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ABSTRACT

Longitudinal data are frequently analyzed using normal mixed effects models. Moreover, the tra-
ditional estimation methods are based on mean regression, which leads to non-robust parameter
estimation for non-normal error distributions. Compared to the conventional mean regression ap-
proach, quantile regression (QR) can characterize the entire conditional distribution of the outcome
variable and is more robust to the presence of outliers and misspecification of the error distribution.
This paper develops a likelihood-based approach for analyzing QR models for correlated continu-
ous longitudinal data via the asymmetric Laplace distribution (ALD). Exploiting the nice hierarchi-
cal representation of the ALD, our classical approach follows the Stochastic Approximation of the
EM (SAEM) algorithm for deriving exact maximum likelihood estimates of the fixed-effects and
variance components in nonlinear mixed effects models (NLMMs). We evaluate the finite sample
performance of the algorithm and the asymptotic properties of the ML estimates through empirical
experiments and applications to two real life datasets. The proposed SAEM algorithm is imple-
mented in the R package qrNLMM.
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RESUMEN

Los datos longitudinales son frecuentemente analizados usando modelos de efectos mixtos nor-
males. Por otra parte, los métodos de estimación tradicionales son basados en regresión en media, lo
cual conduce a estimaciones no robustas de los parámetros cuando los errores no se distribuyen nor-
malmente. Comparada con el enfoque de la regresión en media tradicional, la regresión cuantı́lica
(RC) puede caracterizar completamente la distribución condicional de la variable de respuesta y es
más robusta ante la presencia de valores atı́picos y especificaciones erróneas de la distribución del
error. Este artı́culo usa un enfoque basado en verosimilitud para analizar modelos de RC para datos
continuos longitudinales correlacionados usando la distribución Laplace asimétrica (DLA). Ha-
ciendo uso de la representación estocástica de la DLA, nuestro enfoque clásico utiliza una Aproxi-
mación Estocástica del algoritmo EM (SAEM) para conseguir estimativas de máxima verosimilitud



(MV) exactas para los efectos fijos y los componentes de varianza en modelos no lineales de efectos
mixtos. Evaluamos el desempeño del algoritmo en muestras finitas y las propiedades asintóticas
de las estimativas de MV a través de experimentos empı́ricos y aplicaciones para dos conjuntos de
datos reales. El algoritmo SAEM propuesto se encuentra implementado en el paquete de R qrNLMM.
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Distribución Laplace asimétrica, Modelos no lineales de Efectos Mixtos, Regresión cuantı́lica,
Algoritmo SAEM, Aproximaciones Estocásticas.

1 Introduction
Nonlinear mixed-effects models (NLMMs) are frequently used to analyze grouped, clustered, lon-
gitudinal and multilevel data because of their potential to handle, on one hand, nonlinearities in
the relationship between the observed response and the covariates and random effects, and on the
other hand, to take into account within and between-subject correlations presented in this type of
data (Pinheiro & Bates, 2000; Davidian & Giltinan, 2003; Wu, 2010). Moreover, NLMMs are also
flexible and often mechanistic, based on biological, chemical, physics mechanisms, among others,
leading to a natural modelling using a known family of nonlinear functions providing desirable
characteristics such as asymptotes, a unique maximum value, monotonicity, positive range, etc.
Majority of these NLMMs estimate covariate effects on the response through a mean regression,
controlling for between-cluster heterogeneity via normally-distributed cluster-specific random ef-
fects and random errors. However, this centrality-based inferential framework is often inadequate
when the conditional distribution of the response (conditional on the random terms) is skewed,
multimodal, or affected by atypical observations. In contrast, conditional quantile regression (QR)
methods (Koenker, 2004, 2005) quantifying the entire conditional distribution of the outcome vari-
able were developed that can provide assessment of covariate effects at any arbitrary quantiles of
the outcome. In addition, QR methods do not impose any distribution assumption on the error,
except requiring that the error term has a zero conditional quantile such as the ALD. Because of
its popularity and the flexibility it provides, standard QR methods are implementable via available
software packages, for example, the R package quantreg().

Although QR was initially developed under a univariate framework, the abundance of clustered data
in recent times lead to its extensions into mixed modeling framework via either the distribution-free
route Lipsitz et al. (1997); Galvao & Montes-Rojas (2010); Galvao Jr (2011); Fu & Wang (2012),
or the traditional likelihood-based route mostly using the ALD Geraci & Bottai (2007); Yuan &
Yin (2010); Geraci & Bottai (2014). Among the ALD-based models, Geraci & Bottai (2007) pro-
posed a Monte Carlo EM (MCEM)-based conditional QR model for continuous responses with
a subject-specific random (univariate) intercept to account for within-subject dependence in the
context of longitudinal data. However, due to the limitations of a simple random intercept model
to account for the between-cluster heterogeneity, Geraci & Bottai (2014) extended their previous
Geraci & Bottai (2007) model to a general linear quantile mixed effects regression model (QR-
LMM) with multiple random effects (both intercepts and slopes). However, instead of going the
MCEM route, the estimation of the fixed effects and the covariance components were implemented



using an efficient combination of Gaussian quadrature approximations and non-smooth optimiza-
tion algorithms. Yuan & Yin (2010) applied the version of QR of Geraci & Bottai (2007) to linear
mixed effects models for longitudinal measurements with missing data. Wang (2012) considered
QR-NLMMs from a Bayesian perspective and shown that QR-NLMMs may be a better measure of
centrality for skewed or multimodal data and more robust against nonnormality of the distribution
of random errors than the mean regression estimator. Although some results on QR-NLMMs have
recently appeared in the literature, to the best of our knowledge, there seem to be no studies on
exact inference for QR-NLMMs from a likelihood based perspective.

In this paper, we proceed to achieve that via a robust parametric ALD-based QR-NLMMs, where
the full likelihood-based implementation follows a stochastic version of the EM algorithm (SAEM),
proposed by Delyon et al. (1999), for maximum likelihood (ML) estimation in contrast to the ap-
proximations proposed by Geraci & Bottai (2014) for QR-LMMs. The SAEM algorithm has been
proved to be more computationally efficient than the classical MCEM algorithm due to the re-
cycling of simulations from one iteration to the next in the smoothing phase of the algorithm.
Moreover, as pointed out by Meza et al. (2012) the SAEM algorithm, unlike the MCEM, converges
even in a typically small simulation size. Recently, Kuhn & Lavielle (2005) showed that the SAEM
algorithm is very efficient in computing the ML estimates in mixed effects models. Our empirical
results shows that the ML estimates based on the SAEM algorithm do provide good asymptotic
properties. Furthermore, application of our method to two longitudinal datasets is illustrated via
the R package qrNLMM().

The rest of the paper proceeds as follows. Section 2 presents some preliminaries, in particular the
connection between QR and ALD and an outline of the EM and SAEM algorithms. Section 3
develops the MCEM and the SAEM algorithms for a general NLMM, while Section 4 outlines the
likelihood estimation and standard errors. Section 5 presents some simulation studies. Application
of the SAEM method to two longitudinal datasets, one examining the Soybean genotypes data
and the other on a HIV viral load study are presented in Section 6. Finally, Section 7 concludes,
sketching some future research directions.

2 Preliminaries
In this section, we provide some useful results on the ALD and QR, and introduce the EM and
SAEM algorithms for ML estimation.

2.1 Connection between QR and ALD
Following Yu & Moyeed (2001), a random variable Y is distributed as an ALD with location
parameter µ , scale parameter σ > 0 and skewness parameter p ∈ (0,1), if its probability density
function (pdf) is given by

f (y|µ,σ , p) =
p(1− p)

σ
exp
{
−ρp

(
y−µ

σ

)}
, (1)



where ρp(.) is the check (or loss) function defined by ρp(u) = u(p− I{u < 0}), with I{.} the usual
indicator function. This distribution is denoted by ALD(µ,σ , p). It is easy to see that W = ρp

(Y−µ

σ

)
follows an exponential(1) distribution. Figure 1 plots the ALD illustrating how the the skewness
changes with altering choices for p. For example, when p = 0.1, most of the mass is concentrated
around the right tail, while for p = 0.5, both tails of the ALD have equal mass and the distribution
resemble the more common double exponential distribution. In contrast to the normal distribution
with a quadratic term in the exponent, the ALD is linear in the exponent. This results in a more
peaked mode for the ALD together with thicker tails. On the contrary, the normal distribution has
heavier shoulders compared to the ALD.

