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Abstract. This paper tackles the problem of mixing static and dynamic
texture by combining the statistical properties of an input set of images
or videos. We focus on Spot Noise textures that follow a stationary and
Gaussian model which can be learned from the given exemplars. From
here, we define, using Optimal Transport, the distance between texture
models, derive the geodesic path, and define the barycenter between
several texture models. These derivations are useful because they allow
the user to navigate inside the set of texture models, interpolating a
new one at each element of the set. From these new interpolated models,
new textures can be synthesized of arbitrary size in space and time.
Numerical results obtained from a library of exemplars show the ability
of our method to generate new complex and realistic static and dynamic
textures.

1 Introduction

The problem of synthesizing new textures is central in Image Processing and
Computer Graphics. In order to render scenes for video games or animation films,
a texture is mapped onto a given surface. Because the shape and extension of
the surface may vary, the main goal of texture synthesis is to be able to generate
as much texture as it is needed in a fast and realistic way. This problem has
been addressed since the beginning of Computer Graphics, so we can find many
solutions in the literature.

1.1 Previous Works

Copy-based methods. These methods are adapted to complicated (not
even random) textures. The main assumption is that textures contain repeating
local patterns. They synthesize new textures by copying patches or pixels from
the original image in a way that preserves local structure. First proposed by
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Popat and Picard [1] in the context of clustering, it was simplified and popu-
larized by Efros and Leung [2] for texture synthesis. For a thorough review of
copy-based methods we refer the reader to the article [3].

Statistical texture models. Statistical parametric models are generally
not as good in handling complex texture patterns, but are more flexible and
fast, see for instance [4]. The main assumption of these models is that textures
are modeled by a probability distribution. Thus, texture analysis consists in esti-
mating the probability function and texture synthesis amounts to generate new
realizations of this probability distribution. Many methods have been proposed
within this category, specially relevant is the use of Markov random fields (i.e.
[5]) which model also copy-based methods (see for instance [6]) or stationary
Gaussian random fields [7].

Spot Noise models were first introduced by van Wijk [8] and are station-
ary models that replicate, in random locations, simple spot images. Galerne et
al.[7] analyze the asymptotical behavior of Van Wijk’s method to propose a new
method (Asymptotic Discrete Spot Noise), which consists in modeling texture
with a stationary Gaussian distribution. In this paper, we focus our attention
on this texture model and extend this framework to texture mixing.

Dynamic texture synthesis. Many methods for static image synthesis
have been adapted to the dynamic scenario (see for example [9], [6] in the con-
text of the copy-based methods), but very few have studied the specific dynamics
of texture in time. In the context of Gaussian textures, linear dynamical sys-
tems [10] and dynamic multiscale autoregressive models [11] have been proposed
to model the evolution of texture with time. However, these methods define
models that are difficult to manipulate (for instance to achieve model mixing.)
Recently, an extension to Galerne et al.’s model [7] for stationary Gaussian
dynamic textures has been proposed by Xia et al. [12]. In this paper, Xia et
al. model dynamic texture as a 3D Gaussian random field, with stationarity in
space and time. Here, we take advantage of this extension to generate new mixed
models from input dynamic textures.

Texture mixing. More complex textures can be obtained by texture mix-
ing which extends the traditional texture synthesis by considering the interplay
between several texture models. This is a difficult problem since it requires to
average very distinct statistical features. Previous works make use of mixture
models, see for instance [13]. The use of non-parameteric histogram averaging has
also been proposed for grayscale [14] as well as color and wavelets features [15].
We propose here a simpler approach that makes use of a parameterization of the
Gaussian texture model. Defining a geodesic path with Optimal Transport (OT)
between the original Gaussian models, we can generate new textures sharing the
characteristics of the input ones. The proposed method ensures that the new
texture model stays Gaussian.

