
GENERATION OF HDR IMAGES IN NON-STATIC CONDITIONS
BASED ON GRADIENT FUSION

Keywords: High Dynamic Range Images, Gradient Fusion, Registration, Optical Flow.

Abstract: We present a new method for the generation of HDR images in non-static conditions, i.e. hand held camera
and/or dynamic scenes, based on gradient fusion. Given a reference image selected from a set of LDR pictures
of the same scene taken with multiple time exposure, our method improves the detail rendition of its radiance
map by adding information suitably selected and interpolated from the companion images. The proposed
technique is free from ghosting and bleeding, two typical artifacts of HDR images built through image fusion
in non-static conditions. The advantages provided by the gradient fusion approach will be supported by the
comparison between our results and those of the state of the art.

1 INTRODUCTION

Radiance in natural scenes can span several orders
of magnitude, yet commercial cameras can capture
only two orders of magnitude and reproduce Low Dy-
namic Range (LDR) photographs, often affected by
saturated areas and loss of contrast and detail. Dur-
ing the last fifteen years, many techniques have been
studied and proposed in order to expand the dynamic
range of digital photographs to create the so-called
High Dynamic Range (HDR) images, i.e. matrices
whose entries are proportional to the actual radiance
of the scene. For a thorough overview of the HDR
imaging we refer the interested reader to the excellent
book (Reinhard et al., 2005).

Two main problems remain to be solved in HDR
imaging. First, while the technique proposed by De-
bevec and Malick (Debevec and Malik, 1997) can be
considered as the ‘de facto standard’ for the creation
of HDR images in static conditions, i.e. with perfectly
still camera and without moving objects in the scene,
no standard is available when these condition fail.
Second, HDR images cannot be entirely displayed
or printed on the majority of commercial screens or
printers, hence a so-called ‘Tone-Mapping’ transfor-
mation is needed to properly reduce their range with-
out losing details and respecting as much as possible
the original color sensation.

In this paper we deal only with the first problem,
i.e. we study HDR image generation in non-static
conditions, which are, by far, the most common. As
we will explain in more detail later on, standard HDR
image creation algorithms assume perfect alignment
for the input images and no motion, the price to pay
when this assumption fails is the generation of arti-

facts, in particular those called ‘ghosts’, i.e. objects
with a translucent appearance induced by an incoher-
ent image fusion, and ‘bleeding’, i.e. the diffusion of
an artificial color over a flat image region, see Fig-
ure 1. To avoid this and other problems that we will
discuss in more detail later, instead of synthesizing a
new HDR image from the original sequence of LDR
images, we will select just one of them to be the ref-
erence and then we will improve the associated radi-
ance map by adding as many details as possible with-
out introducing artifact. In doing this, a fundamental
role will be played by gradient fusion, which has sev-
eral advantages with respect to intensity fusion in this
case. As we will show in Section 5, the results of the
proposed technique compare well to the state of the
art.

2 STATE OF THE ART IN HDR
IMAGE CREATION

For the sake of readability, it is worthwhile to be-
gin this section by introducing some concepts and no-
tation that will be used throughout the paper. We
define the radiance E(x) to be the electromagnetic
power per unit of area and solid angle that reaches the
pixel x of a camera sensor with spatial support Ω ⊂
R2. The camera response function f is the non-linear
mapping f : [0,+∞) → {0, . . . ,255} that transforms
the radiance E(x) acquired in the time ∆t into I(x), the
intensity value of the pixel x, i.e. f (E(x)∆t) = I(x). f
is assumed to be semi-monotonically increasing, i.e.
its derivative is supposed to be non-negative, since
the digital values stored by the camera remain con-



Figure 1: From top to bottom: an example of ghost and
bleeding artifacts, respectively.

stant or increase as the radiance increases. In par-
ticular, the graph of f remains constant to 0 (black)
for all the radiance values that do not overcome the
sensibility threshold of the camera sensor and to 255
(white) for all those radiance values that exceed its
saturation limit. For values that lie inside these two
extremes, f is invertible and so we can use its inverse
f−1 : {0, . . . ,255} → [0,+∞) to pass from image in-
tensity values I(x) to the corresponding radiance val-
ues E(x): f−1(I(x)) = E(x)∆t. The camera response
function can be built in controlled conditions by tak-
ing photos of a uniformly illuminated Macbeth chart
with patches of known reflectance.

