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Abstract: The use of the �rst two moments of the truncated multivariate Student-t distri-

bution has attracted increasing attention from a wide range of applications. This paper

develops recurrence relations for integrals that involve the density of multivariate Student-t

distributions. The proposed techniques allow for fast computation of arbitrary-order prod-

uct moments of folded and truncated multivariate Student-t distributions and o�er explicit

expressions of low-order moments of folded and truncated multivariate Student-t distribu-

tions. A real data example containing positive censored responses is applied to illustrate the

e�ectiveness and importance of the proposed methods. An R MomTrunc package is developed

and publicly available on the CRAN repository.
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1. Introduction

The multivariate Student-t (MVT) distribution has played over the past decades

a crucial role in statistical analysis, o�ering a more viable alternative with respect to

real-world data. In particular, it has a harmonizing parameter (called the degrees of

freedom) to control the thickness of tails and it includes the multivariate normal (MVN)

distribution as a limiting case. Both the MVT and the MVN are members of the general
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family of elliptically symmetric distributions whose properties have been widely studied

(Fang et al., 1990). Some recent applications in the areas such as spatial models (De Bas-

tiani et al., 2015), linear mixed e�ects models (Pinheiro et al., 2001; Savalli et al., 2006),

multivariate linear mixed e�ects models (Wang and Fan, 2011; Wang and Lin, 2014),

mixture modelling (Peel and McLachlan, 2000), missing data imputation (Wang et al.,

2017) and Bayesian statistical modeling (Fonseca et al., 2008; Wang and Lin, 2015), have

been broadly studied.

On the other hand, for many applications on simulations or experimental studies,

researches often generate a large number of datasets with values restricted to �xed inter-

vals. For example, variables such as pH, grades, viral load in HIV studies and humidity in

environmental studies, have upper and lower bounds due to detection limits, and the sup-

port of their densities is restricted to some given intervals. Thus, the necessity of studying

the truncated distributions along with their properties arises naturally. In this context,

there has been a growing interest in evaluating the moments of truncated distributions.

For instance, Tallis (1961) provided the formulae for the �rst two moments of truncated

multivariate normal (TMVN) distributions. Lien (1985) gave the expressions for the

moments of truncated bivariate log-normal distributions with applications to testing the

Houthakker e�ect in future markets. Jawitz (2004) derived the truncated moments of sev-

eral continuous univariate distributions commonly applied to hydrologic problems. Kim

(2008) provided analytical formulae for moments of the truncated univariate Student-t

distribution in a recursive form. Flecher et al. (2010) obtained expressions for the mo-

ments of truncated skew-normal distributions (Azzalini, 1985) and applied the results to

model the relative humidity data. Genç (2013) studied the moments of a doubly truncated

member of the symmetrical class of normal/independent distributions and their applica-

tions to the actuarial data. Ho et al. (2012) presented a general formula to compute the

�rst two moments of the truncated multivariate Student-t (TMVT) distribution based on

the moment generating function (MGF) of the TMVN by expressing a TMVT random

variable as a TMVN scale mixture variable. Relying on the TMVT moments, Lin and

Wang (2017), Wang et al. (2018) and Lin and Wang (2020) conducted several simulation

experiments to show the robustness of censored t models against outlying observations.

Arismendi (2013) provided explicit expressions for computing arbitrary-order product

moments of the TMVN distribution by using the MGF. However, the calculation of this

approach relies on di�erentiation of the MGF and can be prohibitively time consuming.

Instead of di�erentiating the MGF of the TMVN distribution, Kan and Robotti (2017)
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recently presented recurrence relations for integrals that involve directly the density of

the MVN distribution for computing arbitrary order product moments of the TMVN

distribution. These recursions o�er fast computation of the moments of folded (FMVN)

and TMVN distributions, which require evaluating p-dimensional integrals that involve

MVN densities. Explicit expressions for some low order moments of FMVN and TMVN

distributions are presented. Recently, another MGF-based approach was proposed by

Roozegar et al. (2020) who derived explicit expressions for the �rst two moments of a

truncated random vector with mean-variance mixture of normal distribution, which in

particular includes the MVT distribution as a special case. Although some proposals to

calculate the �rst two moments of the truncated Student-t distribution (Kim, 2008; Ho

et al., 2012) have been recently published so far, to the best of our knowledge, there is

no attempt on studying the product moments of folded multivariate Student-t (FMVT)

and TMVT distributions. In this paper, we develop recurrence relations for integrals

involving the density of MVT distributions based on the idea of Kan and Robotti (2017).

The proposed recursions allow fast computation of the product moments of the FMVT

and TMVT distributions. The proposed new methodology can be implemented in the R

package MomTrunc (Galarza et al., 2020) available on CRAN repository.

The rest of this paper is organized as follows. In Section 2, we de�ne the notation

and brie�y discuss some preliminary results related to the MVT, TMVT and FMVT

distributions. Section 3 presents a recurrence formula of an integral for evaluating product

moments of the FMVT and TMVT distributions. Explicit expressions for the �rst two

moments of the FMVT and TMVT distributions are also presented. In Section 4, the

usefulness of the proposed method is illustrated through a real data example containing

censored responses. Some concluding remarks and implications for future research are

given in Section 5. Technical details and additional information are provided in the

Online Supplement.

2. Preliminaries

We begin our exposition by de�ning the notation and presenting some basic concepts

which are used throughout our methodological developments. As is usual in probability

theory and its applications, we denote a random variable by an upper-case letter and

its realization by the correspondent lower case and use boldface letters for vectors and

matrices. Let Ip represent a p × p identity matrix, A> be the transpose of A, and

|X| = (|X1|. . . . , |Xp|)> denote the absolute value of each entry of vector X. For multiple
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integrals, we use the shorthand notation∫ b

a
f(x)dx =

∫ b1

a1

. . .

∫ bp

ap

f(x1, . . . , xp)dxp . . . dx1,

where a = (a1, . . . , ap)
> and b = (b1, . . . , bp)

>. For two p-dimensional random vectors

x = (x1, . . . , xp)
> and κ = (k1, . . . , kp)

>, let xκ stand for (xκ11 , x
κ2
2 , . . . , x

κp
p ). General re-

sults to compute the probability of a random vector lying in a hypercube are summarized

in the following results

Lemma 1. Let X be a p-variate random vector with joint probability density function

(pdf) fX(x;θ) and cumulative distribution function (cdf) FX(x;θ). Let A be a Borel set

in Rp of the form

A = {(x1, . . . , xp)> ∈ Rp : a1 ≤ x1 ≤ b1, . . . , ap ≤ xp ≤ bp} = {x ∈ Rp : a ≤ x ≤ b}.
(2.1)

Then

P(X ∈ A) =
∑

s∈S(a,b)

(−1)nsFX(s;θ),

where S(a,b) = {s : s = (s1, . . . , sp)
>, with si = {ai, bi}, i = 1, . . . , p} and ns =∑p

i=1 1(si = ai) with 1(·) being the indicator function.

Proof. Based on the inclusion-exclusion principle, the probability P(X ∈ A) = P(a ≤
X ≤ b) can be computed by summing the 2p terms corresponding to the s elements in

the solution space of S(a,b), where the term signs depend on the number of a's elements

in the vector s, i.e., ns.

