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Weak solutions for Navier–Stokes equations

with initial data in weighted L2 spaces.

Pedro Gabriel Fernández-Dalgo∗†, Pierre Gilles Lemarié–Rieusset‡§

Abstract

We show the existence of global weak solutions of the 3D Navier-
Stokes equations with initial velocity in the weighted spaces L2

wγ
,

where wγ(x) = (1 + |x|)−γ and 0 < γ ≤ 2, using new energy controls.
As application we give a new proof of the existence of global weak
discretely self-similar solutions of the 3D Navier–Stokes equations for
discretely self-similar initial velocities which are locally square inte-
grable.

Keywords : Navier–Stokes equations, weighted spaces, discretely self-
similar solutions, energy controls
AMS classification : 35Q30, 76D05.

1 Introduction.

Infinite-energy weak Leray solutions to the Navier–Stokes equations were
introduced by Lemarié-Rieusset in 1999 [8] (they are presented more com-
pletely in [9] and [10]). This has allowed to show the existence of local weak
solutions for a uniformly locally square integrable initial data.

Other constructions of infinite-energy solutions for locally uniformly square
integrable initial data were given in 2006 by Basson [1] and in 2007 by Kikuchi
and Seregin [7]. These solutions allowed Jia and Sverak [6] to construct in
2014 the self-similar solutions for large (homogeneous of degree -1) smooth
data. Their result has been extended in 2016 by Lemarié-Rieusset [10] to
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‡LaMME, Univ Evry, CNRS, Université Paris-Saclay, 91025, Evry, France
§e-mail : pierregilles.lemarierieusset@univ-evry.fr

1

http://arxiv.org/abs/1906.11038v1


solutions for rough locally square integrable data. We remark that an ho-
mogeneous (of degree -1) and locally square integrable data is automatically
uniformly locally L2.

Recently, Bradshaw and Tsai [2] and Chae and Wolf [3] considered the
case of solutions which are self-similar according to a discrete subgroup of
dilations. Those solutions are related to an initial data which is self-similar
only for a discrete group of dilations; in contrast to the case of self-similar
solutions for all dilations, such an initial data, when locally L2, is not nec-
essarily uniformly locally L2, therefore their results are no consequence of
constructions described by Lemarié-Rieusset in [10].

In this paper, we construct an alternative theory to obtain infinite-energy
global weak solutions for large initial data, which include the discretely self-
similar locally square integrable data. More specifically, we consider the
weights

wγ(x) =
1

(1 + |x|)γ
with 0 < γ, and the spaces

L2
wγ

= L2(wγ dx).

Our main theorem is the following one :

Theorem 1 Let 0 < γ ≤ 2. If u0 is a divergence-free vector field such
that u0 ∈ L2

wγ
(R3) and if F is a tensor F(t, x) = (Fi,j(t, x))1≤i,j≤3 such that

F ∈ L2((0,+∞), L2
wγ
), then the Navier–Stokes equations with initial value u0

(NS)







∂tu = ∆u− (u · ∇)u−∇p+∇ · F

∇ · u = 0, u(0, .) = u0

has a global weak solution u such that :

• for every 0 < T < +∞, u belongs to L∞((0, T ), L2
wγ
) and ∇u belongs

to L2((0, T ), L2
wγ
)

• the pressure p is related to u and F through the Riesz transforms Ri =
∂i√
−∆

by the formula

p =

3
∑

i=1

3
∑

j=1

RiRj(uiuj − Fi,j)

where, for every 0 < T < +∞,
∑3

i=1

∑3
j=1RiRj(uiuj) belongs to

L4((0, T ), L
6/5
w 6γ

5

) and
∑3

i=1

∑3
j=1RiRjFi,j belongs to L

2((0, T ), L2
wγ
)
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• the map t ∈ [0,+∞) 7→ u(t, .) is weakly continuous from [0,+∞) to
L2
wγ
, and is strongly continuous at t = 0 :

lim
t→0

‖u(t, .)− u0‖L2
wγ

= 0.

• the solution u is suitable : there exists a non-negative locally finite
measure µ on (0,+∞)× R3 such that

∂t(
|u|2
2

) = ∆(
|u|2
2

)− |∇u|2 −∇ ·
(

(
|u|2
2

+ p)u

)

+ u · (∇ · F)− µ.

In particular, we have the energy controls

‖u(t, .)‖2L2
wγ

+ 2

∫ t

0

‖∇u(s, .)‖2L2
wγ
ds

≤‖u0‖2L2
wγ

−
∫ t

0

∫

∇|u|2 · ∇wγ dx ds+
∫ t

0

∫

(|u|2 + 2p)u · ∇(wγ) dx ds

− 2

3
∑

i=1

3
∑

j=1

∫ t

0

∫

Fi,j(∂iuj)wγ + Fi,jui∂j(wγ) dx ds

and

‖u(t, .)‖2L2
wγ

≤ ‖u0‖2L2
wγ
+Cγ

∫ t

0

‖F(s, .)‖2L2
wγ
ds+Cγ

∫ t

0

‖u(s, .)‖2L2
wγ
+‖u(s, .)‖6L2

wγ
ds

A key tool for proving Theorem 1 and for applying it to the study of
discretely self-similar solutions is given by the following a priori estimates for
an advection-diffusion problem :

Theorem 2 Let 0 < γ ≤ 2. Let 0 < T < +∞. Let u0 be a divergence-free
vector field such that u0 ∈ L2

wγ
(R3) and F be a tensor F(t, x) = (Fi,j(t, x))1≤i,j≤3

such that F ∈ L2((0, T ), L2
wγ
). Let b be a time-dependent divergence free

vector-field (∇ · b = 0) such that b ∈ L3((0, T ), L3
w3γ/2

).

Let u be a solution of the following advection-diffusion problem

(AD)







∂tu = ∆u− (b · ∇)u−∇p+∇ · F

∇ · u = 0, u(0, .) = u0

be such that :

• u belongs to L∞((0, T ), L2
wγ
) and ∇u belongs to L2((0, T ), L2

wγ
)
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• the pressure p is related to u, b and F through the Riesz transforms
Ri =

∂i√
−∆

by the formula

p =

3
∑

i=1

3
∑

j=1

RiRj(biuj − Fi,j)

where
∑3

i=1

∑3
j=1RiRj(biuj) belongs to L

3((0, T ), L
6/5
w 6γ

5

) and
∑3

i=1

∑3
j=1RiRjFi,j

belongs to L2((0, T ), L2
wγ
)

• the map t ∈ [0, T ) 7→ u(t, .) is weakly continuous from [0, T ) to L2
wγ
,

and is strongly continuous at t = 0 :

lim
t→0

‖u(t, .)− u0‖L2
wγ

= 0.

• there exists a non-negative locally finite measure µ on (0, T )×R3 such
that

∂t(
|u|2
2

) = ∆(
|u|2
2

)−|∇u|2−∇·
( |u|2

2
b

)

−∇·(pu)+u·(∇·F)−µ. (1)

Then, we have the energy controls

‖u(t, .)‖2L2
wγ

+ 2

∫ t

0

‖∇u(s, .)‖2L2
wγ
ds

≤‖u0‖2L2
wγ

−
∫ t

0

∫

∇|u|2 · ∇wγ dx ds+
∫ t

0

∫

|u|2b · ∇(wγ) dx ds

+ 2

∫ t

0

∫

pu · ∇(wγ) dx ds− 2
3
∑

i=1

3
∑

j=1

∫ t

0

∫

Fi,j(∂iuj)wγ + Fi,jui∂j(wγ) dx ds

and

‖u(t, .)‖2L2
wγ

+

∫ t

0

‖∇u‖2L2
wγ
ds

≤‖u0‖2L2
wγ

+ Cγ

∫ t

0

‖F(s, .)‖2L2
wγ
ds+ Cγ

∫ t

0

(1 + ‖b(s, .)‖2L3
w3γ/2

)‖u(s, .)‖2L2
wγ
ds

where Cγ depends only on γ (and not on T , and not on b, u, u0 nor F).

In particular, we shall prove the following stability result :
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Theorem 3 Let 0 < γ ≤ 2. Let 0 < T < +∞. Let u0,n be divergence-
free vector fields such that u0,n ∈ L2

wγ
(R3) and Fn be tensors such that Fn ∈

L2((0, T ), L2
wγ
). Let bn be time-dependent divergence free vector-fields such

that bn ∈ L3((0, T ), L3
w3γ/2

).

Let un be solutions of the following advection-diffusion problems

(ADn)







∂tun = ∆un − (bn · ∇)un −∇pn +∇ · Fn

∇ · un = 0, un(0, .) = u0,n

such that :

• un belongs to L∞((0, T ), L2
wγ
) and ∇un belongs to L2((0, T ), L2

wγ
)

• the pressure pn is related to un, bn and Fn by the formula

pn =

3
∑

i=1

3
∑

j=1

RiRj(bn,iun,j − Fn,i,j)

• the map t ∈ [0, T ) 7→ un(t, .) is weakly continuous from [0, T ) to L2
wγ
,

and is strongly continuous at t = 0 :

lim
t→0

‖un(t, .)− u0,n‖L2
wγ

= 0.

• there exists a non-negative locally finite measure µn on (0, T )×R3 such
that

∂t(
|un|2
2

) = ∆(
|un|2
2

)−|∇un|2−∇·
( |un|2

2
bn

)

−∇·(pnun)+un·(∇·Fn)−µn.

If u0,n is strongly convergent to u0,∞ in L2
wγ
, if the sequence Fn is strongly

convergent to F∞ in L2((0, T ), L2
wγ
), and if the sequence bn is bounded in

L3((0, T ), L3
w3γ/2

), then there exists p∞, u∞, b∞ and an increasing sequence

(nk)k∈N with values in N such that

• unk
converges *-weakly to u∞ in L∞((0, T ), L2

wγ
), ∇unk

converges weakly

to ∇u∞ in L2((0, T ), L2
wγ
)

• bnk
converges weakly to b∞ in L3((0, T ), L3

w3γ/2
), pnk

converges weakly

to p∞ in L3((0, T ), L
6/5
w 6γ

5

) + L2((0, T ), L2
wγ
)
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• unk
converges strongly to u∞ in L2

loc([0, T )×R3) : for every T0 ∈ (0, T )
and every R > 0, we have

lim
k→+∞

∫ T0

0

∫

|y|<R
|unk

(s, y)− u∞(s, y)|2 ds dy = 0.

