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Weak solutions for Navier—Stokes equations
with initial data in weighted L? spaces.

Pedro Gabriel Ferndndez-Dalgo*', Pierre Gilles Lemarié-Rieusset®

Abstract

We show the existence of global weak solutions of the 3D Navier-
Stokes equations with initial velocity in the weighted spaces LQW/,
where wy(z) = (14 |z|)™7 and 0 < v < 2, using new energy controls.
As application we give a new proof of the existence of global weak
discretely self-similar solutions of the 3D Navier—Stokes equations for
discretely self-similar initial velocities which are locally square inte-
grable.
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1 Introduction.

Infinite-energy weak Leray solutions to the Navier—Stokes equations were
introduced by Lemarié-Rieusset in 1999 [8] (they are presented more com-
pletely in [9] and [10]). This has allowed to show the existence of local weak
solutions for a uniformly locally square integrable initial data.

Other constructions of infinite-energy solutions for locally uniformly square
integrable initial data were given in 2006 by Basson [I] and in 2007 by Kikuchi
and Seregin [7]. These solutions allowed Jia and Sverak [6] to construct in
2014 the self-similar solutions for large (homogeneous of degree -1) smooth
data. Their result has been extended in 2016 by Lemarié-Rieusset [10] to
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solutions for rough locally square integrable data. We remark that an ho-
mogeneous (of degree -1) and locally square integrable data is automatically
uniformly locally L2

Recently, Bradshaw and Tsai [2] and Chae and Wolf [3] considered the
case of solutions which are self-similar according to a discrete subgroup of
dilations. Those solutions are related to an initial data which is self-similar
only for a discrete group of dilations; in contrast to the case of self-similar
solutions for all dilations, such an initial data, when locally L2, is not nec-
essarily uniformly locally L2, therefore their results are no consequence of
constructions described by Lemarié-Rieusset in [10].

In this paper, we construct an alternative theory to obtain infinite-energy
global weak solutions for large initial data, which include the discretely self-
similar locally square integrable data. More specifically, we consider the
weights

1
) = T
with 0 < 7, and the spaces
L2 = L*(w,dz).

Wy
Our main theorem is the following one :

Theorem 1 Let 0 < v < 2. If ug is a divergence-free vector field such
that vy € L7, (R?) and if F is a tensor F(t,r) = (£5j(t, @) <; j<g Such that
F e L?((0, +00), L7, ), then the Navier-Stokes equations with initial value ug

du=Au—(u-V)u—Vp+V.-F
(NS)
V-u=0, u(0,.) =ug
has a global weak solution u such that :

o for every 0 < T < +o0, u belongs to LOO((O,T),LfUV) and Vu belongs
2 2
to L*((0,T), L3,)
o the pressure p is related to u and ¥ through the Riesz transforms R; =

\/% by the formula

> RiRj(uu; — Fy;)

1 j=1

3
p:

(2

where, for every 0 < T < 400, Z?:1 Z?Zl R;R;(u;u;j) belongs to
LY((0,7), L?U/%) and Y20 | 323 RiR;F; belongs to L*((0,T), L?,)
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e the map t € [0,+00) — u(t,.) is weakly continuous from [0,+00) to
wa, and is strongly continuous att =0 :

lin [[u(, ) — uollzz, = 0.

e the solution u s suitable : there exists a non-negative locally finite
measure j1 on (0,+00) x R3 such that

)= a2l - - v (5 o) a7

uf”

Oh( 5

In particular, we have the energy controls
t
||lu(t, )H%%7 + 2/0 |Vu(s, )H%%7 ds

t t
SHUOH%%W —/0 /V|u|2-vadxds+/0 /(|u|2+2p)u-V(wy) dx ds
3 3
_QZ

=1 j

t
/ /Fm(ﬁiuj)ww + F; ju;0;(w,) dz ds

T Jo

and

t t
fu(t. i, < loolls +C; [ 1B dstCy [ s, )l +luts, )l ds

A key tool for proving Theorem [Il and for applying it to the study of
discretely self-similar solutions is given by the following a priori estimates for
an advection-diffusion problem :

Theorem 2 Let 0 < v < 2. Let 0 < T < +o00o. Let ug be a divergence-free
vector field such thatug € L7, (R*) andF be a tensor F(t,x) = (Fij(t, 7)), ;3
such that ¥ € L*((0,T),L; ). Let b be a time-dependent divergence free
vector-field (V - b =0) such that b € L*((0,T), Ly, ).

Let u be a solution of the following advection-diffusion problem

du=Au—(b-V)u—-Vp+V.-F
(AD)
V-u=0, u(0,.) = ug

be such that :

e u belongs to L=((0,T), L}, ) and Vu belongs to L*((0,T), L7, )
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o the pressure p is related to u, b and F through the Riesz transforms

_ 0
Ry = 2

3 3
p=>_ Y RiRi(bwu; — F;)
i=1 j=1
where Y7 E?Zl RiR;(bju;) belongs to L3((0,T), L?U/; ) and 377 ZJ | RiR;F,
belongs to L*((0,T), L3, )

o the map t € [0,T) + u(t,.) is weakly continuous from [0,T) to L7, ,
and s strongly continuous att =0 :

lin [[u(t, ) — uollzz, = 0.

e there exists a non-negative locally finite measure p on (0,T) x R? such
that

2
u
oL

5 ):A(‘H‘Q)—\Vuf—v-(ﬁb)—v-(pu)—l—w(v-lﬁ')—,u. (1)

2 2
Then, we have the energy controls

t
(e, ). +2/0 [Vu(s, )3 ds

t t
SHUOH%%U7 —/ /V\u\2~Vw,ydxds+/ /\u\Qb-V(wW)d:cds

3 3

+2/ /pu V(w,) dxds—QZZ// F; ;j(0yuj)wy + F; ju;0;(w,) dz ds

=1 j5=1

and

t
(e, g, + [ IVul ds
0

t t
<lrunlfy, +Cy [ 1B, ds+Cy [ (14 b Iy, luGs, I3, ds
0 0 g 7

where C, depends only on vy (and not on T, and not on b, u, uy nor F).

In particular, we shall prove the following stability result :



Theorem 3 Let 0 < v < 2. Let 0 < T < +oo. Let uy, be divergence-
free vector fields such that ug, € qu7 (R3) and F,, be tensors such that T, €
L*((0,T), wa). Let b,, be time-dependent divergence free vector-fields such
that b,, € L3((0,T), L;?UW).

Let u,, be solutions of the following advection-diffusion problems

o, = Au,, — (b, - V)u, — Vp, + V- F,
(ADy)
V- u, = O, un<07 ) = Up,n

such that :
e u, belongs to L>((0,T), Li]w) and YV, belongs to L*((0,T), Li]w)

e the pressure p, is related to u,, b, and F, by the formula
3 3
Pn = Z Z RiRj(br itnj — Fri )
i=1 j=1
o the map t € [0,T) = u,(t,.) is weakly continuous from [0,T) to L7, ,

and s strongly continuous att =0 :

lim [, () — o3, = 0.

e there exists a non-negative locally finite measure p,, on (0,T) x R® such
that

bn) _V(pnun)+un(vwn)_ﬂn

Ifug,, is strongly convergent to ug o in wa if the sequence IF,, is strongly
convergent to Foo in L*((0,T), L7, ), and if the sequence b, is bounded in
L3((0,T), L?USW), then there exists pso, Us, boo and an increasing sequence
(ng)ken with values in N such that

* u,, converges *weakly touy, in L=((0,T), L2, ), Vu,, converges weakly
to Vus, in L*((0,T), Li]w)

3
W3y /2

e b, converges weakly to by, in L3((0,T), L

o pwo in L*(0,T), Lilg,) + L((0.T), L)

)s Pn, converges weakly



e u,, converges strongly to Ue, in L% ([0,T) xR?) : for every Ty € (0,T)
and every R > 0, we have

To
lim / W, (s,9) — us(s,y) > ds dy = 0.
0 ly|<R

k——+o0

Moreover, uy, is a solution of the advection-diffusion problem

Oy = Ay, — (boo - VU — Vpoo + V- Fo
(ADs)
V- us, =0, U (0,.) = up

and is such that :

o the map t € [0,T) = un(t,.) is weakly continuous from [0,T) to L, ,
and 1s strongly continuous att =10 :

limn [ (t, ) — oz, = 0.

e there exists a non-negative locally finite measure o on (0,T)xR3 such

that
&s(' 2| ) A(| 2| )=V oo|2—v'<| 2| boo)_v'(poouoo)+u00'(v'F°°)_'u°°'
Notations.

