# A Two-step Fan-beam Backprojection Slice Theorem

## Patricio Guerrero and Eduardo Miqueles\*

January 21, 2019

#### Abstract

In this work, we propose a theoretical formulation for the tomographic linear fan-beam backprojection having low computational cost. The proposed formula is obtained from a recent backprojection formulation for the parallel case, with low complexity. We provide a Bessel-Neumann series representation for the backprojection without rebinning of measured data onto a parallel geometry. As a consequence of our representation, there is no loss of resolution on the measured data due to interpolation.

## 1 Introduction

Fan-beam tomographic measurements are used in different modalities of non-destructive imaging, as those obtained using an x-ray source. A typical tomographic device using a fan-beam geometry is shown in Figure 1. We assume that the distance between the pair source-detector is high if compared to the size of the sample. This is a widely used and known technique, and there are many reconstruction algorithms for this configuration. After being generated with a given aperture angle and a fixed distance source-detector, the wavefront hits the sample originating a signal (or image) on the detector. Different propagation regimes can be considered with a varying distance [10], although we will consider a pure mathematical signal idealized as the Radon transform of the given object. For the parallel tomographic case by means of the classical



Figure 1: Tomographic setup for a fan-beam geometry: (a) standard detector, i.e., equispaced angular mesh with  $\Delta \gamma$ ; sinograms obtained here are denoted by  $w(\gamma, \beta)$  (b) linear detector, i.e., equispaced regular mesh at the detector with  $\Delta s$ ; sinograms obtained here are denoted by  $g(s, \beta)$ 

backprojection formulation for image reconstruction, we can use the recently backprojection slice theorem formulation [12]. It is a formula that reduces a complete backprojection from a computational cost of  $O(n^3)$  to  $O(n^2 \log n)$  with n the number of pixels in the final reconstructed image. In this work, we want to take advantage of that formulation for two other popular fan-beam geometries, that are a) equispaced angles within the fan with a regular size  $\Delta \gamma$ , and b) equispaced points in the detector with a mesh  $\Delta s$ . As indicated in [14], we refer to each acquisition as standard fan and linear fan, respectively, and illustrated at Figure 1.(a) and 1.(b). The linear case is easier to be implemented at a synchrotron beamline, whereas the first is more

<sup>\*</sup>P.Guerrero and E.Miqueles are with the Scientific Computing Group from the Brazilian Synchrotron Light Laboratory at the Brazilian Center for Research in Energy and Materials, Brazil, Campinas-SP. First author is funded by CAPES no. 88887296141201800. E-mail: eduardo.miqueles@lnls.br

used in the medical case. We focus on the the linear detector, as is the reality for a synchrotron beamline. Also, benchtop CT scanners, also based on the conventional cone-beam geometry could take advantage of the approach presented in this work. For completeness, we discuss either the equiangular and the equispaced case.

As indicated in [18, 16], a generalized Fourier slice Theorem for the case of fan-beam geometries is obtained, but presenting the same computational complexity as a conventional backprojection in the parallel case. Also, a rebinning algorithm is performed on the measured data, which is not desirable in our case. Further relations on the frequency domain were obtained in [8] where a rebinning is also necessary. A more elegant approach was established in [2], but a rebinning in the frequency domain is also mandatory. Further advanced rebinning techniques were also stablished in [6] using a hierarchical approach. A series formulation where the backprojection is presented as the first order approximation for a general inversion in the standard fan-beam geometry was presented in [15].

The Radon transform is defined as the linear operator  $\mathcal{R}: U \to V$  with U being the space of rapidly decreasing functions defined on  $\mathbb{R}^2$ , so called *feature* space; and V is the *sinogram* space defined on the domain  $\mathbb{R} \times [0, \pi]$ . For each function  $f = f(\mathbf{x}) \in U$ ,  $p = \mathcal{R}f$  is defined through

$$p(t,\theta) = \mathcal{R}f(t,\theta) = \int_{\mathbb{R}} f(t\boldsymbol{\xi}_{\theta} + s\boldsymbol{\xi}_{\theta}^{\perp}) ds$$

with  $\boldsymbol{\xi}_{\theta} = (\cos \theta, \sin \theta)$ . The adjoint operator [13] of  $\mathcal{R}$ , so called *backprojection*, is defined by

$$p \mapsto b(\boldsymbol{x}) = \mathcal{B}p(\boldsymbol{x}) = \int_0^{\pi} p(\boldsymbol{x} \cdot \boldsymbol{\xi}_{\theta}, \theta) d\theta.$$
 (1)

