
ar
X

iv
:2

00
9.

13
48

8v
1 

 [
m

at
h.

ST
] 

 2
8 

Se
p 

20
20

ON MOMENTS OF FOLDED AND DOUBLY TRUNCATED

MULTIVARIATE EXTENDED SKEW-NORMAL DISTRIBUTIONS

Christian E. Galarza
Departamento de Estadística

Escuela Superior Politecnica del Litoral
Guayaquil, Ecuador

chedgala@espol.edu.ec

Larissa A. Matos
Departamento de Estatística

Universidade Estadual de Campinas
Campinas, Brazil

larissam@unicamp.br

Dipak K. Dey
Department of Statistics

University of Connecticut
Storrs CT 06269, U.S.A.
dipak.dey@uconn.edu

Victor H. Lachos
Department of Statistics

University of Connecticut
Storrs CT 06269, U.S.A.
hlachos@uconn.edu

September 29, 2020

ABSTRACT

This paper develops recurrence relations for integrals that relate the density of multivariate extended
skew-normal (ESN) distribution, including the well-known skew-normal (SN) distribution intro-
duced by [1] and the popular multivariate normal distribution. These recursions offer a fast com-
putation of arbitrary order product moments of the multivariate truncated extended skew-normal
and multivariate folded extended skew-normal distributions with the product moments as a byprod-
uct. In addition to the recurrence approach, we realized that any arbitrary moment of the truncated
multivariate extended skew-normal distribution can be computed using a corresponding moment of
a truncated multivariate normal distribution, pointing the way to a faster algorithm since a less num-
ber of integrals is required for its computation which result much simpler to evaluate. Since there
are several methods available to calculate the first two moments of a multivariate truncated normal
distribution, we propose an optimized method that offers a better performance in terms of time and
accuracy, in addition to consider extreme cases in which other methods fail. The R MomTrunc

package provides these new efficient methods for practitioners.

Keywords Extended skew-normal distribution · Folded normal distribution · Product moments · Truncated
distributions.

1 Introduction

Many applications on simulations or experimental studies, the researches often generate a large number of datasets
with restricted values to fixed intervals. For example, variables such as pH, grades, viral load in HIV studies and
humidity in environmental studies, have upper and lower bounds due to detection limits, and the support of their den-
sities is restricted to some given intervals. Thus, the need to study truncated distributions along with their properties
naturally arises. In this context, there has been a growing interest in evaluating the moments of truncated distributions.
These variables are also often skewed, departing from the traditional assumption of using symmetric distributions.
For instance, [2] provided the formulas for the first two moments of truncated multivariate normal (TN) distributions.
[3] gave the expressions for the moments of truncated bivariate log-normal distributions with applications to test the
Houthakker effect ([4]) in future markets. [5] derived the truncated moments of several continuous univariate distri-
butions commonly applied to hydrologic problems. [6] provided analytical formulas for moments of the truncated
univariate Student-t distribution in a recursive form. [7] obtained expressions for the moments of truncated univariate
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skew-normal distributions ([8]) and applied the results to model the relative humidity data. [9] studied the moments
of a doubly truncated member of the symmetrical class of univariate normal/independent distributions and their appli-
cations to the actuarial data. [10] presented a general formula based on the slice sampling algorithm to approximate
the first two moments of the truncated multivariate Student-t (TT) distribution under the double truncation. [11] pro-
vided explicit expressions for computing arbitrary order product moments of the TN distribution by using the moment
generating function (MGF). However, the calculation of this approach relies on differentiation of the MGF and can be
somewhat time consuming.

Instead of differentiating the MGF of the TN distribution, [12] recently presented recurrence relations for integrals
that are directly related to the density of the multivariate normal distribution for computing arbitrary order product
moments of the TN distribution. These recursions offer a fast computation of the moments of folded normal (FN)
and TN distributions, which require evaluating p-dimensional integrals that involve the Normal (N) density. Explicit
expressions for some low order moments of FN and TN distributions are presented in a clever way, although some
proposals to calculate the moments of the univariate truncated skew-normal distribution ([7]) and truncated univariate
skew-normal/independent distribution ([7]) has recently been published. So far, to the best of our knowledge, there has
not been attempt on studying neither moments nor product moments of the multivariate folded extended skew-normal
(FESN) and truncated multivariate extended skew-normal (TESN) distributions. Moreover, our proposed methods
allow to compute, as a by-product, the product moments of folded and truncated distributions, of the N ([12]), SN
([1]), and their respective univariate versions. The proposed algorithm and methods are implemented in the new R
package “MomTrunc”.

The rest of this paper is organized as follows. In Section 2 we briefly discuss some preliminary results related to the
multivariate SN, ESN and TESN distributions and some of its key properties. The section 3 presents a recurrence
formula of an integral to be applied in the essential evaluation of moments of the TESN distribution as well as explicit
expressions for the first two moments of the TESN and TN distributions. A direct relation between the moments of the
TESN and TN distribution is also presented which is used to improved the proposed methods. In section 4, by means of
approximations, we propose strategies to circumvent some numerical problems that arise on limiting distributions and
extreme cases. We compare our proposal with others popular methods of the literature in Section 5. Finally, Section
6 is devoted to the moments of the FESN distribution, several related results are discussed. Explicit expressions are
presented for high order moments for the univariate case and the mean vector and variance-covariance matrix of the
multivariate FESN distribution. Finally, some concluding remarks are presented in Section 7.

2 Preliminaries

We start our exposition by defining some notation and presenting the basic concepts which are used throughout the
development of our theory. As is usual in probability theory and its applications, we denote a random variable by an
upper-case letter and its realization by the corresponding lower case and use boldface letters for vectors and matrices.
Let Ip and Jp represent an identity matrix and a matrix of ones, respectively, both of dimension p × p, A⊤ be the

transpose of A, and |X| = (|X1|. . . . , |Xp|)⊤ mean the absolute value of each component of the vector X. For
multiple integrals, we use the shorthand notation

∫

b

a

f(x)dx =

∫ b1

a1

. . .

∫ bp

ap

f(x1, . . . , xp)dx1 . . . xp,

where a = (a1, . . . , ap)
⊤ and b = (b1, . . . , bp)

⊤.

2.1 The multivariate skew-normal distribution

In this subsection we present the skew-normal distribution and some of its properties. We say that a p × 1 random
vector Y follows a multivariate SN distribution with p× 1 location vector µ, p× p positive definite dispersion matrix
Σ and p× 1 skewness parameter vector, and we write Y ∼ SNp(µ,Σ,λ), if its joint probability density function (pdf)
is given by

SNp(y;µ,Σ,λ) = 2φp(y;µ,Σ)Φ1(λ
⊤Σ−1/2(y − µ)), (1)

where φp(·;µ,Σ) represents the probability density distribution (pdf) of a p-variate normal distribution with vector
mean µ and variance-covariance matrix Σ, andΦ1(·) stands for the cumulative distribution function (cdf) of a standard
univariate normal distribution. If λ = 0 then (1) reduces to the symmetric Np(µ,Σ) pdf. Except by a straightfor-
ward difference in the parametrization considered in (1), this model corresponds to the one introduced by [1], whose
properties were extensively studied in [14] (see also, [13]).
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Proposition 1 (cdf of the SN). If Y ∼ SNp(µ,Σ,λ), then for any y ∈ R
p

FY(y) = P (Y ≤ y) = 2Φp+1

(

(y⊤, 0)⊤;µ∗,Ω
)

,

where µ∗ = (µ⊤, 0)⊤ and Ω =

(

Σ −∆

−∆⊤ 1

)

, with ∆ = Σ1/2λ/(1 + λ⊤λ)1/2.