All along the text, C, is a positive constant whose value may change from
line to line but which depends only on ~.

2 The weights w;.

We consider the weights ws = m where 0 < 0 and z € R3. A very
important feature of those weights is the control of their gradients :
ws ()
\Y =)—" 2
Vus(o)] = o725 ©

Lemma 1 (Muckenhoupt weights) If0 < <3 and 1 < p < 400, then
ws belongs to the Muckenhoupt class A,.



Proof : We recall that a weight w belongs to A,(R?) for 1 < p < +oo if
and only if it satisfies the reverse Holder inequality

1 1-2
1 / 2 1 dy ’
sup | —=———— w(y) dy) 7/ - < +00.
meR3,R>O< |B(ZL‘, R)| B(z,R) |B(‘T’ R)| B(z,R) w(y)E
(3)

For all 0 < R <1 the inequality |z — y| < R implies (1 + |z]) < 1+ |y| <

2(1 + |z|), thus we can control the left side in (3] for ws by 45.
For all R > 1 and |z| > 10R, we have that the inequality |z —y| < R

implies 5(1+ [z|) < 1+ |y| < (1 + |z]), thus we can control the left side

in [B) for ws by (%)%
Finally, for R > 1 and |z| < 10R, we write

<\B(1}, R)|/L;§(a:,lg)}(y) dy)g (W{RNL(O,R)M(Z?’%I> |

1 1-
1 g 1 dy
(wog ) vow) (o 1
(‘B(O,R” B(z,11 R) |B<O7R)‘ B(O,lll’%)il)(y)ﬁ

1—1

1 [UR g v 1 [UR ] -
~ (= — 1+ 7)id
(m[ o) (w) o)
1 1

B =

The lemma is proved. o

Lemma 2 If0 <6 < 3 and 1 < p < 400, then the Riesz transforms R;
and the Hardy-Littlewood mazimal function operator are bounded on L, =~ =
LP(ws(x) dx) :

1R fllze, < Cposllfllzn, and [Myllzy, < Cosll fllzz,-

wé

Proof: The boundedness of the Riesz transforms or of the Hardy—Littlewwod
maximal function on LP(w, dz) are basic properties of the Muckenhoupt class

A, [5]. o

We will use strategically the next corollary, which is specially useful to obtain
discretely self-similar solutions.



Corollary 1 (Non-increasing kernels) Let 0 € L'(R?) be a non-negative
radial function which is radially non-increasing. Then, if 0 < § < 3 and
1 <p < +oo, we have, for f € LE | the inequality

10 fllzz, < Cosll Fllez, 1615

Proof : We have the well-known inequality for radial non-increasing kernels

4]
|05 f ()] < (|01 M f ()
so that we may conclude with Lemma o

We illustrate the utility of Lemma [2] with the following corollaries:

Corollary 2 Let 0 <y < 2 and 0 < T < +o0. Let F be a tensor F(t,z) =
(Fij(t, @) <; j<5 such that T € L*((0,T),L7 ). Let b be a time-dependent
divergence free vector-field (V -b = 0) such that b € L*((0,T), L}, /2)
Let u be a solution of the following advection-diffusion problem
du=Au—(b-V)u—Vqg+V-F

(4)
V-u=0,

be such that : u belongs to L*((0,T), L2, ) and Vu belongs to L*((0,T), L, ),
and the pressure q belongs to D'((0,T) x R3).

Then, the gradient of the pressure Vq is necessarily related to u, b and
[ through the Riesz transforms R; =

Vg = <i i RiR;(biu; — zy))

=1 j=1

and 37, E?Zl RiR;(bju;) belongs to L*((0,T), LS}/&) and 37 ZJ \RiR;F;;
belongs to L*((0,T), L?UV).

Proof : We define
3 3
= (Z Z RZR] b iU; — Z,j)) .
i=1 j=1
As 0 < < 2 we can use Lemma 2 and (2) to obtain SO Z;’ L RiR;(bu;)
belongs to L3((0,T), L?U/;) and 37 E] | RiR;F; ; belongs to L*((0,T), L2, )

8



Taking the divergence in (), we obtain A(qg — p) = 0. We take a test
function o € D(R) such that «a(t) = 0 for all |{| > ¢, and a test function
B € D(R?); then the distribution Vgx(a® ) is well defined on (g, T —¢) x R3.

We fix t € (¢,T — ¢) and define

Aapr = (Vgx(a® B) — Vpx (a® B))(t,.).
We have

Appr=(u* (-0 a@B+a@AB)+(—u@b+TF)- - (a® VpH))(t,.)

— (p* (@@ VA)(L,.). (5)

Convolution with a function in D(R?) is a bounded operator on qu7 and on

L?U/Si/5 (as, for ¢ € D(R?) we have |f x| < C,M;). Thus, we may conclude

from (B) that Aap, € L), + Lfv/ei/5. If max{y, 22} < § < 5/2, we have
Anps € LU

Wes /5 *
In particular, A, g is a tempered distribution. As we have

AAypr = (a® B)x (A(g —p))(t,.) =0,

we find that A, 5, is a polynomial. We remark that for all 1 < r < +o0 and
0 <6 <3, Ly, does not contain non-trivial polynomials. Thus, A,z = 0.
We then use an approximation of identity %a()3(%) and conclude that
V(g —p)=0. o

Actually, we can answer a question posed by Bradshaw and Tsai in [2]
about the nature of the pressure for self-similar solutions of the Navier—Stokes
equations. In effect, we have the next corollary:

Corollary 3 Let 1 <y < 5 and 0 < T < +oo. Let F be a tensor F(t,z) =
(Fij(t, @)y <; j<5 such that F € L*((0,T), L7, ).
Let u be a solution of the following problem

u=Au—(u-V)u—Vp+V. -F
V-u=0,

be such that : u belongs to L°°([0, +00), L?)10. and Vu belongs to L*([0, +00), L?)e,
and the pressure q is in D'((0,T) x R3).



We suppose that there exists X > 1 such that N*F(\*t, \z) = F(t,x) and
Au(\t, \z) = u(t,x). Then, the gradient of the pressure Vq is necessarily

related to u and F through the Riesz transforms R; = \/aj—A by the formula

oe($3

=1

RZ'RJ(UZ‘UJ‘ — Fl’,j))

1

and 370, 23:1 RiR;(u;uj) belongs to L*((0,T), Lfv/%) and 37 Z?Zl R,R;F; ;
2 2

belongs to L*((0,T), L, ).

Proof : We shall use Corollary 2l and thus we need to show that u belongs

to L>((0,7), L, N L*((0,T), L3, ,)) and Vu belongs to L*((0,T), L7, ). In
fact,

u(t, z)|?
nres 2 ) < su u(t, z)|* dz+c su / ————dx
lulli=omaz,) < sup. /| PLCELETE D o)

keN
and
u(t, z)|? t
sup Z/ %dw < sup Z)\(l—v)k/ |u(Tk,x)|2d:E
0<t<T 15 Sarciapant A7 0<i<T £ Aiclal<t A

< ¢ sup / lu(t, z)|* do < +o0.
0<t<T Ja-1<jz)<1

For Vu, we compute for k € N,

T I3
/ / \Vu(t, 2|2 dt dv = A’“/A / IVu(t, 2)|? dz dt.
0 JAE—lg)z<Ak 0 *<|z|<1

We may conclude that Vu belongs to L*((0,T), L3, ), since for 7y > 1 we have

D hen AR < oo

Now, we use the Sobolev embeddings described in next Lemma (Lemma
B) to get that u belongs to L*((0,T), L, ), and thus (by interpolation with
LOO((O,T),L%UW)) to L4((0,T), L3 ).

