q-Hausdorff Summability

Joaquin Bustoz, Luis F. Gordillo
Department of Mathematics and Statistics
Arizona State University, Tempe AZ, 85287-1804
gordillo@mathpost.asu.edu

Abstract

We define a q-analog of Cesàro summability and we then construct a class of q-Hausdorff matrices. We define a type of q-difference for sequences and a q-analog of Bernstein polynomials. Using these concepts we define a q-moment problem and relate this moment problem to q Hausdorff summability.

Keywords: matrix summability, Cesàro summability, Hausdorff matrices, Hausdorff moment problem, Bernstein polynomials, q - binomial theorem.
Math Subject Classification: 40G05,40C05,33D99,33D05.

1 Introduction

If $\left(z_{n}\right)$ is a sequence of complex numbers then the Cesàro mean $\left(\sigma_{n}\right)$ is defined by

$$
\begin{equation*}
\sigma_{n}=\frac{z_{0}+z_{1}+\ldots+z_{n}}{n+1}, n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

If $\lim _{n \rightarrow \infty} \sigma_{n}=\sigma$ then the sequence $\left(z_{n}\right)$ is said to be Cesàro summable to the limit σ. It is also said that $\left(z_{n}\right)$ is summable by the Cesàro means of first order, or is summable $(C, 1)$. This is because the Cesàro mean as defined in (1) belongs to a family of summability methods (C, α) where $\alpha \geqslant 0$. We will speak of these more general Cesàro means subsequently. The first order means (1) have played an important role in analysis. Arguably the most famous application of $(C, 1)$ summability is the classic result of L. Fejér in which he proved that the Cesàro means of the Fourier series of a continuous function converge uniformly. This beautiful theorem may be found in most books on Fourier series. The subject of summability methods was a major research topic in the first half of the twentieth century, an excellent reference to this work is provided by G.H. Hardy's classic book Divergent Series [6].

The last thirty years has seen a remarkable production of research involving q-series and q-differences (cf. [5]). This q-analysis has deep roots going back to Euler. The development of the theory of Askey-Wilson polynomials was a primary catalyst in the current interest in the subject. One of the thrusts in this research has been aimed at finding suitable q-analogs of functions and processes belonging to classical function theory. For example in [1] and [3]
first steps were taken in the development of a Fourier theory involving certain q-analogs of trigonometric functions. A complete development of a q-Fourier theory must include a suitable summability theory. In this paper we will take a preliminary step by introducing a q-analog of Cesàro summability and linking it to a q-version of Hausdorff summability.

For the sake of completeness we will make some definitions and fix some notation used in the q-calculus. The standard reference on such things is the book by G. Gasper and M. Rahman [5]. We will always assume that $0<q<1$. First, we define the q-coefficient $(a ; q)_{n}=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right)$. The infinite version of this product is defined by $(a ; q)_{\infty}=\lim _{n \rightarrow \infty}(a ; q)_{n}$. The q-binomial coefficient is defined by $\left[\begin{array}{c}p \\ s\end{array}\right]=\frac{(q ; q)_{p}}{(q ; q)_{s}(q ; q)_{p-s}}$. We will use the notation $[x-a]_{q}^{n}=(x-a)(x-a q) \ldots\left(x-a q^{n-1}\right)$ and throughout the paper we will make frequent use of the finite q-binomial theorem (cf.[5]) which states that

$$
[x-a]_{q}^{n}=\sum_{j=0}^{n}(-1)^{j} q^{\frac{j(j-1)}{2}}\left[\begin{array}{l}
n \tag{2}\\
j
\end{array}\right] a^{j} x^{n-j}
$$

Lastly, we record the definition of the Jackson q-integral which plays an important role in the q-calculus. If f is a suitably defined function then

$$
\begin{equation*}
\int_{0}^{a} f(t) d_{q} t=(1-q) a \sum_{k=0}^{\infty} f\left(a q^{k}\right) q^{k} \tag{3}
\end{equation*}
$$

We note that the q-integral (3) is a Riemann-Stieltjes integral with respect to a step function having infinitely many points of increase at the points $a q^{k}$, $k=0,1, \ldots$. The jump at $a q^{k}$ is $a(1-q) q^{k}$.

2 -Cesàro Summability

Let $A=\left(a_{n k}\right), n, k=0,1,2, \ldots$ be an infinite matrix of real numbers. We will define the A-transform of a given sequence $z=\left(z_{n}\right)$ to be the sequence $t=\left(t_{n}\right)$ defined by

$$
\begin{equation*}
t_{n}=\sum_{k=0}^{\infty} a_{n k} z_{k}, \quad n=0,1, \ldots \tag{4}
\end{equation*}
$$

Naturally we presume that the infinite series in (4) converge. The relation (4) can be written in matrix form as $t=A z$. The matrix A is said to be a regular summability method if the convergence of the sequence $\left(z_{n}\right)$ implies the convergence of the transform sequence $\left(t_{n}\right)$ to the same limit. That is, $z_{n} \rightarrow a$ implies that $t_{n} \rightarrow a$. The matrix corresponding to the first order Cesàro means (1) is

$$
a_{n k}=\left\{\begin{array}{cl}
\frac{1}{n+1} & \text { if } k \leq n \tag{5}\\
0 & \text { if } k>n
\end{array}\right.
$$

The Silverman-Toeplitz theorem ([6],[8],[9]) provides necessary and sufficient conditions that the matrix A in (4) be regular.

Theorem 1 (Silverman-Toeplitz): The matrix A is a regular summability method if and only if

$$
\text { (1) } \lim _{n \rightarrow \infty} a_{n k}=0, k=0,1, \ldots
$$

(2) $\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}=1$,
(3) $\sum_{k=0}^{\infty}\left|a_{n k}\right|<M, n=0,1, \ldots$.