It is worth mentioning that the multivariate skew-normal distribution is not closed over marginalization and condition-
ing. Next, we present its extended version which holds these properties, called, the multivariate ESN distribution.

2.2 The extended multivariate skew-normal distribution

We say that a p× 1 random vector Y follows a ESN distribution with p× 1 location vector µ, p× p positive definite
dispersion matrixΣ, a p×1 skewness parameter vector, and shift parameter τ ∈ R, denoted by Y ∼ ESNp(µ,Σ,λ, τ),
if its pdf is given by

ESNp(y;µ,Σ,λ, τ) = ξ−1φp(y;µ,Σ)Φ1(τ + λ⊤Σ−1/2(y − µ)), (2)

with ξ = Φ1(τ/(1 +λ⊤λ)1/2). Note that when τ = 0, we retrieve the skew-normal distribution defined in (1), that is,
ESNp(y;µ,Σ,λ, 0) = SNp(y;µ,Σ,λ). Here, we used a slightly different parametrization of the ESN distribution
than the one given in [15] and [16]. Futhermore, [16] deals with the multivariate extended skew-t (EST) distribution,
in which the ESN is a particular case when the degrees of freedom ν goes to infinity. From this last work, it is
straightforward to see that

ESNp(y;µ,Σ,λ, τ)−→φp(y;µ,Σ), as τ → +∞.

Also, letting Z = Σ−1/2(Y − µ), it follows that Z ∼ ESNp(0, I,λ, τ), with mean vector and variance-covariance
matrix

E[Z] = ηλ and cov[Z] = Ip − E[Z]

(

E[Z]− τ

1 + λ⊤λ
λ

)⊤

,

with η = φ1(τ ; 0, 1 + λ⊤λ)/ξ. Then, the mean vector and variance-covariance matrix of Y can be easily computed

as E[Y] = µ+Σ1/2
E[Z] and cov[Y] = Σ1/2cov[Z]Σ1/2.

The following propositions are crucial to develop our methods. The proofs can be found in the Appendix A.

Proposition 2 (Marginal and conditional distribution of the ESN). Let Y ∼ ESNp(µ,Σ,λ, τ) and Y is partitioned

as Y = (Y⊤
1 ,Y

⊤
2 )

⊤ of dimensions p1 and p2 (p1 + p2 = p), respectively. Let

Σ =

(

Σ11 Σ12

Σ21 Σ22

)

, µ = (µ⊤
1 ,µ

⊤
2 )

⊤, λ = (λ⊤
1 ,λ

⊤
2 )

⊤ and ϕ = (ϕ⊤
1 ,ϕ

⊤
2 )

⊤

be the corresponding partitions of Σ, µ, λ and ϕ = Σ−1/2λ. Then,

Y1 ∼ ESNp1(µ1,Σ11, c12Σ
1/2
11 ϕ̃1, c12τ) and Y2|Y1 = y1 ∼ ESNp2(µ2.1,Σ22.1,Σ

1/2
22.1ϕ2, τ2.1),

where c12 = (1+ϕ⊤
2 Σ22.1ϕ2)

−1/2, ϕ̃1 = ϕ1+Σ−1
11 Σ12ϕ2, Σ22.1 = Σ22−Σ21Σ

−1
11 Σ12, µ2.1 = µ2+Σ21Σ

−1
11 (y1−

µ1) and τ2.1 = τ + ϕ̃⊤
1 (y1 − µ1).

Proposition 3 (Stochastic representation of the ESN). Let X = (X1
⊤, X2)

⊤ ∼ Np+1(µ
∗,Ω). If Y

d
= (X1|X2 < τ̃ ),

it follows that Y ∼ ESNp(µ,Σ,λ, τ), with µ∗ and Ω as defined in Proposition 1, and τ̃ = τ/(1 + λ⊤λ)1/2.

The stochastic representation above can be derived from Proposition 1 in [16].

Proposition 4 (cdf of the ESN). If Y ∼ ESNp(µ,Σ,λ, τ), then for any y ∈ R
p

FY(y) = P (Y ≤ y) = ξ−1Φp+1

(

(y⊤, τ̃ )⊤;µ∗,Ω
)

.

Proof is direct from Proposition 3 by noting that ξ = P (X2 < τ̃ ). Hereinafter, for Y ∼ ESNp(µ,Σ,λ, τ), we will

denote to its cdf as FY(y) ≡ Φ̃p(y;µ,Σ,λ, τ) for simplicity.

Let A be a Borel set in R
p. We say that the random vector Y has a truncated extended skew-normal distribution on A

when Y has the same distribution as Y|(Y ∈ A). In this case, the pdf of Y is given by

f(y | µ,Σ, ν;A) = ESNp(y;µ,Σ,λ, τ)

P (Y ∈ A)
1A(y),

3
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where 1A is the indicator function of A. We use the notation Y ∼ TESNp(µ,Σ,λ, τ ;A). If A has the form

A = {(x1, . . . , xp) ∈ R
p : a1 ≤ x1 ≤ b1, . . . , ap ≤ xp ≤ bp} = {x ∈ R

p : a ≤ x ≤ b},

then we use the notation {Y ∈ A} = {a ≤ Y ≤ b}, where a = (a1, . . . , ap)
⊤ and b = (b1, . . . , bp)

⊤. Here, we say
that the distribution of Y is doubly truncated. Analogously, we define {Y ≥ a} and {Y ≤ b}. Thus, we say that the
distribution of Y is truncated from below and truncated from above, respectively. For convenience, we also use the
notation Y ∼ TESNp(µ,Σ,λ, τ ; [a,b]).

3 On moments of the doubly truncated multivariate ESN distribution

3.1 A recurrence relation

For two p-dimensional vectors x = (x1, . . . , xp)
⊤ and κ = (k1, . . . , kp)

⊤, let xκ stand for (xκ1
1 , . . . , x

κp
p ), and let

a(i) be a vector a with its ith element being removed. For a matrix A, we let Ai(j) stand for the ith row of A with its
jth element being removed. Similarly, A(i,j) stands for the matrix A with its ith row and jth columns being removed.
Besides, let ei denote a p× 1 vector with its ith element equaling one and zero otherwise. Let

Lp(a,b;µ,Σ,λ, τ) =

∫

b

a

ESNp(x;µ,Σ,λ, τ)dx.

We are interested in evaluating the integral

Fp
κ
(a,b;µ,Σ,λ, τ) =

∫

b

a

xκESNp(x;µ,Σ,λ, τ)dx. (3)

The boundary condition is obviously Fp
0 (a,b;µ,Σ,λ, τ) = Lp(a,b;µ,Σ,λ, τ). When λ = 0 and τ = 0, we

recover the multivariate normal case, and then

Fp
κ
(a,b;µ,Σ,0, 0) ≡ F p

κ
(a,b;µ,Σ) =

∫

b

a

xκφp(x;µ,Σ)dx, (4)

with boundary condition

Lp(a,b;µ,Σ,0, 0) ≡ Lp(a,b;µ,Σ) =

∫ b

a

φp(x;µ,Σ)dx. (5)

Note that we use calligraphic style for the integrals of interest Fp
κ

and Lp when we work with the skewed version. In
both expressions (4) and (5), for the normal case, we are using compatible notation with the one used by [12].