Computing  $\mathcal{B}$  could be extremely expensive for discrete versions of the sinogram p and the backprojected image b, where x covers a domain with a large number of points (pixels in practice) and also  $(t,\theta)$  covers a large number of pixels and a variety of angles (according to Crowther's criteria [3]). This is the case for synchrotron tomographic projections using high-resolution detectors with more than  $2048 \times 2048$  pixels and more than 2048 angles. Recently [12], a low-complexity formulation for computing  $\mathcal{B}$  was obtained in the frequency domain using polar coordinates, i.e.,

$$\widehat{\mathcal{B}p}(\sigma \boldsymbol{\xi}_{\theta}) = \frac{\widehat{p}(\sigma, \theta)}{\sigma}.$$
(2)

The action of  $\{\mathcal{R}, \mathcal{B}\}$  is presented in Figure 2. It is a well known fact that  $\{p, f\}$  are related through the Fourier slice Theorem [13], while  $\{b, p\}$  through the backprojection slice theorem [12].



Figure 2: Action diagram for operators  $\{\mathcal{B}, \mathcal{R}\}$  and  $\{\mathcal{B}_s, \mathcal{R}_s\}$ , with  $\mathcal{R}_s = \mathcal{M}_s \mathcal{R}$ ,  $\mathcal{B}_s = \mathcal{B} \mathcal{M}_s^*$  and a generalized change of variables  $\mathcal{M}_s$ .

There exist two different fan-beam geometries for the Radon transform operation [7], the first  $\mathcal{R}_s \colon U \to V_s$  is referred as the *standard-fan-sinogram*, where the domain of sinograms lies within the interval  $[-\frac{\pi}{2}, \frac{\pi}{2}] \times [0, 2\pi]$ . The second case,  $\mathcal{R}_\ell \colon U \to V_\ell$  is referred as the *linear-fan-sinogram*, with sinograms having the domain varying within the interval  $\mathbb{R} \times [0, 2\pi]$ . Acting on the feature function f,  $\mathcal{R}_s$  and  $\mathcal{R}_\ell$  are defined respectively, as

$$w(\gamma, \beta) = \mathcal{R}f(D\sin\gamma, \beta + \gamma),\tag{3}$$

and

$$g(s,\beta) = \mathcal{R}f(\frac{sD}{\sqrt{s^2 + D^2}}, \beta + \arctan\frac{s}{D}),$$
 (4)

Since both operations represent a change of variables in the classical parallel sinogram, we can use the following notation,

$$\mathcal{R}_{\mathsf{s}}f(\gamma,\beta) = \mathcal{M}_{\mathsf{s}}\mathcal{R}f(\gamma,\beta), \quad \mathcal{R}_{\ell}f(s,\beta) = \mathcal{M}_{\ell}\mathcal{R}f(s,\beta) \tag{5}$$

with  $\mathcal{M}_s$  and  $\mathcal{M}_\ell$  acting on a parallel sinogram p, respectively as

$$\mathcal{M}_{s}p(\gamma,\beta) = p(D\sin\gamma, \gamma + \beta),$$

$$\mathcal{M}_{\ell}p(s,\beta) = p(\frac{sD}{\sqrt{s^2 + D^2}}, \beta + \arctan\frac{s}{D}).$$
(6)

