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Abstract

We define a q-analog of Cesàro summability and we then construct
a class of q-Hausdorff matrices. We define a type of q-difference for se-
quences and a q-analog of Bernstein polynomials. Using these concepts
we define a q-moment problem and relate this moment problem to q-
Hausdorff summability.
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1 Introduction

If (zn) is a sequence of complex numbers then the Cesàro mean (σn) is defined
by

σn =
z0 + z1 + ... + zn

n + 1
, n = 0, 1, 2, ... (1)

If limn→∞ σn = σ then the sequence (zn) is said to be Cesàro summable to the
limit σ. It is also said that (zn) is summable by the Cesàro means of first order,
or is summable (C, 1). This is because the Cesàro mean as defined in (1) belongs
to a family of summability methods (C,α) where α > 0. We will speak of these
more general Cesàro means subsequently. The first order means (1) have played
an important role in analysis. Arguably the most famous application of (C, 1)
summability is the classic result of L. Fejér in which he proved that the Cesàro
means of the Fourier series of a continuous function converge uniformly. This
beautiful theorem may be found in most books on Fourier series. The subject of
summability methods was a major research topic in the first half of the twentieth
century, an excellent reference to this work is provided by G.H. Hardy’s classic
book Divergent Series [6].

The last thirty years has seen a remarkable production of research involving
q-series and q-differences (cf. [5]). This q-analysis has deep roots going back
to Euler. The development of the theory of Askey-Wilson polynomials was a
primary catalyst in the current interest in the subject. One of the thrusts in
this research has been aimed at finding suitable q -analogs of functions and
processes belonging to classical function theory. For example in [1] and [3]
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first steps were taken in the development of a Fourier theory involving certain
q-analogs of trigonometric functions. A complete development of a q-Fourier
theory must include a suitable summability theory. In this paper we will take a
preliminary step by introducing a q-analog of Cesàro summability and linking
it to a q-version of Hausdorff summability.

For the sake of completeness we will make some definitions and fix some
notation used in the q-calculus. The standard reference on such things is the
book by G. Gasper and M. Rahman [5]. We will always assume that 0 < q < 1.
First, we define the q-coefficient (a; q)n = (1 − a)(1 − aq) . . . (1 − aqn−1). The
infinite version of this product is defined by (a; q)∞ = limn→∞(a; q)n . The
q-binomial coefficient is defined by

[
p
s

]
= (q;q)p

(q;q)s(q;q)p−s
. We will use the notation

[x− a]nq = (x− a)(x− aq)...(x− aqn−1) and throughout the paper we will make
frequent use of the finite q-binomial theorem (cf.[5]) which states that

[x− a]nq =
n∑

j=0

(−1)jq
j(j−1)

2

[
n

j

]
ajxn−j . (2)

Lastly, we record the definition of the Jackson q-integral which plays an impor-
tant role in the q-calculus. If f is a suitably defined function then∫ a

0

f(t)dqt = (1− q)a
∞∑

k=0

f(aqk)qk. (3)

We note that the q-integral (3) is a Riemann-Stieltjes integral with respect to
a step function having infinitely many points of increase at the points aqk,
k = 0, 1, . . .. The jump at aqk is a(1− q)qk.

2 q-Cesàro Summability

Let A = (ank), n, k = 0, 1, 2, . . . be an infinite matrix of real numbers. We will
define the A-transform of a given sequence z = (zn) to be the sequence t = (tn)
defined by

tn =
∞∑

k=0

ankzk, n = 0, 1, . . . (4)

Naturally we presume that the infinite series in (4) converge. The relation
(4) can be written in matrix form as t = Az. The matrix A is said to be a
regular summability method if the convergence of the sequence (zn) implies the
convergence of the transform sequence (tn) to the same limit. That is, zn → a
implies that tn → a. The matrix corresponding to the first order Cesàro means
(1) is

ank =
{

1
n+1 if k ≤ n

0 if k > n
(5)

The Silverman-Toeplitz theorem ([6],[8],[9]) provides necessary and sufficient
conditions that the matrix A in (4) be regular.