3.1.1 Univariate case

When p = 1, it is straightforward to use integration by parts to show that

F1
0 (a, b;µ, σ

2, λ, τ) = ξ−1 [Φ2 ((b − µ, τ)⊤;0,Ω)− Φ2 ((a− µ, τ)⊤;0,Ω)] ,

F1
k+1(a, b;µ, σ

2, λ, τ) = µF1
k (a, b;µ, σ

2, λ, τ) + kσ2F1
k−1(a, b;µ, σ

2, λ, τ)

+σ2
(

akESN1(a;µ, σ
2, λ, τ) − bkESN1(b;µ, σ

2, λ, τ)
)

+λσηF 1
k (a, b;µ− µb, γ

2); for k ≥ 0,

where Ω =

(

σ2 −σψ
−σψ 1

)

, ψ = λ/
√
1 + λ2, µb =

1

σ
λτγ2 and γ = σ/

√
1 + λ2.

When p > 1, we need a similar recurrence relation in order to compute Fp
κ
(a,b,µ,Σ,λ, τ) which is presented in the

next theorem.

3.1.2 Multivariate case

Theorem 1. For p ≥ 1 and i = 1, . . . , p,

Fp
κ+ei

(a,b;µ,Σ,λ, τ) = µiFp
κ
(a,b;µ,Σ,λ, τ) + δiF

p
κ
(a,b;µ− µb,Γ) + e⊤i Σdκ, (6)

4
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where δ = (δ1, . . . , δp)
⊤ = ηΣ1/2λ, µb = τ̃∆, Γ = Σ−∆∆⊤ and dκ is a p-vector with jth element

dκ,j = kjFp
κ−ej

(a,b,µ,Σ,λ, τ)

+a
kj

j ESN1(aj ;µj , σ
2
j , cjσjϕ̃j , cjτ)Fp−1

κ(j)
(a(j),b(j); µ̃

a

j , Σ̃j , Σ̃
1/2

j ϕ(j), τ̃
a

j )

−bkj

j ESN1(bj ;µj , σ
2
j , cjσjϕ̃j , cjτ)Fp−1

κ(j)
(a(j),b(j); µ̃

b

j , Σ̃j , Σ̃
1/2

j ϕ(j), τ̃
b

j ), (7)

where

µ̃
a

j = µ(j) +Σ(j),j
aj − µj

σ2
j

, µ̃
b

j = µ(j) +Σ(j),j
bj − µj

σ2
j

, ϕ̃j = ϕj +
1

σ2
j

Σj(j)ϕ(j), Σ̃j = Σ(j),(j) −
1

σ2
j

Σ(j),jΣj,(j),

cj =
1

(1 +ϕ⊤

(j)
Σ̃jϕ(j))

1/2
, τ̃a

j = τ + ϕ̃j(aj − µj), and τ̃b

j = τ + ϕ̃j(bj − µj).

Proof. Let X = (X1
⊤, X2)

⊤ ∼ Np+1(µ
∗,Ω) as in Proposition 2. From the conditional distribution of a multivariate

normal, it is straightforward to show that X1|X2 ∼ Np(µ −X2∆,Γ) and X2|X1 ∼ N1(−∆⊤Σ−1(X1 − µ), 1 −
∆⊤Σ−1∆). Then it holds that

fX2|X1
(τ̃ |x)fX1(x) = fX2(τ̃ )fX1|X2

(x|τ̃ )
φ1(τ̃ ;−∆⊤Σ−1(x − µ), 1 −∆⊤Σ−1∆)φp(x;µ,Σ) = φ1(τ̃ )φp(x;µ− τ̃∆,Γ)
√

1 + λ⊤λ × φ1(τ + λ⊤Σ−1/2(x− µ))φp(x;µ,Σ) = φ1(τ̃ )φp(x;µ− µb,Γ)

φ1(τ + λ⊤Σ−1/2(x− µ))φp(x;µ,Σ) = φ1(τ ; 0, 1 + λ⊤λ)φp(x;µ− µb,Γ), (8)

where we have used that ∆⊤Σ−1∆ = −λ⊤λ. Now, taking the derivative of the ESN density, then

−
∂

∂x
ESNp(x;µ,Σ,λ, τ )

= −ξ−1

{

∂

∂x
φp(x;µ,Σ)× Φ(τ + λ

⊤
Σ

−1/2(x− µ)) + φp(x;µ,Σ)×
∂

∂x
Φ1

(

τ + λ
⊤
Σ

−1/2(x− µ)
)

}

= ξ−1
{

Σ
−1(x− µ)φp(x;µ,Σ)Φ1(τ + λ

⊤
Σ

−1/2(x− µ))−Σ
−1/2

λφ1(τ + λ
⊤
Σ

−1/2(x− µ))φp(x;µ,Σ)
}

= Σ
−1(x− µ)ESNp(x;µ,Σ,λ, τ )− ξ−1

Σ
−1/2

λφ1(τ + λ
⊤
Σ

−1/2(x− µ))φp(x;µ,Σ)

(8)
= Σ

−1(x− µ)ESNp(x;µ,Σ,λ, τ )− ηΣ−1/2
λφp(x;µ− µb,Γ)

= Σ
−1 {(x− µ)ESNp(x;µ,Σ,λ, τ )− δφp(x;µ− µb,Γ)} ,

with η = φ1(τ ; 0, 1 + λ⊤λ)/ξ and δ = ηΣ1/2λ. Multiplying both sides by xκ and integrating from a to b, we have
(after suppressing the arguments of Fp

κ
and F p

κ
) that

dκ = Σ−1











Fp
κ+e1

− µ1Fp
κ

− δ1F
p
κ

Fp
κ+e2

− µ2Fp
κ

− δ2F
p
κ

...
...

Fp
κ+ep

− µpFp
κ

− δpF
p
κ











,

and the jth element of the left hand side is

dκ,j = −
∫ b(j)

a(j)

xκESNp(x;µ,Σ,λ, τ)

∣

∣

∣

∣

bj

xj=aj

dx(j) +

∫ b

a

kjx
κ−ejESNp(x;µ,Σ,λ, τ)dx

by using integration by parts. Using Proposition 2, we know that

ESNp(x;µ,Σ,λ, τ)
∣

∣

xj=aj
= ESN1(aj ;µj , σ

2
j , cjσjϕ̃j , cjτ)ESNp−1(x(j); µ̃

a

j , Σ̃j , Σ̃
1/2

j ϕ(j), τ̃
a

j ),

ESNp(x;µ,Σ,λ, τ)
∣

∣

xj=bj
= ESN1(bj ;µj , σ

2
j , cjσj ϕ̃j , cjτ)ESNp−1(x(j); µ̃

b

j , Σ̃j , Σ̃
1/2

j ϕ(j), τ̃
b

j ),

5
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and we obtain

dκ,j = kjFp
κ−ej

(a,b;µ,Σ,λ, τ)

+a
kj

j ESN1(aj ;µj , σ
2
j , cjσjϕ̃j , cjτ)Fp−1

κ(j)
(a(j),b(j); µ̃

a

j , Σ̃j , Σ̃
1/2

j ϕ(j), τ̃
a

j )

−bkj

j ESN1(bj ;µj , σ
2
j , cjσj ϕ̃j , cjτ)Fp−1

κ(j)
(a(j),b(j); µ̃

b

j , Σ̃j , Σ̃
1/2

j ϕ(j), τ̃
b

j ).

