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Abstract: In this paper, we introduce a novel parametric quantile regression model for asymmetric
response variables, where the response variable follows a power skew-normal distribution.
By considering a new convenient parametrization, these distribution results are very useful for
modeling different quantiles of a response variable on the real line. The maximum likelihood
method is employed to estimate the model parameters. Besides, we present a local influence study
under different perturbation settings. Some numerical results of the estimators in finite samples are
illustrated. In order to illustrate the potential for practice of our model, we apply it to a real dataset.

Keywords: asymmetric data; parametric inference; quantile regression model; skew-normal
distributions

1. Introduction

Frequently, in real life, we find continuous data on the real line that are asymmetrical; these data
cannot be modeled by known symmetric distributions as the normal, Student-t, Cauchy, Laplace,
and logistic distributions. It is therefore more interesting to propose more flexible models that will be
useful for modeling highly skewed data which arises in several areas.

In this context, the seminal work in Azzalini [1] introduces a skew-symmetric family of
distributions, where this last is established by using a symmetric distribution as a kernel. When this
last follows a normal distribution, it rises the well-know skew-normal (SN) distribution. The SN
distribution has a skewness parameter which makes possible to have a reasonable model for a skewed
distribution. Furthermore, the SN distributions include the normal distribution and possesses several
properties which coincide or are similar to the ones of the normal distribution (Azzalini [1,2]). However,
the SN distribution is limited in terms of flexibility, that is, for moderate values of the skewness
parameter nearly all the mass accumulates either on the positive or negative real line, as determined by
the sign of the skewness parameter. In such cases, the SN distribution closely resembles the half-normal
density, with a nearly linear shape in the side with smaller mass (Arellano-Valle et al. [3]).

Another alternative to model skewed data is using the family of power-symmetric distributions
(see Pewsey et al. [4]) of which the most widely used is the power-normal (PN) distribution.
Some references where this family is discussed are Lehmann [5], Durrans [6], Gupta and Gupta [7],
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Castillo et al. [8], among others. In a series of papers by Martínez-Flórez et al. ([9–13]) extensions and
applications of the PN distribution can be found.

An unification of the SN and PN distributions was proposed by Martínez-Flórez et al. [11],
namely the power skew-normal (PSN) which is a generalization of the SN and PN distributions.
Even though sample information about the SN distribution has been widely studied, there is not the
same scope for the PSN distribution, which being a generalization of the first one, has characteristics
of interest such as: (i) the SN and PN distributions as particular cases, and (ii) the PSN distribution
provides greater range for skewness and kurtosis coefficients compared with the SN distribution
(see Table 1), being more flexible to model highly skewed data, which arises frequently in many
practical situations. However, the expectation and variance of the PSN distribution cannot be expressed
in closed form (have complicated forms), which makes these distributions unsuitable for regression
modeling (Martínez-Flórez et al. [11]). Fortunately, the cumulative distribution function (cdf) of the
PSN distribution has a simple form that depends on Owen’s T function (to be defined in the next
section). This facilitates the calculation of the quantile function (inverse of the cdf), allowing its
utilization in the quantile regression (QR) framework. Quantile regression quantifies the association of
the explanatory variables with a given quantile of a dependent variable. In this study, we propose
a quantile linear regression model based on the PSN distribution, adopting a new parametrization
of this model indexed by the quantile, precision and shape parameters. In particular, for this work,
inference is conducted via maximum likelihood.

Table 1. Range for skewness and kurtosis coefficients for SN, PN and PSN models.

Coefficient SN PN PSN

Skewness (−0.9953, 0.9953) [−0.6115, 0.9007] [−1.6476, 0.9953)
Kurtosis [3, 3.8692) [1.7170, 4.3556] [1.4672, 5.4386]

The rest of the paper proceeds as follows. In Section 2, we introduce a new parameterization of
the PSN distribution that is indexed by the location, precision and shape parameters and its association
with a quantile regression model. In addition, elements related to the maximum likelihood (ML)
method are presented as well. Section 3 presents local influence measures under three different
perturbation schemes, whereas in Section 4 a real data analysis is conducted in order to show the
applicability of our proposed reparametrized PSN (RPSN) based QR model. Final section summarizes
the contributions of the paper.