Theorem 1 (Silverman-Toeplitz): The matrix A is a regular summability method
if and only if

(1) limn→∞ank = 0, k = 0, 1, . . . ,



(2) limn→∞
∑∞

k=0 ank = 1,
(3)

∑∞
k=0 |ank| < M, n = 0, 1, . . ..

It is obvious that the Cesàro matrix in (5) satisfies the three conditions of
Theorem 1. There are many ways to define a q-analog of (C, 1) summability.
We will give our suggested analog and then explain why it seems suitable. Define
C1(q) = (ank(q)) where

ank(q) =
{ 1−q

1−qn+1 qn−k if k ≤ n

0 if k > n
(6)

We will then say that (zn) is q-Cesàro summable to the limit a if

lim
n→∞

n∑
k=0

ank(q)zk = a. (7)

The first reason that this definition is appropriate is that limq→1 ank(q) =
1

n+1 . Thus the q-Cesàro matrix C1(q) converges to the Cesàro matrix for (C,1)
summability as q → 1. Another reason the definition seems appropriate involves
the relation between the binomial theorem and the q-binomial theorem. We will
explain this now. The Cesàro means of order α satisfy a power series identity
that may be taken as their defining relation. Given an infinite series

∑∞
k=0 uk,

we define the (C,α) mean of the series to be the sequence (U (α)
n ) in the power

series identity

(1− z)−α−1
∞∑

n=0

unzn =
∞∑

n=0

b(α+1)
n U (α)

n zn, (8)

where the numbers b
(α+1)
n are the binomial power series coefficients:

(1− z)−α−1 =
∞∑

n=0

b(α+1)
n zn. (9)

If we denote the partial sums of
∑∞

k=0 uk by sn then the identity (8) is equivalent
to

(1− z)−α
∞∑

n=0

snzn =
∞∑

n=0

b(α+1)
n U (α)

n zn. (10)

If we set α = 1 in (10) we obtain the (C, 1) mean defined in (1). It seems
reasonable to write a q-analog of (9) by using the q-binomial series (cf.[5]).

(qα+1z; q)∞
(z; q)∞

=
∞∑

n=0

(qα+1; q)n

(q; q)n
zn. (11)

If q → 1 in (11) then (9) is obtained. We would then define the q-Cesàro mean
of order α of a sequence (un) to be the sequence (U (α)

n (q)) given by

(qα+1z; q)∞
(z; q)∞

∞∑
n=0

unzn =
∞∑

n=0

(qα+1; q)n

(q; q)n
U (α)

n (q)zn. (12)

When α = 1 in (12) we get the first order q-Cesàro mean as defined in (1) and
as defined by the matrix C1(q). We will denote the summability matrix that



corresponds to α > 0 in (12) by Cα(q). Simple calculations establish that the
q−Cesàro matrix Cα(q) of order α satisfies the conditions of Theorem 1. We
thus have

Theorem 2 The q-Cesàro matrix Cα(q) is a regular summability method if
α > 0.

If A and B are summability matrices we say that A is stronger than B if every
sequence that is summed by B is also summed by A (to the same limit). If
conversely every A summable sequence is also B summable then we say that A
and B are equivalent. It is natural to ask how the strength of the first order
q-Cesàro means varies with q. The answer is provided in the next theorem.

Theorem 3 C1(q1) and C1(q2) are equivalent for 0 < q1, q2 < 1

Proof. Set α = 1 in equation (12) to get

1
(1− z)(1− qz)

∞∑
n=0

unzn =
∞∑

n=0

1− qn+1

1− q
U (1)

n (q)zn. (13)

If we set q = q1 and q = q2 in (13) we easily find that

1− q2z

1− q1z

∞∑
n=0

1− qn+1
2

1− q2
U (1)

n (q2)zn =
∞∑

n=0

1− qn+1
1

1− q1
U (1)

n (q1)zn. (14)