Finally, multiplying both sides by Σ, we obtain (6). This completes the proof.

This delivers a simple way to compute any arbitrary moments of multivariate TSN distribution Fp
κ

based on at most
3p + 1 lower order terms, with p + 1 of them being p-dimensional integrals, the rest being (p − 1)-dimensional
integrals, and a normal integral F p

κ
that can be easily computed through our proposed R package MomTrunc available

at CRAN. When kj = 0, the first term in (7) vanishes. When aj = −∞, the second term vanishes, and when
bj = +∞, the third term vanishes. When we have no truncation, that is, all the a′is are −∞ and all the b′is are +∞,
for Y ∼ ESNp(µ,Σ,λ, τ), we have that

Fp
κ
(−∞,+∞;µ,Σ,λ, τ) = E[Yκ],

and in this case the recursive relation is

E[Yκ+ei ] = µiE[Y
κ] + δiE[W

κ] +

p
∑

j=1

σijkjE[Y
κ−ei ], i = 1, . . . , p,

with W ∼ Np(µ− µb,Γ).

It is worth to stress that any arbitrary truncated moment of Y, that is,

E[Yκ|a ≤ Y ≤ b] =
Fp

κ
(a,b;µ,Σ,λ, τ)

Lp(a,b;µ,Σ,λ, τ)
, (9)

can be computed using the recurrence relation given in Theorem 1. In the next section, we proposed another approach
to compute (9) using a unique corresponding arbitrary moment to a truncated normal vector.

3.2 Computing ESN moments based on normal moments

Theorem 2. We have that
Fp

κ
(a,b;µ,Σ,λ, τ) = ξ−1F p+1

κ
∗ (a∗,b∗;µ∗,Ω),

with µ∗ and Ω as defined in Proposition 1, and κ∗ = (κ⊤, 0)⊤, a∗ = (a⊤,−∞)⊤ and b∗ = (b⊤, τ̃ )⊤.

In particular, for κ = 0, then

Lp(a,b;µ,Σ,λ, τ) = ξ−1Lp+1(a
∗,b∗;µ∗,Ω). (10)

Proof. The proof is straightforward by Proposition 3. Since a ESN variate can be written as Y
d
= (X1|X2 < τ̃ ), it

follows that

Fp
κ
(a,b;µ,Σ,λ, τ) =

∫

b

a

yκfY(y)dy =
1

P (X2 < τ̃ )

∫

b

a

yκfX1(y)P (X2 < τ̃ |X1 = y)dy

= ξ−1

∫ b

a

∫ τ̃

−∞

yκfX1(y)fX2|X1
(x2|y)dx2dy

= ξ−1

∫

b
∗

a∗

xκ
∗

fX(x1, x2)dx

= ξ−1F p+1
κ

∗ (a∗,b∗;µ∗,Ω),

since X = (X1
⊤, X2)

⊤ is distributed as Np+1(µ
∗,Ω).

Equation (10) offers us in a very convenient manner to computeLp(a,b;µ,Σ,λ, τ), since efficient algorithms already
exist to calculate Lp(a,b;µ,Σ) (e.g., see [17]), which avoids performing 2p evaluations of cdf of the multivariate N
distribution.

Corollary 1. For Y ∼ ESNp(µ,Σ,λ, τ) and X ∼ Np+1(µ
∗,Ω), it follows from Theorem 2 that

E[Yκ|a ≤ Y ≤ b] = E[Xκ
∗ |a∗ ≤ X ≤ b∗],

with a∗, b∗, κ∗, µ∗ and Ω as defined in Theorem 2.

6
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3.3 Mean and covariance matrix of multivariate TESN distributions

Let us consider Y ∼ TESNp(µ,Σ,λ, τ, [a,b]). In light of Theorem 1, we have that

E[Yi] = µi +
1

L

[

δiL+

p
∑

j=1

σij
[

ESN1(aj ;µj , σ
2
j , cjσjϕ̃j , cjτ)Lp−1(a(j),b(j); µ̃

a

j , Σ̃j , Σ̃
1/2

j ϕ(j), τ̃
a

j )

− ESN1(bj ;µj , σ
2
j , cjσjϕ̃j , cjτ)Lp−1(a(j),b(j); µ̃

b

j , Σ̃j , Σ̃
1/2

j ϕ(j), τ̃
b

j )
]

]

,

for i = 1, . . . , p, where L ≡ Lp(a,b;µ,Σ,λ, τ) and L ≡ Lp(a,b;µ− µb,Γ).

It follows that

E[Y] = µ+
1

L [Lδ +Σ(qa − qb)], (11)

where the j-th element of qa and qb are

qa,j = ESN1(aj ;µj , σ
2
j , cjσjϕ̃j , cjτ)Lp−1(a(j),b(j); µ̃

a

j , Σ̃j , Σ̃
1/2

j ϕ(j), τ̃
a

j ),

qb,j = ESN1(bj ;µj , σ
2
j , cjσj ϕ̃j , cjτ)Lp−1(a(j),b(j); µ̃

b

j , Σ̃j , Σ̃
1/2

j ϕ(j), τ̃
b

j ).

Denoting D = [de1 , . . . ,dep ], we can write

E[YY⊤] = µE[Y]⊤ +
1

L [LδE[W]⊤ +ΣD],

cov[Y] =
[

µ− E[Y]
]

E[Y]⊤ +
1

L [LδE[W]⊤ +ΣD],

where W ∼ TNp(µ− µb,Γ, [a,b]), that is a p-variate truncated normal distribution on [a,b].

Besides, from Corollary 1, we have that the first two moments of Y can be also computed as

E[Y] = E[X](p+1), (12)

E[YY⊤] = E[XX⊤](p+1,p+1), (13)

with X ∼ TNp+1(µ
∗,Ω; [a∗,b∗]). Note that cov[Y] = E[YY⊤] − E[Y]E[Y⊤ ]. Equations (12) and (13) are more

convenient for computing E[Y] and cov[Y] since all boils down to compute the mean and the variance-covariance
matrix for a p+ 1-variate TN distribution which integrals are less complex than the ESN ones.

3.4 Mean and covariance matrix of TN distributions

Some approaches exists to compute the moments of a TN distribution. For instance, for doubly truncation, [18]
(method available through the tmvtnorm R package) computed the mean and variance of X directly deriving the
MGF of the TN distribution. On the other hand, [12] (method available through the MomTrunc R package) is able to
compute arbitrary higher order TN moments using a recursive approach as a result of differentiating the multivariate
normal density. For right truncation, [19] (see Supplemental Material) proposed a method to compute the mean and
variance of X also by differentiating the MGF, but where the off-diagonal elements of the Hessian matrix are recycled
in order to compute its diagonal, leading to a faster algorithm. Next, we present an extension of [19] algorithm to
handle doubly truncation.