Theorem 1. Let X be a p-variate random vector with joint pdf fX(x;θ) and joint cdf

FX(x;θ). If Y = |X|, then the joint pdf and cdf of Y that follows a folded distribution

are given, respectively, by

fY(y) =
∑

s∈S(p)

fX(Λsy;θ), for y ≥ 0,

and

FY(y) =
∑

s∈S(p)

πsFX(Λsy;θ),

where S(p) = {s : s = (s1, . . . , sp)
>, with si = ±1, i = 1, . . . , p}, Λs = Diag(s) and

πs =
∏p
i=1 si.
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Proof. The distribution function FY(y) can be calculated as a particular case of Lemma 1,

when a = −y and b = y. The proof ends by di�erentiating FY(y) with respect to each

entry of y to obtain fY(y).

Corollary 1. If X ∼ fX(x; ξ,Ψ) belongs to the location-scale family of distributions with

location and scale parameters ξ and Ψ respectively, then Zs = ΛsX ∼ fX(z; Λsξ,ΛsΨΛs)

and consequently the joint pdf and cdf of Y = |X| are given by

fY(y) =
∑

s∈S(p)

fX(y; Λsξ,ΛsΨΛs), for y ≥ 0,

and

FY(y) =
∑

s∈S(p)

πsFX(Λsy; ξ,Ψ).

Corollary 1 generalizes the results of Chakraborty and Chatterjee (2013) for the

FMVN case to all distributions belong to the multivariate location-scale family.

Corollary 2. Under the same conditions of Corollary 1, we have that

E[Yκ] =
∑

s∈S(p)

E[Z+κ
s ],

where X+ = X · 1(X > 0).

Proof. It follows from basic probability theory that∫ ∞

0
yκfY(y)dy =

∑
s∈S(p)

∫ ∞

0
yκfX(y; Λsξ,ΛsΨΛs)dy

=
∑

s∈S(p)

∫ ∞

0
yκfZs(y)dy

=
∑

s∈S(p)

E[Z+κ
s ].

2.1 The MVT and FMVT distributions and main properties

A random variable X having a p-variate MVT distribution with location vector

µ, positive-de�nite scale-covariance matrix Σ and degrees of freedom ν, denoted by

X ∼ tp(µ,Σ, ν), has the pdf:

tp(x | µ,Σ, ν) =
Γ(p+ν2 )

Γ(ν2 )πp/2
ν−p/2|Σ|−1/2

(
1 +

δ(x)

ν

)−(p+ν)/2
,
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where Γ(·) is the standard gamma function and δ(x) = (x − µ)>Σ−1(x − µ) is the

Mahalanobis distance. Let Lp(a,b;µ,Σ, ν) represent

Lp(a,b;µ,Σ, ν) =

∫ b

a
tp(x|µ,Σ,ν)dx,

where a = (a1, . . . , ap)
> and b = (b1, . . . , bp)

>. The cdf of X is denoted as

Tp(b|µ,Σ, ν) =

∫ b

−∞
tp(x|µ,Σ, ν)dx = Lp(−∞,b;µ,Σ, ν).

In light of Lemma 1, we have

Lp(a,b;µ,Σ, ν) =
∑

s∈S(a,b)

(−1)nsTp(s|µ,Σ, ν),

where S(a,b) and ns are de�ned as in Lemma 1.

It is known that as ν → ∞, X converges in distribution to a multivariate normal

with mean µ and variance-covariance matrix Σ, denoted by Np(µ,Σ). An important

property of the random vector X is that it can be written as a scale mixture of the MVN

random vector coupled with a positive random variable, i.e.,

X = µ+ U−1/2Z,

where Z ∼ Np(0,Σ), and is independent of U ∼ Gamma(ν/2, ν/2), where Gamma(a, b)

denotes a gamma distribution with mean a/b.

The following properties of the MVT distribution are useful for our theoretical de-

velopments. We start with the marginal-conditional decomposition of a MVT random

vector. The proof of the following propositions can be found in Arellano-Valle and Bol-

farine (1995).

Proposition 1. Let X ∼ tp(µ,Σ, ν) partitioned as X> = (X>1 ,X
>
2 )> with dim(X1) =

p1, dim(Y2) = p2, where p1 + p2 = p. Let µ = (µ>1 ,µ
>
2 )> and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
be the

corresponding partitions of µ and Σ. Then, we have

(i) X1 ∼ tp1(µ1,Σ11, ν); and

(ii) The conditional distribution of X2 | (X1 = x1) is given by

X2 | (X1 = x1) ∼ tp2
(
y2 | µ2.1, Σ̃22.1, ν + p1

)
,
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where µ2.1 = µ2 + Σ21Σ
−1
11 (x1 − µ1) and Σ̃22.1 =

(
ν + δ1
ν + p1

)
Σ22.1 with δ1 = (x1 −

µ1)
>Σ−111 (x1 − µ1) and Σ22.1 = Σ22 −Σ21Σ

−1
11 Σ12.

Proposition 2. Let X ∼ tp(µ,Σ, ν). Then for any �xed vector b ∈ Rm and matrix

A ∈ Rm×p of full rank we get

V = b + AX ∼ tm(b + Aµ,AΣA>, ν).

We are interested in computing E
[
|X1|k1 . . . |Xp|kp

]
and E[Xk1

1 . . . X
kp
p |ai < Xi <

bi, i = 1, . . . , p] for any nonnegative integer values ki = 0, 1, 2, . . ., where the former is the

moment of a FMVT distribution |X| = (|X1|, . . . , |Xp|)>, and the later is the moment

of a TMVT distribution, with Xi truncated at the lower limit ai and upper limit bi,

i = 1, . . . , p. Remark that some of the a′is can be −∞ and some of the b′is can be +∞
in the second expression. When all the bi's are ∞, the distribution is called the lower

TMVT, and when all the ai's are −∞, the distribution is called the upper TMVT.

2.2 The TMVT distribution and main properties

A p-dimensional random vector Y is said to follow a doubly truncated Student-t

distribution with location vector µ, scale-covariance matrix Σ and degrees of freedom ν

over the truncation region A de�ned in (2.1), denoted by Y ∼ Ttp(µ,Σ, ν;A), if it has

the pdf:

Ttp(y|µ,Σ, ν;A) =
tp(y|µ,Σ, ν)

Lp(a,b;µ,Σ, ν)
, a ≤ y ≤ b.

The cdf of Y evaluated at the region a ≤ y ≤ b is

TTp(y|µ,Σ, ν;A) =
1

Lp(a,b;µ,Σ, ν)

∫ y

a
tp(x|µ,Σ, ν)dx =

Lp(a,y;µ,Σ, ν)

Lp(a,b;µ,Σ, ν)
.

The following propositions are related to the marginal and conditional moments of

the �rst two moments of the TMVT distributions under a double truncation. The proof

is similar to those given in Matos et al. (2013). In what follows, we shall use the notation

δ(Y) ≡ δ(Y;µ,Σ) = (Y −µ)>Σ−1(Y −µ) to stand for the Mahalanobis distance of Y

with respect to the points with mean µ and variance-covariance matrix Σ, and Y(0) = 1,

Y(1) = Y and Y(2) = YY>.

Proposition 3. If Y ∼ Ttp(µ,Σ, ν; (a,b)) then it holds that

E

[(
ν + p

ν + δ(Y)

)r
Y(k)

]
= cp(ν, r)

Lp(a,b;µ,Σ∗, ν + 2r)

Lp(a,b;µ,Σ, ν)
E[W(k)],
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where k = 0, 1, 2,

cp(ν, r) =

(
ν + p

ν

)r Γ
(p+ν

2

)
Γ
(
ν+2r
2

)
Γ
(
ν
2

)
Γ
(
p+ν+2r

2

) ,
Σ∗ = νΣ/(ν + 2r) and ν + 2r > 0, with W ∼ Ttp(µ,Σ∗, ν + 2r; (a,b)).

