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This paper develops a likelihood-based approach to analyze
quantile regression (QR) models for continuous longitudinal data
via the asymmetric Laplace distribution (ALD). Compared to
the conventional mean regression approach, QR can characterize
the entire conditional distribution of the outcome variable and is
more robust to the presence of outliers and misspecification of the
error distribution. Exploiting the nice hierarchical representation
of the ALD, our classical approach follows a Stochastic
Approximation of the EM (SAEM) algorithm in deriving exact
maximum likelihood estimates of the fixed-effects and variance
components. We evaluate the finite sample performance of the
algorithm and the asymptotic properties of the ML estimates
through empirical experiments and applications to two real life
datasets. Our empirical results clearly indicate that the SAEM
estimates outperforms the estimates obtained via the combination
of Gaussian quadrature and non-smooth optimization routines
of the Geraci and Bottai (2014) approach in terms of standard
errors and mean square error. The proposed SAEM algorithm is
implemented in theR packageqrLMM().
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1. INTRODUCTION

Linear mixed models (LMM) are frequently used to ana-
lyze grouped/clustered data (such as longitudinal data, repeated
measures, and multilevel data) because of their ability to han-
dle within-subject correlations that characterizes grouped data
[30]. Majority of these LMMs estimate covariate effects on the
response through a mean regression, controlling for between-
cluster heterogeneity via normally-distributed cluster-specific
random effects and random errors. However, this centrality-based
inferential framework is often inadequate when the conditional
distribution of the response (conditional on the random terms)
is skewed, multimodal, or affected by atypical observations. In
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contrast, conditional quantile regression (QR) methods [15, 16]
quantifying the entire conditional distribution of the outcome
variable were developed that can provide assessment of covariate
effects at any arbitrary quantiles of the outcome. In addition, QR
methods do not impose any distributional assumption on the error
terms, except that the error term has a zero conditional quantile.
Because of its popularity and the flexibility it provides, standard
QR methods are implementable via available software packages,
such as, theR packagequantreg.

Although QR was initially developed under a univariate
framework, the abundance of clustered data in recent times led
to its extensions to mixed modeling framework (classical, or
Bayesian), via either the distribution-free route [25, 9, 10, 7], or
the traditional likelihood-based route, mostly using the asymmet-
ric Laplace distribution (ALD) [12, 40, 13]. Among the ALD-
based models, [12] proposed a Monte Carlo EM (MCEM)-based
conditional QR model for continuous responses with a subject-
specific random (univariate) intercept to account for within-
subject dependence in the context of longitudinal data. However,
due to the limitations of a simple random intercept model to ac-
count for the between-cluster heterogeneity, [13] extended it to a
general quantile regression linear mixed model (QR-LMM) with
multiple random effects (both intercepts and slopes). However,
instead of going the MCEM route, the estimation of the fixed ef-
fects and the covariance components were implemented using an
efficient combination of Gaussian quadrature approximations and
non-smooth optimization algorithms.

The literature on QR-LMM is now extensive. However, there
are no studies conducting exact inferences for QR-LMM from a
likelihood-based perspective. In this paper, we proceed to achieve
that via a robust parametric ALD-based QR-LMM specifica-
tion, where the full likelihood-based implementation follows a
stochastic version of the EM algorithm (SAEM). The SAEM was
initially proposed by [5] using maximum likelihood (ML) tech-
niques as a powerful alternative to the EM when the E-step is in-
tractable. The SAEM algorithm has been proved to be more com-
putationally efficient than the classical MCEM algorithm due to
the recycling of simulations from one iteration to the next in the
smoothing phase of the algorithm. Moreover, as pointed out in
[29], the SAEM algorithm, unlike the MCEM, converges even in
a typically small simulation size. However, since the unobserved
data cannot be simulated exactly under the conditional distribu-
tions for a variety of models, [19, 20] coupled a MCMC proce-
dure to the SAEM algorithm, and studied the general conditions
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for its convergence. We adapt this strategy for inference inthe
context of QR-LMM, and compare and contrast this to the ap-
proximate method proposed by Geraci and Bottai [13]. Further-
more, application of our method to two longitudinal datasets is
illustrated via theR packageqrLMM().

The rest of the paper proceeds as follows. Section 2 presents
some preliminaries, in particular the connection between QR and
ALD, and an outline of the EM and SAEM algorithms. Section
3 develops the MCEM and the SAEM algorithms for a general
LMM, while Section 4 outlines the likelihood estimation ands-
tandard errors. Section 5 presents simulation studies to compare
the finite sample performance of our proposed methods with the
competing method of geraci and Bottai [13]. Application of the
SAEM method to two longitudinal datasets, one examining c-
holesterol level and the other on orthodontic distance growth are
presented in Section 6. Finally, Section 7 concludes, sketching
some future research directions.

2. PRELIMINARIES

In this section, we provide some useful results on the ALD and
QR, and outline the EM and SAEM algorithms for ML estima-
tion.

2.1 Connection between QR and ALD

Let yi denote the response of interest andxi the correspond-
ing covariate vector of dimensionk×1 for subjecti, i = 1, . . . ,n.
Then, thepth (0< p< 1) QR model takes the form

Qp(yi) = x⊤i βββ p, i = 1, . . . ,n,

whereQp(yi) is the quantile function (or the inverse cumulative
distribution function) ofyi given xi evaluated atp, andβββ p is a
vector of regression parameters corresponding to thepth quantile.
The regression vectorβββ p is estimated by minimizing

(1)
n

∑
i=1

ρp(yi − x⊤i βββ p),

whereρp(·) is the check (or loss) function defined byρp(u) =
u(p− I{u< 0}), with I{·} the usual indicator function.

Next, we define the ALD. A random variableY is distributed
as an ALD [39] with location parameterµ , scale parameterσ >
0 and skewness parameterp ∈ (0,1), if its probability density
function (pdf) given by

(2) f (y|µ ,σ , p) =
p(1− p)

σ
exp

{
−ρp

(
y− µ

σ

)}
.

The ALD is an asymmetric distribution with a straightforward
skewness parametrization, and the check functionρp(·) is closely
related to the ALD [17, 39]. Note that minimizing the loss func-
tion in (1) is equivalent to maximizing the ALD likelihood func-
tion. This is in tune to the result from simple linear regression,
where the ordinary least square (OLS) estimator of the regres-
sion parameter minimizing the error sum of squares is equivalent

to the maximum likelihood (ML) estimator of the corresponding
Gaussian likelihood.

It is easy to see thatρp
(Y−µ

σ
)

follows an exponential(1) dis-
tribution. Figure1 plots the ALD, illustrating how the skewness
changes withp. For example, whenp= 0.1, most of the mass is
concentrated around the right tail, while forp= 0.5, both tails of
the ALD have equal mass and the distribution resemble the more
common double exponential distribution. In contrast to thenor-
mal distribution with a quadratic term in the exponent, the ALD
is linear in the exponent. This results in a more peaked mode,to-
gether with thicker tails. On the contrary, the normal distribution
has heavier shoulders compared to the ALD.
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Figure 1: Standard asymmetric Laplace density

The ALD abides by the following stochastic representation
[18, 21]. Let U ∼ exp(σ) andZ ∼ N(0,1) be two independent
random variables. Then,Y ∼ ALD(µ ,σ , p) can be represented as

(3) Y
d
= µ +ϑpU + τp

√
σUZ,

whereϑp = 1−2p
p(1−p) andτ2

p = 2
p(1−p) , and

d
= denotes equality in

distribution. This representation is useful in obtaining the mo-
ment generating function (mgf), and formulating the estimation
algorithm. From (3), the hierarchical representation of the ALD
follows

Y|U = u ∼ N(µ +ϑpu,τ2
pσu),

U ∼ exp(σ).(4)

This representation will be useful for the implementation
of the EM algorithm. Moreover, sinceY|U = u ∼ N(µ +
ϑpu,τ2

pσu), one can easily derive the pdf ofY, given by

(5) f (y|µ ,σ , p) =
1√
2π

1

τpσ
3
2

exp
(δ (y)

γ

)
A(y),

where δ (y) = |y−µ|
τp
√

σ , γ =

√
1
σ
(
2+

ϑ2
p

τ2
p

)
=

τp

2
√

σ and A(y) =
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2
(

δ (y)
γ

)1/2
K1/2

(
δ (y)γ

)
, with Kν(.), the modified Bessel function

of the third kind. It is easy to observe that the conditional distri-
bution of U , givenY = y, is U |(Y = y) ∼ GIG(1

2,δ ,γ), where
GIG(ν,a,b) is the Generalized Inverse Gaussian (GIG) distribu-
tion [2] with the pdf

h(u|ν,a,b) = (b/a)ν

2Kν(ab)
uν−1exp

{
− 1

2

(
a2/u+b2u

)}
;

u> 0, ν ∈ R, a,b> 0

The moments ofU can be expressed as

(6) E[Uk] =
(a

b

)k Kν+k(ab)
Kν(ab)

,k∈R.

