Weak suitable solutions for 3D MHD equations for intermittent initial data

Pedro Gabriel Fernández-Dalgo* ${ }^{* \dagger}$, Oscar Jarrín ${ }^{\ddagger}$

Abstract

In this note, we extend some recent results on the local and global existence of solutions for 3D magneto-hydrodynamics equations to the more general setting of the intermittent initial data, which is characterized through a local Morrey space. This large initial data space was also exhibit in a contemporary work [3] in the context of 3D NavierStokes equations.

Keywords : MHD equations; Local Morrey spaces; Global weak solutions; Suitable solutions.
AMS classification : 35Q30, 76D05.

1 Introduction

In a recent work [9], P. Fernandez-Dalgo \& P.G. Lemarié-Rieusset obtained new energy controls for the homogeneous and incompressible Navier-Stokes (NS) equations, which allowed them to develop a theory to construct weak solutions for initial data \mathbf{u}_{0} belonging to the weighted space $L_{w_{\gamma}}^{2}=L^{2}\left(w_{\gamma} d x\right)$, where, for $0<\gamma \leq 2$ we define $w_{\gamma}(x)=(1+|x|)^{-\gamma}$. Moreover, this method also gives a new proof of the existence of discretely self-similar solutions.

This new approach has attired the interest in the research community and more recently, in the paper [3] written by Bradshaw, Tsai \& Kukavika, the main theorem on global existence given in [9] is improved with respect to the

[^0]initial data \mathbf{u}_{0} which belongs to a larger space than the weighted Lebesgue space above. More precisely, the authors prove that if \mathbf{u}_{0} verifies
$$
\lim _{R \rightarrow+\infty} R^{-2} \int_{|x| \leq R}\left|\mathbf{u}_{0}(x)\right|^{2} d x=0
$$
then the (NS) system, with a zero forcing tensor, has a global solution.
Due to the structural similarity between the (NS) equations and the magneto-hydrodynamics equations (see equations (MHD) below) it is quite natural to extend those recent results obtained for the (NS) equations to the more general setting of the coupled magneto-hydrodynamics system which writes down as follows:
\[

(\mathrm{MHD})\left\{$$
\begin{array}{l}
\partial_{t} \mathbf{u}=\Delta \mathbf{u}-(\mathbf{u} \cdot \nabla) \mathbf{u}+(\mathbf{b} \cdot \nabla) \mathbf{b}-\nabla p+\nabla \cdot \mathbb{F} \\
\partial_{t} \mathbf{b}=\Delta \mathbf{b}-(\mathbf{u} \cdot \nabla) \mathbf{b}+(\mathbf{b} \cdot \nabla) \mathbf{u}-\nabla q+\nabla \cdot \mathbb{G} \\
\nabla \cdot \mathbf{u}=0, \nabla \cdot \mathbf{b}=0 \\
\mathbf{u}(0, \cdot)=\mathbf{u}_{0}, \mathbf{b}(0, \cdot)=\mathbf{b}_{0}
\end{array}
$$\right.
\]

Here the fluid velocity $\mathbf{u}:[0,+\infty) \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, the fluid magnetic field $\mathbf{b}:[0,+\infty) \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, the fluid pressure $p:[0,+\infty) \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the term $q:[0,+\infty) \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ (which appears in physical models considering Maxwell's displacement currents [1], [18]) are the unknowns. On the other hand, the data of the problem are given by the fluid velocity at $t=0$: $\mathbf{u}_{0}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$; the magnetic field at $t=0, \mathbf{b}_{0}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ;$ and the tensors $\mathbb{F}=\left(F_{i, j}\right)_{1 \leq i, j \leq 3}, \mathbb{G}=\left(G_{i, j}\right)_{1 \leq i, j \leq 3}\left(\right.$ where $\left.F_{i, j}, G_{i, j}:[0,+\infty) \times \mathbb{R}^{3} \rightarrow \mathbb{R}\right)$ whose divergences: $\nabla \cdot \mathbb{F}, \nabla \cdot \mathbb{G}$, represent volume forces applied to the fluids.

In the setting of this coupled system, in a previous work [7], we adapted the energy controls given in [9] for the (NS) equations to the (MHD) equations and this approach allowed us to establish the existence of discretely self-similar solutions for discretely self-similar initial data belonging to $L_{l o c}^{2}$; and moreover, the existence of global suitable weak solutions when the initial data $\mathbf{u}_{0}, \mathbf{b}_{0}$ belong to the weighted spaces $L_{w_{\gamma}}^{2}\left(\mathbb{R}^{3}\right)$, for $0<\gamma \leq 2$, and the tensor forces \mathbb{F}, \mathbb{G} belong to the space $L^{2}\left((0,+\infty), L_{w_{\gamma}}^{2}\left(\mathbb{R}^{3}\right)\right)$. For all the details see Theorem 1 and Theorem 2 in 7].

In this paper, we continue with the research program started in [7] for the (MHD) equations; and we relax the method developed in 9] to enlarge the initial data space. Indeed, following some ideas of [2] (for the (NS) equations)
we define $B_{2}\left(\mathbb{R}^{3}\right) \subset L_{\text {loc }}^{2}\left(\mathbb{R}^{3}\right)$ as the Banach space of all functions $u \in L_{\text {loc }}^{2}$ such that:

$$
\|u\|_{B_{2}}^{2}=\sup _{R \geq 1} R^{-2} \int_{|x| \leq R}|u|^{2} d x<+\infty .
$$

Moreover, we denote $B_{2} L^{2}(0, T)$ the Banach space defined as the space of all functions $u \in L_{\text {loc }}^{2}\left((0, T) \times \mathbb{R}^{3}\right)$ such that

$$
\|u\|_{B_{2} L^{2}(0, T)}^{2}=\sup _{R \geq 1} R^{-2} \int_{|x| \leq R} \int_{0}^{T}|u|^{2} d t d x<+\infty .
$$

In this framework, our main theorem reads as follows:
Theorem 1 Let $0<T<+\infty$. Let $\boldsymbol{u}_{0}, \boldsymbol{b}_{0} \in B_{2}\left(\mathbb{R}^{3}\right)$ be divergence-free vector fields. Let \mathbb{F} and \mathbb{G} be tensors belonging to $B_{2} L^{2}(0, T)$. Then, there exists a time $0<T_{0}<T$ such that the system (MHD) has a solution ($\boldsymbol{u}, \boldsymbol{b}, p, q$) which satisfies :

- $\boldsymbol{u}, \boldsymbol{b}$ belong to $L^{\infty}\left(\left(0, T_{0}\right), B_{2}\right)$ and $\nabla \boldsymbol{u}, \nabla \boldsymbol{b}$ belong to $B_{2} L^{2}\left(0, T_{0}\right)$.
- The pressure p and the term q are related to $\boldsymbol{u}, \boldsymbol{b}, \mathbb{F}$ and \mathbb{G} by:

$$
p=\sum_{1 \leq i, j \leq 3} \mathcal{R}_{i} \mathcal{R}_{j}\left(u_{i} u_{j}-b_{i} b_{j}-F_{i, j}\right) \text { and } q=-\sum_{1 \leq i, j \leq 3} \mathcal{R}_{i} \mathcal{R}_{j}\left(G_{i, j}\right),
$$

where $\mathcal{R}_{i}=\frac{\partial_{i}}{\sqrt{-\Delta}}$ denotes the Riesz transform.

- The map $t \in[0, T) \mapsto(\boldsymbol{u}(t, \cdot), \boldsymbol{u}(t, \cdot))$ is $*$-weakly continuous from $[0, T)$ to $B_{2}\left(\mathbb{R}^{3}\right)$, and for all compact set $K \subset \mathbb{R}^{3}$ we have:

$$
\lim _{t \rightarrow 0}\left\|\left(\boldsymbol{u}(t, \cdot)-\boldsymbol{u}_{0}, \boldsymbol{b}(t, \cdot)-\boldsymbol{b}_{0}\right)\right\|_{L^{2}(K)}=0 .
$$

- The solution $(\boldsymbol{u}, \boldsymbol{b}, p, q)$ is suitable : there exists a non-negative locally finite measure μ on $(0, T) \times \mathbb{R}^{3}$ such that:

$$
\begin{aligned}
\partial_{t}\left(\frac{|\boldsymbol{u}|^{2}+|\boldsymbol{b}|^{2}}{2}\right)= & \Delta\left(\frac{|\boldsymbol{u}|^{2}+|\boldsymbol{b}|^{2}}{2}\right)-|\nabla \boldsymbol{u}|^{2}-|\nabla \boldsymbol{b}|^{2}-\nabla \cdot\left(\left[\frac{|\boldsymbol{u}|^{2}}{2}+\frac{|\boldsymbol{b}|^{2}}{2}+p\right] \boldsymbol{u}\right) \\
& +\nabla \cdot([(\boldsymbol{u} \cdot \boldsymbol{b})+q] \boldsymbol{b})+\boldsymbol{u} \cdot(\nabla \cdot \mathbb{F})+\boldsymbol{b} \cdot(\nabla \cdot \mathbb{G})-\mu .
\end{aligned}
$$

In particular we have the global control on the solution: for all $0 \leq t \leq T_{0}$,

$$
\begin{align*}
& \max \left\{\|(\boldsymbol{u}, \boldsymbol{b})(t)\|_{B_{2}}^{2},\|\nabla(\boldsymbol{u}, \boldsymbol{b})\|_{B_{2} L^{2}\left(0, T_{0}\right)}^{2}\right\} \leq C\left\|\left(\boldsymbol{u}_{0}, \boldsymbol{b}_{0}\right)\right\|_{B_{2}}^{2} \\
& +C\|(\mathbb{F}, \mathbb{G})\|_{B_{2} L^{2}(0, t)}^{2}+C \int_{0}^{t}\|(\boldsymbol{u}, \boldsymbol{b})(s)\|_{B_{2}}^{2}+\|(\boldsymbol{u}, \boldsymbol{b})(s)\|_{B_{2}}^{6} d s . \tag{1}
\end{align*}
$$

- Finally, if the data verify:

$$
\lim _{R \rightarrow+\infty} R^{-2} \int_{|x| \leq R}\left|\boldsymbol{u}_{0}(x)\right|^{2}+\left|\boldsymbol{b}_{0}(x)\right|^{2} d x=0
$$

and

$$
\lim _{R \rightarrow+\infty} R^{-2} \int_{0}^{+\infty} \int_{|x| \leq R}|\mathbb{F}(t, x)|^{2}+|\mathbb{G}(t, x)|^{2} d x d s=0
$$

then $(\boldsymbol{u}, \boldsymbol{b}, p, q)$ is a global weak solution.
Remark 1.1 A vector field \boldsymbol{u} denotes the vector $\left(u_{1}, u_{2}, u_{3}\right)$ and for a tensor $\mathbb{F}=\left(F_{i, j}\right)$ we use $\nabla \cdot \mathbb{F}$ to denote the vector $\left(\sum_{i} \partial_{i} F_{i, 1}, \sum_{i} \partial_{i} F_{i, 2}, \sum_{i} \partial_{i} F_{i, 3}\right)$. Thus, if $\nabla \cdot \boldsymbol{u}=0$ then we can write $(\boldsymbol{b} \cdot \nabla) \boldsymbol{u}=\nabla \cdot(\boldsymbol{b} \otimes \boldsymbol{u})$.

It is worth to make the following comments on this result. Remark first that we prove a global control on the solutions (1) which is not exhibited in [3]. This new control is also valid for the (NS) equations (taking $\mathbf{b}=0, \mathbf{b}_{0}=0$ and $\mathbb{G}=0$ in the (MHD) system). On the other hand, it is interesting to note that the main difference between this result and our previous work [7] is that, in the more general setting of the space $B_{2}\left(\mathbb{R}^{3}\right)$, the control on the pressure p and the term q is a little more technical, and so the method seems not to be adaptable to study the existence of self-similar solutions of equations (MHD) as done in Theorem 2 in [7].

Getting back to the (NS) equations, the global existence and uniqueness of solutions for the 2 D case with initial data $\mathbf{u}_{0} \in B_{2}\left(\mathbb{R}^{2}\right)$ is an open problem proposed by A. Basson in [2]. In further research, we thing that it would be interesting to study this problem in the simplest and closest cases with an initial data in $\mathbf{u}_{0} \in B_{2,0}\left(\mathbb{R}^{2}\right)$ (see Section 2 for a definition) or $\mathbf{u}_{0} \in L_{w_{\gamma}}^{2}\left(\mathbb{R}^{2}\right)$ with $0<\gamma \leq 2$.

This paper is organized as follows. In Section 2 we state some useful tools on the local Morrey spaces. Section 3 is devoted to some a priori estimates and stability results on the (MHD) equations, which will allow us to prove our main result in the last Section 4

2 The local Morrey space B_{γ}^{p}

In order to understand how Theorem 1 generalizes the results obtained by [9], we recall some useful results obtained in [8]. We consider the space \mathbb{R}^{d} only in this section.

