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ABSTRACT

Finite mixture models have been widely used to model and analyze data from a heterogeneous pop-
ulations. Moreover, data of this kind can be missing or subject to some upper and/or lower detection
limits because of the restriction of experimental apparatuses. Another complication arises when
measures of each population depart significantly from normality, for instance, asymmetric behavior.
For such data structures, we propose a robust model for censored and/or missing data based on finite
mixtures of multivariate skew-normal distributions. This approach allows us to model data with great
flexibility, accommodating multimodality and skewness, simultaneously, depending on the structure
of the mixture components. We develop an analytically simple, yet efficient, EM-type algorithm for
conducting maximum likelihood estimation of the parameters. The algorithm has closed-form ex-
pressions at the E-step that rely on formulas for the mean and variance of the truncated multivariate
skew-normal distributions. Furthermore, a general information-based method for approximating the
asymptotic covariance matrix of the estimators is also presented. Results obtained from the analysis
of both simulated and real datasets are reported to demonstrate the effectiveness of the proposed
method. The proposed algorithm and method are implemented in the new R package CensMFM.

Keywords Censored data · Detection limit · EM-type algorithms · Finite mixture models · Multivariate skew-normal
distribution · Truncated distributions.

1 Introduction

Modeling based on finite mixture distributions is a rapidly developing area with a wide range of applications. Finite
mixture models are now applied in such diverse areas as biology, biometrics, genetics, medicine and marketing, among
others. There are various features of finite mixture distributions that make them useful in statistical modeling. For
instance, statistical models which are based on finite mixture distributions capture many specific properties of real data
such as multimodality, skewness, kurtosis, and unobserved heterogeneity. The importance of mixture distributions can
be noted from the large number of books on mixtures, including [31], [14], [29], [20] and [9].

In many research areas, such as environmental pollution and infectious diseases measurements often exhibit complex
features such as censored responses and missing values [24, 23]. Moreover, the proportion of censoring in these stud-
ies may be substantial, so the use of crude/ad hoc methods, such as substituting a threshold value or some arbitrary
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point like a midpoint between zero and cutoff for detection, might lead to biased estimates of the model parameters.
Furthermore, multivariate data are commonly seen with simultaneous occurrence of multimodality and skewness and
inferential procedures become complicated when the data exhibit these features. The mixture distribution can be used
quite effectively to analyze this kind of data. [21] proposed a flexible mixture modeling framework using the multivari-
ate skew-normal distribution, where a feasible EM algorithm is developed for finding the maximum likelihood (ML)
estimates. In the context of finite mixtures for correlated censored data, [16] proposed a Gaussian mixture model to
flexibly approximate the underlying distribution of the observed data, where an EM algorithm in a multivariate setting
was developed to cope with the censored data. More recently, [19] proposed a robust model for censored data based on
finite mixtures of multivariate Student-t distributions (FM-MtC model), including the implementation of an exact EM
algorithm for ML estimation. This approach allows modeling data with great flexibility, accommodating multimodal-
ity, and kurtosis depending on the structure of the mixture components. These methods are undoubtedly very flexible,
but the problems related to the simultaneous occurrence of skewness, anomaly observations and multimodality remain.
Even when modeling using Student-t mixtures, overestimation of the number of components necessary to capture the
asymmetric nature of each subpopulation can occur [11]. So far, to the best of our knowledge there are no studies
simultaneously accounting for multivariate censored responses, missing values, heterogeneity and skewness.

In this article, we propose a robust mixture model for censored data based on the multivariate skew-normal distribution
so that the FM-MSNC model is defined and a fully likelihood-based approach is carried out, including the implemen-
tation of an exact EM-type algorithm for the ML estimation. The interval censoring mechanism of the proposed model
allows us to handle missing and censored values simultaneously. We show that the E-step reduces to computing the
first two moments of a truncated multivariate skew-normal distribution. The general formulas for these moments were
derived efficiently by [15], for which we use the MomTrunc package in R. The likelihood function is easily computed
as a byproduct of the E-step and is used for monitoring convergence and for model selection. Furthermore, we consider
a general information-based method for obtaining the asymptotic covariance matrix of the ML estimate. The method
proposed in this paper is implemented in the R package CensMFM, which is available for download from the CRAN
repository.

The remainder of the paper is organized as follows. In Section 2, we briefly discuss some preliminary results related
to the multivariate extended skew-normal (ESN) and related truncated extended skew-normal (TESN) distributions, in
addition, to some of their key properties are presented. In section 3, we present the multivariate skew-normal censored
(MSNC) model and the related ML estimation. In Section 4, we introduce the robust FM-MSNC model, including
the EM algorithm for ML estimation, and derive the empirical information matrix analytically to obtain the standard
errors. In Sections 5 and 6, numerical examples using both simulated and real data, respectively, are given to illustrate
the performance of the proposed method. Finally, some concluding remarks are presented in Section 7.

2 Background

2.1 The multivariate skew-normal distribution

In this subsection we present the skew-normal distribution and some of its properties. We say that a p × 1 random
vector Y follows a multivariate SN distribution with p× 1 location vector µ, p× p positive definite dispersion matrix
Σ and p× 1 skewness parameter vector λ ∈ R

p, and we write Y ∼ SNp(µ,Σ,λ), if its pdf is given by

SNp(y;µ,Σ,λ) = 2φp(y;µ,Σ)Φ1(λ
⊤
Σ

−1/2(y − µ)), (1)

where Φ1(·) represents the cumulative distribution function (cdf) of the standard univariate normal distribution. If
λ = 0 then (1) reduces to the symmetric Np(µ,Σ) pdf which is denoted by φp(y;µ,Σ). Except by a straightforward
difference in the parameterization considered in (1), this model corresponds to that introduced by [5], whose properties
were extensively studied in[4] [see also, 2].

Proposition 1 If Y ∼ SNp(µ,Σ,λ), then for any y ∈ R
p

FY(y) = P (Y ≤ y) = 2Φp+1

(
(z⊤, 0)⊤; 0,Ω

)
, (2)

where z = y − µ and Ω =

(
Σ −∆

−∆⊤ 1

)
, with ∆ = Σ1/2λ/(1 + λ⊤λ)1/2.

It is worth mentioning that the multivariate skew-normal distribution is not closed to marginalization and conditioning.
Next we present its extended version which has these properties, called the multivariate ESN distribution.

2.2 The extended multivariate skew-normal distribution (ESN)

We say that a p × 1 random vector Y follows an ESN distribution with p × 1 location vector µ, p × p positive
definite dispersion matrix Σ, a p × 1 skewness parameter vector λ ∈ R

p, and shift parameter τ ∈ R, denoted by

2
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Y ∼ ESNp(µ,Σ,λ, τ ), if its pdf is given by

ESNp(y;µ,Σ,λ, τ ) = ξ−1φp(y;µ,Σ)Φ1(τ + λ
⊤
Σ

−1/2(y− µ)), (3)

with ξ = Φ1(τ/(1 + λ⊤λ)1/2). Note that when τ = 0, we retrieve the skew-normal distribution defined in (1), that is,
ESNp(y;µ,Σ,λ, 0) ≡ SNp(y;µ,Σ,λ). It is also interesting to note that

ESNp(y;µ,Σ,λ, τ )−→φp(y;µ,Σ), as τ → +∞.

The following propositions are crucial to develop our methods. The proofs are given in [3].

Proposition 2 Let Y ∼ ESNp(µ,Σ,λ, τ ) and Y is partitioned as Y = (Y⊤

1 ,Y⊤

2 )⊤ of dimensions p1 and p2 (p1+p2 =
p), respectively. Let

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, µ = (µ⊤

1 ,µ
⊤

2 )
⊤, λ = (λ⊤

1 ,λ
⊤

2 )
⊤

and ϕ = (ϕ⊤

1 ,ϕ
⊤

2 )
⊤

be the corresponding partitions of Σ, µ, λ and ϕ = Σ−1/2λ. Then,

Y1 ∼ ESNp1(µ1,Σ11, c12Σ
1/2
11 ϕ̃1, c12τ ),

Y2 |Y1 = y1 ∼ ESNp2(µ2.1,Σ22.1,Σ
1/2
22.1ϕ2, τ2.1)

where c12 = (1+ϕ⊤

2 Σ22.1ϕ2)
−1/2, ϕ̃1 = ϕ1 +Σ−1

11 Σ12ϕ2, Σ22.1 = Σ22 −Σ21Σ
−1
11 Σ12, µ2.1 = µ2 +Σ21Σ

−1
11 (y1 −µ1)

and τ2.1 = τ + ϕ̃⊤

1 (y1 − µ1).

Proposition 3 If Y ∼ ESNp(µ,Σ,λ, τ ), then for any y ∈ R
p

FY(y) = P (Y ≤ y) =
Φp+1

(
(z⊤, τ̃)⊤;0,Ω

)

Φ1(τ̃)
, (4)

with z and Ω as defined in Proposition 1, and τ̃ = τ/(1 + λ⊤λ)1/2.

Hereafter, for Y ∼ ESNp(µ,Σ,λ, τ ), we will denote its cdf as FY(y) ≡ Φ̃p(y;µ,Σ,λ,
τ ) for simplicity.

Let A be a Borel set in R
p. We say that the random vector Y has a truncated extended skew-normal distribution on A

when Y has the same distribution as Y|(Y ∈ A). In this case, the pdf of Y is given by

f(y | µ,Σ, ν;A) =
ESNp(y;µ,Σ,λ, τ )

P (Y ∈ A)
1A(y),

where 1A is the indicator function of A. We use the notation Y ∼ TESNp(µ,Σ,λ, τ ;A). If A has the form

A = {(x1, . . . , xp) ∈ R
p : a1 ≤ x1 ≤ b1, . . . , ap ≤ xp ≤ bp}

= {x ∈ R
p : a ≤ x ≤ b}, (5)

then we use the notation {Y ∈ A} = {a ≤ Y ≤ b}, where a = (a1, . . . , ap)
⊤ and b = (b1, . . . , bp)

⊤. Here, we say
that the distribution of Y is doubly truncated. Analogously we define {Y ≥ a} and {Y ≤ b}. Thus, we say that the
distribution of Y is truncated from below and truncated from above, respectively. For convenience, we also use the
notation Y ∼ TESNp(µ,Σ,λ, τ ; [a,b]). In particular, we denote W to follow a truncated p-variate normal distribution
on [a,b] as W ∼ TNp(µ,Σ; [a,b]).