3.5 Deriving the first two moments of a double TN distribution through its MGF

Theorem 3. Let X ∼ TNp(0,R; [a,b]), with R being a correlation matrix of order p×p. Then, the first two moments
of X are given by

E[X] =
∂m(t)

∂t

∣

∣

∣

∣

⊤

t=0

= − 1

L
Rq,

E[XX⊤] =
∂2m(t)

∂t∂t⊤

∣

∣

∣

∣

t=0

= R+
1

L
RHR,

7
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and consequently,

cov[X] = R+
1

L2
R
(

LH− qq⊤
)

R,

where L ≡ Lp(a,b;0,R), q = qa − qb, with the i-th element of qa and qb as

qa,i = φ1(ai)Lp−1(a(i),b(i); aiR(i),i, R̃i) and qb,i = φ1(bi)Lp−1(a(i),b(i); biR(i),i, R̃i),

H being a symmetric matrix of dimension p, with off-diagonal elements hij given by

hij = haaij − hbaij − habij + hbbij ,

= φ2(ai, aj ; ρij)Lp−2(a(i,j),b(i,j);µ
aa
ij , R̃ij)− φ2(bi, aj; ρij)Lp−2(a(i,j),b(i,j);µ

ba
ij , R̃ij)

− φ2(ai, bj; ρij)Lp−2(a(i,j),b(i,j);µ
ab
ij , R̃ij) + φ2(bi, bj ; ρij)Lp−2(a(i,j),b(i,j);µ

bb
ij , R̃ij),

and diagonal elements

hii = aiqai − biqbi −Ri,(i)H(i),i, (14)

with R̃i = R(i),(i) −R(i),iRi,(i), µ
αβ
ij = R(ij),[i,j](αi, βj)

⊤ and R̃ij = R(i,j),(i,j) −R(i,j),[i,j]R[i,j],(i,j).

Proof. See Appendix A.

The main difference of our proposal in Theorem 3 and other approaches deriving the MGF relies on (14), where
the diagonal elements are recycled using the off-diagonal elements hij , 1 ≤ i 6= j ≤ p. Furthermore, for W ∼
TNp(µ,Σ; [ã, b̃]), we have that

E[W] = µ− SE[X], (15)

cov[W] = S cov[X]S, (16)

where Σ being a positive-definite matrix, S = diag(σ1, σ2, . . . , σp), and truncation limits ã and b̃ such that a =

S−1(ã− µ) and b = S−1(b̃− µ).

4 Dealing with limiting and extreme cases

Let consider Y ∼ ESNp(µ,Σ,λ, τ). As τ → ∞, we have that ξ = Φ(τ̃ ) → 1. Besides, as τ → −∞, we have that

ξ → 0 and consequently Fp
κ
(a,b;µ,Σ,λ, τ) = ξ−1F p+1

κ
∗ (a∗,b∗;µ∗,Ω) → ∞. Thus, for negative τ̃ values small

enough, we are not able to compute E[Yκ] due to computation precision. For instance, in R software, Φ(τ̃ ) = 0 for
τ̃ < −37. The next proposition helps us to circumvent this problem.

Proposition 5. (Limiting distribution for the ESN) As τ → −∞,

ESNp(y;µ,Σ,λ, τ )−→φp(y;µ− µb,Γ).

Proof. Let X2 ∼ N(0, 1). As τ̃ → −∞, we have that P (X2 ≤ τ̃ ) → 0, E[X2|X2 ≤ τ̃ ] → τ̃ and var[X2|X2 ≤
τ̃ ] → 0 (i.e., X2 is (i.e., X2 is degenerated on τ̃ ). In light of Proposition 3, Y

d
= (X1|X2 = τ̃ ), and by the

conditional distribution of a multivariate normal, it is straightforward to show that E[X1|X2 = τ̃ ] = µ − µb and
cov[X1|X2 = τ̃ ] = Γ, which concludes the proof.

4.1 Approximating the mean and variance-covariance of a TN distribution for extreme cases

While using the normal relation (12) and (13), we may also face numerical problems for extreme settings ofλ and τ due
to the scale matrix Ω does depend on them. Most common problem is that the normalizing constantLp(a

∗,b∗;µ∗,Ω)
is approximately zero, because the probability density has been shifted far from the integration region. It is worth
mentioning that, for these cases, it is not even possible to estimate the moments generating Monte Carlo (MC) samples
due to the high rejection ratio when subsetting to a small integration region.

For instance, consider a bivariate truncated normal vector X = (X1, X2)
⊤, with X1 and X2 having zero mean and

unit variance, cov(X1, X2) = −0.5 and truncation limits a = (−20,−10)⊤ and b = (−9, 10)⊤. Then, we have that
the limits of X1 are far from the density mass since P (−20 ≤ X1 ≤ −9) ≈ 0. For this case, both the mtmvnorm

function from the tmvtnorm R package and the Matlab codes provided in [12] return wrong mean values outside the
truncation interval (a,b) and negative variances. Values are quite high too, with mean values greater than 1 × 1010

8
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and all the elements of the variance-covariance matrix greater than 1× 1020. When changing the first upper limit from
−9 to −13, that is b = (−13, 10)⊤, both routines return Inf and NaN values for all the elements.

Although the above scenarios seem unusual, extreme situations that require correction are more common than expected.
Actually, the development of this part was motivated as we identified this problem when we fit censored regression
models, with high asymmetry and presence of outliers. Hence, we present correction method in order to approximate
the mean and the variance-covariance of a multivariate TN distribution even when the numerical precision of the
software is a limitation.

Dealing with out-of-bounds limits

Consider the partition X = (X⊤
1 ,X

⊤
2 )

⊤ such that dim(X1) = p1, dim(X2) = p2, where p1 + p2 = p. It is well
known that

E[X] = E

[

E[X1|X2]
X2

]

and

cov[X] =

[

E[cov[X1|X2]] + cov[E[X1|X2]] cov[E[X1|X2],X2]
cov[X2,E[X1|X2]] cov[X2]

]

.

Now, consider X ∼ TNp

(

µ,Σ, [a,b]
)

to be partitioned as above. Also consider the corresponding partitions of µ, Σ,

a = (a⊤1 , a
⊤
2 )

⊤ and b = (b⊤
1 ,b

⊤
2 )

⊤. We say that the limits [a2,b2] of X2 are out-of-bounds if P (a2 ≤ X2 ≤ b2) ≈
0. Let us consider the case where we are not able to compute any moment of X, because there exists a partition X2

of X of dimension p2 that is out-of-bounds. Note this happens because Lp(a,b;µ,Σ) ≤ P (a2 ≤ X2 ≤ b2) ≈ 0.
Also, we consider the partition X1 such that P (a1 ≤ X1 ≤ b1) > 0. Since the limits of X2 are out-of-bounds
(and a2 < b2), we have two possible cases: b2 → −∞ or a2 → ∞. For convenience, let ξ2 = E[X2] and
Ψ22 = cov[X2]. For the first case, as b2 → −∞, we have that ξ2 → b2 and Ψ22 → 0p2×p2 . Analogously, we have
that ξ2 → a2 and Ψ22 → 0p2×p2 as a2 → ∞.