It is clear that for the change of variables operation  $\mathcal{M}_s$ , the situation is depicted in Figure 2. From the experimental point of view, we assume that the origin is centered in the object, with D being the distance of the focal point source to the origin. The angle  $\gamma$  indicates a point within the solid angle that completely covers the detector whereas s is the distance on the detector with respect to the rotation axis, as indicated by Figure 1. Since is true that  $\mathcal{R}_s = \mathcal{M}_s \mathcal{R}$ , a conventional functional relation for space U and  $V_s$  provide us with the following statement,

$$\langle \mathcal{R}_{\mathsf{s}} f, g \rangle_{V_{\mathsf{s}}} = \langle \mathcal{M}_{\mathsf{s}} \mathcal{R} f, g \rangle_{V_{\mathsf{s}}}$$
 (7)

$$= \langle \mathcal{R}f, \mathcal{M}_{s}^{*}g \rangle_{V} = \langle f, \mathcal{R}^{*}\mathcal{M}_{s}^{*}g \rangle_{U}$$
(8)

with  $\cdot^*$  standing for the adjoint operation and  $\langle \cdot, \cdot \rangle_{V_s}$ ,  $\langle \cdot, \cdot \rangle_{V}$ ,  $\langle \cdot, \cdot \rangle_{U}$  standard  $L^2$  inner products. Also,  $\mathcal{M}_s^*$  stands for the adjoint operator of  $\mathcal{M}_s$ . Now, since  $\mathcal{R}^* = \mathcal{B}$ , it follows that  $\mathcal{R}_s^* = \mathcal{B}\mathcal{M}_s^*$ . In this work we propose a Fourier approach for the equation  $\mathcal{R}_\ell^* = \mathcal{B}\mathcal{M}_\ell^*$  using several properties from operation  $\mathcal{M}_s$ .

### 1.1 Conventional fan-beam backprojectors

The adjoint operator for fan-beam Radon transforms is a weighted backprojection operator of the standard parallel one [7]. Considering the geometry indicated at Figure 1, we provide two main results for the adjoint transform of operators  $\mathcal{R}_s$  and  $\mathcal{R}_\ell$ . For completeness, we denote  $\mathbf{r}_\beta = D\boldsymbol{\xi}_\beta^\perp$ .

**Lemma 1.** The operator  $g \in V_{\ell} \mapsto \mathcal{B}_{\ell}g \in U$  defined by

$$\mathcal{B}_{\ell}g(\boldsymbol{x}) = \int_0^{2\pi} \frac{1}{D U_{\beta}(\boldsymbol{x})} \sqrt{s_{\beta}^2 + D^2} g(s_{\beta}, \beta) d\beta, \tag{9}$$

is the adjoint of  $\mathcal{R}_{\ell}$  in the sense of (8). Taking  $\mathbf{x} = r\boldsymbol{\xi}_{\phi}$ ,  $U_{\beta}(\mathbf{x}) = (D + r\sin(\beta - \phi))/D$  and  $s_{\beta}$  as the corresponding s-value for  $\mathbf{x}$  at a source angle  $\beta$ , i.e.,  $s_{\beta} = Dr\sin(\beta - \phi)/(D + r\sin(\beta - \phi))$ .

**Lemma 2.** The operator  $w \in V_s \mapsto \mathcal{B}_s w \in U$  defined by

$$\mathcal{B}_{\mathcal{S}}w(\boldsymbol{x}) = \int_0^{2\pi} \frac{1}{L_{\beta}(\boldsymbol{x})} w(\gamma_{\beta}, \beta) \,\mathrm{d}\beta, \tag{10}$$

is the the adjoint of  $\mathcal{R}_s$ , in the sense of (8). Here,  $L_{\beta} = \|\mathbf{r}_{\beta} - \mathbf{x}\|_2$  is the distance of source with the backprojected position  $\mathbf{x}$  and  $\gamma_{\beta}$  is the angle of such point within the fan, i.e.,  $\cos \gamma_{\beta} = \mathbf{r}_{\beta} \cdot (\mathbf{r}_{\beta} - \mathbf{x})$ .

*Proof.* A simple change of variables; see 
$$[7, 4]$$
.