Figure 1. Standard asymmetric Laplace density
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ALD abides by the following stochastic representation (Kotz et al., 2001; Kuzobowski & Pod-
gorski, 2000). Let U ∼ exp(σ) and Z ∼ N(0,1) be two independent random variables. Then,
Y ∼ ALD(µ,σ , p) can be represented as

Y d
= µ +ϑpU + τp

√
σUZ, (2)

where ϑp = 1−2p
p(1−p) and τ2

p = 2
p(1−p) , and d

= denotes equality in distribution. This representation
is useful in obtaining the moment generating function (mgf), and formulating the estimation algo-
rithm. From (2), the hierarchical representation of the ALD is given as

Y |U = u ∼ N(µ +ϑpu,τ2
pσu),

U ∼ exp(σ). (3)

This representation will be useful for the implementation of the EM algorithm. Moreover, since
Y |U = u∼ N(µ +ϑpu,τ2

pσu), one can easily derive the pdf of Y , given by

f (y|µ,σ , p) =
1√
2π

1

τpσ
3
2

exp
(

δ (y)
γ

)
A(y), (4)



where δ (y) = |y−µ|
τp
√

σ
, γ =

√
1
σ

(
2+

ϑ 2
p

τ2
p

)
=

τp
2
√

σ
and A(y) = 2

(
δ (y)

γ

)1/2
K1/2

(
δ (y)γ

)
, with Kν(.), the

modified Bessel function of the third kind. It easy to see that that the conditional distribution of U ,
given Y = y, is U |(Y = y) ∼ GIG(1

2 ,δ ,γ), where GIG(ν ,a,b) represents the Generalized Inverse
Gaussian (GIG) distribution (Barndorff-Nielsen & Shephard, 2001) with the pdf

h(u|ν ,a,b) = (b/a)ν

2Kν(ab)
uν−1 exp

{
− 1

2
(
a2/u+b2u

)}
, u > 0, ν ∈ R, a,b > 0.

The moments of U can be expressed as

E[Uk] =
(a

b

)k Kν+k(ab)
Kν(ab)

,k ∈ R (5)

Some useful properties of the Bessel function of the third kind Kλ (u) are: (i) Kν(u) = K−ν(u); (ii)

Kν+1(u) = 2ν

u Kν(u)+Kν−1(u); (iii) for non-negative integer r, Kr+1/2(u) =
√

π

2u exp(−u)

∑
r
k=0

(r+k)!(2u)−k

(r−k)!k! . A special case is K1/2(u) =
√

π

2u exp(−u).

2.2 The EM and SAEM algorithms
In models with missing data, the EM algorithm (Dempster et al., 1977) has established itself as the
most popular tool for obtaining the ML estimates of the model parameters. This iterative algorithm
maximizes the complete log-likelihood function `c(θθθ ; ycom) at each step, converging quickly to a
stationary point of the observed likelihood (`(θθθ ; yobs)) under mild regularity conditions (Wu, 1983;
Vaida, 2005). The EM algorithm proceeds in two simple steps:

E-Step: Replace the observed likelihood by the complete likelihood and compute its conditional

expectation Q(θθθ |θ̂ (k)) = E
{
`c(θθθ ; ycom)|θ̂θθ

(k)
,yobs

}
, where θ̂θθ

(k)
is the estimate of θθθ at the k-th

iteration;

M-Step: Maximize Q(θ |θ̂θθ (k)
) with respect to θθθ obtaining θ̂θθ

(k+1)
.

However, in some applications of the EM algorithm, the E-step cannot be obtained analytically
and has to be calculated using simulations. Wei & Tanner (1990) proposed the Monte Carlo EM
(MCEM) algorithm in which the E-step is replaced by a Monte Carlo approximation based on a
large number of independent simulations of the missing data. This simple solution is infact compu-
tationally expensive, given the need to generate a large number of independent simulations of the
missing data for a good approximation. Thus, in order to reduce the amount of required simulations
compared to the MCEM algorithm, the SAEM algorithm proposed by Delyon et al. (1999) replaces
the E-step of the EM algorithm by a stochastic approximation procedure, while the Maximization
step remains unchanged. Besides having good theoretical properties, the SAEM estimates the pop-
ulation parameters accurately, converging to the global maxima of the ML estimates under quite
general conditions (Allassonnière et al., 2010; Delyon et al., 1999; Kuhn & Lavielle, 2004).



At each iteration, the SAEM algorithm successively simulates missing data with the conditional
distribution, and updates the unknown parameters of the model. Thus, at iteration k, the SAEM
algorithm proceeds as follows:

E-Step:

• Simulation: Draw (q(`,k)), `= 1, . . . ,m from the conditional distribution f (q|θ (k−1),yi).

• Stochastic Approximation: Update the Q(θ |θ̂ (k)) function as

Q(θ |θ̂ (k))≈ Q(θ |θ̂ (k−1))+δk

[
1
m

m

∑
`=1

`c(θ ;yobs,q(`,k))|θ̂ (k),yobs−Q(θ |θ̂ (k−1))

]
(6)

M-Step:

• Maximization: Update θ̂ (k) as θ̂ (k+1) = arg max
θ

Q(θ |θ̂ (k)),

where δk is a smoothness parameter (Kuhn & Lavielle, 2004), i.e., a decreasing sequence of pos-
itive numbers such that ∑

∞
k=1 δk = ∞ and ∑

∞
k=1 δ 2

k < ∞. Note that, for the SAEM algorithm, the
E-Step coincides with the MCEM algorithm, however a small number of simulations m (suggested
to be m ≤ 20) is necessary. This is possible because unlike the traditional EM algorithm and its
variants, the SAEM algorithm uses not only the current simulation of the missing data at the iter-
ation k denoted by (q(`,k)), `= 1, . . . ,m but some or all previous simulations, where this ‘memory’
property is set by the smoothing parameter δk.

Note, in equation (6), if the smoothing parameter δk is equal to 1 for all k, the SAEM algorithm will
have ‘no memory’, and will be equivalent to the MCEM algorithm. The SAEM with no memory
will converge quickly (convergence in distribution) to a solution neighbourhood, however when the
algorithm with memory will converge slowly (almost sure convergence) to the ML solution. We
suggested the following choice of the smoothing parameter given as

δk =

{
1, for 1≤ k ≤ cW

1
k−cW , for cW +1≤ k ≤W

(7)

where W is the maximum number of iterations, and c a cut point (0≤ c≤ 1) which determines the
percentage of initial iterations with no memory. For example, if c= 0 the algorithm will have mem-
ory for all iterations, and hence will converge slowly to the ML estimates. If c = 1, the algorithm
will have no memory, and so will converge quickly to a solution neighbourhood. For the first case,
W would need to be large in order to achieve the ML estimates. For the second, the algorithm will
output a Markov Chain where after applying a burn in and thin, the mean of the chain observations
can be a reasonable estimate.

A number between 0 and 1 (0 < c < 1) will assure an initial convergence in distribution to a
solution neighbourhood for the first cW iterations and an almost sure convergence for the rest
of the iterations. Hence, this combination will leads us to a fast algorithm with good estimates.



To implement SAEM, the user must fix several constants matching the number of total iterations
W and the cut point c that defines the starting of the smoothing step of the SAEM algorithm,
however those parameters will vary depending of the model and the data. To determinate those
constants, a graphical approach is recommended to monitor the convergence of the estimates for
all the parameters, and, if possible, to monitor the difference (relative difference) between two
successive evaluations of the log-likelihood `(θθθ |yobs), given by ||`(θθθ (k+1)|yobs)− `(θθθ (k)|yobs)|| or
||`(θθθ (k+1)|yobs)/`(θθθ

(k)|yobs)−1||, respectively.