1.2 Contributions

We propose a new framework for texture synthesis based on the definition of
geodesic paths between stationary Gaussian texture models. Our first contribu-
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tion is the definition of the geodesic distance, according to OT, between texture
models, and the geodesic path associated to such distance. The straightforward
consequence of having this geodesic path is that we obtain a method for interpo-
lating new texture models with the statistical properties of the input textures.
Our second contribution consists in the extension of the interpolation formula
between two models to several models by defining the OT barycenter. The fi-
nal algorithm is solidly founded, the texture synthesis is fast, and the obtained
results look natural.

2 Spot Noise Texture Model

We model textures as stationary Gaussian random fields. These assumptions
allow us to learn the texture model parameters from a single texture exemplar.

2.1 Notations

Deterministic input exemplar textures are represented as f € RV*? where
N = H§:1 N; is the number of pixels (k = 2 for image and k = 3 for videos) and
d is the number of channels (d = 1 for grayscale and d = 3 for color datasets).
We refer to f(x) € R? to the color vector at position x, where there are N such
positions . We denote Gaussian distributions as u = A'(m, &) where m € RV*4
is the mean of the distribution and ¥ € RN4*Nd ig a positive semi-definite
covariance matrix.

The k-dimensional discrete Fourier transform f € RVXd of f € RV ig
defined as

Vo= (@r,.own), f@) =3 f@)e =9 re.

It is computed in O(Ndlog(Nd)) operations and it is inverted with the same
complexity using the inverse FFT.

Given two periodic images or videos f,g € RY, we define the convolution
h=fxgof fand g as

hz) =Y flz—ygly) < hw) = Ffw)jw). (1)

2.2 Stationary Gaussian Models

We model a texture as a random vector X distributed according to some
Gaussian distribution g, which we denote X ~ p. A random vector X is sta-
tionary if the distribution of X (-) and X (-4 7) are the same, for any translation
vector T € ZF, where we assume periodic boundary conditions. Section 2.4 details
how to learn the parameters when the input exemplar is non-periodic.

The fact that X is stationary implies that the mean m(z) € R is independent
of the position = and the covariance operator X is block-diagonal over the Fourier
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domain, thus it can be computed using convolutions, that is to say, the covariance

operator y = X'f can be applied over the Fourier domain as g(w) = Y(w) f(w)
where 3 (w) € C%*4 is a positive Hermitian matrix.

2.3 Spot Noise Model
A Spot Noise (SN) random vector X = (Xy,...,Xy) is a Gaussian texture

model obtained from an input texture f = (fi,..., f4) by convolving each chan-
nel with the same Gaussian white noise [7]. This reads
ijl,...,d, Xj:mj—l—fj*W (2)

where * is the k-dimensional periodic convolution and the W is a white noise
W ~ N(0,I1dx/VN), and m; is the mean of f;. We denote p = u(f) the
distribution of this random vector X, which is the SN distribution associated to
the exemplar f.

Equivalently, Spot Noise models are the stationary Gaussian vectors for which
the matrices ﬁ‘(w) are rank one, and can thus be decomposed as

2(w) = flw) fw), 3)

where u* € C¢ is the complex conjugate transpose of u € C%.

2.4 Stationary Gaussian Model Synthesis

Once the parameters X and m of the Gaussian model y = A (m, X) have been
computed, the synthesis of a texture g € RV*? is obtained using a realization
of the Gaussian process.

For a generic stationary model, this is achieved by computing the Cholesky
factorization of the frequency covariance ¥(w) = A(w)A(w)* where A(w)* €
C9*? is the complex conjugate transpose of the matrix A(w) € C¥*?. Then, we
compute §(w) = A(w)i(w) for w # 0 where w is a realization of N'(0, Idxg/vN)
and §(0) = Nm(0) is the constant mean of the model.

In the special case where the model is a Spot Noise u(f), meaning that
P(w) = f(w)f(w)*, the synthesis is even faster using, for w # 0, §(w) =
(w) f(w), or equivalently using a realization of the convolution formula (2).

Boundary conditions. Up to now, the image is assumed to be periodic in
our texture model. To be able to learn the parameters from a non-periodic image,
a preprocessing is required. Symmetrizing the image with respect to the bound-
aries introduces axis-aligned artifacts. Following [7], we substitute each channel
[; of the input exemplar by its periodic component as defined by Moisan [16].