Moreover, u∞ is a solution of the advection-diffusion problem

(AD∞)







∂tu∞ = ∆u∞ − (b∞ · ∇)u∞ −∇p∞ +∇ · F∞

∇ · u∞ = 0, u∞(0, .) = u0,∞

and is such that :

• the map t ∈ [0, T ) 7→ u∞(t, .) is weakly continuous from [0, T ) to L2
wγ
,

and is strongly continuous at t = 0 :

lim
t→0

‖u∞(t, .)− u0,∞‖L2
wγ

= 0.

• there exists a non-negative locally finite measure µ∞ on (0, T )×R3 such
that

∂t(
|u∞|2
2

) = ∆(
|u∞|2
2

)−|∇u∞|2−∇·
( |u∞|2

2
b∞

)

−∇·(p∞u∞)+u∞·(∇·F∞)−µ∞.

Notations.

All along the text, Cγ is a positive constant whose value may change from
line to line but which depends only on γ.

2 The weights wδ.

We consider the weights wδ = 1
(1+|x|)δ where 0 < δ and x ∈ R

3. A very
important feature of those weights is the control of their gradients :

|∇wδ(x)| = δ
wδ(x)

1 + |x| (2)

Lemma 1 (Muckenhoupt weights) If 0 < δ < 3 and 1 < p < +∞, then
wδ belongs to the Muckenhoupt class Ap.
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Proof : We recall that a weight w belongs to Ap(R
3) for 1 < p < +∞ if

and only if it satisfies the reverse Hölder inequality

sup
x∈R3,R>0

(

1

|B(x,R)|

∫

B(x,R)

w(y) dy

)
1
p

(

1

|B(x,R)|

∫

B(x,R)

dy

w(y)
1

p−1

)1− 1
p

< +∞.

(3)
For all 0 < R ≤ 1 the inequality |x − y| < R implies 1

2
(1 + |x|) ≤ 1 + |y| ≤

2(1 + |x|), thus we can control the left side in (3) for wδ by 4
δ
p .

For all R > 1 and |x| > 10R, we have that the inequality |x − y| < R
implies 9

10
(1 + |x|) ≤ 1 + |y| ≤ 11

10
(1 + |x|), thus we can control the left side

in (3) for wδ by (11
9
)
δ
p .

Finally, for R > 1 and |x| ≤ 10R, we write

(

1

|B(x,R)|

∫

B(x,R)

w(y) dy

)
1
p

(

1

|B(x,R)|

∫

B(0,R)

dy

w(y)
1

p−1

)1− 1
p

≤
(

1

|B(0, R)|

∫

B(x,11R)

w(y) dy

)
1
p

(

1

|B(0, R)|

∫

B(0,11R)

dy

w(y)
1

p−1

)1− 1
p

=

(

1

R3

∫ 11R

0

r2
dr

(1 + r)δ

)

1
p
(

1

R3

∫ 11R

0

r2(1 + r)
δ

p−1 dr

)1− 1
p

≤cδ,p
(

1

R3

∫ 11R

0

r2
dr

rδ

)

1
p

(

(

1

R3

∫ 11R

0

r2dr

)1− 1
p

+

(

1

R3

∫ 11R

0

r2+
δ

p−1 dr

)1− 1
p

)

=cδ,p
113

(3− δ)
1
p





(11R)−
δ
p

31−
1
p

+
1

(3 + δ
p−1

)1−
1
p



 .

The lemma is proved. ⋄

Lemma 2 If 0 < δ < 3 and 1 < p < +∞, then the Riesz transforms Ri

and the Hardy–Littlewood maximal function operator are bounded on Lpwδ
=

Lp(wδ(x) dx) :

‖Rjf‖Lp
wδ

≤ Cp,δ‖f‖Lp
wδ

and ‖Mf‖Lp
wδ

≤ Cp,δ‖f‖Lp
wδ
.

Proof : The boundedness of the Riesz transforms or of the Hardy–Littlewwod
maximal function on Lp(wγ dx) are basic properties of the Muckenhoupt class
Ap [5]. ⋄

We will use strategically the next corollary, which is specially useful to obtain
discretely self-similar solutions.
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Corollary 1 (Non-increasing kernels) Let θ ∈ L1(R3) be a non-negative
radial function which is radially non-increasing. Then, if 0 < δ < 3 and
1 < p < +∞, we have, for f ∈ Lpwδ

, the inequality

‖θ ∗ f‖Lp
wδ

≤ Cp,δ‖f‖Lp
wδ
‖θ‖1.

Proof : We have the well-known inequality for radial non-increasing kernels
[4]

|θ ∗ f(x)| ≤ ‖θ‖1Mf(x)

so that we may conclude with Lemma 2. ⋄

We illustrate the utility of Lemma 2 with the following corollaries:

Corollary 2 Let 0 < γ < 5
2
and 0 < T < +∞. Let F be a tensor F(t, x) =

(Fi,j(t, x))1≤i,j≤3 such that F ∈ L2((0, T ), L2
wγ
). Let b be a time-dependent

divergence free vector-field (∇ · b = 0) such that b ∈ L3((0, T ), L3
w3γ/2

).

Let u be a solution of the following advection-diffusion problem






∂tu = ∆u− (b · ∇)u−∇q +∇ · F

∇ · u = 0,
(4)

be such that : u belongs to L∞((0, T ), L2
wγ
) and ∇u belongs to L2((0, T ), L2

wγ
),

and the pressure q belongs to D′((0, T )× R3).

Then, the gradient of the pressure ∇q is necessarily related to u, b and
F through the Riesz transforms Ri =

∂i√
−∆

by the formula

∇q = ∇
(

3
∑

i=1

3
∑

j=1

RiRj(biuj − Fi,j)

)

and
∑3

i=1

∑3
j=1RiRj(biuj) belongs to L

3((0, T ), L
6/5
w 6γ

5

) and
∑3

i=1

∑3
j=1RiRjFi,j

belongs to L2((0, T ), L2
wγ
).

Proof : We define

p =

(

3
∑

i=1

3
∑

j=1

RiRj(biuj − Fi,j)

)

.

As 0 < γ < 5
2
we can use Lemma 2 and (2) to obtain

∑3
i=1

∑3
j=1RiRj(biuj)

belongs to L3((0, T ), L
6/5
w 6γ

5

) and
∑3

i=1

∑3
j=1RiRjFi,j belongs to L

2((0, T ), L2
wγ
).

8



Taking the divergence in (4), we obtain ∆(q − p) = 0. We take a test
function α ∈ D(R) such that α(t) = 0 for all |t| ≥ ε, and a test function
β ∈ D(R3); then the distribution ∇q∗(α⊗β) is well defined on (ε, T−ε)×R

3.
We fix t ∈ (ε, T − ε) and define

Aα,β,t = (∇q ∗ (α⊗ β)−∇p ∗ (α⊗ β))(t, .).

We have

Aα,β,t =(u ∗ (−∂tα⊗ β + α⊗∆β) + (−u⊗ b+ F) · (α⊗∇β))(t, .)
− (p ∗ (α⊗∇β))(t, .). (5)

Convolution with a function in D(R3) is a bounded operator on L2
wγ

and on

L
6/5
w6γ/5 (as, for ϕ ∈ D(R3) we have |f ∗ϕ| ≤ CϕMf). Thus, we may conclude

from (5) that Aα,β,t ∈ L2
wγ

+ L
6/5
w6γ/5

. If max{γ, γ+2
2
} < δ < 5/2 , we have

Aα,β,t ∈ L
6/5
w6δ/5 .

In particular, Aα,β,t is a tempered distribution. As we have

∆Aα,β,t = (α⊗ β) ∗ (∆(q − p))(t, .) = 0,

we find that Aα,β,t is a polynomial. We remark that for all 1 < r < +∞ and
0 < δ < 3, Lrwδ

does not contain non-trivial polynomials. Thus, Aα,β,t = 0.
We then use an approximation of identity 1

ǫ4
α( t

ǫ
)β(x

ǫ
) and conclude that

∇(q − p) = 0. ⋄
Actually, we can answer a question posed by Bradshaw and Tsai in [2]

about the nature of the pressure for self-similar solutions of the Navier–Stokes
equations. In effect, we have the next corollary:

Corollary 3 Let 1 < γ < 5
2
and 0 < T < +∞. Let F be a tensor F(t, x) =

(Fi,j(t, x))1≤i,j≤3 such that F ∈ L2((0, T ), L2
wγ
).

Let u be a solution of the following problem







∂tu = ∆u− (u · ∇)u−∇p+∇ · F

∇ · u = 0,

be such that : u belongs to L∞([0,+∞), L2)loc and∇u belongs to L2([0,+∞), L2)loc,
and the pressure q is in D′((0, T )× R3).
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We suppose that there exists λ > 1 such that λ2F(λ2t, λx) = F(t, x) and
λu(λ2t, λx) = u(t, x). Then, the gradient of the pressure ∇q is necessarily
related to u and F through the Riesz transforms Ri =

∂i√
−∆

by the formula

∇q = ∇
(

3
∑

i=1

3
∑

j=1

RiRj(uiuj − Fi,j)

)

and
∑3

i=1

∑3
j=1RiRj(uiuj) belongs to L

4((0, T ), L
6/5
w 6γ

5

) and
∑3

i=1

∑3
j=1RiRjFi,j

belongs to L2((0, T ), L2
wγ
).

Proof : We shall use Corollary 2, and thus we need to show that u belongs
to L∞((0, T ), L2

wγ
∩ L3((0, T ), L3

3γ/2)) and ∇u belongs to L2((0, T ), L2
wγ
). In

fact,

‖u‖L∞((0,T ),L2
wγ

) ≤ sup
0≤t≤T

∫

|x|<1

|u(t, x)|2 dx+c sup
0≤t≤T

∑

k∈N

∫

λk−1<|x|<λk

|u(t, x)|2
λγk

dx

and

sup
0≤t≤T

∑

k≥1

∫

λk−1<|x|<λk

|u(t, x)|2
λγk

dx ≤ sup
0≤t≤T

∑

k∈N
λ(1−γ)k

∫

λ−1<|x|<1

|u( t

λ2k
, x)|2 dx

≤ c sup
0≤t≤T

∫

λ−1<|x|<1

|u(t, x)|2 dx < +∞.

For ∇u, we compute for k ∈ N,

∫ T

0

∫

λk−1<|x|<λk
|∇u(t, x)|2 dt dx = λk

∫ T

λ2k

0

∫

1
λ
<|x|<1

|∇u(t, x)|2 dx dt.

We may conclude that ∇u belongs to L2((0, T ), L2
wγ
), since for γ > 1 we have

∑

k∈N λ
(1−γ)k < +∞.

Now, we use the Sobolev embeddings described in next Lemma (Lemma
3) to get that u belongs to L2((0, T ), L6

w3γ
), and thus (by interpolation with

L∞((0, T ), L2
wγ
)) to L4((0, T ), L3

w3γ/2
).

