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ABSTRACT

In this paper, we compute doubly truncated moments for the selection elliptical (SE) class of distribu-
tions, which includes some multivariate asymmetric versions of well-known elliptical distributions,
such as, the normal, Student’s t, slash, among others. We address the moments for doubly truncated
members of this family, establishing neat formulation for high order moments as well as for its first
two moments. We establish sufficient and necessary conditions for the existence of these truncated
moments. Further, we propose optimized methods able to deal with extreme setting of the parame-
ters, partitions with almost zero volume or no truncation which are validated with a brief numerical
study. Finally, we present some results useful in interval censoring models. All results has been par-
ticularized to the unified skew-t (SUT) distribution, a complex multivariate asymmetric heavy-tailed
distribution which includes the extended skew-t (EST), extended skew-normal (ESN), skew-t (ST)
and skew-normal (SN) distributions as particular and limiting cases.

Keywords Censored regression models · Elliptical distributions · Selection distributions · Truncated distributions ·
Truncated moments

1 Introduction

Truncated moments have been a topic of high interest in the statistical literature, whose possible applications are wide,
from simple to complex statistical models as survival analysis, censored data models, and in the most varied areas
of applications such as agronomy, insurance, finance, biology, among others. These areas have data whose inherent
characteristics lead to the use of methods that involve these truncated moments, such as restricted responses to a certain
interval, partial information such as censoring (which may be left, right or interval), missing, among others. The need
to have more flexible models that incorporate features such as asymmetry and robustness, has led to the exploration of
this area in last years. From the first two one-sided truncated moments for the normal distribution, useful in Tobin’s
model ([1]), its evolution led to its extension to the multivariate case ([2]), double truncation ([3]), heavy tails when
considering the Student’s t bivariate case in [4], and finally the first two moments for the multivariate Student’s t
case in [5]. Besides the interval-type truncation in cases before, [6] considers an interesting non-centered ellipsoid
elliptical truncation of the form a ≤ (x − µA)⊤A(x − µA) on well known distributions as the multivariate normal,
Student’s t, and generalized hyperbolic distribution. On the other hand, [7] recently proposed a recursive approach
that allows calculating arbitrary product moments for the normal multivariate case. Based on the latter, [8] proposes
the calculation of doubly truncated moments for the normal mean-variance mixture distributions ([9]) which includes
several well-known complex asymmetric multivariate distributions as the generalized hyperbolic distribution ([10]).

Unlike [8], in this paper we focus our efforts to the general class of asymmetric distributions called the multivariate
elliptical selection family. This large family of distributions includes complex multivariate asymmetric versions of
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well-known elliptical distributions as the normal, Student’s t, exponential power, hyperbolic, slash, Pearson type II,
contaminated normal, among others. We go further in details for the unified skew-t (SUT) distribution, a complex mul-
tivariate asymmetric heavy-tailed distribution which includes the extended skew-t (EST) distribution ([11]), the skew-t
(ST) distribution ([12]) and naturally, as limiting cases, its analogous normal and skew-normal (SN) distributions when
ν → ∞.

The rest of the paper is organized as follows. In Section 2 we present some preliminaries results, most of them being
definitions of the class of distributions and its special cases of interest along the manuscript. Section 3, the addresses
the moments for the doubly truncated selection elliptical distributions. Further, we establish formulas for high order
moments as well as its first two moments. We present a methodology to deal with some limiting cases and a discussion
when a non-truncated partition exists. In addition, we establish sufficient and necessary conditions for the existence of
these truncated moments. Section 4 bases results from Section 3 to the SUT case. In Section 5, a brief numerical study
is presented in order to validate the methodology. In Section 6, we present some Lemmas and Corollaries related
to conditional expectations which are useful in censored modeling. An application of selection elliptical truncated
moments on tail conditional expectation is presented in Section 7. Finally, the paper closes with some conclusions and
direction for future research.

2 Preliminaries

2.1 Selection distributions

First, we start our exposition defining a selection distribution as in [13].

Definition 1 (selection distribution). Let X1 ∈ Rq and X2 ∈ Rp be two random vectors, and denote by C a
measurable subset of Rq . We define a selection distribution as the conditional distribution of X2 given X1 ∈ C,
that is, as the distribution of (X2 | X1 ∈ C). We say that a random vector Y ∈ Rp has a selection distribution if

Y
d
= (X2 | X1 ∈ C).

We use the notation Y ∼ SLCTp,q with parameters depending on the characteristics of X1, X2, and C. Furthermore,
for X2 having a probability density function (pdf) fX2 say, then Y has a pdf fY given by

fY(y) = fX2(y)
P(X1 ∈ C | X2 = y)

P(X1 ∈ C)
. (1)

Since selection distribution depends on the subset C ∈ Rq, particular cases are obtained. One of the most important
case is when the selection subset has the form

C(c) = {x1 ∈ R
q | x1 > c}. (2)

In particular, when c = 0, the distribution of Y is called to be a simple selection distribution.

In this work, we are mainly interested in the case where (X1,X2) has a joint density following an arbitrary symmetric

multivariate distribution fX1,X2 . For Y
d
= (X2 | X1 ∈ C), this setting leads to a Y p-variate random vector following

a skewed version of f , which its pdf can be computed in a simpler manner as

fY(y) =

∫

C fX1,X2(x1,y) dx1
∫

C fX1(x1) dx1
. (3)

2.2 Selection elliptical (SE) distributions

A quite popular family of selection distributions arises when X1 and X2 have a joint multivariate elliptically contoured
(EC) distribution, as follows:

X =

(

X1

X2

)

∼ ECq+p

(

ξ =

(

ξ1
ξ2

)

,Ω =

(

Ω11 Ω12

Ω21 Ω22

)

, h(q+p)

)

, (4)

where ξ1 ∈ Rq and ξ2 ∈ Rp are location vectors, Ω11 ∈ Rq×q , Ω22 ∈ Rp×p, and Ω21 ∈ Rp×q are dispersion matrices,

and, in addition to these parameters, h(q+p) is a density generator function. We denote the selection distribution

resulting from (4) by SLCT -ECp,q(ξ,Ω, h
(q+p), C). They typically result in skew-elliptical distributions, except for

two cases: Ω21 = 0p×q and C = C(ξ1) (for more details, see [13]). Given that the elliptical family of distributions
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is closed under marginalization and conditioning, the distribution of X2 and (X1 | X2 = x) are also elliptical, where
their respective pdfs are given by

X2 ∼ ECp(ξ2,Ω22, h
(p)), (5)

X1 | X2 = x ∼ ECq(ξ1 +Ω12Ω
−1
22 (x− ξ2),Ω11 −Ω12Ω

−1
22 Ω21, h

(q)
x ), (6)

with induced conditional generator

h(q)x (u) =
h(q+p)(u+ δ2(x))

h(p)δ2(x)
,

with δ2(x)
△

= (x − ξ2)
⊤Ω−1

22 (x − ξ2). These last equations imply that the selection elliptical distributions are also
closed under marginalization and conditioning. Furthermore, it is well-know that the SE family is closed under linear
transformations. For A ∈ Rr×p and b ∈ Rr being a matrix of rank r ≤ p and a vector, respectively, it holds that

the linear transformation AY + b
d
= (AX2 + b) | (X1 > 0), where

d
= is an acronym that stands for identically

distributed, and then

AY + b ∼ SLCT -ECr,q

(

ξ =

(

ξ1
Aξ2 + b

)

,Ω =

(

Ω11 Ω12A
⊤

AΩ21 AΩ22A
⊤

)

, h(q+r)

)

. (7)

Notice from Equation (3), that alternatively we can write

fY(y) =

∫

C
fq+p(x1,y; ξ,Ω, h

(q+p)) dx1
∫

C
fq(x1; ξ1,Ω11, h(q)) dx1

. (8)

2.3 Particular cases for the SE distribution

Some particular cases, useful for our purposes, are detailed next. For further details, we refer to [13].