#### 1.2 Two-step backprojection formulas

As discussed in (8), the adjoint of  $\{\mathcal{M}_s, \mathcal{M}_\ell\}$  plays an important role for our final adjoint formulation. The adjoint operator of  $\mathcal{M}_\ell$  is defined for  $g \in V_\ell$  by

$$\mathcal{M}_{\ell}^* g(t, \theta) = g(\underbrace{\frac{tD}{\sqrt{D^2 - t^2}}}_{\ell(t)}, \underbrace{\theta - \arcsin\frac{t}{D}}_{\kappa(t, \theta)}) \underbrace{\frac{D^3}{(D^2 - t^2)^{3/2}}}_{h(t)}, \tag{11}$$

for D larger to the radius of the circumference containing the sample. To verify that this is true, we select an arbitrary fan-beam sinogram  $p \in V_{\ell}$ , proving that  $\langle \mathcal{M}_{\ell} p, g \rangle_{V_{\ell}} = \langle p, \mathcal{M}_{\ell}^* g f \rangle_{V}$ . This is a trivial exercise from change of variables. In fact, starting with the definition of  $\mathcal{M}_{\ell}$  we obtain

$$\begin{split} \langle \mathcal{M}_{\ell} p, g \rangle_{V_{\ell}} &= \int\limits_{[0,2\pi] \times \mathbb{R}} \mathcal{M}_{\ell} p(s,\beta) g(s,\beta) \, \mathrm{d}s \mathrm{d}\beta \\ &= \int\limits_{[0,\pi] \times \mathbb{R}} p(t,\theta) g(\frac{tD}{\sqrt{D^2 - t^2}}, \theta - \arcsin \frac{t}{D}) \frac{D^3}{(D^2 - t^2)^{3/2}} \mathrm{d}t \mathrm{d}\theta. \end{split}$$

from where (11) is obtained. It is also straightforward to prove that, for  $w \in V_s$ , the adjoint operator of  $\mathcal{M}_s$  is defined by

$$\mathcal{M}_{s}^{*}w(t,\theta) = w(\underbrace{\arcsin\frac{t}{D}}_{\gamma(t)}, \theta - \arcsin\frac{t}{D})\underbrace{\frac{1}{\sqrt{D^{2} - t^{2}}}}_{h(t)}, \tag{12}$$

It is clear that both operators  $\mathcal{M}_s$ ,  $\mathcal{M}_\ell$  satisfies the property

$$\mathcal{M}_{\ell}^* = h(t)\mathcal{M}_{\ell}^{-1}, \quad \text{or} \quad \mathcal{M}_{\mathsf{s}}^* = h(t)\mathcal{M}_{\mathsf{s}}^{-1}.$$
 (13)

We are not differentiating function h, as is clear from the context of symbols, either  $\mathcal{M}_s$  or  $\mathcal{M}_\ell$ . The formal adjoints of  $\mathcal{R}_s$  and  $\mathcal{R}_\ell$  are presented in Lemmas 1 and 2. The problem with these formulations is the difficulty for a low-cost implementation algorithm. To circumvent this problem, we use the fact that  $\{\mathcal{R},\mathcal{B}\}$  are bounded operators between Hilbert spaces U and V - here understood as the space of rapidly decreasing functions with two-variables. Hence, we obtain the following result.

**Theorem 1.** Considering fan-beam geometries, a formal adjoint for each operator  $\mathcal{R}_s$  and  $\mathcal{R}_\ell$  is given explicitly by equations (10) and (9), which on the other hand, are also given exactly by  $\mathcal{B}_\ell^* = \mathcal{BM}_\ell^*$  and  $\mathcal{B}_s^* = \mathcal{BM}_s^*$  respectively.

*Proof.* This is an immediate consequence of the uniqueness of the adjoint for bounded operators on Hilbert spaces. In fact, since  $\mathcal{B}$  and  $\mathcal{M}_{\ell}^*$  are bounded, the composition will also be bounded, the same applies for  $\mathcal{M}_{\mathfrak{s}}^*$ .

## 2 Main result

As is easy to note using an appropriate change of variables, given a sinogram  $g(s,\beta) \in V_{\ell}$ , the Fourier transform of  $\mathcal{M}_{\ell}^*g(t,\theta)$  with respect to t is given by

$$\widehat{\mathcal{M}_{\ell}^*g}(\sigma,\theta) = \int_{\mathbb{R}} h(t)g(\ell(t),\kappa(t,\theta))e^{-it\sigma}dt$$

$$= \int_{\mathbb{R}} g\left(v,\theta - \arcsin\frac{v}{D}\right)e^{-i\frac{vD\sigma}{\sqrt{D^2+v^2}}}dv$$
(14)