2. A PSN Distribution Parameterized by Its Quantile Parameter, and Its Associated Quantile
Regression Model

In this section, we briefly study the PSN distribution based on Martínez-Flórez et al. [11].
We introduce a RPSN distribution which is characterized by its quantile, which allows us to use
this distribution in the context of QR models.

The probability density function (pdf) of the PSN distribution is given by

f (y; θ) =
α

σ
φλ (z) [Φλ (z)]

α−1 ,

where θ = (µ, σ, λ, α)>, z = (y− µ)/σ and φλ(·) and Φλ(·) denote the pdf and cdf of the (standard)
skew normal model given by

φλ(y) = 2 φ(y)Φ(λ y) and Φλ(y) =
∫ y

−∞
φλ(t)dt = Φ(y)− 2 T(y, λ),



Symmetry 2020, 12, 1938 3 of 16

where φ(·) and Φ(·) denote the pdf and cdf of the standard normal distribution and T(·, ·) is the
Owen’s T function defined as

T(y, λ) =
1

2π

∫ λ

0

e−
1
2 y2(1+t2)

1 + t2 dt.

Moreover, the cdf of the PSN model is given by

F(y; θ) = [Φλ (z)]
α = [Φ (z)− 2 T (z, λ)]α .

Note that α = 1 and λ = 0 corresponds to the very well known SN and PN models, respectively.
The main advantage of the PSN model is that provides greater range for skewness and kurtosis
coefficients compared with the SN and PN models. Table 1 shows the range for those coefficients.

The r-th moment of the distribution depends on the expected value of [Φ−1
λ (Y)]s, s = 1, . . . , r,

where Y have beta distribution with shape parameters α and 1, respectively. For this reason,
some interesting characteristic of the model, such as mean and variance, have cumbersome forms.
On the other hand, quantiles of the model also need to be computed numerically since non-closed form
are available for the distribution. For this reason, non-interpretation and useful reparametrizations can
be performed for this model. Besides, as the Owen’s T function satisfies T(0, λ) = (2π)−1 arctan(λ),
we note that

F(µ; θ) =

[
1
2
− 1

π
arctan(λ)

]α

.

For this reason, if we consider the restriction

α = α(λ, τ) =
log(τ)

log
(

1
2 −

1
π arctan(λ)

) , (1)

we have that F(µ; θ) = τ with µ representing directly the τ-th quantile of the distribution. For a fixed τ

and considering α(λ, τ) as in (1), we have a flexible model for quantile regression. This parametrization
has not been proposed in the statistical literature. Hence, we can rewrite the PSN distribution according
to the parameters µ, σ and λ, whose cumulative distribution function is now given by

F(y; µ, σ, λ) = [Φ (z)− 2 T (z, λ)]

log(τ)

log( 1
2−

1
π arctan(λ)) ,

where the quantile τ ∈ (0, 1) is assumed to be known. Hereafter, we use the notation Y ∼ RPSN(µ, σ, λ)

to indicate that Y is a random variable following a restricted PSN distribution with quantile parameter
µ, precision parameter σ, and shape parameter λ. Figure 1 shows the density function for the RPSN
model with location and scale parameters fixed at 0 and 1, respectively. Note that in all the curves,
the zero represents the specified quantile τ. We also note that the curves are not necessarily symmetric
for τ = 0.5 (the median case).