However, in many practical cases, the camera re-
sponse function is not known, thus various techniques
for recovering f or its inverse without a Macbeth chart
have been developed. These methods are called chart-
less and are all based on the same principle: since
the camera sensor is limited by its sensibility thresh-
old and saturation limit, in order to detect the whole
scene radiance one has to take N ≥ 2 shots with dif-
ferent time exposures ∆t j, j = 1, . . . ,N. The next
step consists in using the redundant information about
the scene provided by the set of N digital images
I j to recover the inverse camera function f−1. This
is the only step that distinguishes the various algo-
rithms proposed in the HDR imaging literature that
we will briefly recall later. Let us for the moment sup-
pose that we have indeed computed f−1, then we can
construct the j-th partial radiance E j(x) as follows:
E j(x)≡ f−1(I j(x))

/
∆t j , j = 1, . . . ,N. Notice that we

use the adjective ‘partial’ when referring to the radi-
ances E j because they are built by applying f−1 to I j,
thus E j cannot be considered a faithful representation
of the entire radiance range, but only of the part cor-
responding to clearly visible details in the j-th image.
Finally, in order to compute the set of final radiance
values {E(x), x ∈Ω} that will constitute the HDR im-
age of the scene, one performs a weighted average of
the partial radiances:

E(x) =
∑N

j=1 w(I j(x))E j(x)

∑N
j=1 w(I j(x))

, (1)

where the weights w take their maximum in 127, the
center of the LDR dynamic range, and decrease as the
intensity values approach 0 or 255, when the infor-
mation provided by I j is imprecise. If one deals with
color images, then this procedure must be repeated
three times in order to recover three radiance func-
tions relative to the red, green and blue spectral picks
of the scene radiance.

As we have said, the algorithms for HDR im-
age generation in static conditions are practically dis-
tinguished only for how they recover inverse cam-
era response function f−1. Mann and Picard (Mann
and Picard, 1995; Mann, 2000) were the first to ad-
dress this problem, they postulated a gamma-like an-
alytical expression for f−1 and solved a curve fit-
ting problem to determine the most suitable param-
eters. Mitsunaga and Nayar (Mitsunaga and Nayar,
1999) improved Mann and Picard’s work by assum-
ing f−1 to be a polynomial and determining its co-
efficients through a regression model. Debevec and
Malik (Debevec and Malik, 1997) worked with log-
arithmic data and did not impose any restrictive an-
alytic form to f−1, yet they required it to be smooth
by adding a penalization term proportional to the sec-
ond derivative of f−1 to the following optimization
problem: Min‖ log f−1(I j(x))− logE(x)− log∆t j‖2.
Their method is fast and gives reliable results, for this
reason it has become the de facto standard in the field
of HDR imaging with static conditions.

Let us now consider non static conditions, i.e. im-
ages taken with hand held camera and/or of dynamic
scenes. In this case, a motion detection step must be
added to register the set of input LDR images and
a more careful fusion process must be considered to
avoid artifacts.

Let us begin with registration: Ward (Ward, 2003)
proposes to use multi-scale techniques to register a set
of Median Threshold Maps (MTB), which are a bi-
narization of the images with respect to their median
value. Although this approach is independent of the
exposure time, it depends on noise and histogram den-
sity around the median value. Grosch (Grosch, 2006)



bases a local registration method on Ward’s MTBs
and Jacobs et al. (Jacobs et al., 2008) proposed an
improvement of Ward’s work by estimating motion
with an entropy based descriptor. These methods give
good results for the case of small movements gener-
ated by a hand held camera, but they tend to produce
artifacts when dealing with large object motion, as
e.g. people walking through the scene. Tomaszewska
and Mantiuk (Tomaszewska and Mantiuk, 2007) and
Heo et al. (Heo et al., 2011) propose to compute a
global homography using RANSAC with SIFT de-
scriptors which are based on gradients. Finally, Kang
et al. (Kang et al., 2003) propose to use the camera
function to boost the original images in order to facil-
itate the registration process.