Analogously, taking  $w(\gamma, \beta) \in V_s$ , the Fourier transform of  $\mathcal{M}_s^* w(t, \theta)$  with respect to t is

$$\widehat{\mathcal{M}_{s}^{*}w}(\sigma,\theta) = \int_{\mathbb{R}} h(t)w(\gamma(t),\theta - \gamma(t))e^{-it\sigma}dt$$

$$= \int_{0}^{2\pi} w(v,\theta - v)e^{-iD\sigma\sin v}dv$$
(15)

From (14) and (15) we note that, for a fixed  $\theta$ , it is difficult to compute numerically the sinogram  $g(v, \theta \arcsin \frac{v}{D}$ )  $\in V_{\ell}$  due to the nonlinear effect provided by the inverse trigonometric function. On the other hand, it is easier to compute the sinogram  $Z(v,\theta)=w(v,\theta-v)\in V_s$  due to the linear factor  $\theta-v$  without a significance loss on the sinogram angular resolution.

Let us consider the case  $w \in V_s$ , where sinogram  $Z(v,\theta) = w(v,\theta-v)$  is  $2\pi$ -periodic function with respect to v. After expanding it on a Fourier series, (15) becomes

$$\widehat{\mathcal{M}_{s}^{*}g}(\sigma,\theta) = \sum_{n} c_{n}(\theta;w) \int_{0}^{2\pi} e^{i[nv - D\sigma \sin v]} dv$$
(16)

$$= 2\pi \sum_{n} c_n(\theta; w) J_n(D\sigma) \tag{17}$$

with

$$c_n(\theta; w) = \frac{1}{2\pi} \int_0^{2\pi} Z(v, \theta) e^{-inv} dv$$
(18)

and  $\{J_n\}$  a sequence of Bessel functions of first kind  $\{J_n\}$ . This same result can not be obtained for the operation  $\mathcal{M}_{\ell}^*g(\sigma,\theta)$  because of the noniteroperability of exponent  $vD\sigma/\sqrt{D^2+v^2}$  with Bessel functions. Using the property  $J_{-n}(x) = (-1)^n J_n(x)$  we finally obtain the Bessel-Neumann series

$$\widehat{\mathcal{M}_{s}^{*}w}(\sigma,\theta) = \sum_{n=0}^{\infty} b_{n}(\theta;Z)J_{n}(D\sigma)$$
(19)

with  $b_0 = c_0$  and  $b_n = [c_n + (-1)^n \bar{c_n}]$  for  $n \ge 1$ .

Switching between fan-beam geometries requires only a one-dimensional interpolation on the first variable. In fact, taking  $g \in V_{\ell}$ , the operation  $\mathcal{L}$  defined by

$$w(\gamma, \beta) = \mathcal{L}g(\gamma, \beta) = g(D \tan \gamma, \beta) \iff \mathcal{R}_{s} = \mathcal{L}\mathcal{R}_{\ell}$$
 (20)

provide a sinogram w lying at space  $V_s$ . Such an operator has an inverse given by  $\mathcal{L}^{-1}h(s,\beta) = h(\arctan\frac{s}{D},\beta)$ in such a way that the adjoint operation is

$$\mathcal{L}^* h(s,\beta) = a(s)\mathcal{L}^{-1} h(s,\beta), \quad a(s) = \frac{D}{D^2 + s^2}$$
 (21)

The following Theorem is the main result enabling us to provide a two-step backprojection algorithm for the fan-beam *linear* geometry.

**Theorem 2.** The backprojections  $\mathcal{B}_s$  and  $\mathcal{B}_\ell$  are related through  $\mathcal{B}_\ell g = \mathcal{B}_s \tau \mathcal{L} g$ , with  $\tau(\gamma) = D \sec^2 \gamma$ , for all  $g \in V_{\ell}$ .

*Proof.* Starting with  $\mathcal{B}_s = \mathcal{R}_s^*$  and using (20) we obtain

$$\mathcal{B}_{\mathsf{s}} = (\mathcal{L}\mathcal{R}_{\ell})^* = \mathcal{R}_{\ell}^*\mathcal{L}^* = \mathcal{B}_{\ell}\mathcal{L}^*$$

from where follows  $\mathcal{B}_{\ell} = \mathcal{B}_{s}(\mathcal{L}^{*})^{-1}$ . Using (21) and the fact that  $(\mathcal{L}^{*})^{-1} = a(s(\gamma))^{-1}\mathcal{L}$  with  $s(\gamma) = D\tan\gamma$ , the proposed equation is obtained.