Let Y1, . . . , Yn be the n independent random variables, where each Yi, i = 1, . . . , n, follows the PSN
distribution with quantile parameter µ, precision parameter σ, and shape parameter λ. Suppose that,
for a given τ ∈ (0, 1), the location, precision and shape parameters for the RPSN satisfy the following
functional relations

g1(µi(τ)) = ηi1(τ) = x>i1 β1(τ),

g2(σi(τ)) = ηi2(τ) = x>i2 β2(τ) and

g3(λi(τ)) = ηi3(τ) = x>i3 β3(τ), (2)

where β j(τ) = (β j1(τ), . . . , β jp1(τ))
>, j = 1, 2, 3, are vectors of unknown regression coefficients which

are assumed to be functionally independent, β j(τ) ∈ Rpj , with p1 + p2 + p3 < n, ηji(τ) are the
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linear predictors, and xij = (xij1, . . . , xijpj)
>, are observations on p1, p2 and p3 known regressors,

for i = 1, . . . , n. Moreover covariate matrices Xj = (x1j, . . . , xnj)
> are assumed to have rank pj,

for j = 1, 2, 3. Link functions g1 : R→ R, g2 : R→ R+ and g3 : R→ R in (2) must be strictly monotone
and at least twice differentiable, and g2 is also required to be a positive function. Such functions also
satisfy that µi = g−1

1 (x>i1 β1), σi = g−1
2 (x>i2 β2) and λi = g−1

3 (x>i3 β3), with g−1
j (·) being the inverse

function of gj(·).
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Figure 1. Pdf for the RPSN(µ = 0, σ = 1, λ) for different values of λ: τ = 0.1 (left panel); τ = 0.5
(center panel); τ = 0.9 (right panel). Values for λ are: −5 (black line), −1.5 (red line), −0.5 (blue line), 0
(green line), 0.5 (orange line), 1.5 (magenta line) and 5 (purple line).

The log-likelihood function for θ = θ(τ) = (β1(τ), β2(τ), β3(τ)) has the form `(θ) = ∑n
i=1 `i,

where

`i = `(zi, µi, σi, λi) = log α(λi, τ)− log(σi) + log
[
φλi (zi)

]
+ [α(λi, τ)− 1] log

[
Φλi (zi)

]
. (3)

The (p1 + p2 + p3)× 1 score vector of the model is given by

˙̀(θ) =


∂`(θ)
∂β1

∂`(θ)
∂β2

∂`(θ)
∂β3

 =


X>1 W1/2

β1
˙̀

µ

X>2 W1/2
β2

˙̀
σ

X>3 W1/2
β3

˙̀
λ

 , (4)

where Wβ j = diag(wβ j1 , . . . , wβ jn), wβ1i = (∂µi/∂η1i)
2, wβ2i = (∂σi/∂η2i)

2, wβ3i = (∂λi/∂η3i)
2, ˙̀

ξ =

( ˙̀
ξ1 , . . . , ˙̀

ξn), for ξ ∈ {µ, σ, λ}, with ˙̀
ξi = ∂`(µi, σi, λi)/∂ξi. Such elements are specified in the

Appendix A.1 Section.
The Hessian for the model is

H(θ) =

 Hβ1β1 Hβ1β2 Hβ1β3

· Hβ2β2 Hβ2β3

· · Hβ3β3


=

 X>1 ῭
µµWβ1X1 X>1 ῭

µσW1/2
β1

W1/2
β2

X2 X>1 ῭
µλW1/2

β1
W1/2

β3
X3

· X>2 ῭
σσWβ2X2 X>2 ῭

σλW1/2
β2

W1/2
β3

X3

· · X>3 ῭
λλWβ3 X3

 , (5)

where ῭
ξξ
′ = diag( ῭

ξ1ξ
′
1
, . . . , ῭

ξnξ
′
n
), for ξ, ξ

′ ∈ {µ, σ, λ}, with ˙̀
ξiξ
′
i
= ∂2`i/∂ξi∂ξ

′
i . Such elements are

detailed in the Appendix A.1.
The ML estimators β̂1(τ), β̂2(τ) and β̂3(τ) of β1(τ), β2(τ) and β3(τ), respectively, can be

obtained by solving simultaneously the nonlinear system of equations `(θ) = 0p1+p2+p3 , where
0r denotes a vector of zeros with dimension r. Unfortunately, it is not possible to obtain analytical
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expressions for the ML estimators above, so numerical methods for solving nonlinear equations system
are required.