2.2 The EM and SAEM algorithms

In models with missing data, the EM algorithm [6] has
established itself as the centerpiece for ML estimation of model
parameters, mostly when the maximization of the observed
log-likelihood function denoted byℓ(θθθ ; yobs) = log f (yobs;θθθ )
is complicated. Letyobs and q represent observed and missing
data, respectively, such that the complete data can be written
as ycom = (yobs,q)⊤. This iterative algorithm maximizes the
complete log-likelihood functionℓc(θθθ ; ycom) = log f (yobs,q;θθθ )
at each step, converging to a stationary point of the observed
likelihood ℓ(θθθ ; yobs) under mild regularity conditions [38, 35].
The EM algorithm proceeds in two simple steps:

E-Step: Replace the observed likelihood by the com-
plete likelihood and compute its conditional expectation

Q(θθθ |θ̂θθ (k)
) = E{ℓc(θθθ ; ycom)|θ̂θθ

(k)
,yobs}, whereθ̂θθ

(k)
is the estimate

of θθθ at thek-th iteration;

M-Step: MaximizeQ(θθθ |θ̂θθ (k)
) with respect toθθθ to obtainθ̂θθ

(k+1)
.

However, in some applications of the EM algorithm, the E-
step cannot be obtained analytically and has to be calculated us-
ing simulations. The Monte Carlo EM (MCEM) algorithm was
proposed in [36], where the E-step is replaced by a Monte Carlo
approximation based on a large number of independent simula-
tions of the missing data. This simple solution is infact computa-
tionally expensive, given the need to generate a large number of
independent simulations of the missing data for a good approx-
imation. Thus, in order to reduce the amount of required simu-
lations compared to the MCEM algorithm, the SAEM algorithm
proposed by [5] replaces the E-step of the EM algorithm by a s-
tochastic approximation procedure, while the Maximization step
remains unchanged. Besides having good theoretical properties,
the SAEM estimates the population parameters accurately, con-
verging to the global maxima of the ML estimates under quite
general conditions [1, 5, 19]. At each iteration, the SAEM algo-
rithm successively simulates missing data with the conditional
distribution, and updates the unknown parameters of the model.
At iterationk, the SAEM proceeds as follows:
E-Step:

• Simulation: Draw (q(ℓ,k)), ℓ= 1, . . . ,m from the conditional
distribution of the missing dataf (q|θθθ (k−1),yobs).

• Stochastic Approximation: Update theQ(θθθ |θ̂θθ (k)
) function

as

Q(θθθ |θ̂θθ (k)
)≈ Q(θθθ |θ̂θθ (k−1)

)

+δk

[
1
m

m

∑
ℓ=1

log f (yobs,q
(ℓ,k);θθθ)−Q(θθθ |θ̂θθ (k−1)

)

]
(7)

M-Step:

• Maximization: Updateθ̂θθ
(k)

asθ̂θθ
(k+1)

= arg max
θ

Q(θθθ |θ̂θθ (k)
),

whereδk is a smoothness parameter [19], i.e., a decreasing se-
quence of positive numbers such that∑∞

k=1 δk = ∞ and∑∞
k=1 δ 2

k <
∞. Note that, for the SAEM algorithm, the E-Step coincides with
the MCEM algorithm, however a small number of simulationsm
(suggested to bem≤ 20) is necessary. This is possible because
unlike the traditional EM algorithm and its variants, the SAEM
algorithm uses not only the current simulation of the missing data
at the iterationk denoted by(q(ℓ,k)), ℓ = 1, . . . ,m but some or all
previous simulations, where this ‘memory’ property is set by the
smoothing parameterδk.

Note, in equation (7), if the smoothing parameterδk is equal to
1 for all k, the SAEM algorithm will have ‘no memory’, and will
be equivalent to the MCEM algorithm. The SAEM with no mem-
ory will converge quickly (convergence in distribution) toa so-
lution neighbourhood, however the algorithm with memory will
converge slowly (almost sure convergence) to the ML solution.
We suggested the following choice of the smoothing parameter:

δk =

{
1, for 1≤ k≤ cW

1
k−cW , for cW+1≤ k≤W

whereW is the maximum number of Monte-Carlo iterations, and
c a cut point (0≤ c≤ 1) which determines the percentage of ini-
tial iterations with no memory. For example, ifc = 0, the algo-
rithm will have memory for all iterations, and hence will converge
slowly to the ML estimates. Ifc= 1, the algorithm will have no
memory, and so will converge quickly to a solution neighbour-
hood. For the first case,W would need to be large in order to
achieve the ML estimates. For the second, the algorithm willout-
put a Markov Chain where after applying aburn in andthin, the
mean of the chain observations can be a reasonable estimate.

A number between 0 and 1 (0< c < 1) will assure an ini-
tial convergence in distribution to a solution neighbourhood for
the first cW iterations and an almost sure convergence for the
rest of the iterations. Hence, this combination will lead usto a
fast algorithm with good estimates. To implement SAEM, the us-
er must fix several constants matching the number of total iter-
ationsW and the cut pointc that defines the starting of the s-
moothing step of the SAEM algorithm, however, those parame-
ters will vary depending of the model and the data. As suggested
in [23], to determine those constants, a graphical approach is rec-
ommended to monitor the convergence of the estimates for all
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the parameters, and, if possible, to monitor the difference(rela-
tive difference) between two successive evaluations of thelog-
likelihood ℓ(θθθ |yobs), given by||ℓ(θθθ (k+1)|yobs)− ℓ(θθθ (k)|yobs)|| or
||ℓ(θθθ (k+1)|yobs)/ℓ(θθθ (k)|yobs)−1||, respectively.

3. QR FOR LINEAR MIXED MODELS AND

ALGORITHMS

We consider the following general LMMyi j = x⊤i j βββ + zi j bi +
εi j , i = 1, . . . ,n, j = 1, . . . ,ni , whereyi j is the jth measurement of
a continuous random variable for theith subject,x⊤i j are row vec-
tors of a known design matrix of dimensionN×k corresponding
to thek×1 vector of population-averaged fixed effectsβββ , zi j is a
q×1 design matrix corresponding to theq×1 vector of random
effectsbi , andεi j the independent and identically distributed ran-
dom errors. We definepth quantile function of the responseyi j as

(8) Qp(yi j |xi j ,bi) = x⊤i j βββ p+ zi j bi .

whereQp denotes the inverse of the unknown distribution func-
tion F , βββ p is the regression coefficient corresponding to thepth

quantile, the random effectsbi are distributed asbi
iid∼ Nq(0,ΨΨΨ),

where the dispersion matrixΨΨΨ = ΨΨΨ(ααα) depends on unknown
and reduced parametersααα, and the errorsεi j ∼ ALD(0,σ). Then,
yi j |bi independently follows as ALD with the density given by
(9)

f (yi j |βββp,bi ,σ) =
p(1− p)

σ
exp

{
−ρp

(
yi j − x⊤i j βββp− zi j bi

σ

)}
,

Using an MCEM algorithm, a QR-LMM with random inter-
cepts(q = 1) was proposed by [12]. More recently, [13] ex-
tended that setup to accommodate multiple random effects where
the estimation of fixed effects and covariance matrix of the ran-
dom effects were accomplished via a combination of Gaussian
quadrature approximations and non-smooth optimization algo-
rithms. Here, we consider a more general correlated random ef-
fects framework with general dispersion matrixΨΨΨ =ΨΨΨ(ααα).