Extending the texture size. In our context, the process of extending the
input texture of size Ny X N X N3 to any arbitrary size M7 x My x M3 can be done
following the method proposed by Galerne et al. [7]. The periodic component of
the original texture is located at the center of a flat new image (or video) of value
m and dimensions M7 x My x M3. To avoid the introduction of high frequencies,
the new borders are smoothed with a spatial windowing function. This extended
image or video is then used to learn a texture model of size M7 x Ms x Mj3.
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3 Optimal Transport Geodesic of Spot Noise

Now that we have defined our texture model we proceed to the exposition of
our model mixing method. It operates using OT geodesic over the set of Gaussian
distributions. This is achieved by defining the OT geodesic interpolation [17] over
the space of Gaussian models.

3.1 Optimal Transport Geodesics of Gaussian Fields

The first step is to define a geodesic distance between texture models, that
is to say, between two arbitrary stationary Gaussian distributions. The L2 OT
distance between u; = N (m;, ;) reads:

d(po, p1)? = tr (X + X1 — 2X01) + |mo — ma |,

where X1 = (X0/22154/%)1/2 (see for instance [18]).

This distance is known to be geodesic, meaning that d(uo, pt1) is equal to the
length of the shortest path (the so-called geodesic path) ¢ € [0,1] — u; between
o and pq. This geodesic path satisfies

Vit e [07 1]&:“'75 = argmin (1 - t)d(,U'Oa /1')2 + td(ﬂlvﬁ")2v
7

where t — u; parameterizes the path, so u; can also be understood as a weighted
barycenter of the input texture models. The following proposition shows that
this geodesic path is composed of Gaussian models, so that the set of Gaussian
models are geodesically convex for the OT distance [19].

Proposition 1 If ker(Xy) ¢ ker(X1)* and rank(Xy) > rank(X}), the unique
Gaussian OT-geodesic of Gaussian distributions p; = N(m;, 2;) (for i = 0,1)
is a Gaussian distribution N'(my, Xt) where my = (1 — t)mg + tmq and

Sy = [(1 = t)Id + 1] So[(1 — ¢)Id + ¢1T] (4)

where II = 211/223:12%/2 and where AT is the Moore-Penrose pseudo-inverse

and AY? is the unique positive square oot of a symmetric semi-definite matriz.

Proof. The proof follows the one in [19] with the extra care that the covariance
can be rank-deficient, hence requiring a pseudo-inverse.

Note that the condition rank(Xy) > rank(X;) is not restrictive since one can
otherwise exchange the roles of Xy and X'; and replace t by 1—¢ when computing
the geodesic path.

We now show that if the input models g, 111 are Spot Noise, then the geodesic
interpolation is also Spot Noise. This means that the texture models we consider
are geodesically convex.
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Theorem 1 Fori=0,1, let yu; = u(fm) be Spot Noise distributions associated
with flO, fI € RNX4. The OT geodesic path p, defined in equation (4) is a
Spot Noise model ji; = p(f1) where fl1 = (1 — ) f19 + tgl with

e Jf[l] (w)*]f[o] (w)
| FH (w)* fO(w))|

Proof. The covariance operator is a matrix-convolution operator, thus we can
define in the Fourier domain its associated kernel as 3;(w) = flI(w)fll(w)* €
C?*4, The symmetric operator IT from equation (4) is also a matrix convolution
ITg = mx g with kernel whose Fourier transform is

Vw, §Mw)= . (5)

Nl

#(w) = 3¢ @) (£ (@) £o(@) 5 )

ool

22 (w).

Note that the square root of a rank-1 matrix can be easily computed as

1
VueCl (uwu*)Y? = —uu* e C*4

Jul

Using this property, together with the definition of %, and denoting u; = f (w)
one proves that

(w) = Tuluf(ulu’{)_lulu’{ =

(6)

Observe that although the matrix ujug is non invertible, the above expression
is correct because the mapping m(w) is zero on the orthogonal of w;.