W3y /2
In particular, 7, Z?Zl R, R;(u;u;) belongs to L‘%(O,T),Lg@t
5

), since we

have

3 1
I(u @ w)w,|[pos < llvwyullez |yl < vyl vayullzs
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Lemma 3 (Sobolev embeddings) Let § > 0. If f € L2 and Vf € L,
then f € LS, = and

(Al

w3s

< Cs(Ifliz, + 11V flza, )
Proof : Since both f and w2 are locally in H', we write

5372‘

ai(fw5/2) = ws20; f + faz(wé/z) = w520, f — §mw5/2f

and thus

52
lwsya flIz + 1V (w2 )5 < (14 ) llwsya flIz + 2[lws2V 5.

Thus, ws/2f belongs to L® (since H' C L), or equivalently f € LS . o

w3s

3 A priori estimates for the advection-diffusion
problem.

3.1 Proof of Theorem 2.

Let 0 <ty < t; < T. We take a function o € C*°(R) which is non-decreasing,
with «(t) equal to 0 for ¢ < 1/2 and equal to 1 for t > 1. For 0 < n <
min(%2, T —¢;), we define

t—1 t—1
0)—0[( 1

7 n)'

oty (t) = Oé(
We take as well a non-negative function ¢ € D(R?®) which is equal to 1 for
|z| <1 and to 0 for [z| > 2. For R > 0, we define ¢r(r) = ¢(5). Finally,

we define, for € > 0, w,, = m We have v, 1.1, (t)or(z)w, (2) €

D((0,T) x R?) and a4 4, (£)Pr(2)w,.(x) > 0. Thus, using the local energy
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balance (I]) and the fact that p > 0, we find

u?
— Tﬁtamtmtl (bmee d.T dS

3
< — Z / 0iu - uay 4 1, (s, 0i PR + PROW. ) dx ds
i=1
— / |Vu\2 Qi .1, ORW~ dx ds

3 2
u
- Z // %bian,to,h (wv,eaiﬁbR + ngR@iw%E) dx ds
i=1
3
+ Z // O‘nvto,tlpuxw'y,eaﬂb}% + (bRaiw%e) dx ds
i=1

3 3
_ Z Z // Fi,jujan,to,tl (w%ﬁiqﬁR —+ qu@l-w%e) dxds

i=1 j=1

3 3
— Z Z// F; j0iu; o g0 1, @RW~ e d ds.

i=1 j=1

We remark that, independently from R > 1 and € > 0, we have (for 0 < v <
2)

WAL
‘w’y,eai(bR| + |¢Raiw'y,e‘ S nyﬁ(‘a; S nyw3'y/2<x)-

Moreover, we know that u belongs to L>((0,T), L2, )N L*((0,T), L;,, ) hence
to LA((0,T), L3 ). Since T' < 400, we have as well u € L3((0,T), L3 ).

W3ry/2 W3ry/2
(This is the same type of integrability as required for b). Moreover, we have
pu; € Ly, since w,p € L*((0,T), LS5+ [2) and w, pu € L*((0,T), L>NLS).
All those remarks will allow us to use dominated convergence.

We first let 77 go to 0. We find that
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. u/?
— lim TGtan,to,tl ORW~ e dx ds

n—0

3 t1
= - Z/ /@u “u (wy,00r + PrOW, ) dx ds
i=1 /1o

t1
—/ /\Vu|2 PrW. T ds
to

3 t1 2
+ Z / / %bi(ww@-(bg + ¢rO;w. ) dz ds
i=1 Yto
3 t1
e [ [t Db+ ondun, ) deds
i=1 7o

3 3 t1
S [ [ Rt 06n + ondiw) do s
to

i=1 j=1
3 3 1

— E E / /Fi,j@iuj ORW-~, dx ds.
i=1 j=1 710

Let us define
Ap(t) = / lu(t, ZL‘)|2¢R(ZL‘)M%E(ZL‘) dx.

As we have

u 2 1
— // %8tan,to,t1¢Rw“/,€ dx dS = _5 /8t&777t07t1AR76<S> dS

we find that, when ¢ and t; are Lebesgue points of the measurable function

AR,e

. u 2 1
lim — // %@an,m,mﬁb}%wms drds = §(AR,s(t1) - ARvﬁ(tO))'

n—0

Then, by continuity, we can let 3 go to 0 and thus replace ¢y, by 0 in the
inequality. Moreover, if we let t; go to t, then by weak continuity, we find that
Ap(t) < limy, s Ar(t1), so that we may as well replace ¢; by ¢t € (0,7).
Thus we find that for every ¢t € (0,7"), we have

13



u(t, z)|?
J L
2
[P

3 t
— Z/ /Qu -u (ww@igbR -+ gbR@iw%E) dx ds
i=1 70

7t
- [ [ 1vup ons dsas
0

3 ¢ 9

Z 0idr + ORO 6
} /0 /%bi(w%ﬁ i R Z'w%e) dx ds ( )
i=1

3 t
+ Z /0 /pui(wy,ﬁ@zz + projws ) dx ds
i=1

3 3 t
— Z Z / / F}Juj(w%e@ingR + gbR@iww) dx ds
0

i=1 j=1

3 3
- ZZ/;/F@'J@% Prw, . dx ds.

i=1 j=1

Thus, letting R go to 400 and then e go to 0, we find by dominated
convergence that, for every t € (0,7"), we have

t
(e, ). +2/0 IVu(s, )3 ds
¢ t
SHUOH%gU —/ /V\u\2~Vw,ydxds+/ /(|u|2b+2pu)~V(w7)d:cds
Y 0 0
303
_222/ /Evj(aiuj)wv+ﬂ,juiaj(wv) dz ds.
i=1 j=1"0

Now we write

t
/ /V|u|2 -Vw, dsds
0

t
327/ /|u||Vu|w7d:Eds
0

1 :
s—/ IVull, ds+472/ 2, ds.
4 0 Wry 0 Wey
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Writing
3 3 3 3
pr=>Y > RiRj(bw;) and pp = = > > RiR;(F};)

i=1 j=1 i=1 j=1

and using the fact that we,/5 € Ag/5 and w, € Az, we get

/Ot/(|u|2b +2piu) - V(w,) dzds

t
SW/ /(|u|2|b| + 2[p1 | |u|)wf’/2dxds
0
t
< [ et alolos il + sl
0
t
< Cv/ w2 ullg[ws bl [l¢/5 ds
0
t
< Cv/o w2 a6 [w)/?bl|s[|w)*ul, ds
t
< [vulle, +ullie) ol ulz, ds

1 ! 2 " ! 2 2
<5 [ 10l s oy [l (bl , - Il ) ds

¢ ¢
/ /2p2u -V(w,)dxds §27/ /|p2| |u| w., dx ds
0 0

t
<y [ Il + Il ds
0

and

t
<C, [l +IFIE;, ds.
0
Finally, we have

3 3 t
2 Z Z/o /IIQ-J»(&uj)’wV + F; ju;0;(w,) dz ds

i=1 j=1

t
< [ [IPI(val + o) w, dods
0

1 [t t
= Z/ HVUH%%M ds + C“// HU‘H%gU7 + ”FH%gM ds.
0 0
We have obtained

t
Hu(t,.)H%gﬁ7 +/ HVuH%%U7 ds
0

t t
<y, +C [ IRl ds+Cy [ (0 Ib(s, Iy, s )l ds
g
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and Theorem [2] is proven. o

3.2 Passive transportation.
From inequality (7)), we have the following direct consequence :

Corollary 4 Under the assumptions of Theorem[2, we have

CH(T+TY3||b|2 3 )
sup lullz < (ollza, +C5IFlgoman, ) € Sy,
<t<T

and
Cr (T+T/3||b)|2 )

L3((0,7),L3
((0,1), Wy /9

IVullzz oz < (lwollzs, + C Il z2om),22,)) €
where the constant C, depends only on 7.