In particular,
∑3

i=1

∑3
j=1RiRj(uiuj) belongs to L4((0, T ), L

6/5
w 6γ

5

), since we

have

‖(u⊗ u)wγ‖L6/5 ≤ ‖√wγu‖L2‖√wγu‖L3 ≤ ‖√wγu‖
3
2

L2‖
√
wγu‖

1
2

L6.

⋄
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Lemma 3 (Sobolev embeddings) Let δ > 0. If f ∈ L2
wδ

and ∇f ∈ L2
wδ

then f ∈ L6
w3δ

and

‖f‖L6
w3δ

≤ Cδ(‖f‖L2
wδ

+ ‖∇f‖L2
wδ
).

Proof : Since both f and wδ/2 are locally in H1, we write

∂i(fwδ/2) = wδ/2∂if + f∂i(wδ/2) = wδ/2∂if − δ

2

xi
|x|wδ/2f

and thus

‖wδ/2f‖22 + ‖∇(wδ/2f)‖22 ≤ (1 +
δ2

2
)‖wδ/2f‖22 + 2‖wδ/2∇f‖22.

Thus, wδ/2f belongs to L6 (since H1 ⊂ L6), or equivalently f ∈ L6
w3δ

. ⋄

3 A priori estimates for the advection-diffusion

problem.

3.1 Proof of Theorem 2.

Let 0 < t0 < t1 < T . We take a function α ∈ C∞(R) which is non-decreasing,
with α(t) equal to 0 for t < 1/2 and equal to 1 for t > 1. For 0 < η <
min( t0

2
, T − t1), we define

αη,t0,t1(t) = α(
t− t0
η

)− α(
t− t1
η

).

We take as well a non-negative function φ ∈ D(R3) which is equal to 1 for
|x| ≤ 1 and to 0 for |x| ≥ 2. For R > 0, we define φR(x) = φ( x

R
). Finally,

we define, for ǫ > 0, wγ,ǫ =
1

(1+
√
ǫ2+|x|2)δ

. We have αη,t0,t1(t)φR(x)wγ,ǫ(x) ∈
D((0, T )× R3) and αη,t0,t1(t)φR(x)wγ,ǫ(x) ≥ 0. Thus, using the local energy

11



balance (1) and the fact that µ ≥ 0, we find

−
∫∫ |u|2

2
∂tαη,t0,t1φRwγ,ǫ dx ds

≤−
3
∑

i=1

∫∫

∂iu · uαη,t0,t1(wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

−
∫∫

|∇u|2 αη,t0,t1φRwγ,ǫdx ds

+

3
∑

i=1

∫∫ |u|2
2
biαη,t0,t1(wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

+
3
∑

i=1

∫∫

αη,t0,t1pui(wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

−
3
∑

i=1

3
∑

j=1

∫∫

Fi,jujαη,t0,t1(wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

−
3
∑

i=1

3
∑

j=1

∫∫

Fi,j∂iuj αη,t0,t1φRwγ,ǫ dx ds.

We remark that, independently from R > 1 and ǫ > 0, we have (for 0 < γ ≤
2)

|wγ,ǫ∂iφR|+ |φR∂iwγ,ǫ| ≤ Cγ
wγ(x)

1 + |x| ≤ Cγw3γ/2(x).

Moreover, we know that u belongs to L∞((0, T ), L2
wγ
)∩L2((0, T ), L6

w3γ
) hence

to L4((0, T ), L3
w3γ/2

). Since T < +∞, we have as well u ∈ L3((0, T ), L3
w3γ/2

).

(This is the same type of integrability as required for b). Moreover, we have
pui ∈ L1

w3γ/2
since wγp ∈ L2((0, T ), L6/5+L2) and wγ/2u ∈ L2((0, T ), L2∩L6).

All those remarks will allow us to use dominated convergence.
We first let η go to 0. We find that

12



− lim
η→0

∫∫ |u|2
2
∂tαη,t0,t1φRwγ,ǫ dx ds

≤−
3
∑

i=1

∫ t1

t0

∫

∂iu · u (wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

−
∫ t1

t0

∫

|∇u|2 φRwγ,ǫdx ds

+

3
∑

i=1

∫ t1

t0

∫ |u|2
2
bi(wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

+

3
∑

i=1

∫ t1

t0

∫

pui(wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

−
3
∑

i=1

3
∑

j=1

∫ t1

t0

∫

Fi,juj(wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

−
3
∑

i=1

3
∑

j=1

∫ t1

t0

∫

Fi,j∂iuj φRwγ,ǫ dx ds.

Let us define

AR,ǫ(t) =

∫

|u(t, x)|2φR(x)wγ,ǫ(x) dx.

As we have

−
∫∫ |u|2

2
∂tαη,t0,t1φRwγ,ǫ dx ds = −1

2

∫

∂tαη,t0,t1AR,ǫ(s) ds

we find that, when t0 and t1 are Lebesgue points of the measurable function
AR,ǫ

lim
η→0

−
∫∫ |u|2

2
∂tαη,t0,t1φRwγ,ǫ dx ds =

1

2
(AR,ǫ(t1)− AR,ǫ(t0)).

Then, by continuity, we can let t0 go to 0 and thus replace t0 by 0 in the
inequality. Moreover, if we let t1 go to t, then by weak continuity, we find that
AR,ǫ(t) ≤ limt1→tAR,ǫ(t1), so that we may as well replace t1 by t ∈ (0, T ).
Thus we find that for every t ∈ (0, T ), we have

13



∫ |u(t, x)|2
2

φRwγ,ǫ dx

≤
∫ |u0(x)|2

2
φRwγ,ǫ dx

−
3
∑

i=1

∫ t

0

∫

∂iu · u (wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

−
∫ t

0

∫

|∇u|2 φRwγ,ǫdx ds

+

3
∑

i=1

∫ t

0

∫ |u|2
2
bi(wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

+

3
∑

i=1

∫ t

0

∫

pui(wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

−
3
∑

i=1

3
∑

j=1

∫ t

0

∫

Fi,juj(wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

−
3
∑

i=1

3
∑

j=1

∫ t

0

∫

Fi,j∂iuj φRwγ,ǫ dx ds.

(6)

Thus, letting R go to +∞ and then ǫ go to 0, we find by dominated
convergence that, for every t ∈ (0, T ), we have

‖u(t, .)‖2L2
wγ

+ 2

∫ t

0

‖∇u(s, .)‖2L2
wγ
ds

≤‖u0‖2L2
wγ

−
∫ t

0

∫

∇|u|2 · ∇wγ dx ds+
∫ t

0

∫

(|u|2b+ 2pu) · ∇(wγ) dx ds

− 2

3
∑

i=1

3
∑

j=1

∫ t

0

∫

Fi,j(∂iuj)wγ + Fi,jui∂j(wγ) dx ds.

Now we write
∣

∣

∣

∣

∫ t

0

∫

∇|u|2 · ∇wγ ds ds
∣

∣

∣

∣

≤2γ

∫ t

0

∫

|u||∇u|wγ dx ds

≤1

4

∫ t

0

‖∇u‖2L2
wγ
ds+ 4γ2

∫ t

0

‖u‖2L2
wγ
ds.
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Writing

p1 =

3
∑

i=1

3
∑

j=1

RiRj(biuj) and p2 = −
3
∑

i=1

3
∑

j=1

RiRj(Fi,j)

and using the fact that w6γ/5 ∈ A6/5 and wγ ∈ A2, we get

∣

∣

∣

∣

∫ t

0

∫

(|u|2b+ 2p1u) · ∇(wγ) dx ds

∣

∣

∣

∣

≤γ
∫ t

0

∫

(|u|2|b|+ 2|p1| |u|)w3/2
γ dx ds

≤ γ

∫ t

0

‖w1/2
γ u‖6(‖wγ|b||u|‖6/5 + ‖wγp1‖6/5)ds

≤ Cγ

∫ t

0

‖w1/2
γ u‖6‖wγ|b||u|‖6/5 ds

≤ Cγ

∫ t

0

‖w1/2
γ u‖6‖w1/2

γ b‖3‖w1/2
γ u‖2 ds

≤ C ′
γ

∫ t

0

(‖∇u‖L2
wγ

+ ‖u‖L2
wγ
) ‖b‖L3

w3γ/2
‖u‖L2

wγ
ds

≤ 1

4

∫ t

0

‖∇u‖2L2
wγ
ds+ C ′′

γ

∫ t

0

‖u‖2L2
wγ
(‖b‖L3

w3γ/2
+ ‖b‖2L3

w3γ/2
) ds

and
∣

∣

∣

∣

∫ t

0

∫

2p2u · ∇(wγ) dx ds

∣

∣

∣

∣

≤2γ

∫ t

0

∫

|p2| |u|wγ dx ds

≤γ
∫ t

0

‖u‖2L2
wγ

+ ‖p2‖2L2
wγ
ds

≤Cγ
∫ t

0

‖u‖2L2
wγ

+ ‖F‖2L2
wγ
ds.

Finally, we have
∣

∣

∣

∣

∣

2
3
∑

i=1

3
∑

j=1

∫ t

0

∫

Fi,j(∂iuj)wγ + Fi,jui∂j(wγ) dx ds

∣

∣

∣

∣

∣

≤2

∫ t

0

∫

|F | (|∇u|+ γ|u|)wγ dx ds

≤ 1

4

∫ t

0

‖∇u‖2L2
wγ
ds+ Cγ

∫ t

0

‖u‖2L2
wγ

+ ‖F‖2L2
wγ
ds.

We have obtained

‖u(t, .)‖2L2
wγ

+

∫ t

0

‖∇u‖2L2
wγ
ds

≤‖u0‖2L2
wγ

+ Cγ

∫ t

0

‖F(s, .)‖2L2
wγ
ds+ Cγ

∫ t

0

(1 + ‖b(s, .)‖2L3
w3γ/2

)‖u(s, .)‖2L2
wγ
ds

(7)
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and Theorem 2 is proven. ⋄

3.2 Passive transportation.

From inequality (7), we have the following direct consequence :

Corollary 4 Under the assumptions of Theorem 2, we have

sup
0<t<T

‖u‖L2
wγ

≤ (‖u0‖L2
wγ

+ Cγ‖F‖L2((0,T ),L2
wγ

)) e
Cγ(T+T 1/3‖b‖2

L3((0,T ),L3
w3γ/2

)
)

and

‖∇u‖L2((0,T ),L2
wγ )

≤ (‖u0‖L2
wγ

+ Cγ‖F‖L2((0,T ),L2
wγ

)) e
Cγ (T+T 1/3‖b‖2

L3((0,T ),L3
w3γ/2

)
)

where the constant Cγ depends only on γ.