3. Local Influence

Global influence is related to case deletion, i.e, the effect of dropping a case from the dataset
Cook [14]. The likelihood distance (LD) is defined as LD(ω) = 2[`(θ̂)− `(θ̂(ω), ω)], where θ̂(ω) is
the ML estimate of θ under a perturbed model related to ω = (ω1, . . . , ωn)>, a perturbation vector.
Cook [14] studied the LD(ω) around the non-perturbed vector ω0 such as θ̂(ω0) = θ̂. The normal
curvature for ω̂ at the direction of the orthonormal vector ||d|| is defined as Cd(θ̂) = 2|d>∆>ω ῭

θ̂θ̂∆ωd|,
where ῭

θ̂θ̂ is the Hessian of `(θ) evaluated at θ = θ̂ and ∆ω = ∂2`(θ, ω)/∂θ∂ω> |θ=θ̂(ω) and both, ∆ω

and ῭
θ̂θ̂ are evaluated at θ̂(ω). Hence, Cdmax is the largest eigenvalue of B = ∆>ω0

῭
θ̂θ̂∆ω0 and dmax the

corresponding orthonormal eigenvector. The index dmax plot of the matrix B suggests how to perturb
the model (or data) to obtain large changes in the estimates of θ.

For three common perturbation schemes we compute the matrix

∆ω =
∂2`(θ, ω)

∂θ∂ω
=
(

∆>ω,β1
∆>ω,β2

∆>ω,β3

)>
,

where ∆>ω,β j
= ∂2`(θ,ω)

∂β1∂ω .

3.1. Case Weights Perturbation

For this case, the perturbed log-likelihood function is defined as `(θ, ω) = ∑n
i=1 ωi`i,

where `(zi, µi, σi, λi) is defined in (3) and 0 ≤ ωi ≤ 1, for i = 1, . . . , n. In this case, ω0 = (1, . . . , 1) and

∆ω =
(

X>1 W1/2
β1

˙̀>
µ X>2 W1/2

β2
˙̀>
σ X>3 W1/2

β3
˙̀>
λ

)>
.

3.2. Case Response Perturbation

We consider now an additive perturbation on the ith response (say yi(·)) by making yi(ωi) =

yi + ωiSYi , where ωi ∈ R and SYi is a scale factor. An usual consideration for such scale factor
is SYi = SY, with SY denoting the sample standard deviation of Y. Note that ω0 = (0, . . . , 0).
Therefore, under the scheme of response perturbation, the log-likelihood function is given by
`(θ, ω) = ∑n

i=1 `(zi(ωi), µi, σi, λi), where zi(ωi) = (yi(ωi)− µi)/σi and

∆ω = SY

(
X>1 W1/2

β1
῭>

µµ X>2 W1/2
β2

῭>
µσ X>3 W1/2

β3
῭>

µλ

)> ∣∣∣∣
zi=zi(ωi)

.

3.3. Case Continuous Covariate Perturbation

Consider an additive perturbation on a particular continuous covariate including on the quantile
parameter, namely xt, for t ∈ {1, . . . , p1}, by making xit(ωi) = xit + ωiSXit , where SXit is a scale factor.
Again, a usual consideration is SXit = SXt , with SXt the sample standard deviation for Xt. Note that
ω0 = (0, . . . , 0). Then, under the scheme of response perturbation, the log-likelihood function is given
by `(θ, ω) = ∑n

i=1 `(zi, µi(ωi), σi, λi), where µi(ωi) = g−1
1 (x>i1(ωi)β1) and x>i1(ωi) = x>i1 + ωiSXitJt,

with Jt a vector of dimension p1 with zeros, except in the t-th element where is a one. Finally

