Weak solutions for Navier-Stokes equations with initial data in weighted L^{2} spaces.

Pedro Gabriel Fernández-Dalgo ${ }^{* \dagger}$, Pierre Gilles Lemarié-Rieusset ${ }^{\text {§ }}$

Abstract

We show the existence of global weak solutions of the 3D NavierStokes equations with initial velocity in the weighted spaces $L_{w_{\gamma}}^{2}$, where $w_{\gamma}(x)=(1+|x|)^{-\gamma}$ and $0<\gamma \leq 2$, using new energy controls. As application we give a new proof of the existence of global weak discretely self-similar solutions of the 3D Navier-Stokes equations for discretely self-similar initial velocities which are locally square integrable.

Keywords : Navier-Stokes equations, weighted spaces, discretely selfsimilar solutions, energy controls
AMS classification : 35Q30, 76D05.

1 Introduction.

Infinite-energy weak Leray solutions to the Navier-Stokes equations were introduced by Lemarié-Rieusset in 1999 [8] (they are presented more completely in [9] and [10]). This has allowed to show the existence of local weak solutions for a uniformly locally square integrable initial data.

Other constructions of infinite-energy solutions for locally uniformly square integrable initial data were given in 2006 by Basson [1] and in 2007 by Kikuchi and Seregin [7]. These solutions allowed Jia and Sverak [6] to construct in 2014 the self-similar solutions for large (homogeneous of degree -1) smooth data. Their result has been extended in 2016 by Lemarié-Rieusset [10] to

[^0]solutions for rough locally square integrable data. We remark that an homogeneous (of degree -1) and locally square integrable data is automatically uniformly locally L^{2}.

Recently, Bradshaw and Tsai [2] and Chae and Wolf [3] considered the case of solutions which are self-similar according to a discrete subgroup of dilations. Those solutions are related to an initial data which is self-similar only for a discrete group of dilations; in contrast to the case of self-similar solutions for all dilations, such an initial data, when locally L^{2}, is not necessarily uniformly locally L^{2}, therefore their results are no consequence of constructions described by Lemarié-Rieusset in [10].

In this paper, we construct an alternative theory to obtain infinite-energy global weak solutions for large initial data, which include the discretely selfsimilar locally square integrable data. More specifically, we consider the weights

$$
w_{\gamma}(x)=\frac{1}{(1+|x|)^{\gamma}}
$$

with $0<\gamma$, and the spaces

$$
L_{w_{\gamma}}^{2}=L^{2}\left(w_{\gamma} d x\right)
$$

Our main theorem is the following one :
Theorem 1 Let $0<\gamma \leq 2$. If \mathbf{u}_{0} is a divergence-free vector field such that $\mathbf{u}_{0} \in L_{w_{\gamma}}^{2}\left(\mathbb{R}^{3}\right)$ and if \mathbb{F} is a tensor $\mathbb{F}(t, x)=\left(F_{i, j}(t, x)\right)_{1 \leq i, j \leq 3}$ such that $\mathbb{F} \in L^{2}\left((0,+\infty), L_{w_{\gamma}}^{2}\right)$, then the Navier-Stokes equations with initial value \mathbf{u}_{0}

$$
(N S)\left\{\begin{array}{l}
\partial_{t} \mathbf{u}=\Delta \mathbf{u}-(\mathbf{u} \cdot \nabla) \mathbf{u}-\nabla p+\nabla \cdot \mathbb{F} \\
\nabla \cdot \mathbf{u}=0, \quad \quad \mathbf{u}(0, .)=\mathbf{u}_{0}
\end{array}\right.
$$

has a global weak solution \mathbf{u} such that :

- for every $0<T<+\infty$, \mathbf{u} belongs to $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\nabla \mathbf{u}$ belongs to $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$
- the pressure p is related to \mathbf{u} and \mathbb{F} through the Riesz transforms $R_{i}=$ $\frac{\partial_{i}}{\sqrt{-\Delta}}$ by the formula

$$
p=\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(u_{i} u_{j}-F_{i, j}\right)
$$

where, for every $0<T<+\infty, \sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(u_{i} u_{j}\right)$ belongs to $L^{4}\left((0, T), L_{w_{\frac{6 \gamma}{\gamma}}}^{6 / 5}\right)$ and $\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j} F_{i, j}$ belongs to $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$

- the map $t \in[0,+\infty) \mapsto \mathbf{u}(t,$.$) is weakly continuous from [0,+\infty)$ to $L_{w_{\gamma}}^{2}$, and is strongly continuous at $t=0$:

$$
\lim _{t \rightarrow 0}\left\|\mathbf{u}(t, .)-\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}=0
$$