Let us consider now the methods that focus mainly
on a suitable improvement of the fusion step. As
we have said before, if we assume a perfect corre-
spondence among pixels in non-static conditions and
perform a weighted average of radiances, then ghosts
artifacts appear in areas where motion has occurred.
Many methods in the state of the art, e.g. (Khan et al.,
2006), (Heo et al., 2011), (Granados et al., 2010),
(Grosch, 2006) and (Jacobs et al., 2008), focus on
avoiding ghost formation by modifying eq. (1) in or-
der to reduce the influence of pixels corresponding to
moving objects in the process of intensity fusion to
generate the HDR image. These methods may be ro-
bust to pixel saturation and small misalignments, but
the areas that appear only in one image will be copied
while the other image areas will be averaged from dif-
ferent images, thus new boundaries could be created
in the process. In order to deal with these artifacts,
Gallo et al. (Gallo et al., 2009) propose to create
a vector field by copying patches of gradients from
the best exposed areas that match a reference image.
Then they blend the borders of neighboring patches
and integrate the vector field. The resulting images
are ghost free but artifacts appear on the patch borders
and flat regions. Finally, let us report that gradient-
based methods can deal with the radiance differences
among the image sequence but are sensitive to mis-
alignments and can produce color bleeding as Eden et
al. (Eden et al., 2006) have pointed out.

3 THE PROPOSED ALGORITHM

The method that we propose has several steps in
cascade, before describing in detail all the steps it is
worthwhile to give a brief summary of the whole al-
gorithm. Firstly, as done in the static scenario, we ap-
ply the inverse camera function to every LDR image
of the bracketing of pictures taken with different time

exposures, obtaining the partial radiance map for each
one of them. These radiance maps are radiometrically
aligned using the camera function with the exposure
time of the reference image. These modified images
are used to compute a dense correspondence field, us-
ing the optical flow algorithm of Chambolle and Pock
(Chambolle and Pock, 2011), for every image with
respect to the reference one. These correspondences
are subsequently filtered using a refinement step: for
every pair of images, we compensate the motion be-
tween them and compute the absolute value image
difference. The histogram of this image difference is
modeled as a mixture of Gaussians, which allows us
to distinguish between correct and erroneous corre-
spondences. Finally, we use the corrected correspon-
dences to obtain a gradient field that we integrate by
solving a Poisson equation. To avoid color bleeding
and other color artifacts we set a randomly selected
group of points as Dirichlet boundary conditions. The
intensity values of these points are computed through
the Debevec-Malik intensity fusion of the aligned pix-
els.

The first step of the algorithm has already been de-
scribed in the previous section, we present and discuss
the following steps in separated subsections.

3.1 RADIANCE REGISTRATION

As previously declared, the goal of our method is to
increase the detail rendition of the reference radiance
map in the areas where the original LDR reference
image was over/under exposed. The aim is to obtain
these missing details from other images of the brack-
eting without creating artifacts produced by merging
motion pixels. Thus, we need to distinguish motion
pixels that we do not want to fuse from details that
appear in other images (but not in the reference one)
that we actually want to fuse. To explain the problem
let us consider the two HDR radiance maps shown in
Figure 2.

Figure 2: Radiance maps of two pictures shown
with the software HDRshop (available online at
http://www.hdrshop.com/) useful to exemplify the ra-
diance registration process (images courtesy of O.Gallo).

From the two images in Figure 2 we take the right
one as reference. In this case we would like to intro-



duce the detail of the texture on the wall present in
the left image, avoiding the girls that cover it, given
that we want to maintain the scene of the reference
image. A registration algorithm based on intensity
or geometry comparison cannot distinguish between
wall details and people passing by, thus we need to
modify the radiance maps before operating the regis-
tration, in such a way that the pixels corresponding to
wall details are matched for fusion but not those cor-
responding to the girls. More generally, we need a
pre-registration step that modifies the radiance maps
so that the registration process will match the most
precise details, i.e. those coming from dark areas of
overexposed images and from bright areas of under-
exposed images.

Our tests have shown that the more efficient ra-
diometric modification for this scope is given by the
application of the camera response function with the
(fixed) time exposure of the reference image, to each
radiance map, as also observed by (Kang et al., 2003).
Thus instead of I j we work with the modified im-
ages f (∆trefE j(x)). Notice that the reference image
remains unchanged while for the others the transfor-
mation amounts to a normalization of the exposure
time. Notice that, since the range of f is {0, . . . ,255},
after this process the radiance maps become a new set
of LDR images. The advantage of this transformation
is that the intensity levels become closer and that the
image areas corresponding to the over/under-exposed
values of the reference image also appear saturated in
the other radiometrically aligned images.