Another direct consequence is the following uniqueness result for the advection-
diffusion problem with a (locally in time), bounded b :

Corollary 5 . Let 0 < γ ≤ 2. Let 0 < T < +∞. Let u0 be a divergence-free
vector field such that u0 ∈ L2

wγ
(R3) and F be a tensor F(t, x) = (Fi,j(t, x))1≤i,j≤3

such that F ∈ L2((0, T ), L2
wγ
). Let b be a time-dependent divergence free

vector-field (∇ · b = 0) such that b ∈ L3((0, T ), L3
w3γ/2

). Assume moreover

that b belongs to L2
tL

∞
x (K) for every compact subset K of (0, T )× R3.

Let (u1, p1) and (u2, p2) be two solutions of the following advection-diffusion
problem

(AD)







∂tu = ∆u− (b · ∇)u−∇p+∇ · F

∇ · u = 0, u(0, .) = u0

be such that, for k = 1 and k = 2, :

• uk belongs to L∞((0, T ), L2
wγ
) and ∇uk belongs to L2((0, T ), L2

wγ
)

• the pressure pk is related to uk, b and F through the Riesz transforms
Ri =

∂i√
−∆

by the formula

pk =

3
∑

i=1

3
∑

j=1

RiRj(biuk,j − Fi,j)

• the map t ∈ [0, T ) 7→ uk(t, .) is weakly continuous from [0, T ) to L2
wγ
,

and is strongly continuous at t = 0 :

lim
t→0

‖uk(t, .)− u0‖L2
wγ

= 0.
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Then u1 = u2.

Proof : Let v = u1 − u2 and q = p1 − p2. Then we have






∂tv = ∆v − (b · ∇)v −∇q

∇ · v = 0, v(0, .) = 0

Moreover on every compact subset K of (0, T )×R
3, b⊗ v is in L2

tL
2
x, while

it belongs globally to L3
tL

6/5
w6γ/5 . Writing, for ϕ, ψ ∈ D((0, T )×R

3) such that
ψ = 1 on the neigborhood of the support of ϕ,

ϕq = q1 + q2 = ϕ

3
∑

i=1

3
∑

j=1

RiRj(ψbivj) + ϕ

3
∑

i=1

3
∑

j=1

RiRj((1− ψ)bivj)

we find that ‖q1‖L2L2 ≤ Cϕ,ψ‖ψb⊗ v‖L2L2 and

‖q2‖L3L∞ ≤ Cϕ,ψ‖b⊗ v‖
L3L

6/5
w6γ/5

with

Cϕ,ψ ≤ C‖ϕ‖∞‖1− ψ‖∞ sup
x∈Suppϕ

(

∫

y∈Supp (1−ψ)

(

(1 + |y|)γ
|x− y|3

)6
)1/6

< +∞.

Thus, we may take the scalar product of ∂tv with v and find that

∂t(
|v|2
2

) = ∆(
|v|2
2

)− |∇v|2 −∇ ·
( |v|2

2
b

)

−∇ · (qv).

Thus we are under the assumptions of Theorem 2 and we may use Corollary
4 to find that v = 0. ⋄

3.3 Active transportation.

We begin with the following lemma :

Lemma 4 Let α be a non-negative bounded measurable function on [0, T )
such that, for two constants A,B ≥ 0, we have

α(t) ≤ A+B

∫ t

0

α(s) + α(s)3 ds.

If T0 > 0 and T1 = min(T, T0,
1

4B(A+BT0)2
), we have, for every t ∈ [0, T1],

α(t) ≤
√
2(A+BT0).
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Proof : We write α ≤ 1 + α3. We define

Φ(t) = A+BT0 +B

∫ t

0

α3 ds and Ψ(t) = A+BT0 +B

∫ t

0

Φ3(s) ds.

We have, for t ∈ [0, T1], α ≤ Φ ≤ Ψ. Since Ψ is C1, we may write

Ψ′(t) = BΦ(t)3 ≤ BΨ(t)3

and thus
1

Ψ(0)2
− 1

Ψ(t)2
≤ 2Bt.

We thus find

Ψ(t)2 ≤ Ψ(0)2

1− 2BΨ(0)2t
≤ 2Ψ(0)2.

The lemma is proven. ⋄

Corollary 6 Assume that u0, u, p, F and b satisfy assumptions of Theorem
2, Assume moreover that b is controlled by u : for every t ∈ (0, T ),

‖b(t, .)‖L3
w3γ/2

≤ C0‖u(t, .)‖L3
w3γ/2

.

Then there exists a constant Cγ ≥ 1 such that if T0 < T is such that

Cγ(1 + C4
0)

(

1 + C4
0 + ‖u0‖2L2

wγ
+

∫ T0

0

‖F‖2L2
wγ
ds

)2

T0 ≤ 1

then

sup
0≤t≤T0

‖ u(t, .)‖2L2
wγ

≤ Cγ(1 + C4
0 + ‖u0‖2L2

wγ
+

∫ T0

0

‖F‖2L2
wγ
ds)

and
∫ T0

0

‖∇u‖2L2
wγ
ds ≤ Cγ(1 + C4

0 + ‖u0‖2L2
wγ

+

∫ T0

0

‖F‖2L2
wγ
ds).

Proof : We start from inequality (7) :

‖u(t, .)‖2L2
wγ

+

∫ t

0

‖∇u‖2L2
wγ
ds

≤‖u0‖2L2
wγ

+ Cγ

∫ t

0

‖F(s, .)‖2L2
wγ
ds+ Cγ

∫ t

0

(1 + ‖b(s, .)‖2L3
w3γ/2

)‖u(s, .)‖2L2
wγ
ds
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We write

‖b(s, .)‖2L3
w3γ/2

≤ C2
0‖u(s, .)‖2L3

w3γ/2
≤ C2

0Cγ‖u‖L2
wγ
(‖u‖L2

wγ
+ ‖∇u‖L2

wγ
).

This gives

‖u(t, .)‖2L2
wγ

+
1

2

∫

‖∇u‖2L2
wγ
ds

≤‖u0‖2L2
wγ

+ Cγ

∫ t

0

‖F(s, .)‖2L2
wγ
ds

+ Cγ

∫ t

0

‖u(s, .)‖2L2
wγ

+ C2
0‖u(s, .)‖4L2

wγ
+ C4

0‖u(s, .)‖6L2
wγ
ds

≤‖u0‖2L2
wγ

+ Cγ

∫ t

0

‖F(s, .)‖2L2
wγ
ds+ 2Cγ

∫ t

0

‖u(s, .)‖2L2
wγ

+ C4
0‖u(s, .)‖6L2

wγ
ds.

For t ≤ T0, we get

‖u(t, .)‖2L2
wγ

+
1

2

∫

‖∇u‖2L2
wγ
ds

≤ ‖u0‖2L2
wγ

+ Cγ

∫ T0

0

‖F‖2L2
wγ
ds+ Cγ(1 + C4

0)

∫ t

0

‖u(t, .)‖2L2
wγ

+ ‖u(t, .)‖6L2
wγ
ds

and we may conclude with Lemma 4. ⋄

4 Stability of solutions for the advection-diffusion

problem.

4.1 The Rellich lemma.

We recall the Rellich lemma :

Lemma 5 (Rellich) If s > 0 and (fn) is a sequence of functions on Rd

such that

• the family (fn) is bounded in Hs(Rd)

• there is a compact subset of Rd such that the support of each fn is
included in K

then there exists a subsequence (fnk
) such that fnk

is strongly convergent in
L2(Rd).
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We shall use a variant of this lemma (see [9]) :

Lemma 6 (space-time Rellich) If s > 0, σ ∈ R and (fn) is a sequence of
functions on (0, T )× R

d such that, for all T0 ∈ (0, T ) and all ϕ ∈ D(R3)

• ϕfn is bounded in L2((0, T0), H
s)

• ϕ∂tfn is bounded in L2((0, T0), H
σ)

then there exists a subsequence (fnk
) such that fnk

is strongly convergent in
L2
loc([0, T ) × R3) : if f∞ is the limit, we have for all T0 ∈ (0, T ) and all

R0 > 0

lim
nk→+∞

∫ T0

0

∫

|x|≤R
|fnk

− f∞|2 dx dt = 0.

Proof : With no loss of generality, we may assume that σ < min(1, s). Define
g by gn(t, x) = α(t)ϕ(x)fn(t, x) if t > 0 and gn(t, x) = α(t)ϕ(x)fn(−t, x) if
t < 0, where α ∈ C∞ on (0, T ), is equal to 1 on [0, T0] and equal to 0 for
t > T+T0

2
, and ϕ(x) = 1 on B(0, R0). Then the support of gn is contained

in [−T+T0
2
, T+T0

2
] × Suppϕ. Moreover, gn is bounded in L2

tH
s and ∂tgn is

bounded in L2Hσ so that gn is bounded in Hρ(R×R3) with ρ = s
s+1−σ (just

write (1 + τ 2 + ξ2)
s

s+1−σ ≤ ((1 + τ 2)(1 + ξ2)σ)
s

s+1−σ ((1 + ξ2)s)
1−σ

s+1−σ ).. By the
Rellich lemma, we know that there is a subsequence gnk

which is strongly
convergent in L2(R×R3), thus a subsequence fnk

which is strongly convergent
in L2((0, T0)× B(0, R0)).

We then iterate this argument for an increasing sequence of times T0 <
T1 < · · · < TN → T and an increasing sequence of radii R0 < R1 < · · · <
RN → +∞ and finish the proof. by the classical diagonal process of Cantor.
⋄

4.2 Proof of Theorem 3.

Assume that u0,n is strongly convergent to u0,∞ in L2
wγ

and that the se-

quence Fn is strongly convergent to F∞ in L2((0, T ), L2
wγ
), and assume that

the sequence bn is bounded in L3((0, T ), L3
w3γ/2

). Then, by Theorem 2 and

Corollary 4, we know that un is bounded in L∞((0, T ), L2
wγ
) and ∇un is

bounded in L2((0, T ), L2
wγ
). In particular, writing pn = pn,1 + pn,2 with

pn,1 =

3
∑

i=1

3
∑

j=1

RiRj(bn,iun,j) and pn,2 = −
3
∑

i=1

3
∑

j=1

RiRj(Fn,i,j)
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we get that pn,1 is bounded in L3((0, T ), L
6/5
w 6γ

5

) and pn,2 is bounded in L2((0, T ), L2
wγ
).