Definition 2.1 Let $\gamma \geq 0$ and $1<p<+\infty$. We denote $B_{\gamma}^{p}\left(\mathbb{R}^{d}\right)$ the Banach space of all functions $u \in L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{d}\right)$ such that:

$$
\|u\|_{B_{\gamma}^{p}}=\sup _{R \geq 1}\left(\frac{1}{R^{\gamma}} \int_{B(0, R)}|u(x)|^{p} d x\right)^{1 / p}<+\infty .
$$

Moreover, for $0<T \leq+\infty, B_{\gamma}^{p} L^{p}(0, T)$ is the Banach space of all functions $u \subset\left(L_{t}^{p} L_{x}^{p}\right)_{\mathrm{loc}}\left([0, T] \times \mathbb{R}^{d}\right)$ such that

$$
\|u\|_{B_{\gamma}^{p} L^{p}(0, T)}=\sup _{R \geq 1}\left(\frac{1}{R^{\gamma}} \int_{0}^{T} \int_{B(0, R)}|u(t, x)|^{p}\right)^{\frac{1}{p}} d x d t<+\infty .
$$

In what follows, we will denote $B_{\gamma}^{p}\left(\mathbb{R}^{d}\right)=B_{\gamma}^{p}$ and $B_{2}^{2}=B_{2}$.
Also, the space $B_{\gamma, 0}^{p}$ is defined as the subspace of all functions $u \in B_{\gamma}^{p}$ such that $\lim _{R \rightarrow+\infty} \frac{1}{R^{\gamma}} \int_{B(0, R)}|u(x)|^{p} d x=0$; and similar, $B_{\gamma, 0}^{p} L^{p}(0, T)$ is the subspace of all functions $u \in B_{\gamma}^{p} L^{p}(0, T)$ such that $\lim _{R \rightarrow+\infty} \frac{1}{R^{\gamma}} \int_{0}^{T} \int_{B(0, R)}|u(t, x)|^{p} d x d t=0$.

The following result shows how B_{γ}^{p} is strongly lied with the weighted spaces $L_{w_{\gamma}}^{p}=L^{p}\left(w_{\gamma} d x\right)\left(\right.$ where $\left.w_{\gamma}=(1+|x|)^{-\gamma}\right)$ considered in [7] and [9].

Lemma 2.1 Consider $\gamma \geq 0$ and let $\gamma<\delta<+\infty$. We have the continuous embedding

$$
L_{w_{\gamma}}^{p} \subset B_{\gamma, 0}^{p} \subset B_{\gamma}^{p} \subset L_{w_{\delta}}^{p}
$$

Moreover, for all $0<T \leq+\infty$ we have:

$$
L^{p}\left((0, T), L_{w_{\gamma}}^{p}\right) \subset B_{\gamma, 0}^{p} L^{p}(0, T) \subset B_{\gamma}^{p} L^{p}(0, T) \subset L^{p}\left((0, T), L_{w_{\delta}}^{p}\right) .
$$

Proof. Only the embedding $L^{p}\left((0, T), L_{w_{\gamma}}^{p}\right) \subset B_{\gamma, 0}^{p} L^{p}(0, T)$ is not proved in [8] and we prove it. Let $\lambda>1$ and $n \in \mathbb{N}$, let $u_{n}(t, x)=u\left(t, \lambda^{n} x\right)$. We have:

$$
\begin{aligned}
& \sup _{R \geq 1} \frac{1}{\left(\lambda^{n} R\right)^{\gamma}} \int_{0}^{T} \int_{|x| \leq \lambda^{n} R}|u(t, x)|^{p} d x d t=\sup _{R \geq 1} \frac{\lambda^{(d-\gamma) n}}{R^{\gamma}} \int_{0}^{T} \int_{|x| \leq R}\left|u\left(t, \lambda^{n} x\right)\right|^{p} d x d t \\
& \quad=\lambda^{(d-\gamma) n}\left\|u_{n}\right\|_{B_{\gamma}^{p} L^{p}(0, T)}^{p} \leq C \lambda^{(d-\gamma) n}\left\|u_{n}\right\|_{L^{p} L_{w_{\gamma}}^{p}}^{p} \leq C \int_{0}^{T} \int|u(s, x)|^{p} \frac{1}{\left(\lambda^{n}+|x|\right)^{\gamma}} d x d t,
\end{aligned}
$$

and we conclude by dominated convergence.
Thereafter, we have the following result involving the interpolation theory of Banach spaces:

Theorem 2 ([8]) The space B_{γ}^{p} can be obtained by interpolation: for all $0<\gamma<\delta<\infty$ we have $B_{\gamma}^{p}=\left[L^{p}, L_{w_{\delta}}^{p}\right]_{\frac{\gamma}{\gamma}, \infty}$; and the norms $\|\cdot\|_{B_{\gamma}^{p}}$ and $\|\cdot\|_{\left[L^{p}, L_{w_{\delta}}^{p}\right] ⿱ 亠 \gamma}, \infty, \infty$

This theorem has a useful corollary and in order to state it we need first the following result on the Muckenhoupt weights (see [10] for a definition).

Lemma 2.2 (Muckenhoupt weights, [9]) If $0<\delta<d$ and $1<p<$ $+\infty$. Then, $w_{\delta}(x)=(1+|x|)^{-\delta}$ belongs to the Muckenhoupt class $\mathcal{A}_{p}\left(\mathbb{R}^{3}\right)$. Moreover we have:

- The Riesz transforms R_{j} are bounded on $L_{w_{\gamma}}^{p}:\left\|R_{j} f\right\|_{L_{w_{\gamma}}^{p}} \leq C_{p, \delta}\|f\|_{L_{w_{\gamma}}^{p}}$
- The Hardy-Littlewood maximal function operator is bounded on $L_{w_{\gamma}}^{p}$:

$$
\left\|\mathcal{M}_{f}\right\|_{L_{w_{\gamma}}^{p}} \leq C_{p, \delta}\|f\|_{L_{w_{\gamma}}^{p}} .
$$

With this lemma at hand, the next important corollary of Theorem 2 follows:

Corollary 2.1 If $0<\delta<d$ and $1<p<+\infty$, then we have:

- The Riesz transforms R_{j} are bounded on $B_{\delta}^{p}:\left\|R_{j} f\right\|_{B_{\delta}^{p}} \leq C_{p, \delta}\|f\|_{B_{\delta}^{p}}$
- The Hardy-Littlewood maximal function operator is bounded on B_{δ}^{p} :

$$
\left\|\mathcal{M}_{f}\right\|_{B_{\delta}^{p}} \leq C_{p, \delta}\|f\|_{B_{\delta}^{p}} .
$$

Proof. Remark that Theorem 2 implies $B_{\delta}^{p}=\left[L^{p}, L_{w_{\delta_{0}}}^{p}\right]_{\frac{\delta}{\delta_{0}}, \infty}$, for some $\delta<\delta_{0}<d$. So, we conclude directly by Lemma 2.2 .

3 Some results for the ($M H D^{*}$) system

Our main theorem bases on the two following results for the equations:

$$
\left(M H D^{*}\right)\left\{\begin{array}{l}
\partial_{t} \mathbf{u}=\Delta \mathbf{u}-(\mathbf{v} \cdot \nabla) \mathbf{u}+(\mathbf{c} \cdot \nabla) \mathbf{b}-\nabla p+\nabla \cdot \mathbb{F}, \\
\partial_{t} \mathbf{b}=\Delta \mathbf{b}-(\mathbf{v} \cdot \nabla) \mathbf{b}+(\mathbf{c} \cdot \nabla) \mathbf{u}-\nabla q+\nabla \cdot \mathbb{G} \\
\nabla \cdot \mathbf{u}=0, \nabla \cdot \mathbf{b}=0, \\
\mathbf{u}(0, \cdot)=\mathbf{u}_{0}, \mathbf{b}(0, \cdot)=\mathbf{b}_{0} .
\end{array}\right.
$$

In this system, the functions (\mathbf{v}, \mathbf{c}) are defined as follows:

- when we will consider the (MHD) equations we have ($\mathbf{v}, \mathbf{c})=(\mathbf{u}, \mathbf{b})$.
- when we will consider the regularized (MHD) equations we have $(\mathbf{v}, \mathbf{c})=$ ($\mathbf{u} * \theta_{\epsilon}, \mathbf{b} * \theta_{\epsilon}$), where, for $0<\varepsilon<1$ and for a fixed, non-negative and radially non increasing test function $\theta \in \mathcal{D}\left(\mathbb{R}^{3}\right)$ which is equals to 0 for $|x| \geq 1$ and $\int \theta d x=1$; we define $\theta_{\varepsilon}(x)=\frac{1}{\varepsilon^{3}} \theta(x / \varepsilon)$.

3.1 A priori estimates

Theorem 3 Let $0<T<+\infty$. Let $\boldsymbol{u}_{0}, \boldsymbol{b}_{0} \in B_{2}$ be a divergence-free vector fields and let \mathbb{F}, \mathbb{G} be tensors such that $\mathbb{F}, \mathbb{G} \in B_{2} L^{2}(0, T)$. Moreover, let $(\boldsymbol{u}, \boldsymbol{b}, p, q)$ be a solution of the problem (MHD*).

We suppose that:

- $\boldsymbol{u}, \boldsymbol{b}$ belongs to $L^{\infty}\left((0, T), B_{2}\right)$ and $\nabla \boldsymbol{u}, \nabla \boldsymbol{b}$ belongs to $B_{2} L^{2}(0, T)$.
- The pressure p and the term q are related to $\boldsymbol{u}, \boldsymbol{b}, \mathbb{F}$ and \mathbb{G} by

$$
p=\sum_{1 \leq i, j \leq 3} \mathcal{R}_{i} \mathcal{R}_{j}\left(v_{i} u_{j}-c_{i} b_{j}-F_{i, j}\right) \text { and } q=\sum_{1 \leq i, j \leq 3} \mathcal{R}_{i} \mathcal{R}_{j}\left(v_{i} b_{j}-c_{j} u_{i}-G_{i j}\right) .
$$

- The map $t \in[0, T) \mapsto \boldsymbol{u}(t, \cdot)$ is $*$-weakly continuous from $[0, T)$ to B_{2}, and for all compact set $K \subset \mathbb{R}^{3}$ we have:

$$
\lim _{t \rightarrow 0}\left\|\left(\boldsymbol{u}(t, \cdot)-\boldsymbol{u}_{0}, \boldsymbol{b}(t, \cdot)-\boldsymbol{b}_{0}\right)\right\|_{L^{2}(K)}=0 .
$$

- The solution $(\boldsymbol{u}, \boldsymbol{b}, p, q)$ is suitable : there exists a non-negative locally finite measure μ on $(0, T) \times \mathbb{R}^{3}$ such that
$\partial_{t}\left(\frac{|\boldsymbol{u}|^{2}+|\boldsymbol{b}|^{2}}{2}\right)=\Delta\left(\frac{|\boldsymbol{u}|^{2}+|\boldsymbol{b}|^{2}}{2}\right)-|\nabla \boldsymbol{u}|^{2}-|\nabla \boldsymbol{b}|^{2}-\nabla \cdot\left(\left(\frac{|\boldsymbol{u}|^{2}}{2}+\frac{|\boldsymbol{b}|^{2}}{2}\right) \boldsymbol{v}+p \boldsymbol{u}\right)$

$$
\begin{equation*}
+\nabla \cdot((\boldsymbol{u} \cdot \boldsymbol{b}) \boldsymbol{c}+q \boldsymbol{b})+\boldsymbol{u} \cdot(\nabla \cdot \mathbb{F})+\boldsymbol{b} \cdot(\nabla \cdot \mathbb{G})-\mu \tag{2}
\end{equation*}
$$

Then, exists a constant $C \geq 1$, which does not depend on T, and not on \boldsymbol{u}_{0}, $\boldsymbol{b}_{0} \boldsymbol{u}, \boldsymbol{b}, \mathbb{F}, \mathbb{G}$ nor ϵ, such that:

- We have the following control on $[0, T)$:

$$
\begin{align*}
& \max \left\{\|(\boldsymbol{u}, \boldsymbol{b})(t)\|_{B_{2}}^{2},\|\nabla(\boldsymbol{u}, \boldsymbol{b})\|_{B_{2} L^{2}(0, t)}^{2}\right\} \leq C\left\|\left(\boldsymbol{u}_{0}, \boldsymbol{b}_{0}\right)\right\|_{B_{2}}^{2} \\
& +C\|(\mathbb{F}, \mathbb{G})\|_{B_{2} L^{2}(0, t)}^{2}+C \int_{0}^{t}\|(\boldsymbol{u}, \boldsymbol{b})(s)\|_{B_{2}}^{2}+\|(\boldsymbol{u}, \boldsymbol{b})(s)\|_{B_{2}}^{6} d s . \tag{3}
\end{align*}
$$

- Moreover, if $T_{0}<T$ is small enough:

$$
C\left(1+\left\|\left(\boldsymbol{u}_{0}, \boldsymbol{b}_{0}\right)\right\|_{B_{2}}^{2}+\|(\mathbb{F}, \mathbb{G})\|_{B_{2} L^{2}\left(0, T_{0}\right)}^{2}\right)^{2} T_{0} \leq 1
$$

then the following control respect to the data holds:

$$
\begin{align*}
\sup _{0 \leq t \leq T_{0}} & \max \left\{\|(\boldsymbol{u}, \boldsymbol{b})(t, .)\|_{B_{2}}^{2},\|\nabla(\boldsymbol{u}, \boldsymbol{b})\|_{B_{2} L^{2}(0, t)}^{2}\right\} \tag{4}\\
& \leq C\left(1+\left\|\left(\boldsymbol{u}_{0}, \boldsymbol{b}_{0}\right)\right\|_{B_{2}}^{2}+\|(\mathbb{F}, \mathbb{G})\|_{B_{2} L^{2}\left(0, T_{0}\right)}^{2}\right) .
\end{align*}
$$

Proof. In this proof, we will focus only in the case $(\mathbf{v}, \mathbf{c})=\left(\mathbf{u} * \theta_{\varepsilon}, \mathbf{b} * \theta_{\varepsilon}\right)$ (the case $(\mathbf{v}, \mathbf{c})=(\mathbf{u}, \mathbf{b})$ can be treated in a similar way). The proof of this theorem follows similar ideas of the proof of Theorem 3 in [7] and we will only detail the main computations.

