clear ranking of the inputs for these last portions
of the path. Nevertheless, it seems that none of the inputs is negligible, even at the end of
the path. In summary, to estimate velocities with accuracy, the release zone and volume are
the most important parameters and, for the flow depth, a good approximation of the volume
released is essential.

6.3. Scenario 2. The aim is now to determine the most influential inputs in a local
avalanche risk context with a strong knowledge of input distribution.

6.3.1. Description. In [15], the authors considered a Bayesian framework in a long-term
avalanche hazard assessment to estimate input distribution in the path under study. Input &
is fixed to 1300. In avalanche literature, it is assumed that £ depends on the path topography
and given that D is fixed it seems reasonable to use a constant £ value. Input parameters in
this scenario are dependent. The dependence between hgtart and lgiare is modeled with a linear
function lgtare = 31.25 + 87.5hgtart, and similarly as in scenario 1, we consider volgar¢ as input
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Figure 7. Awalanche model, scenario 1: a) and b) aggregated Shapley effects of velocity and flow depth
curves calculated over space intervals [x,2412m] where x € {1600m,1700m,...,2412m}. Shapley effects are
estimated with samples of size 6152 and Ntot=2000. Effects are estimated using the first fPCs explaining more
than 95% of the output variance. The local slope is displayed with a gray line. A gray dotted rectangle is
displayed at [2017m, 2412m] where return periods vary from 10 to 10000 years. The bootstrap sample size is
fixed to B = 500.

Input Distribution

Xnstart — xlségat Beta(138, 249)

hstart | Znstart Gamma (s> (1.52 + 0.03%nstart)?, 5=z (1.52 + 0.03Znstart))
Lstart 31.25+87.5hgtart

ﬂlhstarta Tnstart N<0449 — 0.013zpstart + 0.025h5¢0r¢, 0-112)

Table 3
Awalanche model: Scenario 2. Input description and uncertainty intervals. Znstart 1S a normalization of
Zstart- There is a well known linear relationship between hsiare and lsiare in the avalanche path. In the computation
of the GSA measures, we consider volsiart = lstart X Nstart X 72.3/ cos(35°).

instead of hggart and lsgare. The complete input distribution resulting from the study in [15] is
described in Table 3. Input correlations have been computed. As an example, the correlation
between g and volggart is 0.8.

To perform GSA in this scenario, our AR rules are: (i) avalanche is flowing in the interval
[1600m, 2204m| where return periods vary from 10 to 300 years, (ii) avalanche volume is
superior to 7000m? and, (iii) x coefficient is inferior to 0.39 as we focus on dry snow avalanches.
Under these conditions, we recover a set of potential threat avalanches which could cause
strong material or human damages.

6.3.2. Global sensitivity analysis results. We first ran ng = 100000 avalanches from
an i.i.d. sample of input distribution following Table 3. After applying the AR algorithm,
the sample size was reduced to ny = 1284 and the input distribution suffers some changes.
For example, p and volg,,¢ correlation changes from 0.8 to 0.2 which is still non negligible.
Ubiquitous Shapley effects are displayed on Figure 8 panels a and b. For the velocity, the
three inputs have a similar importance till 1900m, then volg,,+ importance decreases and g
and Xgtart importance increases (see Figure 8 a). Similarly as in scenario 1, the effects show
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fluctuations which correspond to changes in local slope. In particular for the flow depth
output, input effects suffer radical changes when the local slope decreases from 20° to 10° (see
Figure 8 b). For runout distance, the most relevant input is Xgtart (sSee Figure 8 ¢).
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Figure 8. Awalanche model, scenario 2: a) and b) ubiquitous Shapley effects of velocity and flow depth
curves, ¢) runout distance Shapley effects. Shapley effects are estimated with samples of size 1284 and Ntot=800.
The local slope is displayed with a white line. A gray dotted rectangle shows the interval [2064, 2204] where
return periods vary from 10 to 300 years. The bootstrap sample size is fized to B = 500.