Another direct consequence is the following uniqueness result for the advection-
diffusion problem with a (locally in time), bounded b :

Corollary 5 . Let 0 <y < 2. Let 0 < T < +00. Let uy be a divergence-free
vector field such thatug € L, (R*) andF be a tensorF(t,x) = (Fij(t, 7)), ;3
such that F € LQ((O,T),LfUW). Let b be a time-dependent divergence free
vector-field (V -b = 0) such that b € L3((0,T), L?an/z)' Assume moreover
that b belongs to L2L°(K) for every compact subset K of (0,T) x R3.

Let (uy, p1) and (ug, p2) be two solutions of the following advection-diffusion
problem

du=Au—(b-V)u—-Vp+V-F
(AD)
V-u=0, u(0,.) = uy

be such that, for k=1 and k =2, :

e uy belongs to L>=((0,T), LEUW) and Yy, belongs to L*((0,T), L?UV)

o the pressure py is related to ug, b and F through the Riesz transforms

R, = \/% by the formula

3 3
pr =YY RiR;(biwr; — Fy))
i=1 j=1

o the map t € [0,T) v ux(t,.) is weakly continuous from [0,T) to L7, ,
and 1s strongly continuous att =10 :

lim [ (t, ) — w3, = 0.
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Then u; = Us.

Proof : Let v=u; —uy and ¢ = p; — po. Then we have

Ov=Av—(b-V)v—-Vq

V-v=0, v(0,.) =10

Moreover on every compact subset K of (0,7) x R®, b® v is in L?L?, while
it belongs globally to Lg’LG/5 Writing, for ¢, € D((0,T) x R?) such that

Wery /5

1 = 1 on the neigborhood of the support of ¢,

3 3 3 3
PI=q+n=0Y Yy RiRWbv) +¢d> > RR;((1—¥)buy)
i=1 j=1 i=1 j=1
we find that ||Q1||L2L2 S C¢7¢||’(/)b ® V||L2L2 and
2]l Loz < Coplb @ V| o p0/5
“6vy/5

with

1/6
A+’
Co < Cliellult = vl s ([ () ) <o
z€Supp e \ JyeSupp (1-v) |3j y‘

Thus, we may take the scalar product of 0,v with v and find that

)= al¥E) v - v (%b) V- (qv).

v

O ( 5

Thus we are under the assumptions of Theorem [2l and we may use Corollary
4] to find that v = 0. o

3.3 Active transportation.
We begin with the following lemma :

Lemma 4 Let o be a non-negative bounded measurable function on [0,T)
such that, for two constants A, B > 0, we have

alt) < A+ B /Ot a(s) + a(s)? ds.

[f To > 0 and T} = 1’I111’l<
alt) < V2(A+ BTy).

T, Ty, m), we have, for every t € [0,T}],

17



Proof : We write a < 1+ a®. We define
t t
O(t) = A+ BTy + B/ o’®ds and W(t) = A+ BTp + B/ 3 (s) ds.
0 0

We have, for t € [0,T1], a < ® < U. Since ¥ is C!, we may write

U'(t) = BO(t)® < BU(t)®

and thus |
— < 2Bt.
v(0)>  w(E)?
We thus find w(0):
V()P < ———~ < 20(0)?
(=< 1 —-2BVU(0)%t — (0)
The lemma is proven. o

Corollary 6 Assume that ug, u, p, F and b satisfy assumptions of Theorem
[2, Assume moreover that b is controlled by u : for every t € (0,T),

< Collu(t, )|z

Way/2 W3y /2

Then there exists a constant C, > 1 such that if Ty <T is such that

Ty 2
G+ ) (14 G+ ol + [ 11 ds) To<
0
then
To
sup | u(t, )2 < Cy(1+ Ct + flugl2s + / IF|2, ds)
0<t<Tp v v 0 v

and
To To
| Ivals s < o Tl + [ IFIE ds)
0 0

Proof : We start from inequality (7) :
t
2 2
(e, g, + [ IVul ds
0
/2

t t
<y, +C; [ NGl dsC [ (4 bl luts. )l ds

18



We write
Ib(s, M7s < Cillu(s, -)H%gg < GiCyllulles, (lullzs,, +[IVullzz ).
/2

'lUS /

This gives
la(t, )12, + / [Vl ds
Slualiz, + € [ 186l ds
+C, /Ot [u(s, -)||%gw + Cglu(s, .)||‘igw + Cgllu(s, -)||6ng7 ds
<lluollz; +C /Ot IF(s, Iz, ds+2(77/0tHUI(S,_)H%%U7 + Cllu(s, I, ds.

For t < Tj, we get

e, ), + / [Vul?, ds
< ol +C, / B2, ds+C,(1+ ) / e, s, + lu(t, )5, ds

and we may conclude with Lemma [4] o

4 Stability of solutions for the advection-diffusion
problem.

4.1 The Rellich lemma.
We recall the Rellich lemma :

Lemma 5 (Rellich) If s > 0 and (f,) is a sequence of functions on RY
such that

o the family (f,) is bounded in H*(R?)

e there is a compact subset of R such that the support of each f, is
included in K

then there exists a subsequence (fy,) such that f,, is strongly convergent in
L*(RY).
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We shall use a variant of this lemma (see [9]) :

Lemma 6 (space-time Rellich) Ifs >0, 0 € R and (f,) is a sequence of
functions on (0,T) x R? such that, for all Ty € (0,T) and all ¢ € D(R?)

e of, is bounded in L*((0,Ty), H®)
o 0, [, is bounded in L*((0,Ty), H®)

then there exists a subsequence (fy,) such that f,, is strongly convergent in
L2 ([0,T) x R?) : if fs is the limit, we have for all Ty € (0,T) and all

Ry >0

ng—+00

To
lim / | fon — foo|2dadt = 0.
o Jiz|<R

Proof: With no loss of generality, we may assume that o < min(1, s). Define
9 by galt,2) = a(t)p() fults) i ¢ > 0 and golt,7) = a(t)p(a) ful—t, ) if
t < 0, where a € C* on (0,7), is equal to 1 on [0,Tp] and equal to 0 for
t > L2 and ¢(z) = 1 on B(0, Ry). Then the support of g, is contained
in [—2£fo T4T0) » Supp . Moreover, g, is bounded in L?H* and Oy, is

bounded in L?H? so that g, is bounded in H?(R x R*) with p = —— (just

write (1472 + €277 < ((1+72)(1+€2)7) 7 ((1+€2)°)77°7).. By the
Rellich lemma, we know that there is a subsequence g,, which is strongly
convergent in L?(RxR?), thus a subsequence f,,, which is strongly convergent
in LQ((O,T()) X B(O,RQ))

We then iterate this argument for an increasing sequence of times Ty <
Ty < --- < Ty — T and an increasing sequence of radii Ry < Ry < -+ <
Ry — 400 and finish the proof. by the classical diagonal process of Cantor.
o

4.2 Proof of Theorem [3l.

Assume that ug, is strongly convergent to ug. in qu7 and that the se-
quence T, is strongly convergent to Fo, in L?((0,7T), Liw), and assume that
the sequence b, is bounded in L3((0,7), L?an)' Then, by Theorem 2 and

Corollary 4 we know that u,, is bounded in LOO((O,T),LfUW) and Vu, is
bounded in L*((0,T), Li}w). In particular, writing p, = pn,1 + pp2 With

3 3 3 3
Pn1 = Z Z RiR;j(br, iun ;) and p,o = — Z Z RiR;(Fni ;)
i=1 j=1

i=1 j=1
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we get that p, 1 is bounded in L3((0,T), Lg}/; ) and p,, 5 is bounded in L*((0,T), L2, ).
If ¢ € D(R?), we find that @u, is bounded in L*((0,T), H') and, writing

3
8tun = Aun - <Z az(bn,zun) + Vpn,l) + (v : Fn - vpn,Q) )
i=1
@, is bounded in L2L? + L2W~1%/5 4 [2H~1  L2((0,T), H?). Thus,
by Lemmal[@ there exists u., and an increasing sequence (ny)xeny With values

in N such that u,, converges strongly to u., in L2 ([0,7) x R3) : for every
Ty € (0,7T) and every R > 0, we have

loc

To
lim / W, (s,9) — us(s,y) > dy ds = 0.
lyl<R

k——+o00 0

As u,, is bounded in L*((0,7), Li]w) and Vu, is bounded in L*((0,7), L?UV),
the convergence of u,, to us in D'((0,7) x R?) implies that u,, converges
*-weakly to U, in L2((0,7), L7, ) and Vu,, converges weakly to Vu, in
L((0,7), L7, ).