If ϕ ∈ D(R3), we find that ϕun is bounded in L2((0, T ), H1) and, writing

∂tun = ∆un −
(

3
∑

i=1

∂i(bn,iun) +∇pn,1
)

+ (∇ · Fn −∇pn,2) ,

ϕ∂tun is bounded in L2L2 + L2W−1,6/5 + L2H−1 ⊂ L2((0, T ), H−2). Thus,
by Lemma 6, there exists u∞ and an increasing sequence (nk)k∈N with values
in N such that unk

converges strongly to u∞ in L2
loc([0, T )× R3) : for every

T0 ∈ (0, T ) and every R > 0, we have

lim
k→+∞

∫ T0

0

∫

|y|<R
|unk

(s, y)− u∞(s, y)|2 dy ds = 0.

As un is bounded in L∞((0, T ), L2
wγ
) and ∇un is bounded in L2((0, T ), L2

wγ
),

the convergence of unk
to u∞ in D′((0, T )× R3) implies that unk

converges
*-weakly to u∞ in L∞((0, T ), L2

wγ
) and ∇unk

converges weakly to ∇u∞ in

L2((0, T ), L2
wγ
).

By Banach–Alaoglu’s theorem, we may assume that there exists b∞ such
that bnk

converges weakly to b∞ in L3((0, T ), L3
w3γ/2

). In particular bnk ,iunk,j

is weakly convergent in (L6/5L6/5)loc and thus in D′((0, T ) × R3); as it is

bounded in L3((0, T ), L
6/5
w 6γ

5

), it is weakly convergent in L3((0, T ), L
6/5
w 6γ

5

) to

b∞,iu∞,j. Let

p∞,1 =
3
∑

i=1

3
∑

j=1

RiRj(b∞,iu∞,j) and p∞,2 = −
3
∑

i=1

3
∑

j=1

RiRj(F∞,i,j).

As the Riesz transforms are bounded on L
6/5
w 6γ

5

and on L2
wγ
, we find that pnk,1

is weakly convergent in L3((0, T ), L
6/5
w 6γ

5

) to p∞,1 and that pnk,2 is strongly

convergent in L2((0, T ), L2
wγ
) to p∞,2.

In particular, we find that in D′((0, T )× R3)

∂tu∞ = ∆u∞ −
3
∑

i=1

∂i(b∞,iu∞)−∇(p∞,1 + p∞,2) +∇ · F∞.

In particular, ∂tu∞ is locally in L2H−2, and thus u∞ has representative such
that t 7→ u∞(t, .) is continuous from [0, T ) to D′(R3) and coincides with
u∞(0, .) +

∫ t

0
∂tu∞ ds. In D′((0, T )× R3), we have that

u∞(0, .)+

∫ t

0

∂tu∞ ds = u∞ = lim
nk→+∞

unk
= lim

nk→+∞
u0,nk

+

∫ t

0

∂tunk
ds = u0,∞+

∫ t

0

∂tu∞ ds
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Thus, u∞(0, .) = u0,∞, and u∞ is a solution of (AD∞).
Next, we define

An = −∂t(
|un|2
2

)+∆(
|un|2
2

)−∇·
( |un|2

2
bn

)

−∇·(pnun)+un·(∇·Fn) = |∇un|2+µn.

As un is bounded in L∞((0, T ), L2
wγ
) and ∇un is bounded in L2((0, T ), L2

wγ
),

it is bounded in L2((0, T ), L6
w3γ/2

) and by interpolation with L∞((0, T ), L2
wγ
) it

is bounded in L10/3((0, T ), L
10/3
w5γ/3). Thus, unk

is locally bounded in L10/3L10/3

and locally strongly convergent in L2L2; it is then strongly convergent in
L3L3. Thus, Ank

is convergent in D′((0, T )× R3) to

A∞ = −∂t(
|u∞|2
2

)+∆(
|u∞|2
2

)−∇·
( |u∞|2

2
b∞

)

−∇·(p∞u∞)+u∞ ·(∇·F∞).

In particular, A∞ = limnk→+∞ |∇unk
|2 + µnk

. If Φ ∈ D((0, T )× R3) is non-
negative, we have

∫∫

A∞Φ dx ds = lim
nk→+∞

∫∫

Ank
Φ dx ds ≥ lim sup

nk→+∞

∫∫

|∇unk
|2Φ dx ds ≥

∫∫

|∇u∞|2Φ dx ds

(since
√
Φ∇unk

is weakly convergent to
√
Φ∇u∞ in L2L2). Thus, there

exists a non-negative locally finite measure µ∞ on (0, T ) × R3 such that
A∞ = |∇u∞|2 + µ∞, i.e. such that

∂t(
|u∞|2
2

) = ∆(
|u∞|2
2

)−|∇u∞|2−∇·
( |u∞|2

2
b∞

)

−∇·(p∞u∞)+u·(∇·F∞)−µ∞.

Finally, we start from inequality (6) :
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∫ |un(t, x)|2
2

φRwγ,ǫ dx ≤
∫ |u0,n(x)|2

2
φRwγ,ǫ dx

−
3
∑

i=1

∫ t

0

∫

∂iun · un (wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

−
∫ t

0

∫

|∇un|2 φRwγ,ǫdx ds

+

3
∑

i=1

∫ t

0

∫ |un|2
2

bn,i(wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

+
3
∑

i=1

∫ t

0

∫

pnun,i(wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

−
3
∑

i=1

3
∑

j=1

∫ t

0

∫

Fn,i,jun,j(wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

−
3
∑

i=1

3
∑

j=1

∫ t

0

∫

Fn,i,j∂iun, φRwγ,ǫ dx ds.

This gives

lim sup
nk→+∞

∫ |unk
(t, x)|2
2

φRwγ,ǫ dx+

∫ t

0

∫

|∇unk
|2 φRwγ,ǫdx ds

≤
∫ |u0,∞(x)|2

2
φRwγ,ǫ dx

−
3
∑

i=1

∫ t

0

∫

∂iu∞ · u∞ (wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

+

3
∑

i=1

∫ t

0

∫ |u∞|2
2

b∞,i(wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

+

3
∑

i=1

∫ t

0

∫

p∞u∞,i(wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

−
3
∑

i=1

3
∑

j=1

∫ t

0

∫

F∞,i,ju∞,j(wγ,ǫ∂iφR + φR∂iwγ,ǫ) dx ds

−
3
∑

i=1

3
∑

j=1

∫ t

0

∫

F∞,i,j∂iu∞,j φRwγ,ǫ dx ds.
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As we have

unk
= u0,nk

+

∫ t

0

∂tunk
ds

we see that unk
(t, .) is convergent to u∞(t, .) in D′(R3), hence is weakly

convergent in L2
loc (as it is bounded in L2

wγ
), so that :

∫ |u∞(t, x)|2
2

φRwγ,ǫ dx ≤ lim sup
nk→+∞

∫ |unk
(t, x)|2
2

φRwγ,ǫ dx.

Similarly, as ∇unk
is weakly convergent in L2L2

wγ
, we have

∫ t

0

∫ |∇u∞(s, x)|2
2

φRwγ,ǫ dx ds ≤ lim sup
nk→+∞

∫ t

0

∫ |∇unk
(s, x)|2
2

φRwγ,ǫ dx ds.

Thus, letting R go to +∞ and then ǫ go to 0, we find by dominated
convergence that, for every t ∈ (0, T ), we have

‖u∞(t, .)‖2L2
wγ

+ 2

∫ t

0

‖∇u∞(s, .)‖2L2
wγ
ds

≤‖u0,∞‖2L2
wγ

−
∫ t

0

∫

∇|u∞|2 · ∇wγ dx ds+
∫ t

0

∫

(|u∞|2b∞ + 2p∞u∞) · ∇(wγ) dx ds

− 2
3
∑

i=1

3
∑

j=1

∫ t

0

∫

F∞,i,j(∂iu∞,j)wγ + F∞,i,ju∞,i∂j(wγ) dx ds.

Letting t go to 0, we find

lim sup
t→0

‖u∞(t, .)‖2L2
wγ

≤ ‖u0,∞‖2L2
wγ
.

On the other hand, we know that u∞ is weakly continuous in L2
wγ

and thus
we have

‖u0,∞‖2L2
wγ

≤ lim inf
t→0

‖u∞(t, .)‖2L2
wγ
.

This gives ‖u0,∞‖2L2
wγ

= limt→0 ‖u∞(t, .)‖2L2
wγ
, which allows to turn the weak

convergence into a strong convergence. Theorem 3 is proven. ⋄

5 Solutions of the Navier–Stokes problem with

initial data in L2
wγ
.

We now prove Theorem 1. The idea is to approximate the problem by a
Navier–Stokes problem in L2, then use the a priori estimates (Theorem 2)
and the stability theorem (Theorem 3) to find a solution to the Navier–Stokes
problem with data in L2

wγ
).
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5.1 Approximation by square integrable data.

Lemma 7 (Leray’s projection operator) Let 0 < δ < 3 and 1 < r <
+∞. If v is a vector field on R3 such that v ∈ Lrwδ

, then there exists a
unique decompostion

v = vσ + v∇

such that

• vσ ∈ Lrwδ
and ∇ · vσ = 0.

• v∇ ∈ Lrwδ
and ∇∧ v∇ = 0.

We shall write vσ = Pv, where P is Leray’s projection operator.
Similarly, if v is a distribution vector field of the type v = ∇ · G with

G ∈ Lrwδ
then there exists a unique decompostion

v = vσ + v∇

such that

• there exists H ∈ Lrwδ
such that vσ = ∇ ·H and ∇ · vσ = 0.

• there exists q ∈ Lrwδ
such that v∇ = ∇q (and thus ∇∧ v∇ = 0).

We shall still write vσ = Pv. Moreover, the function q is given by

q = −
3
∑

i=1

3
∑

j=1

RiRj(Gi,j).

Proof : As wδ ∈ Ar the Riesz transforms are bounded on Lrwδ
. Using the

identity
∆v = ∇(∇ · v)−∇ ∧ (∇∧ v)

we find (if the decomposition exists) that

∆vσ = −∇ ∧ (∇∧ vσ) = −∇ ∧ (∇∧ v) and ∆v∇ = ∇(∇ · v∇) = ∇(∇ · v).

This proves the uniqueness. By linearity, we just have to prove that v =
0 =⇒ v∇ = 0. We have ∆v∇ = 0, and thus v∇ is harmonic; as it belongs to
S ′, we find that it is a polynomial. But a polynomial which belongs to Lrwδ

must be equal to 0. Similarly, if v∇ = ∇q, then ∆q = ∇ · v∇ = ∇ · v = 0;
thus q is harmonic and belongs to Lrwδ

, hence q = 0.

