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Abstract

In this work, we propose a theoretical formulation for the tomographic linear fan-beam backprojection
having low computational cost. The proposed formula is obtained from a recent backprojection formu-
lation for the parallel case, with low complexity. We provide a Bessel-Neumann series representation for
the backprojection without rebinning of measured data onto a parallel geometry. As a consequence of
our representation, there is no loss of resolution on the measured data due to interpolation.

1 Introduction

Fan-beam tomographic measurements are used in different modalities of non-destructive imaging, as those
obtained using an x-ray source. A typical tomographic device using a fan-beam geometry is shown in Figure
1. We assume that the distance between the pair source-detector is high if compared to the size of the
sample. This is a widely used and known technique, and there are many reconstruction algorithms for this
configuration. After being generated with a given aperture angle and a fixed distance source-detector, the
wavefront hits the sample originating a signal (or image) on the detector. Different propagation regimes can
be considered with a varying distance [10], although we will consider a pure mathematical signal idealized
as the Radon transform of the given object. For the parallel tomographic case by means of the classical
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Figure 1: Tomographic setup for a fan-beam geometry: (a) standard detector, i.e., equispaced angular mesh
with A~; sinograms obtained here are denoted by w(v, 3) (b) linear detector, i.e., equispaced regular mesh
at the detector with As; sinograms obtained here are denoted by g(s, 3)

backprojection formulation for image reconstrution, we can use the recently backprojection slice theorem
formulation [12]. It is a formula that reduces a complete backprojection from a computational cost of O(n?)
to O(n?logn) with n the number of pixels in the final reconstructed image. In this work, we want to take
advantage of that formulation for two other popular fan-beam geometries, that are a) equispaced angles
within the fan with a regular size Ay, and b) equispaced points in the detector with a mesh As. As indicated
in [14], we refer to each acquisition as standard fan and linear fan, respectively, and illustrated at Figure 1.(a)
and 1.(b). The linear case is easier to be implemented at a synchrotron beamline, whereas the first is more
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used in the medical case . We focus on the the linear detector, as is the reality for a synchrotron beamline.
Also, benchtop CT scanners, also based on the conventional cone-beam geometry could take advantage of the
approach presented in this work. For completeness, we discuss either the equiangular and the equispaced
case.

As indicated in [18, 16], a generalized Fourier slice Theorem for the case of fan-beam geometries is
obtained, but presenting the same computational complexity as a conventional backprojection in the parallel
case. Also, a rebinning algorithm is performed on the measured data, which is not desirable in our case.
Further relations on the frequency domain were obtained in [8] where a rebinning is also necessary. A more
elegant approach was established in [2], but a rebinning in the frequency domain is also mandatory. Further
advanced rebinning techniques were also stablished in [6] using a hierarchical approach. A series formulation
where the backprojection is presented as the first order approximation for a general inversion in the standard
fan-beam geometry was presented in [15].

The Radon transform is defined as the linear operator R: U — V with U being the space of rapidly
decreasing functions defined on R?, so called feature space; and V is the sinogram space defined on the
domain R x [0, 7]. For each function f = f(x) € U, p = Rf is defined through

p(t,60) = Ri(t,6) = /R F(t€ + € )ds

with & = (cos 6, sinf). The adjoint operator [13] of R, so called backprojection, is defined by

p b(@) = Bpta) = [ e €0, 0)a0 1)

Computing B could be extremely expensive for discrete versions of the sinogram p and the backprojected
image b, where x covers a domain with a large number of points (pixels in practice) and also (¢,6) covers
a large number of pixels and a variety of angles (according to Crowther’s criteria [3]). This is the case for
synchrotron tomographic projections using high-resolution detectors with more than 2048 x 2048 pixels and
more than 2048 angles. Recently [12], a low-complexity formulation for computing B was obtained in the
frequency domain using polar coordinates, i.e.,

Bp(o€y) = (2)

The action of {R, B} is presented in Figure 2. It is a well known fact that {p, f} are related through the
Fourier slice Theorem [13], while {b, p} through the backprojection slice theorem [12].
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Figure 2: Action diagram for operators {B, R} and {Bs, Rs}, with Rs = MR, Bs = BM? and a generalized
change of variables Ms.