By Banach—Alaoglu’s theorem, we may assume that there exists b, such
that by, converges weakly to be in L*((0,7), L, ,). In particular by, it ;
is weakly convergent in (L%°L5/%),,. and thus in D'((0,T) x R?); as it is
bounded in L3((O,T),L2}/;), it is weakly convergent in L%(O,T),LS/;) to

5 5

boo,iuooJ. Let

3 3 3 3
Poo1 = Z Z RiRj<boo,iuoo,j) and P2 = Z Z oo zy
i=1 j=1 i1 j=1

As the Riesz transforms are bounded on LY/ ; and on L2 , we find that p,, ;

is weakly convergent in L3((0,T),L2}/§7) t0 Poo,1 and that Dn, 2 1S strongly

convergent in L?((0,7T), Li]w) t0 Poo,2-
In particular, we find that in D’((0,7) x R3)

3
atuoo = Auoo - Z al<boo,zuoo) - V<poo,1 +poo,2) +V. Foo

In particular, O,us is locally in L2H 2, and thus u., has representative such
that t |—> uoo(t .) is continuous from [0,7") to D'(R3) and coincides with
u(0,.) + fo Opuge ds. In D'((0,T) x R?), we have that

t t t
u. (0, )+/ OUoo ds = Us = lim u,, = lim ug,, / oy, ds = u07oo+/ O, ds
0 0 0

ng—r—+o00 ng—r—+o00
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Thus, 1. (0,.) = up~, and U is a solution of (ADy,).
Next, we define

An - —8t(

u, |” u, | 9
)+A( )—V- 5 b, | —V:(p,u,)+u,(V-F,) = |Vu, |+,

As u, is bounded in L>((0,T), L3, ) and Vu, is bounded in L*((0,T), Lz, ),
it is bounded in L*((0, T), Lg,, ) and by interpolation with L>((0,T), L2, ) it

W3y /2
is bounded in L'%/3((0,T), L}UOSQP;S). Thus, u,, is locally bounded in L'%/310/3
and locally strongly convergent in L2L?; it is then strongly convergent in

L3L3. Thus, A,, is convergent in D'((0,T) x R3) to

U]

Aoo - _at( 9

)+A(|“;°| ) -V ('“;' boo) — VY (Pooting) + 1o - (V- Fop).

In particular, Ay = lim,, 4100 [V, |2 + pin,. If @ € D((0,T) x R3) is non-
negative, we have

//Aooédxds: lim //Ankédxds Zlimsup//|Vunk|2(I>dxds 2/ VU |*® dz ds
njp—>-+00 ng—+oo

(since v®Vu,, is weakly convergent to v®Vu,, in L?L?). Thus, there
exists a non-negative locally finite measure po, on (0,7) x R3 such that
Ao = |Vugo|? + fioo, i-€. such that

U |
2

U |

Oh( 5

) =A(——)— boo) — V- (Poolioe)+1(V-Fog ) — fioo.

Finally, we start from inequality (@) :

22



2 2
/‘un<t27x>| Qst%ede'S/“uO’nz(x” §Z5Rw%5dl‘

3 t
- Z / /azun c Uy (w'y,eaigbR + ¢R8iw'y,e) dx ds
i=1 70

t
—/ /|Vun|2 PRW T ds
0

3 t 2
=30 [ [ e 06+ om0, s
i=1 70
3 t
+ Z/ /pnun,i<w’y,eai¢R + (bRaiw'y,e) dzr ds
i=1 70

3 3 t
— Z Z/ /Fn,i,jun,j (W, 0i0R + PROW, ) dx ds
0

i=1 j=1

3 3
N ZZ/t/anazun ORW~ e dx ds.
0

i=1 j=1

This gives

. t 2 t
limsup/w@%ww d:c—i—/ /|Vunk|2 PrW, dx ds
0

nj—>+00
2
u
S/‘M(ﬁ}zw’%e dx

3 t
— Z/ /&uOO Uoo (W, e0i PR + PROW. ) dx ds
i=1 70

3 t 2
Uso
+ Z/o / | 5 | boo,i (W, 00 R + PROW, () d ds
i=1
3 t
+ Z/ /poouoo,i<w7,eai¢R + (bRaiw'y,e) dx ds
i=1 70

3 3 t
- > / / Fio i joo,j(Wr,c0i0R + GROW, ) d ds
0

i=1 j=1

3 3
N ZZ/Ot/Foo,i,jaiuoo,j PRW~,c dx ds.

i=1 j=1
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As we have .
u,, = U, +/ oy, ds
0

we see that w,, (f,.) is convergent to u(f,.) in D'(R?), hence is weakly

convergent in Lj,. (as it is bounded in L ), so that :

0 t ? n ta 2
/%gb}gww dr < limsup/MQbRw%E dz.

ng—+00
Similarly, as Vu,, is weakly convergent in L*L, , we have

t 2 t 2
/ / MQZ)RMW dx ds < limsup / / Mgfmww dx ds.
0 0

ng—+00

Thus, letting R go to 400 and then e go to 0, we find by dominated
convergence that, for every t € (0,7, we have

t
fat iy, +2 [ IV )l ds
0

t t
§Hu070¢,H%%U7 —/0 /V|uoo|2 -Vw, dz ds +/0 /(|uoo\2bOO + 2Psoleo) - V(w,) dx ds

33
-2 Z Z/O /Fm,i,j<aiu00,j)w'y + Fa i jUoo,i0 (wy) dz ds.

i=1 j=1
Letting ¢ go to 0, we find
lim sup s (t, )72 < [0.ll7s -
=0 wy w
On the other hand, we know that u,, is weakly continuous in L?U7 and thus

we have
woell3 < limint use( )2

This gives [[ug o3, = limyo |[[us(f,.)]|3. , which allows to turn the weak

convergence into a strong convergence. Theorem [3] is proven. o

5 Solutions of the Navier—Stokes problem with
initial data in Liw.

We now prove Theorem [l The idea is to approximate the problem by a

Navier-Stokes problem in L? then use the a priori estimates (Theorem [2)

and the stability theorem (Theorem [3]) to find a solution to the Navier-Stokes
problem with data in L2 ).
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5.1 Approximation by square integrable data.

Lemma 7 (Leray’s projection operator) Let 0 < § < 3 and 1 < r <
+o00. If v is a vector field on R3 such that v € Ly, then there exists a
unique decompostion

V =V, + Vy

such that
e v, €Ly andV - -v, =0.
e vy € Ly, and VAvy =0.

We shall write v, = Pv, where P is Leray’s projection operator.
Simalarly, if v is a distribution vector field of the type v.= V - G with
G € L, then there erists a unique decompostion

V =V, + Vy
such that
e there exists H € L’"wé such that v, =V -H and V -v, = 0.
e there exists q € Ly, such that vy = Vq (and thus V Avy = 0).
We shall still write v, = Pv. Moreover, the function q is given by

> RiR;(Giy).

1 j=1

3
q9=-

(2

Proof : As ws € A, the Riesz transforms are bounded on Lj . Using the
identity
Av=V(V-v)=VA(VAV)

we find (if the decomposition exists) that
Av, ==V A(VAV,)==VA(VAV)and Avyg =V(V -vy) =V(V.v).

This proves the uniqueness. By linearity, we just have to prove that v =
0 = vy =0. We have Avy = 0, and thus vy is harmonic; as it belongs to
§', we find that it is a polynomial. But a polynomial which belongs to Ly,
must be equal to 0. Similarly, if vg¢ = Vg, then Aq =V - vy =V - v = 0;
thus ¢ is harmonic and belongs to Lj, , hence ¢ = 0.