Then X1 ∼ TNp1

(

µ1,Σ11; [a1,b1]
)

, X2 ∼ Np2

(

ξ2,0
)

(i.e., X2 is degenerated on ξ2) and X1|X2 ∼ TNp1

(

µ1 +

Σ12Σ
−1
22 (ξ2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21; [a1,b1]

)

. Given that cov[E[X1|X2]] = 0p1×p2 and cov[E[X1|X2],X2] =
0p2×p2 , it follows that

E[X] =

[

ξ1.2
ξ2

]

and cov[X] =

[

Ψ11.2 0p1×p2

0p2×p1 0p2×p2

]

, (17)

with ξ1.2 = E[X1|X2] and Ψ11.2 = cov[X1|X2] being the mean and variance-covariance matrix of a TN distribution,
which can be computed using (15) and (16).

In the event that there are double infinite limits, we can partition the vector as well, in order to avoid unnecessary
calculation of these integrals.

Dealing with double infinite limits

Let p1 be the number of pairs in [a,b] that are both infinite. We consider the partition X = (X⊤
1 ,X

⊤
2 )

⊤, such that the
upper and lower truncation limits associated withX1 are both infinite, but at least one of the truncation limits associated
with X2 is finite. Since a1 = −∞ and b1 = ∞, it follows that X1 ∼ Np1

(

µ1,Σ11

)

, X2 ∼ TNp2

(

µ2,Σ22, [a2,b2]
)

and X1|X2 ∼ Np1

(

µ1 +Σ12Σ
−1
22 (X2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21

)

. This leads to

E[X] = E

[

µ1 +Σ12Σ
−1
22 (X2 − µ2)
X2

]

=

[

µ1 +Σ12Σ
−1
22 (ξ2 − µ2)
ξ2

]

, (18)

and

cov[X] =

[

Σ11 −Σ12Σ
−1
22

(

Ip2 −Ψ22Σ
−1
22

)

Σ21 Σ12Σ
−1
22 Ψ22

Ψ22Σ
−1
22 Σ21 Ψ22

]

, (19)

with ξ2 and Ψ22 being the mean vector and variance-covariance matrix of a TN distribution, which can be computed
using (15) and (16) as well.

As can be seen, we can use equations (18) and (19) to deal with double infinite limits, where the truncated moments
are computed only over a p2-variate partition, avoiding some unnecessary integrals and saving some computational
effort. On the other hand, expression (17) let us to approximate the mean and the variance-covariance matrix for cases
where the computational precision is a limitation.

9
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5 Comparison of computational times

Since this is the first attempt to compute the moments of a TESN, it is not possible to compare our approach with
others methods already implemented in statistical softwares, for instance, R or Stata. However, this section intends to
compare three possible approaches to compute the mean vector and variance-covariance matrix of a p-variate TESN
distribution based on our results. We consider our first proposal derived from Theorem 1 which is derived directly
from the ESN pdf, as well as the normal relation given in Theorem 2. For the latter, we use different (some existent)
methods for computing the mean and variance-covariance of a TN distribution. The methods that we compare are the
following:

Proposal 1: Theorem 1, i.e., equations (11), and (13),
Proposal 2: Normal relation (NR) in Theorem 2 using Theorem 3,
Proposal 3: NR in Theorem 2 using the Matlab routine from [12],
Proposal 4: NR in Theorem 2 using the tmvtnorm R function from [18].

Left panel of Figure 1 shows the number of integrals required to achieve this for different dimensions p. We compare
the proposal 1 for a p-variate TESN distribution and the equivalent p+1-variate normal approaches K&R and proposal
2.
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p

Proposal 4
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Figure 1: Number of integrals required and absolute processing time (in seconds) for computing the mean vector and
variance-covariance matrix for a p-variate TESN distribution, for 3 different approaches under double truncation.

It is clear that the importance of the new proposed method since it reduces the number of integral involved almost to
half, this compared to the TESN direct results from proposal 1, when we consider the double truncation. In particular,
for left/right truncation, we have that the equivalent p + 1-variate normal approach along with [19] (now, a special
case of proposal 2) requires up to 4 times less integrals than when we use the proposal 3. As seen before, the normal
relation proposal 2 outperforms the proposal 1, that is, the equivalent normal approach always resulted faster even it
considers one more dimension, that is a p+ 1-variate normal vector, due to its integrals are less complex than for the
ESN case.

Processing time when using the equivalent normal approach are depicted in the right panel of Figure 1. Here, we
compare the absolute processing time of the mean and variance-covariance of a TN distribution under the methods
in proposal 2, 3 and 4, for different dimensions p. In general, our proposal is the fastest one, as expected. Proposal
3 resulted better only for p ≤ 2, which confirms the necessity for a faster algorithm, in order to deal with high
dimensional problems. Proposal 4 resulted to be the slowest one by far.

Computational time in real life: For applications where a unique truncated expectation is required (for example,
conditional tail expectations as a measure of risk in Finance), the computation cost may seem insignificant, however,
iterative algorithms depending on these quantities become computationally intensive. For instance, in longitudinal
censored models under a frequentist point of view, an EM algorithm reduces to the computation of the moments of
multivariate truncated moments (Lachos et al., 2017) at each iteration, and for all censored observations along subjects.
See that, 125K integrals will be required for an algorithm that converges in 250 iterations and a modest dataset with
100 subjects and only four censored observations. Other models as geostatistical models are even more demanding, so
small differences in times may be significant between a tractable and non-tractable problem, even that without these
expectations, these must be approximated invoking Monte Carlo methods.

10
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6 On moments of multivariate folded ESN distributions

First, we established some general results for the pdf, cdf and moments of multivariate folded distributions (MFD).
These extend the results found in [20] for a FN distribution to any multivariate distribution, as well as the multivariate
location-scale family. The proofs are given in Appendix A.

Theorem 4 (pdf and cdf of a MFD). Let X ∈ R
p be a p-variate random vector with pdf fX(x; θ) and cdf FX(x; θ),

with θ being a set of parameters characterizing such distribution. If Y = |X|, then the joint pdf and cdf of Y that
follows a folded distribution of X are given, respectively, by

fY(y) =
∑

s∈S(p)

fX(Λsy; θ) and FY(y) =
∑

s∈S(p)

πsFX(Λsy; θ), for y ≥ 0,

where S(p) = {−1, 1}p is a cartesian product with 2p elements, each of the form s = (s1, . . . , sp), Λs = Diag(s)
and πs =

∏p
i=1 si.

Corollary 2. If X ∼ fX(x; ξ,Ψ) belongs to the location-scale family of distributions, with location and scale pa-
rameters ξ and Ψ respectively, then Zs = ΛsX ∼ fX(z;Λsξ,ΛsΨΛs) and consequently the joint pdf and cdf of
Y = |X| are given by

fY(y) =
∑

s∈S(p)

fX(y;Λsξ,ΛsΨΛs) and FY(y) =
∑

s∈S(p)

πsFX(Λsy; ξ,Ψ), for y ≥ 0.

Hence, the κ-th moment of Y follows as

E[Yκ] =
∑

s∈S(p)

E[(Zκ

s )
+],

where X+ denotes the positive component of the random vector X.