We start by proving the global control (3). The idea is to apply the energy balance (2) to a suitable test function. Let $0<t_{0}<t_{1}<T$. We consider a function $\alpha_{\eta, t_{0}, t_{1}}$ which converges almost everywhere to $\mathbb{1}_{\left[t_{0}, t_{1}\right]}$ and such that $\partial_{t} \alpha_{\eta, t_{0}, t_{1}}$ is the difference between two identity approximations, the first one in t_{0} and the second one in t_{1}. For this, we take a nondecreasing function $\alpha \in \mathcal{C}^{\infty}(\mathbb{R})$ which is equals to 0 on $\left(-\infty, \frac{1}{2}\right)$ and is equals to 1 on $(1,+\infty)$. Then, for $0<\eta<\min \left(\frac{t_{0}}{2}, T-t_{1}\right)$ we set the function $\alpha_{\eta, t_{0}, t_{1}}(t)=\alpha\left(\frac{t-t_{0}}{\eta}\right)-\alpha\left(\frac{t-t_{1}}{\eta}\right)$. On the other hand, we consider a nonnegative function $\phi \in \mathcal{D}\left(\mathbb{R}^{3}\right)$ which is equals to 1 for $|x| \leq 1 / 2$ and is equals to 0 for $|x| \geq 1$; and for $R \geq 1$ we set $\phi_{R}(x)=\phi\left(\frac{x}{R}\right)$.

Thus, by the energy balance (2) we can write

$$
\begin{aligned}
&-\iint \frac{|\mathbf{u}|^{2}}{2}+\frac{|\mathbf{b}|^{2}}{2} \partial_{t} \alpha_{\eta, t_{0}, t_{1}} \phi_{R} d x d s+\iint|\nabla \mathbf{u}|^{2}+|\nabla \mathbf{b}|^{2} \alpha_{\eta, t_{0}, t_{1}} \phi_{R} d x d s \\
& \leq \iint \frac{|\mathbf{u}|^{2}+|\mathbf{b}|^{2}}{2} \alpha_{\eta, t_{0}, t_{1}} \Delta \phi_{R} d x d s \\
&+\sum_{i=1}^{3} \iint\left[\left(\frac{|\mathbf{u}|^{2}}{2}+\frac{|\mathbf{b}|^{2}}{2}\right) v_{i}+p u_{i}\right] \alpha_{\eta, t_{0}, t_{1}} \partial_{i} \phi_{R} d x d s \\
& \quad+\sum_{i=1}^{3} \iint\left[(\mathbf{u} \cdot \mathbf{b}) c_{i}+q b_{i}\right] \alpha_{\eta, t_{0}, t_{1}} \partial_{i} \phi_{R} d x d s \\
& \quad-\sum_{1 \leq i, j \leq 3}\left(\iint F_{i, j} u_{j} \alpha_{\eta, t_{0}, t_{1}} \partial_{i} \phi_{R} d x d s+\iint F_{i, j} \partial_{i} u_{j} \alpha_{\eta, t_{0}, t_{1}} \phi_{R} d x d s\right) \\
& \quad-\sum_{1 \leq i, j \leq 3}\left(\iint G_{i, j} b_{j} \alpha_{\eta, t_{0}, t_{1}} \partial_{i} \phi_{R} d x d s+\iint G_{i, j} \partial_{i} b_{j} \alpha_{\eta, t_{0}, t_{1}} \phi_{R} d x d s\right),
\end{aligned}
$$

and taking the limit when η goes to 0 , by the dominated convergence theorem we obtain (when the limit in the left side is well-defined):

$$
\begin{aligned}
-\lim _{\eta \rightarrow 0} \iint & \frac{|\mathbf{u}|^{2}}{2}+\frac{|\mathbf{b}|^{2}}{2} \partial_{t} \alpha_{\eta, t_{0}, t_{1}} \phi_{R} d x d s+\int_{t_{0}}^{t_{1}} \int|\nabla \mathbf{u}|^{2}+|\nabla \mathbf{b}|^{2} \phi_{R} d x d s \\
& \leq \int_{t_{0}}^{t_{1}} \int \frac{|\mathbf{u}|^{2}+|\mathbf{b}|^{2}}{2} \Delta \phi_{R} d x d s \\
& +\sum_{i=1}^{3} \int_{t_{0}}^{t_{1}} \int\left[\left(\frac{|\mathbf{u}|^{2}}{2}+\frac{|\mathbf{b}|^{2}}{2}\right) v_{i}+p u_{i}\right] \partial_{i} \phi_{R} d x d s \\
& +\sum_{i=1}^{3} \int_{t_{0}}^{t_{1}} \int\left[(\mathbf{u} \cdot \mathbf{b}) c_{i}+q b_{i}\right] \partial_{i} \phi_{R} d x d s \\
& -\sum_{1 \leq i, j \leq 3}\left(\int_{t_{0}}^{t_{1}} \int F_{i, j} u_{j} \partial_{i} \phi_{R} d x d s+\int_{t_{0}}^{t_{1}} \int F_{i, j} \partial_{i} u_{j} \phi_{R} d x d s\right) \\
& -\sum_{1 \leq i, j \leq 3}\left(\int_{t_{0}}^{t_{1}} \int G_{i, j} b_{j} \partial_{i} \phi_{R} d x d s+\int_{t_{0}}^{t_{1}} \int G_{i, j} \partial_{i} b_{j} \phi_{R} d x d s\right) .
\end{aligned}
$$

We define now the quantity

$$
A_{R}(t)=\int\left(|\mathbf{u}(t, x)|^{2}+|\mathbf{b}(t, x)|^{2}\right) \phi_{R}(x) d x
$$

hence, if t_{0} and t_{1} are Lebesgue points of $A_{R}(t)$ and moreover, due to the fact that

$$
-\iint\left(\frac{|\mathbf{u}|^{2}}{2}+\frac{|\mathbf{b}|^{2}}{2}\right) \partial_{t} \alpha_{\eta, t_{0}, t_{1}} \phi_{R} d x d s=-\frac{1}{2} \int \partial_{t} \alpha_{\eta, t_{0}, t_{1}} A_{R}(s) d s
$$

we have

$$
\lim _{\eta \rightarrow 0}-\iint\left(\frac{|\mathbf{u}|^{2}}{2}+\frac{|\mathbf{b}|^{2}}{2}\right) \partial_{t} \alpha_{\eta, t_{0}, t_{1}} \phi_{R} d x d s=\frac{1}{2}\left(A_{R}\left(t_{1}\right)-A_{R}\left(t_{0}\right)\right) .
$$

Then, since ϕ_{R} is a support compact function we can let t_{0} go to 0 and thus we can replace t_{0} by 0 in this inequality. Moreover, if we let t_{1} go to t, then by the $*$-weak continuity we have $A_{R}(t) \leq \lim _{t_{1} \rightarrow t} A_{R}\left(t_{1}\right)$, and thus we
may replace t_{1} by $t \in(0, T)$. In this way, for every $t \in(0, T)$ we can write:

$$
\begin{align*}
\int & \frac{|\mathbf{u}(t, x)|^{2}+|\mathbf{b}(t, x)|^{2}}{2} \phi_{R} d x+\int_{0}^{t} \int\left(|\nabla \mathbf{u}|^{2}+|\nabla \mathbf{b}|^{2}\right) \phi_{R} d s d x \\
\leq & \int \frac{\left|\mathbf{u}_{0}(x)\right|^{2}+\left|\mathbf{b}_{0}(x)\right|^{2}}{2} \phi_{R} d x+\int_{0}^{t} \int \frac{|\mathbf{u}|^{2}+|\mathbf{b}|^{2}}{2} \Delta \phi_{R} d s d x \\
& +\sum_{i=1}^{3} \int_{0}^{t} \int\left[\left(\frac{\left.\mathbf{u}\right|^{2}}{2}+\frac{|\mathbf{b}|^{2}}{2}\right) v_{i}+p u_{i}\right] \partial_{i} \phi_{R} d x d s \\
& +\sum_{i=1}^{3} \int_{0}^{t} \int\left[(\mathbf{u} \cdot \mathbf{b}) c_{i}+q b_{i}\right] \partial_{i} \phi_{R} d x d s \tag{5}\\
& -\sum_{1 \leq i, j \leq 3}\left(\int_{0}^{t} \int F_{i, j} u_{j} \partial_{i} \phi_{R} d x d s+\int_{0}^{t} \int F_{i, j} \partial_{i} u_{j} \phi_{R} d x d s\right) \\
& -\sum_{1 \leq i, j \leq 3}\left(\int_{0}^{t} \int G_{i, j} b_{j} \partial_{i} \phi_{R} d x d s+\int_{0}^{t} \int G_{i, j} \partial_{i} b_{j} \phi_{R} d x d s\right) .
\end{align*}
$$

In this inequality, we still need to estimate the terms in the right-hand side. For the second term, as $R \geq 1$ we write
$\frac{1}{R^{2}} \int\left(|\mathbf{u}|^{2}+|\mathbf{b}|^{2}\right) \Delta \phi_{R} d x \leq \frac{C}{R^{4}} \int_{B(0, R)}\left(|\mathbf{u}|^{2}+|\mathbf{b}|^{2}\right) d x \leq C\left(\|\mathbf{u}\|_{B_{2}}^{2}+\|\mathbf{b}\|_{B_{2}}^{2}\right)$.
The third and fourth terms are estimates as follows. We consider first the expressions where the pressure terms p and q do not appear. Using the Hölder inequalities and the Sobolev embeddings we have:

$$
\begin{aligned}
\sum_{i=1}^{3} \int & \frac{(\mathbf{u} \cdot \mathbf{b})}{2}\left(b_{i} * \theta_{\epsilon}\right) \partial_{i} \phi_{R} d x \leq\|\mathbf{u}\|_{L^{\frac{12}{5}}(B(0, R))}\|\mathbf{b}\|_{L^{\frac{12}{5}(B(0, R))}}\left\|\mathbf{b} * \theta_{\epsilon}\right\|_{L^{6}(B(0, R))}\left\|\nabla \phi_{R}\right\|_{L^{\infty}} \\
& \leq \frac{C}{R}\|\mathbf{u}\|_{L^{2}(B(0, R))}^{3 / 4}\|\mathbf{u}\|_{L^{6}(B(0, R))}^{1 / 4}\|\mathbf{b}\|_{L^{2}(B(0, R))}^{3 / 4}\|\mathbf{b}\|_{L^{6}(B(0, R+1))}^{5 / 4} \\
& \leq \frac{C}{R}\|\mathbf{b}\|_{L^{2}(B(0, R))}^{3 / 4}\|\mathbf{u}\|_{L^{2}(B(0, R))}^{3 / 4} U^{1 / 4} B^{5 / 4}
\end{aligned}
$$

where we have denoted the quantities

$$
U=\left(\int\left|\phi_{2 R} \nabla \mathbf{u}\right|^{2} d x\right)^{1 / 2}+\left(\int_{|x| \leq 2 R}|\mathbf{u}|^{2} d x\right)^{1 / 2}
$$

and

$$
B=\left(\int\left|\phi_{2(R+1)} \nabla \mathbf{b}\right|^{2} d x\right)^{1 / 2}+\left(\int_{|x| \leq 2(R+1)}|\mathbf{b}|^{2} d x\right)^{1 / 2}
$$

Thus, we can write (by the Young's inequalities for products with $1=\frac{1}{8}+$ $\left.\frac{1}{8}+\frac{1}{8}+\frac{5}{8}\right)$:

$$
\begin{aligned}
& \frac{1}{R^{2}} \sum_{i=1}^{3} \int \frac{(\mathbf{u} \cdot \mathbf{b})}{2}\left(b_{i} * \theta_{\epsilon}\right) \partial_{i} \phi_{R} d x \\
& \leq C\left(\frac{\|\mathbf{u}\|_{L^{2}(B(0, R))}}{R}\right)^{3 / 4}\left(\frac{\|\mathbf{b}\|_{L^{2}(B(0, R))}}{R}\right)^{3 / 4}\left(\frac{U}{R}\right)^{1 / 4}\left(\frac{B}{R}\right)^{5 / 4} \\
& \quad \leq C\|(\mathbf{u}, \mathbf{b})\|_{B_{2}}^{6}+C\|(\mathbf{u}, \mathbf{b})\|_{B_{2}}^{2}+\frac{C_{0}}{R^{2}} \int\left|\phi_{2 R} \nabla \mathbf{u}\right|^{2}+\left|\phi_{2(R+1)} \nabla \mathbf{b}\right|^{2} d x
\end{aligned}
$$

where $C_{0}>0$ is an arbitrarily small constant.
Now, in order to estimate the expressions where the pressure terms p and q appear, we need the following technical lemma which will be proved at the end of this section.