- the solution \mathbf{u} is suitable : there exists a non-negative locally finite measure μ on $(0,+\infty) \times \mathbb{R}^{3}$ such that

$$
\partial_{t}\left(\frac{\left.\mathbf{u}\right|^{2}}{2}\right)=\Delta\left(\frac{|\mathbf{u}|^{2}}{2}\right)-|\nabla \mathbf{u}|^{2}-\nabla \cdot\left(\left(\frac{|\mathbf{u}|^{2}}{2}+p\right) \mathbf{u}\right)+\mathbf{u} \cdot(\nabla \cdot \mathbb{F})-\mu .
$$

In particular, we have the energy controls

$$
\begin{aligned}
&\|\mathbf{u}(t,)\|_{L_{w_{\gamma}}^{2}}^{2}+2 \int_{0}^{t}\|\nabla \mathbf{u}(s, .)\|_{L_{w_{\gamma}}^{2}}^{2} d s \\
& \leq\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}- \int_{0}^{t} \int \nabla|\mathbf{u}|^{2} \cdot \nabla w_{\gamma} d x d s+\int_{0}^{t} \int\left(|\mathbf{u}|^{2}+2 p\right) \mathbf{u} \cdot \nabla\left(w_{\gamma}\right) d x d s \\
&-2 \sum_{i=1}^{3} \sum_{j=1}^{3} \int_{0}^{t} \int F_{i, j}\left(\partial_{i} u_{j}\right) w_{\gamma}+F_{i, j} u_{i} \partial_{j}\left(w_{\gamma}\right) d x d s
\end{aligned}
$$

and

$$
\|\mathbf{u}(t, .)\|_{L_{w_{\gamma}}^{2}}^{2} \leq\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}+C_{\gamma} \int_{0}^{t}\|\mathbb{F}(s, .)\|_{L_{w_{\gamma}}^{2}}^{2} d s+C_{\gamma} \int_{0}^{t}\|\mathbf{u}(s, .)\|_{L_{w_{\gamma}}^{2}}^{2}+\|\mathbf{u}(s, .)\|_{L_{w_{\gamma}}^{2}}^{6} d s
$$

A key tool for proving Theorem $\mathbb{1}$ and for applying it to the study of discretely self-similar solutions is given by the following a priori estimates for an advection-diffusion problem :

Theorem 2 Let $0<\gamma \leq 2$. Let $0<T<+\infty$. Let \mathbf{u}_{0} be a divergence-free vector field such that $\mathbf{u}_{0} \in L_{w_{\gamma}}^{2}\left(\mathbb{R}^{3}\right)$ and \mathbb{F} be a tensor $\mathbb{F}(t, x)=\left(F_{i, j}(t, x)\right)_{1 \leq i, j \leq 3}$ such that $\mathbb{F} \in L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$. Let \mathbf{b} be a time-dependent divergence free vector-field $(\nabla \cdot \mathbf{b}=0)$ such that $\mathbf{b} \in L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$.

Let \mathbf{u} be a solution of the following advection-diffusion problem
$(A D)\left\{\begin{array}{l}\partial_{t} \mathbf{u}=\Delta \mathbf{u}-(\mathbf{b} \cdot \nabla) \mathbf{u}-\nabla p+\nabla \cdot \mathbb{F} \\ \nabla \cdot \mathbf{u}=0, \quad \mathbf{u}(0, .)=\mathbf{u}_{0}\end{array}\right.$
be such that:

- \mathbf{u} belongs to $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\nabla \mathbf{u}$ belongs to $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$
- the pressure p is related to \mathbf{u}, \mathbf{b} and \mathbb{F} through the Riesz transforms $R_{i}=\frac{\partial_{i}}{\sqrt{-\Delta}}$ by the formula

$$
p=\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(b_{i} u_{j}-F_{i, j}\right)
$$

where $\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(b_{i} u_{j}\right)$ belongs to $L^{3}\left((0, T), L_{w_{\frac{6 \gamma}{5}}}^{6 / 5}\right)$ and $\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j} F_{i, j}$ belongs to $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$

- the map $t \in[0, T) \mapsto \mathbf{u}(t,$.$) is weakly continuous from [0, T)$ to $L_{w_{\gamma}}^{2}$, and is strongly continuous at $t=0$:

$$
\lim _{t \rightarrow 0}\left\|\mathbf{u}(t, .)-\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}=0
$$

- there exists a non-negative locally finite measure μ on $(0, T) \times \mathbb{R}^{3}$ such that

$$
\begin{equation*}
\partial_{t}\left(\frac{|\mathbf{u}|^{2}}{2}\right)=\Delta\left(\frac{|\mathbf{u}|^{2}}{2}\right)-|\nabla \mathbf{u}|^{2}-\nabla \cdot\left(\frac{|\mathbf{u}|^{2}}{2} \mathbf{b}\right)-\nabla \cdot(p \mathbf{u})+\mathbf{u} \cdot(\nabla \cdot \mathbb{F})-\mu \tag{1}
\end{equation*}
$$