For the general doubly truncated case, we define the normalizing constant Lp(a,b;
µ,Σ,λ, τ ) = P (a ≤ Y ≤ b) as

Lp(a,b;µ,Σ,λ, τ ) =

∫
b

a

ESNp(y;µ,Σ,λ, τ )dy.

When all λ and τ are equal to zero, we have a normal integral Lp(a,b;µ,Σ,0, 0) = Lp(a,b;µ,Σ) =
∫

b

a
φp(y;µ,Σ)dy.

Note that we use calligraphic style Lp when we work with the skewed extended version and Roman style Lp for the
symmetric case.

The following properties of the truncated multivariate extended skew-normal distributions are useful for implementa-
tion of the EM-algorithm. The proofs are given in [15].

Proposition 4 Let Y ∼ TESNp(µ,Σ,λ, τ ; [a,b]). For any measurable function g(·), we have that

E

[
g(Y)

φ1(τ + λ⊤Σ−1/2(Y − µ))

Φ1(τ + λ⊤Σ−1/2(Y − µ))

]
= η

Lp(a,b;µ− µb,Γ)

Lp(a,b;µ,Σ,λ, τ )
E[g(W)], (6)

with η = φ1(τ ; 0, 1 + λ⊤λ)/ξ, µb = τ̃∆, Γ = Σ−∆∆⊤ and W ∼ TNp(µ− µb,Γ; [a,b]).

3
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Proposition 5 Let Y ∼ ESNp(µ,Σ,λ, τ ; [a,b]), where Y is partitioned as Y = (Y⊤

1 ,Y⊤

2 )⊤ of dimensions p1 and p2
(p1 + p2 = p), with corresponding partitions of a, b, µ, Σ, λ and ϕ. Then, for any measurable function g(·), we have
that

EY2

[
g(Y2)

φ1(τ + λ⊤Σ−1/2(Y − µ))

Φ1(τ + λ⊤Σ−1/2(Y − µ))

∣∣∣∣Y1

]
=

η2.1L2.1

L2.1
E[g(W2)], (7)

where L2.1 = Lp2(a2,b2;µ2.1 − µb2.1,Γ22.1), L2.1 = Lp2(a2,b2;µ2.1,Σ22.1,λ2.1, τ2.1) and W2 ∼ TNp(µ2.1 −
µb2.1,Γ22.1, [a2,b2]) with λ2.1 = Σ

1/2
22.1ϕ2, µ2.1, Σ22.1, and τ2.1 as in proposition 2, and η2.1, µb2.1 and Γ22.1 can

be computed as expressions η, µb and Γ in proposition 4 but using the new set of parameters µ2.1, Σ22.1, λ2.1 and τ2.1
(instead of µ, Σ, λ and τ ).

Observe that Propositions 4 and 5 depend on formulas for g(Y), where Y ∼ TESN(µ,Σ,λ, τ ; [a,b]). Closed form
expressions for these expectations were obtained recently by [15], for which the meanvarTMD() function of the R
MomTrunc library can be used.

3 Multivariate skew-normal model for censored and missing responses

Now we present the robust multivariate skew-normal model for censored data. So, we write

Y1, . . . ,Yn ∼ SNp(µ,Σ,λ), (8)

where for each i ∈ {1, . . . , n}, Yi = (Yi1, . . . , Yip)
⊤ is a p×1 vector of responses for sample unit i, µ = (µ1, . . . , µp)

⊤ is
the location vector and the dispersion matrix Σ = Σ(α) depends on an unknown and reduced parameter vector α and
skewness parameter λ. We assume that Y1, . . . ,Yn are independent and identically distributed. We consider a similar
approach to that proposed by [19] to model the censored responses. Thus, the observed data for the ith subject are
given by (Vi,Ci), where each element of Vi = (Vi1, . . . , Vip)

⊤ represents either the vector of uncensored observations
(Vik = V0i) or the interval censoring level (Vik ∈ [V1ik, V2ik]), and Ci = (Ci1, . . . , Cip)

⊤ is the vector of censoring
indicators, satisfying

Cik =

{
1 if V1ik ≤ Yik ≤ V2ik;
0 if Yik = V0i.

(9)

for all i ∈ {1, . . . , n} and k ∈ {1, . . . , p}, i.e., Cik = 1 if Yik is located within a specific interval. In this case, (8) and
(9) define the multivariate skew-normal interval censored model (hereafter, the MSNC model). Missing observations
can be handled by considering V1ik = −∞ and V2ik = +∞.

3.1 The likelihood function

Let y = (y⊤

1 , . . . ,y⊤

n )⊤, where yi = (yi1, . . . , yip)
⊤ is a realization of Yi ∼ SNp(µ, Σ,

λ). To obtain the likelihood function of the MSNC model, we first treat the observed and censored components of yi,

separately, i.e., yi = (yo⊤

i ,yc⊤

i )⊤, where Cik = 0 for all elements in the poi -dimensional vector yo
i , and Cik = 1 for all

elements in the pci -dimensional vector yc
i . Accordingly, we write Vi = vec(Vo

i ,V
c
i ), where Vc

i = (Vc
1i,V

c
2i) with

µi = (µo⊤
i ,µc⊤

i )⊤, Σ = Σ(α) =

(
Σoo

i Σoc
i

Σco
i Σcc

i

)
,

λi = (λo⊤
i ,λc⊤

i )⊤ and ϕi = (ϕo⊤
i ,ϕc⊤

i )⊤. (10)

Then, using Proposition 2, we have that Yo
i ∼ SNpo

i
(µo

i ,Σ
oo
i , coci Σ

oo 1/2
i ϕ̃o

i ) and Yc
i | Yo

i = yo
i ∼ ESNpc

i
(µco

i ,

Σcc.o
i ,Σ

cc.o 1/2
i ϕc

i , τ
co
i ), where

µ
co
i = µ

c
i +Σ

co
i Σ

oo−1
i (yo

i − µ
o
i ), Σ

cc.o
i = Σ

cc
i −Σ

co
i (Σoo

i )−1
Σ

oc
i , (11)

ϕ̃
o
i = ϕ

o
i +Σ

oo−1
i Σ

oc
i ϕ

c
i , coci = (1 + ϕ

c⊤
i Σ

cc.o
i ϕ

c
i )

−1/2
and τ co

i = ϕ̃
o⊤
i (yo

i − µ
o
i ). (12)

Let V = vec(V1, . . . ,Vn) and C = vec(C1, . . . ,Cn) denote the observed data. Therefore, the log-likelihood function
of θ = (µ⊤,α⊤,λ⊤)⊤, given the observed data (V,C) is

ℓ(θ | V,C) =

n∑

i=1

lnLi, (13)

4
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where Li represents the likelihood function of θ for the ith sample, given by

Li ≡Li(θ | Vi,Ci) = f(Vi | Ci,θ) = f(Vc
1i ≤ y

c
i ≤ V

c
2i | yo

i ,θ)f(y
o
i | θ)

= Lpci
(Vc

1i,V
c
2i;µ

co
i ,Σcc.o

i ,Σ
cc.o 1/2
i ϕ

c
i , τ

co
i )

× SNpo
i
(yo

i ;µ
o
i ,Σ

oo
i , coci Σ

oo 1/2
i ϕ̃

o
i ).

3.2 Parameter estimation via the EM algorithm

We now describe how to carry out ML estimation for the MSNC model. The EM algorithm, originally proposed by
[13], is a very popular iterative optimization strategy and commonly used to obtain ML estimates for incomplete-data
problems. This algorithm has many attractive features, such as numerical stability, simplicity of implementation and
quite reasonable memory requirement [27].

By the essential property of a multivariate SN distribution, we can write

Yi|(Ti = ti) ∼ Np(µ+∆ti,Γ) and Ti ∼ HN(0, 1), (14)

with HN referring to a half normal distribution and with ∆ and Γ as defined in the previous section. The complete-
data log-likelihood function of an equivalent set of parameters θ = (µ⊤,∆⊤,α⊤

Γ )⊤, where αΓ = vech(Γ), is given by
ℓc(θ) =

∑n
i=1 ℓic(θ), where the individual complete-data log-likelihood is

ℓic(θ) = −1

2

{
ln |Γ|+ (yi − µ−∆ti)

⊤
Γ

−1(yi − µ−∆ti)
}
+ c,

with c being a constant that does not depend on θ. Subsequently, the EM algorithm for the MSNC model can be
summarized as follows:

E-step: Given the current estimate θ̂
(k)

= (µ̂(k), ∆̂
(k)

, α̂(k)
Γ ) at the kth step of the algorithm, the E-step provides the

conditional expectation of the complete data log-likelihood function

Q(θ | θ̂(k)
) = E

[
ℓc(θ) | V,C, θ̂

(k)
]
=

n∑

i=1

Qi(θ | θ̂(k)
),

where

Qi(θ | θ̂(k)
) ∝ −1

2
ln |Γ̂(k)| − 1

2
tr

[{
ŷ2
i

(k)
+ µ̂

(k)
µ̂

(k)⊤ + t̂2i
(k)

∆̂
(k)

∆̂
(k)⊤

− µ̂
(k)

ŷi
(k)⊤ − ŷi

(k)
µ̂

(k)⊤ − t̂y
(k)

i ∆̂
(k)⊤ − ∆̂

(k)
t̂y

(k)⊤

i

+ t̂i
(k)

∆̂
(k)

µ̂
(k)⊤ + t̂i

(k)
µ̂

(k)
∆̂

(k)⊤
}
Γ̂

−1(k)
]
,

with ŷr
i

(k)
= ETiYi [Y

r
i |Vi,Ci, θ̂

(k)
], t̂ri

(k)
= ETiYi [T

r
i |Vi,Ci, θ̂

(k)
] (for r = {0, 1, 2}, with Y0

i = 1, Y1
i = Yi and

Y2
i = YiY

⊤

i ) and t̂y
(k)

i = ETiYi [TiYi |Vi,Ci, θ̂
(k)

]. Then, we can use Propositions 4 and 5 to obtain closed form
expressions for these conditional expectations as follows:

1. If the ith subject has only non-censored components, then

ŷr
i

(k)
= EYi [Y

r
i |Vi,Ci, θ̂

(k)
] = y

r
i ,

t̂ri
(k)

= ETiYi [T
r
i |Vi,Ci, θ̂

(k)
] = ETi [T

r
i |Yi, θ̂

(k)
],

t̂yi

(k)
= ETiYi [TiYi|Vi,Ci, θ̂

(k)
] = yiETi [Ti|Yi, θ̂

(k)
],

with y0
i = 1, y1

i = yi and y2
i = yiy

⊤

i and ETi [T
r
i |Yi, θ̂

(k)
] = ETi [T

r
i |Yi]|

θ=θ̂
(k) for r = {1, 2}. These last

conditional expectations can be obtained directly from the results given in [11].