After this pre-registration step, we can apply any
optical flow method over the new set of LDR images.
We used the method of Chambolle and Pock (Cham-
bolle and Pock, 2011) which provides dense corre-
spondences between pixels. Although the matchings
are accurate, the method can produce errors on the
boundaries of moving objects and the areas where ob-
jects disappear due to motion. Thus a refinement step
is needed to check whether the correspondences are
correct or not.

3.1.1 REFINEMENT STEP

Let us assume that we have two radiometrically
aligned images Iref, I j, j = 1, . . . ,N, without motion.
The pixel-wise distance between them defines the dif-
ference image ‖Iref(x)− I j(x)‖ that depends on their
noise. If we model this noise as additive and Gaus-
sian, then the difference image histogram will be
highly populated close to zero. As the motion (or mis-
matches) among the images increases, more modes
appear in this histogram. We therefore propose mod-
eling this difference histogram as a set of Gaussians
using a Gaussian Mixture Model (GMM) where the

most probable Gaussian is associated to the prop-
erly matched pixels and the other Gaussians represent
matchings that are not correct. Let the most proba-
ble Gaussian be characterized by a median µ and a
standard deviation σ. We define as a mismatch those
correspondences with a distance from µ given by ασ,
where α is a parameter of the algorithm. After the re-
finement step, a pixel of the reference radiance map
can have a set of correspondences in pixels of the
other images of the sequence or no correspondence at
all if the pixel belongs to an object that appears only
in the reference image.

4 GRADIENT FUSION

After the steps previously discussed we know
which pixels can be fused without generating artifacts
in the final HDR image. Here we examine the pro-
cess that will add details to the reference radiance map
from the others in the set. Let us begin by observing
that in general we do not have correspondences be-
tween all pixels of the reference image and pixels in
all the other images of the bracketing, thus an inten-
sity fusion can create artificial edges, as can be seen
in Figure 3.

Figure 3: Detail of a result obtained by building radiance
maps with an intensity fusion process, it can be seen that
artificial edges appear (in particular around the moving peo-
ple). Image (courtesy of O. Gallo) shown with HDRShop at
a fixed time exposure.

Note that the people are moving along the se-
quence, thus, their intensity values are being copied
from the reference image to the final image while
the other areas are computed by a weighted average
among the corresponding pixels. This difference gen-
erates new edges around the subjects in motion. In
order to avoid this problem, we propose using gradi-
ent fusion techniques in the Log-scale. Let us set for



this scope Ĩ j = log10(I j), j = 1, . . . ,N.
Poisson Editing (Pérez et al., 2003) allows mod-

ifying the features of an image without creating new
edges or artifacts in the LDR domain. The idea is
to copy a target gradient field in a region Ω′ of the
image domain which is then integrated by solving a
Poisson equation. Thus, the problem is to properly
choose the target gradient field. To do that, recall that
our aim is to improve the detail rendition of the fi-
nal HDR image, so we must give more importance to
gradients with largest norm. As discussed in (Piella,
2009), if we consider the weighted second moment
matrix Gs(x):

Gs(x) =

∑N
j=1

(
s j(x) ∂Ĩ

∂x1

)2
∑N

j=1 s2
j(x)

∂Ĩ
∂x1

∂Ĩ
∂x2

∑N
j=1 s2

j(x)
∂Ĩ
∂x2

∂Ĩ
∂x1

∑N
j=1

(
s j(x) ∂Ĩ

∂x2

)2

 (2)

where the partial derivatives are com-
puted at the point x = (x1,x2) and s j(x) =

‖∇Ĩ j(x)‖
/√

∑N
i=1 ‖∇Ĩi(x)‖2 , then the predom-

inant gradient direction is given by the largest
eigenvector of Gs(x) and the corresponding eigen-
value gives its norm. In this process the sign of the
gradient is lost. In our experiments, we have seen that
the best results are achieved when we restore the sign
to be that of the gradient with maximum modulus.

We can now define the target vector field for Pois-
son editing as follows: given a pixel x in the reference
image, from all gradients of the bracketing of images
at x, we select the gradient with largest modulus. Let
us denote it by M(x). Then the target vector V in x is
defined as:

V (x) =
√

λε(x)θ, (3)
where λ is the largest eigenvalue of Gs(x), θ its asso-
ciated eigenvector, and

ε(x) =

{
−1 if 〈θ,M(x)〉 ≤ 0;
1 otherwise.