Notice that Proposition 3 depends on formulas for E[W] and E[WW>], where

W ∼ Ttp(µ,Σ
∗, ν + 2r; (a,b)). Having established the formula on the k-order moment

of Y, we provide an explicit formula for the conditional moments with respect to a

two-component partition of Y.

Proposition 4. Let Y ∼ Ttp(µ,Σ, ν; (a,b)). Consider the partition Y> = (Y>1 ,Y
>
2 )

with dim(Y1) = p1, dim(Y2) = p2, p1 + p2 = p, and the corresponding partitions of

a = (a1,a2)
>, b = (b1,b2)

>, µ = (µ1,µ2)
> and Σ (as in Proposition 1). Then, for

k = 0, 1, 2, we have that

E

[(
ν + p

ν + δ(Y)

)r
Y

(k)
2 | Y1

]
=

dp(p1, ν, r)

(ν + δ(Y1))r
Lp2(a2,b2;µ2.1, Σ̃

∗
22.1, ν + p1 + 2r)

Lp2(a2,b2;µ2.1, Σ̃22.1, ν + p1)
E[W

(k)
2 ],

for ν + p1 + 2r > 0, with δ(Y1) = δ(Y1;µ1,Σ11),

Σ̃
∗
22.1 =

(
ν + δ1

ν + 2r + p1

)
Σ22.1 and dp(p1, ν, r) = (ν + p)r

Γ
(p+ν

2

)
Γ
(
p1+ν+2r

2

)
Γ
(p1+ν

2

)
Γ
(
p+ν+2r

2

) ,
where µ2.1 and Σ22.1 as de�ned in proposition 1. Moreover, W2 ∼ Ttp2(µ2.1, Σ̃

∗
22.1, ν +

p1 + 2r; [a2,b2]).

3. The recurrence relation for the multivariate Student-t integral

Let a(i) be a vector a with its ith element being removed. For a matrix ∆, we let

∆i(j) stand for the ith row of ∆ with its jth element being removed. Similarly, ∆(i)(j)

stands for the matrix ∆ with its ith row and jth columns being removed. Besides, let ei

denote a p× 1 vector with its ith element equalling one and zero otherwise.

The integral that we are interested in evaluating is

Fpκ(a,b;µ,Σ, ν) =

∫ b

a
xκtp(x|µ,Σ, ν)dx.

The boundary condition is obviously Fp0(a,b;µ,Σ, ν) = Lp(a,b;µ,Σ, ν). The recurrence

relation for the normal case has been recently presented by Kan and Robotti (2017).

When p = 1, the use of integration by parts straightforwardly leads to

F1
0(a, b;µ, σ

2, ν) = T1(b|µ, σ2, ν)− T1(a|µ, σ2, ν),



MOMENTS OF TRUNCATED MULTIVARIATE T DISTRIBUTION 9

F1
k+1(a, b;µ, σ

2, ν) = µF1
k(a, b;µ, σ

2, ν) + kνσ2

(ν−2)F
1
k−1(a, b;µ,

ν
ν−2σ

2, ν − 2) (3.2)

+ νσ2

(ν−2) [a
kt1(a|µ, ν

ν−2σ
2, ν − 2)− bkt1(b|µ, ν

ν−2σ
2, ν − 2)], (k ≥ 0).

When p > 1, we need a similar recurrence relation in order to compute Fpκ(a,b;µ,Σ, ν)

which is presented in the following Theorem.

Theorem 2. For p ≥ 1, i = 1, . . . , p and ν > 2,

Fpκ+ei
(a,b;µ,Σ, ν) = µiF

p
κ(a,b;µ,Σ, ν) + ν

ν−2e>i Σcκ, (3.3)

where cκ is a p× 1 vector with the jth element being

cκ,j = kjF
p
κ−ej (a,b;µ,Σ∗, ν − 2)

+a
kj
j t1(aj |µj , σ

∗2
j , ν − 2)Fp−1κ(j)

(a(j),b(j); µ̃
a
j , δ̃

a
j Σ̃j , ν − 1)

−bkjj t1(bj |µj , σ
∗2
j , ν − 2)Fp−1κ(j)

(a(j),b(j); µ̃
b
j , δ̃

b
j Σ̃j , ν − 1), (3.4)

and

Σ̃j = Σ∗(j)(j) −
1

σ∗2j
Σ∗(j)jΣ

∗
j(j), δ̃

a
j =

ν − 2 +
(aj−µj)2
σ∗2j

ν − 1
, δ̃bj =

ν − 2 +
(bj−µj)2
σ∗2j

ν − 1
,

µ̃a
j = µ(j) +

(aj−µj)
σ∗2j

Σ∗(j)j , µ̃b
j = µ(j) +

(bj−µj)
σ∗2j

Σ∗(j)j , Σ∗ = ν
ν−2Σ and σ∗2j =

ν

ν − 2
σ2j .

When kj = 0, the �rst term in (3.4) vanishes. When aj = −∞ and kj ≤ ν − 2, the

second term vanishes, and when bj = +∞ and kj ≤ ν − 2, the third term vanishes.

Proof. After taking the �rst derivative of the MVT density, we have

−
∂tp(x|µ, ν

ν−2Σ, ν − 2)

∂x
=
ν − 2

ν
tp(x|µ,Σ, ν)Σ−1(x− µ).

Multiplying each element on both sides by xκ and integrating x from a to b, we have

cκ = ν−2
ν Σ−1


Fpκ+e1 − µ1F

p
κ

Fpκ+e2 − µ2F
p
κ

...

Fpκ+ep − µpF
p
κ.

 .
Using integration by parts, the jth element of the left-hand side is

cκ,j = −
∫ b(j)

a(j)

xκtp(x|µ,Σ∗, ν−2)|bjxj=ajdx(j) +

∫ b

a
kjx

κ−ej tp(x|µ,Σ∗, ν−2)dx. (3.5)
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Using the fact that

tp(x|µ,Σ∗, ν − 2)|xj=aj = t1(aj |µj , σ∗2j , ν − 2)tp−1(x(j)|µ̃a
j , δ̃

a
j Σ̃j , ν − 1) and

tp(x|µ,Σ∗, ν − 2)|xj=bj = t1(bj |µj , σ∗2j , ν − 2)tp−1(x(j)|µ̃b
j , δ̃

b
j Σ̃j , ν − 1),

we get

cκ,j = kjF
p
κ−ej (a,b;µ,Σ∗, ν − 2)

+a
kj
j t1(aj |µj , σ

∗2
j , ν − 2)Fp−1κ(j)

(a(j),b(j); µ̃
a
j , δ̃

a
j Σ̃j , ν − 1)

−bkjj t1(bj |µj , σ
∗2
j , ν − 2)Fp−1κ(j)

(a(j),b(j); µ̃
b
j , δ̃

b
j Σ̃j , ν − 1).

When kj = 0, the last integral in (3.5) is equal to zero, and the �rst term of cκ,j vanishes.

When aj → −∞ and kj ≤ ν − 2, akjj t1(aj |µj , σ∗2j , ν − 2)→ 0, so the second term of cκ,j
vanishes. Similarly when bj → ∞ the third term of cκ,j vanishes. Finally, the desired

result is obtained by multiplying ν
ν−2Σ on both sides of (3.3).