Lemma 3.1 Within the hypothesis of Theorem 3, the terms p and q belong $L_{\text {loc }}^{3 / 2}$. Moreover, there exist an arbitrarily small constant $C_{0}>0$ and a constant $C>0$, which do not depend on $T, \boldsymbol{u}, \boldsymbol{b}, \boldsymbol{u}_{0}, \boldsymbol{b}_{0}, \mathbb{F}, \mathbb{G}$ nor ϵ; such that for all $R \geq 1$ and for all $0 \leq t \leq T$ we have:

$$
\begin{aligned}
& \frac{1}{R^{2}} \sum_{i=1}^{3} \int_{0}^{t} \int\left(p u_{i}+q b_{i}\right) \partial_{i} \phi_{R} d s d x \\
& \leq C\|(\mathbb{F}, \mathbb{G})\|_{B_{2} L^{2}(0, t)}^{2}+C \int_{0}^{t}\|(\boldsymbol{u}, \boldsymbol{b})(s)\|_{B_{2}}^{2}+\|(\boldsymbol{u}, \boldsymbol{b})(s)\|_{B_{2}}^{6} \\
& \quad+\frac{C_{0}}{R^{2}} \iint_{0}^{t}\left|\varphi_{2(5 R+1)} \nabla \boldsymbol{u}\right|^{2}+\left|\varphi_{2(5 R+1)} \nabla \boldsymbol{b}\right|^{2} d x
\end{aligned}
$$

Finally, the fifth and sixth terms (which involve the tensor forces \mathbb{F} and \mathbb{G}) are easily estimate as follows. We will write down only the estimates for \mathbb{F} since the estimates for \mathbb{G} are completely similar:

$$
\left|\frac{1}{R^{2}} \sum_{1 \leq i, j \leq 3} \int_{0}^{t} \int F_{i, j}\left(\partial_{i} u_{j}\right) \phi_{R} d x d s\right| \leq C\|\mathbb{F}\|_{B_{2} L^{2}(0, t)}^{2}+\frac{C_{0}}{R^{2}} \int_{0}^{t} \int_{|x|<R}|\nabla \mathbf{u}|^{2} d x d s,
$$

and

$$
\left|\frac{1}{R^{2}} \sum_{1 \leq i, j \leq 3} \int_{0}^{t} \int F_{i, j} u_{i} \partial_{j}\left(\phi_{R}\right) d x d s\right| \leq C\|\mathbb{F}\|_{B_{2} L^{2}(0, t)}^{2}+C \int_{0}^{t}\|\mathbf{u}(s)\|_{B_{2}}^{2} d s
$$

where $C_{0}>0$ always denote a small enough constant.
Once we dispose of all these estimates, we are able to write

$$
\begin{aligned}
\int & \left(\frac{|\mathbf{u}(t, x)|^{2}}{2}+\frac{|\mathbf{b}(t, x)|^{2}}{2}\right) \phi_{R} d x+\int_{0}^{t} \int\left(|\nabla \mathbf{u}|^{2}+|\nabla \mathbf{b}|^{2}\right) \phi_{R} d s d x \\
\leq & \int\left(\frac{|\mathbf{u}(0, x)|^{2}}{2}+\frac{|\mathbf{b}(0, x)|^{2}}{2}\right) \phi_{R} d x+C\|(\mathbb{F}, \mathbb{G})\|_{B_{2} L^{2}(0, t)}^{2} d s \\
& +C \int_{0}^{t}\|(\mathbf{u}, \mathbf{b})(s, \cdot)\|_{B_{2}}^{2}+\|(\mathbf{u}, \mathbf{b})(s, \cdot)\|_{B_{2}}^{6} d s \\
& +\frac{C_{0}}{R^{2}} \iint_{0}^{t}\left|\varphi_{2(5 R+1)} \nabla \mathbf{u}\right|^{2}+\left|\varphi_{2(5 R+1)} \nabla \mathbf{b}\right|^{2} d x
\end{aligned}
$$

where the desired energy control (3) follows. To finish this proof, the estimate (4) follows directly from (3) and the Lemma 3.1 in [7] (see the proof of Corollary 3.3 , page 17 , for all the details).

Proof of Lemma 3.1. As in the proof of the theorem above, we will consider only the case $(\mathbf{v}, \mathbf{c})=\left(\mathbf{u} * \theta_{\varepsilon}, \mathbf{b} * \theta_{\varepsilon}\right)$. Moreover, we will focus only on the expression which involves the pressure p, since the computations for the other expression, where the term q appears, are completely similar.

We write $\frac{1}{R^{2}} \sum_{k=1}^{3} \int_{0}^{t} \int_{|x| \leq R}\left|p u_{k}\right|\left|\partial_{k} \phi_{R}\right| d x d s \leq \frac{c}{R^{3}} \sum_{k=1}^{3} \int_{0}^{t} \int_{|x| \leq R}\left|p u_{k}\right| d x d s$, and recalling that $p=\sum_{1 \leq i, j \leq 3} \mathcal{R}_{i} \mathcal{R}_{j}\left(\left(u_{i} * \theta_{\varepsilon}\right) u_{j}-\left(b_{i} * \theta_{\varepsilon}\right) b_{j}-F_{i, j}\right)$, the last expression allow us to write

$$
\begin{aligned}
& \frac{1}{R^{2}} \sum_{k=1}^{3} \int_{0}^{t} \int_{|x| \leq R}\left|p u_{k}\right|\left|\partial_{k} \phi_{R}\right| d x d s \\
& \leq \frac{c}{R^{3}} \sum_{k=1}^{3} \int_{0}^{t} \int_{|x| \leq R}\left|u_{k} \sum_{i, j=1}^{3} \mathcal{R}_{i} \mathcal{R}_{j}\left(\left(u_{i} * \theta_{\varepsilon}\right) u_{j}\right)\right| d x d s \\
& \quad+\frac{c}{R^{3}} \sum_{k=1}^{3} \int_{0}^{t} \int_{|x| \leq R}\left|u_{k} \sum_{i, j=1}^{3} \mathcal{R}_{i} \mathcal{R}_{j}\left(\left(b_{i} * \theta_{\varepsilon}\right) b_{j}-F_{i, j}\right)\right| d x d s,
\end{aligned}
$$

and since we have the same information on \mathbf{u} and \mathbf{b} it is enough to study the last term above. For $R \geq 1$ we define the following expressions:

$$
p_{1}=\sum_{i, j} \mathcal{R}_{i} \mathcal{R}_{j}\left(\mathbb{1}_{|y|<5 R}\left(\theta_{\epsilon} * b_{i}\right) b_{j}\right), \quad p_{2}=-\sum_{i, j} \mathcal{R}_{i} \mathcal{R}_{j}\left(\mathbb{1}_{|y| \geq 5 R}\left(\theta_{\epsilon} * b_{i}\right) b_{j}\right),
$$

and

$$
p_{3}=-\sum_{i, j} \mathcal{R}_{i} \mathcal{R}_{j}\left(\mathbb{1}_{|y|<5 R} F_{i, j}\right), \quad p_{4}=\sum_{i, j} \mathcal{R}_{i} \mathcal{R}_{j}\left(\mathbb{1}_{|y| \geq 5 R} F_{i, j}\right),
$$

and then, by the Young's inequalities (for products), we have

$$
\begin{aligned}
& \frac{c}{R^{3}} \sum_{k=1}^{3} \int_{0}^{t} \int_{|x| \leq R}\left|u_{k} \sum_{i, j=1}^{3} \mathcal{R}_{i} \mathcal{R}_{j}\left(\left(b_{i} * \theta_{\varepsilon}\right) b_{j}-F_{i, j}\right)\right| d x d s \\
& \quad \leq \frac{C}{R^{3}} \int_{0}^{t} \int_{|x| \leq R}\left(\left|p_{1}\right|^{3 / 2}+\left|p_{2}\right|^{3 / 2}+|\mathbf{u}|^{3}+\left|p_{3}\right|^{2}+\left|p_{4}\right|^{2}+|\mathbf{u}|^{2}\right) d x d s
\end{aligned}
$$

where we will study each term separately.
To study p_{1}, by the continuity of \mathcal{R}_{i} on $L^{\frac{3}{2}}\left(\mathbb{R}^{3}\right)$, since the test function θ_{ε} verifies $\int \theta_{\varepsilon}(x) d x=1$ and $\operatorname{supp}\left(\theta_{\epsilon}\right) \subset \overline{B(0,1)}$ and moreover, by the Fubini's theorem we can write

$$
\begin{aligned}
\int_{|x| \leq R}\left|p_{1}\right|^{3 / 2} d x & \leq C \int\left|p_{1}\right|^{3 / 2} d x \leq C \int\left|\left(\mathbb{1}_{|x|<5 R}\left(\theta_{\epsilon} * \mathbf{b}\right) \otimes \mathbf{b}\right)\right|^{3 / 2} d x \\
& \leq C\left(\int\left|\mathbb{1}_{|x|<5 R}\left(\theta_{\epsilon} * \mathbf{b}\right)\right|^{3} d x\right)^{1 / 2}\left(\int\left|\mathbb{1}_{|y|<5 R} \mathbf{b}\right|^{3} d x\right)^{1 / 2} \\
& \leq C\left(\int_{|x| \leq 5 R} \int_{|x-z| \leq 1} \theta_{\epsilon}(x-z)|\mathbf{b}(z)|^{3} d z d x\right)^{1 / 2}\left(\int\left|\left(\mathbb{1}_{|y|<5 R} \mathbf{b}\right)\right|^{3} d x\right)^{1 / 2} \\
& \leq C\left(\int_{|x| \leq 5 R} \int_{|z| \leq 5 R+1} \theta_{\epsilon}(x-z)|\mathbf{b}(z)|^{3} d z d x\right)^{1 / 2}\left(\int\left|\left(\mathbb{1}_{|y|<5 R} \mathbf{b}\right)\right|^{3} d x\right)^{1 / 2} \\
& \leq C \int_{|z| \leq 5 R+1}|\mathbf{b}|^{3} d z .
\end{aligned}
$$

With this estimate at hand, we see that

$$
\int_{|x| \leq R}|\mathbf{u}|^{3}+\left|p_{1}\right|^{3 / 2} d x \leq C \int_{|x| \leq 5 R+1}|\mathbf{u}|^{3}+|\mathbf{b}|^{3} d x
$$

and using the Sobolev embedding we write
$\frac{C}{R^{3}} \int_{|x| \leq 5 R+1}|\mathbf{u}|^{3} d x \leq \frac{C}{R^{3}}\|\mathbf{u}\|_{L^{2}(B(0,5 R+1))}^{3 / 2}\|\mathbf{u}\|_{L^{6}(B(0,5 R+1))}^{3 / 2}$
$\leq \frac{C}{R^{3 / 2}}\|\mathbf{u}\|_{L^{2}(B(0,5 R+1))}^{3 / 2}\left(\left(\frac{1}{R^{2}} \int\left|\phi_{2(5 R+1)} \nabla \mathbf{u}\right|^{2} d x\right)^{1 / 2}+\left(\frac{1}{R^{2}} \int_{|x| \leq 2(5 R+1)}|\mathbf{u}|^{2} d x\right)^{1 / 2}\right)^{3 / 2}$
$\leq C\|\mathbf{u}\|_{B_{2}}^{6}+C_{0}\|\mathbf{u}\|_{B_{2}}^{2}+\frac{C_{0}}{R^{2}} \int\left|\phi_{2(5 R+1)} \nabla \mathbf{u}\right|^{2} d x$,
where $C_{0}>0$ is a arbitrarily small constant. Similar bounds works for \mathbf{b}.
We study now the term p_{2}. Remark first that there exist a constant $C>0$ (which does not depend on $R>1$) such that for all $|x| \leq R$ and all $|y| \geq 5 R$, the kernel $\mathbb{K}_{i, j}$ of the operator $\mathcal{R}_{i} \mathcal{R}_{j}$ verifies $\left|\mathbb{K}_{i, j}(x-y)\right| \leq \frac{C}{|y|^{3}}$ (see [10] for a proof) and then we write:

$$
\begin{aligned}
& \left(\int_{|x| \leq R}\left|p_{2}\right|^{3 / 2} d x\right)^{2 / 3} \\
& \leq C \sum_{i, j}\left(\int_{|x| \leq R}\left(\int\left|\mathbb{K}_{i, j}(x-y)\right|\left|\left(\theta_{\epsilon} * b_{i}\right)(y) b_{j}(y)\right| \mathbb{1}_{|y| \geq 5 R} d y\right)^{3 / 2} d x\right)^{2 / 3} \\
& \leq C\left(\int_{|x| \leq R}\left(\int_{|y| \geq 5 R} \frac{1}{|y|^{3}}\left|\left(\theta_{\epsilon} * \mathbf{b}\right) \otimes \mathbf{b}\right| d y\right)^{3 / 2} d x\right)^{2 / 3} \\
& \leq C R^{2} \int_{|y| \geq 5 R} \frac{1}{|y|^{3}}\left|\left(\theta_{\epsilon} * \mathbf{b}\right) \otimes \mathbf{b}\right| d y \\
& \leq C R^{2}\left(\int_{|y| \geq 5 R} \frac{1}{|y|^{3}}\left|\theta_{\epsilon} * \mathbf{b}\right|^{2} d y\right)^{1 / 2}\left(\int_{|y| \geq 5 R} \frac{1}{|y|^{3}}|\mathbf{b}|^{2} d y\right)^{1 / 2} \\
& \leq C R^{2}\left(\int_{|y| \geq 5 R} \frac{1}{|y|^{3}} \int_{|y-z|<1} \theta_{\epsilon}(y-z)|\mathbf{b}(z)|^{2} d z d y\right)^{1 / 2}\left(\left.\int_{|y| \geq 5 R} \frac{1}{|y|^{3}}|\mathbf{b}|\right|^{2} d y\right)^{1 / 2} \\
& \leq C R^{2}\left(\int_{|y| \geq 5 R} \int_{|z| \geq 5 R-1} \frac{1}{|z|^{3}} \theta_{\epsilon}(y-z)|\mathbf{b}(z)|^{2} d z d y\right)^{1 / 2}\left(\int_{|y| \geq 5 R} \frac{1}{|y|^{3}}|\mathbf{b}|^{2} d y\right)^{1 / 2} \\
& \leq C R^{2} \int_{|z| \geq 5 R-1} \frac{1}{|z|^{3}}|\mathbf{b}|^{2} d z .
\end{aligned}
$$

With this estimate, and the fact that $B_{2}\left(\mathbb{R}^{3}\right) \subset L_{w 3}^{2}\left(\mathbb{R}^{3}\right)$, we finally obtain

$$
\frac{C}{R^{3}} \int_{|y| \leq R}\left|p_{2}\right|^{3 / 2} d x \leq C\left(\int \frac{1}{(1+|z|)^{3}}|\mathbf{b}|^{2}\right)^{3 / 2} \leq C\|\mathbf{b}\|_{B_{2}}^{3} .
$$