We stress that V (x) is not necessarily a conservative
vector field and, as remarked by Tao et al. (Tao et al.,
2010) this can lead to bleeding effects along strong
edges. In order to stop the bleeding effect, we have
introduced Dirichlet boundary conditions at a set of
randomly chosen points of Ω taken from the set of
points for which there exist reliable correspondences.
For them we have set the intensity as the radiance ob-
tained with the Debevec-Malik intensity fusion.

5 RESULTS AND COMPARISONS

Now that the method has been described we can
proceed to give some implementation detail. The op-

tical flow method of Chambolle and Pock was ap-
plied to the luminance values of the radiometrically
aligned images. For the refinement step we modeled
the histogram of image differences as a GMM (Gaus-
sian Mixture Model) with two components. A final
step in the refinement process is introduced to avoid
taking into account pixels on the boundaries: inter-
preting the mismatches as motion masks, we apply to
these masks a dilation filter with a 6× 6 structuring
element (Gonzales and Woods, 2002). In the fusion
process we randomly select the 10% of the total image
area as possible Dirichlet points keeping only those
with matches. Finally, we solve the Poisson equation
using the Conjugate Gradient method for each color
channel independently.

Let us now discuss the results of our proposal.
Since HDR images cannot be represented on a LDR
display, to show the results obtained from our algo-
rithm we will show snapshots of the image provided
by the free HDRShop software, available online at
www.hdrshop.com, at a given exposure time. The
comparison with the state of the art will be done fol-
lowing the procedure used in other papers, that is, by
comparing the tone mapped versions of the HDR im-
ages.

First of all we would like to start by showing the
improvement obtained using our method. In Figure 4
we can see two original partial radiance maps com-
pared to our results. The enhancement is specially
obvious on the building wall (first row), where our
method recovers texture and color, and also in the
trees, which show much more details (second row).

Figure 4: Left column: original reference radiance map
at two different time exposures set in the HDRshop soft-
ware. Right column: corresponding enhanced image with
the method proposed in the paper. The parameter α was set
to 1.

The parameter α controls the flexibility in the se-
lection of matches in the registration process. Our
experiments have shown that a value of α that gives



overall good performances is 0.5, for which we have
found no artifacts in the final images. As we approach
1 we generate more details, but we might also create
artifacts, as can be seen in Figure 5.

Figure 5: From left to right: results of our algorithm ob-
tained by setting α = 0.5 (no artifacts) and α = 1 (artifacts
appear), respectively.

The selection of the reference image can also in-
fluence the appearance of ghosts or artifacts. We have
in fact observed that when a moving pixel with a color
similar to the background is located in an area satu-
rated by the camera function, then the refinement step
may fail to distinguish background from foreground
and color artifacts may appear. We can see an exam-
ple in Figure 6: in the first row we present two images
of the bracketing that were used as two different ref-
erence images. The corresponding results are shown
in the second row. In both cases the parameter value
is α = 1. Note that the result shown on the left hand
side has an artifact on the puppet’s leg. The reason
is that the reference image is saturated in that area,
so the refinement step cannot distinguish between the
puppet’s leg and the ball.

Figure 6: First row: two different original images taken as
reference. Second row: output of our algorithm. It can be
noticed an artifact in the left hand image due to the failure
of the refinement step explained in the text.

Finally, we show the comparison between our re-

sults and those of Gallo et al. (Gallo et al., 2009)
who also use a gradient fusion technique. Since they
present their results using tone mapped versions of
their images, we also used a tone mapped version of
ours. In Figure 7 we can see that our method avoids
the generation of geometry artifacts as well as bleed-
ing.

Figure 7: First row, from left to right: tone mapped results
of our HDR generation model and that of Gallo et al., re-
spectively. Second row: detail magnification of the pictures
above. The color difference is due to the different tone map-
ping operators used. We stress that the artifact visible in the
image of Gallo et al’s is not produced by the tone mapping
operator, but by their HDR formation model.

6 CONCLUSIONS

We have proposed a method for HDR image cre-
ation in the non-static scenario where photographs
have been taken with a moving hand-held camera
and/or the scene to be captured is dynamic. Our
method is based on gradient fusion techniques that
compares well to the state of the art. We have com-
puted reliable correspondences by analyzing the dif-
ferences of registered images using a GMM model.
We have pointed out the importance of using gradient-
based method instead of intensity-based methods. Fi-
nally, we proposed a technique in which a suitable
selection of Dirichlet conditions permits to avoid or
strongly reduce the bleeding artifacts that may appear
after the integration of vector fields.
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