2. If the ith subject has only censored components, from Proposition 4 we have

ŷr
i

(k)
= EYi [Y

r
i |Vi,Ci, θ̂

(k)
] = ŵr

i

(k)
,

t̂i
(k)

= M2(θ̂
(k)

)∆̂
(k)⊤

Γ̂
−1(k)

(ŵi
(k) − µ̂

(k)) + γ̂
(k)
i M(θ̂

(k)
),

t̂2i
(k)

= M4(θ̂
(k)

)∆̂
(k)⊤

Γ̂
−1(k)

(ŵ2
i

(k)
− 2ŵi

(k)
µ̂

(k)⊤ + µ̂
(k)

µ̂
(k)⊤)Γ̂

−1(k)
∆̂

(k)

+M2(θ̂
(k)

) + γ̂
(k)
i M3(θ̂

(k)
)∆̂

(k)⊤
Γ̂

−1(k)
(ŵ0

(k)
i − µ̂

(k)),

t̂yi

(k)
= M2(θ̂

(k)
)(ŵi

2(k) − ŵi
(k)

µ̂
(k)⊤)Γ̂

−1(k)
∆̂

(k)
+ γ̂

(k)
i M(θ̂

(k)
)ŵ0

(k)
i ,

5
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where

M2(θ) = (1 +∆
⊤
Γ

−1
∆)−1, ŵ

(k)
i = E[Wi | θ̂

(k)
],

ŵ
2(k)
i = E[WiW

⊤

i | θ̂(k)
] and ŵ0

(k)
i = E[W0i | θ̂

(k)
],

with Wi ∼ TSNp(µ̂
(k), Σ̂

(k)
, λ̂

(k)
, [v1i,v2i]), W0i ∼ TNp(µ̂

(k), Γ̂
(k)

, [v1i,v2i]) and

γ̂
(k)
i =

1√
π
2

(
1 + λ̂

(k)⊤
λ̂

(k))
Lp(v1i,v2i, µ̂

(k), Γ̂
(k)

)

Lp(v1i,v2i, µ̂
(k), Σ̂

(k)
, λ̂

(k)
, 0)

.

3. If the ith subject has both censored and uncensored components and given that (Yi |Vi,Ci), (Yi |Vi,Ci,Y
o
i ),

and (Yc
i |Vi,Ci,Y

o
i ) are equivalent processes, we have from Proposition 5 that

ŷ
(k)
i = E(Yi |Yo

i ,Vi,Ci, θ̂
(k)

) = vec(yo
i , ŵ

c(k)
i ),

ŷ2
i

(k)
= E(YiY

⊤

i |Yo
i ,Vi,Ci, θ̂

(k)
) =

(
yo
iy

o⊤
i yo

i ŵ
c(k)⊤
i

ŵ
c(k)
i yo⊤

i ŵ
2c(k)
i

)
,

ŷ
(k)
0i = vec(yo

i , ŵ
c(k)
0i ),

t̂i
(k)

= M2(θ̂
(k)

)∆̂
(k)⊤

Γ̂
−1(k)

(ŷi
(k) − µ̂

(k)) + γ̂
(k)
i M(θ̂

(k)
),

t̂2i
(k)

= M4(θ̂
(k)

)∆̂
(k)⊤

Γ̂
−1(k)

(ŷ2
i

(k)
− 2ŷi

(k)
µ̂

(k)⊤ + µ̂
(k)

µ̂
(k)⊤)Γ̂

−1(k)
∆̂

(k)

+M2(θ̂
(k)

) + γ̂
(k)
i M3(θ̂

(k)
)∆̂

(k)⊤
Γ̂

−1(k)
(ŷ0

(k)
i − µ̂

(k)),

t̂yi

(k)
= M2(θ̂

(k)
)(ŷi

2(k) − ŷi
(k)

µ̂
(k)⊤)Γ̂

−1(k)
∆̂

(k)
+ γ̂

(k)
i M(θ̂

(k)
)ŷ0

(k)
i ,

where

ŵ
c(k)
i = E[Wc

i | θ̂(k)
], ŵ

2c(k)
i = E[Wc

iW
c⊤
i | θ̂(k)

] and ŵ0
c(k)
i = E[Wc

0i | θ̂
(k)

],

with Wc
i ∼ TESNpc

i

(
µ̂

co(k)
i , Σ̂

cc.o(k)

i , λ̂
co(k)

i , τ̂
co(k)
i , [vc

1i,v
c
2i]
)
, Wc

0i ∼ TNp(m̂
co(k)
i ,

Γ̂
cc.o(k)

i , [vc
1i,v

c
2i]) and

γ̂
(k)
i =

ηco
i Lp(v

c
1i,v

c
2i; m̂

co(k)
i , Γ̂

cc.o(k)

i )

Lp(vc
1i,v

c
2i; µ̂

co(k)
i , Σ̂

cc.o(k)

i , λ̂
co(k)

i , τ̂
co(k)
i )

,

where λco
i = Σcc.o1/2

i ϕc
i , mco

i = µco
i − µco

bi , and ηco
i , µco

bi and Γcc.o
i can be computed as expressions η, µb and

Γ in Proposition 4 but using the new set of parameters µco
i , Σcc.o

i , λco
i and τ co

i (instead of µ, Σ, λ and τ ).

To compute E[W0i], E[Wi] and E[WiW
⊤

i ] in items 2 and 3, we use the R library MomTrunc.

M-step: Conditionally maximizing Q(θ | θ̂(k)
) =

∑n
i=1 Qi(θ | θ̂(k)

) with respect to each entry of θ, we update the

estimate θ̂
(k)

= (µ̂(k), ∆̂
(k)

, α̂(k)
Γ ) by

µ̂
(k+1) =

1

n

n∑

i=1

{
ŷi

(k) − t̂i
(k)

∆̂
(k)
}
, (15)

∆̂
(k+1)

=

{
n∑

i=1

t̂2i
(k)

}−1 n∑

i=1

{
t̂yi

(k) − t̂
(k)
i µ̂

(k+1)
}
, (16)

Γ̂
(k+1)

=
1

n

n∑

i=1

{
ŷ2
i

(k)
+ µ̂

(k)
µ̂

(k)⊤ + t̂2i
(k)

∆̂
(k)

∆̂
(k)⊤ − µ̂

(k)
ŷi

(k)⊤ − ŷi
(k)

µ̂
(k)⊤

− t̂y
(k)

i ∆̂
(k)⊤ − ∆̂

(k)
t̂y

(k)⊤

i + t̂i
(k)

∆̂
(k)

µ̂
(k)⊤ + t̂i

(k)
µ̂

(k)
∆̂

(k)⊤
}
. (17)

The algorithm is iterated until a suitable convergence rule is satisfied. In the later analysis, the algorithm is terminated
when the relative distance between two successive evaluations of the log-likelihood defined in (13) is less than a

tolerance, i.e., |ℓ(θ̂(k+1) | V,C)/ℓ(θ̂
(k) | V,C) − 1| < ǫ, for example, ǫ = 10−6. Once converged, we can recover λ̂

and Σ̂ using the expressions

Σ̂ = Γ̂+ ∆̂∆̂
⊤

and λ̂ =
Σ̂

−1/2
∆̂

(1− ∆̂
⊤

Σ̂
−1

∆̂)1/2
.
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It is important to stress that, from Eqs. (15)-(17), the E-step reduces to the computation of ŷ2
i , ŷi, t̂i, t̂2i and t̂yi, for

which we have implementable expressions. As pointed out for an anonymous referee, since missing values as treated
as interval censored data, the computation burden relies heavily on the dimension of censored vector for evaluating the
expectations of TESN and TN random vectors. In next subsection, we briefly discuss how to circumvent this problem,
such that missing values do not represent neither a mathematical or computational burden.

3.3 Efficient computation of expectations

In the event that there are missing values, we can partition the censored vector as Ycens = (Y⊤

c ,Y⊤

m)⊤, that is,
as missing and (truly) censored, in order to avoid unnecessary calculation of integrals for obtaining its expectation.
Considering the partition above such that dim(Yc) = pcc, dim(Ym) = pcm, where pcc + pcm = pc, it follows that

E[Ycens|Yobs] = E

[
E[Ym|Yc,Yobs]

Yc|Yobs

]
(18)

and var[Ycens|Yobs] is given by
[

E[var[Ym|Yc,Yobs]] + var[E[Ym|Yc,Yobs]] cov[E[Ym|Yc,Yobs],Yc|Yobs]
cov[Yc|Yobs,E[Ym|Yc,Yobs]] var[Yc|Yobs]

]
. (19)

By noting that Ym = (V = (−∞,∞),C = 1), we have that Ym|Yc,Yobs is a non-truncated partition following a
ESN distribution which moments have closed forms. Then, the computation of the first two moments of Ycens|Yobs

can be calculated using Eqs. (18) and (19), these last only depending on the computation of the truncated moments of
Yc|Yobs, these are E[Yc|Yobs] and var[Yc|Yobs]. As can be seen, we can use the latter equations to treat missing data
as censored in a neat manner, where the truncated moments are computed only over the pcc-variate partition, avoiding
some unnecessary integrals and saving a significant computational effort.