As a consequence, E[Xκ] always exists for
∑p

j=1 κj < ν. When all a′is are −∞ or

all b′is are +∞, the length of the recurrence relation is reduced to 2p+ 1 rather than the

original 3p+ 1. When all a′is are −∞ and all b′is are +∞, we have

Fpκ(−∞,+∞;µ,Σ, ν) = E[Xκ], X ∼ tp(µ,Σ, ν),

and the recursive relation of length (p+ 1) is

E[Xκ+ei ] = µiE[Xκ] +

p∑
j=1

σ∗ijkjE[yκ−ei ], y ∼ tp(µ,Σ∗, ν − 2), i = 1, . . . , p.

Another special case of interest occurs when ai = 0 and bi = +∞, i = 1, . . . , p. In

this scenario, we have

Ipκ(µ,Σ, ν) = Fpκ(0,+∞;µ,Σ, ν).

The recurrence relation for Ipκ can be written as

Ipκ+ei
(µ,Σ, ν) = µiI

p
κ(µ,Σ, ν) +

p∑
j=1

σ∗ijdκ,j , i = 1, . . . , p,

where

dκ,j =

{
kjI

p
κ−ei(µ,Σ, ν) for kj > 0,

t1(0|µj , σ∗2j , ν − 2)Ip−1κ(j)
(µ̃j , δ̃jΣ̃j , ν − 1) for kj = 0,
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with

µ̃j = µ(j) −
µj
σ∗2j

Σ∗(j)j , Σ̃j = Σ∗(j)(j) −
1

σ∗2j
Σ∗(j)jΣ

∗
j(j), and δ̃j =

ν − 2 +
µ2j
σ∗2j

ν − 1
.

3.1 The �rst two moments of the doubly TMVT distribution

Let X ∼ tp(µ,Σ, ν) and Y = X | (a ≤ X ≤ b) ∼ Ttp(µ,Σ, ν; (a,b)). It follows that

E[Yκ] =
1

Lp(a,b;µ,Σ, ν)

∫ b

a
xκtp(x|µ,Σ, ν)dx =

Fpκ(a,b;µ,Σ, ν)

Lp(a,b;µ,Σ, ν)
.

Furthermore, let Fpκ ≡ Fpκ(a,b;µ,Σ, ν) and L ≡ Lp(a,b;µ,Σ, ν) for simplicity. In light

of Theorem 2, it is straightforward to see that

E[Yi] =
F pei
L

= µi +
1

L
e>i Σ∗c0 and E[YiYj ] =

F pei+ej

L
= µjE[Yi] +

1

L
e>j Σ∗cei , (3.6)

where c0 = ca − cb, with

ca =
[
t1(aj |µj , σ∗2j , ν − 2)Lp−1(a(j),b(j); µ̃

a
j , δ̃

a
j Σ̃j , ν − 1)

]p
j=1

,

cb =
[
t1(bj |µj , σ∗2j , ν − 2)Lp−1(a(j),b(j); µ̃

b
j , δ̃

b
j Σ̃j , ν − 1)

]p
j=1

,

and

cei =
[
eijLp(a,b;µ,Σ∗, ν − 2) + ajt1(aj |µj , σ∗2j , ν − 2)Fp−1ei(j)

(a(j),b(j); µ̃
a
j , δ̃

a
j Σ̃j , ν − 1)

− bjt1(bj |µj , σ∗2j , ν − 2)Fp−1ei(j)
(a(j),b(j); µ̃

b
j , δ̃

b
j Σ̃j , ν − 1)

]p
j=1

,

where

cei i = Lp(a,b;µ,Σ∗, ν − 2) + ajcai − bjcbi,

ceij
i 6=j
= ajcaiE[(X(j) | Xj = aj) | a(j) ≤ X(j) ≤ b(j)]

−bjcbiE[(X(j) | Xj = bj) | a(j) ≤ X(j) ≤ b(j)].

The last equality is obtained by noting that

P(a(j) ≤ X(j) ≤ b(j)|Xj = aj) = Lp−1(a(j),b(j); µ̃
a
j , δ̃

a
j Σ̃j , ν − 1)

and P(a(j) ≤ X(j) ≤ b(j)|Xj = bj) = Lp−1(a(j),b(j); µ̃
b
j , δ̃

b
j Σ̃j , ν − 1).
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Algorithm 1: Mean vector for Y ∼ Ttp(µ,Σ, ν; (a,b))

1 mean(a,b,θ)

2 L← Lp(a,b;µ,Σ, ν); ca ← 0; cb ← 0;

3 for j = 1 : p do

4 θaj ← (µ̃a
j , δ̃

a
j Σ̃j , ν − 1); θbj ← (µ̃b

j , δ̃
b
j Σ̃j , ν − 1);

5 if aj 6=∞ then

6 ca(j)← t1(aj |µj , σ∗2
j , ν − 2)Lp−1(a(j),b(j); µ̃

a
j , δ̃

a
j Σ̃j , ν − 1);

7 end

8 if bj 6=∞ then

9 cb(j)← t1(bj |µj , σ∗2
j , ν − 2)Lp−1(a(j),b(j); µ̃

b
j , δ̃

b
j Σ̃j , ν − 1);

10 end

11 end

12 ξ ← µ+ ν
ν−2Σ(ca − cb)/L;

13 return ξ;

Let C = (ce1 , ce2 , . . . , cep). From expressions in (3.6), we can note that for E[Yi],

c0 does not depend on i and, for E[YiYj ], cei does not depend on j. Then, it is easy to

establish the mean vector and variance-covariance matrix for Y, respectively, given by

ξ = E[Y] = µ+
1

L
Σ∗c0, (3.7)

Ψ = cov[Y] =
1

L
Σ∗(C− c0ξ>), (3.8)

as well as the second moment E[YY>] = µξ> + 1
LCΣ∗.

Methods for computing the mean and variance-covariance matrix of Y are summa-

rized in Algorithms 1 and 2. Note that, to calculate the variance-covariance matrix Ψ in

Algorithm 2, it is necessary to compute 2p (p− 1)-variate mean vectors (lines 8 and 13)

through Algorithm 1. This schema leads to only 1 + 2p necessary integrals to compute

the mean and additional 1 + 2p+ 4p(p− 1) integrals for the variance-covariance matrix.

It is noteworthy to mention that (i) probabilities between lines 7 and 12 in Algorithm 2

can be recycled from the mean(a,b,θ) function, and (ii) C is not symmetric, however

both of its (i, j)-th and (j, i)-th elements cej i and ceij depends on probabilities of the

form P
(
a(i,j) ≤ X(i,j) ≤ b(i,j) | (Xi, Xj) = (xi, xj)

)
, with (xi, xj) ∈ {ai, bi} × {aj , bj}.