For the existence, it is enough to check that vy ; = — 2?21 R;R;v; in the
first case and vy = Vg with ¢ = 337, E?Zl R,R;(G; ;) in the second case
fulfill the conclusions of the lemma. o
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Lemma 8 Let 0 < v < 2. Let uy be a divergence-free vector field such
that vy € L?UV(R:S) and F be a tensor F(t,z) = (Fi;(t,2)),o; j<3 such that
F ¢ L2((0,+oo),LfUW). Let ¢ € D(R3) be a non-negative function which
is equal to 1 for |x| < 1 and to O for |x| > 2. For R > 0, we define
or(r) = ¢(%), wo,r = P(druy) and Fr = ¢rF. Then ugr is a divergence-
free square integrable vector field and limg_, y o ||1107R—110||L§M = 0. Similarly,

Fr belongs to L*L? and limp_, | o ||Fr — IF||L2((07+OO),L%W) =0.

Proof : By dominated convergence, we have limg_, o ||¢ruo — u0||Lgu7 =0.
We conclude by writing ug g — up = P(¢rug — ug).

5.2 Leray’s mollification.

We want to solve the Navier—Stokes equations with initial value ug :

du=Au—(u-V)u—Vp+V.-F
(NS)
V.-u=0, u(0,.) = uy

We begin with Leray’s method [I1] for solving the problem in L? :
8tuR = AllR — (llR : V)uR — VpR +V. FR
(NSg)
V'URZO, llR(O,.) :llo7R

The idea of Leray is to mollify the non-linearity by replacing ug - V by
(ug *0.) -V, where 0(z) = 560(%), § € D(R?), 6 is non-negative and radially

decreasing and [ fdx = 1. iNe thus solve the problem
atuB,e = AuR,e - ((uR,e * 96) : v)“R,e - va,e + V. IF‘R
(NSg,e)
V.-up. =0, up(0,.) =ugp
The classical result of Leray states that the problem (NSg.) is well-
posed :

Lemma 9 Letvo € L? be a divergence-free vector field. Let G € L*((0,+00), L?).
Then the problem

Ove =Av. — ((vex0.)-V)v. = V¢ +V -G
(NS)
V'VEZO, V€<O,.):V0

has a unique solution v, in L®((0,+o0), L?) N L*((0, +oc), H'). Moreover,
this solution belongs to C([0,+00), L?).

26



5.3 Proof of Theorem [l (local existence)

We use Lemma [0 and find a solution ug, to the problem (NSg.). Then we
check that up, fulfills the assumptions of Theorem [2l and of Corollary [ :

e up, belongs to L>*((0,7T), L;, ) and Vug, belongs to L*((0,T), L}, )

e the map t € [0, +00) — ug(t,.) is weakly continuous from [0, +00) to
quw, and is strongly continuous at t =0 :

i () — oz, = 0

e on (0,7) x R3 up, fulfills the energy equality :
2

URe

&:(' 1;, |

- |uR,E|2
)= A

uf”

)—|VUR,e|2—V' (TbR,e) —V-(preuge)ture(V-Fr).

with br, = ug, * 0..
e bp,. is controlled by ug, : for every ¢t € (0,7),

bre Ies, <[ Mugoaolles, < Collure(t )l

Y3v/2 W3y/2 T Y3v/2

Thus, we know that, for every time Ty such that
2

To
0,1+ ) (1+C + lunalle, + [ IFally @s) To<t
0
we have

To
sup ||, < 01+ G+ funalty, + [ IRl do)

0<t<Tp

and
To

To
| IV ds < 0,0+ G+ ol + [ IFally, ds)

Moreover, we have that

luorlz, < Colluolles, and [Fallzs, < IIFllzz

so that
Prelrsomes, , SClurdomn.s, ,
oL
<CTy* ((1 + TO)||uR,e||L°°((O,T0),L%W) + ||VUR,6||L2((07To),L%W)>

To
gcz;\/1+cg+|yuo|!igw+/o IFIlZ;, ds.
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Let R, — +oo and ¢, — 0. Let uy, = ugr,, F, = Fr,, b, = bgr, .,
and u, = ug,.,. We may then apply Theorem [3] since uy, is strongly
convergent to ug in Lw , F,, is strongly convergent to F in L*((0, Tp), Liw),
and the sequence by, is bounded in L*((0,Ty), L3, oo ,)- Thus there exists p,
u, b and an increasing sequence (ny)gen with values in N such that

* u,, converges *-weakly to uin L>((0,Ty), L3, ), Vu,, converges weakly
to Vu in L*((0, 7o), L3,.)

e b, converges weakly to b in L3((0,Ty), L2 ), pn, converges weakly

W3y /2

to p in L3((0, T), L6/5 )+ L2((0, Ty), L2,)

e u,, converges strongly to u in L2 ([0,Ty) x R?).

Moreover, u is a solution of the advection-diffusion problem
du=Au—(b-V)u—Vp+V. -F

V-u=0, u(0,.) =uy
and is such that :

e the map ¢ € [0,Ty) = u(t,.) is weakly continuous from [0,7p) to L7, ,
and is strongly continuous at t =0 :

lin [[u(, ) — wollzz, = 0.

e there exists a non-negative locally finite measure p on (0, Ty) x R? such
that

[uf”
2

ul”

O ( )—\Vu|2—V~<7b)—V~(pu)—|—u-(V-IF)—u.

Finally, as b, = 6, * (u, —u) + 0., * u, we see that b,, is strongly
convergent to u in LIOC([O, Ty) x R?), so that b = u : thus, u is a solution of
the Navier—Stokes problem on (0, 7). (It is easy to check that

3

p= ZZR,RJuu] F ;)

=1 j=1

as W n, Uj n, 15 weakly convergent to u;u; in L*((0,Tp), L?U/; ) and we € Ag/s)-
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5.4 Proof of Theorem [I] (global existence)

In order to finish the proof, we shall use the scaling properties of the Navier—
Stokes equations : if A > 0, then u is a solution of the Cauchy initial value
problem for the Navier—Stokes equations on (0,7") with initial value uy and
forcing tensor F if and only if uy(¢,2) = Au(\%*t, Az) is a solution of the
Navier-Stokes equations on (0,7/A?) with initial value ug »(z) = Aug(Ax)
and forcing tensor Fy (¢, z) = N?F(\*t, \x).

We take A > 1 and for n € N we consider the Navier—Stokes problem
with initial value vq, = A"ug(A\") and forcing tensor F,, = A?"F(\?"- A™.).
Then we have seen that we can find a solution v,, on (0,7,,), with

2

+oo
O, (1t anlie, + [ Iz, ds) To=1
0

Of course, we have v, (t,z) = \"u, (A\*"t, \"x) where u,, is a solution of the
Navier—Stokes equations on (0, A>"T,,) with initial value uy and forcing tensor
F

Lemma 10

)\n
lim = =+
v T [vonllTy + o Al ds
Proof : We have
n(r—1) (L4 |2])7
IVonllZ, :/|uo($)|2)\ o UW%(!E) du.

We have
A1) < \M

as v < 2 and we have, by dominated convergence,

. (A fz])”
2
nEToo/‘uo ‘ )\n_'_‘xDa, “/( )dSL’—O

Similarly, we have

+o0o +o00o v 1_'_1, .
[ as= [ e B ) deds o).