3.1 An MCEM algorithm

First, we develop an MCEM algorithm for ML estimation of
the parameters in the QR-LMM. From (4), the QR-LMM defined
in (8)-(9) can be represented in a hierarchical form as:

yi|bi ,ui ∼ Nni

(
x⊤i βββp+ zibi +ϑpui ,στ2

pDi

)
,

bi ∼ Nq (0,ΨΨΨ),

ui ∼
ni

∏
j=1

exp(σ),(10)

for i = 1, . . . ,n, where ϑp and τ2
p are as in (3); Di repre-

sents a diagonal matrix that contains the vector of missing
values ui = (ui1, . . . ,uini )

⊤ and exp(σ) denotes the exponen-
tial distribution with meanσ . Let yic = (y⊤

i ,b
⊤
i ,u

⊤
i )

⊤, with

yi = (yi1, . . . ,yini )
⊤, bi = (bi1, . . . ,biq)

⊤, ui = (ui1, . . . ,uini )
⊤and

let θ (k) = (βββ (k)⊤
p ,σ (k),ααα (k)⊤)⊤, the estimate ofθ at the k-th

iteration. Sincebi and ui are independent for alli = 1, . . . ,n,
it follows from (4) that the complete-data log-likelihood
function is of the form ℓc(θθθ ; yc) = ∑n

i=1ℓc(θθθ ; yic), where

ℓc(θθθ ; yic) = constant−3
2

ni logσ − 1
2

log
∣∣ΨΨΨ
∣∣−1

2
b⊤

i ΨΨΨ−1bi−
1
σ

u⊤
i 1ni

− 1
2στ2

p
(yi−x⊤i βββp−zibi−ϑpui)

⊤D−1
i (yi−x⊤i βββp−zibi−ϑpui).

Given the current estimateθθθ = θθθ (k), the E-step calculates the

functionQ(θθθ |θ̂θθ (k)
) = ∑n

i=1Qi(θθθ |θ̂θθ
(k)
), where

Qi(θθθ |θ̂θθ
(k)
) = E

{
ℓc(θθθ ; yic)|θθθ (k),y

}
(11)

∝ −3
2

ni logσ− 1
2στ2

p

[
(yi−x⊤i βββp)

⊤D̂−1
i

(k)
(yi−x⊤i βββp)

−2(yi − x⊤i βββp)
̂(D−1

i zb)i

(k)
+ tr

{
zi

̂(bb⊤zD−1
i )i

(k)
}

−2ϑp(yi−x⊤i βββp)
⊤1ni +2ϑp(zb̂(k))⊤i 1ni

+
τ4

p

4
ûi

(k)⊤1ni

]
−1

2
log
∣∣ΨΨΨ
∣∣−1

2
tr

{
(̂bb⊤)i

(k)
ΨΨΨ−1

}
,

where tr(A) indicates the trace of matrix A and
1p is the vector of ones of dimensionp. The cal-
culation of these functions require expressions for

b̂i
(k)

= E
{

bi |θθθ (k),yi
}
, ûi

(k) = E
{

ui |θθθ (k),yi
}
,

(̂bb⊤)i
(k)

= E
{

bib⊤
i |θθθ (k),yi

}
, D̂−1

i

(k)

= E
{

D−1
i |θθθ (k),yi

}
,

̂(bb⊤zD−1)i
(k)

= E
{

bib⊤
i z⊤

i D−1
i |θθθ (k),yi

}
, ̂(D−1zb)i

(k)

= E
{

D−1
i zibi |θθθ (k),yi

}
,

which do not have closed forms. Since the joint distributionof
the missing data(b(k)

i ,u(k)
i ) is unknown and the conditional ex-

pectations cannot be computed analytically for any function g(.),
the MCEM algorithm approximates the conditional expectations
above by their Monte Carlo approximations

(12) E[g(bi ,ui) |θθθ (k),yi ]≈
1
m

m

∑
ℓ=1

g(b(ℓ,k)
i ,u(ℓ,k)

i ),

which depend on the simulations of the two latent (miss-
ing) variablesb(k)

i and u(k)
i from the conditional joint density

f (bi ,ui |θθθ (k),yi). A Gibbs sampler can be easily implemented
(see Supplementary Material) given that the two full condition-
al distributionsf (bi |θθθ (k),ui ,yi) and f (ui |θθθ (k),bi ,yi) are known.
However, using known properties of conditional expectations, the
expected value in (12) can be more accurately approximated as

Ebi ,ui
[g(bi ,ui)|θθθ (k),yi ] = Ebi

[Eui
[g(bi ,ui)|θθθ (k),bi ,yi ]|yi ]

≈ 1
m

m

∑
ℓ=1

Eui
[g(b(ℓ,k)

i ,ui)|θθθ (k),b(ℓ,k)
i ,yi ],(13)

4 C. Galarza et al.



whereb(ℓ,k) is a sample from the conditional densityf (bi |θθθ (k),yi).
Now, to drawn random samples from the full conditional dis-

tribution f (ui |yi,bi), first note that the vectorui |yi,bi can be writ-
ten asui |yi ,bi = [ ui1|yi1,bi , ui2|yi2,bi , · · · ,uini |yini ,bi ]⊤,
since ui j

∣∣yi j ,bi is independent ofuik|yik,bi , for all j,k =
1,2, . . . ,ni and j 6= k. Thus, the distribution off (ui j |yi j ,bi) is pro-
portional to

f (ui j |yi j ,bi) ∝ φ(yi j
∣∣x⊤i j βββp+ z⊤i j bi +ϑpui j , στ2

pui j )×exp(σ),

which, from Subsection 2.1, leads toui j |yi j ,bi ∼ GIG( 1
2,χi j ,ψ),

whereχi j andψ are given by

(14) χi j =
|yi j −x⊤i j βββ p−z⊤i j bi |

τp
√

σ
and ψ =

τp

2
√

σ

From (6), and after generating samples fromf (bi |θθθ (k),yi)
(see Subsection3.3), the conditional expectation Eui

[·|θθθ ,bi ,yi ] in
(13) can be computed analytically. Finally, the proposed MCEM
algorithm for estimating the parameters of the QR-LMM can be
summarized as follows:

MC E-step: Givenθθθ = θθθ (k), for i = 1, . . . ,n;

• Simulation Step: For ℓ = 1, . . . ,m, draw b(ℓ,k)
i from

f (bi |θθθ (k),yi), as described later in Subsection3.3.
• Monte Carlo approximation: Using (6) and the simulated

sample above, evaluate

E[g(bi ,ui) |θθθ (k),yi]≈
1
m

m

∑
ℓ=1

Eui
[g(b(ℓ,k)

i ,ui)|θθθ (k),b(ℓ,k)
i ,yi ].

M-step: Update θ̂θθ
(k)

by maximizing

Q(θθθ |θ̂θθ (k)
) ≈ 1

m ∑m
l=1 ∑n

i=1ℓc(θ ; yi ,b
(l ,k)
i ,ui) over

θ̂θθ
(k)

, which leads to the following estimates:

β̂ββp

(k+1)
=

[
n

∑
i=1

{
1
m

m

∑
ℓ=1

xiE (D−1
i )(ℓ,k)x⊤i

}]−1

×
[

n

∑
i=1

{
1
m

m

∑
ℓ=1

[
xiE (D−1

i )(ℓ,k)
[
yi − z⊤i b(ℓ,k)

i −ϑpE (ui)
(ℓ,k)
]]}]

,

σ̂ (k+1) =
1

3Nτ2
p

n

∑
i=1

{
1
m

m

∑
ℓ=1

[
(yi−x⊤i βββ (k+1)

p − zib
(ℓ,k)
i )⊤E (D−1)(ℓ,k)

× (yi−x⊤i βββ (k+1)
p − zib

(ℓ,k)
i )−2ϑp(yi−x⊤i βββ (k+1)

p − zib
(ℓ,k)
i )⊤1ni

+
τ4

p

4
E (ui)

(ℓ,k)⊤1ni

]}
,

Ψ̂ΨΨ
(k+1)

=
1
n

n

∑
i=1

[
1
m

m

∑
ℓ=1

b(ℓ,k)
i b(ℓ,k)⊤

i

]
,

where N = ∑n
i=1ni and expressionsE (ui)

(ℓ,k) and E (D−1
i )(ℓ,k)

are defined in Appendix A.2 of the Supplementary Material.