Unified-skew elliptical (SUE) distribution

Let Y ∼ SLCT -ECp,q(ξ,Ω, h
(q+p), C). Y is said to follow the unified skew-elliptical distribution introduced by

[14] when the truncation subset C = C(0). From (8), it follows that

fY(y) = fp(y; ξ2,Ω22, h
(p))

Fq(ξ1 +Ω12Ω
−1
22 (y − ξ2);0,Ω11 −Ω12Ω

−1
22 Ω21, h

(q)
y )

Fq(ξ1;Ω11, h(q))
, (9)

where fp(y; ξ2,Ω22, h
(p)) = |Ω22|−1/2h(p)(δX2(y)), and Fq(z;0,Θ, g

(q)) denote the cumulative distribution func-

tion (cdf) of the ECq(0,Θ, g
(q)). Note that the density in (9) extends the family of skew elliptical distributions

proposed by [15] (see also, [12]), which consider q = 1 and ξ1 = 0.

Scale-mixture of unified-skew normal (SMSUN) distribution

Let W being a nonnegative random variable with cdf G. For a generator function h(p+q)(u) =
∫∞

0 (2πκ(w))−(p+q)/2e−u/2κ(w)dG(w), several skewed and thick-tailed distributions can be obtained from different

specifications of the weight function κ(·) and G. It is said that Y follows a SMSUN distribution, if its probability
density function (pdf) takes the general form

fY(y) =

∫ ∞

0

φp(y; ξ2, κ(w)Ω22)
Φq(ξ1 +Ω12Ω

−1
22 (y − ξ2);κ(w){Ω11 −Ω12Ω

−1
22 Ω21})

Φq(ξ1;κ(w)Ω11)
dG(w), (10)

where Φr(·;Σ) represents the cdf of a r-variate normal distribution with mean vector 0 and variance-covariance
matrix Σ. Here Y | (W = w) follow a unified skew-normal (SUN) distribution, where we write Y | (W = w) ∼
SUN(ξ, κ(w)Ω).

3
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• Unified skew-normal (SUN) distribution

Setting W as a degenerated r.v. in 1 (P(W = 1) = 1) and κ(w) = w, then h(p+q)(u) = (2π)−(p+q)/2e−u/2,

u ≥ 0, for which h(p)(u) = (2π)−p/2e−u/2. Then, Y follow a SUN distribution, that is, Y ∼ SUNp,q(ξ,Ω),
with pdf as

fY(y) = φp(y; ξ2,Ω22)
Φq(ξ1 +Ω12Ω

−1
22 (y − ξ2);Ω11 −Ω12Ω

−1
22 Ω21)

Φq(ξ1;Ω11)
. (11)

• Unified skew-t (SUT) distribution

For W ∼ G(ν/2, ν/2) and weight function κ(w) = 1/w, we obtain h(p+q)(u) = Γ((p+q+ν)/2)νν/2

Γ(ν/2)π(p+q)/2 {1 +

u}−(p+q+ν)/2 and hence (10) becomes

fY(y) = tp(y; ξ2,Ω2, ν)

Tq(ξ1 +Ω12Ω
−1
22 (y − ξ2);

ν + δ2(y)

ν + p
{Ω11 −Ω12Ω

−1
22 Ω21}, ν + p)

Tq(ξ1;Ω11, ν)
, (12)

where Tr(·;Σ, ν) represents the cdf of a r-variate Student’s t distribution with location vector 0, scale matrix
Σ and degrees of freedom ν. For Y with pdf as in (12) is said to follow a SUT distribution, which is denoted
by Y ∼ SUTp,q(ξ,Ω, ν) and was introduced by [14]. It is well-know that (12) reduces to a SUN pdf (11) as
ν → ∞ and to an unified skew-Cauchy (SUC) distribution, when ν = 1.

Furthermore, using the following parametrization:

ξ =

(

τ
µ

)

and Ω =

(

Ψ+Λ⊤Λ Ω12

Ω21 Σ

)

, (13)

where Ω21 = Σ1/2Λ, with Σ1/2 being the square root matrix of Σ such that Σ = Σ1/2Σ1/2, we use the
notation Y ∼ SUTp,q(µ,Σ,Λ, τ , ν,Ψ), to stand for a p-variate EST distribution with location parameter
µ ∈ Rp, positive-definite scale matrix Σ ∈ Rp×p, shape matrix parameter λ ∈ Rp×q, extension vector
parameter τ ∈ Rq and positive-definite correlation matrix Ψ ∈ Rq×q . The pdf Y is now simplified to

SUTp,q(y;µ,Σ,Λ, τ , ν,Ψ) = tp(y;µ,Σ, ν)
Tq

(

(τ +Λ⊤Σ−1/2(y − µ)) ν(y),Ψ; ν + p
)

Tq(τ ;Ψ+Λ⊤Λ, ν)
, (14)

with ν2(x) ≡ ν2X(x)
△

= (ν + dim(x))/(ν + δ(x)) and δ(x) = (x − µX)⊤Σ−1
X (x − µX) being the Ma-

halanobis distance. The pdf in (14) is equivalent to the one found in [11], with a different parametrization.
Although the unified skew-t distribution above is appealing from a theoretical point of view, the particular
case, when q = 1, leads to simpler but flexible enough distribution of interest for practical purposes.

Extended skew-t (EST) distribution

For q = 1, we have that Ψ = 1, Λ = λ and Tq(x;Ψ, ν) = T1(x/
√
ψ, ν), hence (14) reduces to the pdf of a

EST distribution, denoted by ESTp(y;µ,Σ,λ, τ), that is,

ESTp(y;µ,Σ,λ, τ) = tp(y;µ,Σ, ν)
T1

(

(τ + λ⊤Σ−1/2(y − µ))ν(y); ν + p
)

T1(τ̃ ; ν)
. (15)

with τ̃ = τ/
√

1 + λ⊤λ .Here, λ ∈ Rp is a shape parameter which regulates the skewness of Y, and τ ∈ R

is a scalar. Location and scale parameters µ and Σ remains as before. Here, we write Y ∼ ESTp(µ,Σ,λ, τ)
Notice that, SUTp,1 ≡ ESTp. Besides, it is straightforward to see that

ESTp(y;µ,Σ,λ, τ, ν)−→ tp(y;µ,Σ, ν), as τ → ∞,

where tp(·;µ,Σ, ν) corresponds to the pdf of a multivariate Student’s t distribution with location parameter
µ, scale parameter Σ and degrees of freedom ν. On the other hand, when τ = 0, we retrieve the skew-t
distribution STp(µ,Σ,λ, ν) say, which density function is given by

STp(y;µ,Σ,λ, ν) = 2tp(y;µ,Σ, ν)T1
(

λ⊤Σ−1/2(y − µ) ν(y); ν + p
)

, (16)

4
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Figure 1: Densities for particular cases of a truncated SUT distribution. Normal cases at left column (normal, SN and
ESN from top to bottom) and Student’s-t cases at right (Student’s t, ST and EST from top to bottom).

that is, ESTp(µ,Σ,λ, 0, ν) = STp(µ,Σ,λ, ν). Further properties were studied in [11], but with a slightly
different parametrization.