The expression (4) of the covariance implies that it is also a matrix-convolution
operator with kernel defined over the Fourier domain as

Lyw) = f(w) [ (w)" € C?*4,
where

f(w) = [(1 - t)Id + t7(w)] 1 € C.
Using the expression (6) for 7(w), one thus has that u; = u(f*) is a Spot Noise
model where [ is defined as
F ()" fO(w)
|11 (w)* f0 (w)]

g (w)

Fw) = (1 =) /O w) +¢ fiw) e,

Therefore the new interpolated models p; are Gaussian, Spot Noise, and their
covariances can be computed by a suitable averaging of the Fourier transforms
of the input exemplars. The pseudocode of the proposed method is provided in
Fig. 1.
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Input: exemplars (f[o], f[”)7 weight ¢ € [0, 1].

Output: realization h of the interpolated model y; between p; = p(f1) for i =0, 1.
Preprocessing: for i =0, 1,

e Replace f g by its periodic component. If needed extend its size by zero padding.
e Compute the mean m; and subtract it, Vz, f(z) < fil(z) — m,.

e Computes the Fourier transforms f[i] of i using FFTs.

Model mixing:

e Compute §!*! with equation (5).

e Vw, compute f(w) = (1 —t)f%(w) + tgM(w)

e Compute m¢ = (1 —t)mo + tmy € RY.

Spot Noise synthesis:

e Compute a realization w € R of N'(0,Idn/V/N) (using e.g. Matlab randn).

e Compute the Fourier transform @ of w using FFT.

e Yw#0,Yj=1,...,d compute h;(w) = f][t](w)tﬁ(w). Set h(0) = Nm.

e Compute h € RN*? from h using the inverse FFT.

Table 1: Pseudocode for geodesic mixing between two input exemplars.

3.2 Numerical Results

Let us now show some results obtained with the Spot Noise geodesic mix
method explained in this section. Each row of Figure 1 corresponds to a single
experiment which consists in learning the Gaussian model of two input textures
(f and ) and interpolate new Gaussian models following the path between
model f% and f!l. Note that the images in columns ¢t = 0, 1 are instances of the
original models. We would like to point out how this instances are perceptually
similar to the original input textures.

Regarding the columns for ¢ = 1/3 and 2/3, we would like to point out
how the color changes gradually as we move along the geodesic path and that
the spacial patterns of the original textures are being mixed also in different
proportion.

An example of dynamic texture mixing can be observed in Figure 2. Each
row corresponds to a single video, where every image is a single frame, ordered
from left to right. The first and last rows are the inputs and the two middle ones
where interpolated with the geodesic mix method.

4 Optimal Transport Barycenter of Spot Noise

In the previous section, we explained how to create new texture models by
following a geodesic path between the two input models. This section extends
this idea to more exemplars using a geodesic barycenter of the models. In the
case of 3 exemplars (resp. 4), this can be visualized by locating the input models
on the vertices of a 2-D triangle (resp. 3-D tetrahedron). Computing the OT
barycenter allows one to navigate inside the triangle (resp. tetrahedron).
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#101 t=0 t=1/3 t=12/3

Fig. 1. f% and s are the input texture images. After learning the input models, we
interpolate new ones (¢t =0,1/3,2/3,1) along the OT geodesic path from fI0 o p1H,

4.1 Optimal Transport Barycenter

Given a family of Gaussian distributions (y;)ier and weights p; with Y, p; =
1, where p; > 0, the OT barycenter is defined as

= argmin > pid(pu, p1)*. (7)
H iel

Note that for |I| = 2 we retrieve the geodesic path by setting ¢ = py. For
the special case of a Gaussian distribution u; = N (m;, X;), there is no close
form solution if |[I| > 2. The barycenter can be shown to be Gaussian [20]
p* = N(m*, X*), where m* = 3~ _; pym; and the covariance matrix is solution
of the fixed point equation $(X*) = X* where

o(2) =Y p (21/221-21/2)1/2 . (8)
el

This barycenter can be shown to be unique if one of the X; is full rank [20].
We leave for future work the theoretical analysis of the uniqueness when all the
covariances are rank-deficient.