3 QR for nonlinear mixed models and algorithms

We proposed the following general mixed-effects model. Let yi = (yi1, ...,yini)
> denote the contin-

uous response for subject i and let η = (η(φi,xi1), ...,η(φi,xini))
> represents a nonlinear differen-

tiable function of vector-valued mixed-effects random parameters φi of dimension r and a matrix
of covariates xi of dimensions ni× r. We define the NLMM as

yi = η(φφφ i,xi)+ εεε i, φi = Aiβββ p +Bibi, (8)

where Ai and Bi are design matrices of dimensions r×d and r×q, respectively, possibly depending
on elements of xi and incorporating time varying covariates in fixed or random effects, βββ p is the
regression coefficient corresponding to the pth quantile, bi is a q-dimensional random effects vector
associated to the i-th subject and and εi the independent and identically distributed vector of random
errors. We define pth quantile function of the response yi j as

Qp(yi j|xi j,bi) = η(φi,xi j) = η(Aiβββ p +Bibi,xi j). (9)

where Qp denotes the inverse of the unknown distribution function F , the random effects bi are
distributed as bi

iid∼ Nq(0,ΨΨΨ), where the dispersion matrix ΨΨΨ = ΨΨΨ(ααα) depends on unknown and
reduced parameters ααα , and the errors are distributed as εi j

iid∼ ALD(0,σ) and both uncorrelated.
Then, yi j|bi independently follows as ALD with the density given by

f (yi j|βββp,bi,σ) =
p(1− p)

σ
exp

{
−ρp

(
yi j−η(Aiβββ p +Bibi,xi j)

σ

)}
. (10)

3.1 A MCEM algorithm
First, we develop a MCEM algorithm for ML estimation of the parameters in the QR-NLMM.
The model exhibits a flexible hierarchical representation, which is useful in deriving the theoretical
properties. From (3), the QR-NLMM defined in (9)-(10), can be represented in a hierarchical form
as:

yi|bi,ui ∼ Nni

(
ηηη(Aiβββ p +Bibi,xi)+ϑpui,στ

2
pDi

)
,

bi ∼ Nq (0,ΨΨΨ),

ui ∼
ni

∏
j=1

exp(σ), (11)



for i = 1, . . . ,n, where ϑp and τ2
p are as in (2); Di represents a diagonal matrix that contains the vec-

tor of missing values ui =(ui1, . . . ,uini)
> and exp(σ) denotes the exponential distribution with mean

σ . Let yic = (y>i ,b>i ,u>i )
>, with yi = (yi1, . . . ,yini)

>, bi =
(
bi1, . . . ,biq

)>, ui = (ui1, . . . ,uini)
>and let

θ (k) = (βββ (k)>
p ,σ (k),ααα (k)>)>, the estimate of θ at the k-th iteration. Since bi and ui are independent

for all i = 1, . . . ,n, it follows from (3) that the complete-data log-likelihood function is of the form

`c(θθθ ; yc) =
n

∑
i=1

`c(θθθ ; yic),

where

`c(θθθ ; yic) = constant−3
2

nilogσ − 1
2

log
∣∣ΨΨΨ∣∣−1

2
b>i ΨΨΨ

−1bi−
1
σ

u>i 1ni

− 1
2στ2

p
(yi−ηηη(Aiβββ p +Bibi,xi)−ϑpui)

>D−1
i (yi−ηηη(Aiβββ p +Bibi,xi)−ϑpui). (12)

Since Ai, Bi and xi are known matrices, we will simplify the notation by writing ηηη(βββp,bi) to
represent ηηη(φφφ i,xi) = ηηη(Aiβββ p+Bibi,xi). Given the current estimate θθθ = θθθ

(k), the E-step calculates
the function

Q(θθθ |θ̂θθ (k)
) = ∑

n
i=1 Qi(θθθ |θ̂θθ

(k)
),

where

Qi(θθθ |θ̂θθ
(k)
) = E

{
`c(θθθ ; yic)|θθθ (k),y

}
(13)

∝−3
2

nilogσ−1
2

log
∣∣ΨΨΨ∣∣−1

2
tr
{
(̂bb>)i

(k)
ΨΨΨ
−1
}
− 1

2στ2
p

[
y>i D̂−1

i
(k)

yi

−2ϑpy>i 1ni +
τ4

p

4
ûi

(k)>1ni−2y>i (D̂−1
ηηη)

(k)
i +2ϑp1>ni

η̂ηη i
(k)

+ ̂
ηηη>i D−1

i ηηη i

(k)]
where ηηη i = ηηη(Aiβββ p +Bibi,xi) for simplicity, tr(A) indicates the trace of matrix A and 1p is the
vector of ones of dimension p. The calculation of these function requires expressions for

η̂ηη i
(k)
= E

{
ηηη i|θθθ (k),yi

}
, ûi

(k) = E
{

ui|θθθ (k),yi
}
,

(̂bb>)i
(k)
= E

{
bib>i |θθθ (k),yi

}
, D̂−1

i
(k)

= E
{

D−1
i |θθθ (k),yi

}
,

(D̂−1
ηηη)

(k)
i = E

{
D−1

i ηηη i
(k)|θθθ (k),yi

}
, ( ̂ηηη>D−1

ηηη)
(k)
i = E

{
ηηη
>
i D−1

i ηηη i|θθθ (k),yi
}
,

which do not have closed forms. Since the joint distribution of the missing data (b(k)
i ,u(k)

i ) is un-
known and the conditional expectations cannot be computed analytically, for any function g(.), the
MCEM algorithm approximates the conditional expectations above by their Monte Carlo approxi-
mations

E[g(bi,ui) |θθθ (k),yi]≈
1
m

m

∑
`=1

g(b(`,k)
i ,u(`,k)

i ), (14)



which depend of the simulations of the two latent (missing) variables b(k)
i and u(k)

i from the con-
ditional joint density f (bi,ui|θθθ (k),yi). Using known properties of conditional expectations, the
expected value in (14) can be more accurately approximated as

Ebi,ui[g(bi,ui)|θθθ (k),yi] = Ebi[Eui[g(bi,ui)|θθθ (k),bi,yi]|yi ]

≈ 1
m

m

∑
`=1

Eui[g(b
(`,k)
i ,ui)|θθθ (k),b(`,k)

i ,yi], (15)

where b(`,k) is a sample from the conditional density f (bi|θθθ (k),yi). Note that (15) is a more accurate
approximation once it only depends of one MC approximation, instead two as needed in (14).

Now, to drawn random samples from the full conditional distribution f (ui|yi,bi), first note that
the vector ui|yi,bi can be written as ui|yi,bi = [ ui1|yi1,bi, ui2|yi2,bi, · · · ,uini|yini,bi ]

>, since
ui j
∣∣yi j,bi is independent of uik|yik,bi, for all j,k = 1,2, . . . ,ni and j 6= k. Thus, the distribution of

f (ui j|yi j,bi) is proportional to

f (ui j|yi j,bi) ∝ φ(yi j
∣∣ηi j(βββp,bi)+ϑpui j, στ

2
pui j)× exp(σ),

which, from Subsection 2.1, leads to ui j|yi j,bi ∼ GIG( 1
2 ,χi j,ψ), where χi j and ψ are given by

χi j =
|yi j−ηi j(βββ p,bi)|

τp
√

σ
and ψ =

τp

2
√

σ
(16)

From (5), and after generating samples from f (bi|θθθ (k),yi) (see Subsection 4.2), the conditional
expectation Eui[·|θθθ ,bi,yi] in (15) can be computed analytically. Finally, the proposed MCEM algo-
rithm for estimating the parameters of the QR-NLMM can be summarized as follows:

MC E-step: Given θθθ = θθθ
(k), for i = 1, . . . ,n;

• Simulation Step: For `= 1, . . . ,m, draw b(`,k)
i from f (bi|θθθ (k),yi), as described later in Sub-

section 4.2.

• Monte Carlo approximation: Using (5) and the simulated sample above, evaluate

E[g(bi,ui) |θθθ (k),yi]≈
1
m

m

∑
`=1

Eui[g(b
(`,k)
i ,ui)|θθθ (k),b(`,k)

i ,yi].

M-step: Update θ̂θθ
(k)

by maximizing Q(θθθ |θ̂θθ (k)
) ≈ 1

m ∑
m
l=1 ∑

n
i=1 `c(θ ; yi,b(l,k)

i ,ui) over θ̂θθ
(k)

, which
leads to the following estimates:

β̂ββp
(k+1)

= β̂ββp
(k)
+

[
n

∑
i=1

{
1
m

m

∑
`=1

J(k)>
i E (D−1

i )(`,k)J(k)i

}]−1

×[
n

∑
i=1

{
1
m

m

∑
`=1

[
2J(k)>

i E (D−1
i )(`,k)

[
yi−ηηη(β̂ββp

(k)
,b(`,k)

i )−ϑpE (ui)
(`,k)
]]}]

,



σ̂
(k+1) =

1
3Nτ2

p

n

∑
i=1

{
1
m

m

∑
`=1

[
(yi−ηηη(β̂ββp

(k+1)
,b(`,k)

i ))>E (D−1)(`,k)(yiηηη(β̂ββp
(k+1)

,b(`,k)
i ))

−2ϑp(yiηηη(β̂ββp
(k+1)

,b(`,k)
i ))>1ni +

τ4
p

4
E (ui)

(`,k)>1ni

]}
and

Ψ̂ΨΨ
(k+1)

=
1
n

n

∑
i=1

[
1
m

m

∑
`=1

b(`,k)
i b(`,k)>

i

]
,

where Ji = ∂ηηη(βββp,bi)/∂βββ
>
p , N = ∑

n
i=1 ni and expressions E (ui)

(`,k) and E (D−1
i )(`,k) are defined in

Appendix B. Note that for the MC E-step, we need to draw samples b(`,k)
i , ` = 1, . . . ,m, from

f (bi|θθθ (k),yi), where m is the number of Monte Carlo simulations to be used, a number suggested
to be large enough. A simulation method to draw samples from f (bi|θθθ (k),yi), is described in
Subsection 4.2.