∆ω = SXt

(
diag(Jt)X>1 W1/2

β1
῭>

µµ diag(Jt)X>2 W1/2
β2

῭>
µσ diag(Jt)X>3 W1/2

β3
῭>

µλ

)> ∣∣∣∣
zi=zi(ωi)

.
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4. Real Data Analysis

In this section, we present an application to 202 Australian athletes from the Australian
Institute of Sport. Such data were discussed in Cook and Weisberg [15]. In order to exemplify the
proposed model, we consider the following quantile regression model: bmii(τ) = µi(τ) + σi(τ)εi(τ),
where εi(τ) ∼ PSN(0, 1, λ, τ) and

µi(τ) = β10(τ) + β11(τ)lbmi + β12(τ)sexi

σi(τ) = β20(τ) + β21(τ)lbmi.

Here, the response bmi represents the body mass index, while the covariates lbm and sex represent
the lean body mass and sex of the athletes, respectively. Note that λ is not modeled by covariates and
sex was not included in the scale parameter because in preliminary analysis we found the coefficient
related to such term was not significant (to any τ ∈ (0, 1)). This same problem was illustrated in
Galarza et al. [16] with a class of skew distributions (SKD), but considering a regression scheme only
in the quantile parameter. For comparison purpose, we considered the skewed normal (SKN) and
skewed Student-t (SKT) models, that are models belonging to the SKD class. Additionally, we also
considered the Gamma-Sinh Cauchy (GSC) model, including covariates only in the quantile parameter.
Table 2 shows the Akaike Information Criterion (AIC, Akaike; [17]) for the referred models. Note that,
except for τ = 0.25, the RPSN-QR model attached the minimum AIC for the considered quantiles.

Table 2. AIC criterion for different models parameterized in terms of the quantile.

τ SKN SKT GSC RPSN (σ Constant) RPSN (Modeling σ)

0.10 1097.74 817.77 803.08 808.64 801.37
0.25 1084.46 803.90 801.96 811.08 803.11
0.50 1095.56 810.99 854.38 815.79 806.76
0.75 1151.40 854.57 861.37 824.56 814.01
0.90 1220.96 914.43 865.16 838.78 825.95

Tables 2 displays the MLEs with corresponding standard errors (SE) for the fitted proposed model
for each τ = 0.10, 0.50 and 0.90. Note that we have a positive relationship between the response
variable (bmi) and lbm in all quantiles. We also observe that the quantile intercepts increases as τ

increases. Regarding the parameter λ, the greater τ, the greater the estimate of λ.

Table 3. Estimates and SE for parameters in athletes dataset in RPSN-quantile regression (QR) model
for different values of τ.

τ = 0.10 τ = 0.50 τ = 0.90
Parameter Est. SE p-Value Est. SE p-Value Est. SE p-Value

β10(τ) 6.4642 1.1552 - 6.7727 1.0867 - 6.1798 1.0859 -
β11(τ) 2.3077 0.3742 <0.0001 2.5008 0.3728 <0.0001 2.9324 0.3695 <0.0001
β12(τ) 0.2037 0.0157 <0.0001 0.2299 0.0147 <0.0001 0.2728 0.0151 <0.0001
β20(τ) 0.7633 0.7952 - 0.2252 0.3996 - −0.6261 0.2700 -
β21(τ) 0.0096 0.0036 0.0040 0.0108 0.0037 0.0017 0.0125 0.0035 0.0002
β30(τ) −1.1940 1.4984 - −0.8381 0.5984 - −0.4916 0.2588 -

Figure 2 shows point estimates and 95% confidence intervals (CIs) for model parameters under
the RPSN-QR model for different quantiles. It can be seen that as τ increases the coefficient of lean body
mass and the coefficient of gender become larger. Moreover, bmi and lbm are significant in explaining
all the quantile modeled in µi. Figure 3 presented the estimated quantiles 0.10, 0.25, 0.50, 0.75 and 0.90
for the bmi in terms of lbm and the sex of the athlete.
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Figure 2. Athletes dataset: Point estimates (center line) and 95% confidence intervals (CIs) for model
parameters under RPSN-QR model.
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Figure 3. Data analysis: Fitted RPSN-QR model lines for the response (left panel for males, center
panel for females) and scale parameter (right panel) over the grid τ = {0.10, 0.25, 0.50, 0.75, 0.90}.