Six different densities for special cases of the truncated SUT distribution are shown in Figure 1. Symmetrical
cases normal and Student’s t are shown at first row (λ = 0), skew cases: skew-normal (SN) and ST at second
row (τ = 0) and extended skew cases: extended skew-normal (ESN) and EST at the third row. Location
vector µ and scale matrix Σ remains fixed for all cases.

• Others unified skewed distributions

Others unified members are given by different combinations of the weight function κ(W ) and the mixture
cdfG. For instance, we obtain an unified skew-slash distribution when κ(w) = 1/w andW ∼ Beta(ν, 1); an
unified skew-contaminated-normal distribution when κ(W ) = 1/W and W is a discrete r.v. with probability
mass function (pmf) g(w; ν, γ) = νI{w=γ}+(1− ν)I{w=1}, with I being the identity function. Besides, [15]
mentions some other distributions as the skew-logistic, skew-stable, skew-exponential power, skew-Pearson
type II and finite mixture of skew-normal distribution. It is worth mentioning that even though [15] works
with a subclass of the SMSUN, when q = 1 and ξ1 = 0, unified versions of these are readily computed by
considering the same respective weight function κ(·) and mixture distribution G.

3 On moments of the doubly truncated selection elliptical distribution

Let Y ∼ SLCT -ECp,q(ξ,Ω, h
(q+p), C) with pdf as defined in (8) and let also A be a Borel set in Rp. We say that

a random vector W has a truncated selection elliptical (TSE) distribution on A when W
d
= Y|(Y ∈ A). In this case,

5
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the pdf of W is given by

fW(w) =
fY(w)

P (Y ∈ A)
1A(w),

where 1A is the indicator function of the set A. We use the notation W ∼ TSLCT -ECp,q(ξ,Ω, h
(q+p), C;A). If A

has the form

A = {(y1, . . . , yp) ∈ R
p : a1 ≤ y1 ≤ b1, . . . , ap ≤ yp ≤ bp} = {y ∈ R

p : a ≤ y ≤ b}, (17)

we say that the distribution of W is doubly truncated distribution and we use the notation {Y ∈ A} = {a ≤ Y ≤ b},

where a = (a1, . . . , ap)
⊤ and b = (b1, . . . , bp)

⊤, where ai and bi values may be infinite, by convention. Analogously
we define {Y ≥ a} and {Y ≤ b}. Thus, we say that the distribution of W is truncated from below and truncated

from above, respectively. For convenience, we also use the notation W ∼ TSLCT -ECp,q(ξ,Ω, h
(q+p), C; (a,b))

with the last parameter indicating the truncation interval. Analogously, we do denote TECp(ξ,Ω, h
(p); (a,b)) to refer

to a p-variate (doubly) truncated elliptical (TE) distribution on (a,b) ∈ Rp. Some characterizations of the doubly TE
have been recently discussed in [16].

3.1 Moments of a TSE distribution

For two p-dimensional vectors y = (y1, . . . , yp)
⊤ and k = (k1, . . . , kp)

⊤, let yk stand for (yk1
1 , . . . , y

kp
p ), that is,

we use a pointwise notation. Next, we present a formulation to compute arbitrary product moments of a TSLCT-EC
distribution.

Theorem 1 (moments of a TSE). Let X ∼ ECq+p(ξ,Ω, h
(q+p)) as defined in (44). Let C be a truncation subset

of the form C(c,d) = {x1 ∈ Rq | c ≤ x1 ≤ d}. For Y ∼ SLCT -ECp,q(ξ,Ω, h
(q+p), C(c,d)), then E[Yk] =

E[Y k1
1 Y k2

2 . . . Y
kp
p ] can be computed as

E[Yk | a ≤ Y ≤ b] = E[Xκ | α ≤ X ≤ β], (18)

with κ = (0⊤
q ,k

⊤)⊤, α = (c⊤, a⊤)⊤ and β = (d⊤,b⊤)⊤, where k = (k1, k2, . . . , kp)
⊤, with ki ∈ N, for

i = 1, . . . , p.

Proof. Since Y
d
= X2 | (c ≤ X1 ≤ d), the proof is direct by noting that

Y | (a ≤ Y ≤ b)
d
= X2 | (c ≤ X1 ≤ d ∩ a ≤ X2 ≤ b)

d
= X2 | (α ≤ X ≤ β).

Corollary 1 (first two moments of a TSE). Under the same conditions of Theorem 1, let m = E[X | α ≤ X ≤ β]
and M = E[XX⊤ | α ≤ X ≤ β], both partitioned as

m =

(

m1

m2

)

and M =

(

M11 M12

M21 M22

)

,

respectively. Then, the first two moments of Y | (a ≤ Y ≤ b) are given by

E[Y | a ≤ Y ≤ b] = m2, (19)

E[YY⊤ | a ≤ Y ≤ b] = M22, (20)

where m2 ∈ Rp and M22 ∈ Rp×p.

For the particular truncation subset C(c) as in (2), Theorem 1 and Corollary 1 hold considering α = (c⊤, a⊤)⊤ and

β = (∞⊤,b⊤)⊤. Notice that, Theorem 1 and Corollary 1 state that we are able to compute any arbitrary moment of
Y | (a ≤ Y ≤ b), that is, a TSE distribution just using an unique corresponding moment of a doubly TE distribution
X | (α ≤ X ≤ β).

This is highly convenient since doubly truncated moments for some members of the elliptical family of distributions
are already available in the literature and statistical softwares. In particular for the truncated multivariate normal and
Student’s-t we have the R packages TTmoment, tmvtnorm and MomTrunc.

6
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3.2 Dealing with limiting and extreme cases

Consider X ∼ ECq+p(ξ,Ω, h
(q+p)) and Y ∼ SLCT -ECp,q(ξ,Ω, h

(q+p), C) as in Theorem 1 with truncation subset
C = C(0). As ξ1 → ∞, we have that P(X1 ≥ 0) → 1. Besides, as ξ1 → −∞, we have that P(X1 ≥ 0) → 0 and
consequently P(a ≤ Y ≤ b) = P(α ≤ X ≤ β)/P(X1 ≥ 0) → ∞. Thus, for ξ1 containing high negative values

small enough, sometimes we are not able to compute E[Yk] due to computation precision, mainly when we work
with distributions with lighter tails densities. For instance, for a normal univariate case, Φ1(ξ1) = 0 for ξ1 ≤ −38 in
R software. The next proposition helps us to circumvent this problem.