3.2 A SAEM algorithm
As mentioned in Subsection 2.2, the SAEM circumvents the cumbersome problem of simulating a
large number of missing values at every iteration, leading to a faster and efficient solution than the
MCEM. In summary, the SAEM algorithm proceeds as follows:

E-step: Given θθθ = θθθ
(k) for i = 1, . . . ,n;

• Stochastic approximation: Update the MC approximations for the conditional expectations
by their stochastic approximations, given by

S(k)1,i = S(k−1)
1,i +δk

[
1
m

m

∑
`=1

J(k)>
i E (D−1

i )(`,k)J(k)i −S(k−1)
1,i

]
,

S(k)2,i = S(k−1)
2,i +δk

[
1
m

m

∑
`=1

[
2J(k)>

i E (D−1
i )(`,k)

[
yi−ηηη(β̂ββp

(k)
,b(`,k)

i )−ϑpE (ui)
(`,k)
]]
−S(k−1)

2,i

]
,

S(k)3,i = S(k−1)
3,i +δk

{
1
m

m

∑
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(yi−ηηη(β̂ββp
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,b(`,k)

i ))>E (D−1)(`,k)(yi−ηηη(β̂ββp
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4
E (ui)
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−S(k−1)
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]
and

S(k)4,i = S(k−1)
4,i +δk

[
1
m

m

∑
`=1

[b(`,k)
i b(`,k)>

i ]−S(k−1)
4,i

]
.



M-step: Update θ̂θθ
(k)

by maximizing Q(θθθ |θ̂θθ (k)
) over θ̂θθ

(k)
, which leads to the following expressions:

β̂ββ p
(k+1)

= β̂ββ p
(k)

+

[
n

∑
i=1

S(k)1,i

]−1 n

∑
i=1

S(k)2,i ,

σ̂
(k+1) =

1
3Nτ2

p

n

∑
i=1

S(k)3,i ,

Ψ̂
(k+1) =

1
n

n

∑
i=1

S(k)4,i . (17)

Given a set of suitable initial values θ̂θθ
(0)

(as detailed Appendix A), the SAEM iterates till conver-
gence at iteration k if

max
i

{
|θ̂ (k+1)

i − θ̂
(k)
i |

|θ̂ (k)
i |+δ1

}
< δ2 (18)

is satisfied for three consecutive times where δ1 and δ2 are some small values pre established. The
consecutive evalution of (18) avoids a fake convergence produced by an unlucky Monte Carlo sim-
ulation. Based on (Searle et al., 1992) pag. 269, we use δ1 = 0.001 and δ2 = 0.0001 as suggested
by several researchers. The proposed criterion above will need an extreme large number of itera-
tions (more than usual) in order to detect convergence for parameters that are close to the boundary
of the parametric space. In this case for variance components, a parameter value close to zero will
inflate the ratio in (18) and the convergence will not be attained even though the likelihood was
maximized with few iterations. As proposed by (Booth & Hobert, 1999) we use also a second
convergence criteria besides to the first one, defined by

max
i

 |θ̂
(k+1)
i − θ̂

(k)
i |√

v̂ar(θ (k)
i )+δ1

< δ2, (19)

where (19) evaluates the parameter estimates changes relative to their standard errors leading to
a convergence detection even for bounded parameters. Also the values δ1 and δ2 are some small
values pre established and not necessarily equal to the one for (18). Based on simulation we suggest
to fix δ1 = 0.0001 and to test different values for δ2 between 0.0001 and 0.0005 when smaller means
more accuracy. We use δ1 = 0.0001 and δ2 = 0.0002 by default which assures us a high accuracy.
This stopping criteria is similar to the one proposed by (Bates & Watts, 1981) for Non linear Least
Squares.

3.3 Missing data simulation method
In order to draw samples from f (bi|yi,θθθ), we utilize the Metropolis-Hastings (MH) algorithm
(Metropolis et al., 1953; Hastings, 1970), a MCMC algorithm for obtaining a sequence of random
samples from a probability distribution for which direct sampling is not possible. The MH algo-
rithm proceeds as follows:

Given θθθ = θθθ
(k), for i = 1, . . . ,n;



1. Start with an initial value b(0,k)
i .

2. Draw b∗i ∼ h(b∗i |b(`−1,k)
i ) from a proposal distribution with the same support as the objective

distribution f (bi|θθθ (k),yi).

3. Generate U ∼U(0,1).

4. If U > min

{
1 ,

f
(

b∗i |θθθ
(k)

,yi

)
h
(

b(0,k)
i |b∗i

)
f
(

b(0,k)
i |θθθ (k)

,yi

)
h
(

b∗i |b
(0,k)
i

)
}

, return to the step 2, else b(`,k)
i = b∗i

5. Repeat steps 2-4 until m samples (b(1,k)
i ,b(2,k)

i , . . . ,b(m,k)
i ) are drawn from bi|θθθ (k),yi.

Note that the marginal distribution f (bi|yi,θθθ) (omitting θθθ ) can be represented as

f (bi|yi) ∝ f (yi|bi)× f (bi) ,

where bi ∼Nq(0,ΨΨΨ) and f (yi|bi) = ∏
ni
j=1 f (yi j|bi), with yi j|bi ∼ ALD

(
x>i jβββp + zi jbi,σ , p

)
. Since

the objective function is a product of two distributions (with both support lying in R), a suitable
choice for the proposal density is a multivariate normal distribution with the mean and variance-
covariance matrix that are the stochastic approximations of the conditional expectation E(b(k−1)

i |yi)

and the conditional variance Var(b(k−1)
i |yi) respectively, obtained from the last iteration of the

SAEM algorithm. This candidate (with possible information about the shape of the target dis-
tribution) leads to better acceptance rate, and consequently a faster algorithm. The resulting chain
b(1,k)

i ,b(2,k)
i , . . . ,b(m,k)

i is a MCMC sample from the marginal conditional distribution f (bi|θθθ (k),yi).
Due the dependent nature of these MCMC samples, at least 10 MC simulations are suggested.

4 Estimation

4.1 Likelihood Estimation
Given the observed data, the likelihood function `o(θθθ |y) of the model defined in (9)-(10) is given
by

`o(θθθ |y) =
n

∑
i=1

log f (yi|θθθ)) =
n

∑
i=1

log
∫
Rq

f (yi|bi;θθθ) f (bi;θθθ)dbi, (20)

where the integral can be expressed as an expectation with respect to bi, i.e., Ebi[ f (yi|bi;θ)]. The
evaluation of this integral is not available analytically and is often replaced by its MC approxi-
mation involving a large number of simulations. However, alternative importance sampling (IS)
procedures might require a smaller number of simulations than the typical MC procedure. Fol-
lowing (Meza et al., 2012), we can compute this integral using an IS scheme for any continuous
distribution f̂ (bi;θθθ) of bi having the same support as f (bi;θ). Re-writing (22) as

`o(θθθ |y) =
n

∑
i=1

log
∫
Rq

f (yi|bi;θθθ)
f (bi;θθθ)

f̂ (bi;θθθ)
f̂ (bi;θθθ)dbi.



we can express it as an expectation with respect to b∗i , where b∗i ∼ f̂ (b∗i ;θ). Thus, the likelihood
function can now be expressed as

`o(θθθ |y)≈
n

∑
i=1

log

{
1
m

m

∑
`=1

[
ni

∏
j=1

[ f (yi j|b∗(`)i ;θθθ)]
f (b∗(`)i ;θθθ)

f̂ (b∗(`)i ;θθθ)

]}
, (21)

where {b∗(`)i }, l = 1, . . . ,m, is a MC sample from f̂ (b∗i ;θθθ), and f (yi|b∗(`)i ;θθθ) is expressed as

∏
ni
j=1 f (yi j|b∗(`)i ;θθθ) due to independence. An efficient choice for f̂ (b∗(`)i ;θ) is f (bi|yi). There-

fore, we use the same proposal distribution discussed in Subsection 4.2, and generate samples
b∗(`)i ∼ Nq(µ̂µµbi

, Σ̂ΣΣbi), where µ̂µµbi
= E(b(w)

i |yi) and Σ̂ΣΣbi = Var(b(w)
i |yi), which are estimated empiri-

cally during the last few iterations of the SAEM at convergence.