It is obvious that the Cesàro matrix in (5) satisfies the three conditions of Theorem 1. There are many ways to define a q-analog of $(C, 1)$ summability. We will give our suggested analog and then explain why it seems suitable. Define $C_{1}(q)=\left(a_{n k}(q)\right)$ where

$$
a_{n k}(q)=\left\{\begin{array}{cl}
\frac{1-q}{1-q^{n+1}} q^{n-k} & \text { if } k \leq n \tag{6}\\
0 & \text { if } k>n
\end{array}\right.
$$

We will then say that $\left(z_{n}\right)$ is q-Cesàro summable to the limit a if

$$
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty} \sum_{k=0}^{n} a_{n k}(q) z_{k}=a \tag{7}
\end{equation*}
$$

The first reason that this definition is appropriate is that $\lim _{q \rightarrow 1} a_{n k}(q)=$ $\frac{1}{n+1}$. Thus the q-Cesàro matrix $C_{1}(q)$ converges to the Cesàro matrix for $(\mathrm{C}, 1)$ summability as $q \rightarrow 1$. Another reason the definition seems appropriate involves the relation between the binomial theorem and the q-binomial theorem. We will explain this now. The Cesàro means of order α satisfy a power series identity that may be taken as their defining relation. Given an infinite series $\sum_{k=0}^{\infty} u_{k}$, we define the (C, α) mean of the series to be the sequence $\left(U_{n}^{(\alpha)}\right)$ in the power series identity

$$
\begin{equation*}
(1-z)^{-\alpha-1} \sum_{n=0}^{\infty} u_{n} z^{n}=\sum_{n=0}^{\infty} b_{n}^{(\alpha+1)} U_{n}^{(\alpha)} z^{n}, \tag{8}
\end{equation*}
$$

where the numbers $b_{n}^{(\alpha+1)}$ are the binomial power series coefficients:

$$
\begin{equation*}
(1-z)^{-\alpha-1}=\sum_{n=0}^{\infty} b_{n}^{(\alpha+1)} z^{n} \tag{9}
\end{equation*}
$$

If we denote the partial sums of $\sum_{k=0}^{\infty} u_{k}$ by s_{n} then the identity (8) is equivalent to

$$
\begin{equation*}
(1-z)^{-\alpha} \sum_{n=0}^{\infty} s_{n} z^{n}=\sum_{n=0}^{\infty} b_{n}^{(\alpha+1)} U_{n}^{(\alpha)} z^{n} . \tag{10}
\end{equation*}
$$

If we set $\alpha=1$ in (10) we obtain the $(C, 1)$ mean defined in (1). It seems reasonable to write a q-analog of (9) by using the q-binomial series (cf.[5]).

$$
\begin{equation*}
\frac{\left(q^{\alpha+1} z ; q\right)_{\infty}}{(z ; q)_{\infty}}=\sum_{n=0}^{\infty} \frac{\left(q^{\alpha+1} ; q\right)_{n}}{(q ; q)_{n}} z^{n} \tag{11}
\end{equation*}
$$

If $q \rightarrow 1$ in (11) then (9) is obtained. We would then define the q-Cesàro mean of order α of a sequence $\left(u_{n}\right)$ to be the sequence $\left(U_{n}^{(\alpha)}(q)\right)$ given by

$$
\begin{equation*}
\frac{\left(q^{\alpha+1} z ; q\right)_{\infty}}{(z ; q)_{\infty}} \sum_{n=0}^{\infty} u_{n} z^{n}=\sum_{n=0}^{\infty} \frac{\left(q^{\alpha+1} ; q\right)_{n}}{(q ; q)_{n}} U_{n}^{(\alpha)}(q) z^{n} \tag{12}
\end{equation*}
$$

When $\alpha=1$ in (12) we get the first order q-Cesàro mean as defined in (1) and as defined by the matrix $C_{1}(q)$. We will denote the summability matrix that
corresponds to $\alpha>0$ in (12) by $C_{\alpha}(q)$. Simple calculations establish that the q-Cesàro matrix $C_{\alpha}(q)$ of order α satisfies the conditions of Theorem 1. We thus have

Theorem 2 The q-Cesàro matrix $C_{\alpha}(q)$ is a regular summability method if $\alpha>0$.

If A and B are summability matrices we say that A is stronger than B if every sequence that is summed by B is also summed by A (to the same limit). If conversely every A summable sequence is also B summable then we say that A and B are equivalent. It is natural to ask how the strength of the first order q-Cesàro means varies with q. The answer is provided in the next theorem.
Theorem $3 C_{1}\left(q_{1}\right)$ and $C_{1}\left(q_{2}\right)$ are equivalent for $0<q_{1}, q_{2}<1$
Proof. Set $\alpha=1$ in equation (12) to get

$$
\begin{equation*}
\frac{1}{(1-z)(1-q z)} \sum_{n=0}^{\infty} u_{n} z^{n}=\sum_{n=0}^{\infty} \frac{1-q^{n+1}}{1-q} U_{n}^{(1)}(q) z^{n} . \tag{13}
\end{equation*}
$$

If we set $q=q_{1}$ and $q=q_{2}$ in (13) we easily find that

$$
\begin{equation*}
\frac{1-q_{2} z}{1-q_{1} z} \sum_{n=0}^{\infty} \frac{1-q_{2}^{n+1}}{1-q_{2}} U_{n}^{(1)}\left(q_{2}\right) z^{n}=\sum_{n=0}^{\infty} \frac{1-q_{1}^{n+1}}{1-q_{1}} U_{n}^{(1)}\left(q_{1}\right) z^{n} \tag{14}
\end{equation*}
$$

Expanding $\frac{1-q_{2} z}{1-q_{1} z}$ in a power series, multiplying the series on the left of (14), and equating power series coefficients yields

$$
\begin{equation*}
U_{n}^{(1)}\left(q_{1}\right)=\sum_{j=0}^{n} a_{n j} U_{j}^{(1)}\left(q_{2}\right), \tag{15}
\end{equation*}
$$

where the terms $a_{n j}$ have the form

$$
a_{n j}=\left\{\begin{array}{cc}
\left(q_{1}-q_{2}\right) \frac{1-q_{2}^{j+1}}{1-q_{1}^{n+1}} \frac{1-q_{1}}{1-q_{1}} q_{1}^{n-j-1} & \text { if } j=0,1, \ldots, n-1 \tag{16}\\
\frac{1-q_{2}^{n+1}}{1-q_{1}^{n+1}} \frac{1-q_{1}}{1-q_{2}} & \text { if } j=n
\end{array}\right.
$$

Equation (16) expresses the sequence $\left(U_{n}^{(1)}\left(q_{1}\right)\right)$ as a matrix transform of the sequence $\left(U_{n}^{(1)}\left(q_{2}\right)\right)$. A routine calculation shows that the matrix $\left(a_{n k}\right)$ satisfies the conditions of Theorem 2. Thus every sequence summable $C_{1}\left(q_{2}\right)$ is also summable $C_{1}\left(q_{1}\right)$. To complete the proof, we only need to switch q_{1} and q_{2} in the calculations above.
This theorem does not address the comparison of $C_{1}(q)$ with the usual Cesàro mean $(C, 1)$. The next theorem deals with this.