Remark 1 In general, TESN distributions are not closed under marginalization but conditioning. For instance,
Ym|Yobs does not follow a TESN distribution but its conditional distribution Ym|Yc,Yobs does. Furthermore, since
V = (−∞,∞) for missing observations, we have that Ym|Yc,Yobs is a (conditionally) non-truncated partition, fol-
lowing a ESN distribution. For this particular case, Yc|Yobs follow a TESN distribution due to the aforementioned
condition.

4 The FM-MSNC model

Ignoring censoring for the moment, we consider a more general and robust framework for the multivariate response
variable Yi of the model defined in (8), which is assumed to follow a mixture of multivariate skew normal distributions:

Yi ∼
G∑

j=1

πj SNp(µj ,Σj ,λj), (20)

where πj are weights adding to 1 and G is the number of groups, also called components in mixture models. The
mixture model considered in (20) can also be by letting Zij be a latent class variable, such that

Zij =

{
1 if the ith observation is from the jth component,

0 otherwise.

Thus, given Zij = 1, the response Yi follows a multivariate skew-normal distribution

Yi ∼ SNp(µj ,Σj , λj), i ∈ {1, . . . , n}, j ∈ {1, . . . , G}. (21)

Now, suppose Pr(Zij = 1) = πj . Then the density of Yi, without observing Zij , is given by

f(yi | θ) =
G∑

j=1

πj SNp(yi;µj ,Σj ,λj), (22)

where θ = (θ⊤

1 , . . . , θ
⊤

G)
⊤, with θj = (πj ,µ

⊤

j ,Σj ,λj)
⊤.

We treat the observed and censored components of Yi, separately, i.e. yi = (yo⊤

i ,yc⊤

i )⊤, with respective partitioned
parameters as in (10). Following [19], we define the mixture model for censored data as a mixture of the MSNC

7
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models given in (13), viz.

f(Vi | Ci,θ) =
G∑

j=1

πjfij(Vi | Ci, θ), (23)

with

fij(Vi | Ci, θ) = Lpci
(Vc

1i,V
c
2i;µ

co
i ,Σcc.o

i ,Σ
cc.o 1/2
i ϕ

c
i , τ

co
i )

× SNpoi
(yo

i ;µ
o
i ,Σ

oo
i , coci Σ

oo 1/2
i ϕ̃

o
i ),

where, for each component j, the arguments are defined as (11) and (12), respectively. The model defined in (23) will
be called the FM-MSNC model. Thus, the log-likelihood function given the observed data (V,C) is given by

ℓ(θ | V,C) =

n∑

i=1

ln{f(Vi | Ci,θ)}.

4.1 Maximum likelihood estimation via the EM algorithm

In this section, we present an EM algorithm for the ML estimation of the FM-MSNC model. To do so, we present
the FM-MSNC model in an incomplete-data framework, using the results presented in Section 3. We recall that the
likelihood associated with finite mixtures of skew-normal distributions may be unbounded, as shown by [11]. Using a
straightforward extension of their argument, it can be shown that the likelihood may be unbounded in the FM-MSNC
case as well. Despite this, following [32] (p. 41), we shall henceforth refer to the solution provided by the EM
algorithm as the ML estimate even in situations where it may not globally maximize the likelihood.

Using the stochastic representation of the skew-normal distribution given in (14), it follows that the complete data
log-likelihood function is ℓc(θ) =

∑n
i=1 ℓic(θ), where, for each i ∈ {1, . . . , n},

ℓic(θ) = c+

G∑

j=1

zij ln πj −
1

2

G∑

j=1

zij ln (|Γj |)

− 1

2

G∑

j=1

zij(yi − µj −∆jti)
⊤
Γ

−1
j (yi − µj −∆jti), (24)

with c being a constant which is independent of the parameter vector θ.

For each j ∈ {1, . . . , G}, let θ̂
(k)

j = (π̂
(k)
j , µ̂

(k)
j , Σ̂

(k)

j , λ̂
(k)

j )⊤, and let θ̂
(k)

= (θ̂
(k)⊤

1 , . . . ,

θ̂
(k)⊤

G )⊤ be the estimate of θ at the kth iteration. It follows, after some simple algebra, that the conditional expectation
of the complete log-likelihood function has the form

Q(θ | θ̂(k)
) ∝

n∑

i=1

G∑

j=1

Zij(θ̂
(k)

) ln πj − 1

2

n∑

i=1

G∑

j=1

Zij(θ
(k)) ln (|Γ̂j

(k)|)

− 1

2

n∑

i=1

G∑

j=1

tr
[
Γ̂

−1(k)

j

{
E2ij(θ̂

(k)
)− µ̂

(k)
j E⊤

1ij(θ̂
(k)

)− E1ij(θ̂
(k)

)µ̂
(k)⊤
j

− E3ij(θ̂
(k)

)∆̂
(k)⊤

j − ∆̂
(k)

j E3ij(θ̂
(k)⊤

) + Zij(θ̂
(k)

)µ̂
(k)
j µ̂

(k)⊤
j

+ E4ij(θ̂
(k)

)∆̂
(k)

j ∆̂
(k)⊤

j + E5ij(θ̂
(k)

)∆̂
(k)

j µ̂
(k)⊤
j + E5ij(θ̂

(k)
)µ̂

(k)
j ∆̂

(k)⊤

j

}]
,

where

E1ij(θ̂
(k)

) = E(ZijYi | Vi,Ci, θ̂
(k)

), E2ij(θ̂
(k)

) = E(ZijYiY
⊤

i | Vi,Ci, θ̂
(k)

),

E3ij(θ̂
(k)

) = E(ZijTiYi | Vi,Ci, θ̂
(k)

), E4ij(θ̂
(k)

) = E(ZijT
2
i | Vi,Ci, θ̂

(k)
),

E5ij(θ̂
(k)

) = E(ZijTi | Vi,Ci, θ̂
(k)

) and Zij(θ̂
(k)

) = E(Zij | Vi,Ci, θ̂
(k)

).

8
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By using known properties of conditional expectation, we obtain

Zij(θ̂
(k)

) =
π̂
(k)
j fij(Vi | Ci, θ̂

(k)

j )

G∑

j=1

π̂
(k)
j fij(Vi | Ci, θ̂

(k)

j )

, (25)

E1ij(θ̂
(k)

) = Zij(θ̂
(k)

)E(Yi | Vi,Ci, θ̂
(k)

, Zij = 1)

E2ij(θ̂
(k)

) = Zij(θ̂
(k)

)E(YiY
⊤

i | Vi,Ci, θ̂
(k)

, Zij = 1),

E3ij(θ̂
(k)

) = Zij(θ̂
(k)

)E(TiYi | Vi,Ci, θ̂
(k)

, Zij = 1), (26)

E4ij(θ̂
(k)

) = Zij(θ̂
(k)

)E(T 2
i | Vi,Ci, θ̂

(k)
, Zij = 1)

and

E5ij(θ̂
(k)

) = Zij(θ̂
(k)

)E(Ti | Vi,Ci, θ̂
(k)

, Zij = 1).

The conditional expectations E(Yi | Vi,Ci, θ̂
(k)

, Zij = 1), E(YiY
⊤

i | Vi,Ci, θ̂
(k)

,

Zij = 1), E(TiYi | Vi,Ci, θ̂
(k)

, Zij = 1), E(T 2
i | Vi,Ci, θ̂

(k)
, Zij = 1) and E(Ti | Vi,Ci, θ̂

(k)
, Zij = 1) can be

directly obtained from expressions ŷi, ŷ
2
i , t̂yi, t̂

2
i and t̂i, respectively, given in Subsection 3.2. Thus, we have closed

form expressions for all the quantities involved in the E-step of the algorithm. Next, we describe the EM algorithm
for maximum likelihood estimation of the parameters in the FM-MSNC model.

E-step: Given θ = θ̂
(k)

, compute Esij(θ̂
(k)

) for all s ∈ {1, 2, 3, 4, 5} and Zij(θ̂
(k)

) for all i ∈ {1, . . . , n}, j ∈ {1, . . . , G}.

M-step: Update θ̂
(k+1)

by maximizing Q(θ | θ̂(k)
) over θ, which leads to the following closed form expressions:

π̂
(k+1)
j =

1

n

n∑

i=1

Zij(θ̂
(k)

),

µ̂
(k+1)
j =

{
n∑

i=1

Zij(θ̂
(k)

)

}
−1 n∑

i=1

{E1ij(θ̂
(k)

)− E5ij(θ̂
(k)

)∆̂
(k)

j }

∆̂
(k+1)

j =

{
n∑

i=1

E4ij(θ̂
(k)

)

}−1 n∑

i=1

{E3ij(θ̂
(k)

)− E5ij(θ̂
(k)

)µ̂
(k+1)
j }

Γ̂
(k+1)

j =

{
n∑

i=1

Zij(θ̂
(k)

)

}−1 n∑

i=1

{
E2ij(θ̂

(k)
)− µ̂

(k)
j E⊤

1ij(θ̂
(k)

)− E1ij(θ̂
(k)

)µ̂
(k)⊤
j

− E3ij(θ̂
(k)

)∆̂
(k)⊤

j − ∆̂
(k)

j E3ij(θ̂
(k)⊤

) + Zij(θ̂
(k)

)µ̂
(k)
j µ̂

(k)⊤
j

+E4ij(θ̂
(k)

)∆̂
(k)

j ∆̂
(k)⊤

j + E5ij(θ̂
(k)

)∆̂
(k)

j µ̂
(k)⊤
j + E5ij(θ̂

(k)
)µ̂

(k)
j ∆̂

(k)⊤

j

}
,

for all j ∈ {1, . . . , G}.

It is well known that mixture models can provide a multimodal log-likelihood function. In this sense, the method of
maximum likelihood estimation through the EM algorithm may not give global solutions if the starting values are far
from the real parameter values. Thus, the choice of starting values for the EM algorithm in the mixture context plays
a big role in parameter estimation. In our examples and simulation studies, we consider the following procedure for
the FM-MSNC model:

(i) Partition the data (censoring levels replacing the censored observations) into G groups using the K-means
clustering algorithm [11].