Expanding 1−q2z
1−q1z in a power series, multiplying the series on the left of (14),

and equating power series coefficients yields

U (1)
n (q1) =

n∑
j=0

anjU
(1)
j (q2), (15)

where the terms anj have the form

anj =

 (q1 − q2)
1−qj+1

2

1−qn+1
1

1−q1
1−q2

qn−j−1
1 if j = 0, 1, ..., n− 1

1−qn+1
2

1−qn+1
1

1−q1
1−q2

if j = n
(16)

Equation (16) expresses the sequence (U (1)
n (q1)) as a matrix transform of the

sequence (U (1)
n (q2)). A routine calculation shows that the matrix (ank) satisfies

the conditions of Theorem 2. Thus every sequence summable C1(q2) is also
summable C1(q1). To complete the proof, we only need to switch q1 and q2 in
the calculations above.
This theorem does not address the comparison of C1(q) with the usual Cesàro
mean (C, 1). The next theorem deals with this.

Theorem 4 Any sequence that is summable C1(q) is also summable (C, 1). The
converse statement does not hold.

Proof. The proof follows the same lines as the proof of Theorem 3. Let (σn)
denote the (C, 1) mean of a given sequence and let (Un(q)) denote the C1(q)
mean of the same sequence. Then we have σn =

∑n
j=0 αnjUj(q) , where

αnj =

{
1−qj+1

n+1 if j = 0, 1, ..., n− 1
1−qn+1

(n+1)(1−q) if j = n
(17)



The matrix (αnj) satisfies the conditions of Theorem 1, hence if (Un(q)) con-
verges then so does (σn). To prove the second part of the theorem we write
Un(q) =

∑n
j=0 βnjσj , where

βnj =

{
1−q

1−qn+1 (j + 1)(1− q−1)qn if j = 0, 1, ..., n− 1
1−q

1−qn+1 (n + 1) if j = n
. (18)

A calculation shows that limn→∞
∑n

j=0 βnj 6= 0.

Consider, for example, the sequence (un) defined by un = 1
2 +cos(x)+cos(2x)+

... + cos(nx). It is well known that (un) is (C, 1) summable to 0 provided
x 6= 2kπ. However, it is not C1(q) summable.
Remark: The q-Cesàro matrix C1(q) appears in the Pólya-Szegő problem book [7],
and in [4]. However neither of these references have placed C1(q) in the context
of Hausdorff summability as will be done here.

3 Hausdorff Summability

The Cesàro means (C,α) belong to an important class of summability methods
called Hausdorff Methods. We will give a very brief outline of the subject here.
We will follow the development in [8], other presentations may be found in [6]
and [9]. Let C denote the matrix that corresponds to (C, 1) summability. We
seek a matrix H with the property that HC = DH where D is diagonal. Solving
the matrix equation we find that H = (hpq) with

hpq = (−1)p−q

(
p

q

)
hpp. (19)

The numbers hpp are arbitrary as long as they are non-zero. We choose hpp =
(−1)p and then the matrix H has elements given by

hpq = (−1)q

(
p

q

)
. (20)

The matrix H is self-inverse, that is, H−1 = H. The diagonal matrix D has
diagonal elements dp = 1

p+1 . With these matrices we have C = H−1DH. Now
we define a Hausdorff matrix to be of the form A = H−1DH where H is the
matrix with elements as in (20) and D is any diagonal matrix. Thus Hausdorff
matrices can be viewed as generalizations of (C, 1) summability. We need three
fundamental theorems pertaining to Hausdorff matrices.

Theorem 5 A triangular matrix A commutes with C (the (C, 1) matrix) if and
only if A is a Hausdorff matrix.

Theorem 6 A Hausdorff matrix H−1DH is regular if and only if D = (dpδpq)
with

dp =
∫ 1

0

tpdφ(t), p = 0, 1, . . . (21)

where the function φ(t) is of bounded variation on [0, 1], φ(1) − φ(0) = 1, and
φ(0+) = φ(0).