It remains to estimate the terms p_{3} and p_{4} which involve the tensor \mathbb{F}. For p_{3}, using the continuity of the Riesz transform \mathcal{R}_{i} on L^{2}, we obtain directly:

$$
\frac{c}{R^{3}} \int_{0}^{t} \int_{|x| \leq R}\left|p_{3}\right|^{2} d x d s \leq \frac{C}{R^{3}} \sum_{i, j} \int_{0}^{t} \int_{|x|<5 R}\left|\mathbb{F}_{i, j}\right|^{2} d x d s \leq C\|\mathbb{F}\|_{B_{2} L^{2}(0, t)}^{2}
$$

For the term p_{4}, remark first that we have

$$
\begin{aligned}
\left(\int_{|x| \leq R}\left|p_{4}\right|^{2} d x\right)^{1 / 2} C & \leq \sum_{i, j}\left(\int_{|x| \leq R}\left(\int_{|y| \geq 5 R}\left|\mathbb{K}_{i, j}(x-y) \mathbb{F}_{i, j}\right| d y\right)^{2} d x\right)^{1 / 2} \\
& \leq C \sum_{i, j}\left(\int_{|x| \leq R}\left(\int_{|y| \geq 5 R} \frac{1}{|y|^{3}}\left|\mathbb{F}_{i, j}\right| d y\right)^{2} d x\right)^{1 / 2} \\
& \leq C \sum_{i, j} R^{3 / 2} \int_{|y| \geq 5 R} \frac{1}{|y|^{3}}\left|\mathbb{F}_{i, j}\right| d y
\end{aligned}
$$

and then, for $0<\delta<1$, and by the Hölder inequalities we can write:

$$
\begin{aligned}
\frac{C}{R^{3}} \int_{0}^{t} \int_{|x| \leq R}\left|p_{4}\right|^{2} d x d s & \leq C \sum_{i, j} \int_{0}^{t}\left(\int \frac{1}{(1+|x|)^{3}}\left|\mathbb{F}_{i, j}\right| d x\right)^{2} d s \\
& \leq C \sum_{i, j} \int_{0}^{t} \int \frac{1}{(1+|x|)^{2+\delta}}\left|\mathbb{F}_{i, j}\right|^{2} d x d s \\
& \leq C \sum_{i, j} \int \frac{1}{(1+|x|)^{2+\delta}} \int_{0}^{t}\left|\mathbb{F}_{i, j}\right|^{2} d s d x \\
& \leq C\|\mathbb{F}\|_{B_{2} L^{2}(0, t)}^{2} .
\end{aligned}
$$

The lemma is proven.

3.2 A stability result

Theorem 4 Let $0<T<+\infty$. Let $\boldsymbol{u}_{0, n}, \boldsymbol{b}_{0, n}$ be divergence-free vector fields such that $\left(\boldsymbol{u}_{0, n}, \boldsymbol{b}_{0, n}\right) \in B_{2}$. Let \mathbb{F}_{n} and \mathbb{G}_{n} be tensors such that $\left(\mathbb{F}_{n}, \mathbb{G}_{n}\right) \in$ $B_{2} L^{2}(0, T)$. Let $\left(\boldsymbol{u}_{n}, \boldsymbol{b}_{n}, p_{n} q_{n}\right)$ be a solution of the (MHD*) problem:

$$
\left\{\begin{array}{l}
\partial_{t} \boldsymbol{u}_{n}=\Delta \boldsymbol{u}_{n}-\left(\boldsymbol{v}_{n} \cdot \nabla\right) \boldsymbol{u}_{n}+\left(\boldsymbol{c}_{n} \cdot \nabla\right) \boldsymbol{b}_{n}-\nabla p_{n}+\nabla \cdot \mathbb{F}_{n}, \tag{6}\\
\partial_{t} \boldsymbol{b}_{n}=\Delta \boldsymbol{b}_{n}-\left(\boldsymbol{v}_{n} \cdot \nabla\right) \boldsymbol{b}_{n}+\left(\boldsymbol{c}_{n} \cdot \nabla\right) \boldsymbol{u}_{n}-\nabla q_{n}+\nabla \cdot \mathbb{G}_{n} \\
\nabla \cdot \boldsymbol{u}_{n}=0, \nabla \cdot \boldsymbol{b}_{n}=0, \\
\boldsymbol{u}_{n}(0, \cdot)=\boldsymbol{u}_{0, n}, \boldsymbol{b}_{n}(0, \cdot)=\boldsymbol{b}_{0, n}
\end{array}\right.
$$

which verifies the same hypothesis of Theorem 3 .
If $\left(\boldsymbol{u}_{0, n}, \boldsymbol{b}_{0, n}\right)$ is strongly convergent to $\left(\boldsymbol{u}_{0, \infty}, \boldsymbol{b}_{0, \infty}\right)$ in B_{2}, and if the sequence $\left(\mathbb{F}_{n}, \mathbb{G}_{n}\right)$ is strongly convergent to $\left(\mathbb{F}_{\infty}, \mathbb{G}_{\infty}\right)$ in $B_{2} L^{2}(0, T)$; then there exists $\left(\boldsymbol{u}_{\infty}, \boldsymbol{b}_{\infty}, p_{\infty}, q_{\infty}\right)$ and an increasing sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ with values in \mathbb{N} such that:

- $\left(\boldsymbol{u}_{n_{k}}, \boldsymbol{b}_{n_{k}}\right)$ converges ${ }^{*}$-weakly to $\left(\boldsymbol{u}_{\infty}, \boldsymbol{b}_{\infty}\right)$ in $L^{\infty}\left((0, T), B_{2}\right),\left(\nabla \boldsymbol{u}_{n_{k}}, \nabla \boldsymbol{b}_{n_{k}}\right)$ converges weakly to $\left(\nabla \boldsymbol{u}_{\infty}, \nabla \boldsymbol{b}_{\infty}\right)$ in $B_{2} L^{2}(0, T)$.
- $\left(\boldsymbol{u}_{n_{k}}, \boldsymbol{b}_{n_{k}}\right)$ converges strongly to $\left(\boldsymbol{u}_{\infty}, \boldsymbol{b}_{\infty}\right)$ in $L_{\text {loc }}^{2}\left([0, T) \times \mathbb{R}^{3}\right)$.
- For $2<\gamma<5 / 2$, the sequence ($p_{n_{k}}, q_{n_{k}}$)converges weakly to (p_{∞}, q_{∞}) in $L^{3}\left((0, T), L_{w_{\frac{\sigma_{\gamma}}{5}}}^{6 / 5}\right)+L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$.
Moreover, $\left(\boldsymbol{u}_{\infty}, \boldsymbol{b}_{\infty}, p_{\infty}, q_{\infty}\right)$ is a solution of the problem (MHD*):

$$
\left\{\begin{array}{l}
\partial_{t} \boldsymbol{u}_{\infty}=\Delta \boldsymbol{u}_{\infty}-\left(\boldsymbol{u}_{\infty} \cdot \nabla\right) \boldsymbol{u}_{\infty}+\left(\boldsymbol{b}_{\infty} \cdot \nabla\right) \boldsymbol{b}_{\infty}-\nabla p_{\infty}+\nabla \cdot \mathbb{F}_{\infty} \tag{7}\\
\partial_{t} \boldsymbol{b}_{\infty}=\Delta \boldsymbol{b}_{\infty}-\left(\boldsymbol{u}_{\infty} \cdot \nabla\right) \boldsymbol{b}_{\infty}+\left(\boldsymbol{b}_{\infty} \cdot \nabla\right) \boldsymbol{u}_{\infty}-\nabla q_{\infty}+\nabla \cdot \mathbb{G}_{\infty} \\
\nabla \cdot \boldsymbol{u}_{\infty}=0, \nabla \cdot \boldsymbol{b}_{\infty}=0 \\
\boldsymbol{u}_{\infty}(0, \cdot)=\boldsymbol{u}_{0, \infty}, \boldsymbol{b}_{\infty}(0, \cdot)=\boldsymbol{b}_{0, \infty}
\end{array}\right.
$$

and verifies all the hypothesis of Theorem (3.
Proof. We will verify that the sequence $\left(\mathbf{u}_{n}, \mathbf{b}_{n}\right)$ satisfy the hypothesis of the Rellich lemma (see Lemma 6 in [9]). Remark first that: since for $2<\gamma$ we have that $\mathbf{u}_{n}, \mathbf{b}_{n}$ is bounded in $L^{\infty}\left((0, T), B_{2}\right) \subset L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and moreover, since we have that $\nabla \mathbf{u}_{n}, \nabla \mathbf{b}_{n}$ is bounded in $B_{2} L^{2}(0, T) \subset$ $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$, then for all $\varphi \in \mathcal{D}\left(\mathbb{R}^{3}\right)$ we have that $\left(\varphi \mathbf{u}_{n}, \varphi \mathbf{b}_{n}\right)$ are bounded in $L^{2}\left((0, T), H^{1}\right)$. On the other hand, for the pressure p_{n} and the term q_{n} we write $p_{n}=p_{n, 1}+p_{n, 2}$ with

$$
p_{n, 1}=\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(v_{n, i} u_{n, j}-c_{n, i} b_{n, j}\right), \quad p_{n, 2}=-\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(F_{n, i, j}\right),
$$

and we write $q_{n}=q_{n, 1}+q_{n, 2}$ with

$$
q_{n, 1}=\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(v_{n, i} b_{n, j}-c_{n, i} u_{n, j}\right), \quad q_{n, 2}=-\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(G_{n, i, j}\right) .
$$

From now on we fix $\gamma \in\left(2, \frac{5}{2}\right)$, and using the interpolation inequalities and the continuity of the Riesz transforms in the Lebesgue weighted spaces we get that the sequence $\left(p_{n, 1}, q_{n, 1}\right)$ is bounded in $L^{3}\left((0, T), L_{w_{6 \gamma}}^{6 / 5}\right)$. Indeed, for the term $p_{n, 1}$ recall that by Lemma 2.2 we have that for $0<\gamma<5 / 2$ the weight $w_{6 \gamma / 5}$ belongs to the Muckenhoupt class $\mathcal{A}_{p}\left(\mathbb{R}^{3}\right)$ (with $1<p<+\infty$) and then we can write:

$$
\begin{aligned}
\left\|\sum_{i, j} \mathcal{R}_{i} \mathcal{R}_{j}\left(\mathbf{u}_{n, i} \mathbf{u}_{n, j}\right) w_{\gamma}\right\|_{L^{6 / 5}} & \leq\left\|\left(\mathbf{u}_{n} \otimes \mathbf{u}_{n}\right) w_{\gamma}\right\|_{L^{6 / 5}} \leq\left\|\sqrt{w_{\gamma}} \mathbf{u}_{n}\right\|_{L^{2}}^{\frac{3}{2}}\left\|\sqrt{w_{\gamma}} \mathbf{u}_{n}\right\|_{L^{6}}^{\frac{1}{2}} \\
& \leq\left\|\sqrt{w_{\gamma}} \mathbf{u}\right\|_{L^{2}}^{\frac{3}{2}}\left(\left\|\sqrt{w_{\gamma}} \mathbf{u}\right\|_{L^{2}}+\left\|\sqrt{w_{\gamma}} \nabla \mathbf{u}\right\|_{L^{2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

The term $q_{n, 1}$ is estimated in a similar way. Moreover we have that the sequence and $\left(p_{n, 2}, q_{n, 2}\right)$ is bounded in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$. With these information, by equation (6) we obtain that $\left(\varphi \partial_{t} \mathbf{u}_{n}, \varphi \partial_{t} \mathbf{b}_{n}\right)$ are bounded in the space $L^{2} L^{2}+L^{2} W^{-1,6 / 5}+L^{2} H^{-1} \subset L^{2}\left((0, T), H^{-2}\right)$. Thus, we can apply the Rellich lemma and there exists an increasing sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ in \mathbb{N}, and there exist a couple of functions $\left(\mathbf{u}_{\infty}, \mathbf{b}_{\infty}\right)$ such that $\left(\mathbf{u}_{n_{k}}, \mathbf{b}_{n_{k}}\right)$ converges strongly to $\left(\mathbf{u}_{\infty}, \mathbf{b}_{\infty}\right)$ in $L_{\text {loc }}^{2}\left([0, T) \times \mathbb{R}^{3}\right)$. We also have that $\left(\mathbf{v}_{n_{k}}, \mathbf{c}_{n_{k}}\right)=$ $\left(\mathbf{v}_{n_{k}} * \theta_{\epsilon_{n_{k}}}, \mathbf{c}_{n_{k}} * \theta_{\epsilon_{n_{k}}}\right)$ converges strongly to $\left(\mathbf{u}_{\infty}, \mathbf{b}_{\infty}\right)$ in $L_{\text {loc }}^{2}\left([0, T) \times \mathbb{R}^{3}\right)$.

As $\left(\mathbf{u}_{n}, \mathbf{b}_{n}\right)$ are bounded in $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\left(\nabla \mathbf{u}_{n}, \nabla \mathbf{b}_{n}\right)$ are bounded in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$, we have that $\left(\mathbf{u}_{n_{k}}, \mathbf{b}_{n_{k}}\right)$ converges ${ }^{*}$-weakly to $\left(\mathbf{u}_{\infty}, \mathbf{b}_{\infty}\right)$ in $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$, and $\left(\nabla \mathbf{u}_{n_{k}}, \nabla \mathbf{b}_{n_{k}}\right)$ converges weakly to $\left(\nabla \mathbf{u}_{\infty}, \nabla \mathbf{b}_{\infty}\right)$ in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$. Moreover, by the Sobolev embeddings and the interpolation inequalities we have that $\left(\mathbf{u}_{n_{k}}, \mathbf{b}_{n_{k}}\right)$ converges weakly to $\left(\mathbf{u}_{\infty}, \mathbf{b}_{\infty}\right)$ in $L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$. Also $\left(\mathbf{v}_{n_{k}}, \mathbf{c}_{n_{k}}\right)=\left(\mathbf{v}_{n_{k}} * \theta_{\epsilon_{n_{k}}}, \mathbf{c}_{n_{k}} * \theta_{\epsilon_{n_{k}}}\right)$ converges weakly to $\left(\mathbf{u}_{\infty}, \mathbf{b}_{\infty}\right)$ in $L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$, since it is bounded in $L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$. In particular, we may observe that the terms $v_{n_{k}, i} u_{n_{k}, j}, c_{n_{k}, i} b_{n_{k}, j}, v_{n_{k}, i} b_{n_{k}, j}$ and $c_{n_{k}, i} u_{n_{k}, j}$ are weakly convergent in $\left(L^{6 / 5} L^{6 / 5}\right)_{\text {loc }}$ and thus in $\mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{3}\right)$.