Note that for the MC E-step, we need to draw samplesb(ℓ,k)
i ,

ℓ = 1, . . . ,m, from f (bi |θθθ (k),yi), where m is the number of
Monte Carlo simulations to be used, a number suggested to
be large enough. A simulation method to draw samples from
f (bi |θθθ (k),yi), is described in Subsection3.3.

3.2 A SAEM algorithm

As mentioned in Subsection2.2, the SAEM circumvents the
cumbersome problem of simulating a large number of missing
values at every iteration, leading to a faster and efficient solution
than the MCEM. In summary, the SAEM algorithm proceeds as
follows:

E-step: Givenθθθ = θθθ (k) for i = 1, . . . ,n;

• Simulation step: Draw b(ℓ,k)
i , ℓ = 1, . . . ,m, from

f (bi |θθθ (k),yi), for m≤ 20.
• Stochastic approximation: Update the MC ap-

proximations for the conditional expectation-
s by their stochastic approximations, given by

S(k)1,i = S(k−1)
1,i + δk

[
1
m

m

∑
ℓ=1

[xiE (D−1
i )(ℓ,k)x⊤i ]−S(k−1)

1,i

]
,

S(k)2,i = S(k−1)
2,i + δk

[
1
m

m

∑
ℓ=1

[
xiE (D−1

i )(ℓ,k)
[
yi − z⊤i b(ℓ,k)

i −ϑpE (ui)
(ℓ,k)
]]

−S(k−1)
2,i

]
,

S(k)3,i = S(k−1)
3,i + δk

[
1
m

m

∑
ℓ=1

[
(yi−x⊤i βββ (k+1)

p − zib
(ℓ,k)
i )⊤E (D−1)(ℓ,k)

×(yi−x⊤i βββ (k+1)
p − zib

(ℓ,k)
i )−2ϑp(yi−x⊤i βββ (k+1)

p − zib
(ℓ,k)
i )⊤1ni

+
τ4

p

4
E (ui)

(ℓ,k)⊤1ni

]
−S(k−1)

3,i

]
,

S(k)4,i = S(k−1)
4,i + δk

[
1
m

m

∑
ℓ=1

[b(ℓ,k)
i b(ℓ,k)⊤

i ]−S(k−1)
4,i

]
.

M-step: Update θ̂θθ
(k)

by maximizing Q(θθθ |θ̂θθ (k)
) over θ̂θθ

(k)
,

which leads to the following expressions:

β̂ββ p

(k+1)
=

[
n

∑
i=1

S(k)1,i

]−1 n

∑
i=1

S(k)2,i ,

σ̂ (k+1) =
1

3Nτ2
p

n

∑
i=1

S(k)3,i ,

Ψ̂(k+1) =
1
n

n

∑
i=1

S(k)4,i .(15)

Given a set of suitable initial valueŝθθθ
(0)

(see Appendix A.1 of
the Supplementary Material), the SAEM iterates till convergence

at iterationk, if maxi

{
|θ̂ (k+1)

i − θ̂ (k)
i |

|θ̂ (k)
i |+ δ1

}
< δ2 , the stopping crite-

rion, is satisfied for three consecutive times, whereδ1 andδ2 are
pre-established small values. This consecutive evaluation avoids
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a fake convergence produced by an unlucky Monte Carlo simu-
lation. As suggested by [34] (page. 269), we useδ1 = 0.001 and
δ2 = 0.0001. This proposed criterion will need an extremely large
number of iterations (more than usual) in order to detect param-
eter convergence that are close to the boundary of the parametric
space. In this case for variance components, a parameter value
close to zero will inflate the ratio in above and the convergence
will not be attained even though the likelihood was maximized
with few iterations. As proposed by [4], we also use a second con-

vergence criteria defined bymaxi

{
|θ̂ (k+1)

i −θ̂ (k)
i |√

v̂ar(θ (k)
i )+δ1

}
< δ2 , where

the parameter estimates change relative to their standard errors
leading to a convergence detection even for bounded parameters.
Once again,δ1 andδ2 are some small pre-assigned values, not
necessarily equal to the ones in the previous criterion. Based on
simulation results, we fixδ1 = 0.0001 andδ2 = 0.0002. This
stopping criteria is similar to the one proposed by [3] for non-
linear least squares.

3.3 Missing data simulation method

In order to draw samples fromf (bi |yi ,θθθ ), we utilize the
Metropolis-Hastings (MH) algorithm [28, 14], a MCMC algo-
rithm for obtaining a sequence of random samples from a proba-
bility distribution for which direct sampling is not possible. The
MH algorithm proceeds as follows:
Givenθθθ = θθθ (k), for i = 1, . . . ,n;

1. Start with an initial valueb(0,k)
i .

2. Draw b∗
i ∼ h(b∗

i |b
(ℓ−1,k)
i ) from a proposal distribution with

the same support as the objective distributionf (bi |θθθ (k),yi).
3. GenerateU ∼U(0,1).

4. If U > min



1,

f

(
b∗i |θθθ

(k)
,yi

)
h
(

b(0,k)i |b∗i
)

f

(
b(0,k)i |θθθ (k)

,yi

)
h
(

b∗i |b
(0,k)
i

)



, return to the

step 2, elseb(ℓ,k)
i = b∗

i

5. Repeat steps 2-4 untilm samples(b(1,k)
i ,b(2,k)

i , . . . ,b(m,k)
i ) are

drawn frombi |θθθ (k),yi .

Note that the marginal distributionf (bi |yi ,θθθ ) (omitting θθθ ) can
be represented as

f (bi |yi) ∝ f (yi |bi)× f (bi) ,

wherebi ∼ Nq(0,ΨΨΨ) and f (yi |bi) = ∏ni
j=1 f (yi j |bi), with yi j |bi ∼

ALD
(

x⊤i j βββp+ zi j bi ,σ , p
)

. Since the objective function is a prod-

uct of two distributions (with both support lying inR), a suit-
able choice for the proposal density is a multivariate normal
distribution with the mean and variance-covariance matrixthat
are the stochastic approximations of the conditional expectation
E(b(k−1)

i |yi) and the conditional variance Var(b(k−1)
i |yi) respective-

ly, obtained from the last iteration of the SAEM algorithm. This
candidate (with possible information about the shape of thetar-
get distribution) leads to better acceptance rate, and consequent-

ly a faster algorithm. The resulting chainb(1,k)
i ,b(2,k)

i , . . . ,b(m,k)
i

is a MCMC sample from the marginal conditional distribution
f (bi |θ (k),yi). Due the dependent nature of these MCMC sam-
ples, at least 10 MC simulations are suggested.

4. ESTIMATION

4.1 Likelihood Estimation

Given the observed data, the likelihood functionℓo(θθθ |y) of the
model defined in (8)-(9) is given by
(16)

ℓo(θθθ |y) =
n

∑
i=1

log f (yi |θθθ )) =
n

∑
i=1

log
∫

Rq
f (yi |bi ;θθθ ) f (bi ;θθθ )dbi ,

where the integral can be expressed as an expectation with re-
spect tobi , i.e., Ebi

[ f (yi |bi ;θ )]. The evaluation of this integral
is not available analytically and is often replaced by its MCap-
proximation involving a large number of simulations. However,
alternative importance sampling (IS) procedures might require a
smaller number of simulations than the typical MC procedure.
Following [29], we can compute this integral using an IS scheme
for any continuous distribution̂f (bi ;θθθ ) of bi having the same
support asf (bi ;θ ). Re-writing (16) as

ℓo(θθθ |y) =
n

∑
i=1

log
∫

Rq
f (yi |bi ;θθθ )

f (bi ;θθθ )
f̂ (bi ;θθθ )

f̂ (bi ;θθθ )dbi .

we can express it as an expectation with respect tob∗
i , whereb∗

i ∼
f̂ (b∗

i ;θ ). Thus, the likelihood function can now be expressed as
(17)

ℓo(θθθ |y)≈
n

∑
i=1

log

{
1
m

m

∑
ℓ=1

[
ni

∏
j=1

[ f (yi j |b∗(ℓ)
i ;θθθ )]

f (b∗(ℓ)
i ;θθθ )

f̂ (b∗(ℓ)
i ;θθθ )

]}
,

where{b∗(ℓ)
i }, l = 1, . . . ,m, is a MC sample from̂f (b∗

i ;θθθ ), and

f (yi |b∗(ℓ)
i ;θθθ ) is expressed as∏ni

j=1 f (yi j |b∗(ℓ)
i ;θθθ ) due to inde-

pendence. An efficient choice for̂f (b∗(ℓ)
i ;θ ) is f (bi |yi). There-

fore, we use the same proposal distribution discussed in Sub-

section3.3, and generate samplesb∗(ℓ)
i ∼ Nq(µ̂µµbi

,Σ̂ΣΣbi ), where

µ̂µµbi
= E(b(w)

i |yi) andΣ̂ΣΣbi =Var(bi |yi), which are estimated empir-
ically during the last few iterations of the SAEM at convergence.