A sequence that has the integral form above is called a Hausdorff moment
sequence. It is important to record a formula for the elements of a Hausdorff
matrix. Given a sequence (dp) we define the kth forward difference by

∆kdn =
k∑

m=0

(−1)m

(
k

m

)
dn+m. (22)

We define the kth backward difference by

∇kdn =
k∑

m=0

(−1)m

(
k

m

)
dn+k−m. (23)

The backward and forward differences clearly satisfy the identity ∆kdn = (−1)k∇kdn.
Now if Λ = (λkm) is a Hausdorff matrix Λ = H−1DH with D = (dpδpq) then

λkm =
(

k

m

)
∆k−mdm. (24)

Theorem 7 The sequence (dp) has the form

dp =
∫ 1

0

tpdφ(t), p = 0, 1, . . . (25)

if and only if
(−1)k∆kdn ≥ 0, n, k = 0, 1, . . . (26)

4 q-Hausdorff Summability

In this section we will parallel the connections between (C, 1) and Hausdorff
means for the case of q-Cesàro and a q-analog of Hausdorff matrices. We begin
by finding a matrix Hq that plays the role of the self-inverse matrix H given by
(19).

Theorem 8 If D is a diagonal matrix then the matrix equation HqC1(q) = DHq

has solution Hq = (hps) with

hps = (−1)p−s

[
p

s

]
hppq

(s2−s−p2+p)/2, s = 0, 1, . . . p (27)

The diagonal matrix D is given by D = (dpδps) with

dp =
1− q

1− qp+1
. (28)

Proof. The proof is a standard matrix calculation.
The terms hpp in (27) are arbitrary as long as they are non-zero. Accordingly,
taking hpp = (−1)p , the matrix Hq is found to be given by

hps = (−1)s

[
p

s

]
q(s2−s−p2+p)/2, s = 0, 1, . . . , p. (29)



The matrix Hq is not self-inverse as is the case with the matrix H that was
defined in (20). It is easy however to compute the inverse and we find H−1

q =
(h∗ps) where

h∗ps = hpsq
(p−s)(p−s−1)/2. (30)

It should be noted that the sequence defined in (28) is a Hausdorff moment
sequence and hence the q-Cesàro matrix is a Hausdorff matrix. This is seen by
writing

dp = (1− q)
∞∑

k=0

qkpqk =
∫ 1

0

tpdqt, (31)

and recalling that the q-integral is a Riemann-Stieltjes integral. The more gen-
eral q-Cesàro matrix of order α defined by (2.8) also involves a moment se-
quence. To see this we denote the matrix by Cα(q) = (an,k) and note that
an,n = (q;q)n

(qα+1;q)n
. Now we appeal to Lemma 2.1 in [3] which states:

Lemma 1 If 0<b<a<1 then

(a; q)k

(b; q)k
=

∫ 1

0

tkdΨ(t) (32)

where Ψ(t) is a monotone increasing step function.

We can thus conclude that if α > 0 then the general q-Cesàro matrix is a
Hausdorff matrix. We now define a q-Hausdorff matrix to be a lower triangular
matrix of the form H−1

q DHq where D is a diagonal matrix. Thus as q → 1 a
q-Hausdorff matrix H−1

q DHq approaches a Hausdorff matrix HDH.
Next, the form of the matrix elements in a q-Hausdorff matrix will be deter-
mined.

Definition 1 For a given sequence (dp) we define the kth forward q-difference
of (dp) by

∆(k)
q dp =

k∑
j=0

(−1)j

[
k

j

]
q

(k−j)(k−j−1)
2 dj+p, k = 0, 1, . . . (33)

We define the kth backward q-difference by

∇(k)
q dp =

k∑
j=0

(−1)j

[
k

j

]
q

j(j−1)
2 dk+p−j . (34)

Note that as q → 1 the forward q-difference approaches the standard forward dif-
ference defined in (22) and the backward q-difference approaches the backward
difference in (23). Also, we have the identity ∆(k)

q ds = (−1)k∇(k)
q ds. A matrix

calculation shows that we have:

H−1
q DHq = (λps), λps = (−1)shps∆

(p−s)
q dp = (−1)phps∇(p−s)

q dp,
s = 0, 1, ..., p; p = 0, 1, . . .

(35)

The forward difference defined by (22) satisfies the identity

∆ndp = ∆n−1dp −∆n−1dp+1 (36)

The forward q-difference defined by (33) satisfies a similar identity as we prove
next.