Proposition 1 (limiting case of a SE). As ξ1 → −∞, i.e., ξ1i → −∞, i = 1, . . . , q, then

SLCT -ECp,q(ξ,Ω, h
(q+p), C(0))−→ECp(ξ2 −Ω21Ω

−1
11 ξ1,Ω22 −Ω21Ω

−1
11 Ω12, h

(p)
0 ). (21)

Proof. Let X = (X⊤
1 ,X

⊤
2 )

⊤ ∼ ECq+p(ξ,Ω, h
(q+p)) and Y ∼ TSLCT -ECp,q(ξ,Ω, h

(q+p), C(0); (a,b)). As
ξ1 → −∞, we have that P(X1 ≥ 0) → 0, E[X1|X1 ≥ 0] → 0 and var[X1|X1 ≥ 0] → 0, hence X1|X1 ≥ 0

becomes degenerated on 0. From Definition 1, Y
d−→ (X2|X1 = 0), and by the conditional distribution in Equation

(6), it is straightforward to show that X2|X1 ∼ ECp(ξ2+Ω21Ω
−1
11 (X1−ξ1),Ω22−Ω21Ω

−1
11 Ω12, h

(p)
X1

). Evaluating
X1 = 0 we achieve (21) concluding the proof.

3.3 Approximating the mean and variance-covariance of a TE distribution for extreme cases

While using the relation (19) and (20), we may face numerical problems trying to compute m = E[X | α ≤ X ≤ β]
and M = E[XX⊤ | α ≤ X ≤ β] for extreme settings of ξ and Ω. Usually, it occurs when P(α ≤ X ≤ β) ≈ 0
because the probability density is far from the integration region (α,β). It is worth mentioning that, for these cases,
it is not even possible to estimate the moments generating Monte Carlo (MC) samples via rejection sample due to the
high rejection ratio when subsetting to a small integration region. Other methods as Gibbs sampling are preferable
under this situation.

Hence, we present correction method in order to approximate the mean and the variance-covariance of a multivariate
TE distribution even when the numerical precision of the software is a limitation.

3.3.1 Dealing with out-of-bounds limits

Consider X ∼ ECr

(

ξ,Ω, h(r)
)

to be partitioned as X = (XT
1 ,X

⊤
2 )

⊤ such that dim(X1) = r1, dim(X2) = r2,

where r1+r2 = r. Also, consider ξ, Ω, α = (α⊤
1 ,α

⊤
2 )

⊤ and β = (β⊤
1 ,β

⊤
2 )

⊤ partitioned as before. Suppose that we
are not able to compute E[Xκ|α ≤ X ≤ β], because there exists a partition X2 of X of dimension r2 that is out-of-
bounds, that is P (α2 ≤ X2 ≤ β2) ≈ 0. Notice that this happens because P(α ≤ X ≤ β) ≤ P (α2 ≤ X2 ≤ β2) ≈ 0.
Besides, we suppose that P (α1 ≤ X1 ≤ β1) > 0. Since the limits of X2 are out-of-bounds (and α2 < β2), we
have two possible cases: β2 → −∞ or α2 → ∞. For convenience, let µ2 = E[X2 | α2 ≤ X2 ≤ β2] and
Σ22 = cov[X2 | α2 ≤ X2 ≤ β2]. For the first case, as β2 → −∞, we have that µ2 → β2 and Σ22 → 0r2×r2 .
Analogously, we have that µ2 → α2 and Σ22 → 0r2×r2 as α2 → ∞. Hence, X2 | (α2 ≤ X2 ≤ β2) is degenerated

on µ2 and then X1.2
d
= X1 | (X2 = µ2) ∼ ECr1(ξ1 +Ω12Ω

−1
22 (µ2 − ξ2),Ω11 −Ω12Ω

−1
22 Ω21, h

(r1)
µ2

). Given that
cov[E[X1|X2]] = 0 and cov[E[X1|X2],X2] = 0, it follows that

E[X | α ≤ X ≤ β] =

[

µ1.2
µ2

]

and cov[X | α ≤ X ≤ β] =

[

Σ11.2 0r1×r2
0r2×r1 0r2×r2

]

, (22)

with µ1.2 = E[X1.2 | α1 ≤ X1.2 ≤ β1] and Σ11.2 = cov[X1.2 | α1 ≤ X1.2 ≤ β1] being the mean and
variance-covariance matrix of a r1-variate TE distribution.

In the event that there are double infinite limits, we can part the vector as well, in order to avoid unnecessary calculation
of these integrals.

3.3.2 Dealing with double infinite limits

Now, consider X = (X⊤
1 ,X

⊤
2 )

⊤ to be partitioned such that the upper and lower truncation limits associated with
X1 are both infinite, but at least one of the truncation limits associated with X2 is finite. Then r1 be the number of
pairs in (α,β) that are both infinite, that is, dim(X1) = r1 and dim(X2) = r2, by complement. Since α1 = −∞

and β1 = ∞ , it follows that X2 | (α ≤ X ≤ β) ∼ TECr2

(

ξ2,Ω22, h
(r2); [α2,β2]

)

and X1|X2 ∼ ECr1

(

ξ1 +

7
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Ω12Ω
−1
22 (X2 − ξ2),Ω11 − Ω12Ω

−1
22 Ω21, h

(r1)
X2

)

. Let µ2 = E[X2 | α2 ≤ X2 ≤ β2] and Σ22 = cov[X2 | α2 ≤
X2 ≤ β2]. Hence, it follows that E[X | α ≤ X ≤ β] = E[E[X1 | X2] | α2 ≤ X2 ≤ β2], that is

E[X | α ≤ X ≤ β] = E

[(

ξ1 +Ω12Ω
−1
22 (X2 − ξ2)
X2

)∣

∣

∣

∣

α2 ≤ X2 ≤ β2

]

=

[

ξ1 +Ω12Ω
−1
22 (µ2 − ξ2)
µ2

]

. (23)

On the other hand, we have that cov[X2,E[X1|X2]] = cov[X2,X2Ω
−1
22 Ω21] = Σ22Ω

−1
22 Ω21, cov[E[X1|X2]] =

Ω12Ω
−1
22 Σ22Ω

−1
22 Ω21 andE[cov[X1|X2]] = ω1.2(Ω11 −Ω12Ω

−1
22 Ω21), with ω1.2 being a constant depending of the

conditional generating function h
(r1)
X2

. Finally,

cov[X | α ≤ X ≤ β] =

[

ω1.2Ω11 −Ω12Ω
−1
22

(

ω1.2Ip2 −Σ22Ω
−1
22

)

Ω21 Ω12Ω
−1
22 Σ22

Σ22Ω
−1
22 Ω21 Σ22

]

, (24)

where µ2 and Σ22 are the mean vector and variance-covariance matrix of a TE distribution, so we can use (19) and
(20) as well.

Remark 1. Note that X1 | (α ≤ X ≤ β) does not follow a non-truncated elliptical distribution, that is, X1 | (α ≤
X ≤ β) ≁ ECr1

(

ξ1,Ω11, h
(r1)

)

even though −∞ ≤ X1 ≤ ∞. This occurs due to X1 | (α ≤ X ≤ β) = X1 |
(α2 ≤ X2 ≤ β2) . In general, the marginal distributions of a TE distribution are not TE, however this holds for X2

due to the particular case α1 = −∞ and β1 = ∞.