For the existence, it is enough to check that v∇,i = −∑3
j=1RiRjvj in the

first case and v∇ = ∇q with q =
∑3

i=1

∑3
j=1RiRj(Gi,j) in the second case

fulfill the conclusions of the lemma. ⋄
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Lemma 8 Let 0 < γ ≤ 2. Let u0 be a divergence-free vector field such
that u0 ∈ L2

wγ
(R3) and F be a tensor F(t, x) = (Fi,j(t, x))1≤i,j≤3 such that

F ∈ L2((0,+∞), L2
wγ
). Let φ ∈ D(R3) be a non-negative function which

is equal to 1 for |x| ≤ 1 and to 0 for |x| ≥ 2. For R > 0, we define
φR(x) = φ( x

R
), u0,R = P(φRu0) and FR = φRF. Then u0,R is a divergence-

free square integrable vector field and limR→+∞ ‖u0,R−u0‖L2
wγ

= 0. Similarly,

FR belongs to L2L2 and limR→+∞ ‖FR − F‖L2((0,+∞),L2
wγ )

= 0.

Proof : By dominated convergence, we have limR→+∞ ‖φRu0 − u0‖L2
wγ

= 0.

We conclude by writing u0,R − u0 = P(φRu0 − u0). ⋄

5.2 Leray’s mollification.

We want to solve the Navier–Stokes equations with initial value u0 :

(NS)







∂tu = ∆u− (u · ∇)u−∇p+∇ · F

∇ · u = 0, u(0, .) = u0

We begin with Leray’s method [11] for solving the problem in L2 :

(NSR)







∂tuR = ∆uR − (uR · ∇)uR −∇pR +∇ · FR

∇ · uR = 0, uR(0, .) = u0,R

The idea of Leray is to mollify the non-linearity by replacing uR · ∇ by
(uR ∗ θǫ) · ∇, where θ(x) = 1

ǫ3
θ(x

ǫ
), θ ∈ D(R3), θ is non-negative and radially

decreasing and
∫

θ dx = 1. We thus solve the problem

(NSR,ǫ)







∂tuR,ǫ = ∆uR,ǫ − ((uR,ǫ ∗ θǫ) · ∇)uR,ǫ −∇pR,ǫ +∇ · FR

∇ · uR,ǫ = 0, uR,ǫ(0, .) = u0,R

The classical result of Leray states that the problem (NSR,ǫ) is well-
posed :

Lemma 9 Let v0 ∈ L2 be a divergence-free vector field. Let G ∈ L2((0,+∞), L2).
Then the problem

(NSǫ)







∂tvǫ = ∆vǫ − ((vǫ ∗ θǫ) · ∇)vǫ −∇qǫ +∇ ·G

∇ · vǫ = 0, vǫ(0, .) = v0

has a unique solution vǫ in L∞((0,+∞), L2) ∩ L2((0,+∞), Ḣ1). Moreover,
this solution belongs to C([0,+∞), L2).

26



5.3 Proof of Theorem 1 (local existence)

We use Lemma 9 and find a solution uR,ǫ to the problem (NSR,ǫ). Then we
check that uR,ǫ fulfills the assumptions of Theorem 2 and of Corollary 6 :

• uR,ǫ belongs to L
∞((0, T ), L2

wγ
) and ∇uR,ǫ belongs to L

2((0, T ), L2
wγ
)

• the map t ∈ [0,+∞) 7→ uR,ǫ(t, .) is weakly continuous from [0,+∞) to
L2
wγ
, and is strongly continuous at t = 0 :

lim
t→0

‖uR,ǫ(t, .)− u0,R‖L2
wγ

= 0.

• on (0, T )× R
3, uR,ǫ fulfills the energy equality :

∂t(
|uR,ǫ|2

2
) = ∆(

|uR,ǫ|2
2

)−|∇uR,ǫ|2−∇·
( |u|2

2
bR,ǫ

)

−∇·(pR,ǫuR,ǫ)+uR,ǫ·(∇·FR).

with bR,ǫ = uR,ǫ ∗ θǫ.

• bR,ǫ is controlled by uR,ǫ : for every t ∈ (0, T ),

‖bR,ǫ(t, .)‖L3
w3γ/2

≤ ‖MuR,ǫ(t,.)‖L3
w3γ/2

≤ C0‖uR,ǫ(t, .)‖L3
w3γ/2

.

Thus, we know that, for every time T0 such that

Cγ(1 + C4
0 )

(

1 + C4
0 + ‖u0,R‖2L2

wγ
+

∫ T0

0

‖FR‖2L2
wγ
ds

)2

T0 ≤ 1

we have

sup
0≤t≤T0

‖ uR,ǫ(t, .)‖2L2
wγ

≤ Cγ(1 + C4
0 + ‖u0,R‖2L2

wγ
+

∫ T0

0

‖FR‖2L2
wγ
ds)

and
∫ T0

0

‖∇uR,ǫ‖2L2
wγ
ds ≤ Cγ(1 + C4

0 + ‖u0,R‖2L2
wγ

+

∫ T0

0

‖FR‖2L2
wγ
ds).

Moreover, we have that

‖u0,R‖L2
wγ

≤ Cγ‖u0‖L2
wγ

and ‖FR‖L2
wγ

≤ ‖F‖L2
wγ

so that

‖bR,ǫ‖L3((0,T0),L3
w3γ/2

≤Cγ‖uR,ǫ‖L3((0,T0),L3
w3γ/2

≤C ′
γT

1
12
0

(

(1 +
√

T0)‖uR,ǫ‖L∞((0,T0),L2
wγ )

+ ‖∇uR,ǫ‖L2((0,T0),L2
wγ )

)

≤C ′′
γ

√

1 + C4
0 + ‖u0‖2L2

wγ
+

∫ T0

0

‖F‖2L2
wγ
ds.
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Let Rn → +∞ and ǫn → 0. Let u0,n = u0,Rn , Fn = FRn, bn = bRn,ǫn

and un = uRn,ǫn. We may then apply Theorem 3, since u0,n is strongly
convergent to u0 in L2

wγ
, Fn is strongly convergent to F in L2((0, T0), L

2
wγ
),

and the sequence bn is bounded in L3((0, T0), L
3
w3γ/2

). Thus there exists p,

u, b and an increasing sequence (nk)k∈N with values in N such that

• unk
converges *-weakly to u in L∞((0, T0), L

2
wγ
),∇unk

converges weakly

to ∇u in L2((0, T0), L
2
wγ
)

• bnk
converges weakly to b in L3((0, T0), L

3
w3γ/2

), pnk
converges weakly

to p in L3((0, T0), L
6/5
w 6γ

5

) + L2((0, T0), L
2
wγ
)

• unk
converges strongly to u in L2

loc([0, T0)× R3).

Moreover, u is a solution of the advection-diffusion problem







∂tu = ∆u− (b · ∇)u−∇p+∇ · F

∇ · u = 0, u(0, .) = u0

and is such that :

• the map t ∈ [0, T0) 7→ u(t, .) is weakly continuous from [0, T0) to L
2
wγ
,

and is strongly continuous at t = 0 :

lim
t→0

‖u(t, .)− u0‖L2
wγ

= 0.

• there exists a non-negative locally finite measure µ on (0, T0)×R3 such
that

∂t(
|u|2
2

) = ∆(
|u|2
2

)− |∇u|2 −∇ ·
( |u|2

2
b

)

−∇ · (pu) + u · (∇ · F)− µ.

Finally, as bn = θǫn ∗ (un − u) + θǫn ∗ u, we see that bnk
is strongly

convergent to u in L3
loc([0, T0)× R3), so that b = u : thus, u is a solution of

the Navier–Stokes problem on (0, T0). (It is easy to check that

p =
3
∑

i=1

3
∑

j=1

RiRj(uiuj − Fi,j)

as ui,nk
uj,nk

is weakly convergent to uiuj in L
4((0, T0), L

6/5
w 6γ

5

) and w 6γ
5
∈ A6/5).
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5.4 Proof of Theorem 1 (global existence)

In order to finish the proof, we shall use the scaling properties of the Navier–
Stokes equations : if λ > 0, then u is a solution of the Cauchy initial value
problem for the Navier–Stokes equations on (0, T ) with initial value u0 and
forcing tensor F if and only if uλ(t, x) = λu(λ2t, λx) is a solution of the
Navier–Stokes equations on (0, T/λ2) with initial value u0,λ(x) = λu0(λx)
and forcing tensor Fλ(t, x) = λ2F(λ2t, λx).

We take λ > 1 and for n ∈ N we consider the Navier–Stokes problem
with initial value v0,n = λnu0(λ

n·) and forcing tensor Fn = λ2nF(λ2n·, λn·).
Then we have seen that we can find a solution vn on (0, Tn), with

Cγ

(

1 + ‖v0,n‖2L2
wγ

+

∫ +∞

0

‖Fn‖2L2
wγ
ds

)2

Tn = 1.

Of course, we have vn(t, x) = λnun(λ
2nt, λnx) where un is a solution of the

Navier–Stokes equations on (0, λ2nTn) with initial value u0 and forcing tensor
F

Lemma 10

lim
n→+∞

λn

1 + ‖v0,n‖2L2
wγ

+
∫ +∞
0

‖Fn‖2L2
wγ
ds

= +∞.

Proof : We have

‖v0,n‖2L2
wγ

=

∫

|u0(x)|2λn(γ−1) (1 + |x|)γ
(λn + |x|)γwγ(x) dx.

We have
λn(γ−1) ≤ λn

as γ ≤ 2 and we have, by dominated convergence,

lim
n→+∞

∫

|u0(x)|2
(1 + |x|)γ
(λn + |x|)γwγ(x) dx = 0.

Similarly, we have

∫ +∞

0

‖Fn‖2L2
wγ
ds =

∫ +∞

0

∫

|F(s, x)|2λn(γ−1) (1 + |x|)γ
(λn + |x|)γwγ(x) dx ds = o(λn).

Thus, limn→+∞ λ2nTn = +∞. ⋄
Now, for a given T > 0, if λ2nTn > T for n ≥ nT , then un is a solution

of the Navier-Stokes problem on (0, T ). Let wn(t, x) = λnTun(λ
2nT t, λnTx).
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For n ≥ nT , wn is a solution of the Navier-Stokes problem on (0, λ−2nTT )
with initial value v0,nT

and forcing tensor FnT
. As λ−2nTT ≤ TnT

, we have

Cγ

(

1 + ‖v0,nT
‖2L2

wγ
+

∫ +∞

0

‖FnT
‖2L2

wγ
ds

)2

λ−2nTT ≤ 1.