4.2 Standard error approximation

Louis’ missing information principle [26] relates the score
function of the incomplete data log-likelihood with the complete
data log-likelihood through the conditional expectation∇∇∇o(θθθ ) =
Eθθθ [∇∇∇c(θθθ ;Ycom|Yobs)], where ∇∇∇o(θ ) = ∂ℓo(θθθ ;Yobs)/∂θ and
∇∇∇c(θθθ ) = ∂ℓc(θ ;Ycom)/∂θθθ are the score functions for the incom-
plete and complete data, respectively. As defined in [27], the em-
pirical information matrix can be computed as

(18) Ie(θθθ |y) =
n

∑
i=1

s(yi |θθθ )s⊤(yi |θ̂θθ )−
1
n

S(y|θθθ )S⊤(y|θθθ ),
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whereS(y|θθθ ) = ∑n
i=1 s(yi |θθθ ), with s(yi |θθθ ) the empirical score

function for thei-th individual. Replacingθθθ by its ML estima-
tor θ̂θθ and considering∇∇∇o(θ̂θθ ) = 0, equation (18) takes the simple
form

(19) Ie(θ̂θθ |y) =
n

∑
i=1

s(yi |θ̂θθ)s⊤(yi |θ̂θθ ).

At the kth iteration, the empirical score function for thei-th sub-
ject can be computed as

s(yi |θθθ )(k) = s(yi |θθθ )(k−1)

+ δk

[
1
m

m

∑
ℓ=1

s(yi ,q
(ℓ,k);θθθ (k))− s(yi |θθθ )(k−1)

]
,(20)

whereq(ℓ,k), ℓ= 1, . . . ,m, are the simulated missing values drawn
from the conditional distributionf (·|θ (k−1),yi). Thus, at itera-
tion k, the observed information matrix can be approximated as
Ie(θθθ |y)(k) = ∑n

i=1 s(yi |θθθ )(k) s⊤(yi |θθθ )(k), such that at convergence,

I−1
e (θ̂θθ |y) = (Ie(θθθ |y)|θθθ=θ̂θθ )

−1 is an estimate of the covariance ma-
trix of the parameter estimates. Expressions for the elements of
the score vector with respect toθθθ are given in Appendix A.3 of
the Supplementary Material.

5. SIMULATION STUDIES

In this section, the finite sample performance of the proposed
algorithm and its performance comparison with the method of
[13] is evaluated via simulation studies. These computationalpro-
cedures were implemented using theR software [33]. In particu-
lar, we consider the following linear mixed model:

(21) yi j = x⊤i j βββ + zi j bi + εi j , i = 1, . . . ,n, j = 1, . . . ,3,

where the goal is to estimate the fixed effects parametersβββ for a
grid of percentilesp= {0.05,0.10,0.50,0.90,0.95}. We simulat-
ed a 3×3 design matrixx⊤i j for the fixed effectsβββ , where the first
column corresponds to the intercept and the other columns gener-
ated from aN2(0,I2) density, for alli = 1, . . . ,n. We also simulat-
ed a 3×2 design matrix associated with the random effects, with
the columns distributed asN2(0,I2). The fixed effects parameters
were chosen asβ1 = 0.8, β2 = 0.5 andβ3 = 1, σ = 0.20, and the
matrixΨΨΨ with elementsΨ11 = 0.8, Ψ12 = 0.5 andΨ22 = 1. The
error termsεi j are generated independently from anALD(0,σ , p),
where p stands for respective percentile to be estimated. For
varying sample sizes ofn = 50, 100, 200 and 300, we generate
100 data samples for each scenario. In addition, we also choose
m= 20,W = 500 (the number of Monte-Carlo simulations cor-
responding to each data sample) andc= 0.2. Note, the choice of
c depends on the dataset, and also the underlying model. We set
c= 0.2, given that an initial run of 100 iterations (which is 20%
of W) for the 0.05th quantile led to convergence to the neighbor-
hood solution.

For all scenarios, we compute the square root of the mean
square error (RMSE), the bias (Bias) and the Monte carlo stan-
dard deviation (MC-Sd) for each parameter over the 100 repli-

cates. They are defined as MC-Sd(θ̂i) =

√
1
99 ∑100

j=1

(
θ̂i

( j) − θ̂i

)2
,

Bias(θ̂i) = θ̂i −θi , and RMSE(θ̂i) =

√
MC-Sd2(θ̂i)+Bias2(θ̂i),

where θ̂i =
1

100∑100
j=1 θ̂ ( j)

i and θi
( j) is the estimate ofθi from

the j-th sample, j = 1. . .100. In addition, we also computed
the average of the standard deviations (IM-Sd) obtained viathe
observed information matrix derived in Subsection 4.2 and the
95% coverage probability (MC-CP) as CP(θ̂i) =

1
100∑100

j=1 I(θi ∈
[θ̂i,LCL, θ̂i,UCL]), whereI is the indicator function such thatθi lies
in the interval[θ̂i,LCL, θ̂i,UCL], with θ̂i,LCL and θ̂i,UCL as the esti-
mated lower and upper bounds of the 95% CIs, respectively.
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Figure 2: Bias, Standard Deviation and RMSE forβ1 (upper pan-
el) andβ2 (lower panel) for varying sample sizes over the quan-
tiles p= 0.05, 0.10, 0.50, 0.90, 0.95.

The results are summarized in Figure2. We observe that
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Table 2:Simulation 1: Root Mean Squared Error (RMSE) for the fixed effectsβ0, β1, β2 and the nuisance parameterσ , obtained after fitting our
QR-LMM and the Geraci’s model [11] to simulated data under various settings of quantiles and sample sizes.

RMSE
β0 β1 β2 σ

Quantile (%) n SAEM Geraci SAEM Geraci SAEM Geraci SAEM Geraci
5 50 0.249 0.622 0.199 0.311 0.230 0.296 0.024 0.046

100 0.209 0.496 0.134 0.180 0.115 0.165 0.017 0.037
200 0.195 0.303 0.084 0.099 0.090 0.137 0.017 0.029
300 0.163 0.345 0.075 0.100 0.072 0.101 0.012 0.031

10 50 0.159 0.382 0.144 0.187 0.142 0.201 0.023 0.048
100 0.112 0.355 0.094 0.117 0.084 0.130 0.019 0.048
200 0.082 0.231 0.052 0.087 0.061 0.081 0.017 0.036
300 0.073 0.223 0.045 0.072 0.047 0.076 0.011 0.034

50 50 0.063 0.107 0.063 0.090 0.064 0.102 0.025 0.174
100 0.042 0.052 0.040 0.056 0.043 0.070 0.021 0.196
200 0.027 0.053 0.026 0.048 0.028 0.039 0.016 0.164
300 0.024 0.034 0.022 0.022 0.024 0.040 0.012 0.180

90 50 0.160 0.389 0.138 0.159 0.130 0.177 0.025 0.050
100 0.102 0.394 0.089 0.100 0.071 0.126 0.019 0.051
200 0.085 0.240 0.054 0.097 0.062 0.078 0.014 0.038
300 0.065 0.276 0.045 0.066 0.047 0.064 0.011 0.038

95 50 0.255 0.552 0.172 0.255 0.200 0.243 0.020 0.040
100 0.233 0.470 0.156 0.169 0.135 0.161 0.020 0.036
200 0.146 0.423 0.080 0.160 0.105 0.106 0.015 0.038
300 0.157 0.468 0.077 0.113 0.071 0.061 0.014 0.036

the Bias, SD and RMSE for the regression parametersβ1 and
β2 tends to approach zero with increasing sample size (n),
revealing that the ML estimates obtained via the proposed
SAEM algorithm are conformable to the expected asymptotic
properties. In addition, Table1 presents the IM Sd, MC-Sd and
MC-CP forβ1 andβ2 across various quantiles. The estimates of
MC-Sd and IM-Sd are very close, hence we can infer that the
asymptotic approximation of the parameter standard errorsare
reliable. Furthermore, as expected, we observe that the MC-CP
remains lower for extreme quantiles.