Thus, lim,,_, ;o A*"T;, = +o00. o
Now, for a given T > 0, if A>"T,, > T for n > np, then u, is a solution
of the Navier-Stokes problem on (0,7). Let w,(t,z) = A"Tu, (A\*"Tt, \"Tz).
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For n > nr, w, is a solution of the Navier-Stokes problem on (0, \=2"7T")

with initial value vg,, and forcing tensor F, . As A2 T < T, we have

T

+00 2
O (1t Nanlig, + [ IFuly ds) x0T <1
0

By corollary [, we have
)\_Q"TT
sup || walt, )72 < O+ [[vourlizs +/ |Frll7z ds)
o<t<A~2nT T v v 0 v

and

)\_Q"TT

)\_Q”TT
[ 1wl ds <t ol + [ IBuiliy, ds)
0 0

We have

1 v
p_(L+fal) w.(z) de > A"707D|ju, (227, )2, .
Wy

2 — 2nr 2ynp(y—
wllty, = [ Tu ey,

and

A~2nTT T
np(v—1)_ L+ |2])7
/O IVwallzs dS:/O /|V11n(87f€)\2)\ o 1)mww(f€) dx ds

T
>\nr=D / |V, ||2: ds.
0 o

Thus, we have a uniform control of u,, and of Vu, on (0,7) for n > ny.
We may then apply the Rellich lemma (Lemma [6) and Theorem [ to find
a subsequence u,, that converges to a global solution of the Navier-Stokes
equations. Theorem [I] is proven. o

6 Solutions of the advection-diffusion prob-
lem with initial data in sz.

The proof of Theorem [Ilon the Navier—Stokes problem can be easily adapted
to the case of the advection-diffusion problem :

Theorem 4 Let 0 < v < 2. Let 0 < T < +o00o. Let ug be a divergence-free

vector field such thatug € L7, (R*) andF be a tensor F(t,x) = (Fij(t, 7)), ;5
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such that T € L*((0,T),L;. ). Let b be a time-dependent divergence free
vector-field (V - b = 0) such that b € L3((0,T), L?anm)‘
Then the advection-diffusion problem

du=Au—(b-V)u—-Vp+V.-F
(AD)
V-u=0, u(0,.) = ug

has a solution u such that :
e u belongs to L=((0,T), L;, ) and Vu belongs to L*((0,T), L2, )

o the pressure p is related to u, b and F through the Riesz transforms

R, = \/% by the formula

p=Y_ Y RiRi(biu; — F,;)

3
i=1 j=1

7

o the map t € [0,T) +— u(t,.) is weakly continuous from [0,T) to L, ,
and s strongly continuous att =10 :

lin [[u(, ) — wollzz, = 0.

e there exists a non-negative locally finite measure p on (0,T) x R? such
that

uf”

Oh( 5

)=o) - - (M) -9 )+ (7B -

Proof : Again, we define ¢r(v) = ¢(%), wo,r = P(¢ruo) and Fr = @gF.

Moreover, we define bg = P(¢rb). We then solve the mollified problem

8tuR,e = AuR,e - ((bR * 96) . v)“R,e - va,e + Y FR,&
(ADg,)
V.-up. =0, up(0,.) =upp

for which we easily find a unique solution ug, in L=((0,T), L)NL*((0,T), H).
Moreover, this solution belongs to C([0,T), L?).
Again, up  fulfills the assumptions of Theorem [2 :

e up,. belongs to L>((0,7), Lfvy) and Vug, belongs to L*((0,7), Liw)
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e the map ¢ € [0,T) = ug(t,.) is weakly continuous from [0,7T) to L, ,
and is strongly continuous at t =0 :

1155% ||11R75(t, ) — 1107R||L12w =0.

e on (0,7) x R3 up, fulfills the energy equality :

up,|? Up,
at(| 1;,| ):A(‘ R,

ul?

-1V - (b, )9, (7 5.
with br = bg * 0..

Thus, by Corollary 4 we know that,

Cy(T+T'3|br.c|? 3 )
sup ||uR7E||L12M S (||u0,R||L12“7+C’\/||]FR||L2((O7T)7L12UW )6 L ((O,T),ng,y/z)

o<t<T
and
CW(T+T1/3”bR,e”23 3 )
”vuR,eHLQ((OvT)vL%w) < (”uo,RHL%w +C“/”FR”L2((O,T),L12M)) e EOT) Bgy )
where the constant C, depends only on 7.
Moreover, we have that
luorllzs, < Chlluollzs, , IBalls, < IFls
and
HbR,eHLB((o,T),LgWQ) < HMbRHm((o,T),LgWQ) < C:,HbHL3((0,T),L§UW2)

Let R, — +oo and ¢, — 0. Let uy,, = wo1,, F,, = Fg,, b, = bg,.,
and u, = ug,.,. We may then apply Theorem [3] since uy, is strongly
convergent to uy in L7, , T, is strongly convergent to F in L*((0,T), L3, ),
and the sequence b, is strongly convergent to b in L3((0,7), L?USW). Thus

there exists p, u and an increasing sequence (ng)reny with values in N such
that

* u,, converges *-weakly to uin L((0,7), L}, ), Vu,, converges weakly
to Vu in L*((0,7), L7, )

e p,, converges weakly to p in L3((0,T), Lile, ) + L2((0,T), L)

5

e u,, converges strongly to uin L ([0,7) x R?).

loc

We then easily finish the proof. o

32



7 Application to the study of A-discretely self-
similar solutions

We may now apply our results to the study of A-discretely self-similar solu-
tions for the Navier-Stokes equations.

Definition 1 Letug € L2 (R?). We say that ug is a A-discretely self-similar
function (A\-DSS) if there exists A\ > 1 such that Aug(Ax) = uy.

A wector field u € L2 ([0, +00) x R?) is \-DSS if there exists A > 1 such
that A\a(\*t, \z) = u(t, ).

A forcing tensor F € L ([0, +00) x R?) is A-DSS if there exists X > 1
such that NX°’F(\*t, \x) = F(t, z).

We shall speak of self-similarity if uy, u or F are \-DSS for every A > 1.

Examples :

e Let v > 1 and A > 1. Then, for two positive constants A, \ and B, ,
we have : if ug € Lj,.(R?) is A-DSS, then uo € L7, and

Ay / uo(x) de < / uo(2) P (x) do < B / luo(a)P da
1<]z|<A 1<|z|<A

e uy € L2 is self-similar if and only if it is of the form uy = WO|(1‘|7‘) with

Wq € LQ(SQ)

e [ belongs to L?((0, +o0), L2 ,) with v > 1 and is self—similar if and only
if it is of the form F(¢,z) = 1F0(\[ ) with [ [Fo(x 1| dr < +00.

Proof :
e If uy is A-DSS and if & € Z we have

)\k
uo(2) 2w () de < 7/ uo(2)|? dx
/)\k<x<>\’“+1‘ 0( )‘ PY( ) <1+)‘k)7 1<|m|<)\‘ 0( )‘

with ), ., 1+/\’€) < o0 for v > 1.

e If uy is self-similar, we have ug(x) = |$|u0(‘ ‘) From this equality, we
find that, for A > 1

/1< <A [wo(@) [ d = (A =1) [ Juo(0)]* do
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e If F is self-similar, then it is of the form F(¢,z) = 1Fo(%). Moreover,

.
we have '

+oo +oo 2 d:E
| Ferw@azas = [ [ Fo@Pe iaae % = o, [ Fo@P s

0

. +o0
with €, = [ 1+\1[)W T < +o0. o

In this section, we are going to give a new proof of the results of Chae and
Wolf [3] and Bradshaw and Tsai [2] on the existence of A-DSS solutions of the
Navier—Stokes problem (and of Jia and Sverak [6] for self-similar solutions) :

Theorem 5 Let 4/3 <~y <2 and A > 1. If uy is a A\-DSS divergence-free
vector field (such that vy € L}, (R®)) and if F is a A\-DSS tensor F(t,z) =

(£5,j(t, ) <; j<g Such that F € LIOC([O, +00) x R3) | then the Navier-Stokes
equations wzth inatial value g

du=Au—(u-V)u—Vp+V. -F
(NS)
V.-u=0, u(0,.) =ug

has a global weak solution u such that :

u s a A\-DSS vector field

for every 0 < T < 400, u belongs to L>((0,T), L}, ) and Vu belongs
to L*((0,7), L3, )

the map t € [0,+00) — u(t,.) is weakly continuous from [0,400) to
L?U , and 1s strongly continuous att =0 :

lim [[u(..) — uollzz, = 0.

the solution u is suitable : there exists a non-negative locally finite
measure j1 on (0,+00) X R? such that

[uf” uf”

o35 = o) - pvup - v (B4 o) w9 -
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7.1 The linear problem.