Theorem 9 The forward q-difference defined in (33) satisfies the identity

∆(n)
q ds = qn−1∆(n−1)

q ds −∆(n−1)
q ds+1. (37)

Proof. Use the identity
[
n
j

]
=

[
n−1
j−1

]
+ qj

[
n−1

j

]
to write

∆(n)
q ds =

n−1∑
j=0

(−1)jqj

[
n− 1

j

]
q

(n−j)(n−j−1)
2 dj+s −

−
n−1∑
j=0

(−1)j

[
n− 1

j

]
q

(n−j−1)(n−j−2)
2 dj+s+1.

A simple rearrangement of the sums gives (37).
The identity (37) written in terms of the backward difference becomes

∇(n)
q dp = ∇(n−1)

q dp − qn−1∇(n−1)
q dp+1. (38)

5 A Class of q-Hausdorff Matrices

The q-Cesàro matrix C1(q) = H−1
q DHq is generated by the moment sequence

dp =
∫ 1

0
tpdqt. In this section, a class of q-Hausdorff matrices that generalize

C1(q) will be introduced. Given a sequence of positive numbers ak with a0 = 1,
ak+1 < ak, k = 0, 1, . . . , and ak → 0. Define a function Ψq(t) by Ψq(t) =
ak − ak+1, q

k ≤ t < qk−1, k = 1, 2, . . . ,Ψq(0) = 0,Ψq(t) = 1, t ≥ 1. For
each such sequence and each such resulting weight function Ψ(t) we have a
q-Hausdorff matrix where the diagonal matrix D has entries given by

dp =
∫ 1

0

tpdΨq(t). (39)

In particular when ak = qk then dΨq(t) = dqt and the q-Hausdorff matrix is
C1(q).

Theorem 10 The matrices H−1
q DHq where the elements of D are given by (39)

are regular.

Proof. We must show that if dp is given by (39) then the matrix elements λps

given by (34) satisfy the three conditions of Theorem 2. We will consider the
three conditions in order.

(i) To prove that λps → 0 as p → ∞ for each s = 0, 1, . . . we must first
compute the difference ∇(p−s)

q ds. We have

∇(p−s)
q ds =

∑p−s
j=0(−1)j

[
p−s

j

]
q j(j−1)

2 dp−j

=
∫ 1

0

∑p−s
j=0(−1)j

[
p−s

j

]
q j(j−1)

2 tp−jdΨq(t) =
∫ 1

0
ts[t− 1]p−s

q dΨq(t).
(40)

Note that [t − 1]p−s
q = (t − 1)(t − q) . . . (t − qp−s−1) = 0 when t = qm,

m = 0, 1, . . . p− s− 1. Thus

∇(p−s)
q ds =

∫ qp−s

0

ts[t− 1]p−s
q dΨq(t). (41)



After some calculations, it is found that∣∣∣∇(p−s)
q ds

∣∣∣ ≤ q
(p−s)(p−s−1)

2 (q; q)p−sq
(p−s)sqp−s

[
Ψq(qp−s)−Ψq(0)

]
. (42)

Thus we have |λps| ≤ (q;q)p

(q;q)s
qp−s. This proves that λps → 0 as p → ∞ for fixed

s.
(ii) Here, it will be proven that limp→∞

∑p
s=0 λps = 1. From (34) and from

(39) we get

p∑
s=0

λps = (−1)pq−
p(p−1)

2

∫ 1

0

p∑
s=0

(−1)s

[
p

s

]
q

s(s−1)
2 ts[t− 1]p−s

q dΨq(t). (43)

In the right side of (43) use the expansion
[t − 1]p−s

q =
∑p−s

j=0(−1)j
[
p−s

j

]
q

j(j−1)
2 tp−s−j , and use the identity

[
p
s

][
p−s

j

]
=[

p−j
s

][
p
j

]
, and interchange the sums to get∫ 1

0

∑p
s=0(−1)s

[
p
s

]
q

s(s−1)
2 ts[t− 1]p−s

q dΨq(t) =∫ 1

0

∑p
j=0

[
p
j

]
(−1)jq

j(j−1)
2

∑p−j
s=0(−1)s

[
p−j

s

]
q

s(s−1)
2 tp−jdΨq(t).