Then, we have the energy controls

$$
\begin{aligned}
\|\mathbf{u}(t, .)\|_{L_{w_{\gamma}}^{2}}^{2} & +2 \int_{0}^{t}\|\nabla \mathbf{u}(s, .)\|_{L_{w_{\gamma}}^{2}}^{2} d s \\
\leq & \left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}-\int_{0}^{t} \int \nabla|\mathbf{u}|^{2} \cdot \nabla w_{\gamma} d x d s+\int_{0}^{t} \int|\mathbf{u}|^{2} \mathbf{b} \cdot \nabla\left(w_{\gamma}\right) d x d s \\
& +2 \int_{0}^{t} \int p \mathbf{u} \cdot \nabla\left(w_{\gamma}\right) d x d s-2 \sum_{i=1}^{3} \sum_{j=1}^{3} \int_{0}^{t} \int F_{i, j}\left(\partial_{i} u_{j}\right) w_{\gamma}+F_{i, j} u_{i} \partial_{j}\left(w_{\gamma}\right) d x d s
\end{aligned}
$$

and

$$
\begin{aligned}
& \|\mathbf{u}(t, .)\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{t}\|\nabla \mathbf{u}\|_{L_{w_{\gamma}}^{2}}^{2} d s \\
& \quad \leq\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}+C_{\gamma} \int_{0}^{t}\|\mathbb{F}(s, .)\|_{L_{w_{\gamma}}^{2}}^{2} d s+C_{\gamma} \int_{0}^{t}\left(1+\|\mathbf{b}(s, .)\|_{L_{w_{3 \gamma / 2}}^{3}}^{2}\right)\|\mathbf{u}(s, .)\|_{L_{w_{\gamma}}^{2}}^{2} d s
\end{aligned}
$$

where C_{γ} depends only on γ (and not on T, and not on $\mathbf{b}, \mathbf{u}, \mathbf{u}_{0}$ nor \mathbb{F}).
In particular, we shall prove the following stability result :

Theorem 3 Let $0<\gamma \leq 2$. Let $0<T<+\infty$. Let $\mathbf{u}_{0, n}$ be divergencefree vector fields such that $\mathbf{u}_{0, n} \in L_{w_{\gamma}}^{2}\left(\mathbb{R}^{3}\right)$ and \mathbb{F}_{n} be tensors such that $\mathbb{F}_{n} \in$ $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$. Let \mathbf{b}_{n} be time-dependent divergence free vector-fields such that $\mathbf{b}_{n} \in L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$.

Let \mathbf{u}_{n} be solutions of the following advection-diffusion problems

$$
\left(A D_{n}\right)\left\{\begin{array}{c}
\partial_{t} \mathbf{u}_{n}=\Delta \mathbf{u}_{n}-\left(\mathbf{b}_{n} \cdot \nabla\right) \mathbf{u}_{n}-\nabla p_{n}+\nabla \cdot \mathbb{F}_{n} \\
\nabla \cdot \mathbf{u}_{n}=0, \quad \mathbf{u}_{n}(0, .)=\mathbf{u}_{0, n}
\end{array}\right.
$$

such that:

- \mathbf{u}_{n} belongs to $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\nabla \mathbf{u}_{n}$ belongs to $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$
- the pressure p_{n} is related to $\mathbf{u}_{n}, \mathbf{b}_{n}$ and \mathbb{F}_{n} by the formula

$$
p_{n}=\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(b_{n, i} u_{n, j}-F_{n, i, j}\right)
$$

- the map $t \in[0, T) \mapsto \mathbf{u}_{n}(t,$.$) is weakly continuous from [0, T)$ to $L_{w_{\gamma}}^{2}$, and is strongly continuous at $t=0$:

$$
\lim _{t \rightarrow 0}\left\|\mathbf{u}_{n}(t, .)-\mathbf{u}_{0, n}\right\|_{L_{w_{\gamma}}^{2}}=0
$$

- there exists a non-negative locally finite measure μ_{n} on $(0, T) \times \mathbb{R}^{3}$ such that

$$
\partial_{t}\left(\frac{\left|\mathbf{u}_{n}\right|^{2}}{2}\right)=\Delta\left(\frac{\left|\mathbf{u}_{n}\right|^{2}}{2}\right)-\left|\nabla \mathbf{u}_{n}\right|^{2}-\nabla \cdot\left(\frac{\left|\mathbf{u}_{n}\right|^{2}}{2} \mathbf{b}_{n}\right)-\nabla \cdot\left(p_{n} \mathbf{u}_{n}\right)+\mathbf{u}_{n} \cdot\left(\nabla \cdot \mathbb{F}_{n}\right)-\mu_{n} .
$$