(ii) Compute the proportion of data points belonging to the same cluster j, say π
(0)
j , j ∈ {1, . . . , G}. This gives

the initial value for πj .

(iii) For each group j, compute the initial values µ
(0)
j , Σ

(0)
j , λ

(0)
j using the R package mixsmsn [33].

9
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4.2 Model selection

Because there is no universal criterion for mixture model selection, we chose three criteria to compare the models
considered in this work, namely, the Akaike information criterion (AIC) [1], Bayesian information criterion (BIC)

[35] and efficient determination criterion (EDC) [6]. Like the AIC and BIC, EDC has the form −2ℓ(θ̂) + ρcn, where
ℓ(θ) is the actual log-likelihood, ρ is the number of free parameters that has to be estimated in the model and the penalty
term cn is a convenient sequence of positive numbers. Here, we use cn = 0.2

√
n, a proposal that was considered in [8]

and [11]. Note that cn constant is given by cn = 2 for AIC and cn = log n for BIC, with n being the sample size.

4.3 Provision of standard errors

In this section, we describe how to obtain the standard errors of the ML estimates for the FM-MSNC model. We
follow the information-based method exploited by [7] to compute the asymptotic covariance of the ML estimates. The
empirical information matrix, according to [30]’s formula, is defined as

Ie(θ|y) =
n∑

i=1

s(yi|θ)s⊤(yi|θ)− 1

n
S(yi|θ)S⊤(yi|θ), (27)

where S(yi|θ) =
∑N

i=1 s(yi|θ) and s(yi|θ) is the empirical score function for the ith subject. It is noted from the result
of [26] that the individual score can be determined as

s(yi|θ) = E

(
∂ℓi(θ|yc)

∂θ

∣∣∣∣Vi,Ci,θ

)
. (28)

Using the ML estimates θ̂ in s(yi|θ), leads to S(yi|θ̂) = 0, so from (27) we have that

Ie(θ̂|y) =
n∑

i=1

ŝiŝ
⊤

i , (29)

where ŝi is an individual score vector given by ŝi = (ŝi,µ1
, . . . , ŝi,µG

, ŝi,σ2
1
, . . . , ŝi,σ2

G
,

ŝ
i,λ1

, . . . , ŝ
i,λG

, ŝi,π1 , . . . , ŝi,πG−1)
⊤, where σ2

j is a vector with p(p+ 1)/2 distinct elements of Σj .

First we reparameterize Σj = F2
j for ease of computation and theoretical derivation, where Fj is the square root of Σj

containing p(p+ 1)/2 distinct elements.

Now we have that ŝi = (ŝi,µ1
, . . . , ŝi,µG

, ŝi,α1 , . . . , ŝi,αG , ŝ
i,λ1

, . . . , ŝ
i,λG

, ŝi,π1 , . . . ,

ŝi,πG−1)
⊤. So, the expressions for the elements of ŝi are given by:

ŝi,πj =
Zij(θ̂)

π̂j
− Zij(θ̂)

π̂G
,

ŝi,µj
= (ŝi,µj1 , . . . , ŝi,µjp ) = Γ̂

−1

j

(
E1ij(θ̂)− Zij(θ̂)µ̂j − E5ij(θ̂)∆̂j

)
,

ŝi,αj = (ŝi,αj,11 , . . . , ŝi,αj,pp) = −Zij(θ̂)

2
tr
(
Γ̂

−1

j Aj(θ̂)
)
− 1

2

{
E1ij(θ̂)

⊤
Γ̂

−1

j Aj(θ̂)Γ̂
−1

j µ̂j

+ µ̂
⊤

j Γ̂
−1

j Aj(θ̂)Γ̂
−1

j E1ij(θ̂)− E3ij(θ̂)
⊤

(
Γ̂

−1

j Ḟj(r)δ̂j − Γ̂
−1

j Aj(θ̂)Γ̂
−1

j ∆̂j

)

− tr
(
E2ij(θ̂)Γ̂

−1

j Aj(θ̂)Γ̂
−1

j

)
−
(
δ̂
⊤

j Ḟj(r)Γ̂
−1

j − ∆̂
⊤

j Γ̂
−1

j Aj(θ̂)Γ̂
−1

j ∆̂j

)
E3ij(θ̂)

− µ̂
⊤

j Γ̂
−1

j Aj(θ̂)Γ̂
−1

j µ̂j + E5ij(θ̂)µ̂
⊤

j

(
Γ̂

−1

j Ḟj(r)δ̂j − Γ̂
−1

j Aj(θ̂)Γ̂
−1

j ∆̂j

)

+ E4ij(θ̂)
(
δ̂
⊤

j Ḟj(r)Γ̂
−1

j ∆̂j − ∆̂
⊤

j Γ̂
−1

j Aj(θ̂)Γ̂
−1

j ∆̂j + ∆̂
⊤

j Γ̂
−1

j Ḟj(r)δ̂j

)

+
(
δ̂
⊤

j Ḟj(r)Γ̂
−1

j − ∆̂
⊤

j Γ̂
−1

j Aj(θ̂)Γ̂
−1

j

)
µ̂jE5ij(θ̂)

}
,

10
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ŝ
i,λj

= (ŝi,λj1 , . . . , ŝi,λjp) =
Zij(θ̂)

2
tr
(
Γ̂

−1

j Bj(θ̂)
)
− 1

2

{
tr
(
E2ij(θ̂)Γ̂

−1

j Bj(θ̂)Γ̂
−1

j

)

− E1ij(θ̂)
⊤
Γ̂

−1

j Bj(θ̂)Γ̂
−1

j µ̂j + µ̂
⊤

j Γ̂
−1

j Bj(θ̂)Γ̂
−1

j µ̂j − µ̂
⊤

j Γ̂
−1

j Bj(θ̂)Γ̂
−1

j E1ij(θ̂)

− E3ij(θ̂)
⊤

(
Γ̂

−1

j Bj(θ̂)Γ̂
−1

j ∆̂j + Γ̂
−1

j bj(θ̂)
)

−
(
∆̂

⊤

j Γ̂
−1

j Bj(θ̂)Γ̂
−1

j + bj(θ̂)
⊤
Γ̂

−1

j

)
E3ij(θ̂)

+ E5ij(θ̂)µ̂
⊤

j

(
Γ̂

−1

j Bj(θ̂)Γ̂
−1

j ∆̂j + Γ̂
−1

j bj(θ̂)
)

+
(
∆̂

⊤

j Γ̂
−1

j Bj(θ̂)Γ̂
−1

j + bj(θ̂)
⊤
Γ̂

−1

j

)
µ̂jE5ij(θ̂)

+ E4ij(θ̂)
(
bj(θ̂)

⊤
Γ̂

−1

j ∆̂j + ∆̂
⊤

j Γ̂
−1

j Bj(θ̂)Γ̂
−1

j ∆̂j + ∆̂
⊤

j Γ̂
−1

j bj(θ̂)
)}

,

where

Aj(θ̂) =
(
Ḟj(r)(I− δ̂j δ̂

⊤

j )F̂j + F̂j(I− δ̂j δ̂
⊤

j )Ḟj(r)
)
,

Bj(θ̂) = F̂j

(
Ṙj(r)(1 + λ̂

⊤

j λ̂j)− 2λjrλ̂jλ̂
⊤

j

(1 + λ̂
⊤

j λ̂j)2

)
F̂j ,

bj(θ̂) = F̂j

(
λ̇j(r)(1 + λ̂

⊤

j λ̂j)− λjrλ̂j

(1 + λ̂
⊤

j λ̂j)3/2

)
,

Ḟj(r) =
∂Fj

∂σ2
jr

∣∣∣∣
σ2=σ̂2

, Ṙj(r) =
∂λjλ

⊤

j

∂λjr

∣∣∣∣
λ=λ̂

, and λ̇j(r) =
∂λj

∂λjr

∣∣∣∣
λ=λ̂

, with r = 1, 2, . . . , p.

5 Simulation studies

In order to study the performance of our proposed method, we present five simulation studies. The first and second
study investigates whether we can estimate the true parameter values and their respective standard errors accurately by
using the proposed EM algorithm and approximated empirical information matrix, respectively involving censoring
and missing data. The third one investigates the number of mixture components by comparing the FM-MSNC with two
groups and FM-MNC with various groups. The fourth study investigates the ability of the FM-MSNC model to cluster
observations. Finally, the last one shows the asymptotic behavior of the EM estimates for the proposed model. The
computations were done using the R package CensMFM.

5.1 Performance of the ML Estimates over censoring data

This simulation study is designed to verify if we can estimate the true parameter values of the FM-MSNC model accu-
rately when we have censoring data by using the proposed EM algorithm. We simulated several datasets considering
mixtures with two components from model (23) with two left-censoring proportion settings (5% and 30%), taken in
each mixture component, and different samples sizes n ∈ (500, 1000, 2000). For each combination, we generated 500
Monte Carlo (MC) samples. Summary statistics of the estimates across the 500 MC samples were computed, such as
the mean estimate (MC mean), the empirical standard error (MC Sd), and the mean of the approximate standard errors
of the estimates, obtained through the method described in Section 4.3 (IM SE).

We consider small and different variances with the following parameter setup:

0.65 SN2

([
−3
−4

]
,

[
3 1
1 4.5

]
,

[
−2
2

])
+ 0.35 SN2

([
2
2

]
,

[
2 1
1 3.5

]
,

[
−3
4

])
.

Figure 1 shows the simulated data from the FM-MSNC model with their respective density contours for the skew-
normal (top panel) and normal (bottom panel) distributions and the allocations in each group for samples sizes 500,

1000 and 2000 with left-censoring proportion of 5%. The black points represent the first component and the red triangles
represent the second component of the mixture. One can note that the contour lines of the skew-normal distribution
are more appropriate to represent the shape assumed by the generated data.