Particular cases

Notice that the constant ω1.2 will vary depending of the elliptical distribution we are using. For instance, if X ∼
tr1+r2(ξ,Ω, ν) then it follows that X2 ∼ tr2

(

ξ2,Ω22, ν
)

and X1|X2 ∼ tr1
(

ξ1 + Ω12Ω
−1
22 (X2 − ξ2), (Ω11 −

Ω12Ω
−1
22 Ω21)/ν

2(X2), ν+r2
)

. In this case, it takes the formω1.2 = E[(ν+r2)/(ν+r2−2)ν2(X2) | α2 ≤ X2 ≤ β2],
which is given by

ω1.2 = E

[

ν + δ(X2)

ν + r2 − 2
| α2 ≤ X2 ≤ β2

]

,

=

(

ν

ν − 2

)

Lr2(α2,β2; ξ2, νΩ22/(ν − 2), ν − 2)

Lr2(α2,β2; ξ2,Ω22, ν)
, (25)

where Lr(α,β; ξ,Ω, ν) denotes the integral

Lr(α,β; ξ,Ω, ν) =

∫ β

α

tr(y; ξ,Ω, ν)dy, (26)

that is, Lr(α,β; ξ,Ω, ν) = P(α ≤ Y ≤ β) for Y ∼ tr(ξ,Ω, ν). Probabilities in (25) are involved in the calculation
of µ2 and Σ22 so they are recycled. For the normal case, it is straightforward to see that ω1.2 = 1, by taking ν → ∞.

As can be seen, we can use equations (23) and (24) to deal with double infinite limits, where the truncated moments are
computed only over a r2-variate partition, avoiding some unnecessary integrals and saving significant computational
effort. On the other hand, expression (22) let us to approximate the mean and the variance-covariance matrix for cases
where the computational precision is a limitation.

3.4 Existence of the moments of a TE and TSE distribution

It is well know that for some members of EC family of distributions, their moments do not exist, however, this could
be different depending of the truncation limits.

Let X ∼ ECr(ξ,Ω, h
(r)) be partitioned as in Subsection 3.3.2, with r1 being the number of pairs in (α,β) that are

both finite and r2 = r − r1. Similarly, κ = (κ⊤
1 ,κ

⊤
2 )

⊤ is partitioned as well. If r1 = r, then the truncation limits α
and β contains only finite elements, and hence E[Xκ | α ≤ X ≤ β] exists for all κ ∈ Nr because the distribution
is bounded. When r2 ≥ 1, there exists at least one pair in (α,β) containing infinite values, and the expectation may
not exist. Given that E[Xκ | α ≤ X ≤ β] = E[Xκ1

1 E[X
κ2
2 | X1,α2 ≤ X2 ≤ β2] | α1 ≤ X1 ≤ β1], for any

measurable function g, E[g(X1) | α1 ≤ X1 ≤ β1] always exists, and (α2,β2) is not bounded, it is straightforward
to see that E[Xκ | α ≤ X ≤ β] exist if and only if (iff ) the inner expectationE[Xκ2

2 | X1] exists.

8
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As seen, the existence only depends of the order of the moment κ2 and the distribution of X2|X1, this last depending

on the conditional generating function h
(r2)
X1

.

If Y ∼ SLCT -ECp,q(ξ,Ω, h
(q+p), C), with truncation subset of the formC(c,d) and r = p+ q say. It follows from

Theorem 1, that E[Yk | a ≤ Y ≤ b] = E[Xκ | α ≤ X ≤ β]. Hence, the same condition holds taking in account

that κ = (0⊤
q ,k

⊤)⊤, α = (c⊤, a⊤)⊤ and β = (d⊤,b⊤)⊤. Next, we present a result for a particular case.

4 The doubly truncated SUT distribution

For the rest of the paper we shall focus our attention on the computation of the moments of the doubly truncated
unified skew-t (TSUT) distribution, denoted by W ∼ TSUTp,q(µ,Σ,Λ, τ , ν,Σ; (a,b)). Besides, we shall
study some of its properties and for its particular case (when q = 1), the doubly truncated extended skew-t
distribution, say W ∼ TESTp(µ,Σ,λ, τ, ν; (a,b)). For the limiting symmetrical case, we shall use the notation
W ∼ T tp(µ,Σ, ν; (a,b)) to refer to a p-variate truncated Student-t (TT) distribution on (a,b) ∈ Rp. Finally,
W ∼ TNp(µ,Σ; (a,b)) will stand for a p-variate truncated normal distribution on the interval (a,b) . Hereinafter
we shall omit the expression doubly due to we only work with intervalar truncation.

Corollary 2 (moments of a TSUT). If Y ∼ SUTp,q(µ,Σ,Λ, τ , ν,Ψ), it follows from Theorem 1 that

E[Yk | a ≤ Y ≤ b] = E[Xκ | α ≤ X ≤ β],

where X ∼ tq+p(ξ,Ω, ν) with ξ and Ω as defined in Equation (13) and κ = (0⊤
q ,k

⊤)⊤, α = (0⊤
q , a

⊤)⊤ and

β = (∞⊤
q ,b

⊤)⊤.

4.1 Mean and covariance matrix of the TSUT distribution

Let Y ∼ TSUTp,q(µ,Σ,Λ, τ , ν,Ψ; (a,b)) and X ∼ T tq+p(ξ,Ω, ν; (α,β)). From Corollary 2, we have that the
first two moments of Y can be computed as

E[Y] = m2, (27)

E[YY⊤] = M22, (28)

where m = E[X] and M = E[XX⊤] are partitioned as in Corollary 1. Notice that cov[Y] = E[YY⊤]−E[Y]E[Y⊤].

Equations (27) and (28) are convenient for computingE[Y] and cov[Y] since all boils down to compute the mean and
the variance-covariance matrix for a q + p-variate TT distribution which can be calculated using the our MomTrunc R

package available on CRAN.

Existence of the moments of a TSUT

Let also p1 be the number of pairs in (a,b) that are both finite. Without loss of generality, we assume Y =
(Y⊤

1 ,Y
⊤
2 )

⊤, where the upper and lower truncation limits associated with Y1 are both finite, but at least one of the
truncation limits associated with Y2 is not finite, say dim(Y1) = p1 and dim(Y2) = p2, with p1 + p2 = p. Consider

the partitions of a = (a⊤1 , a
⊤
2 )

⊤ ,b = (b⊤
1 ,b

⊤
2 )

⊤ and k = (k⊤
1 ,k

⊤
2 )

⊤ as well. The next proposition gives a sufficient
condition for the existence of the moment of a TSUT distribution.

Proposition 2 (existence of the moments of a TSUT). Under the conditions above, E[Yk | a ≤ Y ≤ b] exists iff
sum(k2) < ν + p1.

Proof. From subsection 3.4, it is suffices to demonstrate that E[Xκ2
2 |X1] exists. Since α = (0⊤

q , a
⊤
1 , a

⊤
2 )

⊤ and

β = (∞⊤
q ,b

⊤
1 ,b

⊤
2 )

⊤, it follows that r1 = p1, r2 = q+ p2, κ1 = k1 and κ2 = (0⊤
q ,k

⊤
2 )

⊤. It is easy to show that the

distribution of X2|X1 is a (q + p2)-variate Student-t distribution with ν + p1 degrees of freedom. Hence, the above
expectation exists iff sum(k2) < ν + p1.

From Proposition 2, see that E[Y] and E[YY⊤] exist iff ν + p1 > 1 and ν + p1 > 2 respectively.

Remark 2 (Sufficient condition of existence of the first two moments of a TSUT). Since ν > 0, it is equivalent to say
that, the first moment exists if at least one dimension containing a finite limit exists. Besides, the second moment exists
if at least two dimensions containing a finite limit exist.

9
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Figure 2: Simulation study. Contour plot for the TSUT density (upper left corner) and trace plots of the evolution of
the MC estimates for the mean and variance-covariance elements of Y. The solid line represent the true estimated
value by our proposal.