By corollary 6, we have

sup
0≤t≤λ−2nT T

‖ wn(t, .)‖2L2
wγ

≤ Cγ(1 + ‖v0,nT
‖2L2

wγ
+

∫ λ−2nT T

0

‖FnT
‖2L2

wγ
ds)

and

∫ λ−2nT T

0

‖∇wn‖2L2
wγ
ds ≤ Cγ(1 + ‖v0,nT

‖2L2
wγ

+

∫ λ−2nT T

0

‖FnT
‖2L2

wγ
ds).

We have

‖wn‖2L2
wγ

=

∫

|un(λ2nT t, x)|2λnT (γ−1) (1 + |x|)γ
(λnT + |x|)γwγ(x) dx ≥ λnT (γ−1)‖un(λ2nT t, .)‖2L2

wγ
.

and

∫ λ−2nT T

0

‖∇wn‖2L2
wγ
ds =

∫ T

0

∫

|∇un(s, x)|2λnT (γ−1) (1 + |x|)γ
(λnT + |x|)γwγ(x) dx ds

≥λnT (γ−1)

∫ T

0

‖∇un‖2L2
wγ
ds.

Thus, we have a uniform control of un and of ∇un on (0, T ) for n ≥ nT .
We may then apply the Rellich lemma (Lemma 6) and Theorem 3 to find
a subsequence unk

that converges to a global solution of the Navier–Stokes
equations. Theorem 1 is proven. ⋄

6 Solutions of the advection-diffusion prob-

lem with initial data in L2
wγ
.

The proof of Theorem 1 on the Navier–Stokes problem can be easily adapted
to the case of the advection-diffusion problem :

Theorem 4 Let 0 < γ ≤ 2. Let 0 < T < +∞. Let u0 be a divergence-free
vector field such that u0 ∈ L2

wγ
(R3) and F be a tensor F(t, x) = (Fi,j(t, x))1≤i,j≤3
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such that F ∈ L2((0, T ), L2
wγ
). Let b be a time-dependent divergence free

vector-field (∇ · b = 0) such that b ∈ L3((0, T ), L3
w3γ/2

).

Then the advection-diffusion problem

(AD)







∂tu = ∆u− (b · ∇)u−∇p+∇ · F

∇ · u = 0, u(0, .) = u0

has a solution u such that :

• u belongs to L∞((0, T ), L2
wγ
) and ∇u belongs to L2((0, T ), L2

wγ
)

• the pressure p is related to u, b and F through the Riesz transforms
Ri =

∂i√
−∆

by the formula

p =
3
∑

i=1

3
∑

j=1

RiRj(biuj − Fi,j)

• the map t ∈ [0, T ) 7→ u(t, .) is weakly continuous from [0, T ) to L2
wγ
,

and is strongly continuous at t = 0 :

lim
t→0

‖u(t, .)− u0‖L2
wγ

= 0.

• there exists a non-negative locally finite measure µ on (0, T )×R3 such
that

∂t(
|u|2
2

) = ∆(
|u|2
2

)− |∇u|2 −∇ ·
( |u|2

2
b

)

−∇ · (pu) + u · (∇ · F)− µ.

Proof : Again, we define φR(x) = φ( x
R
), u0,R = P(φRu0) and FR = φRF.

Moreover, we define bR = P(φRb). We then solve the mollified problem

(ADR,ǫ)







∂tuR,ǫ = ∆uR,ǫ − ((bR ∗ θǫ) · ∇)uR,ǫ −∇pR,ǫ +∇ · FR,ǫ

∇ · uR,ǫ = 0, uR,ǫ(0, .) = u0,R

for which we easily find a unique solution uR,ǫ in L
∞((0, T ), L2)∩L2((0, T ), Ḣ1).

Moreover, this solution belongs to C([0, T ), L2).
Again, uR,ǫ fulfills the assumptions of Theorem 2 :

• uR,ǫ belongs to L
∞((0, T ), L2

wγ
) and ∇uR,ǫ belongs to L

2((0, T ), L2
wγ
)
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• the map t ∈ [0, T ) 7→ uR,ǫ(t, .) is weakly continuous from [0, T ) to L2
wγ
,

and is strongly continuous at t = 0 :

lim
t→0

‖uR,ǫ(t, .)− u0,R‖L2
wγ

= 0.

• on (0, T )× R
3, uR,ǫ fulfills the energy equality :

∂t(
|uR,ǫ|2

2
) = ∆(

|uR,ǫ|2
2

)−|∇uR,ǫ|2−∇·
( |u|2

2
bR,ǫ

)

−∇·(pR,ǫuR,ǫ)+uR,ǫ·(∇·FR).

with bR,ǫ = bR ∗ θǫ.
Thus, by Corollary 4 we know that,

sup
0<t<T

‖uR,ǫ‖L2
wγ

≤ (‖u0,R‖L2
wγ
+Cγ‖FR‖L2((0,T ),L2

wγ )
) e

Cγ(T+T 1/3‖bR,ǫ‖2
L3((0,T ),L3

w3γ/2
)
)

and

‖∇uR,ǫ‖L2((0,T ),L2
wγ

) ≤ (‖u0,R‖L2
wγ
+Cγ‖FR‖L2((0,T ),L2

wγ
)) e

Cγ(T+T 1/3‖bR,ǫ‖2
L3((0,T ),L3

w3γ/2
)
)

where the constant Cγ depends only on γ.
Moreover, we have that

‖u0,R‖L2
wγ

≤ Cγ‖u0‖L2
wγ
, ‖FR‖L2

wγ
≤ ‖F‖L2

wγ

and

‖bR,ǫ‖L3((0,T ),L3
w3γ/2

) ≤ ‖MbR
‖L3((0,T ),L3

w3γ/2
) ≤ C ′

γ‖b‖L3((0,T ),L3
w3γ/2

)

Let Rn → +∞ and ǫn → 0. Let u0,n = u0,Tn , Fn = FRn, bn = bRn,ǫn

and un = uRn,ǫn. We may then apply Theorem 3, since u0,n is strongly
convergent to u0 in L2

wγ
, Fn is strongly convergent to F in L2((0, T ), L2

wγ
),

and the sequence bn is strongly convergent to b in L3((0, T ), L3
w3γ/2

). Thus

there exists p, u and an increasing sequence (nk)k∈N with values in N such
that

• unk
converges *-weakly to u in L∞((0, T ), L2

wγ
), ∇unk

converges weakly

to ∇u in L2((0, T ), L2
wγ
)

• pnk
converges weakly to p in L3((0, T ), L

6/5
w 6γ

5

) + L2((0, T ), L2
wγ
)

• unk
converges strongly to u in L2

loc([0, T )× R3).

We then easily finish the proof. ⋄
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7 Application to the study of λ-discretely self-

similar solutions

We may now apply our results to the study of λ-discretely self-similar solu-
tions for the Navier–Stokes equations.

Definition 1 Let u0 ∈ L2
loc(R

3). We say that u0 is a λ-discretely self-similar
function (λ-DSS) if there exists λ > 1 such that λu0(λx) = u0.

A vector field u ∈ L2
loc([0,+∞)× R3) is λ-DSS if there exists λ > 1 such

that λu(λ2t, λx) = u(t, x).
A forcing tensor F ∈ L2

loc([0,+∞) × R
3) is λ-DSS if there exists λ > 1

such that λ2F(λ2t, λx) = F(t, x).

We shall speak of self-similarity if u0, u or F are λ-DSS for every λ > 1.

Examples :

• Let γ > 1 and λ > 1. Then, for two positive constants Aγ,λ and Bγ,λ,
we have : if u0 ∈ L2

loc(R
3) is λ-DSS, then u0 ∈ L2

wγ
and

Aγ,λ

∫

1<|x|≤λ
|u0(x)|2 dx ≤

∫

|u0(x)|2wγ(x) dx ≤ Bγ,λ

∫

1<|x|≤λ
|u0(x)|2 dx

• u0 ∈ L2
loc is self-similar if and only if it is of the form u0 =

w0(
x
|x|

)

|x| with

w0 ∈ L2(S2).

• F belongs to L2((0,+∞), L2
wγ
) with γ > 1 and is self-similar if and only

if it is of the form F(t, x) = 1
t
F0(

x√
t
) with

∫

|F0(x)|2 1
|x| dx < +∞.

Proof :

• If u0 is λ-DSS and if k ∈ Z we have

∫

λk<|x|<λk+1

|u0(x)|2wγ(x) dx ≤ λk

(1 + λk)γ

∫

1<|x|<λ
|u0(x)|2 dx

with
∑

k∈Z
λk

(1+λk)γ
< +∞ for γ > 1.

• If u0 is self-similar, we have u0(x) =
1
|x|u0(

x
|x|). From this equality, we

find that, for λ > 1
∫

1<|x|<λ
|u0(x)|2 dx = (λ− 1)

∫

S2

|u0(σ)|2 dσ
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• If F is self-similar, then it is of the form F(t, x) = 1
t
F0(

x√
t
). Moreover,

we have
∫ +∞

0

∫

|F(t, x)|2wγ(x) dx ds =
∫ +∞

0

∫

|F0(x)|2wγ(
√
t x) dx

dt√
t
= Cγ

∫

|F0(x)|2
dx

|x|

with Cγ =
∫ +∞
0

1
(1+

√
θ)γ

dθ√
θ
< +∞. ⋄

In this section, we are going to give a new proof of the results of Chae and
Wolf [3] and Bradshaw and Tsai [2] on the existence of λ-DSS solutions of the
Navier–Stokes problem (and of Jia and Šverák [6] for self-similar solutions) :

Theorem 5 Let 4/3 < γ ≤ 2 and λ > 1. If u0 is a λ-DSS divergence-free
vector field (such that u0 ∈ L2

wγ
(R3)) and if F is a λ-DSS tensor F(t, x) =

(Fi,j(t, x))1≤i,j≤3 such that F ∈ L2
loc([0,+∞)× R3) , then the Navier–Stokes

equations with initial value u0

(NS)







∂tu = ∆u− (u · ∇)u−∇p+∇ · F

∇ · u = 0, u(0, .) = u0

has a global weak solution u such that :

• u is a λ-DSS vector field

• for every 0 < T < +∞, u belongs to L∞((0, T ), L2
wγ
) and ∇u belongs

to L2((0, T ), L2
wγ
)

• the map t ∈ [0,+∞) 7→ u(t, .) is weakly continuous from [0,+∞) to
L2
wγ
, and is strongly continuous at t = 0 :

lim
t→0

‖u(t, .)− u0‖L2
wγ

= 0.