The results are presented in Table 1. This table shows that, regardless the sample size, the Monte Carlo mean of the
parameter estimates deviates further the true values as the censoring level increases, i.e., the parameter estimates are
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Figure 1: Simulated data: Performance of the ML Estimates over censoring data. Scatter plot for some simulated data from
FM-MSNC model with the respective density contours, skew-normal (top panel) and normal (bottom panel) with 5% censoring
level.

affected by the censoring level. In particular, the estimates of µ1 and µ2 appear to be less affected by increasing the
censoring level than the other parameters. Furthermore, the estimates of the standard errors, i.e., MC Sd and IM SE,
provide relatively close results, which may indicate that the asymptotic approach proposed for the standard errors of
the ML estimates is reliable.

Table 1: Simulated data: Performance of the ML Estimates over censoring data. Parameter estimates based on 500

simulated samples. Monte Carlo (MC) mean, MC Sd are the respective mean estimates and standard deviations. IM SE

is the average value of the approximate standard error obtained through the information-based method.

Censoring j Measure
Parameter

µj1 µj2 αj,11 αj,12 αj,22 λj1 λj2 π

n = 500

5%

1

True (−3) (−4) (1.7121) (0.2620) (2.1051) (−2) (2) (0.65)

MC mean -3.1797 -4.1235 1.6262 0.2923 2.2499 -1.7236 2.1533 0.6607

MC Sd 0.3101 0.3705 0.1510 0.1138 0.1906 0.5262 0.5739 0.0274

IM SE 0.2844 0.3406 0.1361 0.0924 0.1944 0.5397 0.6202 0.0236

2

True (2) (2) (1.3798) (0.3101) (1.8449) (−3) (4)

MC mean 2.0196 2.0954 1.3152 0.3177 1.7883 -2.7361 3.7058

MC Sd 0.2381 0.2808 0.1431 0.0928 0.1595 1.0896 1.3303

IM SE 0.2677 0.2922 0.1391 0.0981 0.1816 1.2411 1.5434

30%

1

True (−3) (−4) (1.7121) (0.2620) (2.1051) (−2) (2) (0.65)

MC mean -3.3139 -4.1708 1.5445 0.3483 2.2909 -1.3744 2.0529 0.7030

MC Sd 0.3360 0.4545 0.1580 0.1413 0.2700 0.5082 0.7388 0.0238

IM SE 0.4719 0.5176 0.2080 0.1396 0.2762 0.7304 0.8737 0.0238

2

True (2) (2) (1.3798) (0.3101) (1.8449) (−3) (4)

MC mean 2.2651 2.5165 1.3373 0.2533 1.6079 -2.3831 3.1945

MC Sd 0.5131 0.5107 0.2661 0.1682 0.2207 1.5120 1.4642

IM SE 0.3213 0.3134 0.1929 0.1202 0.1726 1.4296 1.4575

n = 1000

5%

1

True (−3) (−4) (1.7121) (0.2620) (2.1051) (−2) (2) (0.65)

MC mean -3.1812 -4.1450 1.6219 0.2804 2.2407 -1.6988 2.1169 0.6594

MC Sd 0.1876 0.2248 0.0911 0.0615 0.1354 0.3611 0.4228 0.0165

IM SE 0.1988 0.2351 0.0962 0.0607 0.1369 0.3660 0.4177 0.0167

2

True (2) (2) (1.3798) (0.3101) (1.8449) (−3) (4)

Continued on next page
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Table 1 – Continued from previous page

Censored j Measure
Parameter

µj1 µj2 αj,11 αj,12 αj,22 λj1 λj2 π

MC mean 2.0488 2.1190 1.3265 0.3071 1.7823 -2.6601 3.5305

MC Sd 0.1698 0.2069 0.0912 0.0683 0.1091 0.6830 0.8175

IM SE 0.1938 0.2113 0.0994 0.0676 0.1266 0.7723 0.9274

30%

1

True (−3) (−4) (1.7121) (0.2620) (2.1051) (−2) (2) (0.65)

MC mean -3.3168 -4.2133 1.5402 0.3276 2.2758 -1.3758 2.0334 0.7021

MC Sd 0.2029 0.2736 0.0978 0.0776 0.1758 0.3513 0.5272 0.0162

IM SE 0.3071 0.3289 0.1374 0.0878 0.1840 0.4791 0.5681 0.0160

2

True (2) (2) (1.3798) (0.3101) (1.8449) (−3) (4)

MC mean 2.3043 2.5243 1.3347 0.2208 1.5994 -2.3618 3.0762

MC Sd 0.3216 0.2956 0.1899 0.1000 0.1513 1.0722 0.8913

IM SE 0.2144 0.2025 0.1295 0.0743 0.1172 0.8982 0.8670

n = 2000

5%

1

True (−3) (−4) (1.7121) (0.2620) (2.1051) (−2) (2) (0.65)

MC mean -3.2080 -4.1723 1.6098 0.2779 2.2581 -1.6429 2.1188 0.6600

MC Sd 0.1577 0.1728 0.0678 0.0525 0.1010 0.2864 0.3225 0.0118

IM SE 0.1411 0.1681 0.0672 0.0429 0.0978 0.2515 0.2926 0.0118

2

True (2) (2) (1.3798) (0.3101) (1.8449) (−3) (4)

MC mean 2.0480 2.1143 1.3204 0.3059 1.7857 -2.5958 3.4666

MC Sd 0.1283 0.1995 0.0642 0.0553 0.0845 0.5176 0.6986

IM SE 0.2882 0.3822 0.0739 0.0501 0.0888 0.6434 0.8032

30%

1

True (−3) (−4) (1.7121) (0.2620) (2.1051) (−2) (2) (0.65)

MC mean -3.3559 -4.2548 1.4775 0.3046 2.1378 -1.3237 2.0660 0.7036

MC Sd 0.1785 0.2527 0.1310 0.0859 0.3274 0.2934 0.4413 0.0109

IM SE 0.2138 0.2299 0.0921 0.0641 0.1320 0.3289 0.4023 0.0113

2

True (2) (2) (1.3798) (0.3101) (1.8449) (−3) (4)

MC mean 2.2991 2.5248 1.3155 0.2141 1.6032 -2.2326 2.9887

MC Sd 0.2436 0.2913 0.1381 0.0824 0.1245 0.7816 0.7760

IM SE 0.1601 0.1569 0.0922 0.0542 0.0847 0.5911 0.5862

5.2 Performance of the ML Estimates over missing data

In order to evaluate the performance of FM-MSNC model for dealing with partially incomplete data, a simulation
study was conducted. Various ways of using models for imputation are described in [25], among them, one of the
most relevant is the missing completely at random (MCAR). We simulated several datasets considering mixtures with
two components from model (23) with two missing data proportion settings (5% and 20%), taken in each mixture
component, and different samples sizes n ∈ (500, 700, 900). For each combination, we generated 500 Monte Carlo
(MC) samples. Summary statistics of the estimates across the 500 MC samples were computed, such as the mean
estimate (MC mean), the empirical standard error (MC Sd), and the mean of the approximate standard errors of the
estimates, obtained through the method described in Section 4.3 (IM SE). We consider small and different variances
with the following parameter as in the simulation about asymptotic properties in 5.5.

Table 2 shows the results for this simulation. The results obtained are similar to those of simulation 5.1 and the same
conclusions can be drawn. Additionally, we note that λ estimates appear to be more strongly affected as we increase
the proportion of missing data in the sample.

Table 2: Simulated data: Performance of the ML Estimates over missing data. Parameter estimates based on 500 simu-

lated samples. Monte Carlo (MC) mean, MC Sd are the respective mean estimates and standard deviations. IM SE is the

average value of the approximate standard error obtained through the information-based method.

Missing j Measure
Parameter

µj1 µj2 αj,11 αj,12 αj,22 λj1 λj2 π

n = 500

5%

1

True (−5) (−4) (1.7121) (0.2620) (2.1051) (−2) (3) (0.65)

MC mean -5.2150 -3.3411 1.6844 0.4594 1.9442 -1.0396 1.4896 0.6495

MC Sd 0.5773 0.8843 0.1075 0.2005 0.2071 1.0020 1.5677 0.0219

IM SE 0.8618 0.9443 0.2666 0.1876 0.2603 0.9352 1.0664 0.0220

2

True (2) (3) (1.3798) (0.3101) (1.8449) (−2) (3)

MC mean 1.7699 3.4694 1.3709 0.4857 1.7308 -0.9892 1.5876

MC Sd 0.5614 0.7703 0.1231 0.1904 0.1922 1.1875 1.6737

IM SE 0.8408 0.9545 0.2759 0.2176 0.3247 1.2244 1.3864

20%

1

True (−5) (−4) (1.7121) (0.2620) (2.1051) (−2) (3) (0.65)

MC mean -5.2797 -3.2378 1.6751 0.4903 1.9116 -0.8182 1.1958 0.6495

MC Sd 0.6079 0.9007 0.1120 0.1908 0.2215 0.9494 1.5060 0.0228

IM SE 1.0618 1.1557 0.3267 0.2297 0.3216 1.1195 1.2620 0.0227

2

True (2) (3) (1.3798) (0.3101) (1.8449) (−2) (3)

Continued on next page
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Table 2 – Continued from previous page

Missing j Measure
Parameter

µj1 µj2 αj,11 αj,12 αj,22 λj1 λj2 π

MC mean 1.6992 3.5252 1.3680 0.5125 1.7031 -0.7323 1.3092

MC Sd 0.5987 0.7648 0.1359 0.1924 0.2047 1.1693 1.5322

IM SE 1.2860 1.4228 0.3530 0.2721 0.4106 1.6672 1.7740

n = 700

5%

1

True (−5) (−4) (1.7121) (0.2620) (2.1051) (−2) (3) (0.65)

MC mean -5.1275 -3.2608 1.6902 0.4589 1.9299 -1.0984 1.4147 0.6493

MC Sd 0.5118 0.9054 0.0931 0.2000 0.1867 0.9515 1.5788 0.0188

IM SE 0.6699 0.7212 0.2189 0.1539 0.2158 0.7571 0.8440 0.0186

2

True (2) (3) (1.3798) (0.3101) (1.8449) (−2) (3)

MC mean 1.8256 3.4568 1.3733 0.4711 1.7356 -1.1133 1.6816

MC Sd 0.4959 0.7484 0.1053 0.1725 0.1741 1.0682 1.5869

IM SE 0.6973 0.8268 0.2228 0.1766 0.2621 1.0000 1.1773

20%

1

True (−5) (−4) (1.7121) (0.2620) (2.1051) (−2) (3) (0.65)