Remark 3. Sufficient conditions aforementioned hold for the truncated Student-t (q = 0) and for the truncated EST
distribution (q = 1) due to the condition does not depend on q.

Next, in light of proposition 1, we propose a corollary for the limiting case of a SUT pdf when τ → −∞.

Corollary 3. Under the condition of Proposition 1, as τ → −∞, i.e., τi → −∞, i = 1, . . . , q, then

SUTp,q(µ,Σ,Λ, τ , ν,Ψ)−→tp(γ, ωτΓ, ν + q), (29)

with γ = µ−Ω21Ω
−1
11 τ , Γ = Σ−Ω21Ω

−1
11 Ω12 and ωτ = ν2

X1
(0) = (ν+τ⊤Ω−1

11 τ )/(ν+q) with Ω11 = Ψ+Λ⊤Λ.

In particular, for q = 1,

ESTp(µ,Σ,λ, τ, ν)−→tp(γ, (ν + τ̃2)/(ν + 1)Γ, ν + 1), (30)

with γ = µ− τ̃∆, Γ = Σ−∆∆⊤, and ∆ = Σ1/2λ/
√

1 + λ⊤λ.

It is worth to stress that parameters ∆ and Γ are well know in the context of SN and ST modeling since they are
used in the the stochastic representation of this variates. Furthermore, the resulting symmetric distribution is highly
involved in the framework of censored modeling as shown next in Section 6.

5 Numerical example

In order to illustrate our method, we performed a simple Monte Carlo (MC) simulation study to show how MC
estimators for the mean vector and variance-covariance matrix elements converge to the real values computed by our
method.

We consider a bivariate TSUT distribution Y ∼ TSUT2,2(µ,Σ,Λ, τ , ν,Ψ; (a,b)) with lower and upper truncation

limits a = (−0.8,−0.6)⊤ and b = (0.5, 0.7)⊤ respectively, null location vector µ = 0, degrees of freedom ν = 4,

τ =

(

−1
2

)

, Σ =

(

1 0.2
0.2 4

)

, Λ =

(

1 3
−3 −2

)

and Ψ =

(

1 −0.5
−0.5 1

)

.

10
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Figure 2 shows the contour plot for the TSUT density (upper left corner) as well as the evolution trace of the MC
estimates for the mean (first row) and variance-covariance (last row) elements µ1, µ2, σ11, σ12 and σ22. Estimated
true values for the mean vector and the variance-covariance matrix were computed using equations (27) and (28),
being

E[Y] =

(

−0.039
0.303

)

and cov[Y] =

(

0.112 −0.007
−0.007 0.096

)

,

which are depicted as a blue solid line in Figure 2. Note that even with 1000 MC simulations there exists a significant
variation in the chains.

6 Additional results related to interval censored mechanism

Under interval censoring mechanism the implementation of inferences depends on the computation of certain marginal
and conditional expectations ([17]). For instance, for X = (X⊤

1 ,X
⊤
2 )

⊤ ∼ φ1+p(ξ,Ω, ν), as in (13), with Ψ = 1,

Λ = λ and τ = 0, it holds that fX1(0 | X2 = Y) = φ
(

λ⊤Σ−1/2(Y − µ)
)

. Then,

E

[

g(Y)
fX1(0 | X2 = Y)

P(X1 > 0 | X2 = Y)

]

= E

[

g(Y)
φ
(

λ⊤Σ−1/2(Y − µ)
)

Φ
(

λ⊤Σ−1/2(Y − µ)
)

]

, (31)

where g(·) is a measurable function. The expectation in the right side of the expression (31) is highly used to perform
inferences under SN censored models from a likelihood-based perspective, such as the E-Step of the EM-algorithm
([18]).

Next, we derive general expressions that are involved in interval censored modeling, specifically, in the E-step of the
EM algorithm. These expressions arise, when we consider the responses Yi, i = 1, . . . , n, to be i.i.d. realizations
from a selection elliptical distribution or any of its particular cases. For instance, a SUT, EST or ST distribution or
any normal limiting case as the SUN, ESN or SN distribution as the example in (31).

Lemma 1. Let X = (X⊤
1 ,X

⊤
2 )

⊤ ∼ ECq+p(ξ,Ω, h
(q+p)) and Y ∼ TSLCT -ECp,q(ξ,Ω, h

(q+p), C; (a,b)) with
truncation subset C = C(0). For any measurable function g(y) : Rp → R, we have that

E

[

g(Y)
fX1(0 | X2 = Y)

P(X1 > 0 | X2 = Y)

]

=
P(a ≤ W0 ≤ b)

P(a ≤ Y0 ≤ b)

E[g(W)]

P(X1 ≥ 0)
fX1(0), (32)

where X1 ∼ ECp(ξ1,Ω11, h
(q)), Y0 ∼ SLCT -ECp,q(ξ,Ω, h

(q+p), C(0)), W0 ∼ ECp(ξ2 − Ω21Ω
−1
11 ξ1,Ω22 −

Ω21Ω
−1
11 Ω21, h

(p)
0 ) and W

d
= W0 | (a ≤ W0 ≤ b).

Proof. Using basic probability theory, we have

= E

[

g(Y)
fX1(0 | X2 = Y)

P(X1 > 0 | X2 = Y)

]

=
1

P(a ≤ Y0 ≤ b)

∫ b

a

g(y)
fX1(0 | X2 = y)

P(X1 > 0 | X2 = y)
fY(y)dy,

=
1

P(a ≤ Y0 ≤ b)

∫ b

a

g(y)
fX1(0 | X2 = y)

P(X1 > 0 | X2 = y)

P(X1 > 0 | X2 = y)fX2(y)

P(X1 > 0)
dy,

=
1

P(a ≤ Y0 ≤ b)

∫ b

a

g(y)
fX1(0 | X2 = y)fX2 (y)

P(X1 > 0)
dy,

=
1

P(a ≤ Y0 ≤ b)

fX1(0)

P(X1 > 0)

∫ b

a

g(y)fX2(y | X1 = 0) dy,

=
P(a ≤ W0 ≤ b)

P(a ≤ Y0 ≤ b)

E[g(W)]

P(X1 > 0)
fX1(0),

where W0
d
= X2|(X1 = 0) and W

d
= W0 | (a ≤ W0 ≤ b).

11
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Lemma 2. Consider X, Y and g as in Lemma 1. Now, consider Y to be partitioned as Y = (Y⊤
1 ,Y

⊤
2 )

⊤ of

dimensions p1 and p2 (p1 + p2 = p). For a given random variable U, let U∗ stands for U∗ d
= U | Y1. It follows that

E

[

g(Y2)
fX1(0 | X2 = Y)

P(X1 > 0 | X2 = Y)

∣

∣

∣

∣

Y1

]

=
P(a2 ≤ W∗

0 ≤ b2)

P(a2 ≤ Y∗
0 ≤ b2)

E[g(W2)]

P(X∗
1 > 0)

fX∗

1
(0) (33)

with X1, Y0, and W0 as defined in Lemma 1, and W2
d
= W∗

0 | (a2 ≤ W∗
0 ≤ b2).