Let X ∼ ESNp(µ,Σ,λ, τ), we now turn our attention to discuss the computation of any arbitrary order moment of
|X|, a FESN distribution. Let define the Ip

κ
≡ Ip

κ
(µ,Σ,λ, τ) function as

Ip
κ
(µ,Σ,λ, τ) =

∫

∞

0

yκESNp(y;µ,Σ,λ, τ)dy.

Note that Ip
κ

is a special case of Fp
κ

that occurs when ai = 0 and bi = +∞, i = 1, . . . , p. In this scenario we have

Ip
κ
(µ,Σ,λ, τ) = Fp

κ
(0,+∞;µ,Σ,λ, τ).

When λ = 0 and τ = 0, that is, the normal case we write Ip
κ
(µ,Σ,0, 0) = Ip

κ
(µ,Σ).

Proposition 6. If X ∼ ESNp(µ,Σ,λ, τ), then Zs = ΛsX ∼ ESNp(µs,Σs,λs, τ) and consequently the joint pdf,
cdf and the κth raw moment of Y = |X| are, respectively, given by

fY(y) =
∑

s∈S(p)

ESNp(yp;µs,Σs,λs, τ),

FY(y) = Lp(−y,y;µ,Σ,λ, τ),

and
E[Yκ] =

∑

s∈S(p)

Ip
κ
(µs,Σs,λs, τ),

where ys = Λsy, µs = Λsµ, Σs = ΛsΣΛs and λs = Λsλ.

Proof. Note that is suffices to show that,

if X ∼ ESNp(µ,Σ,λ, τ), then Zs = ΛsX ∼ ESNp(µs,Σs,λs, τ),

since the rest of the corollary is straightforward. We have that

ESNp(x;µs,Σs,λs, τ ) = ξ−1φp(x;Λsµ,ΛsΣΛs)× Φ1

(

τ + (Λsλ)
⊤(ΛsΣΛs)

−1/2(x−Λsµ)
)

= ξ−1|ΛsΛs|
1/2φp(Λ

−1
s x;µ,Σ)×Φ1

(

τ + λ
⊤
Λs(ΛsΣΛs)

−1/2
Λs(Λ

−1
s x− µ)

)

= ξ−1φp(Λsx;µ,Σ)×Φ1

(

τ + λ
⊤
Λs(ΛsΣΛs)

−1/2
Λs(Λsx− µ)

)

(20)

?
= ξ−1φp(Λsx;µ,Σ)×Φ1

(

τ + λ
⊤
Σ

−1/2(Λsx− µ)
)

(21)

= ESNp(Λsx;µ,Σ,λ, τ ),

11
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where ξ−1 = Φ1

(

τ/
√

1 + λ⊤

s λs

)

due to λ⊤

s λs = λ⊤λ.

In order to equalize (20) and (21), we see that it suffices to show that Σ−1/2 = Λs(ΛsΣΛs)
−1/2

Λs. This is equivalent to show

that A = B for A = (ΛsΣΛs)
1/2 and B = ΛsΣ

1/2
Λs. We have that both matrices A and B are positive-definite matrices since

(ΛsΣΛs)
1/2 and Σ

1/2 are too, as a consequence that they are obtained using Singular Value Decomposition (SVD). Finally, given
that A2 = B

2 = ΛsΣΛs and any positive-definite matrix has an unique positive-definite square root, we conclude that A = B

by uniqueness, which concludes the proof.

Remark 1. As a consequence of Proposition 6, we also have the new vectors δs = Λsδ, µbs = Λsµb, ϕs = Λsϕ,

ϕ̃s = Λsϕ̃, µ̃a

js = Λs(j)µ̃
a

j and µ̃b

js = Λs(j)µ̃
b

j , and matrix Γs = ΛsΓΛs, while the constants ξ, η, cj ,Σ̃j , and τ̃j
remain invariant with respect to s.

From Proposition 6, we can compute any arbitrary moment of a FESN distribution as a sum of Ip
κ

integrals. In light
of Theorem 1, the recurrence relation for Ip

κ
can be written as

Ip
κ+ei

(µ,Σ,λ, τ) = µiIp
κ
(µ,Σ,λ, τ) + δiI

p
κ
(µ− µb,Γ) +

p
∑

j=1

σijdκ,j, i = 1, . . . , p, (22)

where

dκ,j =

{

kjIp
κ−ei

(µ,Σ,λ, τ) ; for kj > 0

ESN1(0|µj , σ
2
j , cjσj ϕ̃j , cjτ)Ip−1

κ(j)
(µ̃j , Σ̃j , Σ̃

1/2

j ϕ(j), τ̃j) ; for kj = 0

with µ̃j = µ(j) −
µj

σ2
j
Σ(j)j and τ̃j = τ − ϕ̃jµj .

It is also possible to use the normal relation in Theorem 2 to compute E[|X|κ] in a simpler manner as in next proposi-
tion.

Proposition 7. Let Y = |X|, with X ∼ ESNp(µ,Σ,λ, τ). In light of Theorem 4, It follows that

E[Yκ] = ξ−1
∑

s∈S(p)

Ip+1
κ

∗ (µ∗
s,Ω

−
s ),

where Ip
κ
(µ,Σ) ≡ F p

κ
(0,∞;µ,Σ), µ∗

s = (µ⊤

s , τ̃)
⊤ and Ωs =

(

Σs −∆s

−∆⊤
s 1

)

, with µs = Λsµ, Σs = ΛsΣΛs,

∆s = Λs∆ and Ω−
s standing for the block matrix Ωs with all its off-diagonal block elements signs changed.

Proof is direct from Theorem 2 as Ip
κ

is a special case of Fp
κ

. From Proposition 2, we have that the mean and variance-
covariance matrix can be calculated as a sum of 2p terms as well, that is

E[Y] =
∑

s∈S(p)

E[Z+

s ], (23)

cov[Y] =
∑

s∈S(p)

E
[

Z+

sZ
+

s
⊤
]

− E[Y]E[Y]⊤, (24)

whereZ+
s is the positive component of Zs = ΛsX ∼ ESNp(µs,Σs,λs, τ). Note that there are 2p times more integrals

to be calculated as compared to the non-folded case, representing a huge computational effort for high dimensional
problems.

In order to circumvent this, we can use the fact that E[Y] = (E[Y1], . . . ,E[Yp])
⊤ and the elements of E[YY⊤] are

given by the second momentsE[Y 2
i ] andE[YiYj ], 1 ≤ i 6= j ≤ p. Thus, it is possible to calculate explicit expressions

for the mean vector and variance-covariance matrix of the FESN only based on the marginal univariate means and
variances of Yi, as well as the covariance terms cov(Yi, Yj).

Next, we circumvent this situation by propose explicit expressions for the mean and the variance-covariance of the
multivariate FESN distribution.

6.1 Explicit expressions for mean and covariance matrix of multivariate folded ESN distribution

Let X ∼ ESNp(µ,Σ,λ, τ). To obtain the mean and covariance matrix of |X| boils down to computeE[|Xi|], E[|X2
i |]

and E[|XiXj |]. Consider Xi to be the i-th marginal partition of X distributed as Xi ∼ ESN(µi, σ
2
i , λi, τi). In light of

Proposition 6 it follows that

E[|Xi|k] = I1
k(µi, σ

2
i , λi, τi) + I1

k(−µi, σ
2
i ,−λi, τi).