As those terms are bounded in $L^{3}\left((0, T), L_{w_{\frac{6 \gamma}{}}}^{6 / 5}\right)$, they are weakly convergent in $L^{3}\left((0, T), L_{w_{\frac{6 \gamma}{5}}}^{6 / 5}\right)$; and defining $p_{\infty}=p_{\infty, 1}+p_{\infty, 2}$ with

$$
p_{\infty, 1}=\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(v_{\infty, i} u_{\infty, j}-c_{\infty, i} b_{\infty, j}\right), \quad p_{2}=-\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(F_{\infty, i, j}\right),
$$

and $q_{\infty}=q_{\infty, 1}+q_{\infty, 2}$ with

$$
q_{\infty, 1}=\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(v_{\infty, i} b_{\infty, j}-c_{\infty, i} u_{\infty, j}\right), \quad q_{2}=-\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(G_{\infty, i, j}\right),
$$

we obtain that $\left(p_{n_{k}, 1}, q_{n_{k}, 1}\right)$ are weakly convergent in $L^{3}\left((0, T), L_{w_{\frac{6 \gamma}{5}}}^{6 / 5}\right)$ to $\left(p_{\infty, 1}, q_{\infty, 1}\right)$, and moreover, we get that ($p_{n_{k}, 2}, q_{n_{k}, 2}$) is strongly convergent in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$ to $\left(p_{\infty, 2}, q_{\infty, 2}\right)$. So, we have that $\left(\mathbf{u}_{\infty}, \mathbf{b}_{\infty}, p_{\infty}, q_{\infty}\right)$ verify the three first equations in the system $\left(M H D^{*}\right)$ in $\mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{3}\right)$.

It remains to verify the conditions at the time $t=0$. Remark that $\left(\partial_{t} \mathbf{u}_{\infty}, \partial_{t} \mathbf{b}_{\infty}\right)$ are locally in $L^{2} H^{-2}$, and then $\left(\mathbf{u}_{\infty}, \mathbf{b}_{\infty}\right)$ have representatives such that $t \mapsto\left(\mathbf{u}_{\infty}(t,),. \mathbf{b}_{\infty}(t,).\right)$ is continuous from $[0, T)$ to $\mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)$ (hence *-weakly continuous from $[0, T)$ to B_{2}) and moreover, they coincide with
$\mathbf{u}_{\infty}(0,)+.\int_{0}^{t} \partial_{t} \mathbf{u}_{\infty} d s$ and $\mathbf{b}_{\infty}(0,)+.\int_{0}^{t} \partial_{t} \mathbf{b}_{\infty} d s$. Thus, in $\mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{3}\right)$, we have that

$$
\begin{aligned}
& \mathbf{u}_{\infty}(0, .)+\int_{0}^{t} \partial_{t} \mathbf{u}_{\infty} d s=\mathbf{u}_{\infty}=\lim _{n_{k} \rightarrow+\infty} \mathbf{u}_{n_{k}}=\lim _{n_{k} \rightarrow+\infty} \mathbf{u}_{n_{k}, 0}+\int_{0}^{t} \partial_{t} \mathbf{u}_{n_{k}} d s \\
& =\mathbf{u}_{\infty, 0}+\int_{0}^{t} \partial_{t} \mathbf{u}_{\infty} d s,
\end{aligned}
$$

which implies that $\mathbf{u}_{\infty}(0,)=.\mathbf{u}_{\infty, 0}$. Similar we have the identity $\mathbf{b}_{\infty}(0,)=$. $\mathbf{b}_{\infty, 0}$. We conclude that $\left(\mathbf{u}_{\infty}, \mathbf{b}_{\infty}, p_{\infty}, q_{\infty}\right)$ is a solution of the ($M H D^{*}$) equations.

Our next task is to verify the local energy equality. We define the quantity

$$
\begin{aligned}
A_{n_{k}}= & -\partial_{t}\left(\frac{\left|\mathbf{u}_{n_{k}}\right|^{2}+\left|\mathbf{b}_{n_{k}}\right|^{2}}{2}\right)+\Delta\left(\frac{\left|\mathbf{u}_{n_{k}}\right|^{2}+\left|\mathbf{b}_{n_{k}}\right|^{2}}{2}\right)-\nabla \cdot\left(\left(\frac{\left|\mathbf{u}_{n_{k}}\right|^{2}}{2}+\frac{\left|\mathbf{b}_{n_{k}}\right|^{2}}{2}\right) \mathbf{v}_{n_{k}}\right) \\
& -\nabla \cdot\left(p_{n_{k}} \mathbf{u}_{n_{k}}\right)-\nabla \cdot\left(q_{n_{k}} \mathbf{b}_{n_{k}}\right)+\nabla \cdot\left(\left(\mathbf{u}_{n_{k}} \cdot \mathbf{b}_{n_{k}}\right) \mathbf{c}_{n_{k}}\right) \\
& +\mathbf{u}_{n_{k}} \cdot\left(\nabla \cdot \mathbb{F}_{n_{k}}\right)+\mathbf{b}_{n_{k}} \cdot\left(\nabla \cdot \mathbb{G}_{n_{k}}\right) .
\end{aligned}
$$

Remark that by the information on ($\mathbf{u}_{n}, \mathbf{b}_{n}$) and by interpolation we have $\left(\mathbf{u}_{n}, \mathbf{b}_{n}\right)$ are bounded in $L^{10 / 3}\left((0, T), L_{w_{5 \gamma / 3}}^{10 / 3}\right)$ and then $\left(\mathbf{u}_{n_{k}}, \mathbf{b}_{n_{k}}\right)$ are locally bounded in $L_{t}^{10 / 3} L_{x}^{10 / 3}$ and locally strongly convergent in $L_{t}^{2} L_{x}^{2}$. So, $\left(\mathbf{u}_{n_{k}}, \mathbf{b}_{n_{k}}\right)$ converges strongly in $\left(L_{t}^{3} L_{x}^{3}\right)_{l o c}$. Moreover, by Lemma 3.1 we have that $\left(p_{n_{k}}, q_{n_{k}}\right)$ are locally bounded in $L_{t}^{3 / 2} L_{x}^{3 / 2}$. Thus the quantity $A_{n_{k}}$ converges in the distributional sense to

$$
\begin{aligned}
A_{\infty}= & -\partial_{t}\left(\frac{\left|\mathbf{u}_{\infty}\right|^{2}+\left|\mathbf{b}_{\infty}\right|^{2}}{2}\right)+\Delta\left(\frac{\left|\mathbf{u}_{\infty}\right|^{2}+\left|\mathbf{b}_{\infty}\right|^{2}}{2}\right)-\nabla \cdot\left(\left(\frac{\left|\mathbf{u}_{\infty}\right|^{2}}{2}+\frac{\left|\mathbf{b}_{\infty}\right|^{2}}{2}\right) \mathbf{v}_{\infty}\right) \\
& -\nabla \cdot\left(p_{\infty} \mathbf{u}_{\infty}\right)-\nabla \cdot\left(q_{\infty} \mathbf{b}_{\infty}\right)+\nabla \cdot\left(\left(\mathbf{u}_{\infty} \cdot \mathbf{b}_{\infty}\right) \mathbf{c}_{\infty}\right) \\
& +\mathbf{u}_{\infty} \cdot\left(\nabla \cdot \mathbb{F}_{\infty}\right)+\mathbf{b}_{\infty} \cdot\left(\nabla \cdot \mathbb{G}_{\infty}\right) .
\end{aligned}
$$

Moreover, recall that by hypothesis of this theorem there exist $\mu_{n_{k}}$ a nonnegative locally finite measure on $(0, T) \times \mathbb{R}^{3}$ such that

$$
\begin{aligned}
& \partial_{t}\left(\frac{\left|\mathbf{u}_{n_{k}}\right|^{2}+\left|\mathbf{b}_{n_{k}}\right|^{2}}{2}\right)=\Delta\left(\frac{\left|\mathbf{u}_{n_{k}}\right|^{2}+\left|\mathbf{b}_{n_{k}}\right|^{2}}{2}\right)-\left|\nabla \mathbf{u}_{n_{k}}\right|^{2}-\left|\nabla \mathbf{b}_{n_{k}}\right|^{2} \\
& -\nabla \cdot\left(\left(\frac{\left|\mathbf{u}_{n_{k}}\right|^{2}}{2}+\frac{\left|\mathbf{b}_{n_{k}}\right|^{2}}{2}\right) \mathbf{v}_{n_{k}}\right)-\nabla \cdot\left(p_{n_{k}} \mathbf{u}_{n_{k}}\right)-\nabla \cdot\left(q_{n_{k}} \mathbf{b}_{n_{k}}\right) \\
& +\nabla \cdot\left(\left(\mathbf{u}_{n_{k}} \cdot \mathbf{b}_{n_{k}}\right) \mathbf{c}_{n_{k}}\right)+\mathbf{u}_{n_{k}} \cdot\left(\nabla \cdot \mathbb{F}_{n_{k}}\right)+\mathbf{b}_{n_{k}} \cdot\left(\nabla \cdot \mathbb{G}_{n_{k}}\right)-\mu_{n_{k}} .
\end{aligned}
$$

Then, by definition of $A_{n_{k}}$ we can write $A_{n_{k}}=\left|\nabla \mathbf{u}_{n_{k}}\right|^{2}+\left|\nabla \mathbf{b}_{n_{k}}\right|^{2}+\mu_{n_{k}}$, and thus we have $A_{\infty}=\lim _{n_{k} \rightarrow+\infty}\left|\nabla \mathbf{u}_{n_{k}}\right|^{2}+\left|\nabla \mathbf{b}_{n_{k}}\right|^{2}+\mu_{n_{k}}$.

Now, let $\Phi \in \mathcal{D}\left((0, T) \times \mathbb{R}^{3}\right)$ be a non-negative function. As $\sqrt{\Phi}\left(\nabla \mathbf{u}_{n_{k}}+\right.$ $\left.\nabla \mathbf{b}_{n_{k}}\right)$ is weakly convergent to $\sqrt{\Phi}\left(\nabla \mathbf{u}_{\infty}+\nabla \mathbf{b}_{\infty}\right)$ in $L_{t}^{2} L_{x}^{2}$, we have

$$
\begin{aligned}
\iint A_{\infty} \Phi d x d s & =\lim _{n_{k} \rightarrow+\infty} \iint A_{n_{k}} \Phi d x d s \geq \limsup _{n_{k} \rightarrow+\infty} \iint\left(\left|\nabla \mathbf{u}_{n_{k}}\right|^{2}+\left|\nabla \mathbf{b}_{n_{k}}\right|^{2}\right) \Phi d x d s \\
& \geq \iint\left(\left|\nabla \mathbf{u}_{\infty}\right|^{2}+\left|\nabla \mathbf{b}_{\infty}\right|^{2}\right) \Phi d x d s
\end{aligned}
$$

Thus, there exists a non-negative locally finite measure μ_{∞} on $(0, T) \times \mathbb{R}^{3}$ such that $A_{\infty}=\left(\left|\nabla \mathbf{u}_{\infty}\right|^{2}+\left|\nabla \mathbf{b}_{\infty}\right|^{2}\right)+\mu_{\infty}$, and then we obtain the desired local energy equality:

$$
\begin{aligned}
& \partial_{t}\left(\frac{\left|\mathbf{u}_{\infty}\right|^{2}+\left|\mathbf{b}_{\infty}\right|^{2}}{2}\right)=\Delta\left(\frac{\left|\mathbf{u}_{\infty}\right|^{2}+\left|\mathbf{b}_{\infty}\right|^{2}}{2}\right)-\left|\nabla \mathbf{u}_{\infty}\right|^{2}-\left|\nabla \mathbf{b}_{\infty}\right|^{2} \\
& -\nabla \cdot\left(\left(\frac{\left|\mathbf{u}_{\infty}\right|^{2}}{2}+\frac{\left|\mathbf{b}_{\infty}\right|^{2}}{2}\right) \mathbf{v}_{\infty}\right)-\nabla \cdot\left(p_{\infty} \mathbf{u}_{\infty}\right)-\nabla \cdot\left(q_{\infty} \mathbf{b}_{\infty}\right) \\
& +\nabla \cdot\left(\left(\mathbf{u}_{\infty} \cdot \mathbf{b}_{\infty}\right) \mathbf{c}_{\infty}\right)+\mathbf{u}_{\infty} \cdot\left(\nabla \cdot \mathbb{F}_{\infty}\right)+\mathbf{b}_{\infty} \cdot\left(\nabla \cdot \mathbb{G}_{\infty}\right)-\mu_{\infty}
\end{aligned}
$$