(44)

Note that
∑p−j

s=0(−1)s
[
p−j

s

]
q

s(s−1)
2 tp−j = δpj , and thus the right side of (44)

reduces to (−1)pq
p(p−1)

2
∫ 1

0
dΨq(t). Thus we have

p∑
s=0

λps =
∫ 1

0

dΨq(t) = 1. (45)

(iii) Here we must prove that
∑p

s=0 |λps| is uniformly bounded. But it is
easy to use an argument like that in (i) to see that λps ≥ 0, the bound then
follows from (ii).
As a further example of such a q-Hausdorff matrix we discuss a q-analog of Euler
summability (cf.[6]). Here we will take the q-Hausdorff matrix to have elements

λps =

[
p
s

]
q(p−s)(p−s−1)/2ap−sxs

[x + a]pq
, 0 < a < x. (46)

A calculation shows that the associated diagonal matrix has elements given by

dp =
1

(−a
x ; q)p

. (47)

Write α = a
x , we have 0 < α < 1. We can then write

dp =
(−αqp; q)∞
(−α; q)∞

=
1

(−α; q)∞

∞∑
n=0

q(
n
2)αnqnp

(q; q)n
. (48)

The right side of (48) is a Riemann-Stieltjes integral of the form (39) in which
the weight function Ψ(t) has jumps at the points qn and the jump j(qn) at qn

has value

j(qn) =
q(

n
2)αn

(q; q)n(−α; q)∞
. (49)



We note that when q → 1 the matrix elements in (46) approach the matrix
elements for Euler summability.

The examples of q-Hausdorff summability shown here all have weight func-
tions that are purely discrete and have jumps at the points qj , the resulting
Riemann-Stieltjes integrals thus are all very similar to the Jackson q-integral.
In the next section it will be shown that this is not accidental.

6 Relation to the Hausdorff Moment Problem

It is known that a Hausdorff matrix HDH is regular if and only if the sequence
that forms the main diagonal in D is a Hausdorff moment sequence ([6], [8],
[9]). We will now form a similar connection for a q-Hausdorff matrix. We will
say that a sequence (dp) is totally q-monotone if ∆(n)

q dp ≥ 0, n, p = 0, 1, . . .. We
define a class of weight functions z as follows.

Definition 2 α(t) belongs to the class z if α(t) is bounded and monotone in-
creasing with jumps at the points qj, j = 0, 1, . . ., α(0) = 0, and if α(t) has no
other point of increase.

Theorem 11 (dp) is totally q-monotone if and only if dp =
∫ 1

0
tpdΨ(t), where

Ψ(t) ∈ z.

Proof. First, suppose that dp is of the form stated with Ψ(t) ∈ z. We compute
the q-difference and find that if aj > 0 is the jump at qj then

∆(k)
q ds =

∫ 1

0

(1− t)(q − t)(q2 − t) . . . (qk−1 − t)tsdΨ(t)

=
∞∑

j=k

(1− qj)(q − qj) . . . (qk−1 − qj)ajq
js > 0

In the other direction the proof follows the lines of the presentation given by
Wall [8], the original idea of the proof is due to Schoenberg . We begin with the
observation that if ∆(n)

q ds ≥ 0, n, s = 0, 1, . . . then for any integer p we have

dn ≥ 0, n = 0, 1, ..., p

∆(1)
q dn ≥ 0, n = 0, 1, ..., p− 1
· · ·

∆(p−1)
q dn ≥ 0, n = 0, 1
∆(p)

q dn ≥ 0, n = 0

(50)

From (37) it follows that the above equations are equivalent to the inequalities

∆(p)
q d0 ≥ 0

∆(p−1)
q d1 ≥ 0

· · ·
∆(1)

q dp−1 ≥ 0
∆(0)

q dn ≥ 0

(51)