Theorem 4 Any sequence that is summable $C_{1}(q)$ is also summable $(C, 1)$. The converse statement does not hold.

Proof. The proof follows the same lines as the proof of Theorem 3. Let $\left(\sigma_{n}\right)$ denote the $(C, 1)$ mean of a given sequence and let $\left(U_{n}(q)\right)$ denote the $C_{1}(q)$ mean of the same sequence. Then we have $\sigma_{n}=\sum_{j=0}^{n} \alpha_{n j} U_{j}(q)$, where

$$
\alpha_{n j}=\left\{\begin{array}{cc}
\frac{1-q^{j+1}}{n+1} & \text { if } j=0,1, \ldots, n-1 \tag{17}\\
\frac{1-q^{n+1}}{(n+1)(1-q)} & \text { if } j=n
\end{array}\right.
$$

The matrix $\left(\alpha_{n j}\right)$ satisfies the conditions of Theorem 1, hence if $\left(U_{n}(q)\right)$ converges then so does $\left(\sigma_{n}\right)$. To prove the second part of the theorem we write $U_{n}(q)=\sum_{j=0}^{n} \beta_{n j} \sigma_{j}$, where

$$
\beta_{n j}=\left\{\begin{array}{cc}
\frac{1-q}{1-q^{n+1}}(j+1)\left(1-q^{-1}\right) q^{n} & \text { if } j=0,1, \ldots, n-1 \tag{18}\\
\frac{1-q}{1-q^{n+1}}(n+1) & \text { if } j=n
\end{array} .\right.
$$

A calculation shows that $\lim _{n \rightarrow \infty} \sum_{j=0}^{n} \beta_{n j} \neq 0$.
Consider, for example, the sequence (u_{n}) defined by $u_{n}=\frac{1}{2}+\cos (x)+\cos (2 x)+$ $\ldots+\cos (n x)$. It is well known that $\left(u_{n}\right)$ is $(C, 1)$ summable to 0 provided $x \neq 2 k \pi$. However, it is not $C_{1}(q)$ summable.
Remark: The q-Cesàro matrix $C_{1}(q)$ appears in the Pólya-Szegő problem book [7], and in [4]. However neither of these references have placed $C_{1}(q)$ in the context of Hausdorff summability as will be done here.

3 Hausdorff Summability

The Cesàro means (C, α) belong to an important class of summability methods called Hausdorff Methods. We will give a very brief outline of the subject here. We will follow the development in [8], other presentations may be found in [6] and [9]. Let C denote the matrix that corresponds to $(C, 1)$ summability. We seek a matrix H with the property that $H C=D H$ where D is diagonal. Solving the matrix equation we find that $H=\left(h_{p q}\right)$ with

$$
\begin{equation*}
h_{p q}=(-1)^{p-q}\binom{p}{q} h_{p p} \tag{19}
\end{equation*}
$$

The numbers $h_{p p}$ are arbitrary as long as they are non-zero. We choose $h_{p p}=$ $(-1)^{p}$ and then the matrix H has elements given by

$$
\begin{equation*}
h_{p q}=(-1)^{q}\binom{p}{q} . \tag{20}
\end{equation*}
$$

The matrix H is self-inverse, that is, $H^{-1}=H$. The diagonal matrix D has diagonal elements $d_{p}=\frac{1}{p+1}$. With these matrices we have $C=H^{-1} D H$. Now we define a Hausdorff matrix to be of the form $A=H^{-1} D H$ where H is the matrix with elements as in (20) and D is any diagonal matrix. Thus Hausdorff matrices can be viewed as generalizations of $(C, 1)$ summability. We need three fundamental theorems pertaining to Hausdorff matrices.

Theorem 5 A triangular matrix A commutes with C (the $(C, 1)$ matrix) if and only if A is a Hausdorff matrix.

Theorem 6 A Hausdorff matrix $H^{-1} D H$ is regular if and only if $D=\left(d_{p} \delta_{p q}\right)$ with

$$
\begin{equation*}
d_{p}=\int_{0}^{1} t^{p} d \phi(t), p=0,1, \ldots \tag{21}
\end{equation*}
$$

where the function $\phi(t)$ is of bounded variation on $[0,1], \phi(1)-\phi(0)=1$, and $\phi\left(0^{+}\right)=\phi(0)$.

A sequence that has the integral form above is called a Hausdorff moment sequence. It is important to record a formula for the elements of a Hausdorff matrix. Given a sequence $\left(d_{p}\right)$ we define the $k^{\text {th }}$ forward difference by

$$
\begin{equation*}
\Delta^{k} d_{n}=\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} d_{n+m} \tag{22}
\end{equation*}
$$

We define the $k^{\text {th }}$ backward difference by

$$
\begin{equation*}
\nabla^{k} d_{n}=\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} d_{n+k-m} \tag{23}
\end{equation*}
$$

The backward and forward differences clearly satisfy the identity $\Delta^{k} d_{n}=(-1)^{k} \nabla^{k} d_{n}$. Now if $\Lambda=\left(\lambda_{k m}\right)$ is a Hausdorff matrix $\Lambda=H^{-1} D H$ with $D=\left(d_{p} \delta_{p q}\right)$ then

$$
\begin{equation*}
\lambda_{k m}=\binom{k}{m} \Delta^{k-m} d_{m} \tag{24}
\end{equation*}
$$

Theorem 7 The sequence $\left(d_{p}\right)$ has the form

$$
\begin{equation*}
d_{p}=\int_{0}^{1} t^{p} d \phi(t), p=0,1, \ldots \tag{25}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
(-1)^{k} \Delta^{k} d_{n} \geq 0, n, k=0,1, \ldots \tag{26}
\end{equation*}
$$

$4 \quad q$-Hausdorff Summability

In this section we will parallel the connections between $(C, 1)$ and Hausdorff means for the case of q-Cesàro and a q-analog of Hausdorff matrices. We begin by finding a matrix H_{q} that plays the role of the self-inverse matrix H given by (19).