Now, using the fact that  $\mathcal{B}_s$  and  $\mathcal{B}$  are related (from Theorem 1), our resulting formulation for the linear fan-beam backprojection is obtained by the following construction:

- (i) Let  $g \in V_{\ell}$  be an linear fan-beam sinogram (as depicted in Fig.1) and let  $z(\gamma, \beta) = \tau(\gamma)w(\gamma, \beta)$  with  $w = \mathcal{L}g$  be his representation at space  $V_s$ . From z we compute  $Z = \mathcal{A}z$  defined as  $Z(\gamma, \theta) = z(\gamma, \theta - \gamma)$
- (ii) Since  $\mathcal{B}_s = \mathcal{BM}_s^*$ , it follows that the Fourier transform of  $\mathcal{B}_s$  at the polar frequency  $\sigma \boldsymbol{\xi}_{\theta}$  is

$$\widehat{\mathcal{B}_{\ell}g}(\sigma\boldsymbol{\xi}_{\theta}) \stackrel{\text{Theo.1}}{=} \mathcal{B}_{s}(\widehat{\mathcal{L}^{*}})^{-1}g(\sigma\boldsymbol{\xi}_{\theta})$$
(22)

$$\stackrel{\text{(i)}}{=} \widehat{\mathcal{B}_{s}\tau\mathcal{L}g}(\sigma\boldsymbol{\xi}_{\theta}) = \widehat{\mathcal{B}_{s}z}(\sigma\boldsymbol{\xi}_{\theta})$$
 (23)

$$\stackrel{\text{(i)}}{=} \widehat{\mathcal{B}_{s}\tau\mathcal{L}g}(\sigma\boldsymbol{\xi}_{\theta}) = \widehat{\mathcal{B}_{s}z}(\sigma\boldsymbol{\xi}_{\theta})$$

$$\stackrel{\text{Theo.2}}{=} \widehat{\mathcal{B}\mathcal{M}_{s}^{*}q}(\sigma\boldsymbol{\xi}_{\theta})$$

$$(23)$$

$$\stackrel{\text{BST}}{=} \frac{\widehat{\mathcal{M}}_{s}^{*}q(\sigma\boldsymbol{\xi}_{\theta})}{\sigma} \tag{25}$$



Figure 3: diagram for the backprojection operator  $\mathcal{B}_{\ell}$  (without rebinning to space V) through the action of  $(\mathcal{L}^*)^{-1}$ ,  $\mathcal{A}$  and  $\mathcal{B}_s$ . Here,  $z = \tau$  w, with  $\tau$  as described in Theorem 2. See text for details.

(iii) From (19) the backprojection finally becomes as the following Bessel Neumann series

$$\widehat{\mathcal{B}_{\ell}g}(\sigma\boldsymbol{\xi}_{\theta}) = \frac{1}{\sigma} \underbrace{\sum_{n=0}^{\infty} b_n(\theta; Z) J_n(D\sigma)}_{\mathcal{N}g(\sigma,\theta)},$$
(26)

with Z = Az and  $(\sigma, \theta) \in \mathbb{R}_+ \times (0, 2\pi]$ .

Figure 3 illustrate the action of our method, where a backprojection  $b \in U$  is obtained in two-steps. The unknown backprojection  $\mathcal{B}_{\ell}g$  is obtained in the frequency domain from (26), using polar coordinates through two main operations to obtain sinogram  $Z \in V_s$  through  $\mathcal{L}$  (interpolation on the first variable) and  $\mathcal{A}$  (interpolating at the second variable). It is important to note that  $\{b_n\}$  are easily (and rapidly) computed from Z using the Fast Fourier transform. Also, the sequence  $\{J_n\}$  can be used as a lookup table for the computation of (26), not being costly at computing time. For  $g \in V_{\ell}$ , the support of an impulse response of the sequence  $\{w = \mathcal{L}g, z = \tau w, Z = \mathcal{A}z\}$  is presented in Figure 4.