If we define rp,n = ∆(p−n)
q dn the system (51) can be written using (33) as

rp,n =
p∑

m=0

(−1)m−n

[
p− n

m− n

]
dmq

(p−m)(p−m−1)
2 , n = 0, 1, . . . , p. (52)

Note that the terms in the sum in (52) vanish if m ≤ n − 1. The system of
equations (52) can be solved for dm, the result is

dm =
p∑

k=0

[
p−m

p− k

]
qm(p−k)rp,kq

k(k−1)−p(p−1)
2 . (53)

Again, the terms in the above sum vanish if k ≤ m−1. Define Lp,k =
[
p
k

]
rp,kq

k(k−1)−p(p−1)
2 ,

and use this definition in (53) to get

dm =
p∑

k=0

[
p−m
p−k

][
p
k

] qm(p−k)Lp,k. (54)

Note that [
p−m
p−k

][
p
k

] =
(qk−m+1; q)m

(qp−m+1; q)m
(55)

which yields
dm =

∑p
k=0

(qk−m+1;q)m

(qp−m+1;q)m
qm(p−k)Lp,k

=
∑p

k=0

[qp−k−qp−m+1]m
q

(qp−m+1;q)m
Lp,k

(56)

Now make a change of index j = p − k in (56) and write Bp,j = Lp,p−j to
finally obtain

dm =
1

(qp−m+1; q)m

p∑
j=0

[
qj − qp−m+1

]m

q
Bp,j . (57)

The sum on the right side of (57) represents the evaluation of a Riemann-Stieltjes
integral with jumps at the points qj , j = 0, 1, . . . , p, the jump at each such point
is Bp,j . If we define the step function Λp(t) by

Λp(t) =


0, t < qp

Bp,p, qp ≤ t < qp−1

Bp,p + Bp,p−1, qp−1 ≤ t < qp−2

· · ·
Bp,0 + Bp,1 + . . . + Bp,p−1 + Bp,p, 1 ≤ t

(58)

then we may write equation (57) in the form

dm =
1

(qp−m+1; q)m

∫ 1

0

[t− qp−m+1]mq dΛp(t). (59)

Note that the function Λp(t) is bounded because it is monotone increasing and
Λp(1) = d0 from (53). Now observe that

1
(qp−m+1; q)m

= 1 + qpO(1) as p →∞. (60)



Also,

[t− qp−m+1]mq =
m∑

j=0

[
p

j

]
(−1)jq

j(j−1)
2 q(p−m+1)jtm−j = tm + qpO(1), as p →∞.

(61)
Equation (59) can thus be written as

dm =
∫ 1

0

tmdΛp(t) + qpO(1). (62)

We can now apply the Helly-Bray Selection Theorem (cf.[9]) to (62) and allowing
p →∞, the existence of a bounded and non-decreasing function Λ(t) such that

dm =
∫ 1

0

tmdΛ(t) (63)

is established. Further, since each function Λp(t) has jumps at 1, q, q2, . . . qp, and
Λp(0) = 0 it follows that the limit function Λ(t) has jumps at qj , j = 0, 1, 2, . . . ,
and that Λ(0) = 0. Thus Λ(t) ∈ z. This proves the theorem.
We now need some lemmas. The proofs are direct and we only outline one proof.

Lemma 2 xn =
∑n

k=0

[
n
k

]
[x− 1]kq , n = 0, 1, . . .

Definition 3 Let Λps[x] be the polynomial of degree p defined by

Λps[x] = (−1)phpsx
s[x− 1]p−s

q . (64)

Also, for a given sequence (dn) define a linear functional M acting on polyno-
mials by M(xn) = dn.

A calculation shows that M [Λps[x]] = λps. We will make use of the following
identity that has a straightforward induction proof, which is omited.

Lemma 3 If 0 ≤ n ≤ p then

xn =
p∑

s=n

[
s
n

][
p
n

]qn(p−s)Λps[x]. (65)

Next, for a function f defined on the points qk define the q-Bernstein polynomial
associated with f to be

Bp[f [x]] =
p∑

s=0

f(qp−s)Λps[x]. (66)

Lemma 4 If 0 ≤ n ≤ s ≤ p , then
{

[s
n]
[p
n]
− 1

}
qp−s = qpO(1) as p →∞.