12
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Thus, using the recurrence relation on Ik in (22), and following the notation in Subsection 3.1.1, we can write explicit
expressions for E[|Xi|] and E[|Xi|2]. High order moments for the univariate FESN and others related distributions are
detailed in Appendix B.

It remains to obtain E[|XiXj|] for i 6= j, which can be obtained as

E[|XiXj |] =I2
1,1(µi, µj , σ

2
i , σij , σ

2
j , λi, λj , τ) + I2

1,1(µi,−µj , σ
2
i ,−σij , σ2

j , λi,−λj , τ)
+ I2

1,1(−µi, µj , σ
2
i ,−σij , σ2

j ,−λi, λj , τ) + I2
1,1(−µi,−µj , σ

2
i , σij , σ

2
j ,−λi,−λj , τ), (25)

as pointed in Proposition 6, with (Xi, Xj) denoting an arbitrary bivariate partition of X. Without loss of generality,
let’s consider the partition (X1, X2) ∼ ESN2(µ,Σ,λ, τ) and (W1,W2) ∼ N2(m,Γ) with m = µ − µb. For
simplicity, we denote I2

1,1 ≡ I2
1,1(µ,Σ,λ, τ), and the normalizing constants L2 ≡ L2(0,∞;µ,Σ,λ, τ) and L2 ≡

L2(0,∞;µ− µb,Γ).

Using the recurrence relation on I2
κ+ei

in (22), we can obtain I2
1,1 for κ = (1, 0)⊤ and e2 = (0, 1)⊤ as

I2
1,1 =(µ1µ2 + σ12)L2 + (δ1µ2 + δ2(µ1 − µb1))L2 + (µ2σ

2
1 + σ12)φ̃

(1)(1− Φ̃(2.1)) + µ2σ12φ̃
(2)(1− Φ̃(1.2))

+ δ2
[

γ2
1φ(µ1;µb1, γ

2
1)(1− Φ(0;m2.1, γ

2
2.1)) + γ12φ(µ2;µb2, γ

2
2)(1− Φ(0;m1.2, γ

2
1.2)))

]

+ σ2
2φ̃

(2)I1
1 (µ1.2, σ

2
11.2, σ11.2ϕ1, τ1.2),

where m2.1 = m2 − γ12m1/γ
2
1 , m1.2 = m1 − γ12m2/γ

2
2 , γ22.1 = γ22 − γ12/γ

2
1 , γ21.2 = γ21 − γ12/γ

2
2 , and in light

of Proposition 2 we have that Φ̃(2.1) ≡ Φ̃1(0;µ2.1, σ
2
2.1, σ2.1ϕ2, τ2.1), Φ̃(1.2) ≡ Φ̃1(0;µ1.2, σ

2
1.2, σ1.2ϕ1, τ1.2), and

φ̃(ℓ) ≡ ESN1(0;µℓ, σ
2
ℓ , cℓσℓϕ̃ℓ, cℓτ) for ℓ = {1, 2}.

Using Remark 1 along with (25), we finally obtain an explicit expression for E[|XiXj |] as

E[|XiXj |] =(µiµj + σij)(1 − 2(Φ̃(i) + Φ̃(j))) + (δiµj + δj(µi − µbi)) (1− 2(Φ(i) +Φ(j)))

+ 2µj

[

σ2
i φ̃

(i)(1 − 2Φ̃(i)) + σij φ̃
(j)(1− 2Φ̃(j))

]

+ 2δj
[

γ2i φ(µi;µbi, γ
2
i )(1− 2Φ(0;mj.i, γ

2
j.i)) + γijφ(µj ;µbj , γ

2
j )(1− 2Φ(0;mi.j, γ

2
i.j))

]

+ 2σ2
j φ̃

(j)
E[|Yi.j |],

with Xi.j ∼ ESNi(µi.j , σ
2
i.j , σi.jϕi, τi.j). Furthermore,

Φ̃(1) ≡ Φ̃2(0; (−µi, µj)
⊤,Σ−, (−λi, λj)⊤, τ), Φ̃(2) ≡ Φ̃2(0; (µi,−µj)

⊤,Σ−, (λi,−λj)⊤, τ),
Φ(1) ≡ Φ2(0; (−mi,mj)

⊤,Γ−) and Φ(2) ≡ Φ2(0; (mi,−mj)
⊤,Γ−),

with Σ− (Γ−) denoting the Σ = [σij ] (Γ = [γij ]) matrix with all its signs of covariances (off-diagonal elements)
changed. Here, we have simplified using the equivalences

Lp(0,∞;µ,Σ,λs, τ) = Φ̃p(0;−µs,Σs,−λs, τ), for s ∈ S(p)

ESNp(0;µq,Σq,λq, τ) = ESNp(0;µr,Σr,λr, τ), for q, r ∈ S(p)

P (Y1Y2 · · ·Yp > 0) =
∑

s∈S(p)

πsLp(0,∞;µs,Σs,λs, τ),

with πs =
∏p

i=1 si as in Theorem 4 and
∑

s∈S(p)Lp(0,∞;µs,Σs,λs, τ) = 1. It is worth mentioning that these

expressions hold for the normal case, when λ = 0 and τ = 0.

As expected, this approach is much faster than the one using equations (23) and (24). For instance, when we consider
a trivariate folded ESN distribution, we have that it is approximately 56x times faster than using MC methods and
10x times faster than using equations (23) and (24). Time comparison (summarized in the Figure in the Supplementar
material, right panel) as well as sample codes of our MomTrunc R package are provided in the Appendices C and D,
respectively.

7 Conclusions

In this paper, we have developed a recurrence approach for computing order product moments of TESN and FESN
distributions as well as explicit expressions for the first two moments as a byproduct, generalizing results obtained by
[12] for the normal case. The proposed methods also includes the moments of the well-known truncated multivariate

13
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SN distribution, introduced by [1]. For the TESN, we have proposed an optimized robust algorithm based only in
normal integrals, which for the limiting normal case outperforms the existing popular method for computing the first
two moments, even computing these two moments for extreme cases where all available algorithms fail. The proposed
method (including its limiting and special cases) has been coded and implemented in the R MomTrunc package, which
is available for the users on CRAN repository.

During the last decade or so, censored modeling approaches have been used in various ways to accommodate in-
creasingly complicated applications. Many of these extensions involve using Normal ([19]) and Student-t ([21, 22]),
however statistical models based on distributions to accommodate censored and skewness, simultaneously, so far have
remained relatively unexplored in the statistical literature. We hope that by making the codes available to the commu-
nity, we will encourage researchers of different fields to use our newly methods. For instance, now it is possible to
derive analytical expressions on the E-step of the EM algorithm for multivariate SN responses with censored observa-
tion asblur in [21].

Finally, we anticipate in a near future to extend these results to the extended skew-t distribution ([23]). We conjecture
that our method can be extended to the context of the family of other scale mixtures of skew-normal distributions
([24]). An in-depth investigation of such extension is beyond the scope of the present paper, but it is an interesting
topic for further research.

SUPPLEMENTARY MATERIAL

The Supplementary Materials, which is available upon request, contains the following two files:

A Proofs of propositions and theorems;

B Explicit expressions for moments of some folded univariate distributions;

C Figures;

D The R MomTrunc package.
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