Theorem 8 If D is a diagonal matrix then the matrix equation $H_{q} C_{1}(q)=D H_{q}$ has solution $H_{q}=\left(h_{p s}\right)$ with

$$
h_{p s}=(-1)^{p-s}\left[\begin{array}{l}
p \tag{27}\\
s
\end{array}\right] h_{p p} q^{\left(s^{2}-s-p^{2}+p\right) / 2}, s=0,1, \ldots p
$$

The diagonal matrix D is given by $D=\left(d_{p} \delta_{p s}\right)$ with

$$
\begin{equation*}
d_{p}=\frac{1-q}{1-q^{p+1}} . \tag{28}
\end{equation*}
$$

Proof. The proof is a standard matrix calculation.
The terms $h_{p p}$ in (27) are arbitrary as long as they are non-zero. Accordingly, taking $h_{p p}=(-1)^{p}$, the matrix H_{q} is found to be given by

$$
h_{p s}=(-1)^{s}\left[\begin{array}{l}
p \tag{29}\\
s
\end{array}\right] q^{\left(s^{2}-s-p^{2}+p\right) / 2}, s=0,1, \ldots, p
$$

The matrix H_{q} is not self-inverse as is the case with the matrix H that was defined in (20). It is easy however to compute the inverse and we find $H_{q}^{-1}=$ ($h_{p s}^{*}$) where

$$
\begin{equation*}
h_{p s}^{*}=h_{p s} q^{(p-s)(p-s-1) / 2} . \tag{30}
\end{equation*}
$$

It should be noted that the sequence defined in (28) is a Hausdorff moment sequence and hence the q-Cesàro matrix is a Hausdorff matrix. This is seen by writing

$$
\begin{equation*}
d_{p}=(1-q) \sum_{k=0}^{\infty} q^{k p} q^{k}=\int_{0}^{1} t^{p} d_{q} t \tag{31}
\end{equation*}
$$

and recalling that the q -integral is a Riemann-Stieltjes integral. The more general q-Cesàro matrix of order α defined by (2.8) also involves a moment sequence. To see this we denote the matrix by $C_{\alpha}(q)=\left(a_{n, k}\right)$ and note that $a_{n, n}=\frac{(q ; q)_{n}}{\left(q^{\alpha+1} ; q\right)_{n}}$. Now we appeal to Lemma 2.1 in [3] which states:
Lemma 1 If $0<b<a<1$ then

$$
\begin{equation*}
\frac{(a ; q)_{k}}{(b ; q)_{k}}=\int_{0}^{1} t^{k} d \Psi(t) \tag{32}
\end{equation*}
$$

where $\Psi(t)$ is a monotone increasing step function.
We can thus conclude that if $\alpha>0$ then the general q-Cesàro matrix is a Hausdorff matrix. We now define a q-Hausdorff matrix to be a lower triangular matrix of the form $H_{q}^{-1} D H_{q}$ where D is a diagonal matrix. Thus as $q \rightarrow 1$ a q-Hausdorff matrix $H_{q}^{-1} D H_{q}$ approaches a Hausdorff matrix $H D H$.
Next, the form of the matrix elements in a q-Hausdorff matrix will be determined.

Definition 1 For a given sequence $\left(d_{p}\right)$ we define the $k^{\text {th }}$ forward q-difference of $\left(d_{p}\right)$ by

$$
\Delta_{q}^{(k)} d_{p}=\sum_{j=0}^{k}(-1)^{j}\left[\begin{array}{l}
k \tag{33}\\
j
\end{array}\right] q^{\frac{(k-j)(k-j-1)}{2}} d_{j+p}, k=0,1, \ldots
$$

We define the $k^{\text {th }}$ backward q-difference by

$$
\nabla_{q}^{(k)} d_{p}=\sum_{j=0}^{k}(-1)^{j}\left[\begin{array}{c}
k \tag{34}\\
j
\end{array}\right] q^{\frac{j(j-1)}{2}} d_{k+p-j} .
$$

Note that as $q \rightarrow 1$ the forward q-difference approaches the standard forward difference defined in (22) and the backward q-difference approaches the backward difference in (23). Also, we have the identity $\Delta_{q}^{(k)} d_{s}=(-1)^{k} \nabla_{q}^{(k)} d_{s}$. A matrix calculation shows that we have:

$$
\begin{gather*}
H_{q}^{-1} D H_{q}=\left(\lambda_{p s}\right), \lambda_{p s}=(-1)^{s} h_{p s} \Delta_{q}^{(p-s)} d_{p}=(-1)^{p} h_{p s} \nabla_{q}^{(p-s)} d_{p} \tag{35}\\
s=0,1, \ldots, p ; p=0,1, \ldots
\end{gather*}
$$

The forward difference defined by (22) satisfies the identity

$$
\begin{equation*}
\Delta^{n} d_{p}=\Delta^{n-1} d_{p}-\Delta^{n-1} d_{p+1} \tag{36}
\end{equation*}
$$

The forward q-difference defined by (33) satisfies a similar identity as we prove next.

Theorem 9 The forward q-difference defined in (33) satisfies the identity

$$
\begin{equation*}
\Delta_{q}^{(n)} d_{s}=q^{n-1} \Delta_{q}^{(n-1)} d_{s}-\Delta_{q}^{(n-1)} d_{s+1} \tag{37}
\end{equation*}
$$

Proof. Use the identity $\left[\begin{array}{c}n \\ j\end{array}\right]=\left[\begin{array}{c}n-1 \\ j-1\end{array}\right]+q^{j}\left[\begin{array}{c}n-1 \\ j\end{array}\right]$ to write

$$
\begin{aligned}
& \Delta_{q}^{(n)} d_{s}=\sum_{j=0}^{n-1}(-1)^{j} q^{j}\left[\begin{array}{c}
n-1 \\
j
\end{array}\right] q^{\frac{(n-j)(n-j-1)}{2}} d_{j+s}- \\
& -\sum_{j=0}^{n-1}(-1)^{j}\left[\begin{array}{c}
n-1 \\
j
\end{array}\right] q^{\frac{(n-j-1)(n-j-2)}{2}} d_{j+s+1} .
\end{aligned}
$$

A simple rearrangement of the sums gives (37).
The identity (37) written in terms of the backward difference becomes

$$
\begin{equation*}
\nabla_{q}^{(n)} d_{p}=\nabla_{q}^{(n-1)} d_{p}-q^{n-1} \nabla_{q}^{(n-1)} d_{p+1} . \tag{38}
\end{equation*}
$$