Finally, we compare the performance of SAEM algorithm
with the approximate method proposed by [11]. The Geraci’s al-
gorithm can be implemented using theR packagelqmm(). The
results are presented in Table2 and Figure B.1 (Supplementary
Material). We observe that the RMSE from the proposed SAEM
algorithm are lower than Geraci method across all scenarios, with

Table 1: Monte Carlo standard deviation (MC-Sd), mean standard
deviation (IM-Sd) and Monte Carlo coverage probability (MC-
CP) estimates of the fixed effectsβ1 andβ2 from fitting the QR-
LMM under various quantiles for sample sizen= 100.

β1 β2
Quantile (%) MC-Sd IM-Sd MC-CP MC-Sd IM-Sd MC-CP
5 0.073 0.060 90 0.067 0.059 90
10 0.045 0.044 95 0.047 0.044 96
50 0.022 0.024 97 0.024 0.025 96
90 0.045 0.045 92 0.047 0.044 96
95 0.060 0.056 88 0.071 0.056 83

the differences considerably higher for the extreme quantiles. Fi-
nally, Figure B.2 (Supplementary Material) that compares the d-
ifferences in SD between the two methods for fixed effectsβ1 and
β2 at specified quantiles reveals that the SD are mostly smallerfor
the SAEM method. Thus, we conclude that the SAEM algorithm
produces more precise estimates.

6. APPLICATIONS

In this section, we illustrate the application of our methodto
two interesting longitudinal datasets from the literaturevia our
developedR packageqrLMM, currently available for free down-
load from theR CRAN (Comprehensive R Archive Network).

6.1 Cholesterol data

The Framingham cholesterol study generated a benchmark
dataset [41] for longitudinal analysis to examine the role of serum
cholesterol as a risk factor for the evolution of cardiovascular dis-
ease. We analyze this dataset with the aim of explaining the full
conditional distribution of the serum cholesterol as a function of
a set of covariates of interest via modelling a grid of response
quantiles. We fit a LMM model to the data as specified by

(22) Yi j = β0+β1genderi +β2agei +b0i +b1iti j + εi j ,

whereYi j is the cholesterol level (divided by 100) at thejth
time point for theith subject,ti j = (τ − 5)/10 whereτ is the
time measured in years from the start of the study, age denotes
the subject’s baseline age, gender is the dichotomous gender
(0=female, 1=male),b0i andb1i the random intercept and slope,

8 C. Galarza et al.



respectively, for subjecti, andεi j the measurement error term,
for 200 randomly selected subjects.

0
.0
0

0
.0
5

0
.1
0

0
.1
5

quantiles

S
E
(β
0
)

0.05 0.25 0.45 0.65 0.85

SAEM
Geraci

quantiles

S
E
(β
1
)

0
.0
0

0
.0
2

0
.0
4

0
.0
6

0
.0
8

0
.1
0

0.05 0.25 0.45 0.65 0.85

SAEM
Geraci

quantiles

S
E
(β
2
)

0
.0
0
0

0
.0
0
1

0
.0
0
2

0
.0
0
3

0
.0
0
4

0.05 0.25 0.45 0.65 0.85

SAEM
Geraci

0
5
0
0

1
0
0
0

1
5
0
0

quantiles

A
IC

0.05 0.25 0.45 0.65 0.85

SAEM
Geraci

Figure 3: Standard errors for the fixed effectsβ0, β1 andβ2 and
AIC over the quantilesp= {0.05,0.10, . . .,0.95} from fitting the
proposed QR-LMM model and Geraci’s method to the Choles-
terol data.

We fit the proposed SAEM algorithm and the approximate
method of Geraci [11] over the gridp = {0.05,0.10, . . .,0.95}
to the cholesterol dataset. Figure3 plots the standard errors (SE)
of the fixed effects parametersβ0− β2, and the AIC from both
models. We observe that our SAEM method leads to mostly s-
maller SEs and AIC compared to the Geraci method. The SEs
corresponding to the extreme quantiles are substantially lower.
This supports the simulation findings. Interestingly, for the ex-
tremes quantiles, some warnings messages on convergence were
displayed while fitting Geraci’s method, even after increasing the
number of iterations and reducing the tolerance, as suggested in
thelqmm manual. However, the mean estimation time per quan-
tile for the SAEM method was about 7 hours compared to 1 hour
for Geraci’s method. Hence, although the SAEM algorithm is rel-
atively slow, the substantial gain in the AIC criterion and the SEs
establish that our SAEM approach provides a much better fit to
the dataset.

Figure4 presents graphical summaries (confidence bands) for
the fixed effects parametersβ0, . . . ,β2, and the nuisance param-
eterσ . The solid lines represent the 2.5th, 50th and, 97.5th per-
centiles across various quantiles, obtained from the estimated s-
tandard errors defined in Subsection4.2. The figures reveal that
the effect of gender and age become more prominent with in-
creasing conditional quantiles. In addition, although ageexhibits
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Figure 4: Point estimates (center solid line) and 95% confidence
intervals across various quantiles for model parameters after fit-
ting the proposed QR-LMM model to the Cholesterol data using
theqrLMM package. The interpolated curves are spline-smoothed.

a positive influence on the cholesterol level across all quantiles,
the confidence band for gender includes 0 across all quantiles,
and hence its effect is non-significant. The estimated nuisance
parameterσ is symmetric aboutp= 0.5, taking its maximum val-
ue at that point and decreasing for the extreme quantiles. Figure
B.3 (Supplementary Material) plots the fitted regression lines for
the quantiles 0.10,0.25,0.50(the mean),0.75 and 0.90 by gender.
From this figure, it is clear how the extreme quantiles capture the
full data variability and detect some atypical observations. The
intercept of the quantile functions look very similar for both pan-
els due to the non-significant gender.

6.2 Orthodontic distance growth data

A second application was developed using a data set form a
longitudinal orthodontic study [32, 31] performed at the Univer-
sity of North Carolina Dental School. Here, researchers measured
the distance between the pituitary and the pterygomaxillary fis-
sure (two points that are easily identified on x-ray exposures of
the side of the head) for 27 children (16 boys and 11 girls) every
two years from age 8 until age 14. Similar to Application 1, we
fit the following LMM to the data:

Yi j = β0+β1genderi +β2ti j +b0i +b1iti j + εi j ,(23)

whereYi j is the distance between the pituitary and the pterygo-
maxillary fissure (in mm) at thejth time for theith child, ti j is
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the child’s age at timej taking values 8, 10, 12, and 14 years,
gender is a dichotomous variable (0=female, 1=male) for child i
andεi j the random measurement error term. Initial exploratory
plots for 10 random children in the left panel of Figure B.4 (Sup-
plementary Material) suggest an increasing distance with respect
to age. The individual profiles by gender (right panel) show dif-
ferences between distances for boys and girls (distance forboys
greater than those for girls), and hence we could expect a signif-
icant gender effect. Once again, after fitting the QR-LMM over

β σ

Figure 5: Point estimates (center solid line) and 95% confidence
intervals for model parameters across various quantiles from fit-
ting the QR-LMM using theqrLMM package to the orthodon-
tic growth distance data. The interpolated curves are spline-
smoothed.

the gridp= {0.05,0.10, . . .,0.95}, the point estimates and asso-
ciated 95% confidence bands for model parameters are presented
in Figure5. From the figure, we infer that the effect of gender and
age are significant across all quantiles, with their effect increasing
for higher conditional quantiles. Effect of Age is always positive
across all quantiles, with a higher effect at the two extremes. σ
behaves the same as in Application 1. Figure B.5 (Supplemen-
tary Material) plots the fitted regression lines for the quantiles
0.10,0.25,0.50,0.75 and 0.90, overlayed with the individual pro-
files (gray solid lines), by gender. These fits capture the variabil-
ity of the individual profiles, and also differ by gender due to its
significance in the model. TheR package also produces graphical
summaries of point estimates and confidence intervals (95% by
default) across various quantiles, as presented in Figures4 and
5. Trace plots showing convergence of these estimates are pre-
sented in Figure B.6 (Supplementary Material). For example, for

the 75th quantile, we can confirm that the convergence parame-
ters for the SAEM algorithm (M = 10, c = 0.25 andW = 300)
has been set adequately leading to a quick convergence in distri-
bution within the first 75 iterations, and then converging almost
surely to a local maxima in a total of 300 iterations. Sample out-
put from theqrLMM package is provided in Appendix C of the
Supplementary Material.