4.2 Missing data simulation method
In order to draw samples from f (bi|yi,θθθ), we utilize the Metropolis-Hastings (MH) algorithm
(Metropolis et al., 1953; Hastings, 1970), a MCMC algorithm for obtaining a sequence of random
samples from a probability distribution for which direct sampling is not possible. The MH algo-
rithm proceeds as follows:

Given θθθ = θθθ
(k), for i = 1, . . . ,n;

1. Start with an initial value b(0,k)
i .

2. Draw b∗i ∼ h(b∗i |b(`−1,k)
i ) from a proposal distribution with the same support as the objective

distribution f (bi|θθθ (k),yi).

3. Generate U ∼U(0,1).

4. If U > min

{
1 ,

f
(

b∗i |θθθ
(k)

,yi

)
h
(

b(0,k)
i |b∗i

)
f
(

b(0,k)
i |θθθ (k)

,yi

)
h
(

b∗i |b
(0,k)
i

)
}

, return to the step 2, else b(`,k)
i = b∗i

5. Repeat steps 2-4 until m samples (b(1,k)
i ,b(2,k)

i , . . . ,b(m,k)
i ) are drawn from bi|θθθ (k),yi.

Note that the marginal distribution f (bi|yi,θθθ) (omitting θθθ ) can be represented as

f (bi|yi) ∝ f (yi|bi)× f (bi) ,

where bi ∼ Nq(0,ΨΨΨ) and f (yi|bi) = ∏
ni
j=1 f (yi j|bi), with yi j|bi ∼ ALD

(
η(Aiβββ p+Bibi,xi j),σ , p

)
.

Since the objective function is a product of two distributions (with both support lying in R), a
suitable choice for the proposal density is a multivariate normal distribution with the mean and
variance-covariance matrix that are the stochastic approximations of the conditional expectation
E(b(k−1)

i |yi) and the conditional variance Var(b(k−1)
i |yi) respectively, obtained from the last iteration

of the SAEM algorithm. This candidate (with possible information about the shape of the target dis-
tribution) leads to better acceptance rate, and consequently a faster algorithm. The resulting chain
b(1,k)

i ,b(2,k)
i , . . . ,b(m,k)

i is a MCMC sample from the marginal conditional distribution f (bi|θ (k),yi).
Due the dependent nature of these MCMC samples, at least 10 MC simulations are suggested.



5 Estimation

5.1 Likelihood Estimation
Given the observed data, the likelihood function `o(θθθ |y) of the model defined in (9)-(10) is given
by

`o(θθθ |y) =
n

∑
i=1

log f (yi|θθθ)) =
n

∑
i=1

log
∫
Rq

f (yi|bi;θθθ) f (bi;θθθ)dbi, (22)

where the integral can be expressed as an expectation with respect to bi, i.e., Ebi[ f (yi|bi;θ)]. The
evaluation of this integral is not available analytically and is often replaced by its MC approxi-
mation involving a large number of simulations. However, alternative importance sampling (IS)
procedures might require a smaller number of simulations than the typical MC procedure. Fol-
lowing Meza et al. (2012), we can compute this integral using an IS scheme for any continuous
distribution f̂ (bi;θθθ) of bi, having the same support as f (bi;θ). Re-writing (22) as

`o(θθθ |y) =
n

∑
i=1

log
∫
Rq

f (yi|bi;θθθ)
f (bi;θθθ)

f̂ (bi;θθθ)
f̂ (bi;θθθ)dbi.

we can express it as an expectation with respect to b∗i , where b∗i ∼ f̂ (b∗i ;θ). Thus, the likelihood
function can now be expressed as

`o(θθθ |y)≈
n

∑
i=1

log

{
1
m

m

∑
`=1

[
ni

∏
j=1

[ f (yi j|b∗(`)i ;θθθ)]
f (b∗(`)i ;θθθ)

f̂ (b∗(`)i ;θθθ)

]}
, (23)

where {b∗(`)i }, l = 1, . . . ,m, is a MC sample from f̂ (b∗i ;θθθ), and f (yi|b∗(`)i ;θθθ) is expressed as

∏
ni
j=1 f (yi j|b∗(`)i ;θθθ) due to independence. An efficient choice for f̂ (b∗(`)i ;θ) is f (bi|yi). There-

fore, we use the same proposal distribution discussed in Subsection 4.2, and generate samples
b∗(`)i ∼ Nq(µ̂µµbi

, Σ̂ΣΣbi), where µ̂µµbi
= E(b(w)

i |yi) and Σ̂ΣΣbi = Var(bi|yi), which are estimated empirically
during the last few iterations of the SAEM at convergence.

5.2 Standard error approximation
Louis’ missing information principle (Louis, 1982) relates the score function of the incomplete data
log-likelihood with the complete data log-likelihood through the conditional expectation ∇∇∇o(θθθ) =
E

θθθ
[∇∇∇c(θθθ ;Ycom|Yobs)], where ∇∇∇o(θ) = ∂`o(θθθ ;Yobs)/∂θ and ∇∇∇c(θθθ) = ∂`c(θ ;Ycom)/∂θθθ are the

score functions for the incomplete and complete data, respectively. As defined in Meilijson (1989),
the empirical information matrix can be computed as

Ie(θθθ |y) =
n

∑
i=1

s(yi|θθθ)s>(yi|θ̂θθ)−
1
n

S(y|θθθ)S>(y|θθθ), (24)

where S(y|θθθ) = ∑
n
i=1 s(yi|θθθ) and s(yi|θθθ) is the empirical score function for the i-th individual.

Replacing θθθ by its ML estimator θ̂θθ and considering ∇∇∇o(θ̂θθ) = 0, equation (24) takes the simple
form

Ie(θ̂θθ |y) =
n

∑
i=1

s(yi|θ̂θθ)s>(yi|θ̂θθ). (25)



At the kth iteration, the empirical score function for the i-th subject can be computed as

s(yi|θθθ)(k) = s(yi|θθθ)(k−1)+δk

[
1
m

m

∑
`=1

s(yi,q
(k,`);θθθ

(k))− s(yi|θθθ)(k−1)

]
, (26)

where q(`,k), ` = 1, . . . ,m, are the simulated missing values drawn from the conditional distribu-
tion f (·|θ (k−1),yi). Thus, at iteration k, the observed information matrix can be approximated as
Ie(θθθ |y)(k) = ∑

n
i=1 s(yi|θθθ)(k) s>(yi|θθθ)(k), such that at convergence, I−1

e (θ̂θθ |y) = (Ie(θθθ |y)|
θθθ=θ̂θθ

)−1 is
an estimate of the covariance matrix of the parameter estimates. Expressions for the elements of
the score vector with respect to θθθ are given in Appendix A.

6 Simulated data
In order to examine the performance of the proposed method, here we present some simulation
studies. The first simulation study shows that the ML estimates based on the SAEM algorithm do
provide good asymptotic properties. The second study investigates the consequences for population
inferences when the normality assumption is inappropriate. We used heavy tailed distribution for
the random error term in order to test the robustness of the proposed method in terms of parameter
recovery.

6.1 Asymptotic properties
As in Pinheiro & Bates (1995), we performed the first simulation study with the following three
parameter nonlinear growth-curve logistic model:

yi j =
β1 +b1i

1+ exp(−[ti j−β2]/β3)
+ εi j, i = 1, . . . ,n, j = 1, . . . ,10, (27)

Figure 2. Illustration of the effect of including the random effect b1i in the first parameter of the nonlinear growth-curve
logistic model.
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Figure 4: Result of the s in soybean plants hypothetical example.
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Figure 5: Result of the random effects in first order, one compartment model.