This leads to an optimal schema with a maximum total of 2(1 + p2) integrals to com-

pute the mean and the variance-covariance matrix in the case that the distribution is

doubly truncated. Lastly, we remark that this recurrence is limited to work when the

degrees of freedom is greater than 3 due to the computation of Σ∗∗ = ν∗Σ/(ν∗−2) when
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Algorithm 2: Mean vector and variance-covariance matrix for Y ∼ Ttp(µ,Σ, ν; (a,b))

1 meanvar(a,b,θ)

2 L← Lp(a,b;µ,Σ, ν); L∗ ← Lp(a,b;µ,Σ∗, ν − 2);

3 Wa ← 0p×p; Wb ← 0p×p;

4 for j = 1 : p do

5 θaj ← (µ̃a
j , δ̃

a
j Σ̃j , ν − 1); θbj ← (µ̃b

j , δ̃
b
j Σ̃j , ν − 1);

6 if aj 6=∞ then

7 ca(j)← t1(aj |µj , σ∗2
j , ν − 2)Lp−1(a(j),b(j); µ̃

a
j , δ̃

a
j Σ̃j , ν − 1);

8 Wa(−j, j)← mean(a(j),b(j),θ
a
(j));

9 Wa(j, j)← a(j);

10 end

11 if bj 6=∞ then

12 cb(j)← t1(bj |µj , σ∗2
j , ν − 2)Lp−1(a(j),b(j); µ̃

b
j , δ̃

b
j Σ̃j , ν − 1);

13 Wb(−j, j)← mean(a(j),b(j),θ
b
(j));

14 Wb(j, j)← b(j);

15 end

16 end

17 ξ ← µ+ Σ∗(ca − cb)/L;

18 Ψ← (L∗diag(p) + Wadiag(ca)−Wbdiag(cb))Σ∗/L;

19 return ξ, Ψ;

ν∗ = ν − 1. For instance, Ho et al. (2012) devised a general formula for computing the

�rst two moments the TMVT distribution based on the moment generating function but

their method is limited to ν > 4.

3.2 The �rst two moments of the TMVT distribution when a non-truncated

partition exists

We describe a trick for fast computation of the �rst two moments of the TMVT

distribution when there are double in�nite limits. Consider the partition X = (X>1 ,X
>
2 )>

such that dim(X1) = p1, dim(X2) = p2, where p1 + p2 = p. Using the law of total

expectations, we have

E[X] = E

[
E[X1|X2]

X2

]
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and

cov[X] =

[
E[cov[X1|X2]] + cov[E[X1|X2]] cov[E[X1|X2],X2]

cov[X2,E[X1|X2]] cov[X2]

]
.

Let p1 be the number of pairs in [a,b] that are both in�nite. We consider the

partition X = (X>1 ,X
>
2 )> in which upper and lower truncation limits associated with

X1 are both in�nite, but at least one of the truncation limits associated with X2 is �nite.

Let

µ = (µ>1 ,µ
>
2 )>, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, a = (a>1 ,a

>
2 )> and b = (b>1 ,b

>
2 )>

be corresponding partitions of µ, Σ, a and b. Since a1 = −∞ and b1 = ∞, it follows

that

X1|X2 ∼ tp1
(
µ1 + Σ12Σ

−1
22 (X2 − µ2), (Σ11 −Σ12Σ

−1
22 Σ21)

(ν + δ(X2;µ2,Σ22))

(ν + p2)
, ν + p2

)
,

X2 ∼ Ttp2
(
µ2,Σ22, ν; [a2,b2]

)
.

This leads to

E[X] = E

[
µ1 + Σ12Σ

−1
22 (X2 − µ2)

X2

]
=

[
µ1 + Σ12Σ

−1
22 (ξ2 − µ2)

ξ2

]
. (3.9)

On the other hand, we have cov[X2,E[X1|X2]] = cov[X2,X2Σ
−1
22 Σ21] = Ψ22Σ

−1
22 Σ21,

cov[E[X1|X2]] = Σ12Σ
−1
22 Ψ22Σ

−1
22 Σ21 and E[cov[X1|X2]] = ω1.2(Σ11 − Σ12Σ

−1
22 Σ21)

where ξ2 = E[X2], Ψ22 = cov[X2] and

ω1.2 = E

(
ν + δ(X2;µ2,Σ22)

ν + p2 − 2

)
=

(
ν

ν − 2

)
Lp(a2,b2;µ2,Σ

∗
22, ν − 2)

Lp(a2,b2;µ2,Σ22, ν)
, (3.10)

with Σ∗22 = νΣ22/(ν − 2). The last expression follows from Proposition 3. Finally,

cov[X] =

[
ω1.2Σ11 −Σ12Σ

−1
22

(
ω1.2Ip2 −Ψ22Σ

−1
22

)
Σ21 Σ12Σ

−1
22 Ψ22

Ψ22Σ
−1
22 Σ21 Ψ22

]
, (3.11)

where ξ2 and Ψ22 are the mean vector and variance-covariance matrix of the TMVT

distribution, which can be computed by using (3.7) and (3.8), respectively.

In general, marginal distributions of a TMVT distribution are not TMVT, however

this holds for X2 due to the particular case a1 = −∞ and b1 = ∞. Note that obtaining

(3.10) does not require the computation of additional integrals given that probabilities
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Lp(a2,b2;µ2,Σ
∗
22, ν − 2) and Lp(a2,b2;µ2,Σ22, ν) are involved in the calculation of ξ2

and Ψ22 (see Algorithm 2, Line 2).

It is important to emphasize that E[X] and E[XX>] exist if and only if ν + p2 > 1

and ν + p2 > 2, respectively. This is equivalent to say that, (3.9) exists if at least one

dimension containing a �nite limit exists. Besides, (3.11) exists if at least two dimensions

containing a �nite limit exist.

As can be seen, we can use equations (3.9) and (3.11) to deal with doubly in�nite

limits, where truncated moments are computed only over a p2-variate partition, avoiding

some unnecessary integrals and saving a signi�cant computational cost.

3.3 A numerical illustration

In order to illustrate our method, we performed a simple simulation study to show

how Monte Carlo(MC) estimators for the mean vector and variance-covariance matrix

elements converge to the real values calculated by our method.

We consider a 5-variate t distribution X ∼ t5(0,Σ, 4), where Σ is a positive-de�nite

matrix such that its diagonal elements are equal to one, then σii = 1, i = 1, . . . , p, and

o�-diagonal elements σij = σiσj for i 6= j = 1, . . . , p, with σ = (−0.4,−0.7, 1, 0.7, 0.4)>.

Let Y
d
= X | (a ≤ X ≤ b) be a TMVT random variable with lower and upper

truncation limits a = (−∞,−∞,−∞,−3,−3)> and b = (∞,∞, 1, 1,∞)>. Note that

the �rst two dimensions are not truncated, while the other three are upper, interval and

lower truncated, respectively. Hence, we can write a = (−∞2,a2) and b = (∞2,b2),

with a2 = (−∞,−3,−3) and b2 = (1, 1,∞). Consider the partitions X1 = (X1, X2)
>

and X2 = (X3, X4, X5)
>. In order to compute ξ = E[Y] and Ω = cov[Y], we use

relations (3.9) and (3.11) given in Subsection 3.2 because of a non-truncated partition

X1. The computed true values are

ξ =


0.167

0.292

-0.417

-0.397

-0.110

 and Ω =


1.355

0.224 1.137

−0.321 −0.561 0.802

−0.166 −0.290 0.414 0.698

−0.101 −0.177 0.253 0.131 1.165

.
In this scenario, lower partitions of ξ and Ω (values in bold) correspond to ξ2 =

E[X2 | a2 ≤ X2 ≤ b2] and Ω22 = cov[X2 | a2 ≤ X2 ≤ b2] due to P(a ≤ X ≤ b) =

P(a2 ≤ X2 ≤ b2), which are computed using our recurrence-based formulas (3.7) and

(3.8), while the reminder are computed using basic algebra where no integrals are needed.

Finally, we performed a MC simulation where 10000 realizations of Y were generated.
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Figure 3.1: MC estimates for the elements of ξ = E[Y].
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Figure 3.2: MC estimates for the distinct elements of Ω = cov[Y].