Proof. The integer n is considered to be fixed. We have[
s
n

][
p
n

] =
(qs−n+1; q)n

(qp−n+1; q)n
. (67)



Also, (qs−n+1; q)n =
∑n

j=0(−1)j
[
n
j

]
qj(j−1)/2q(s−n+1)j = 1 + qsO(1) as s → ∞.

Using the q-binomial theorem we have

1
(qp−n+1; q)n

=
(qp+1; q)∞

(qp−n+1; q)∞
=

∞∑
j=0

(qn; q)j

(q; q)j
q(p−n+1)j = 1 + qpO(1). (68)

Using these expressions we get the result.

Lemma 5 If
∑p

s=0 |λps| < K for p = 0, 1, . . . then limp→∞M [Bp[xn]] = dn.

Proof. We have Bp[xn] =
∑p

s=0 qn(p−s)Λps[x] and consequently M [Bp[xn]] =∑p
s=0 qn(p−s)λps. From Lemma 4 recalling that M [xn] = dn and applying M on

both sides of (65) we get

dn =
p∑

s=n

[
s
n

][
p
n

]qn(p−s)λps, (69)

thus we may write

dn −M [Bp[xn]] =
p∑

s=n

{[
s
n

][
p
n

] − 1

}
qn(p−s)λps −

n∑
s=0

qn(p−s)λps. (70)

Note that the right side of the above expression vanishes when n = 0 and the
lemma then holds trivially. We may then suppose that n ≥ 1 for the remain-
der of the proof. The second sum on he right of (70) is of the form qpO(1) as
p →∞.The first sum also has that form by Lemma (4). This proves the result.

Definition 4 α(t) ∈ F ∗ if α(t) has points of increase at qk, k = 0, 1, . . . and
nowhere else, α(0) = 0, and if α(t) is of bounded variation on [0, 1].

Theorem 12 A q-Hausdorff matrix is regular if and only if dm is given by (63)
with Λ(t) ∈ F ∗.

Proof. If dm is given by (63) with Λ(t) ∈ z∗ then a very slight modification
of the proof of Theorem 10 gives the necessary conclusion. So we must prove
that dm is a q-moment sequence with weight function in the class F ∗ if the
q-Hausdorff matrix is regular. Suppose first that

p∑
s=0

|λps| < K, p = 0, 1, . . . (71)

We rewrite (69) in the form

dn =
1

(qp−n+1; q)n

p−n∑
k=0

[qk − qp−n+1]nq λp,p−k (72)

We may write the right side of (72) as a Riemann-Stieltjes integral in the form

dn =
1

(qp−n+1; q)n

∫ 1

0

[t− qp−n+1]nq dΨp(t) (73)



The weight function Ψp(t) is defined by

Ψp(t) =


0 if t < qp

λp0 + λp1 if qp−1 ≤ t < qp−2

· · ·
λp0 + . . . + λp,p−1 if q ≤ t < 1

λp0 + . . . λpp if 1 ≤ t

(74)

The function Ψp(t) thus defined is of uniformly bounded variation because∑p
s=0 |λps| < K, p = 0, 1, . . . We may apply the reasoning that led to equa-

tion (62) and then appeal to the Helly-Bray Theorem [9] to conclude that

dn =
∫ 1

0

tndΨ(t) (75)

where Ψ(t) ∈ F ∗. Now suppose that limp→∞
∑p

s=0 λps = 1. Using (43) we have
that

p∑
s=0

λps =
∫ 1

0

dΛ(t). (76)

We thus have that Λ(1) − Λ(0+) = 1. Lastly suppose that limp→∞ λps = 0.
Then

lim
p→∞

(−1)s

[
p

s

]
q(s2−s−p2+p)/2

∫ qp−s

0

ts[t− 1]p−s
q dΨ(t) = 0. (77)

The above implies that limp→∞
∫ qp−s

0
ts[t− 1]p−s

q dΨ(t) = 0. It is not difficult to
show that this implies Ψ(0+) = Ψ(0) = 0.
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