7. CONCLUSIONS

In this paper, we developed likelihood-based inference for
QR-LMM, where the likelihood function is based on the ALD.
The ALD presents a convenient framework for the implementa-
tion of the SAEM algorithm leading to the exact ML estimation
of the parameters. The methodology is illustrated via application
to two longitudinal clinical datasets. We believe this paper is the
first attempt for exact ML estimation in the context of QR-LMMs,
and provide improvement over the methods proposed by Geraci
and his co-authors [13, 11]. The methods developed here are
readily implementable via theR packageqrLMM(). Our propo-
sition is parametric. Although nonparametric considerations [24]
are available for the standard linear QR problem, adapting those
to the LMM framework can lead to non-trivial computational bot-
tlenecks. This is possibly a research direction to pursue.

Certainly, other distributions can be used as alternativesto
the ALD. Recently, [37] presented a generalized class of skew
density for QR that provides competing solutions to the ALD-
based formulation. However, their exploration is limited to the
simple linear QR framework. Also, due to the lack of a relevant
stochastic representation, the corresponding EM-type implemen-
tation can lead to difficulties. Recently, [8] presented anR pack-
age for a linear QR using a new family of skew distributions that
includes the ones formulated in [37] as special cases. This family
includes the skewed version of Normal, Student-t, Laplace, Con-
taminated Normal and Slash distribution, all with the zero quan-
tile property for the error term, and with a convenient stochastic
representation. Undoubtedly, incorporating this skewed class into
our LMM proposition can enhance flexibility, and potentially im-
prove our inference. Furthermore, for QR-LMM, its robustness
against outliers can be seriously affected in presence of skewness
and thick-tails. Not long ago, [22] proposed a parametric remedy
using scale mixtures of skew-normal distributions in the random
effects. We conjecture that this methodology can be transferred
to the QR-LMM framework, and should yield satisfactory result-
s at the expense of additional complexity in implementation. An
in-depth investigation of these propositions are beyond the scope
of the present paper, and will be considered elsewhere.
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Supplementary Materials forQuantile Regression in
Linear Mixed Models: A Stochastic Approximation EM
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Note: The numbers in parentheses inside the text in the material below refer to the equation
numbers in the main paper.

APPENDIX A Some results on SAEM implementation

A.1 A Gibbs Sampler Algorithm

In order to draw a sample fromf (bi,ui|yi)we can use the Gibbs Sampler, an Markov chain Monte
Carlo (MCMC) algorithm proposed by (Casella and George, 1992) for obtaining a sequence of
observations which are approximated from the joint probability distribution of two or several
random variables just using their full conditional distributions. Computing the full conditional
distributionsf (bi|ui,yi) and f (ui|bi,yi), we have for the first one that

f (bi|yi,ui) ∝ f (yi|bi,ui) f (bi),

∝ φni

(
yi|X⊤

i βββ p +Zibi +ϑpui,στ2
pD(ui)

)
×φq(bi|0,ΨΨΨ) (A.1)

so we have a product of multivariate normal densities which solution is based in the next lemma:

Lemma 1. Simplifying the notation above it follows that

φn(y|Xβββ +Zb,ΩΩΩ)φq(b|0,ΨΨΨ) = φn(y|Xβββ ,ΣΣΣ)φq(b|µµµ1(y−Xβββ ),ΛΛΛ) (A.2)

where
µµµ1 = ΛΛΛZT ΩΩΩ−1, ΣΣΣ = ΩΩΩ+ZΨΨΨZT , ΛΛΛ = (ΨΨΨ−1+ZT ΩΩΩ−1Z)−1. (A.3)

Due the equation (A.2) from the lemma 2 it leads us to

f (bi|yi,ui) ∝ φni

(
yi| X⊤

i βββ p +ϑpui,στ2
pD(ui)+ZiΨZ⊤

i

)
×

φq

(
bi|ΛΛΛiZ i

⊤ (
στ2

pD(ui)
)−1

(
yi−X⊤

i βββ p−ϑpui

)
,ΛΛΛi

)

whereΛΛΛi =
(
Ψ−1+στ2

pZ⊤
i D(ui)Zi

)−1
. Then dropping the first term of the product by pro-

portionality it’s easy to see thatbi|yi,ui ∼ Nq

(
ΛΛΛiZ⊤

i

(
στ2

pD(ui)
)−1

(
yi−X⊤

i βββ p−ϑpui

)
,ΛΛΛi

)
.
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On other hand, for the full conditional distributionf (ui|yi,bi) note that the vectorui|yi,bi can

be constructed asui|yi,bi =
[

ui1|yi1,bi ui2|yi2,bi · · · uini |yini,bi
]⊤

given thatui j
∣∣yi j,bi ⊥

uik|yik,bi for all j,k = 1,2, . . . ,ni and j 6= k. So, the univariate distribution of thef (ui j|yi j,bi) is
proportional to the product off (yi j|bi,ui j) and f (ui j), a Normal and a Exponential distribution,
that is

f (ui j|yi j,bi) ∝ φ(yi j
∣∣X⊤

i jβββ p +Z⊤
i jbi +ϑpui j, στ2

pui j)×GUi j(1,σ),

then the Lemma 1 leads us thatui j|yi j,bi ∼ GIG( 1
2,χi j,ψ), whereχi j =

∣∣∣yi j−X⊤
i jβββ p−Z⊤

i j bi

∣∣∣
τp
√

σ
and

ψ =
τp

2
√

σ
.

In resume, the Gibbs Sampler proceeds as follow:

Givenθθθ = θθθ (k) for i = 1, . . . ,n;

(1) Start with suitable initial values(b(0,k)
i ,u(0,k)

i )

(2) Draw b(1,k)
i |yi,u

(0,k)
i ∼ Nq

(
ΛΛΛ(k)

i Z⊤
i

(
σ (k)τ2

pD(u(0,k)
i )

)−1(
yi−X⊤

i βββ (k)
p −ϑpu(0,k)

i

)
,ΛΛΛ(k)

i

)

(3) Draw u(1,k)i j |yi j,b
(1,k)
i ∼ GIG


1

2
,

∣∣∣∣yi j−X⊤
i jβββ

(k)

p −Z⊤
i jb

(1,k)
i

∣∣∣∣

τp

√
σ (k)

,
τp

2
√

σ (k)


 for all j = 1,2, . . . ,ni

(4) Constructu(1,k)
i |yi,b

(1,k)
i as

[
u(1,k)i1 |yi1,b

(1,k)
i u(1,k)i2 |yi2,b

(1,k)
i · · · u(1,k)ini

|yini,b
(1,k)
i

]⊤

(5) Repeat the steps 2-4 until drawm samples
(

b(1,k)
i ,u(1,k)

i

)
,
(

b(2,k)
i ,u(2,k)

i

)
, . . . ,

(
b(m,k)

i ,u(m,k)
i

)

from bi,ui|θ (k),yi.

Note that for a given a iterationk and for all i = 1, . . . ,n, drawing from the conditional distri-

bution of the vectoru(l,k)
i |yi,b

(l,k)
i implies to draw from the univariate conditional distributions

u(k)i j |yi j,b
(k)
i for all j = 1,2, . . . ,ni, so this construction results in a heavy computational algorith-

m.