MOMENTS OF TRUNCATED MULTIVARIATE T DISTRIBUTION 17

At each iteration, we compute the sample mean and the sample variance-covariance

matrix. Figures 3.1 and 3.2 shows the evolution trace of the MC estimates for the distinct

elements of ξ and Ω denoted by ξ̂i and ω̂ij for i, j = 1, . . . , p, with i 6= j. True computed

values are depicted as blue dashed lines. Note that even with 10000 MC simulations

there exist slight variation in the chains for some elements as depicted in Figure 3.2.

Remark: (computational time) To compute the �rst two moments of Y using expres-

sions ξ2 and Ω22 stated in Subsection 3.2, the result is 1.2 times faster than considering

the full vector Y with the non-truncated partition. Even though integrals involving in�-

nite values are faster to evaluate, the number of integrals required increases exponentially

as the dimension p increases. For instance, considering a vector of dimension p = 20,

where 15 (75%) of its dimensions are non-truncated, the di�erence on time to compute

the �rst two moments using expressions (3.9) and (3.11) is 10 times faster than using the

crude method, which certainly is a signi�cant di�erence.

3.4 Folded Multivariate Student-t distribution

Let X ∼ tp(µ,Σ, ν), we now turn our attention to discuss the computation of any

arbitrary order moment of |X|. First, we established the following corollary.

Corollary 3. If X ∼ tp(µ,Σ, ν) then Zs = ΛsX ∼ tp(µs,Σs, ν) and consequently the

joint pdf, cdf and the κth raw moment of Y = |X| are, respectively, given by

fY(y) =
∑

s∈S(p)

tp(y|µs,Σs, ν),

FY(y) =
∑

s∈S(p)

πsTp(ys|µ,Σ, ν)

and

E[Yκ] =
∑

s∈S(p)

Ipκ(µs,Σs, ν),

where ys = Λsy, µs = Λsµ, Σs = ΛsΣΛs and I
p
κ(µs,Σs, ν) =

∫∞
0

yκtp(y|µs,Σs, ν)dy.

Proof. The proof follows straightforwardly from the de�nition of probability theory and

basic matrix algebra and thus is omitted.

Thus, product moments of Y can be easily calculated using Ipκ(µs,Σs, ν). In light of

Corollary 2, we have the mean vector ξ and variance-covariance matrix Ψ of Y, calculated
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as

ξ =
∑

s∈S(p)

E[Z+
s ], and Ψ =

∑
s∈S(p)

E
[
Z+
sZ+

s
>]− ξξ>,

respectively, where Z+
s is the positive component of Zs = ΛsX ∼ tp(µs,Σs, ν) from

Corollary 1. Note that there are 2p times more integrals to be calculated as compared

to the non-folded case. Speci�cally, (1 + p)2p integrals are required for the mean vector,

and additional (1 + 2p + 2p2)2p integrals for the variance-covariance matrix. For the

univariate case, explicit expressions for the �rst four raw moments of Y = |X|, where
X ∼ t(µ, σ2, ν), based on (3.2) and (3.4) can be obtained as

E[Y ] = µ[1− 2T1(0|µ, σ2, ν)] + 2σ∗2t1(0|µ, σ∗2, ν − 2),

E[Y 2] = µ2 + σ∗2,

E[Y 3] = µ2E[Y ] + 3µσ∗2[1− 2T1(0|µ, σ∗2, ν − 2)] + 4(ν−2)σ∗4
ν−4 t1(0|µ, ν

ν−4σ
2, ν − 4),

E[Y 4] = µ4 + 6µ2σ∗2 + 3(ν−2)
ν−4 σ∗4.

Illustrative results via the implementation of R package MomTrunc are presented in

the Appendix B.

4. Application in MVT interval censored responses

Let Yi = (Yi1, . . . , Yip)
> be a p × 1 response vector for the ith sample unit, for

i ∈ {1, . . . , n}, and consider the set of random samples (independent and identically

distributed):

Y1, . . . ,Yn ∼ tp(µ,Σ, ν), (4.12)

where the location vector µ = (µ1, . . . , µp)
> and the dispersion matrix Σ = Σ(α) depend

on an unknown and reduced parameter vector α. However, the response vector Yi may

not be fully observed due to censoring, so we de�ne (Vi,Ci) the observed data for

the ith sample, where Vi= (Vi1, . . . , Vip)
> represents either an uncensored observation

(Vik = V0i) or the interval censoring level (Vik ∈ [V1ik, V2ik]), and Ci = (Ci1, . . . , Cip)
> is

the vector of censoring indicators, satisfying

Cik =

{
1 if V1ik ≤ Yik ≤ V2ik,
0 if Yik = V0i,

(4.13)

for all i ∈ {1, . . . , n} and k ∈ {1, . . . , p}, i.e., Cik = 1 if Yik is located within a speci�c

interval. In this case, (4.12) along with (4.13) de�nes the multivariate Student-t interval

censored model (hereafter, the MVT-IC model). Notice that the left censoring causes
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truncation from the lower limit of the support of the distribution, since we only know

that the true observation Yik is less than or equal to the observed quantity V2ik. This

situation has been studied by Lachos et al. (2017). Missing observations can be handled

by considering V1ik = −∞ and V2ik = +∞.

4.1 The likelihood function

Let y = (y>1 , . . . ,y
>
n )>, where yi = (yi1, . . . , yip)

> is a realization of Yi ∼ tp(µ,Σ, ν).

To obtain the likelihood function of the MVT-IC model, we �rstly treat observed and

censored components of yi, separately, i.e., yi = (yo
>
i ,yc

>
i )>, where Cik = 0 for all ele-

ments in the poi -dimensional vector yoi , and Cik = 1 for all elements in the pci -dimensional

vector yci . Accordingly, we write Vi = vec(Vo
i ,V

c
i ), where Vc

i = (Vc
1i,V

c
2i) with

µi = (µo>i ,µc>i )> and Σ = Σ(α) =

(
Σoo
i Σoc

i

Σco
i Σcc

i

)
.

Then, using Proposition 1, we have that Yo
i ∼ tpoi (µoi ,Σ

oo
i , ν) and Yc

i | Yo
i = yoi ∼

tpci (µ
co
i ,S

co
i , ν + poi ), where

µcoi = µci + Σco
i Σoo−1

i (yoi − µoi ), Scoi =

{
ν + δ(yoi )

ν + poi

}
Σcc.o
i ,

Σcc.o
i = Σcc

i −Σco
i (Σoo

i )−1Σoc
i and δ(yoi ) = (yoi − µoi )>(Σoo

i )−1(yoi − µoi ). (4.14)

Let V = vec(V1, . . . ,Vn) and C = vec(C1, . . . ,Cn) denote the observed data. Therefore,

the log-likelihood function of θ = (µ>,α>, ν)>, where α = vech(Σ), for the observed

data (V,C) is

`(θ | V,C) =

n∑
i=1

lnLi, (4.15)

where Li represents the likelihood function of θ for the ith sample, given by

Li ≡Li(θ | Vi,Ci) = f(Vi | Ci,θ) = f(Vc
1i ≤ yci ≤ Vc

2i | yoi ,θ)f(yoi | θ)

= Lpci (V
c
1i,V

c
2i;µ

co
i ,S

co
i , ν + poi )tpoi (yoi | µoi ,Σoo

i , ν).