5 A Class of q-Hausdorff Matrices

The q-Cesàro matrix $C_{1}(q)=H_{q}^{-1} D H_{q}$ is generated by the moment sequence $d_{p}=\int_{0}^{1} t^{p} d_{q} t$. In this section, a class of q-Hausdorff matrices that generalize $C_{1}(q)$ will be introduced. Given a sequence of positive numbers a_{k} with $a_{0}=1$, $a_{k+1}<a_{k}, k=0,1, \ldots$, and $a_{k} \rightarrow 0$. Define a function $\Psi_{q}(t)$ by $\Psi_{q}(t)=$ $a_{k}-a_{k+1}, q^{k} \leq t<q^{k-1}, k=1,2, \ldots, \Psi_{q}(0)=0, \Psi_{q}(t)=1, t \geq 1$. For each such sequence and each such resulting weight function $\Psi(t)$ we have a q-Hausdorff matrix where the diagonal matrix D has entries given by

$$
\begin{equation*}
d_{p}=\int_{0}^{1} t^{p} d \Psi_{q}(t) \tag{39}
\end{equation*}
$$

In particular when $a_{k}=q^{k}$ then $d \Psi_{q}(t)=d_{q} t$ and the q-Hausdorff matrix is $C_{1}(q)$.

Theorem 10 The matrices $H_{q}^{-1} D H_{q}$ where the elements of D are given by (39) are regular.

Proof. We must show that if d_{p} is given by (39) then the matrix elements $\lambda_{p s}$ given by (34) satisfy the three conditions of Theorem 2 . We will consider the three conditions in order.
(i) To prove that $\lambda_{p s} \rightarrow 0$ as $p \rightarrow \infty$ for each $s=0,1, \ldots$ we must first compute the difference $\nabla_{q}^{(p-s)} d_{s}$. We have

$$
\begin{gather*}
\nabla_{q}^{(p-s)} d_{s}=\sum_{j=0}^{p-s}(-1)^{j}\left[\begin{array}{c}
p-s \\
j
\end{array}\right] q \frac{j(j-1)}{2} d_{p-j} \\
=\int_{0}^{1} \sum_{j=0}^{p-s}(-1)^{j}\left[\begin{array}{c}
p-s \\
j
\end{array}\right] q \frac{j(j-1)}{2} t^{p-j} d \Psi_{q}(t)=\int_{0}^{1} t^{s}[t-1]_{q}^{p-s} d \Psi_{q}(t) . \tag{40}
\end{gather*}
$$

Note that $[t-1]_{q}^{p-s}=(t-1)(t-q) \ldots\left(t-q^{p-s-1}\right)=0$ when $t=q^{m}$, $m=0,1, \ldots p-s-1$. Thus

$$
\begin{equation*}
\nabla_{q}^{(p-s)} d_{s}=\int_{0}^{q^{p-s}} t^{s}[t-1]_{q}^{p-s} d \Psi_{q}(t) \tag{41}
\end{equation*}
$$

After some calculations, it is found that

$$
\begin{equation*}
\left|\nabla_{q}^{(p-s)} d_{s}\right| \leq q^{\frac{(p-s)(p-s-1)}{2}}(q ; q)_{p-s} q^{(p-s) s} q^{p-s}\left[\Psi_{q}\left(q^{p-s}\right)-\Psi_{q}(0)\right] . \tag{42}
\end{equation*}
$$

Thus we have $\left|\lambda_{p s}\right| \leq \frac{(q ; q)_{p}}{(q ; q)_{s}} q^{p-s}$. This proves that $\lambda_{p s} \rightarrow 0$ as $p \rightarrow \infty$ for fixed s.
(ii) Here, it will be proven that $\lim _{p \rightarrow \infty} \sum_{s=0}^{p} \lambda_{p s}=1$. From (34) and from (39) we get

$$
\sum_{s=0}^{p} \lambda_{p s}=(-1)^{p} q^{-\frac{p(p-1)}{2}} \int_{0}^{1} \sum_{s=0}^{p}(-1)^{s}\left[\begin{array}{l}
p \tag{43}\\
s
\end{array}\right] q^{\frac{s(s-1)}{2}} t^{s}[t-1]_{q}^{p-s} d \Psi_{q}(t)
$$

In the right side of (43) use the expansion
$[t-1]_{q}^{p-s}=\sum_{j=0}^{p-s}(-1)^{j}\left[\begin{array}{c}p-s \\ j\end{array}\right] q^{\frac{j(j-1)}{2}} t^{p-s-j}$, and use the identity $\left[\begin{array}{c}p \\ s \\ s\end{array}\right]\left[\begin{array}{c}p-s \\ j\end{array}\right]=$ $\left[\begin{array}{c}p-j \\ s\end{array}\right]\left[\begin{array}{l}p \\ j\end{array}\right]$, and interchange the sums to get

$$
\begin{align*}
& \int_{0}^{1} \sum_{s=0}^{p}(-1)^{s}\left[\begin{array}{l}
p \\
s
\end{array}\right] q^{\frac{s(s-1)}{2}} t^{s}[t-1]_{q}^{p-s} d \Psi_{q}(t)= \\
& \int_{0}^{1} \sum_{j=0}^{p}\left[\begin{array}{c}
p \\
j
\end{array}\right](-1)^{j} q^{\frac{j(j-1)}{2}} \sum_{s=0}^{p-j}(-1)^{s}\left[\begin{array}{c}
p-j \\
s
\end{array}\right] q^{\frac{s(s-1)}{2}} t^{p-j} d \Psi_{q}(t) . \tag{44}
\end{align*}
$$

Note that $\sum_{s=0}^{p-j}(-1)^{s}\left[\begin{array}{c}p-j \\ s\end{array}\right] q^{\frac{s(s-1)}{2}} t^{p-j}=\delta_{p j}$, and thus the right side of (44) reduces to $(-1)^{p} q^{\frac{p(p-1)}{2}} \int_{0}^{1} d \Psi_{q}(t)$. Thus we have

$$
\begin{equation*}
\sum_{s=0}^{p} \lambda_{p s}=\int_{0}^{1} d \Psi_{q}(t)=1 \tag{45}
\end{equation*}
$$

(iii) Here we must prove that $\sum_{s=0}^{p}\left|\lambda_{p s}\right|$ is uniformly bounded. But it is easy to use an argument like that in (i) to see that $\lambda_{p s} \geq 0$, the bound then follows from (ii).
As a further example of such a q-Hausdorff matrix we discuss a q-analog of Euler summability (cf.[6]). Here we will take the q-Hausdorff matrix to have elements

$$
\lambda_{p s}=\frac{\left[\begin{array}{l}
p \tag{46}\\
s
\end{array}\right] q^{(p-s)(p-s-1) / 2} a^{p-s} x^{s}}{[x+a]_{q}^{p}}, 0<a<x
$$