Proof. Consider X2 partitioned as X2 = (X⊤
21,X

⊤
22)

⊤ such that dim(X21) = dim(Y1) and dim(X22) = dim(Y2).
Since fY2(y2|Y1 = y1) = fY(y)/fY1 (y1), it follows (in a similar manner that the proof of Lemma 1) that

= E

[

g(Y2)
fX1(0 | X2 = Y)

P(X1 > 0 | X2 = Y)

∣

∣

∣

∣

Y1

]

=
1

P(a2 ≤ Y∗
0 ≤ b2)

∫ b2

a2

g(y2)
fX1(0 | X2 = y)

P(X1 > 0 | X2 = y)

P(X1 > 0 | X2 = y)

P(X1 > 0 | X21 = y1)

fX2(y)

fX21(y1)
dy2,

=
1

P(a2 ≤ Y∗
0 ≤ b2)

∫ b2

a2

g(y2)
fX1(0 | X2 = y)

P(X1 > 0 | X21 = y1)

fX2(y)

fX21(y1)
dy2,

=
1

P(a2 ≤ Y∗
0 ≤ b2)

fX1(0)

P(X1 > 0 | X21 = y1)

∫ b2

a2

g(y2)
fX2(y | X1 = 0)

fX21(y1)
dy2,

=
1

P(a2 ≤ Y∗
0 ≤ b2)

fX1(0|X21 = y1)

P(X1 > 0 | X21 = y1)

∫ b2

a2

g(y2)fX22(y2 | X21 = y1,X1 = 0) dy2,

=
P(a2 ≤ W∗

0 ≤ b2)

P(a2 ≤ Y∗
0 ≤ b2)

E[g(W2)]

P(X∗
1 > 0)

fX∗

1
(0),

where W∗
0

d
= X22|(X21 = y1,X1 = 0) and W2

d
= W∗

0 | (a2 ≤ W∗
0 ≤ b2).

In the next corollaries, we particularize the aforementioned lemmas to the truncated SUT, EST, SUN and ESN distri-
butions.

Corollary 4. Under the condition of Lemma 1, let Y ∼ TSUTp,q(µ,Σ,Λ, τ , ν,Ψ, (a,b)). For any measurable
function g(y) : Rp → R, we have that

E

[

g(Y)
tq
(

(τ +Λ⊤Σ−1/2(Y − µ)) ν(Y),Ψ; ν + p
)

Tq
(

(τ +Λ⊤Σ−1/2(Y − µ)) ν(Y),Ψ; ν + p
)

]

=
P(a ≤ W0 ≤ b)

P(a ≤ Y0 ≤ b)
E[g(W)]η, (34)

where η = tq(τ ;Ψ+Λ⊤Λ, ν)/Tq(τ ;Ψ+Λ⊤Λ, ν), Y0 ∼ SUTp,q(µ,Σ,Λ, τ , ν,Ψ), W0 ∼ tp(γ, ωτΓ, ν + q)

and W
d
= W0 | (a ≤ W0 ≤ b). When τ = 0, we have that η = 2 tq(τ ;Ψ+Λ⊤Λ, ν) and

W0 ∼ tp(µ, νΓ/(ν + q), ν + q) .

In particular for q = 1, Y ∼ TESTp(µ,Σ,λ, τ, ν; (a,b)), and

E

[

g(Y)
t1
(

(τ + λ⊤Σ−1/2(Y − µ)) ν(Y); ν + p
)

T1
(

(τ + λ⊤Σ−1/2(Y − µ)) ν(Y); ν + p
)

]

=
P(a ≤ W0 ≤ b)

P(a ≤ Y0 ≤ b)
η E[g(W)], (35)

with η = t1(τ ; 1 + λ
⊤
λ, ν)/T1(τ̃ ; ν), Y0 ∼ ESTp(µ,Σ,λ, τ , ν), W0 ∼ tp(γ, (ν + τ̃2)Γ/(ν + 1), ν + 1), and

W
d
= W0 | (a ≤ W0 ≤ b). Similarly, when τ = 0, we have that η = 2 t1(0; 1 + λ⊤λ, ν) and W0 ∼ tp(µ, νΓ/(ν +

1), ν + 1).

Corollary 5. Under the condition of Lemma 1, let ν → ∞, Y ∼ TSUNp,q(µ,Σ,Λ, τ ,Ψ, (a,b)), it follows that

E

[

g(Y)
φq

(

τ +Λ⊤Σ−1/2(Y − µ),Ψ
)

Φq

(

τ +Λ⊤Σ−1/2(Y − µ),Ψ
)

]

=
P(a ≤ W0 ≤ b)

P(a ≤ Y0 ≤ b)
E[g(W)]η, (36)

12
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where η = φq(τ ;Ψ+Λ⊤Λ)/Φq(τ ;Ψ+Λ⊤Λ), Y0 ∼ SUNp,q(µ,Σ,Λ, τ ,Ψ), W0 ∼ Np(γ,Γ), and

W
d
= W0 | (a ≤ W0 ≤ b) .When τ = 0, we have that η = 2φq(0;Ψ+Λ⊤Λ) and W0 ∼ Np(µ,Γ).

In particular for q = 1, Y ∼ TESNp(µ,Σ,λ; (a,b)), and

E

[

g(Y)
φ
(

τ + λ⊤Σ−1/2(Y − µ)
)

Φ
(

τ + λ⊤Σ−1/2(Y − µ)
)

]

=
P(a ≤ W0 ≤ b)

P(a ≤ Y0 ≤ b)
η E[g(W)], (37)

with η = φ(τ ; 1 + λ⊤λ)/Φ(τ̃), Y0 ∼ ESNp(µ,Σ,λ, τ ), W0 ∼ Np(γ,Γ), and W
d
= W0 | (a ≤ W0 ≤ b).

Similarly, when τ = 0, we have that η =
√

2/π(1 + λ⊤λ) and W0 ∼ Np(µ,Γ).

7 Application of SE truncated moments on tail conditional expectation

Let Y be a random variable representing in this context, the total loss in a portfolio investment, a credit score, etc. Let
yα be the (1 − α)th quantile of Y , that is, P(Y > yα) = α. Hence, the tail conditional expectation (TCE) (see, e.g.,
[19]) is denoted by

TCEY (yα) = E[Y | Y > yα]. (38)

This can be interpreted as the expected value of the α% worse losses. The quantile yα is usually chosen to be high in
order to be pessimistic, for instance, α = 0.05. Notice that, if we consider a variable Y which we are interested on
maximizing, for example, the pay-off of a portfolio, we simply compute TCE−Y (−yα) = −E[Y | Y ≤ −yα], being
a measure of worst expected income.

Main applications of TCE are in actuarial science and financial economics: market risk, credit risk of a portfolio,
insurance, capital requirements for financial institutions, among others. TCE (also known as tail value at risk, TVaR)
and it represents an alternative to the traditional value at risk (VaR) that is more sensitive to the shape of the tail of the
loss distribution. Furthermore, if Y is a continuous r.v., TCE coincides with the well-known risk measure expected
shortfall ([20]). In contrast with VaR, TCE is said to be a coherent measure, holding desirable mathematical properties
in the context of risk measurement and and is a convex function of the selection weights ([21, 22]). A good reference
to several risk measures and their properties can be found in [23].