Figure 4: Support of an impulse response for both  $w = \mathcal{L}g$ ,  $z = \tau w$  (solid) and for  $Z = \mathcal{A}z$  in (dashed). Note that Q takes a parallel sinogram support due to the act of  $\mathcal{A}$ .

## 3 An implicit Fourier slice approach

Considering the diagram of Figure 2, and given a linear fan-beam data  $g \in V_{\ell}$ , the standard algorithmic approach for inversion of g requires a rebinning of g to the parallel geometry space V, followed by any Fourier strategy for numerical inversion, e.g., gridding [11], filtered backprojection [4] or other analytical approach.

Considering the following regularized least squares problem

$$\underset{f \in U}{\text{minimize}} \|\mathcal{R}_{\ell} f - g\|_{V_{\ell}}^2 + \lambda \|f\|_{U}^2$$

$$\tag{27}$$

and the Euler-Lagrange equations for the optimality condition, we known that f minimizes (27) if and only if (see [9, 12]) the following normal equations are equivalent:  $[\mathcal{R}_{\ell}^*\mathcal{R}_{\ell} + \lambda \mathcal{I}]f(\mathbf{x}) = \mathcal{R}_{\ell}^*g(\mathbf{x}) \iff [\mathcal{B}_{\ell}\mathcal{R}_{\ell} + \lambda \mathcal{I}]f(\mathbf{x}) = \mathcal{B}_{\ell}g(\mathbf{x}) \iff [\mathcal{B}\mathcal{M}_{\ell}^*\mathcal{M}_{\ell}\mathcal{R} + \lambda \mathcal{I}]f(\mathbf{x}) = \mathcal{B}_{\ell}g(\mathbf{x})$ . Since  $\mathcal{M}_{\ell}^*\mathcal{M}_{\ell} = h\mathcal{I}$  the normal equations becomes

$$\mathcal{B}(h\mathcal{R}f) + \lambda f = \mathcal{B}_{\ell}g \tag{28}$$

Finally, applying the Fourier transformation on (28), changing to polar coordinates and using the BST formulation [12], we obtain the following result

$$\frac{\widehat{hRf}(\sigma,\theta)}{\sigma} + \lambda \widehat{f}(\sigma \boldsymbol{\xi}_{\theta}) = \widehat{\mathcal{B}_{\ell}g}(\sigma \boldsymbol{\xi}_{\theta})$$
(29)

According to (26) and the classical Fourier slice Theorem, the above equation is also equivalent to

$$\widehat{h}(\sigma) \star \widehat{f}(\sigma \xi_{\theta}) + \sigma \lambda \widehat{f}(\sigma \xi_{\theta}) = \mathcal{N}g(\sigma, \theta), \tag{30}$$

which can be interpreted as regularized and implicit version for the Fourier-Slice-Theorem and can be used to obtain f iteratively in the frequency domain. Here, we emphasize that  $\mathcal{N}g$  does not contain a strong rebinning, as typically required by algorithms pointed out in the literature, and each Bessel function defining the operator  $\mathcal{N}$  can be computed only once.

#### 4 Conclusions

We have proposed in this work a two-step backprojection algorithm for fan-beam scanning with linear detectors. The first step consists on a sequence of simple one-dimensional operators where a fan-beam standard sinogram is obtained. The second step, the backprojection operation, is performed by writing the Fourier transform of the backprojected image as a Bessel-Neumann series on the frequency variable  $\sigma$  weighted by  $1/\sigma$ . The coefficients of the expansion are in fact the Fourier coefficients of the sinogram obtained in the first step. This approach, based on the low cost backprojection BST formula [12] for parallel sinograms, presents the same reduction on the computational cost related to conventional fan-beam backprojections. A second interesting feature is the absence of a rebinning process from fan to parallel beam projections as is mostly done in other fan-backprojection algorithms. When dealing with standard fan-beam data, the first step is more straightforward where only one linear change of variables is needed than can be performed through a  $\pi/4$  rotation of the sinogram without lying on interpolations.