MC mean -5.1948 -3.2079 1.6799 0.4817 1.8994 -0.9175 1.1938 0.6488

MC Sd 0.5467 0.8905 0.0937 0.1907 0.1882 0.9160 1.4792 0.0192

IM SE 0.8447 0.8977 0.2686 0.1866 0.2680 0.9194 1.0006 0.0192

2

True (2) (3) (1.3798) (0.3101) (1.8449) (−2) (3)

MC mean 1.7787 3.5349 1.3666 0.4987 1.7052 -0.8822 1.3254

MC Sd 0.5295 0.7466 0.1172 0.1741 0.1832 1.0146 1.4570

IM SE 0.9450 1.0692 0.2765 0.2118 0.3275 1.2557 1.3766

n = 900

5%

1

True (−5) (−4) (1.7121) (0.2620) (2.1051) (−2) (3) (0.65)

MC mean -5.1377 -3.4011 1.6847 0.4243 1.9552 -1.1829 1.6348 0.6488

MC Sd 0.4678 0.8574 0.0794 0.1869 0.1790 0.8858 1.4904 0.0169

IM SE 0.4769 0.4857 0.1699 0.1183 0.1781 0.5865 0.6471 0.0163

2

True (2) (3) (1.3798) (0.3101) (1.8449) (−2) (3)

MC mean 1.8644 3.3518 1.3744 0.4342 1.7513 -1.2648 1.9203

MC Sd 0.4578 0.6741 0.0891 0.1616 0.1540 0.9946 1.4206

IM SE 0.5043 0.5860 0.1656 0.1297 0.1999 0.7796 0.9222

20%

1

True (−5) (−4) (1.7121) (0.2620) (2.1051) (−2) (3) (0.65)

MC mean -5.2002 -3.3434 1.6760 0.4495 1.9244 -0.9997 1.4014 0.6485

MC Sd 0.5123 0.8387 0.0839 0.1816 0.1866 0.8815 1.4234 0.0175

IM SE 0.6459 0.6892 0.2138 0.1502 0.2198 0.7351 0.8213 0.0168

2

True (2) (3) (1.3798) (0.3101) (1.8449) (−2) (3)

MC mean 1.7946 3.4393 1.3699 0.4709 1.7147 -0.9902 1.5475

MC Sd 0.5079 0.6797 0.0986 0.1640 0.1650 1.0069 1.3840

IM SE 0.7262 0.7971 0.2178 0.1622 0.2598 1.0105 1.0992

To exemplify the predictive accuracies on the imputation of missing values, we compare the FM-MSNC with the
traditional randomization-based mean imputation (MI) predictor [25], known as a common heuristic by filling in a
single value for each missing value with the observed sample mean of the associated attribute. As a measure of
precision, we use the mean absolute error (MAE) and the mean absolute relative error (MARE). They are defined as

MAE =
1

m

n∑

i=1

g∑

j=1

|yij − ŷij | and MARE =
1

m

n∑

i=1

g∑

j=1

∣∣∣∣
yij − ŷij

yij

∣∣∣∣ , (30)

where m is the number of missing entries, yij is the actual value and ŷij is the respective predictive value. The
MAE and MARE measures, for both FM-MSCN and MI method, are listed in Table 3. We can see that the FM-MSCN

predictor exhibits considerable promising accuracy in the prediction of missing values when compared with those of
MI imputations for all cases.

Table 3: Simulated data: Performance of the ML Estimates over missing data. Average prediction accuracies for the
both imputation methods FM-MSNC and mean imputation (MI) with varying sample size, n ∈ (500, 700, 900), and
proportions of missing values 5%, 10% and 20%.

Imputation method Missing rate(%)
MAE MARE

500 700 900 500 700 900

FM-MSNC
5% 1.9009 1.8556 1.8444 0.8642 0.8747 0.8252
10% 2.0681 2.0243 2.0025 0.9883 1.0274 0.9678
20% 2.4074 2.3693 2.3605 1.2264 1.2386 1.2345

MI
5% 3.2550 3.0297 2.7708 1.6897 1.8542 1.5337
10% 3.2594 3.0498 2.7717 1.7402 1.8841 1.5501
20% 3.2567 3.0563 2.7733 1.9881 1.8875 1.6624
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5.3 Number of mixture components

In this section, we compare the ability of some classic model selection criteria discussed in Subsection 4.2 to select
the appropriate model. One may argue that an arbitrary multivariate density can always be approximated by a finite
mixture of normal multivariate distributions, see [31, Chapter 1], for example. Thus, an interesting comparison can
be made if we consider a sample from a two-component FM-MSNC(2) and use some model choice criteria to compare
this model with the FM-MNC and several components under different censoring levels. Here we consider 100 samples
of size 500 from a two-component FM-MSNC(2) model with left censoring levels at 5%, 10% or 20%, and parameter
values set at
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The results are presented in Table 4, under different censoring levels, where it can be seen that all criteria favor the
true model, that is, the FM-MSNC(2) model instead the FM-MNC model with two, three and four components, as
expected. This is evidence that these measures are capable of detecting departures from normality. It is important to
emphasize that the FM-MNC models with three and four components have 17 and 23 parameters respectively, while the
FM-MSNC(2) model has 11 parameters.

Table 4: Simulated data: Number of mixture components. Percentage when the FM-MSNC model with two compo-
nents is preferred over the other adjusted FM-MNC models.

Censoring 5% 10% 20%

Group 2 3 4 2 3 4 2 3 4

Criteria
AIC 100 100 100 95 100 100 100 100 100
BIC 100 100 100 93 100 100 100 100 100
EDC 100 100 100 93 100 100 100 100 100

As pointed out for an anonymus referee, we can see in Table 4 that the case with 10% censoring and two components
is the only case where the correct model was not preferred by model selection criteria for a small number of instances.
According to Figure 2, the preferred model in these (atypical) cases was the FM-MNC(2), however the differences in
the criteria values related to a FM-MSNC(2) are close to zero. We believe that the amount of data sets generated in the
simulation (100 data sets) may not be sufficient and a more intensive simulation study would be required. However,
due to the computational burden of the simulation, it would be too time consuming to move over to bigger simulations,
say, 1000 data sets.

5.4 Clustering

Mixture models in general can be used for two main purposes: 1. estimation, and 2. model-based clustering [28]. In
this section, we investigate the ability of the FM-MSNC model to cluster observations, that is, to allocate them into
groups of observations that are similar in some sense. We know that each data point belongs to g heterogeneous
populations, but we don’t know how to discriminate between them. Fitting the data with mixture models allows
clustering the data in terms of the estimated posterior probability that a single point belongs to a given group. For this
purpose, we follow the method proposed by [38], to assess the quality of the clustering of each mixture model using
an index measure called correct classification rate (CCR), which is based on the posterior assigned to each subject. For
the investigation of the clustering ability of the FM-MSNC model, we simulated 500 MC samples considering mixtures
with two components from model (22), with sample size n ∈ (100, 200, 300), without censoring and left-censoring
proportion settings (5%, 10%, 20%) taken in each mixture component, and parameter values set at
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To fit the data we used the models FM-MSNC and FM-MNC amd for each model we obtain the estimate of the posterior

probability that an observation yi belongs to the jth component of the mixture, Ẑij . So, if maxj Ẑij occurs in compo-
nent j, then yi is classified into group j. For the mth sample of the MC, we computed the correct classification rate,
denoted by CCRm, then obtained the average of the correct classification rate (ACCR) of CCRm. Table 5 shows the
ACCR values. From this table it is possible to observe that the model produces a high correct classification rate in
both fitted models. We see that the rate decreases when the censoring proportion increases, this decrease is stronger
for n = 100. Looking at the n samples, keeping the censoring proportion fixed, the rate increased when the sample
size increased.
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Figure 2: Simulated data: Number of mixture components. AIC, BIC and EDC values for 100 samples and left-censoring level
10%. Solid line: FM-MSNC, long dashed: FM-MNC(2), dot dashed: FM-MNC(3) and dotted: FM-MNC(4).

Table 5: Simulated data: Clustering. ACCR for fitted models FM-MSNC and FM-MNC for the simulated.

n
FM-MSNC FM-MNC

0% 5% 10% 20% 0% 5% 10% 20%
100 0.9685 0.9619 0.9558 0.945 0.8801 0.8809 0.8772 0.8735
200 0.9729 0.9661 0.9599 0.9508 0.9206 0.9191 0.916 0.9016
300 0.9733 0.9661 0.9608 0.9545 0.9248 0.9229 0.9233 0.9155

Figure 3 shows the allocations in each group for sample size n = 200 and left-censoring proportion of 0%,5%,10% and
20%, where the groups are represented by black and red points. The first line of graphics (a - d) contains the scatter
plot of the generated real data, where the black circles represent an observation erroneously classified as belonging to
the black group. The second line of graphics (e - h) contains the scatter plot of the fitted FM-MSNC model, where the
black circles represent an observation erroneously classified as belonging to the black group. The last line of graphics
(i - l) contains the scatter plot of the fitted FM-MNC model, where the red circles represent an observation erroneously
classified as belonging to the red group.