There exist two different fan-beam geometries for the Radon transform operation [7], the first Rs: U — V;

is referred as the standard-fan-sinogram, where the domain of sinograms lies within the interval [—g, g] X
[0,27]. The second case, Ry: U — V is referred as the linear-fan-sinogram, with sinograms having the
domain varying within the interval R x [0,27]. Acting on the feature function f, Rs and R, are defined

respectively, as
w(y,B8) = Rf(Dsiny, B +7), (3)



and
sD

Vs2+ D?’
Since both operations represent a change of variables in the classical parallel sinogram, we can use the
following notation,

g9(s,8) =Rf( B + arctan %), (4)

Rsf(’% B) = Mst(’WB)v le(& 6) = MZRf(S7 6) (5)

with Mg and M, acting on a parallel sinogram p, respectively as

Mp(7, B) = p(Dsiny, vy + ),

Mp(s, B) = p(%, B+ arctan %). (6)

It is clear that for the change of variables operation Mg, the situation is depicted in Figure 2. From the
experimental point of view, we assume that the origin is centered in the object, with D being the distance
of the focal point source to the origin. The angle  indicates a point within the solid angle that completely
covers the detector whereas s is the distance on the detector with respect to the rotation axis, as indicated
by Figure 1. Since is true that Rs = MR, a conventional functional relation for space U and V; provide us
with the following statement,

<Rsfa g>Vs = <M5Rfa g>Vs (7)

with -* standing for the adjoint operation and (-, -)v., (:,-)v, {-,-)u standard L? inner products. Also, M}
stands for the adjoint operator of M. Now, since R* = B, it follows that R} = BMY. In this work we
propose a Fourier approach for the equation R; = BM] using several properties from operation M.

1.1 Conventional fan-beam backprojectors

The adjoint operator for fan-beam Radon transforms is a weighted backprojection operator of the standard
parallel one [7]. Considering the geometry indicated at Figure 1, we provide two main results for the adjoint
transform of operators Rs and R,. For completeness, we denote r3 = Dﬁé.

Lemma 1. The operator g € V; — Byg € U defined by
2m 1

; W\/3%+D29(3575)d57 (9)

is the adjoint of R, in the sense of (8). Taking & = r&,, Ug(x) = (D + rsin(8 — ¢))/D and sg as the
corresponding s-value for « at a source angle 8, i.e., sg = Drsin(8 — ¢)/(D + rsin(8 — ¢)).

Big(z) =

Proof. A simple change of variables; see [7, 4]. O

Lemma 2. The operator w € V; — Bsw € U defined by

2m
Ban(a) = | s wts.8) 45, (10)

is the the adjoint of Rs, in the sense of (8). Here, Ly = |rg — ||, is the distance of source with the
backprojected position  and 3 is the angle of such point within the fan, i.e., cosys =rg- (rg — ).

Proof. A simple change of variables; see [7, 4]. O



1.2 Two-step backprojection formulas

As discussed in (8), the adjoint of {Ms, My} plays an important role for our final adjoint formulation. The
adjoint operator of My is defined for g € V; by

M3 g(t,0) (71@ 0 in L )7133 (11)
19t 0)=g — —arcst D2 _42)3/2°
VD2 —t ( )
o(t) rw(t,0) h(t)

for D larger to the radius of the circumference containing the sample. To verify that this is true, we select an
arbitrary fan-beam sinogram p € V;, proving that (Mp, g)v, = (p, M;gf)v. This is a trivial exercise from
change of variables. In fact, starting with the definition of M, we obtain

(Mep, g)v, = / Map(s, B)g(s, B) dsd
[0,27] xR
D3

tD Lt
= / p(t, Q)Q(W’ 6 — arcsin B)Wdtd&
[0,7] xR

from where (11) is obtained. It is also straightforward to prove that, for w € V, the adjoint operator of M,
is defined by

t t 1
MZw(t,8) = w(arcsin o 6 — arcsin 5) Nk (12)
—— —_———
v(t) R(t)
It is clear that both operators Mg, M, satisfies the property
M =h(tOOM;,  or M; =h(t)M . (13)

We are not differentiating function h, as is clear from the context of symbols, either Mg or M,. The
formal adjoints of R and R, are presented in Lemmas 1 and 2. The problem with these formulations is the
difficulty for a low-cost implementation algorithm. To circumvent this problem, we use the fact that {R, B}
are bounded operators between Hilbert spaces U and V' - here understood as the space of rapidly decreasing
functions with two-variables. Hence, we obtain the following result.