Multivariate framework Let consider a set of p assets, business lines, credit scores, Y = (Y1, · · · , Yp)⊤. In
the multivariate case, the sum of risks arises as a natural and simple measure of total risk. Hence, the sum S =
Y1 + Y2 + · · ·+ Yp follows a univariate distribution and from (38), we have that the TCE for S is given by

TCES(sα) = E[S | S > sα]. (39)

Even though we may know the marginal distribution of S, it is preferable to compute the total risk TCE of S as a
decomposed sum, that is

E[S | S > sα] =

p
∑

i=1

E[Yi | S > sα], (40)

where each term E[Yi | S > sα] represents the average amount of risk due to Yi. This decomposed sum offers a way
to study the individual impact of the elements of the set, being an improvement to (39).

In order to model combinations of correlated risks, [24] extended the TCE to the multivariate framework. The multi-
variate TCE (MTCE) is given by

MTCEY(yα) = E[Y | Y > yα] = E[Y | Y1 > y1α1 , . . . , Yp > ypαp ], (41)

with α = (α1, . . . , αp) be a vector of quantiles of interest. Notice that the quantile-level for the MTCE is fixed per
each risk i = 1, . . . , p, in contrast with the TCE of the sum, which is fixed over all the sum of risk S.

7.1 MTCE for selection elliptical distributions

Let consider Y ∼ SLCT -ECp,q(ξ,Ω, h
(q+p), C). With loss of generality, we consider the selection subset C =

C(0). It follows from Theorem 1 that

MTCEY(yα) = E[X2 | X > xα], (42)
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with xα = (0⊤
q ,y

⊤
α)

⊤ and where X = (X⊤
1 ,X

⊤
2 )

⊤ ∼ ECq+p(ξ,Ω, h
(q+p)). It is noteworthy that the computation

of the MTCE for Y following a SE distribution relies on the calculation of truncated moments for its symmetrical
elliptical multivariate case.

On the other hand, by noticing that S = 1⊤Y, it follows from (7) that S is an univariate SE distribution given by

S ∼ SLCT -EC1,q(ξs,Ωs, h
(q+1), C), with

ξS =

(

ξ1
1⊤ξ2

)

and ΩS =

(

Ω11 Ω121

1⊤Ω21 1⊤Ω221

)

.

Hence, its TCE in (39) can be easily computed as E[S | S > sα] = E[W2 | W1 > 0,W2 > sα],

W = (W⊤
1 ,W2)

⊤ ∼ ECq+1(ξs,Ωs, h
(1+q)), due to S

d
= W2 | (W1 > 0). Next, we establish a general

proposition for computingE[S | S > αs] in matrix form as a decomposed sum.

Proposition 3. Let Y ∼ SLCT -ECp,q(ξ,Ω, h
(q+p), C), with ξ and Ω as in (44), and W = (W⊤

1 ,W2)
⊤ ∼

ECq+1(ξS ,ΩS , h
(1+q)) as before. It follows that

E[S | S > sα] = 1⊤s, (43)

with s = ξ2 +Ω2S Ω−1
S (ES − ξS), where Ω2S = (Ω21,Ω221) and ES = E[W | W1 > 0,W2 > sα].

Proof. Let A = (1, Ip)
⊤ be a real matrix of dimensions (p+ 1)× p. For V = AY, it follows that

V =

(

V1
V2

)

∼ SLCT -ECp+1,q

(

ξV =

(

ξS
ξ2

)

,ΩV =

(

ΩS Ω⊤
2S

Ω2S Ω22

)

, h(q+1+p), C

)

, (44)

where V = (S,Y⊤)⊤. It comes from the definition of selection distribution that V
d
= (X2,X

⊤
3 )

⊤|(X1 > 0), where

X = (X⊤
1 , X2,X

⊤
3 )

⊤ is a partitioned random vector with elements of dimensions q, 1 and p respectively, where

X ∼ ECp+q+1(ξV ,ΩV ;h
(q+1+p)). Hence, it is straightforward to see that

s = E[Y | S > sα] = E[X3 | X1 > 0, X2 > sα,−∞ ≤ X3 ≤ ∞].

Since there exists a non-truncated partition, the result in (43) then immediately follows from equation (23), with
W = (X1, X2)

⊤.

Remark 4. It is noteworthy that, the ith element of vector s, say si = e⊤i s, is equal to E[Yi | S > αs], representing
the contribution to the total risk due to the ith risk.

Remark 5. Since S
d
= W2 | (W1 > 0), it follows that the last element of the vector Es is equivalent to E[S | S >

sα] = E[W2 | W1 > 0,W2 > sα].

7.2 Application of MTCE using a ST distribution

Suppose that a set of risks Y are distributed as Y ∼ STp(µ,Σ,λ, ν). Let y represents a realization of Y. Based on

y, the set of parameters θ = (µ,Σ,λ, ν)⊤ can be estimated through maximum likelihood estimation. It follows that

MTCEY(yα) = E[X2 | X1 > 0,X2 > yα], (45)

where X = (X1,X
⊤
2 )

⊤ ∼ t1+p(ξ,Ω, ν) with

ξ =

(

0
µ

)

and Ω =

(

1 ∆⊤

∆ Σ

)

. (46)

Additionally, using simple algebraic manipulation, it follows from (7) that

S ∼ ST1



µS =

p
∑

i=1

µi, σ
2
S =

p
∑

i=1

p
∑

j=1

σij , λS =
∆S

√

σ2
S −∆2

S

, ν



 , (47)
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with ∆S =
∑p

i=1 ∆i. Besides, the TCE of the sum is given by TCES(sα) = E[W2 | W1 > 0,W2 > sα],

W = (W⊤
1 ,W2)

⊤ ∼ t2(ξS ,ΩS , ν), where

ξS =

(

0
µS

)

, and ΩS =

(

1 ∆S

∆S σ2
S

)

.

Finally, we have from Proposition 3 that

E[Yi | S > αs], = e⊤i
[

µ+ (∆,Σ1)Ω−1
S (ES − ξS)

]

,

= µi + ES1(∆iσ
2
S + σiS∆S)− (TCES(sα)− µS)(∆i∆S + σiS), (48)

with ES1 = E[W1 |W1 > 0,W2 > sα] and σiS =
∑p

j=1 σij . Besides,

E[S | S > sα] = µS + ES1

p
∑

i=1

{

∆iσ
2
S + σiS∆S

}

− (TCES(sα)− µS)

p
∑

i=1

{∆i∆S + σiS} . (49)

8 Conclusions

In this paper, we proposed expressions to compute product moment of truncated multivariate distributions belonging
to the selection elliptical family, showing in a clever way that their moments can be computed using an unique moment
for their respective elliptical symmetric case. In contrast with other recent works, we avoid cumbersome expressions,
having neat formulas for high-order truncated moments. To the best of our knowledge, this is the first proposal
discussing the conditions of existence of the truncated moments for members of the selection elliptical family. Also,
we propose optimized methods able to deal with extreme setting of the parameters, partitions with almost zero volume
or no truncation.

We expect in the near future to use expressions in Section 6 to propose a robust likelihood-based censored regression
model considering EST errors, able to fit multivariate censored responses with high skewness/kurtosis, presence of
atypical observations and missing data. As more truncated moments for other symmetric elliptical distributions appear
in the literature, we expect to implement the truncated moments for their respective asymmetric extended versions
as well as censored models considering this last. Additionally, theoretical results can be extended to compute the
moments of the class of extended generalized skew-elliptical distributions (see, [25]), where the jointly distributed
condition in (44) is not longer considered.

Finally, theoretical and MC moments (among other functions of interest) for several multivariate asymmetric distri-
butions are already available in our MomTrunc R package, which will be constantly updated when other treatable
distributions are available.
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