4.2 Spot Noise Barycenter

When p; are Spot Noises, the covariance L™ of the barycenter is block di-
agonal over the Fourier domain, and the blocks Y*(w) satisfy the fixed point
equation X*(w) = @, (X*(w)) with

Du(2) = Y i (5258w 572) 0
i€l

We note that in general, u* is not Spot Noise because * (w) is not necessarily
rank one.

Numerical computation. Following [21], we propose to compute £*(w) by
iterating the mapping @, i.e. compute the sequence L+ (w) = &, (2F) (w)).
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Fig. 2. Example of dynamic textures mixing. The first and last row correspond to f1%
and f[l] respectively, being the order of the frames from left to right. The central rows
are instances of the interpolated dynamic texture models.

Although the mapping &,, is not strictly contracting, we observe numerically the
convergence ) (w) — £*(w) when k — 4-00. The numerical computation of &,
in the case d = 3 requires the computation of the square root of 3 x 3 matrices,
which is performed explicitly by computing the eigenvalue of the symmetric
matrix as the root of a third order polynomial. The pseudocode of the method
is detailed in Table 2.

Input: exemplars (fm),-e], weight (p;); with Ziel pi = 1.

Output: realization h of the interpolated model p* between p; = p(f%) for i € I.
Preprocessing: for i € I, apply the pre-processing step of Table 1.

Model mixing: for each w, do

o Vie I, compute Xi(w) = (fi(w))(fi (w))* € C?*¢

e TInitialize 3 (w) = 0 € C¥*4.

e Repeat until convergence £* D (w) = &,(2®) (w)) (see (9)), k + k + 1.

e Set ¥*(w) = ™ (w). Compute the Cholesky factorization 2*(w) = A(w)A(w) of
2 (w).

Gaussian model synthesis:

e Compute m* =37, pim; € R

Compute a realization w € RY*% of N'(0,Tdng).

Compute the Fourier transform @ € R™Y*¢ of w using FFT.

Vw # 0, compute h(w) = 2* (w)i(w) € C%. Set h(0) = m*.

Compute h € RN*? from h using the inverse FFT.

Table 2: Pseudocode for mixing several input exemplars.
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Fig. 3. (a) Spatial location scheme. (b) Each column corresponds to a single experi-
ment, where fI%, fI!. f[2] are the original textures located at the vertices of the trian-
gle in positions 0, 3, 7, respectively. The other numbers correspond to the interpolated
Gaussian models. Instances of all of these models can be observed in Figure 4 (a)-(e).

4.3 Numerical Examples

Given three input textures, fl°, fI1l, I and the path defined in Figure 3(a)
by the red numbers in increasing order, we generate the Gaussian models asso-
ciated to each point. A realization of each of these models can be observed in
Figure 4 (a)-(e) using as input textures the columns of Figure 3, respectively.
Note how, as we approach an input model, the features of it tend to predomi-
nate in the synthesized texture and how the color and the texture patterns are
smoothly interpolated along the geodesic path. We would also like to note that
this method is also able to reproduce small periodic patterns. Finally, in Figure
4 (f) (g) we show the results obtained with the method by Rabin et al. [15], to
be compared with the columns Figure 4 (d) (e), respectively.

5 Conclusion

We have presented a new method for texture mixing that enables the creation
of new complex textures from a set of exemplars.

Given two texture models, we used the OT geodesic path over Gaussian
distributions to interpolate new texture models. The numerical results show how
the method is able to merge the visual features of the original images into new
complex textures. We also generalized this OT geodesic method to the mixing
of an arbitrary number of models using OT barycenters. We postpone for later
research a thorough perceptual evaluation of the output textures.
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Fig. 4. Each column corresponds to a single experiment. The parameter p = (p1, p2, p3)
of equation 7 is defined according to the triangle coordinates of the points in Figure
3(a). (a)-(e) Images obtained with the barycenter mix method whose input textures
are shown as columns in Figure 3, respectively. (f)(g) Results obtained by the first
method proposed by Rabin et al. [15].
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