2.3.3. First order one compartment model

For the first order compartment model, consider the inclusion of different random effects
as it follows

Y = D exp[(lKa + b1) + (lKe + b2)− (lCl + b3)]
{exp(−e(lKe+b2)T )− exp[−e(lKa+b1)T ]}

e(lKa+b1) − e(lKe+b2) .

and assume the values (lKa, lKe, lCl)
′ = (0.4,−2.4,−3)>, x = (0, 1, 2, . . . , 30)>. An illustra-

tion of the effect of individually including the random effects b1, b2 and b3 can be observed in
Figure 5. As it can be seen in the graph, including random effects in each fixed-effect param-
eter enables the model to take into accound different variability patterns for the absortion
and elimination of the substance in the body.
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where ti j = 100,267,433,600,767,933,1100,1267,1433,1600 for all i. The goal is to estimate the
fixed effects parameters β ’s for a grid of percentiles p = {0.50,0.75,0.95}. A random effects b1i
was added to the first growth parameter β1 and its effect over the growth-curve is shown in Figure
4. Parameters interpretation for this model is going to be discussed in the Application Section.
The random effects b1i and the error εεε i = (εi1 . . . ,εi10)

> are non-correlated been b1i
iid∼ N(0,σ2

b )

and εi j
iid∼ ALD(0,σe, p). We set βββp = (β1,β2,β3)

> = (200,700,350)>, σe = 0.5, σ2
b = 10. Using

the notation in (8) the matrices Ai and Bi are given by I3 and (1,0,0)> respectively. For varying
sample sizes of n = 25, 50, 100 and 200, we generate 100 data samples for each scenario. In
addition, we also choose m = 20, c = 0.25 and W = 500 for the SAEM convergence parameters.
For all scenarios, we compute the square root of the mean square error (RMSE), the bias (Bias) and
the Monte carlo standard deviation (MC-Sd) for each parameter over the 100 replicates. They are
defined as

MC-Sd(θ̂i) =

√√√√ 1
99

100

∑
j=1

(
θ̂i

( j)− θ̂i
)2 and Bias(θ̂i) = θ̂i−θi (28)

where RMSE(θ̂i) =

√
MC-Sd2(θ̂i)+Bias2(θ̂i), the Monte carlo mean θ̂i =

1
100 ∑

100
j=1 θ̂

( j)
i (MC

Mean) and θi
( j) is the estimate of θi from the j-th sample, j = 1 . . .100. Based on Figure 3, for the

bias we can see a patterns of convergence to zero when n increases for both parameters.

Figure 3. Bias, Standard Deviation and RMSE for β1 (upper panel) and β2 (lower panel) for varying sample sizes over
the quantiles p = 0.50, 0.90, 0.95.
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The values of MC-Sd and RMSE decrease monotonically when n is increased where it is evident
that for extreme quantiles estimating, the standard deviation is much higher while for quantiles
q = 50 and q = 75 are asymptotically equal. The worst scenario seems to happen while estimating
extreme quantiles and maybe a sample size greater than 200 is needed to obtain a reasonably re-
duction of bias and SD. However, as a general rule, we can say that bias and MSE tend to approach
to zero when the sample size is increasing, indicating that the approximates ML estimates based
on the proposed SAEM algorithm do provide good asymptotic properties. The parameter β1 has
been discarded in the graphical analysis because it varies along quantiles so its bias too as seen in
Table 1. This parameter represents the asymptotic growth so this parameter is highly susceptible to
the quantile to be estimated, however it also provides good asymptotic properties for its standard
deviation. Table 1 also show an excellent recovery for the nuisance parameter σe, small standard
deviations and good asymptotic properties in terms of bias and SD.

Table 1. Results based on 100 simulated samples. Monte carlo mean and standard deviation (MC Mean and MC-Sd)
for the fixed effects β1. β2. β3 and the nuisance parameter σe. obtained after fitting the QR-NLMM model under
different settings of quantiles and sample sizes.

β1 β2 β3 σe
Quantile (%) n MC Mean MC-Sd MC Mean MC-Sd MC Mean MC-Sd MC Mean MC-Sd

50 25 199.75 (2.35) 700.19 (2.00) 350.13 (1.35) 0.503 (0.035)
50 199.79 (1.69) 700.09 (1.29) 350.03 (0.86) 0.498 (0.021)

100 200.16 (1.15) 700.08 (0.92) 350.06 (0.72) 0.497 (0.017)
200 200.03 (0.75) 699.96 (0.64) 349.98 (0.50) 0.499 (0.012)

75 25 203.77 (2.50) 700.18 (2.07) 350.15 (1.56) 0.499 (0.035)
50 203.90 (1.81) 700.20 (1.60) 350.16 (1.11) 0.495 (0.025)

100 204.20 (1.31) 699.83 (1.08) 349.88 (0.74) 0.499 (0.017)
200 204.34 (0.92) 700.00 (0.70) 350.01 (0.49) 0.498 (0.011)

95 25 201.15 (2.79) 700.26 (6.52) 350.14 (3.92) 0.506 (0.035)
50 201.77 (2.15) 700.53 (4.84) 349.74 (2.83) 0.508 (0.024)

100 201.94 (1.56) 700.18 (3.55) 349.73 (2.32) 0.505 (0.015)
200 202.11 (1.08) 700.06 (2.60) 349.98 (1.54) 0.502 (0.012)

6.2 Robustness study
The goal of this simulation study is to asses the robustness or bias incurred when one assumes a
normal distribution for random effects and the actual distribution belongs to a heavy tailed distri-
butions. The use of heavy tailed distributions for the random effects will let us to simulate the
presence of outliers leading us to test adequately the performance of the proposed method in terms
of robustness. The design of this simulation study is as in the previous subsection but for a set of
quantiles {0.50,0.75} and a fixed sample size n = 50 we are going to simulate 100 Monte Carlo
samples generating the random effect term from a Student-t distribution with ν = 4 degrees of free-
dom and from a Normal Contaminated distribution (ν1 = 0.1,ν2 = {0.1,0.2,0,3}), i.e., with three
scenarios of contamination, 10%, 20% and 30%. All simulations are created by using the same
values of βββp = (200,700,350)>, nuisance parameter σe = 0.5 and scale parameter σ2

b = 10 for the
respectively random effect distribution.



Figure 4. Illustration of 50 simulated curves from the growth-curve logistic model using different distributions for the
random effect term. From left to right panel, the random effects has been generated from a Normal, a Student t4 and a
Contaminated Normal(ν1 = 0.1,ν2 = 0.1), all with location parameter µ = 0 and scale parameter σ2

b = 10.
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From Table 2 we can see that the proposed model is really robust even for worst scenarios of con-
tamination. The parameter recovery is highly accurate even for the non-centered quantile 0.75. For
quantile 0.75, the β1 parameter tends to increase for higher levels of contamination. As expected,

Table 2. Results based on 100 simulated samples. MC Mean, Bias, MC-Sd and RMSE for the fixed effects β1, β2, β3
and the nuisance parameter σe obtained after fitting the QR-NLMM for quantiles 0.50 and 0.75 using four different
distribution settings for the random effects.

Fit Quantile 50% Quantile 75%
β1 β2 β3 σe β1 β2 β3 σe

(200) (700) (350) (0.5) (200) (700) (350) (0.5)
Student-t4 MC Mean 200.22 700.00 349.99 0.501 204.43 700.39 350.18 0.501

Bias 0.22 0.00 -0.01 0.001 4.43 0.39 0.18 0.001
MC-Sd (1.98) (1.28) (0.98) (0.024) (2.17) (1.69) (1.09) (0.024)
RMSE 1.99 1.28 0.98 0.024 4.93 1.74 1.11 0.024

Contamination
10% MC Mean 199.87 700.10 349.9 0.499 205.02 700.18 350.05 0.501

Bias -0.13 0.10 -0.1 -0.001 5.02 0.18 0.05 0.001
MC-Sd (1.90) (1.26) (0.88) (0.024) (1.92) (1.80) (1.16) (0.024)
RMSE 1.90 1.27 0.88 0.024 5.38 1.81 1.16 0.024

20% MC Mean 200.05 699.91 350.08 0.497 205.35 700.20 350.11 0.496
Bias 0.05 -0.09 0.08 -0.003 5.35 0.20 0.11 -0.004

MC-Sd (1.96) (1.28) (0.90) (0.024) (2.00) (1.55) (1.19) (0.023)
RMSE 1.96 1.28 0.90 0.024 5.71 1.56 1.20 0.023

30% MC Mean 200.16 700.06 350.07 0.496 206.63 699.91 350.01 0.497
Bias 0.16 0.06 0.07 -0.004 6.63 -0.09 0.01 -0.003

MC-Sd (2.10) (1.05) (0.93) (0.024) (2.60) (1.60) (1.06) (0.022)
RMSE 2.11 1.05 0.93 0.024 7.13 1.60 1.06 0.023



the MC-Sd and consequently the RMSE increase in presence of outliers. As a general rule, we
can conclude that the proposed model is robust in presence of outliers or misspecification of the
random effect distribution.

7 Illustrative examples
In this section, we illustrate the application of our method to two interesting longitudinal datasets
from the literature.

7.1 Growth curve: Soybean data
For the first application, we are going to consider the Soybean genotypes data analyzed by Davidian
& Giltinan (1995) and Pinheiro & Bates (2000), a longitudinal experiment consisting of measuring
along time the leaf weight (in g) as a measure of growth of two kinds of Soybean genotype plants
to be compared, a commercial variety, Forrest (F), and an experimental strain, Plan Introduction
#416937 (P). The samples were taken approximately weekly during 8 to 10 weeks. For three
consecutive years, 1988, 1989 and 1990, the plants were planted in 16 plots (8 per each genotype)
and the mean leaf weight of six randomly selected plants was measured.