We also present in Table 4 the p-value to validate the normality hypothesis based on the
Kolmogorov–Smirnov (KS; Kolmogorov, [18]) for the quantile residuals (Dunn and Smyth, [19])
using different quantile τ of such residuals. In all cases, the KS test did not reject the null hypothesis of
normality. Therefore, the RPSN is appropriated to model all the quantile in this problem.

We also performed a local influence analysis. Figure 4 shows such analysis under the three
perturbation schemes discussed in Section 3 for τ = 0.5. The Appendix A.2 shows the analysis for
other quantiles τ = 0.1, 0.25, 0.75 and 0.9. Note that observations 75, 162 and 178 are detected as
potentially influent for all the mentioned quantiles and the observation 53 appears for the quantile 0.9.
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To check the impact on the inference of possible influential cases, we consider the relative change
(RC), which is computed by removing the possible influential cases for each parameter and its SE as

RCθj(i)
= 100%×

∣∣∣∣∣ θ̂j − θ̂j(i)

θ̂j

∣∣∣∣∣ and RCSE(θj(i))
= 100%×

∣∣∣∣∣∣
SE
(

θ̂j

)
− SE

(
θ̂j(i)

)
SE
(

θ̂j

)
∣∣∣∣∣∣ ,

where θj is any component of the vector θ = θ(τ), where θ̂j(i) and SE
(

θ̂j(i)

)
denote the ML estimate of

θj and its corresponding SE, respectively, after dropping the i-th observation. Table 5 shows such RC for
the non-intercept regression coefficients when observations 53, 75, 162 and 178 are removed. Note that
the RC is greater for the estimated parameters than its estimated SE. However, the significance of
β11(τ) and β12(τ) is maintained whereas β21(τ) is not significant with a 5%. More combinations of
dropped observations are presented in the Appendix A.2.

Table 4. p-values for normality K-S test for residuals under our RPSN-QR model for the athletes dataset
for different quantilesτ’s.

τ 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
p-value 0.995 0.996 0.991 0.976 0.951 0.914 0.864 0.853 0.837

τ 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
p-value 0.765 0.810 0.777 0.683 0.604 0.524 0.394 0.191

Table 5. Relative changes (RC) (in %) in ML estimates and their corresponding SE’s for the indicated
parameter and respective p-values for the athletes dataset when observations 53, 75, 162 and 178
are dropped.

Dropped τ
Cases Parameter 0.10 0.25 0.50 0.75 0.90

53, 75, RC 7.20 9.06 12.56 17.82 24.05
162 and 178 RCSE β11(τ) 0.74 0.74 0.69 0.63 0.52

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

RC 1.98 5.63 10.93 17.22 23.38
RCSE β12(τ) 0.47 0.26 0.20 0.34 0.42

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

RC 34.55 36.83 40.05 43.61 46.96
RCSE β21(τ) 0.23 0.53 0.69 0.36 0.66

p-value 0.0806 0.0762 0.0727 0.0697 0.0670
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Figure 4. Index plots for Ci(β̂1) (left), Ci(β̂2) (center) and Ci(β̂3) (right) under the weight perturbation
(upper), response perturbation (center) and covariate perturbation (lower) schemes for RPSN model
for τ = 0.5.