• the solution u is suitable : there exists a non-negative locally finite
measure µ on (0,+∞)× R3 such that

∂t(
|u|2
2

) = ∆(
|u|2
2

)− |∇u|2 −∇ ·
(

(
|u|2
2

+ p)u

)

+ u · (∇ · F)− µ.
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7.1 The linear problem.

Following Chae and Wolf, we consider an approximation of the problem that
is consistent with the scaling properties of the equations : let θ be a non-
negative and radially decreasing function in D(R3) with

∫

θ dx = 1; We define
θǫ,t(x) =

1
(ǫ
√
t)3

θ( x
ǫ
√
t
). We then will study the “mollified” problem

(NSǫ)







∂tuǫ = ∆uǫ − ((uǫ ∗ θǫ,t) · ∇)uǫ −∇pǫ +∇ · F

∇ · u = 0, u(0, .) = u0

and begin with the linearized problem

(LNSǫ)







∂tv = ∆v − ((b ∗ θǫ,t) · ∇)v −∇q +∇ · F

∇ · v = 0, v(0, .) = u0

Lemma 11 Let 1 < γ ≤ 2. Let λ > 1 Let u0 be a λ-DSS divergence-
free vector field such that u0 ∈ L2

wγ
(R3) and F be a λ-DSS tensor F(t, x) =

(Fi,j(t, x))1≤i,j≤3 such that, for every T > 0, F ∈ L2((0, T ), L2
wγ
). Let b be a

λ-DSS time-dependent divergence free vector-field (∇ · b = 0) such that, for
every T > 0, b ∈ L3((0, T ), L3

w3γ/2
).

Then the advection-diffusion problem

(LNSǫ)







∂tv = ∆v − ((b ∗ θǫ,t) · ∇)v −∇q +∇ · F

∇ · v = 0, v(0, .) = u0

has a unique solution v such that :

• for every positive T , v belongs to L∞((0, T ), L2
wγ
) and ∇v belongs to

L2((0, T ), L2
wγ
)

• the pressure p is related to v, b and F through the Riesz transforms
Ri =

∂i√
−∆

by the formula

p =

3
∑

i=1

3
∑

j=1

RiRj((bi ∗ θǫ,t)vj − Fi,j)

• the map t ∈ [0,+∞) 7→ v(t, .) is weakly continuous from [0,+∞) to
L2
wγ
, and is strongly continuous at t = 0 :

lim
t→0

‖v(t, .)− u0‖L2
wγ

= 0.
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This solution v is a λ-DSS vector field.

Proof : As we have |b(t, .) ∗ θǫ,t| ≤ Mb(t,.) and thus

‖b(t, .) ∗ θǫ,t‖L3((0,T ),L3
w3γ/2

) ≤ Cγ‖b‖L3((0,T ),L3
w3γ/2

)

we see that we can use Theorem 4 to get a solution v on (0, T ).
As clearly b ∗ θǫ,t belongs to L2

tL
∞
x (K) for every compact subset K of

(0, T )× R
3, we can use Corollary 5 to see that v is unique.

Let w(t, x) = 1
λ
v( t

λ2
, x
λ
). As b∗θǫ,t is still λ-DSS, we see that w is solution

of (LNSǫ) on (0, T ), so that w = v. This means that v is λ-DSS. ⋄

7.2 The mollified Navier–Stokes equations.

The solution v provided by Lemma 11 belongs to L3((0, T ), L3
w3γ/2

) (as v

belongs to L∞((0, T ), L2
wγ
) and ∇v belongs to L2((0, T ), L2

wγ
)). Thus we

have a mapping Lǫ : b 7→ v which is defined from

XT,γ = {b ∈ L3((0, T ), L3
w3γ/2

) / b is λ−DSS}

to XT,γ by Lǫ(b) = v.

Lemma 12 For 4/3 < γ, XT,γ is a Banach space for the equivalent norms
‖b‖L3((0,T ),L3

w3γ/2
) and ‖b‖L3((0,T/λ2),×B(0, 1

λ
)).

Proof : We have

∫ T

0

∫

B(0,1)

|b(t, x)|3 dx dt = λ2
∫ T

λ2

0

∫

B(0, 1
λ
)

|b(t, x)|3 dx dt

and , for k ∈ N,

∫ T

0

∫

λk−1<|x|<λk
|b(t, x)|3 dx dt = λ2k

∫ T

λ2k

0

∫

1
λ
<|x|<1

|b(t, x)|3 dx dt.

We may conclude, since for γ > 4/3 we have
∑

k∈N λ
k(2− 3γ

2
) < +∞.

Lemma 13 For 4/3 < γ ≤ 2, the mapping Lǫ is continuous and compact on
XT,γ.
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Proof : Let bn be a bounded sequence in XT,γ and let vn = Lǫ(bn). We
remark that the sequence bn(t, .)∗θǫ,t is bounded in XT,γ. Thus, by Theorem
2 and Corollary 4, the sequence vn is bounded in L∞((0, T ), L2

wγ
) and ∇vn

is bounded in L2((0, T ), L2
wγ
).

We now use Theorem 3 and get that then there exists q∞, v∞, B∞ and
an increasing sequence (nk)k∈N with values in N such that

• vnk
converges *-weakly to v∞ in L∞((0, T ), L2

wγ
),∇vnk

converges weakly

to ∇v∞ in L2((0, T ), L2
wγ
)

• bnk
∗ θǫ,t converges weakly to B∞ in L3((0, T ), L3

w3γ/2
), ,

• the associated pressures qnk
converge weakly to q∞ in L3((0, T ), L

6/5
w 6γ

5

)+

L2((0, T ), L2
wγ
)

• vnk
converges strongly to v∞ in L2

loc([0, T )×R3) : for every T0 ∈ (0, T )
and every R > 0, we have

lim
k→+∞

∫ T0

0

∫

|y|<R
|vnk

(s, y)− v∞(s, y)|2 ds dy = 0.

As
√
wγvn is bounded in L∞((0, T ), L2) and in L2((0, T ), L6), it is bounded

in L10/3((0, T )×R
3). The strong convergence of vnk

in L2
loc([0, T )×R

3) then
implies the strong convergence of vnk

in L3
loc((0, T )× R3).

Moreover, v∞ is still λ-DSS (a property that is stable under weak lim-
its).We find that v∞ ∈ XT,γ and that

lim
nk→+∞

∫ T
λ2

0

∫

B(0, 1
λ
)

|vnk
(s, y)− v∞(s, y)|3 ds dy = 0.

This proves that Lǫ is compact.
If we assume moreover that bn is convergent to b∞ inXT,γ, then necessar-

ily we have B∞ = b∞ ∗ θǫ,t, and v∞ = Lǫ(b∞). Thus, the relatively compact
sequence vn can have only one limit point; thus it must be convergent. This
proves that Lǫ is continuous. ⋄

Lemma 14 Let 4/3 < γ ≤ 2. If, for some µ ∈ [0, 1], v is a solution of
v = µLǫ(v) then

‖v‖XT,γ
≤ Cu0,F,γ,T

where the constant Cu0,F,γ,T depends only on u0, F, γ and T (but not on µ
nor on ǫ).
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Proof : We have v = µw; with







∂tw = ∆w − ((v ∗ θǫ,t) · ∇)w −∇q +∇ · F

∇ ·w = 0, w(0, .) = u0

Multiplying by µ, we find that







∂tv = ∆v − ((v ∗ θǫ,t) · ∇)v−∇(µq) +∇ · µF

∇ · v = 0, v(0, .) = µu0

We then use Corollary 6. We choose T0 ∈ (0, T ) such that

Cγ

(

1 + ‖u0‖2L2
wγ

+

∫ T0

0

‖F‖2L2
wγ
ds

)2

T0 ≤ 1.

Then, as

Cγ

(

1 + ‖µu0‖2L2
wγ

+

∫ T0

0

‖µF‖2L2
wγ
ds

)2

T0 ≤ 1

we know that

sup
0≤t≤T0

‖ v(t, .)‖2L2
wγ

≤ Cγ(1 + µ2‖u0‖2L2
wγ

+ µ2

∫ T0

0

‖F‖2L2
wγ
ds)

and
∫ T0

0

‖∇v‖2L2
wγ
ds ≤ Cγ(1 + µ2‖u0‖2L2

wγ
+ µ2

∫ T0

0

‖F‖2L2
wγ
ds).

In particular, we have

∫ T0

0

‖v‖3L3
w3γ/2

ds ≤ CγT
1/4
0 (1 + ‖u0‖2L2

wγ
+

∫ T0

0

‖F‖2L2
wγ
ds)

3
2 .

As v is λ-DSS, we can go back from T0 to T . ⋄

Lemma 15 Let 4/3 < γ ≤ 2. There is at least one solution uǫ of the
equation uǫ = Lǫ(uǫ).

Proof : Obvious due to the Leray–Schauder principle (and the Schaefer
theorem), since Lǫ is continuous and compact and since we have uniform a
priori estimates for the fixed points of µLǫ for 0 ≤ µ ≤ 1. ⋄
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7.3 Proof of Theorem 5.

We may now finish the proof of Theorem 5. We consider the solutions uǫ of
uǫ = Lǫ(uǫ).

By Lemma 14, uǫ is bounded in L3((0, T ), L3
w3γ/2

), and so is uǫ ∗ θǫ,t. We

then know, by Theorem 2 and Corollary 4, that the familly uǫ is bounded in
L∞((0, T ), L2

wγ
) and ∇uǫ is bounded in L2((0, T ), L2

wγ
).

We now use Theorem 3 and get that then there exists p, u, B and a
decreasing sequence (ǫk)k∈N (converging to 0) with values in (0,+∞) such
that

• uǫk converges *-weakly to u in L∞((0, T ), L2
wγ
), ∇uǫk converges weakly

to ∇u in L2((0, T ), L2
wγ
)

• uǫk ∗ θǫk,t converges weakly to B in L3((0, T ), L3
w3γ/2

)

• the associated pressures pǫk converge weakly to p in L3((0, T ), L
6/5
w 6γ

5

) +

L2((0, T ), L2
wγ
)

• uǫk converges strongly to u in L2
loc([0, T )× R3).

Moreover we easily see that B = u. Indeed, we have that u ∗ θǫ,t converges
strongly in L2

loc((0, T ) × R
3) as ǫ goes to 0 (since it is bounded by Mu

and converges, for each fixed t, strongly in L2
loc(R

3)); moreover, we have
|(u− uǫ) ∗ θǫ,t| ≤ Mu−uǫ, so that the strong convergence of uǫk to u is kept
by convolution with θǫ,t as far as we work on compact subsets of (0, T )×R3

(and thus don’t allow t to go to 0).
Thus, Theorem 5 is proven. ⋄
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