A.2 Specification of initial values

It is well known that a smart choice of the initial values of MLestimates can assure a fast con-
vergence of an algorithm to the global maxima solution for the respective likelihood. Obviating
the random effects term, letyi ∼ ALD(x⊤i βββp,σ , p). Next, considering the MLEs ofβββp andσ
as defined in Yu and Zhang (2005) for this model, we follow the steps below for the QR-LMM
implementation:

1. Compute an initial valuêβββ
(0)

p as

β̂ββ
(0)

p = arg min
βp∈Rk

n

∑
i=1

ρp(yi −x⊤i βββp).
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2. Using the initial value for̂βββ
(0)

p obtained above, computêσ (0) as

σ̂ (0) =
1
n

n

∑
i=1

ρp(yi −x⊤i β̂ββ
(0)

p ).

3. Use aq×q identity matrixI q×q for the the initial valueΨΨΨ(0).

A.3 Computing the conditional expectations

Due the independence betweenui j
∣∣yi j,bi and uik|yik,bi, for all j,k = 1,2, . . . ,ni and j 6= k, we

can writeui|yi,bi = [ ui1|yi1,bi ui2|yi2,bi · · · uini |yini,bi ]
⊤. Using this fact, we are able to

compute the conditional expectationsE (ui) andE (D−1
i ) in the following way. Using matrix ex-

pectation properties, we define these expectations as

E (ui) = [E (ui1) E (ui1) · · · E (uini)]
⊤ (A.4)

and

E (D−1
i ) = diag(E (u−1

i )) =




E (u−1
i1 ) 0 ... 0

0 E (u−1
i2 ) ... 0

...
...

...
...

0 0 ... E (u−1
ini

)


 . (A.5)

We already haveui j|yi j,bi ∼ GIG( 1
2,χi j,ψ), whereχi j andψ are defined in (14). Then, using

(5), we compute the moments involved in the equations above as E (ui j) =
χi j
ψ (1+ 1

χi jψ ) and

E (u−1
i j ) = ψ

χi j
. Thus, for iterationk of the algorithm and for theℓth Monte Carlo realization, we

can computeE (ui)
(ℓ,k) andE [D−1

i ](ℓ,k) using equations (A.4)-(A.5) where

E (ui j)
(ℓ,k) =

2|yi j −x⊤i jβββ
(k)
p −z⊤i jb

(ℓ,k)
i |+4σ (k)

τ2
p

and E (u−1
i j )(ℓ,k) =

τ2
p

2|yi j −x⊤i jβββ
(k)
p −z⊤i jb

(ℓ,k)
i |

.

A.4 The empirical information matrix

In light of (10), the complete log-likelihood function can be rewritten as

ℓci(θθθ ) = −3
2

ni logσ − 1
2στ2

p
ζ⊤

i D−1
i ζi −

1
2

log
∣∣ΨΨΨ

∣∣−1
2

b⊤
i ΨΨΨ−1bi−

1
σ

u⊤
i 1ni (A.6)

whereζi = yi−x⊤i βββp−zibi−ϑpui andθθθ = (βββ⊤
p ,σ ,ααα⊤)⊤. Taking partial derivatives with respect

to θθθ , we have the following score functions:

∂ℓci(θθθ)
∂βββ p

=
∂ζi

∂βββ p

∂ℓci(θθθ)
∂ζi

=
1

στ2
p
xiD−1

i ζi,

and

∂ℓci(θθθ)
∂σ

= −3ni

2
1
σ
+

1
2σ2τ2

p
ζ⊤

i D−1
i ζi+

1
σ2u⊤

i 1ni.
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Let ααα be the vector of reduced parameters fromΨΨΨ, the dispersion matrix forbi. Using the trace
properties and differentiating the complete log-likelihood function, we have that

∂ℓci(θθθ)
∂ΨΨΨ

=
∂

∂ΨΨΨ

[
−n

2
log

∣∣ΨΨΨ
∣∣−1

2
tr{ΨΨΨ−1bib⊤

i }
]

= −1
2

tr{ΨΨΨ−1}+ 1
2

tr{ΨΨΨ−1ΨΨΨ−1bib⊤
i }

=
1
2

tr{ΨΨΨ−1(bib⊤
i −ΨΨΨ)ΨΨΨ−1}

Next, taking derivatives with respect to a specificα j from ααα based on the chain rule, we have

∂ℓci(θθθ)
∂α j

=
∂ΨΨΨ
∂α j

∂ℓci(θθθ)
∂ΨΨΨ

=
∂ΨΨΨ
∂α j

1
2

tr{ΨΨΨ−1(bib⊤
i −ΨΨΨ)ΨΨΨ−1}. (A.7)

where, using the fact that tr{ABCD}= (vec(A⊤))⊤(D⊤⊗B)(vec(C)), (A.7) can be rewritten as

∂ℓci(θθθ )
∂α j

= (vec(∂ΨΨΨ
∂α j

⊤
))⊤

1
2
(ΨΨΨ−1⊗ΨΨΨ−1)(vec(bib⊤

i −ΨΨΨ)). (A.8)

Let Dq be the elimination matrix (Lavielle, 2014) that transformsthe vectorizedΨΨΨ (written
as vec(ΨΨΨ)) into its half-vectorized form vech(ΨΨΨ), such thatDqvec(ΨΨΨ) = vech(ΨΨΨ). Using the

fact that for all j = 1, . . . , 1
2q(q+1), the vector(vec(∂ΨΨΨ

∂α j
)⊤)⊤ corresponds to thejth row of the

elimination matrixDq, we can generalize the derivative in (A.8) for the vector of parametersααα
as

∂ℓci(θθθ)
∂ααα

=
1
2
Dq(ΨΨΨ−1⊗ΨΨΨ−1)(vec(bib⊤

i −ΨΨΨ)).

Finally, at each iteration, we can compute the empirical information matrix (19) by approximating
the score for the observed log-likelihood using the stochastic approximation given in (20).
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APPENDIX B Figures
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Figure B.1: Comparison of the Bias (upper row) and RMSE (lower row) at the 95-th quantile
from fitting the QR-LMM and the Geraci (2014) model for the fixed effectsβ0, β1 andβ2.
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Figure B.2: Comparison of the Monte Carlo standard deviation for the estimatives ofβ1 andβ2

obtained by the SAEM procedure and the Geraci (2014) algorithm for the set of quantiles 5, 10,
50, 90 and 95.
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Figure B.3: Fitted mean regression overlayed with five different quantile regression lines for the
Cholesterol data, by gender.
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female male

Figure B.4: Orthodontic distance growth data: Individual profiles for 10 random children (Panel
a); Individual profiles for the same children, by gender (Panel b).

8



Figure B.5: Fitted mean regression overlayed with five different quantile regression lines for the
Orthodontic distance growth data, by gender.
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Figure B.6: Graphical summary of convergence for the fixed effect parameters, variance compo-
nents of the random effects, and nuisance parameters, generated from theqrLMM package for the
orthodontic distance growth data. The vertical dashed linedelimits the beginning of the almost
sure convergence, as defined by the cut-point parameterc.
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APPENDIX C Sample output from R packageqrLMM()

-------------------------------------------------

Quantile Regression for Linear Mixed Models

-------------------------------------------------

Quantile = 0.75

Subjects = 27 ; Observations = 108 ; Balanced = 4

-----------

Estimates

-----------

- Fixed effects

Estimate Std. Error z value Pr(>|z|)

beta 1 17.08405 0.53524 31.91831 0

beta 2 2.15393 0.36929 5.83265 0

beta 3 0.61882 0.05807 10.65643 0

sigma = 0.38439

Random effects Variance-covariance matrix

z1 z2

z1 0.16106 -0.00887

z2 -0.00887 0.02839

------------------------

Model selection criteria

------------------------

Loglik AIC BIC HQ

Value -216.454 446.907 465.682 454.52

-------

Details

-------

Convergence reached? = FALSE

Iterations = 300 / 300

Criteria = 0.00381

MC sample = 10

Cut point = 0.25

Processing time = 7.590584 mins
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