In order to finish this proof, it remains to prove the convergence to the initial data $\left(\mathbf{u}_{0, \infty}, \mathbf{b}_{0, \infty}\right)$. Once we dispose of this local energy equality, as in (5) we can write:

$$
\begin{aligned}
\int & \frac{\left|\mathbf{u}_{n}(t, x)\right|^{2}+\left|\mathbf{b}_{n}(t, x)\right|^{2}}{2} \phi_{R} d x+\int_{0}^{t} \int\left(|\nabla \mathbf{u}|^{2}+|\nabla \mathbf{b}|^{2}\right) \phi_{R} d x d s \\
\leq & \int \frac{\left|\mathbf{u}_{0, n}(x)\right|^{2}+\left|\mathbf{b}_{0, n}(x)\right|^{2}}{2} \phi_{R} d x+\int_{0}^{t} \int \frac{\left|\mathbf{u}_{n}\right|^{2}+\left|\mathbf{b}_{n}\right|^{2}}{2} \Delta \phi_{R} d x d s \\
& +\sum_{i=1}^{3} \int_{0}^{t} \int\left[\left(\frac{\left|\mathbf{u}_{n}\right|^{2}}{2}+\frac{\left|\mathbf{b}_{n}\right|^{2}}{2}\right) v_{n, i}+p_{n} u_{n, i}\right] \partial_{i} \phi_{R} d x d s \\
& +\sum_{i=1}^{3} \int_{0}^{t} \int\left[\left(\mathbf{u}_{n} \cdot \mathbf{b}_{n}\right) c_{n, i}+q_{n} b_{n, i}\right] \partial_{i} \phi_{R} d x d s \\
& -\sum_{1 \leq i, j \leq 3}\left(\int_{0}^{t} \int F_{n, i, j} u_{n, j} \partial_{i} \phi_{R} d x d s+\int_{0}^{t} \int F_{n, i, j} \partial_{i} u_{n, j} \phi_{R} d x d s\right) \\
& -\sum_{1 \leq i, j \leq 3}\left(\int_{0}^{t} \int G_{n, i, j} b_{n, j} \partial_{i} \phi_{R} d x d s+\int_{0}^{t} \int G_{n, i, j} \partial_{i} b_{j} \phi_{R} d x d s\right) .
\end{aligned}
$$

Then we have:

$$
\begin{aligned}
\limsup _{n_{k} \rightarrow+\infty} \int & \frac{\left|\mathbf{u}_{n_{k}}(t, x)\right|^{2}+\left|\mathbf{b}_{n_{k}}(t, x)\right|^{2}}{2} \phi_{R} d x+\int_{0}^{t} \int\left(\left|\nabla \mathbf{u}_{n_{k}}\right|^{2}+\left|\nabla \mathbf{b}_{n_{k}}\right|^{2}\right) \phi_{R} d x d s \\
\leq & \int \frac{\left|\mathbf{u}_{0}(x)\right|^{2}+\left|\mathbf{b}_{0}(x)\right|^{2}}{2} \phi_{R} d x+\int_{0}^{t} \int \frac{\left|\mathbf{u}_{\infty}\right|^{2}+\left|\mathbf{b}_{\infty}\right|^{2}}{2} \Delta \phi_{R} d x d s \\
& +\sum_{i=1}^{3} \int_{0}^{t} \int\left[\left(\frac{\left|\mathbf{u}_{\infty}\right|^{2}}{2}+\frac{\left|\mathbf{b}_{\infty}\right|^{2}}{2}\right) v_{\infty, i}+p_{\infty} u_{\infty, i}\right] \partial_{i} \phi_{R} d x d s \\
& +\sum_{i=1}^{3} \int_{0}^{t} \int\left[\left(\mathbf{u}_{\infty} \cdot \mathbf{b}_{\infty}\right) c_{\infty, i}+q_{\infty} b_{\infty, i}\right] \partial_{i} \phi_{R} d x d s \\
& -\sum_{1 \leq i, j \leq 3}\left(\int_{0}^{t} \int F_{\infty, i, j} u_{\infty, j} \partial_{i} \phi_{R} d x d s+\int_{0}^{t} \int F_{\infty, i, j} \partial_{i} u_{\infty, j} \phi_{R} d x d s\right) \\
& -\sum_{1 \leq i, j \leq 3}\left(\int_{0}^{t} \int G_{\infty, i, j} b_{\infty, j} \partial_{i} \phi_{R} d x d s+\int_{0}^{t} \int G_{\infty, i, j} \partial_{i} b_{j} \phi_{R} d x d s\right) .
\end{aligned}
$$

Recalling that $\mathbf{u}_{n_{k}}=\mathbf{u}_{0, n_{k}}+\int_{0}^{t} \partial_{t} \mathbf{u}_{n_{k}} d s$, we may observe that $\mathbf{u}_{n_{k}}(t,$. converges to $\mathbf{u}_{\infty}(t,$.$) in \mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)$, hence, it converges weakly in $L_{\text {loc }}^{2}\left(\mathbb{R}^{3}\right)$ and we can write:

$$
\int \frac{\left|\mathbf{u}_{\infty}(t, x)\right|^{2}}{2} \phi_{R} d x \leq \limsup _{n_{k} \rightarrow+\infty} \int \frac{\left|\mathbf{u}_{n_{k}}(t, x)\right|^{2}}{2} \phi_{R} d x
$$

Moreover, this weakly convergence gives

$$
\int_{0}^{t} \int \frac{\left|\nabla \mathbf{u}_{\infty}(s, x)\right|^{2}}{2} \phi_{R} d x d s \leq \limsup _{n_{k} \rightarrow+\infty} \int_{0}^{t} \int \frac{\left|\nabla \mathbf{u}_{n_{k}}(s, x)\right|^{2}}{2} \phi_{R} d x d s
$$

and we have the same estimates for \mathbf{b}_{∞}. In this way we get

$$
\begin{aligned}
& \int \frac{\left|\mathbf{u}_{\infty}(t, x)\right|^{2}+\left|\mathbf{b}_{\infty}(t, x)\right|^{2}}{2} \phi_{R} d x+\int_{0}^{t} \int\left(\left|\nabla \mathbf{u}_{\infty}\right|^{2}+\left|\nabla \mathbf{b}_{\infty}\right|^{2}\right) \phi_{R} d x d s \\
& \leq \int \frac{\left|\mathbf{u}_{0}(x)\right|^{2}+\left|\mathbf{b}_{0}(x)\right|^{2}}{2} \phi_{R} d x+\int_{0}^{t} \int \frac{\left|\mathbf{u}_{\infty}\right|^{2}+\left|\mathbf{b}_{\infty}\right|^{2}}{2} \Delta \phi_{R} d x d s \\
& \quad+\sum_{i=1}^{3} \int_{0}^{t} \int\left[\left(\frac{\left|\mathbf{u}_{\infty}\right|^{2}}{2}+\frac{\left|\mathbf{b}_{\infty}\right|^{2}}{2}\right) v_{\infty, i}+p_{\infty} u_{\infty, i}\right] \partial_{i} \phi_{R} d x d s
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=1}^{3} \int_{0}^{t} \int\left[\left(\mathbf{u}_{\infty} \cdot \mathbf{b}_{\infty}\right) c_{\infty, i}+q_{\infty} b_{\infty, i}\right] \partial_{i} \phi_{R} d x d s \\
& -\sum_{1 \leq i, j \leq 3}\left(\int_{0}^{t} \int F_{\infty, i, j} u_{\infty, j} \partial_{i} \phi_{R} d x d s+\int_{0}^{t} \int F_{\infty, i, j} \partial_{i} u_{\infty, j} \phi_{R} d x d s\right) \\
& -\sum_{1 \leq i, j \leq 3}\left(\int_{0}^{t} \int G_{\infty, i, j} b_{\infty, j} \partial_{i} \phi_{R} d x d s+\int_{0}^{t} \int G_{\infty, i, j} \partial_{i} b_{\infty, j} \phi_{R} d x d s\right)
\end{aligned}
$$

Finally, letting t go to 0 , we have:

$$
\limsup _{t \rightarrow 0}\left\|\left(\mathbf{u}_{\infty}, \mathbf{b}_{\infty}\right)(t, .)\right\|_{L^{2}\left(\phi_{R}(x) d x\right)}^{2} \leq\left\|\left(\mathbf{u}_{0, \infty}, \mathbf{b}_{0, \infty}\right)\right\|_{L^{2}\left(\phi_{R}(x) d x\right)}^{2}
$$

On the other hand, by weakly convergence we also have

$$
\left\|\left(\mathbf{u}_{0, \infty}, \mathbf{b}_{0, \infty}\right)\right\|_{L^{2}\left(\phi_{R}(x) d x\right)}^{2} \leq \liminf _{t \rightarrow 0}\left\|\left(\mathbf{u}_{\infty}, \mathbf{b}_{\infty}\right)(t, .)\right\|_{L^{2}\left(\phi_{R}(x) d x\right)}^{2} .
$$

Thus we have the strong convergence to initial data in the Hilbert space $L^{2}\left(\phi_{R}(x) d x\right)$.

4 Proof of Theorem 1

4.1 Local in time existence

Following the ideas of [7], for the given function $\phi_{R}(x)=\phi\left(\frac{x}{R}\right)$ and the Leray's projector \mathbb{P}, we define $\mathbf{u}_{0, R}=\mathbb{P}\left(\phi_{R} \mathbf{u}_{0}\right), \mathbf{b}_{0, R}=\mathbb{P}\left(\phi_{R} \mathbf{b}_{0}\right), \mathbb{F}_{R}=\phi_{R} \mathbb{F}$, $\mathbb{G}_{R}=\phi_{R} \mathbb{G} ;$ and we consider the approximated problem $\left(M H D_{R, \epsilon}\right)$:

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{u}_{R, \epsilon}=\Delta \mathbf{u}_{R, \epsilon}-\left(\left(\mathbf{u}_{R, \epsilon} * \theta_{\epsilon}\right) \cdot \nabla\right) \mathbf{u}_{R, \epsilon}+\left(\left(\mathbf{b}_{R, \epsilon} * \theta_{\epsilon}\right) \cdot \nabla\right) \mathbf{b}_{R, \epsilon}-\nabla p_{R, \epsilon}+\nabla \cdot \mathbb{F}_{R}, \\
\partial_{t} \mathbf{b}_{R, \epsilon}=\Delta \mathbf{b}_{R, \epsilon}-\left(\left(\mathbf{u}_{R, \epsilon} * \theta_{\epsilon}\right) \cdot \nabla\right) \mathbf{b}_{R, \epsilon}+\left(\left(\mathbf{b}_{R, \epsilon} * \theta_{\epsilon}\right) \cdot \nabla\right) \mathbf{u}_{R, \epsilon}-\nabla q_{R, \epsilon}+\nabla \cdot \mathbb{G}_{R}, \\
\nabla \cdot \mathbf{u}_{R, \epsilon}=0, \nabla \cdot \mathbf{b}_{R, \epsilon}=0, \\
\mathbf{u}_{R, \epsilon}(0, \cdot)=\mathbf{u}_{0, R}, \mathbf{b}_{R, \epsilon}(0, \cdot)=\mathbf{b}_{0, R} .
\end{array}\right.
$$

By the Appendix in [7] (see the page 35) we know that $\left(\operatorname{MHD}_{R, \epsilon}\right)$ has a unique solution $\left(\mathbf{u}_{R, \epsilon}, \mathbf{b}_{R, \epsilon}\right)$ in $L^{\infty}\left((0,+\infty), L^{2}\right) \cap L^{2}\left((0,+\infty), \dot{H}^{1}\right)$, and moreover, this solution belongs to $\mathcal{C}\left([0,+\infty), L^{2}\right)$ and it fulfills the hypothesis of the Theorem 3. Applying this result (for the case $\left.(\mathbf{v}, \mathbf{c})=\left(\mathbf{u} * \theta_{\epsilon}, \mathbf{b} * \theta_{\epsilon}\right)\right)$ there exists a constant $C>0$ such that for every time T_{0} small enough:

$$
C\left(1+\left\|\left(\mathbf{u}_{0, R}, \mathbf{b}_{0, R}\right)\right\|_{B_{2}}^{2}+\left\|\left(\mathbb{F}_{\mathbb{R}, \epsilon}, \mathbb{G}_{R, \epsilon}\right)\right\|_{B_{2} L^{2}\left(0, T_{0}\right)}^{2}\right)^{2} T_{0} \leq 1
$$

we have the controls:

$$
\sup _{0 \leq t \leq T_{0}}\left\|\left(\mathbf{u}_{R, \epsilon}, \mathbf{b}_{R, \epsilon}\right)(t)\right\|_{B_{2}}^{2} \leq C\left(1+\left\|\left(\mathbf{u}_{0, R}, \mathbf{b}_{0, R}\right)\right\|_{B_{2}}^{2}+\left\|\left(\mathbb{F}_{\mathbb{R}, \epsilon}, \mathbb{G}_{R, \epsilon}\right)\right\|_{B_{2} L^{2}\left(0, T_{0}\right)}^{2}\right),
$$

and
$\left\|\nabla\left(\mathbf{u}_{R, \epsilon}, \mathbf{b}_{R, \epsilon}\right)\right\|_{B_{2} L^{2}\left(0, T_{0}\right)}^{2} \leq C\left(1+\left\|\left(\mathbf{u}_{0, R}, \mathbf{b}_{0, R}\right)\right\|_{B_{2}}^{2}+\left\|\left(\mathbb{F}_{\mathbb{R}, \epsilon}, \mathbb{G}_{R, \epsilon}\right)\right\|_{B_{2} L^{2}\left(0, T_{0}\right)}^{2}\right)$.
Then, in the setting of Theorem 4, we set $\left(\mathbf{u}_{0, n}, \mathbf{b}_{0, n}\right)=\left(\mathbf{u}_{0, R_{n}}, \mathbf{b}_{0, R_{n}}\right)$, $\mathbb{F}_{n}=\mathbb{F}_{R_{n}}, \mathbb{G}_{n}=\mathbb{G}_{R_{n}}$ and $\left(\mathbf{u}_{n}, \mathbf{b}_{n}\right)=\left(\mathbf{u}_{R_{n}, \epsilon_{n}}, \mathbf{b}_{R_{n}, \epsilon_{n}}\right)$; and letting $R_{n} \rightarrow+\infty$ and $\epsilon_{n} \rightarrow 0$ we find a local solution of the (MHD) equations which verifies the desired properties stated in Theorem 1.