Theorem 1. Considering fan-beam geometries, a formal adjoint for each operator Rs and Ry is given
explicitly by equations (10) and (9), which on the other hand, are also given exactly by B, = BM} and
B = BM respectively.

Proof. This is an immediate consequence of the uniqueness of the adjoint for bounded operators on Hilbert
spaces. In fact, since B and Mj are bounded, the composition will also be bounded, the same applies for
M. O
2 Main result

As is easy to note using an appropriate change of variables, given a sinogram g(s,3) € Vp, the Fourier
transform of Mjg(t, ) with respect to t is given by

Mig(o,0) = /R h(t)g(U(t), K(t, 0))e i dt

i wDo (14)
= /Rg (v,9 — arcsin %) e VPI? dy
Analogously, taking w(v, 8) € Vi, the Fourier transform of MZXw(t, ) with respect to t is
Mew(o,0) = / h(Eyw(y(t), 0 — ~(t))e— "7 dt
(15)

R
27 ) .
:/ w (v, 0 —v) e Posinvgy
0



From (14) and (15) we note that, for a fixed 0, it is difficult to compute numerically the sinogram g(v, 8 —
arcsin 35) € V; due to the nonlinear effect provided by the inverse trigonometric function. On the other hand,
it is easier to compute the sinogram Z(v,0) = w(v,0 —v) € V; due to the linear factor § — v without a
significance loss on the sinogram angular resolution.

Let us consider the case w € V, where sinogram Z (v, 6) = w(v, 6 —v) is 2m-periodic function with respect
to v. After expanding it on a Fourier series, (15) becomes

27
M;‘g(g’ 0) = ch(g;w)/ ei[mijasinv]d,U (16)
- 0
= QFZCH(Q;IU)J”(DO') (17)
with
1 2 .
cn(B;w) = %/0 Z(v,0)e”"dv (18)

and {J,} a sequence of Bessel functions of first kind {J,}. This same result can not be obtained for the

operation /ﬂz\g(a, 0) because of the noniteroperability of exponent vDo/v/D? + v? with Bessel functions.
Using the property J_,(z) = (—1)"J,(z) we finally obtain the Bessel-Neumann series

MEw(0.0) = 3 ba(6: 2), (Do) (19)
n=0

with by = ¢ and b,, = [¢, + (—1)"¢,] for n > 1.
Switching between fan-beam geometries requires only a one-dimensional interpolation on the first variable.
In fact, taking g € Vp, the operation £ defined by

w(y,B) = Lg(y,B) =g(Dtanvy, ) < Rs=LRy (20)
provide a sinogram w lying at space Vs. Such an operator has an inverse given by L='h(s, ) = h(arctan 3, §)
in such a way that the adjoint operation is

D
== 21
D2 + 52 @)

The following Theorem is the main result enabling us to provide a two-step backprojection algorithm for the
fan-beam linear geometry.

L*h(s,B) = a(s)L h(s, B), af(s)

Theorem 2. The backprojections Bs and By are related through Byg = BstLg, with 7(v) = Dsec?y, for all
g e V.

Proof. Starting with Bs = R} and using (20) we obtain
Bs = (LRe)" =Ry L = BeL"

from where follows B, = Bs(L*)~!. Using (21) and the fact that (£*)~! = a(s(y)) £ with s(y) = Dtan~,
the proposed equation is obtained. O

Now, using the fact that Bs and B are related (from Theorem 1), our resulting formulation for the linear
fan-beam backprojection is obtained by the following construction:

(i) Let g € V4 be an linear fan-beam sinogram (as depicted in Fig.1) and let z(v,8) = 7(y)w(~y, 8) with
w = Lg be his representation at space V;. From z we compute Z = Az defined as Z(v,0) = z(y,0 —7)

(ii) Since Bs = BM{, it follows that the Fourier transform of Bs at the polar frequency o&y is

o —

Big(ots) "= Bi(L*)g(o&p) (22)
8 BirLy(o€s) = Bsx(o&p) (23)
"=t BMEq(o€o) (24)
w Mia(og) 25)



Figure 3: diagram for the backprojection operator By (without rebinning to space V') through the action of
(£*)71, A and Bs. Here, z = 7 w,with 7 as described in Theorem 2. See text for details.