A calculation shows that the associated diagonal matrix has elements given by

$$
\begin{equation*}
d_{p}=\frac{1}{\left(-\frac{a}{x} ; q\right)_{p}} . \tag{47}
\end{equation*}
$$

Write $\alpha=\frac{a}{x}$, we have $0<\alpha<1$. We can then write

$$
\begin{equation*}
d_{p}=\frac{\left(-\alpha q^{p} ; q\right)_{\infty}}{(-\alpha ; q)_{\infty}}=\frac{1}{(-\alpha ; q)_{\infty}} \sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}} \alpha^{n} q^{n p}}{(q ; q)_{n}} \tag{48}
\end{equation*}
$$

The right side of (48) is a Riemann-Stieltjes integral of the form (39) in which the weight function $\Psi(t)$ has jumps at the points q^{n} and the jump $j\left(q^{n}\right)$ at q^{n} has value

$$
\begin{equation*}
j\left(q^{n}\right)=\frac{q^{\binom{n}{2}} \alpha^{n}}{(q ; q)_{n}(-\alpha ; q)_{\infty}} \tag{49}
\end{equation*}
$$

We note that when $q \rightarrow 1$ the matrix elements in (46) approach the matrix elements for Euler summability.

The examples of q-Hausdorff summability shown here all have weight functions that are purely discrete and have jumps at the points q^{j}, the resulting Riemann-Stieltjes integrals thus are all very similar to the Jackson q-integral. In the next section it will be shown that this is not accidental.

6 Relation to the Hausdorff Moment Problem

It is known that a Hausdorff matrix $H D H$ is regular if and only if the sequence that forms the main diagonal in D is a Hausdorff moment sequence ([6], [8], [9]). We will now form a similar connection for a q-Hausdorff matrix. We will say that a sequence $\left(d_{p}\right)$ is totally q-monotone if $\Delta_{q}^{(n)} d_{p} \geq 0, n, p=0,1, \ldots$ We define a class of weight functions \digamma as follows.

Definition $2 \alpha(t)$ belongs to the class \digamma if $\alpha(t)$ is bounded and monotone increasing with jumps at the points $q^{j}, j=0,1, \ldots, \alpha(0)=0$, and if $\alpha(t)$ has no other point of increase.

Theorem $11\left(d_{p}\right)$ is totally q-monotone if and only if $d_{p}=\int_{0}^{1} t^{p} d \Psi(t)$, where $\Psi(t) \in \digamma$.

Proof. First, suppose that d_{p} is of the form stated with $\Psi(t) \in \digamma$. We compute the q-difference and find that if $a_{j}>0$ is the jump at q^{j} then

$$
\begin{aligned}
\Delta_{q}^{(k)} d_{s} & =\int_{0}^{1}(1-t)(q-t)\left(q^{2}-t\right) \ldots\left(q^{k-1}-t\right) t^{s} d \Psi(t) \\
& =\sum_{j=k}^{\infty}\left(1-q^{j}\right)\left(q-q^{j}\right) \ldots\left(q^{k-1}-q^{j}\right) a_{j} q^{j s}>0
\end{aligned}
$$

In the other direction the proof follows the lines of the presentation given by Wall [8], the original idea of the proof is due to Schoenberg. We begin with the observation that if $\Delta_{q}^{(n)} d_{s} \geq 0, n, s=0,1, \ldots$ then for any integer p we have

$$
\begin{array}{cc}
d_{n} \geq 0, & n=0,1, \ldots, p \\
\Delta_{q}^{(1)} d_{n} \geq 0, & n=0,1, \ldots, p-1 \\
\ldots & \tag{50}\\
\Delta_{q}^{(p-1)} d_{n} \geq 0, & n=0,1 \\
\Delta_{q}^{(p)} d_{n} \geq 0, & n=0
\end{array}
$$

From (37) it follows that the above equations are equivalent to the inequalities

$$
\begin{gather*}
\Delta_{q}^{(p)} d_{0} \geq 0 \\
\Delta_{q}^{(p-1)} d_{1} \geq 0 \\
\ldots \tag{51}\\
\Delta_{q}^{(1)} d_{p-1} \geq 0 \\
\Delta_{q}^{(0)} d_{n} \geq 0
\end{gather*}
$$

If we define $r_{p, n}=\Delta_{q}^{(p-n)} d_{n}$ the system (51) can be written using (33) as

$$
r_{p, n}=\sum_{m=0}^{p}(-1)^{m-n}\left[\begin{array}{c}
p-n \tag{52}\\
m-n
\end{array}\right] d_{m} q^{\frac{(p-m)(p-m-1)}{2}}, n=0,1, \ldots, p .
$$

Note that the terms in the sum in (52) vanish if $m \leq n-1$. The system of equations (52) can be solved for d_{m}, the result is

$$
d_{m}=\sum_{k=0}^{p}\left[\begin{array}{c}
p-m \tag{53}\\
p-k
\end{array}\right] q^{m(p-k)} r_{p, k} q^{\frac{k(k-1)-p(p-1)}{2}} .
$$

Again, the terms in the above sum vanish if $k \leq m-1$. Define $L_{p, k}=\left[\begin{array}{l}p \\ k\end{array}\right] r_{p, k} q^{\frac{k(k-1)-p(p-1)}{2}}$, and use this definition in (53) to get

$$
d_{m}=\sum_{k=0}^{p} \frac{\left[\begin{array}{c}
p-m \tag{54}\\
p-k
\end{array}\right]}{\left[\begin{array}{l}
p \\
k
\end{array}\right]} q^{m(p-k)} L_{p, k}
$$

Note that

$$
\frac{\left[\begin{array}{c}
p-m \tag{55}\\
p-k
\end{array}\right]}{\left[\begin{array}{c}
p \\
k
\end{array}\right]}=\frac{\left(q^{k-m+1} ; q\right)_{m}}{\left(q^{p-m+1} ; q\right)_{m}}
$$

which yields

$$
\begin{align*}
d_{m} & =\sum_{k=0}^{p} \frac{\left(q^{k-m+1} ; q\right)_{m}}{\left(q^{p-m+1} ; q\right)_{m}} q^{m(p-k)} L_{p, k} \tag{56}\\
& =\sum_{k=0}^{p} \frac{\left[q^{p-k}-q^{p-m+1}\right]_{q}^{m}}{\left(q^{p-m+1} ; q\right)_{m}} L_{p, k}
\end{align*}
$$