4.2 Parameter estimation via the EM algorithm

We describe how to carry out ML estimation for the MVT-IC model. The EM

algorithm, originally proposed by Dempster et al. (1977), is a very popular iterative op-

timization strategy and commonly used to carry out ML estimation for the models with

incomplete-data problems. This algorithm has many attractive features such as numer-

ical stability, simplicity of implementation and quite reasonable memory requirements

(McLachlan and Krishnan, 2008).
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By the essential property of MVT distribution, we write Yi|(Ui = ui) ∼ Np(µ, u
−1
i Σ)

and ui ∼ Gamma(ν/2, ν/2). Fixing the value of ν, the complete-data log-likelihood

function of θ = (µ,Σ) is given by `c(θ) =
∑n

i=1 `ic(θ), where the individual complete-

data log-likelihood is

`ic(θ) = −1

2

{
ln |Σ|+ ui(yi − µ)>Σ−1(yi − µ)

}
+ lnh(ui | ν) + c,

where c is a constant irrelevant of θ and h(ui | ν) is the pdf of Gamma(ν/2, ν/2). In

summary, the EM algorithm for the MVT-IC model can be adopted as follows:

E-step: Given the current estimate θ̂
(k)

= (µ̂(k), Σ̂
(k)

) at the kth step, the E-step pro-

vides the conditional expectation of the complete-data log-likelihood function:

Q(θ | θ̂
(k)

) = E

[
`c(θ) | V,C, θ̂

(k)
]

=
n∑
i=1

Qi(θ | θ̂
(k)

),

where

Qi(θ | θ̂
(k)

) =− 1

2
ln |Σ|− 1

2
tr
[{
ûy2

i

(k)
− ûy

(k)
i µ

> − µ(ûy
(k)
i )> + û

(k)
i µµ

>
}

Σ−1
]
,

with ûy
(k)
i = E[UiYi | Vi,Ci, θ̂

(k)
], ûy2

i

(k)
= E[UiYiY

>
i | Vi,Ci, θ̂

(k)
] and û(k)i =

E[Ui | Vi,Ci, θ̂
(k)

] which are collected in Appendix A. Note that, since ν is �xed,

the calculation of E[lnh(Ui | ν) | V,C, θ̂
(k)

] is unnecessary.

M-step: Conditionally maximizingQ(θ | θ̂
(k)

) with respect to each entry of θ, we update

the estimate θ̂
(k)

= (µ̂(k), Σ̂
(k)

) by

µ̂(k+1) =

(
n∑
i=1

û
(k)
i

)−1 n∑
i=1

ûy
(k)
i ,

Σ̂
(k+1)

=
1

n

n∑
i=1

{
ûy2

i

(k)
− ûy

(k)
i µ̂

(k+1)> − µ̂(k+1)(ûy
(k)
i )> + û

(k)
i µ̂

(k+1)µ̂(k+1)>
}
.

After the M-step, we will update the parameter ν by maximizing the marginal log-

likelihood function of y, that is,

ν̂(k+1) = arg max
ν

n∑
i=1

log f(Vi | Ci,θ; ν).

The algorithm is iterated until a suitable convergence rule is satis�ed. In the

later analysis, the algorithm is terminated when the di�erence between two succes-

sive evaluations of the log-likelihood de�ned in (4.15) is less than a tolerance, i.e.,
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`(θ̂
(k+1)

| V,C)− `(θ̂
(k)
| V,C) < ε, for example, ε = 10−6.

4.3 Application: concentration levels data

We applied our method to the dataset consisting of concentration levels of certain

dissolved trace metals in freshwater streams across the Commonwealth of Virginia. The

data were provided by Virginia Department of Environment Quality (VDEQ) and were

previously analyzed by Ho�man and Johnson (2015), who proposed a pseudo-likelihood

approach for estimating parameters of multivariate normal and log-normal models. It is

very important to determine the quality of Virginia's water resources across the state to

guide their safe use. The methodology adopted must neither underestimate nor overesti-

mate the levels of contamination, as otherwise, the results can compromise public health,

environmental safety or can unfairly restrict local industry.

Speci�cally, this dataset consists of the concentration levels of the dissolved trace

metals copper (Cu), lead (Pb), zinc (Zn), calcium (Ca) and magnesium (Mg) from 184

independent randomly selected sites in freshwater streams across Virginia. The Cu, Pb,

and Zn concentrations are reported in µg/L of water, whereas Ca and Mg concentrations

are suitably reported in mg/L of water. Since the measurements are taken at di�erent

times, the presence of multiple limit of detection values is possible for each trace metal

(VDEQ, 2019). The limit of detection is 0.1µg/L for Cu and Pb, 1.0mg/L for Zn, 0.5mg/L

for Ca and 1.0mg/L for Mg.

The percentages of left-censored values are 2.7% for Ca, 4.9% for Cu, 9.8% for Mg,

which are small in comparison to 78.3% for Pb and 38.6% for Zn. Also note that 17.9%

of the streams had 0 non-detected trace metals, 39.1% had 1, 37.0% had 2, 3.8% had 3,

1.1% had 4 and 1.1% had 5.

We propose a MVT-IC model to �t the data, now with dimension p = 5 , that

is, Yi = (Yi1, Yi2, . . . , Yi5) ∼ t5(µ,Σ, ν). For the sake of comparison, we also �t a

multivariate MVN-IC model which can be consider as a limiting case when ν →∞.

As concentration levels are strictly positive measures, to guarantee this, we consider

an interval-censoring analysis by setting all lower limit of detection equal to 0 for all trace

metals. Also, due to di�erent scales for each trace metal, we standardize the dataset to

have zero mean and variance equal to one as in Wang et al. (2019). The above mentioned

work considered this study as a left-censoring problem without taking in account the

possibility of predicting negative concentration levels for trace metals. For instance, we

can see from Figure 4.4 that Pb censored concentrations take values on the small interval
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[0, 0.1].

The ML estimates of model parameters were obtained using the EM algorithm de-

scribed in Subsection 4.2. The estimated mean of the trace metals, degrees of freedom

ν and the log-likelihood as well as AIC are shown in Table 4.1. Here, we can see that

estimated mean values are quite similar under both models. Notice that the estimated

value of ν is fairly small, indicating a lack of adequacy of the normal assumption for the

VDEQ data. This �nding can also be con�rmed from Figure 4.3 where the pro�le log-

likelihood values are depicted for a grid of values of ν. The AIC value for our MVT-IC

model is lower than that for the MVN-IC model as expected.
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Figure 4.3: VDEQ data. Plot of the pro�le log-likelihood of the degrees of freedom ν.

Figure 4.4 shows histograms and pair-wise scatter plots for the concentration levels

study. From histograms (diagonal of the matrix plot), we can see how censored obser-

vations (taking values over the dashed lines) are distributed to the left (blue bins) after

�tting our proposed model, while gray bins represent complete observed points. On the

other hand, scatter plots (o�-diagonal of the matrix plot) show complete observed (black)

points and predicted observations using the multivariate SN-C model (blue triangles).

Finally, with the aim of validating the proposed censored model, we compare the

Table 4.1: VDQE data. Estimated mean and ML estimate for ν and model criteria.

Model Cu Pb Zn Ca Mg ν `(θ̂|Y) AIC

Normal 0.556 0.099 2.314 12.083 3.814 - −1351.60 2743.19

Student-t 0.557 0.102 2.329 12.084 3.817 3 −1040.21 2120.42
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Figure 4.4: VDEQ data. Histograms (diagonal) and pair-wise scatter plots (lower-triangle) for

the concentration levels study. Complete observed points are represented in black points (gray

bins) and T predicted observations in blue triangles (bins). Limit of detection are represented in

dashed lines.

correlation matrices of the data by considering 5 strategies:

(a) Original: original data

(b) Omitting: zeros are not considered

(c) Manipulating: multiplying the limit of detection by the factor 0.75

(d) MVN-IC model
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(e) MVT-IC model
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Figure 4.5: VDQE data. Correlation matrices of concentration levels for 5 di�erent strategies.