5. Concluding Remarks

Extending the quantile regression methods to include asymmetric response variables on the
real line is promising area of research. In this paper, we have introduced a novel flexible parametric
quantile regression model for asymmetric response variables, which can be very useful in modeling
response variables on the real line at different quantiles. The proposed quantile regression model was
built based on PSN distribution using a new parameterization of this distribution that is indexed by
quantile, precision and shape parameters, in which a function of any quantile of the response variable
is given by a linear predictor that is defined by regression parameters and explanatory variables.
We consider a frequentist approach to estimate the model parameters, and the maximum likelihood
inference is employed to estimate the model parameters. An application using a real dataset was
presented and discussed. Results of the application showed that the model is adequate; it elaborately
showed which covariates influence the response at different levels of quantiles. Finally, there are many
possible extensions of the current work, for instance, mixtures of RPSN regression models in order to
accommodate multimodality, a semi-parametric component to include a functional covariate to model
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nonlinearity of the response, and measurement errors, among others. An in-depth investigation of
these topics is beyond the scope of this work, and will be considered elsewhere.
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Appendix A

Appendix A.1. Details for Score and Hessian

For the score vector in Equation (4), the elements of the form ∂`i
∂ξi

, with ξ ∈ {µ, σ, λ} are given by

∂`i
∂µi

= − 1
σi

{
λim0(λizi)− zi + [α(λi, τ)− 1]mλi (zi)

}
,

∂`i
∂σi

= − zi
σi

{
λim0(λizi)− zi + [α(λi, τ)− 1]mλi (zi)

}
− 1

σi
,

∂`i
∂λi

= log(τ)
[
α(λi, τ)(λ2

i + 1)
(π

2
− arctan(λi)

)]−1 (
1 + log Φλi (zi)

)
+ zim0(λizi)− [α(λi, τ)− 1]

m0(λizi)

(1 + λ2
i )

,

where mλ(z) = φλ(z)/Φλ(z).
For the Hessian in Equation (5), the elements of the form ∂2`i/∂ξi∂ξ

′
i , with ξ, ξ

′ ∈ {µ, σ, λ} are
given by

∂2`i

∂µ2
i
=

1
σ2

i

{
λ2

i m
′
0(λizi)− 1 + [α(λi , τ)− 1]m

′
λi
(zi)

}
∂2`i

∂µi∂σi
=

zi

σi

{
λ2

i m
′
0(λizi)− 1 + [α(λi , τ)− 1]m

′
λi
(zi)

}
∂2`i

∂µi∂λi
= − 1

σi

{
log(τ)mλ(zi)

(1 + λ2
i )
(

π
2 − arctan(λi)

) (
1 + log Φλi (zi)

) + m(λizi) + λizim
′
0(λizi)

− [α(λi , τ)− 1]λim
′
0(λizi)

(1 + λ2
i )

}
∂2`i

∂σ2
i
=

zi

σ2
i

{
λ2

i m
′
0(λizi)− 1 + [α(λi , τ)− 1]m

′
λi
(zi)

}
+

1
σ2

i

∂2`i

∂σi∂λi
= − zi

σi

{
log(τ)mλ(zi)

(1 + λ2
i )
(

π
2 − arctan(λi)

) (
1 + log Φλi (zi)

) + m(λizi) + λizim
′
0(λizi)

− [α(λi , τ)− 1]λim
′
0(λizi)

(1 + λ2
i )

}
∂2`i

∂λ2
i
=

log2(τ)
[
(1− πλ + 2λiarctan(λi)) log

(
1
2 −

1
π arctan(λi)

)
+ 1
] (

1 + log Φλi (zi)
)

[
α(λi , τ)(1 + λ2

i )
(

π
2 − arctan(λi)

)]2
−

log(τ)m0(λizi)mλi (zi)

α(λi , τ)(1 + λ2
i )

2
(

π
2 − arctan(λi)

)
(1 + log Φλi (zi))

+ z2
i m
′
0(λizi)

− m(λizi)

log(τ)α2(λi , τ)(1 + λ2
i )

2
(

π
2 − arctan(λi)

)
− [α(λi , τ)− 1]

(1 + λ2
i )