Now make a change of index $j=p-k$ in (56) and write $B_{p, j}=L_{p, p-j}$ to finally obtain

$$
\begin{equation*}
d_{m}=\frac{1}{\left(q^{p-m+1} ; q\right)_{m}} \sum_{j=0}^{p}\left[q^{j}-q^{p-m+1}\right]_{q}^{m} B_{p, j} . \tag{57}
\end{equation*}
$$

The sum on the right side of (57) represents the evaluation of a Riemann-Stieltjes integral with jumps at the points $q^{j}, j=0,1, \ldots, p$, the jump at each such point is $B_{p, j}$. If we define the step function $\Lambda_{p}(t)$ by

$$
\Lambda_{p}(t)=\left\{\begin{array}{cc}
0, & t<q^{p} \tag{58}\\
B_{p, p}, & q^{p} \leq t<q^{p-1} \\
B_{p, p}+B_{p, p-1}, & q^{p-1} \leq t<q^{p-2} \\
\ldots & \\
B_{p, 0}+B_{p, 1}+\ldots+B_{p, p-1}+B_{p, p}, & 1 \leq t
\end{array}\right.
$$

then we may write equation (57) in the form

$$
\begin{equation*}
d_{m}=\frac{1}{\left(q^{p-m+1} ; q\right)_{m}} \int_{0}^{1}\left[t-q^{p-m+1}\right]_{q}^{m} d \Lambda_{p}(t) . \tag{59}
\end{equation*}
$$

Note that the function $\Lambda_{p}(t)$ is bounded because it is monotone increasing and $\Lambda_{p}(1)=d_{0}$ from (53). Now observe that

$$
\begin{equation*}
\frac{1}{\left(q^{p-m+1} ; q\right)_{m}}=1+q^{p} O(1) \text { as } p \rightarrow \infty . \tag{60}
\end{equation*}
$$

Also,

$$
\left[t-q^{p-m+1}\right]_{q}^{m}=\sum_{j=0}^{m}\left[\begin{array}{l}
p \tag{61}\\
j
\end{array}\right](-1)^{j} q^{\frac{j(j-1)}{2}} q^{(p-m+1) j} t^{m-j}=t^{m}+q^{p} O(1) \text {, as } p \rightarrow \infty .
$$

Equation (59) can thus be written as

$$
\begin{equation*}
d_{m}=\int_{0}^{1} t^{m} d \Lambda_{p}(t)+q^{p} O(1) \tag{62}
\end{equation*}
$$

We can now apply the Helly-Bray Selection Theorem (cf.[9]) to (62) and allowing $p \rightarrow \infty$, the existence of a bounded and non-decreasing function $\Lambda(t)$ such that

$$
\begin{equation*}
d_{m}=\int_{0}^{1} t^{m} d \Lambda(t) \tag{63}
\end{equation*}
$$

is established. Further, since each function $\Lambda_{p}(t)$ has jumps at $1, q, q^{2}, \ldots q^{p}$, and $\Lambda_{p}(0)=0$ it follows that the limit function $\Lambda(t)$ has jumps at $q^{j}, j=0,1,2, \ldots$, and that $\Lambda(0)=0$. Thus $\Lambda(t) \in \digamma$. This proves the theorem.
We now need some lemmas. The proofs are direct and we only outline one proof.
Lemma $2 x^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}n \\ k\end{array}\right][x-1]_{q}^{k}, n=0,1, \ldots$
Definition 3 Let $\Lambda_{p s}[x]$ be the polynomial of degree p defined by

$$
\begin{equation*}
\Lambda_{p s}[x]=(-1)^{p} h_{p s} x^{s}[x-1]_{q}^{p-s} \tag{64}
\end{equation*}
$$

Also, for a given sequence $\left(d_{n}\right)$ define a linear functional M acting on polynomials by $M\left(x^{n}\right)=d_{n}$.

A calculation shows that $M\left[\Lambda_{p s}[x]\right]=\lambda_{p s}$. We will make use of the following identity that has a straightforward induction proof, which is omited.

Lemma 3 If $0 \leq n \leq p$ then

$$
x^{n}=\sum_{s=n}^{p} \frac{\left[\begin{array}{l}
s \tag{65}\\
n
\end{array}\right]}{\left[\begin{array}{l}
p \\
n
\end{array}\right]} q^{n(p-s)} \Lambda_{p s}[x] .
$$

Next, for a function f defined on the points q^{k} define the q-Bernstein polynomial associated with f to be

$$
\begin{equation*}
B_{p}[f[x]]=\sum_{s=0}^{p} f\left(q^{p-s}\right) \Lambda_{p s}[x] . \tag{66}
\end{equation*}
$$

Lemma 4 If $0 \leq n \leq s \leq p$, then $\left.\left\{\begin{array}{c}{\left[\begin{array}{l}s \\ n\end{array}\right]} \\ {\left[\begin{array}{l}p \\ n\end{array}\right]}\end{array}\right]\right\} q^{p-s}=q^{p} O(1)$ as $p \rightarrow \infty$.
Proof. The integer n is considered to be fixed. We have

$$
\frac{\left[\begin{array}{l}
s \tag{67}\\
n
\end{array}\right]}{\left[\begin{array}{l}
p \\
n
\end{array}\right]}=\frac{\left(q^{s-n+1} ; q\right)_{n}}{\left(q^{p-n+1} ; q\right)_{n}}
$$

Also, $\left(q^{s-n+1} ; q\right)_{n}=\sum_{j=0}^{n}(-1)^{j}\left[\begin{array}{c}n \\ j\end{array}\right] q^{j(j-1) / 2} q^{(s-n+1) j}=1+q^{s} O(1)$ as $s \rightarrow \infty$.
Using the q-binomial theorem we have

$$
\begin{equation*}
\frac{1}{\left(q^{p-n+1} ; q\right)_{n}}=\frac{\left(q^{p+1} ; q\right)_{\infty}}{\left(q^{p-n+1} ; q\right)_{\infty}}=\sum_{j=0}^{\infty} \frac{\left(q^{n} ; q\right)_{j}}{(q ; q)_{j}} q^{(p-n+1) j}=1+q^{p} O(1) \tag{68}
\end{equation*}
$$

Using these expressions we get the result.