5.5 Asymptotic properties

In this simulation study, we analyze the absolute bias and the mean square error (mse) of the estimates obtained from
the FM-MSNC model through the proposed EM algorithm. The idea of this simulation is to provide empirical evidence
about the consistency of the ML estimates. These measures are defined by

bias(θi) =
1

M

M∑

m=1

|θ̂(m)
i − θi| and mse(θi) =

1

M

M∑

m=1

(θ̂
(m)
i − θi)

2, (31)

where M is the number of MC samples, and θ̂
(m)
i is the estimated ML of the parameter θi for the mth sample. Four

different sample sizes (n = 300, 600, 900, 1200) are considered. For each sample size, we generated 500 Monte Carlo

16



A PREPRINT - SEPTEMBER 24, 2020

0

3

6

9

0.0 2.5 5.0 7.5

(a) 0%

0

3

6

9

0.0 2.5 5.0 7.5

(b) 5%

0

3

6

9

0.0 2.5 5.0 7.5

(c) 10%

3

6

9

2.5 5.0 7.5

(d) 20%

0

3

6

9

0.0 2.5 5.0 7.5

(e) 0%

0

3

6

9

0.0 2.5 5.0 7.5

(f) 5%

0

3

6

9

0.0 2.5 5.0 7.5

(g) 10%

3

6

9

2.5 5.0 7.5

(h) 20%

0

3

6

9

0.0 2.5 5.0 7.5

(i) 0%

0

3

6

9

0.0 2.5 5.0 7.5

(j) 5%

0

3

6

9

0.0 2.5 5.0 7.5

(k) 10%

3

6

9

2.5 5.0 7.5

(l) 20%

Figure 3: Simulated data: Clustering. Scatter plots for some simulated data from FM-MSNC model with n = 200 and the
respective density contours (first line). Clustering scatter plots from fitted skew-normal (second line) and normal (last line) with
multiples censoring level.

samples with 5%, 10%, 15% censoring proportion. Using the EM algorithm, the absolute bias and mean squared error
for each parameter over the 500 datasets were computed. The parameter setup is as follows

0.65 SN2

([
−5
−4

]
,

[
3 1
1 4.5

]
,

[
−2
3

])
+ 0.35 SN2

([
2
3

]
,

[
2 1
1 3.5

]
,

[
−2
3

])
.

The results of the estimates of µ1,F1,λ1,µ2,F2,λ2 and π are shown in Figures 4, 5, and 6. As a general rule, we can
say that the bias and mse tend to approach zero when the sample size increases, indicating that the estimates based
on the proposed EM algorithm, under the FM-MSNC model, provide good asymptotic properties.

6 Application

To illustrate the performance of our proposed model and algorithm, we consider a dataset of trace metal concentrations
collected by the Virginia Department of Environmental Quality (VDEQ) that was previously analyzed by [16] and [19]
using the normal and Student-t distribution, respectively.

This dataset consists of p = 5 concentration levels of dissolved trace metals in independently selected n = 184
freshwater streams across the Commonwealth of Virginia. The five attributes are trace metals: copper (Cu), lead (Pb),
zinc (Zn), calcium (Ca) and magnesium (Mg). The Cu, Pb, and Zn concentrations are reported in µg/L of water,
whereas Ca and Mg concentrations are reported in mg/L of water. Since the measurements were taken at different
times, the presence of multiple limits of detection values are possible for each trace metal [34]. The limits of detection
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Figure 4: Simulated data: Asymptotic properties. bias and mse of µ1 and µ2 estimate in the FM-MSNC model with different
censoring levels: 5% (solid line), 10% (dashed line), 15% (dot-dashed line).
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Figure 5: Simulated data: Asymptotic properties. bias and mse of λ1 and λ2 estimate in the FM-MSNC model with different
censoring levels: 5% (solid line), 10% (dashed line), 15% (dot-dashed line).

for Cu and Pb are both the 0.1 µg/L, 1.0 µg/L for Zn, while Ca and Mg have limits of 0.5 mg/L and 1.0 mg/L,
respectively.

The percentage of left-censored values of 2.7% for (Ca), 4.9% for (Cu), 9.8% for (Mg) are small in comparison to
78.3% for (Pb) and 38.6% for (Zn). Also note that 17.9% of the streams had 0 non-detected trace metals, 39.1% had
1, 37.0% had 2, 3.8% had 3, 1.1% had 4 and 1.1% had 5. As the concentration levels are strictly positive measures,
to guarantee this, we consider an interval-censoring analysis by setting all lower limits of detection equal to 0 for
all trace metals. Also, due to the different scales for each trace metal, we standardize the dataset to have zero mean
and variance equal to one as in [37]. The work mentioned before considered this dataset to be left censored without
taking into account the possibility of predicting negative concentration levels for the trace metals. For instance, note
that Pb censored concentrations take values in the small interval [0, 0.1]. Thus, after transforming the data, the new
limits of detection are −0.8776 (Cu), −0.3124 (Pb), −0.4719 (Zn), −0.7894 (Ca), −0.6289 (Mg). Figure 7 shows the
histogram for each original trace metal with the detection limits and all of them together.It can be seen that most of the
distributions associated with the variables have two or more modes and are right skewed. For this reason we propose
to fit a FM-MSNC model.

We fit the data with 1, 2 and 3 components considering the FM-MSNC, FM-MtC and FM-MNC models, for the FM-MtC

model we consider fixed degrees of freedom, as described in [19]. The number of groups of the model is chosen
according to the information criteria as shown in Table 6. It can be seen that according to all model selection criteria
the FM-MSNC model with three components fits the data best. We considered the variance-covariance (Γ) to be equal
in order to reduce the number of parameters to be estimated (parsimonious model).

The ML estimates of the parameters were obtained using the EM algorithm described in Subsection 4.1. The results
are shown in Table 7. As can be seen, 46.99% of the freshwater streams belong to Cluster 1, Cluster 2 contains around
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Figure 6: Simulated data: Asymptotic properties. bias and mse of F1 = Σ
1/2
1 , F2 = Σ

1/2
2 and π estimates in the FM-MSNC

model with different censoring levels: 5% (solid line), 10% (dashed line), 15% (dot-dashed line).
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Figure 7: VDEQ data. Histograms of all the original five attributes of Virginia trace metal concentration data and all attributes
together. The red line means the censoring limit detection for each concentration.

34.40% of them and the remaining 15.78% belong to Cluster 3. Table 6 shows that the best FM-MNC model has two
components, and in this 96.73% of freshwater streams belong to Cluster 1 and the remaining 3.27% are in Cluster 2.
For the FM-MtC model, the best model also has two components and three degrees of freedom. In this case, 85.19% of
freshwater streams belong to Cluster 1 and the remaining 14.81% belong to Cluster 2.

In Figure 8, we fit the data using the FM-MSNC with three components. The scatter plots of the observations yi
(i = 1, . . . , 184) for each pair of trace metals reveal that it is difficult to classify freshwater streams by visualization
because these observations almost mix together.

7 Conclusions

In this paper, a novel approach to analyze multiply censored and missing data is presented based on the use of finite
mixtures of multivariate skew-normal distributions. This approach generalizes several previously proposed solutions
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Table 6: VDEQ data. Model selection criteria for various FM-MSNC and FM-MNC models. Values in bold correspond
to the best model according to the criteria.

FM-MSNC FM-MNC

Criteria G = 1 G = 2 G = 3 G = 1 G = 2 G = 3

Log-likelihood -1269.302 -910.3387 -697.6815 -1351.596 -1268.848 -1210.626

AIC 2588.604 1892.677 1489.363 2743.192 2589.695 2485.253

BIC 2668.977 2008.415 1640.465 2807.491 2673.284 2588.13

EDC 2606.427 1918.343 1522.871 2757.451 2608.232 2508.066

Time 1.7023 min. 4.0229 min. 9.2552 min. 1.054 sec. 7.729 sec. 26.0381 sec.

FM-MtC

ν = 3 ν = 4

Criteria G = 1 G = 2 G = 3 G = 1 G = 2 G = 3

Log-likelihood -1040.276 -1018.943 -1074.852 -1061.702 -1036.393 -1072.487

AIC 2120.553 2089.887 2213.705 2163.404 2124.786 2208.974

BIC 2184.852 2173.475 2316.583 2227.702 2208.375 2311.852

EDC 2134.812 2108.423 2236.519 2177.662 2143.323 2231.788

Time 16.672 sec. 35.9952 sec. 2.8734 min. 13.1202 sec. 29.9673 sec. 2.68 min.

Table 7: VDEQ data. ML estimates of parameters from fitting the FM-MSNC model with 3 components to the Virginia
trace metal concentration data.

Parameter Estimate

(π1, π2, π3) (0.4699, 0.3440, 0.1861)

µ1 (−0.3789,−0.5344,−0.722,−0.5744,−0.4833)

µ2 (−0.8189,−0.6838,−0.4485, 0.805, 0.7948)

µ3 (1.2681,−0.463,−0.503,−0.3272,−0.305)

λ1 (0.4867,−1.4692, 13.2902,−0.4112,−0.0062)

λ2 (28.3006,−1.012, 6.0129, 4.4658,−1.6659)

λ3 (−0.5228, 11.9182, 12.3316,−1.3583, 1.2298)

F1 = Σ
1/2
1




0.3328 0.1229 0.0419 0.0338 0.0573
0.3733 0.0060 −0.0105 0.0038

0.5540 −0.0174 −0.0061
0.0952 0.0554

0.1208




F2 = Σ
1/2
2




1.0582 −0.035 0.1628 0.1981 0.0710
0.102 −0.0074 0.0025 0.0111

0.4745 0.0157 0.1260
1.0244 0.3920

1.2392




F3 = Σ
1/2
3




1.4992 −0.1232 −0.2405 0.1341 0.0950
2.2952 0.8411 −0.0459 −0.0915

2.1716 −0.1003 −0.0633
0.2824 0.1472

0.2640




for censored data, such as, the finite mixture of Gaussian components [17, 12, 16] and the finite mixture of Student-
t components [19], which are also restricted to a left or right censored problem. A simple and efficient EM-type
algorithm was developed, which has closed-form expressions at the E-step and relies on formulas for the mean vector
and covariance matrix of the multivariate truncated skew-normal distribution, for which the the R MomTrunc library
is used [15]. The proposed EM algorithm was implemented as part of the R package CensMFM and is available for
download at the CRAN repository. The experimental results and the analysis of a real dataset provide support for the
usefulness and effectiveness of our proposal.

The method proposed in this paper can be extended to other types of mixture distributions, for example, the multivariate
scale mixtures of skew-normal distributions [11] or generalized hyperbolic mixtures [10]. It is also of interest to
develop an effective Markov chain Monte Carlo algorithm for the FM-MSNC models in a fully Bayesian treatment.
Finally, the proposed methods can also be easily applied to other substantial areas in which the data being analyzed
have censored and/or missing observations, for instance, factor analysis models [36] and linear mixed models [22, 18].
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