Figure 5. Soybean data: (a) Leaf weight profiles versus time. (b) Leaf weight profiles versus time by genotype. (c) Ten
randomly selected leaf weight profiles versus time been five per each genotype.
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We use the three parameter logistic model in (27) introducing a random effect term for each param-
eter and a dichotomic covariate as

yi j =
ϕ1i

1+ exp(−[ti j−ϕ2i]/ϕ3i)
+ εi j, i = 1, . . . ,412, j = 1, . . . ,ni, (29)

where,

ϕ1i =β1 +β4geni +b1i

ϕ2i =β2 +b2i

ϕ3i =β3 +b3i.



The observed value yi j represents mean weight of leaves (in g) from six randomly selected soybean
plants in the ith plot, after ti j days of been planted; geni is a dichotomic variable for the genotype
of plant i (0=forrest, 1=plan Introduction) and εi j is the measurement error for the 412 plants. Let
be βββp = (β1,β2,β3,β4)

> and bi = (b1i,b2i,b3i)
> the fixed and random effects vector respectively.

Then the matrices Ai and Bi are defined as

Ai =

1 0 0 geni
0 1 0 0
0 0 1 0

 and Bi =

1 0 0
0 1 0
0 0 1

 . (30)

The three parameter interpretation are the asymptotic leaf weight, the time at which the leaf reaches
half of its asymptotic weight and the time elapsed between the leaf reaching half and 0.7311 =
1/(1+e−1) of its asymptotic weight, respectively. Due the goal of comparing the final (asymptotic)
growth of the two kind of Soybeans, the dichotomic covariate geni was incorporated in the first
component of the growth function, then the fourth fixed effect β4 will represent the difference (in
g) of the asymptotic leaf weight between the plan introduction type and the forrest one (control).
As seen in middle and right panel of figure 5, it appears to exist a significance difference between
the experimental and control Soybean so we expect a positive non zero β4 estimate for most of
quantiles.
Figure 6 shows the fitted regression lines for quantiles 0.10, 0.25, 0.50, 0.75 and 0.90 by genotype.
From this figure we can see clear how the extreme quantiles estimation functions captures the
full data variability and evidences some atypical observations, specially for the plan introduction
genotype. Quantile functions (for same quantile value) looks really different for each genotype due
the significance of β4 over the model as seen in Figure 7.
After fitting the quantile regression over the grid p = {0.05,0.10, ...,0.95}, we show a graphical
summary of the obtained results in Figure 7. We assessed the convergence of the fixed effect
estimates, variance components of the random effects and nuisance parameters using graphical
criteria as shown in Figure 11 in Appendix D. It shows a 95% confidence band for the fixed effect

Figure 6. Fitted quantile regression for several quantiles for the Soybean data by genotype.
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parameters β1, β2, β3, β4 and for the nuisance parameter σ where the solid lines are the Q0.025
percentile and Q0.975 percentile obtained through the estimation of the standard errors based on
the empirical information matrix. We can see that the effect of the genotype results significant for
all the quantile profile and the difference varies with respect to the conditional quantile been more
significant for lower quantiles. This can be corroborated in Figure 6 where the difference between
the 0.10 estimated quantile functions for different genotypes is greater than for other quantiles.

Figure 7. Point estimates (center solid line) and 95% confidence intervals for model parameters after fitting the QR to
the Soybean data across various quantiles. The interpolated curves are spline-smoothed.
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Using the information provided by the 95th percentile, we infer that the Soybean plants that grew
more have a mean leaf weight around 19.35 grams for the Forrest genotype and 23.25 grams for the
plan introduction one, then the asymptotic difference for the two genotypes is around 4 grams. The
behavior of the estimate of the nuisance parameter σ is symmetric with respect to p = 0.50, taking
its maximum value and variability on it and both decreasing for extreme quantiles. This behavior
is because the variance within subjects depends of the quantile to be estimated, been proportional
to the asymmetry of the error term then for extreme quantiles the nuisance parameter should be
reduced.

7.2 HIV viral load study
The data set belongs to a clinical trial (ACTG 315) studied in previous works by Wu (2002) and
Lachos et al. (2013). In this study, we analyze the HIV viral load of 46 HIV-1 infected patients
under antiretroviral treatment (protease inhibitor and reverse transcriptase inhibitor drugs). The
viral load and some other covariates were mesured several times days after the start of treatment
been 4 and 10 the minimum and maximum number of measures per patient respectively. Wu (2002)
found that the only significance covariate for modelling the virus load was the CD4 therefore the
other covariates even though they could be incorporated to the model for instance they are going
to be discard. Figure 8 shows the profile of viral load in log10 scale and CD4 cell count/100 per
cubic millimeter versus time (in days/100) for six randomly selected patients. We can see that
appear to exist some relationship between the viral load and the CD4 cell count and it seems to be
inversely proportional, i.e., high CD4 cell count leads to lower levels of viral load. This is because
the CD4 cells (also called T-cells) alert the immune system to invasion of viruses and/or bacteria so
lower CD4 count means a weaker immune system. Normal counts of CD4 cells are from 500-1000
cells per cubic millimeter whereas fewer counts than 200 cells/mm3 will be a high qualification to
diagnose AIDS. We can evidence the mentioned before in the right panel of Figure 8 where the
three patients who have less than 200 CD4 cells/mm3 (delimited by the horizontal dashed line in
0.02) are the ones with higher levels of viral load.

In order to fit the nonlinear data we will use the nonlinear model proposed by Wu (2002) and
also used by Lachos et al. (2013). The proposed bi-exponential NLME model is given by:

yi j = log10

(
e(ϕ1i−ϕ2iti j)+ e(ϕ3i−ϕ4iti j)

)
+ εi j, i = 1, . . . ,46, j = 1, . . . ,ni, (31)

with

ϕ1i =β1 +b1i ϕ2i =β2 +b2i

ϕ3i =β3 +b3i ϕ4i j =β4 +β5CD4i j +b4i,

where the observed value yi j represents the log-10 transformation of the viral load for the ith patient
at time j, CD4i j is the CD4 cell count (in cells/100mm3) for the ith patient at time j and εi j is the
measurement error for the 46 patients. Let be βββp = (β1,β2,β3,β4,β5)

> and bi = (b1i,b2i,b3i,b4i)
>

the fixed and random effects vector respectively and CD4i = (CD4i1, . . . ,CD4ini)
>. Then the ma-

trices Ai and Bi are defined as



Figure 8. ACTG 315 data. Profiles of viral load (response) in log10 scale and CD4 cell count (in cells/100mm3) for
ten randomly selected patients.
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Ai =

(
I3 0 0
0 1ni CD4i

)
and Bi =

(
I3 0
0 1ni

)
. (32)

The parameters ϕ2i and ϕ4i are the two-phase viral decay rates, which represent the minimum
turnover rates of productively infected cells and that of latently or long-lived infected cells if ther-
apy was successful, respectively. For more details about the model in (31) see Grossman et al.
(1999) and Perelson et al. (1997).

Figure 9. ACTG 315 data: Fitted quantile regression functions overlayed for the HIV data.
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Figure 9 shows the fitted regression lines for quantiles 0.10, 0.25, 0.50, 0.75 and 0.90 for the HIV
data. In order to plot, first, we fixed the CD4 covariate using the predicted sequence from a linear
regression (including a quadratic term) for explaning the CD4 cell count with respect to time. We
can see how quantile estimated functions follow the data behaviour satisfactorily and turn easily to
estimate a specific viral load quantile at any time of the experiment. Extreme quantile functions
bound the most of the observed profiles and evidence possible influential observations.

Figure 10. ACTG 315 data: Point estimates (center solid line) and 95% confidence intervals for model parameters after
fitting the QR-NLMM to the HIV data across various quantiles. The interpolated curves are spline-smoothed.
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The results after fitting QR over the grid of quantiles p = {0.05,0.10, ...,0.95} are shown in figure
10. The convergence of estimates for all parameters were also assessed using the graphical criteria
in Figure 12 in Appendix D. based on We have found that the first phase viral decay rate is positive
and its effect tends to increase proportionally along quantiles. For the second phase viral decay
rate we have that this second rate is positive correlated with the CD4 count and therefore with
the therapy time. Then, more days of treatment implies a higher CD4 cell count and therefore
a higher second phase viral decay. The CD4 cell process for this model has a different behavior
than for the expansion phase (Huang & Dagne (2011)). The significance of the CD4 covariate
increases positively with respect to quantiles (until quantile p = 0.60 approximately) and then
its effect becomes constant for greater quantiles. The behavior of the estimate of the nuisance
parameter σ is the same as in Application 1.