Lemma 5 If $\sum_{s=0}^{p}\left|\lambda_{p s}\right|<K$ for $p=0,1, \ldots$ then $\lim _{p \rightarrow \infty} M\left[B_{p}\left[x^{n}\right]\right]=d_{n}$.
Proof. We have $B_{p}\left[x^{n}\right]=\sum_{s=0}^{p} q^{n(p-s)} \Lambda_{p s}[x]$ and consequently $M\left[B_{p}\left[x^{n}\right]\right]=$ $\sum_{s=0}^{p} q^{n(p-s)} \lambda_{p s}$. From Lemma 4 recalling that $M\left[x^{n}\right]=d_{n}$ and applying M on both sides of (65) we get

$$
d_{n}=\sum_{s=n}^{p} \frac{\left[\begin{array}{l}
s \tag{69}\\
n
\end{array}\right]}{\left[\begin{array}{l}
p \\
n
\end{array}\right]} q^{n(p-s)} \lambda_{p s},
$$

thus we may write

$$
d_{n}-M\left[B_{p}\left[x^{n}\right]\right]=\sum_{s=n}^{p}\left\{\frac{\left[\begin{array}{c}
s \tag{70}\\
n
\end{array}\right]}{\left[\begin{array}{c}
p \\
n
\end{array}\right]}-1\right\} q^{n(p-s)} \lambda_{p s}-\sum_{s=0}^{n} q^{n(p-s)} \lambda_{p s}
$$

Note that the right side of the above expression vanishes when $n=0$ and the lemma then holds trivially. We may then suppose that $n \geq 1$ for the remainder of the proof. The second sum on he right of (70) is of the form $q^{p} O(1)$ as $p \rightarrow \infty$.The first sum also has that form by Lemma (4). This proves the result.

Definition $4 \alpha(t) \in F^{*}$ if $\alpha(t)$ has points of increase at $q^{k}, k=0,1, \ldots$ and nowhere else, $\alpha(0)=0$, and if $\alpha(t)$ is of bounded variation on $[0,1]$.

Theorem 12 A q-Hausdorff matrix is regular if and only if d_{m} is given by (63) with $\Lambda(t) \in F^{*}$.

Proof. If d_{m} is given by (63) with $\Lambda(t) \in \digamma^{*}$ then a very slight modification of the proof of Theorem 10 gives the necessary conclusion. So we must prove that d_{m} is a q-moment sequence with weight function in the class F^{*} if the q-Hausdorff matrix is regular. Suppose first that

$$
\begin{equation*}
\sum_{s=0}^{p}\left|\lambda_{p s}\right|<K, p=0,1, \ldots \tag{71}
\end{equation*}
$$

We rewrite (69) in the form

$$
\begin{equation*}
d_{n}=\frac{1}{\left(q^{p-n+1} ; q\right)_{n}} \sum_{k=0}^{p-n}\left[q^{k}-q^{p-n+1}\right]_{q}^{n} \lambda_{p, p-k} \tag{72}
\end{equation*}
$$

We may write the right side of (72) as a Riemann-Stieltjes integral in the form

$$
\begin{equation*}
d_{n}=\frac{1}{\left(q^{p-n+1} ; q\right)_{n}} \int_{0}^{1}\left[t-q^{p-n+1}\right]_{q}^{n} d \Psi_{p}(t) \tag{73}
\end{equation*}
$$

The weight function $\Psi_{p}(t)$ is defined by

$$
\Psi_{p}(t)=\left\{\begin{array}{cc}
0 & \text { if } t<q^{p} \tag{74}\\
\lambda_{p 0}+\lambda_{p 1} & \text { if } q^{p-1} \leq t<q^{p-2} \\
\ldots & \text { if } q \leq t<1 \\
\lambda_{p 0}+\ldots+\lambda_{p, p-1} & \text { if } 1 \leq t \\
\lambda_{p 0}+\ldots \lambda_{p p} &
\end{array}\right.
$$

The function $\Psi_{p}(t)$ thus defined is of uniformly bounded variation because $\sum_{s=0}^{p}\left|\lambda_{p s}\right|<K, p=0,1, \ldots$ We may apply the reasoning that led to equation (62) and then appeal to the Helly-Bray Theorem [9] to conclude that

$$
\begin{equation*}
d_{n}=\int_{0}^{1} t^{n} d \Psi(t) \tag{75}
\end{equation*}
$$

where $\Psi(t) \in F^{*}$. Now suppose that $\lim _{p \rightarrow \infty} \sum_{s=0}^{p} \lambda_{p s}=1$. Using (43) we have that

$$
\begin{equation*}
\sum_{s=0}^{p} \lambda_{p s}=\int_{0}^{1} d \Lambda(t) \tag{76}
\end{equation*}
$$

We thus have that $\Lambda(1)-\Lambda\left(0^{+}\right)=1$. Lastly suppose that $\lim _{p \rightarrow \infty} \lambda_{p s}=0$. Then

$$
\lim _{p \rightarrow \infty}(-1)^{s}\left[\begin{array}{l}
p \tag{77}\\
s
\end{array}\right] q^{\left(s^{2}-s-p^{2}+p\right) / 2} \int_{0}^{q^{p-s}} t^{s}[t-1]_{q}^{p-s} d \Psi(t)=0
$$

The above implies that $\lim _{p \rightarrow \infty} \int_{0}^{q^{p-s}} t^{s}[t-1]_{q}^{p-s} d \Psi(t)=0$. It is not difficult to show that this implies $\Psi\left(0^{+}\right)=\Psi(0)=0$.

References

[1] J. Bustoz and J. L. Cardoso, Basic Analog of Fourier Series on a q-Linear Grid, Journal of Approximation Theory, 112 (2001), 134-157.
[2] J. Bustoz and M.E.H. Ismail, The Associated Ultraspherical Polynomials and Their q-Analogs, Canadian Journal of Mathematics, 34(1982), 718-736.
[3] J. Bustoz and S. K. Suslov, Basic Analog of Fourier Series on a q-Quadratic Grid, Methods of Applied Analysis,5 (1998),1-38.
[4] L. DeBranges and D. Trutt, Quantum Cesàro Operators,Topics in Functional Analysis, Edited by I. Gohberg and M. Kac, Academic Press, New York, 1978.
[5] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
[6] G. H. Hardy, Divergent Series, Oxford University Press, Oxford,1949.
[7] G. Pólya and G. Szegő, Problems in Analysis, Vol.1, Springer-Verlag, New York, 1972.
[8] H. S. Wall, Continued Fractions, Chelsea, New York, 1967.
[9] D. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946.