Once the backprojection for linear fan sinograms is efficiently performed, a complete inversion algorithm can be implemented for cone-beam tomography with plane detectors. The FDK formula [5] is widely used for this aim. Briefly, the cones are considered as a set sloped fans having the same source in  $\mathbb{R}^3$  and parallel line detectors placed over the plane detector. A change of variables [17] is needed to write a fan in  $\mathbb{R}^2$  as a sloped fan in  $\mathbb{R}^3$  and backproject it. The convoution filter is easily derived similar to the parallel beam case. Details of the full reconstruction using the FDK formula are presented in [14].

Finally, the Bessel-Neumann representation for the Backprojection  $\mathcal{B}_{\ell}g$  in the frequency domain (26) can be computed numerically with a limited number of terms N. This is true due to the fact that  $J_n(x)/x$  has a pointwise convergence to zero due to  $|J_n(x)| \leq |\frac{1}{2}x|^n/n!$  for all  $x \in \mathbb{R}_+$  [1, eq. 9.1.62]. Finding the right choice for N is a study beyond the scope of this work.

## References

- [1] Milton Abramowitz and Irene A. Stegun, editors. *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.* National Bureau of Standards, 1964.
- [2] Guang-Hong Chen, Shuai Leng, and Charles A Mistretta. A novel extension of the parallel-beam projection-slice theorem to divergent fan-beam and cone-beam projections. *Medical physics*, 32(3):654–665, 2005.
- [3] Richard Anthony Crowther, DJ DeRosier, and Aaron Klug. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. *Proc. R. Soc. Lond. A*, 317(1530):319–340, 1970.
- [4] Stanley R Deans. The Radon transform and some of its applications. Courier Corporation, 2007.
- [5] L. A. Feldkamp, L. C. Davis, and J. W. Kress. Practical cone-beam algorithm. J. Opt. Soc. Am. A, 1(6):612–619, Jun 1984.
- [6] AK George and Y Bresler. A fast fan-beam backprojection algorithm based on efficient sampling. *Physics in Medicine & Biology*, 58(5):1415, 2013.
- [7] Avinash C. Kak and Malcolm Slaney. *Principles of computerized tomographic imaging*. Society for Industrial and Applied Mathematics, 2001.
- [8] Daniil Kazantsev and Valery Pickalov. Fan-beam tomography iterative algorithm based on fourier transform. In Nuclear Science Symposium Conference Record, 2008. NSS'08. IEEE, pages 4138–4139. IEEE, 2008.
- [9] David G Luenberger. Optimization by vector space methods. John Wiley & Sons, 1997.
- [10] D Russell Luke, James V Burke, and Richard G Lyon. Optical wavefront reconstruction: Theory and numerical methods. SIAM review, 44(2):169–224, 2002.
- [11] F Marone and M Stampanoni. Regridding reconstruction algorithm for real-time tomographic imaging. Journal of synchrotron radiation, 19(6):1029–1037, 2012.
- [12] Eduardo Miqueles, Nikolay Koshev, and Elias S Helou. A backprojection slice theorem for tomographic reconstruction. *IEEE Transactions on Image Processing*, 27(2):894–906, 2018.
- [13] Frank Natterer. The mathematics of computerized tomography, volume 32. Siam, 1986.
- [14] Frank Natterer and Frank Wübbeling. Mathematical methods in image reconstruction, volume 5. Siam, 2001.
- [15] Yuchuan Wei, Ge Wang, and Jiang Hsieh. Relation between the filtered backprojection algorithm and the backprojection algorithm in ct. *IEEE Signal Processing Letters*, 12(9):633–636, 2005.
- [16] S-R Zhao and H Halling. A new fourier method for fan beam reconstruction. In Nuclear Science Symposium and Medical Imaging Conference Record, 1995., 1995 IEEE, volume 2, pages 1287–1291. IEEE, 1995.
- [17] Shuang-Ren Zhao, Dazong Jiang, Kevin Yang, and Kang Yang. Generalized fourier slice theorem for cone-beam image reconstruction. *Journal of X-ray science and technology*, 23(2):157–188, 2015.
- [18] Shuangren Zhao, Kang Yang, and Kevin Yang. Fan beam image reconstruction with generalized fourier slice theorem. *Journal of X-ray Science and Technology*, 22(4):415–436, 2014.