{
zim

′
(λizi)− 2

λim(λizi)

(1 + λ2
i )

}
,

where m
′
λ(z) = λm0(λz)mλ(z)− zmλ(z)−m2

λ(z).
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Appendix A.2. Local Influence

In this section, we present additional information for the local influence analysis in the Athletes
dataset discussed in Section 5.
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Figure A1. Index plots for Ci(β̂1) (left), Ci(β̂2) (center) and Ci(β̂3) (right) under the weight perturbation
(upper), response perturbation (center) and covariate perturbation (lower) schemes for RPSN model
for τ = 0.1.
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Figure A2. Index plots for Ci(β̂1) (left), Ci(β̂2) (center) and Ci(β̂3) (right) under the weight perturbation
(upper), response perturbation (center) and covariate perturbation (lower) schemes for RPSN model
for τ = 0.25.
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Figure A3. Cont.
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Figure A3. Index plots for Ci(β̂1) (left), Ci(β̂2) (center) and Ci(β̂3) (right) under the weight perturbation
(upper), response perturbation (center) and covariate perturbation (lower) schemes for RPSN model
for τ = 0.75.
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Figure A4. Index plots for Ci(β̂1) (left), Ci(β̂2) (center) and Ci(β̂3) (right) under the weight perturbation
(upper), response perturbation (center) and covariate perturbation (lower) schemes for RPSN model
for τ = 0.9.

Table A1. RCs (in %) in ML estimates and their corresponding SEs for the indicated parameter and
respective p-values for the athletes dataset when observation 75 and 178 are dropped separately.

Dropped τ

Cases Parameter 0.10 0.25 0.50 0.75 0.90

75 RC 5.31 7.22 10.82 16.2 22.57

RCSE β11(τ) 0.23 0.20 0.17 0.11 0.04

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

RC 1.82 5.03 10.02 16.09 22.08

RCSE β12(τ) 0.15 0.05 0.08 0.07 0.17

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

RC 6.77 9.84 14.27 19.20 23.84

RCSE β21(τ) 0.65 0.93 1.05 0.71 0.33

p-value 0.0118 0.0105 0.0095 0.0086 0.0078

178 RC 0.72 2.62 6.30 11.88 18.50

RCSE β11(τ) 0.17 0.15 0.12 0.07 0.00

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

RC 0.12 3.36 8.60 14.88 21.06

RCSE β12(τ) 0.13 0.06 0.09 0.07 0.18

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

RC 22.91 25.43 29.09 33.17 37.01

RCSE β21(τ) 0.75 0.47 0.31 0.61 1.61

p-value 0.0449 0.0418 0.0393 0.0371 0.0352
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Table A2. RCs (in %) in ML estimates and their corresponding SEs for the indicated parameter
and respective p-values for the athletes dataset when observations {75, 178} and {75, 162, 178} are
dropped separately.

Dropped τ

Cases Parameter 0.10 0.25 0.50 0.75 0.90

75 and RC 6.30 8.16 11.69 17.01 23.29

178 RCSE β11(τ) 0.41 0.39 0.34 0.28 0.19

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

RC 1.75 5.32 10.58 16.84 22.97

RCSE β12(τ) 0.29 0.08 0.03 0.18 0.27

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

RC 31 33.34 36.67 40.38 43.87

RCSE β21(τ) 0.04 0.27 0.42 0.11 0.91

p-value 0.0674 0.0633 0.0600 0.0572 0.0546

75, 162 RC 5.43 7.27 10.80 16.13 22.45

and 178 RCSE β11(τ) 0.57 0.54 0.50 0.43 0.34

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

RC 1.36 5.12 10.53 16.91 23.14

RCSE β12(τ) 0.39 0.18 0.12 0.26 0.35

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

RC 43.37 45.46 48.35 51.53 54.51

RCSE β21(τ) 0.29 0.61 0.77 0.46 0.56

p-value 0.1300 0.1251 0.1212 0.1178 0.1149
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