(iii) From (19) the backprojection finally becomes as the following Bessel Neumann series

o0

Big(oo) = — " bal0: 2)Ju(Do), (26)

n=0

Ng(o,0)

with Z = Az and (0,0) € Ry x (0, 27].

Figure 3 illustrate the action of our method, where a backprojection b € U is obtained in two-steps.
The unknown backprojection Byg is obtained in the frequency domain from (26), using polar coordinates
through two main operations to obtain sinogram Z € V; through £ (interpolation on the first variable) and
A (interpolating at the second variable). It is important to note that {b,} are easily (and rapidly) computed
from Z using the Fast Fourier transform. Also, the sequence {J,} can be used as a lookup table for the
computation of (26), not being costly at computing time. For g € V4, the support of an impulse response of
the sequence {w = Lg,z = 7w, Z = Az} is presented in Figure 4.

€ [-m/2,7/2]

B, 0 € [0, 2]

Figure 4: Support of an impulse response for both w = Lg, z = 7w (solid) and for Z = Az in (dashed). Note
that @ takes a parallel sinogram support due to the act of A.



3 An implicit Fourier slice approach

Considering the diagram of Figure 2, and given a linear fan-beam data g € Vj, the standard algorithmic
approach for inversion of ¢ requires a rebinning of g to the parallel geometry space V', followed by any
Fourier strategy for numerical inversion, e.g., gridding [11], filtered backprojection [4] or other analytical
approach.

Considering the following regularized least squares problem

e 2 2
mu}}ler%]nze IRef —glly, + MSflT (27)

and the Euler-Lagrange equations for the optimality condition, we known that f minimizes (27) if and
only if (see [9, 12]) the following normal equations are equivalent: [RjR, + MI]f(x) = Rjg(x) <=
BiR¢+ I\ f(x) = Big(x) <= [BM; MR+ NI|f(x) = Beg(x). Since M; M, = hZ the normal equations
becomes

BIMRS) +\f = Bug (28)

Finally, applying the Fourier transformation on (28), changing to polar coordinates and using the BST for-
mulation [12], we obtain the following result

MRICO) 4 \f(oks) = Bugtoty) (29)

According to (26) and the classical Fourier slice Theorem, the above equation is also equivalent to

h(0) * f(o€9) + oA f(0€s) = Ng(o,0), (30)

which can be interpreted as regularized and implicit version for the Fourier-Slice-Theorem and can be used
to obtain f iteratively in the frequency domain. Here, we emphasize that N'g does not contain a strong
rebinning, as typically required by algorithms pointed out in the literature, and each Bessel function defining
the operator N can be computed only once.

4 Conclusions

We have proposed in this work a two-step backprojection algorithm for fan-beam scanning with linear detec-
tors. The first step consists on a sequence of simple one-dimensional operators where a fan-beam standard
sinogram is obtained. The second step, the backprojection operation, is performed by writing the Fourier
transform of the backprojected image as a Bessel-Neumann series on the frequency variable o weighted by
1/o. The coefficients of the expansion are in fact the Fourier coefficients of the sinogram obtained in the first
step. This approach, based on the low cost backprojection BST formula [12] for parallel sinograms, presents
the same reduction on the computational cost related to conventional fan-beam backprojections. A second
interesting feature is the absence of a rebinning process from fan to parallel beam projections as is mostly
done in other fan-backprojection algorithms. When dealing with standard fan-beam data, the first step is
more straightforward where only one linear change of variables is needed than can be performed through a
7 /4 rotation of the sinogram without lying on interpolations.

Once the backprojection for linear fan sinograms is efficiently performed, a complete inversion algorithm
can be implemented for cone-beam tomography with plane detectors. The FDK formula [5] is widely used
for this aim. Briefly, the cones are considered as a set sloped fans having the same source in R3 and parallel
line detectors placed over the plane detector. A change of variables [17] is needed to write a fan in R? as a
sloped fan in R? and backproject it. The convoution filter is easily derived similar to the parallel beam case.
Details of the full reconstruction using the FDK formula are presented in [14].

Finally, the Bessel-Neumann representation for the Backprojection B¢ in the frequency domain (26) can
be computed numerically with a limited number of terms N. This is true due to the fact that J,(x)/z has
a pointwise convergence to zero due to |J,(z)| < |3z|"/n! for all z € Ry [1, eq. 9.1.62]. Finding the right
choice for N is a study beyond the scope of this work.
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