4.2 Global in time existence

Let $\lambda>1$. For $n \in \mathbb{N}$ we consider the (MHD) equations with initial value

$$
\left(\mathbf{u}_{0, n}, \mathbf{b}_{0, n}\right)=\left(\lambda^{n} \mathbf{u}_{0}\left(\lambda^{n} \cdot\right), \lambda^{n} \mathbf{b}_{0}\left(\lambda^{n} \cdot\right)\right),
$$

and the forcing tensors

$$
\left(\mathbb{F}_{n}, \mathbb{G}_{n}\right)=\left(\lambda^{2 n} \mathbb{F}\left(\lambda^{2 n} \cdot, \lambda^{n} \cdot\right), \lambda^{2 n} \mathbb{G}\left(\lambda^{2 n} \cdot, \lambda^{n} \cdot\right)\right) .
$$

Then, by the local in time existence proved above, there exists a solution $\left(\mathbf{v}_{n}, \mathbf{c}_{n}\right)$ on $\left(0, T_{n}\right)$, with

$$
C\left(1+\left\|\left(\mathbf{v}_{0, n}, \mathbf{c}_{0, n}\right)\right\|_{B_{2}}^{2}+\left\|\left(\mathbb{F}_{n}, \mathbb{G}_{n}\right)\right\|_{B_{2} L^{2}\left(0, T_{n}\right)}^{2}\right)^{2} T_{n}=1 .
$$

Remark also that by the well-known scaling properties of the (MHD) equations we have

$$
\left(\mathbf{v}_{n}(t, x), \mathbf{c}_{n}(t, x)\right)=\left(\lambda^{n} \mathbf{u}_{n}\left(\lambda^{2 n} t, \lambda^{n} x\right), \lambda^{n} \mathbf{b}_{n}\left(\lambda^{2 n} t, \lambda^{n} x\right)\right),
$$

where $\left(\mathbf{u}_{n}, \mathbf{b}_{n}\right)$ is a solution of the (MHD) on $\left(0, \lambda^{2 n} T_{n}\right)$ associated with the initial data $\left(\mathbf{u}_{0}, \mathbf{b}_{0}\right)$ and then forcing tensors \mathbb{F} and \mathbb{G}.

At this point, we need the following simple remark which will be proved at the end of this section.

Remark 4.1 If $\boldsymbol{u}_{0}, \boldsymbol{b}_{0} \in B_{2,0}$ and $\mathbb{F}, \mathbb{G} \in B_{2,0} L^{2}(0,+\infty)$, then for all $\lambda>1$ we have:

$$
\lim _{n \rightarrow+\infty} \frac{\lambda^{n}}{1+\left\|\left(\boldsymbol{v}_{0, n}, \boldsymbol{c}_{0, n}\right)\right\|_{B_{2}}^{2}+\left\|\left(\mathbb{F}_{n}, \mathbb{G}_{n}\right)\right\|_{B_{2} L^{2}}^{2}}=+\infty
$$

Thus, for $\lambda>1$ fix we have $\lim _{n \rightarrow+\infty} \lambda^{2 n} T_{n}=+\infty$. Then, for $T>0$, let n_{T} such that $\lambda^{2 n} T_{n}>T$ for $n \geq n_{T}$, then $\left(\mathbf{u}_{n}, \mathbf{b}_{n}\right)$ is a solution of the (MHD) equations on $(0, T)$.

We set now $\left(\mathbf{w}_{n}(t, x), \mathbf{d}_{n}(t, x)\right)=\left(\lambda^{n_{T}} \mathbf{u}_{n}\left(\lambda^{2 n_{T}} t, \lambda^{n_{T}} x\right), \lambda^{n_{T}} \mathbf{b}_{n}\left(\lambda^{2 n_{T}} t, \lambda^{n_{T}} x\right)\right)$, where we observe that for $n \geq n_{T}$ the couple ($\mathbf{w}_{n}, \mathbf{d}_{n}$) is a solution of (MHD) equations on ($0, \lambda^{-2 n_{T}} T$) with initial value ($\mathbf{v}_{0, n_{T}}, \mathbf{c}_{0, n_{T}}$) and forcing tensor $\left(\mathbb{F}_{n_{T}}, \mathbb{G}_{n_{T}}\right)$. But, since we have $\lambda^{-2 n_{T}} T \leq T_{n_{T}}$, then we obtain

$$
C\left(1+\left\|\left(\mathbf{v}_{0, n_{T}}, \mathbf{c}_{0, n_{T}}\right)\right\|_{B_{2}}^{2}+\left\|\left(\mathbb{F}_{n_{T}}, \mathbb{G}_{n_{T}}\right)\right\|_{B_{2} L^{2}\left(0, \lambda^{-2 n_{T}} T\right)}^{2}\right)^{2} \lambda^{-2 n_{T}} T \leq 1
$$

and thus, by Theorem 3 we are able to write:
$\sup _{0 \leq t \leq \lambda^{-2 n_{T} T}}\left\|\left(\mathbf{w}_{n}, \mathbf{d}_{n}\right)(t, .)\right\|_{L_{w_{\gamma}}^{2}}^{2} \leq C\left(1+\left\|\left(\mathbf{v}_{0, n_{T}}, \mathbf{c}_{0, n_{T}}\right)\right\|_{B_{2}}^{2}+\left\|\left(\mathbb{F}_{n_{T}}, \mathbb{G}_{n_{T}}\right)\right\|_{B_{2} L^{2}\left(0, \lambda^{\left.-2 n_{T} T\right)}\right.}^{2}\right)$,
and
$\left\|\nabla\left(\mathbf{w}_{n}, \mathbf{d}_{n}\right)\right\|_{B_{2} L^{2}\left(0, \lambda^{-2 n_{T}}\right)}^{2} \leq C\left(1+\left\|\left(\mathbf{v}_{0, n_{T}}, \mathbf{c}_{0, n_{T}}\right)\right\|_{B_{2}}^{2}+\left\|\left(\mathbb{F}_{n_{T}}, \mathbb{G}_{n_{T}}\right)\right\|_{B_{2} L^{2}\left(0, \lambda^{-2 n_{T}}\right)}^{2}\right)$.
From these estimates we get the following uniforms controls for \mathbf{u}_{n} and \mathbf{b}_{n} :

$$
\left\|\left(\mathbf{w}_{n}, \mathbf{d}_{n}\right)(t)\right\|_{B_{2}}^{2} \geq \lambda^{n_{T}}\left\|\left(\mathbf{u}_{n}, \mathbf{b}_{n}\right)\left(\lambda^{2 n_{T}} t, .\right)\right\|_{B_{2}}^{2}
$$

and

$$
\left\|\nabla\left(\mathbf{w}_{n}, \mathbf{d}_{n}\right)\right\|_{B_{2} L^{2}\left(0, \lambda^{\left.-2 n_{T} T\right)}\right.}^{2} \geq \lambda^{n_{T}}\left\|\nabla\left(\mathbf{u}_{n}, \mathbf{b}_{n}\right)\right\|_{B_{2} L^{2}(0, T)}^{2}
$$

In order to finish this proof, observe that we have controlled uniformly $\mathbf{u}_{n}, \mathbf{b}_{n}$ and $\nabla \mathbf{u}_{n}, \nabla \mathbf{b}_{n}$ on $(0, T)$ for $n \geq n_{T}$. Then, we may apply Theorem 4 to obtain a solution on $(0, T)$. As $T>0$ is an arbitrary time, we can use a diagonal argument to obtain a solution \mathbf{u}, \mathbf{b} on $(0,+\infty)$. Finally, the control for the solution $(\mathbf{u}, \mathbf{b}, p, q)$ on $(0,+\infty)$ is given by Theorem 3 .

Proof of Remark 4.1. It is enough to detail the computations for the functions $\mathbf{u}_{0, n}$ and \mathbb{F}_{n} since the computations for $\mathbf{b}_{0, n}$ and \mathbb{G}_{n} follows the same lines.

It is straightforward to see that we have

$$
\frac{\left\|\mathbf{v}_{0, n}\right\|_{B_{2}}^{2}}{\lambda^{n}}=\sup _{R \geq 1} \frac{1}{\lambda^{n} R^{2}} \int_{|x| \leq R}\left|\lambda^{n} \mathbf{u}_{0}\left(\lambda^{n} x\right)\right|^{2} d x=\sup _{R \geq 1} \frac{1}{\left(\lambda^{n} R\right)^{2}} \int_{|x| \leq \lambda^{n} R}\left|\mathbf{u}_{0}(x)\right|^{2} d x,
$$

and

$$
\lim _{P \rightarrow+\infty} \sup _{R \geq P} \frac{1}{\left(\lambda^{n} R\right)^{2}} \int_{|x| \leq \lambda^{n} R}\left|\mathbf{u}_{0}(x)\right|^{2} d x=\lim _{R \rightarrow+\infty} \frac{1}{R^{2}} \int_{|x| \leq R}\left|\mathbf{u}_{0}(x)\right|^{2} d x=0
$$

Moreover, remark that we have:

$$
\begin{aligned}
\frac{\left\|\mathbb{F}_{n}\right\|_{B_{2} L^{2}(0,+\infty)}^{2}}{\lambda^{n}} & =\sup _{R \geq 1} \frac{1}{\lambda^{n} R^{2}} \int_{0}^{+\infty} \int_{|x| \leq R}\left|\lambda^{2 n} \mathbb{F}\left(\lambda^{2 n} t, \lambda^{n} x\right)\right|^{2} d x d s \\
& =\sup _{R \geq 1} \frac{1}{\left(\lambda^{n} R\right)^{2}} \int_{0}^{+\infty} \int_{|x| \leq \lambda^{n} R}|\mathbb{F}(t, x)|^{2} d x
\end{aligned}
$$

and
$\lim _{P \rightarrow+\infty} \sup _{R \geq P} \frac{1}{R^{2}} \int_{0}^{+\infty} \int_{|x| \leq R}|\mathbb{F}(t, x)|^{2} d x d s=\lim _{R \rightarrow+\infty} \frac{1}{R^{2}} \int_{0}^{+\infty} \int_{|x| \leq R}|\mathbb{F}(t, x)|^{2} d x d s=0$.

Acknowledgement. We are very grateful to Pierre Gilles LemariéRieusset for his encouragement in the study of the MHD equations through his interesting new methods developed for the Navier-Stokes equations. Moreover, we are grateful for his remarkably useful remarks to achieve some technical difficulties in this work.

References

[1] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cam- bridge (2000).
[2] A. Basson, Solutions spatialement homogènes adaptées des équations de Navier-Stokes, Thèse, Université d'Évry (2006).
[3] Z. Bradshaw, Kukavica I. and T.P. Tsai, Existence of global weak solutions to the Navier-Stokes equations in weighted spaces, arXiv:1910.06929v1 (2019).
[4] Z. Bradshaw and T.P. Tsai, Global existence, Regularity and Uniqueness of infinite energy solutions to the Navier-Stokes equations, Communications in Partial Differential Equations (2019).
[5] Z. Bradshaw and T.P. Tsai, Discretely self-similar solutions to the Navier-Stokes equations with data in $L_{\text {loc }}^{2}$, to appear in Analysis and PDE (2019).
[6] D. Chae and J. Wolf, Existence of discretely self-similar solutions to the Navier-Stokes equations for initial value in $L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{3}\right)$, Ann. Inst. H. Poincaré Anal. Non Linéaire 351019-1039 (2018).
[7] P.G Fernández-Dalgo, O. Jarrín, Discretely self-similar solutions for 3D MHD equations and global weak solutions in weighted L^{2} spaces, preprint (2019).
[8] P.G Fernández-Dalgo, P.G. Lemarié-Rieusset, Characterisation of the pressure term in the incompressible Navier-Stokes equations on the whole space, preprint arXiv:2001.10436 (2020).
[9] P.G Fernández-Dalgo, P.G. Lemarié-Rieusset, Weak solutions for Navier-Stokes equations with initial data in weighted L^{2} spaces., preprint (2019).
[10] L. Grafakos, Modern harmonic analysis (2nd ed.), Springer (2009).
[11] H. Jia and V. Šverák, Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions, Invent. Math. 196: 233-265 (2014).
[12] N. Kikuchi and G. Seregin, Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality, in Nonlinear equations and spectral theory. Amer. Math. Soc. Transl. Ser. 2, 220, M.S. Birman and N.N. Uraltseva eds., 141-164 (2007).
[13] CC. Lai, Forward Discretely Self-similar Solutions of the MHD Equations and the Viscoelastic Navier-Stokes Equations with Damping J. Math. Fluid Mech (2019).
[14] P.G. Lemarié-Rieusset, Solutions faibles d'énergie infinie pour les équations de Navier-Stokes dans \mathbb{R}^{3}, C. R. Acad. Sci. Paris, Serie I. 328: 1133-1138 (1999).
[15] P.G. Lemarié-Rieusset, Recent developments in the Navier-Stokes problem, CRC Press (2002).
[16] P.G. Lemarié-Rieusset, The Navier-Stokes problem in the 21st century, Chapman \& Hall/CRC, (2016).
[17] J. Leray, Essai sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math. 63:193-248 (1934).
[18] J. A. Shercliff, A Textbook of Magnetohydrodynamics, Pergamon Press, Oxford, (1965).
[19] J. Zhang and T. Zhang Global existence of discretely self-similar solutions to the generalized MHD system in Besov space Journal of Mathematical Physics (2019)

[^0]: *LaMME, Univ Evry, CNRS, Université Paris-Saclay, 91025, Evry, France
 ${ }^{\dagger}$ e-mail : pedro.fernandez@univ-evry.fr
 ${ }^{\ddagger}$ Dirección de Investigación y Desarrollo (DIDE), Universidad Técnica de Ambato, Ambato, Ecuador
 ${ }^{\S}$ e-mail : or.jarrin@uta.edu.ec