Aggregated effects (see Figure 9) present less fluctuations and are easier to interpret (see
Figure 8). In summary, under this second scenario, it is fundamental to have a good ap-
proximation of the released volume and abscissa for velocity forecasting, while for flow depth
forecasting, a good approximation of released volume is desirable. Nevertheless, none of the
other inputs are negligible. Note that the uncertainty associated to the estimation of Shapley
effects at 2204m is high (see the width of the corresponding confidence intervals on Figure 9).
To outperform the estimation accuracy at the end of the path, it would be interesting to
generate a larger initial sample of avalanches. Then the costs would be prohibitive, thus it
would be necessary to first learn a surrogate model and then to use it for running simulations.

7. Conclusions and perspectives. In this work, we extended Shapley effects to models
with multivariate or functional outputs. We proved that aggregated Shapley effects accomplish
the natural requirements for a GSA measure. For the estimation, we proposed to extend the
subset aggregation procedure with double Monte Carlo given data estimator of [9]. Also, we
proposed an algorithm to construct bootstrap confidence intervals for scalar and aggregated
Shapley effects based on the ideas of [5]. In test cases, the convergence of our estimator was
empirically studied. Also, we proved empirically that the bootstrap confidence intervals we
proposed have accurate coverage probability. Estimation and bootstrap confidence interval al-
gorithms well behave. Nevertheless, high sample sizes (n = 5000 and N;,; = 2000) are required
to guarantee accurate results. Remark that it is well known that Shapley effects estimation is
costly. It would be interesting to study theoretically the asymptotic properties of our estima-
tor, but this study is out of the scope of this paper. Recently, in the R package sensitivity
the function sobolshap knn to estimate Shapley effects with n and Ny, from a given data
sample has been implemented. This function uses a tree based technique to approximate
nearest-neighbor search which reduces drastically computation times. The function is partic-
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Figure 9. Awalanche model, scenario 2: a) and b) aggregated Shapley effects of velocity and flow depth
curves calculated over space intervals [z,2204] where z € {1600, 1700, . ..,2204} and using the first fPCs which
have 95% of output variance. Shapley effects are estimated with samples of size 1284 and Ntot=800. The local
slope is displayed with a gray line. A gray dotted rectangle is displayed at [2017m, 2204m] where return periods
vary from 10 to 300 years. The bootstrap sample size is fized to B = 500.

ularly attractive if n and Ny are high, we could even use Ny = (2¢—2) xn. We did not use in
the present work this function as we were not able to obtain confidence intervals with accurate
coverage probability for the estimation it computes. We rather used the shapleySubsetMc
function which corresponds to the estimator introduced in [9] on which our estimator for
aggregated Shapley effects is based. Our GSA method was applied to an avalanche model
whose outputs are velocity, flow depth trajectories and runout distance. Model samples for
this application were obtained from an acceptance-rejection (AR) algorithm. Moreover, input
parameters in this application were not necessarily confined in a rectangular region. For these
reasons, it was not possible to consider independence of input parameters. The key advan-
tages of the procedure we proposed in this paper are that it does not require independence of
input parameters and that it handles functional outputs such as space and/or time dependent
processes. We considered two different settings, a general one where we have little knowledge
of input distributions, and a local one which focuses on a well documented avalanche corridor.
In the application, we observed that the estimation of aggregated Shapley effects was more
stable and easier to interpret than ubiquitous effects. The same observation was done by [1]
in the case of aggregated Sobol’ indices. Thus depending on the GSA study objectives, users
might rather use aggregated Shapley effects than ubiquitous effects. Application is challenging
because AR samples are generally of moderate size, for example, from the 100 000 initial sam-
ple, the AR sampling produced a 6000 to 1200 sample, depending on the scenario. In a future
work, it would be useful to construct a surrogate of the avalanche model to generate larger AR
samples. Indeed within larger samples, we could improve the accuracy of aggregated Shapley
effect estimation and thus reduce confidence intervals width.
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