8 Conclusions
In this paper, we investigate quantile regression of nonlinear mixed effects models from a likelihood-
based perspective. The ALD distribution and SAEM algorithm are combined to propose an ex-
act ML estimation method, in contrast to the approximated method proposed by Geraci & Bottai
(2014). We evaluate the robustness of estimates, as well as, the finite sample performance of the
algorithm and the asymptotic properties of the ML estimates through empirical experiments and
applications to two real datasets. We believe that this paper is the first attempt for exact ML esti-
mation in the context of QR-NLMMs. The methods developed can be readily implemented inside
R through package qrNLMM().
There are a number of possible extensions of the current work. For modelling both skewness and
long tails in the random effects, the scale mixtures of skew-normal (SMSN) distributions (Lachos
et al., 2010) is a feasible choice. Also, HIV viral loads studies include covariates (viz. CD4 cell
counts) that often comes with substantial measurement errors (Wu, 2002). How to incorporate
measurement error in covariates within our robust framework can also be part of future research.
An in-depth investigation of such extensions is beyond the scope of the present paper, but certainly
an interesting topic for future research.
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Appendix A Specification of initial values
It is well known that a smart choice of the initial values for the ML estimates can assure a fast
convergence of an algorithm to the global maxima solution. Obviating the random effects term, i.e.,
bi = 0, let yi ∼ ALD(ηηη(βββp,0),σ , p). Next, considering the ML estimates for βββp and σ as defined
in Yu & Zhang (2005) for this model, we follow the steps below for the QR-LMM implementation:



1. Compute an initial value β̂ββ
(0)

p as

β̂ββ
(0)

p = arg min
βp∈Rk

n

∑
i=1

ρp(yi−ηηη(βββp,0)).

2. Using the initial value for β̂ββ
(0)

p obtained above, compute σ̂ (0) as

σ̂
(0) =

1
n

n

∑
i=1

ρp(yi−ηηη(βββp,0)).

3. Use a q×q identity matrix Iq×q for the the initial value ΨΨΨ
(0).

Appendix B Computing the conditional expectations
Due the independence between ui j

∣∣yi j,bi and uik|yik,bi, for all j,k = 1,2, . . . ,ni and j 6= k, we
can write ui|yi,bi = [ ui1|yi1,bi ui2|yi2,bi · · · uini|yini,bi ]

>. Using this fact, we are able to
compute the conditional expectations E (ui) and E (D−1

i ) in the following way. Using matrix expec-
tation properties, we define these expectations as

E (ui) = [E (ui1) E (ui1) · · · E (uini)]
> (B.1)

and

E (D−1
i ) = diag(E (u−1

i )) =


E (u−1

i1 ) 0 ... 0
0 E (u−1

i2 ) ... 0
...

... . . . ...
0 0 ... E (u−1

ini
)

 . (B.2)

We already have ui j|yi j,bi ∼ GIG( 1
2 ,χi j,ψ) where χi j and ψ are defined in (16). Then, using (5),

we compute the moments involved in the equations above as E (ui j) =
χi j
ψ
(1+ 1

χi jψ
) and E (u−1

i j ) =
ψ

χi j
. Thus, for iteration k of the algorithm and for the `th Monte Carlo realization, we can compute

E (ui)
(`,k) and E [D−1

i ](`,k) using equations (B.1)-(B.2) where

E (ui j)
(`,k) =

2|yi j−ηi j(βββ
(k)
p ,b(`,k)

i )|+4σ (k)

τ
2
p

and E (u−1
i j )(`,k) =

τ
2
p

2|yi j−ηi j(βββ
(k)
p ,b(`,k)

i )|
.

Appendix C The empirical information matrix
In light of (12), the complete log-likelihood function can be rewritten as



`ci(θθθ) = −3
2

ni logσ − 1
2στ2

p
ζ
>
i D−1

i ζi−
1
2

log
∣∣ΨΨΨ∣∣−1

2
b>i ΨΨΨ

−1bi−
1
σ

u>i 1ni (C.1)

where ζi = yi−ηηη(βββp,bi)−ϑpui and θθθ = (βββ>p ,σ ,ααα>)>. Differentiating with respect to θθθ , we have
the following score functions:

∂`ci(θθθ)

∂βββ p

=
∂ηηη

∂βββ p

∂ζi

∂ηηη

∂`ci(θθθ)

∂ζi
=

1
στ2

p
J>i D−1

i ζi,

with Ji defined in section 3.2. and

∂`ci(θθθ)

∂σ
= −3ni

2
1
σ
+

1
2σ2τ2

p
ζ
>
i D−1

i ζi+
1

σ2 u>i 1ni.

Let ααα be the vector of reduced parameters from ΨΨΨ, the dispersion matrix for bi. Using the trace
properties and differentiating the complete log-likelihood function, we have that

∂`ci(θθθ)

∂ΨΨΨ
=

∂

∂ΨΨΨ

[
−n

2
log
∣∣ΨΨΨ∣∣−1

2
tr{ΨΨΨ−1bib>i }

]
= −1

2
tr{ΨΨΨ−1}+ 1

2
tr{ΨΨΨ−1

ΨΨΨ
−1bib>i }

=
1
2

tr{ΨΨΨ−1(bib>i −ΨΨΨ)ΨΨΨ−1}

Next, taking derivatives with respect to a specific α j from ααα based on the chain rule, we have

∂`ci(θθθ)

∂α j
=

∂ΨΨΨ

∂α j

∂`ci(θθθ)

∂ΨΨΨ

=
∂ΨΨΨ

∂α j

1
2

tr{ΨΨΨ−1(bib>i −ΨΨΨ)ΨΨΨ−1}. (C.2)

where, using the fact that tr{ABCD}= (vec(A>))>(D>⊗B)(vec(C)), (C.2) can be rewritten as

∂`ci(θθθ)

∂α j
= (vec(∂ΨΨΨ

∂α j

>
))>

1
2
(ΨΨΨ−1⊗ΨΨΨ

−1)(vec(bib>i −ΨΨΨ)). (C.3)

Let Dq be the elimination matrix (Lavielle, 2014) that transforms the vectorized ΨΨΨ (written as
vec(ΨΨΨ)) into its half-vectorized form vech(ΨΨΨ), such that Dqvec(ΨΨΨ) = vech(ΨΨΨ). Using the fact that
for all j = 1, . . . , 1

2q(q+1), the vector (vec(∂ΨΨΨ
∂α j

)>)> corresponds to the jth row of the elimination
matrix Dq, we can generalize the derivative in (C.3) for the vector of parameters ααα as

∂`ci(θθθ)

∂ααα
=

1
2
Dq(ΨΨΨ

−1⊗ΨΨΨ
−1)(vec(bib>i −ΨΨΨ)).

Finally, at each iteration, we can compute the empirical information matrix (25) by approximating
the score for the observed log-likelihood by the stochastic approximation given in (26).



Appendix D Figures

Figure 11. Graphical summary for the convergence of the fixed effect estimates, variance components of the random
effects, and nuisance parameters performing a median regression for the Soybean data. The vertical dashed line delimits
the beginning of the almost sure convergence as defined by the cut-point parameter c = 0.25.
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Figure 12. Graphical summary for the convergence of the fixed effect estimates, variance components of the random
effects, and nuisance parameters performing a median regression for the HIV data. The vertical dashed line delimits
the beginning of the almost sure convergence as defined by the cut-point parameter c = 0.25.
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Appendix E Sample output from R package qrNLMM()
---------------------------------------------------

Quantile Regression for Nonlinear Mixed Model

---------------------------------------------------

Quantile = 0.5

Subjects = 48 ; Observations = 412

- Nonlinear function

function(x,fixed,random,covar=NA){

resp = (fixed[1] + random[1])/(1 + exp(((fixed[2] +

random[2]) - x)/(fixed[3] + random[3])))

return(resp)}

-----------

Estimates

-----------

- Fixed effects

Estimate Std. Error z value Pr(>|z|)

beta 1 18.80029 0.53098 35.40704 0

beta 2 54.47930 0.29571 184.23015 0

beta 3 8.25797 0.09198 89.78489 0

sigma = 0.31569

Random effects Variance-Covariance Matrix matrix

b1 b2 b3

b1 24.36687 12.27297 3.24721

b2 12.27297 15.15890 3.09129

b3 3.24721 3.09129 0.67193

------------------------

Model selection criteria

------------------------

Loglik AIC BIC HQ

Value -622.899 1265.798 1306.008 1281.703

-------

Details

-------

Convergence reached? = FALSE

Iterations = 300 / 300

Criteria = 0.00058

MC sample = 20

Cut point = 0.25

Processing time = 22.83885 mins
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