From the results depicted in Figure 4.5, we �nd that the correlation matrices for the

MVN-IC and MVT-IC models are similar. Based on the AIC, we consider the second

one as a reference. We can get very decent results for this study by using (a) original

data or (c) even manipulating the data, with both tending to underestimate correlations.

Omitting (b) is by far the worst strategy. For example, the correlation between the

Pb and Cu is poorly estimated to the point that they have the sign changed. Similar

problems arise for correlations between Zn and other three elements. Given the large

number of censored observations, omitting leads to loss of information (as is the case of

the correlation between Ca and Pb, as well as between Ca and Mg, where correlation

was estimated to be zero).

5. Conclusions

In this paper, we have developed recurrence relations for integrals that involve the

density of MVT distributions. These recursions allow fast computation of arbitrary-

order product moments of TMVT and FMVT distributions. Explicit expressions for

the �rst two moments of the TMVT and FMVT are also provided. For the reader who

is interested in real-world applications, we have shown the practicability of our results

through a real data example that contains positive censored observations. Our methods

can be also applied in the context of missing observations (Lin et al., 2009). The proposed

methodology can been implemented by R MomTrunc package, which is available on CRAN

repository.

We conjecture that our method can be extended to more complicated cases such as

the multivariate skew-t distribution (Azzalini and Capitanio, 2003) and scale mixtures

of normal distributions (Branco and Dey, 2001). Also, our censored/missing data model

can be extended for the generalized hyperbolic distribution (which includes the Student-t

as a particular case), where its �rst two moments are given explicitly in (Roozegar et al.,
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2020). An in-depth investigation of such extensions is beyond the scope of the present

paper, but it is an interesting topic for further research.
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Appendix

Appendix A: Details for the expectations in EM algorithm

To compute the required expected values of all latent data, we �nd that most of them can

be written in terms of E(Ui | Yi), and thereby we write ûi = E{E(Ui | Yi) | Vi,Ci, θ̂
(k)
},

where E(Ui | Yi) = (ν + p)/(ν + δ) with δ = (Yi − µ)>Σ−1(Yi − µ). Subsequently, we

discuss the closed-form expressions of conditional expectations as follows:

1. If the ith subject has only non-censored components, then

ûy2
i

(k)
=

{
ν + p

ν + δ̂(k)(yi)

}
yiy
>
i , ûy

(k)
i =

{
ν + p

ν + δ̂(k)(yi)

}
yi, û

(k)
i =

{
ν + p

ν + δ̂(k)(yi)

}
,

where δ̂(k)(yi) = (yi − µ̂(k))>(Σ̂
(k)

)−1(yi − µ̂(k)).

2. If the ith subject has only censored components, from Proposition 3 with r = 1, we

have

ûy2
i

(k)
= E[UiYiY

>
i | Vi,Ci, θ̂

(k)
] = ϕ̂(k)(Vi)ŵ

2c(k)

i ,
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ûy
(k)
i = E[UiYi | Vi,Ci, θ̂

(k)
] = ϕ̂(k)(Vi)ŵ

c(k)
i ,

û
(k)
i = E[Ui | Vi,Ci, θ̂

(k)
] = ϕ̂(k)(Vi),

where

ϕ̂(k)(Vi) =
Lp(V1i,V2i; µ̂

(k), Σ̂
∗(k)

, ν + 2)

Lp(V1i,V2i; µ̂
(k), Σ̂

(k)
, ν)

,

ŵ
c(k)
i = E[Wi | θ̂

(k)
], ŵ2c(k)

i = E[WiW
>
i | θ̂

(k)
], (5.16)

with Wi ∼ Ttp(µ̂
(k), Σ̂

∗(k)
, ν + 2; (V1i,V2i)) and Σ̂

∗(k)
=

ν

ν + 2
Σ̂

(k)
. To compute

E[Wi] and E[WiW
>
i ] we use the results given in Subsection 3.1.

3. If the ith subject has both censored and uncensored components, then (Yi | Vi,Ci),

(Yi | Vi,Ci,y
o
i ), and (Yc

i | Vi,Ci,y
o
i ) are equivalent processes. We obtain

ûy2
i

(k)
= E(UiYiY

>
i | yoi ,Vi,Ci, θ̂

(k)
) =

(
yoiy

o>
i û

(k)
i û

(k)
i yoi ŵ

c(k)>
i

û
(k)
i ŵ
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(k)
i ŵ2c(k)

i

)
,

ûy
(k)
i = E(UiYi | yoi ,Vi,Ci, θ̂

(k)
) = vec(yoi û

(k)
i , û

(k)
i ŵ

c(k)
i ),

û
(k)
i = E(Ui | yoi ,Vi,Ci, θ̂

(k)
) =

{
poi + ν

ν + δ̂(k)(yoi )

}
Lpci (V

c
1i,V

c
2i; µ̂

co(k)
i , S̃

co(k)
i , ν + poi + 2)

Lpci (V
c
1i,V

c
2i; µ̂

co(k)
i , S̃

co(k)
i , ν + poi )

,

where

S̃
co(k)
i =

{
ν + δ̂(k)(yoi )

ν + 2 + poi

}
Σ̂
cc.o(k)

i , δ̂(k)(yoi ) = (yoi − µ̂
o(k)
i )>(Σ̂

oo(k)

i )−1(yoi − µ̂
o(k)
i ),

Σ̂
cc.o(k)

i is de�ned as in equation (4.22) in the main document, ŵ
c(k)
i and ŵ2c(k)

i are

de�ned in (5.16) with Wi ∼ Ttpci (µ̂
co(k)
i , S̃

co(k)
i , ν + poi + 2; (Vc

1i,V
c
2i)). Similarly, to

compute E[Wi] and E[WiW
>
i ], we use the results given in Subsection 3.1.

Appendix B: Some illustrations using the R MomTrunc package

> momentsTMD(kappa=c(2,2,2),lower,upper,mu,Sigma,nu,dist = "t")

Call:

momentsTMD(kappa = c(2, 2, 2), lower, upper, mu,Sigma, dist = "t", nu)

k1 k2 k3 F(k) E[k]
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1 2 2 2 0.0002 0.0017

2 1 2 2 -0.0003 -0.0021

3 0 2 2 0.0021 0.0172

4 0 1 2 -0.0002 -0.0019

5 0 0 2 0.0161 0.1346

6 0 0 1 0.0089 0.0743

7 0 0 0 0.1194 1.0000

> meanvarTMD(lower,upper,mu,Sigma,nu,dist = "t")

#Comparing results and times with 5000 MC simulations

> means

mean1 mean2 mean3 mean4 mean5 mean6

Proposed -0.3587 -0.0837 -0.0781 0.2745 0.8097 0.9313

MonteCarlo -0.3465 -0.0744 -0.0730 0.2912 0.8022 0.9327

> variances

var1 var2 var3 var4 var5 var6

Proposed 0.0807 0.0863 0.1018 0.1340 0.0962 0.1459

MonteCarlo 0.0787 0.0888 0.0992 0.1393 0.0890 0.1464

> times

Proposed MonteCarlo

3.50 11.89 seconds