Following Chae and Wolf, we consider an approximation of the problem that
is consistent with the scaling properties of the equations : let 6 be a non-
negative and radially decreasing function in D(R?) with [ 6 dx = 1; We define
Oei(x) = (5%)3 Q(EL\/E) We then will study the “mollified” problem

oue = Au, — ((ue *0.4) - V)u. — Vp. + V- F
(NSe)
V-u=0, u(0,.) = ug

and begin with the linearized problem

ov=Av—((bxb.,) - V)v—-Vqg+V-F
(LNS.)
V.-v=0, v(0,.) =up

Lemma 11 Let 1 < v < 2. Let A > 1 Let ug be a A\-DSS divergence-
free vector field such that ug € L?U7 (R3) and F be a A-DSS tensor F(t,x) =
(£5,j(t, ) <; j<g Such that, for every T >0, F € L3((0,T), wa). Let b be a
A-DSS time-dependent divergence free vector-field (V -b = 0) such that, for
every T >0, b e L*((0,T), L3 ).
/2
Then the advection-diffusion problem

Ov=Av—((bx0,) -V)v—-Vq+V-F
(LNS,)
V.-v=0, v(0,.) =up

has a unique solution v such that :

o for every positive T, v belongs to L>((0,T), L, ) and Vv belongs to
L*((0,T),L3,)

o the pressure p is related to v, b and F through the Riesz transforms

R, = \/% by the formula

RZRJ((bz * ee,t)vj - Fi,j)

1 j=1

3
p:

(2

e the map t € [0,400) — V(t,.) is weakly continuous from [0,+00) to
quw, and is strongly continuous att =0 :

lim [[v(,.) — wollzz, = 0.
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This solution v is a \-DSS vector field.
Proof : As we have |b(t,.) * 6.;| < My, ) and thus

[b(,.) * OcellLso,ryes. ) < CylIbllzsom),

'll73 /2 'wS /2)

we see that we can use Theorem Ml to get a solution v on (0,7).
As clearly b * 6. ; belongs to L?L°(K) for every compact subset K of
(0,T) x R3, we can use Corollary [l to see that v is unique.

Let w(t,z) = +v(52, £). As bx0,, is still \-DSS, we see that w is solution

of (LNS,) on (0,T), so that w = v. This means that v is A-DSS. o

7.2 The mollified Navier—Stokes equations.
The solution v provided by Lemma [I1 belongs to L3((0,T),L3 ) (as v

W3~y /2
belongs to L>((0,T), L2, ) and Vv belongs to L*((0,7), L7, )). Thus we
have a mapping L. : b — v which is defined from

={bc L*((0,7), L / bis A — DSS}

11)3 /2)
to X7, by Le(b) = v.

Lemma 12 For 4/3 < v, Xr, is a Banach space for the equivalent norms
||b||L3((O,T),L§U37/2) and ||b||L3((O7T/>\2),><B(O,§))'

Proof : We have

// b(t,z)|* dx dt = )\2/ / b(t, z)|? dz dt
B(0,1) B(0,1

and , for k € N,
T e
/ / Ib(t, )|* dz dt = A%/ / Ib(t, 2)|* dz dt.
0 JAR—L<|z|< AR 0 +<|z|<1
We may conclude, since for v > 4/3 we have ), AC=F) < o0

Lemma 13 For4/3 <~ < 2, the mapping L. is continuous and compact on
X1
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Proof : Let b,, be a bounded sequence in Xr. and let v, = L.(b,). We
remark that the sequence b, (¢,.) *6., is bounded in X7 .. Thus, by Theorem
and Corollary 4 the sequence v,, is bounded in L>((0,7), LEUW) and Vv,
is bounded in L?((0,T), Li}w).

We now use Theorem [3] and get that then there exists guo, Voo, Boo and
an increasing sequence (ny)gen with values in N such that

o vy, converges *-weakly to v, in L=((0,7), L7, ), Vv, converges weakly
to Vv, in L*((0,7), L3,)
e b, * 0., converges weakly to B, in L3((0,7),L3 ),

W3~ /2

e the associated pressures g, converge weakly to ¢, in L3((0,7T), LY % )+
L*((0,7),L3,)

e v, converges strongly to v, in L2 ([0,T) x R3) : for every T € (0,T)
and every R > 0, we have

To
lim / [V (8,9) — Voo (s, 9)|? ds dy = 0.
k—+o0 Jo ly|<R

As /W vy, is bounded in L*>*((0,T), L*) and in L*((0, T), L°), it is bounded
in L'%3((0,T) x R?). The strong convergence of v,,, in L2 ([0, T) x R?) then
implies the strong convergence of v,,, in L} ((0,T) x R?).

Moreover, v, is still A-DSS (a property that is stable under weak lim-
its).We find that v, € X7, and that

32
lim [ / [V (8,9) — Voo (s, 9)|? ds dy = 0.
0 B(0,3)

ng—+00

This proves that L. is compact.

If we assume moreover that b, is convergent to b, in X, then necessar-
ily we have By, = boo 0.4, and v, = L(bs ). Thus, the relatively compact
sequence v, can have only one limit point; thus it must be convergent. This
proves that L, is continuous. o

Lemma 14 Let 4/3 < ~ < 2. If, for some u € [0,1], v is a solution of
v = uL.(v) then
IVlixr, < Cupar

where the constant Cy, w1 depends only on vy, F, v and T (but not on
nor on €).
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Proof : We have v = pyw; with
Ow =Aw — ((v*0.4) - V)W —-Vqg+ V- -F
V.-w=0, w(0,.) = ug
Multiplying by u, we find that
v =Av—((vx0.,) -V)v—V(ug) + V- uF
V.-v=0, v(0,.) = puy

We then use Corollary 6l We choose Ty € (0,7) such that

2

To
e, (1t il + [ IEI: as) Ta<i.
0

Then, as
2

To
&, (1t owle, + [ 1FlRy as) To<t
0

we know that

To
sup || v(t, )17, < Cy(L+ i laollz; +M2/ IF|[7;, ds)
0

0<t<Ty

and
To

To
|9y ds <y iy, o [ IFIE, ds)
0 0

In particular, we have

To To
3
[l ds <Ot ol + [ BN, ds)t
0 0

W3y /2

As v is A-DSS, we can go back from Ty to T

o

Lemma 15 Let 4/3 < v < 2. There is al least one solution u. of the

equation u. = L.(u,).

Proof : Obvious due to the Leray—Schauder principle (and the Schaefer
theorem), since L. is continuous and compact and since we have uniform a

priori estimates for the fixed points of uL, for 0 < p < 1.
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7.3 Proof of Theorem [l

We may now finish the proof of Theorem [l We consider the solutions u, of
u. = L.(u,).

By Lemma 4, u, is bounded in L*((0,7), L, ,), and so is u * 0. We
then know, by Theorem [2] and Corollary 4l that the familly u. is bounded in
L>((0,7), L7, ) and Vu, is bounded in L*((0,7), L7, ).

We now use Theorem [3 and get that then there exists p, u, B and a
decreasing sequence (€g)ren (converging to 0) with values in (0, 400) such
that

e u,, converges *-weakly to u in L>((0,T), L3, ), Vu,, converges weakly
to Vu in L*((0,7), L2 )
,
e u, 0 ; converges weakly to B in L3((0,7), L3 )

} T W3y /2

e the associated pressures p,, converge weakly to p in L*((0,T), Ly ;) +

12((0,7), 1) 5

e u,, converges strongly to uin L2 _([0,T) x R?).

loc

Moreover we easily see that B = u. Indeed, we have that u * 0. ; converges
strongly in L _((0,7) x R?) as € goes to 0 (since it is bounded by M,
and converges, for each fixed ¢, strongly in L2 (R?)); moreover, we have
|(u—u.) * 64| < My_y,, so that the strong convergence of u,, to u is kept
by convolution with 6., as far as we work on compact subsets of (0,7) x R?
(and thus don’t allow ¢ to go to 0).

Thus, Theorem [3is proven. o
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