If $\mathbf{u}_{0, n}$ is strongly convergent to $\mathbf{u}_{0, \infty}$ in $L_{w_{\gamma}}^{2}$, if the sequence \mathbb{F}_{n} is strongly convergent to \mathbb{F}_{∞} in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$, and if the sequence \mathbf{b}_{n} is bounded in $L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$, then there exists $p_{\infty}, \mathbf{u}_{\infty}, \mathbf{b}_{\infty}$ and an increasing sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ with values in \mathbb{N} such that

- $\mathbf{u}_{n_{k}}$ converges ${ }^{*}$-weakly to \mathbf{u}_{∞} in $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right), \nabla \mathbf{u}_{n_{k}}$ converges weakly to $\nabla \mathbf{u}_{\infty}$ in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$
- $\mathbf{b}_{n_{k}}$ converges weakly to \mathbf{b}_{∞} in $L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$, $p_{n_{k}}$ converges weakly to p_{∞} in $L^{3}\left((0, T), L_{w_{\frac{6 \gamma}{\gamma}}}^{6 / 5}\right)+L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$
- $\mathbf{u}_{n_{k}}$ converges strongly to \mathbf{u}_{∞} in $L_{\mathrm{loc}}^{2}\left([0, T) \times \mathbb{R}^{3}\right)$: for every $T_{0} \in(0, T)$ and every $R>0$, we have

$$
\lim _{k \rightarrow+\infty} \int_{0}^{T_{0}} \int_{|y|<R}\left|\mathbf{u}_{n_{k}}(s, y)-\mathbf{u}_{\infty}(s, y)\right|^{2} d s d y=0
$$

Moreover, \mathbf{u}_{∞} is a solution of the advection-diffusion problem

$$
\left(A D_{\infty}\right)\left\{\begin{array}{c}
\partial_{t} \mathbf{u}_{\infty}=\Delta \mathbf{u}_{\infty}-\left(\mathbf{b}_{\infty} \cdot \nabla\right) \mathbf{u}_{\infty}-\nabla p_{\infty}+\nabla \cdot \mathbb{F}_{\infty} \\
\nabla \cdot \mathbf{u}_{\infty}=0, \quad \mathbf{u}_{\infty}(0, .)=\mathbf{u}_{0, \infty}
\end{array}\right.
$$

and is such that :

- the map $t \in[0, T) \mapsto \mathbf{u}_{\infty}(t,$.$) is weakly continuous from [0, T)$ to $L_{w_{\gamma}}^{2}$, and is strongly continuous at $t=0$:

$$
\lim _{t \rightarrow 0}\left\|\mathbf{u}_{\infty}(t, .)-\mathbf{u}_{0, \infty}\right\|_{L_{w_{\gamma}}^{2}}=0
$$

- there exists a non-negative locally finite measure μ_{∞} on $(0, T) \times \mathbb{R}^{3}$ such that

$$
\partial_{t}\left(\frac{\left|\mathbf{u}_{\infty}\right|^{2}}{2}\right)=\Delta\left(\frac{\left|\mathbf{u}_{\infty}\right|^{2}}{2}\right)-\left|\nabla \mathbf{u}_{\infty}\right|^{2}-\nabla \cdot\left(\frac{\left|\mathbf{u}_{\infty}\right|^{2}}{2} \mathbf{b}_{\infty}\right)-\nabla \cdot\left(p_{\infty} \mathbf{u}_{\infty}\right)+\mathbf{u}_{\infty} \cdot\left(\nabla \cdot \mathbb{F}_{\infty}\right)-\mu_{\infty} .
$$

Notations.

All along the text, C_{γ} is a positive constant whose value may change from line to line but which depends only on γ.

2 The weights w_{δ}.

We consider the weights $w_{\delta}=\frac{1}{(1+|x|)^{\delta}}$ where $0<\delta$ and $x \in \mathbb{R}^{3}$. A very important feature of those weights is the control of their gradients :

$$
\begin{equation*}
\left|\nabla w_{\delta}(x)\right|=\delta \frac{w_{\delta}(x)}{1+|x|} \tag{2}
\end{equation*}
$$

Lemma 1 (Muckenhoupt weights) If $0<\delta<3$ and $1<p<+\infty$, then w_{δ} belongs to the Muckenhoupt class \mathcal{A}_{p}.

Proof : We recall that a weight w belongs to $\mathcal{A}_{p}\left(\mathbb{R}^{3}\right)$ for $1<p<+\infty$ if and only if it satisfies the reverse Hölder inequality

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{3}, R>0}\left(\frac{1}{|B(x, R)|} \int_{B(x, R)} w(y) d y\right)^{\frac{1}{p}}\left(\frac{1}{|B(x, R)|} \int_{B(x, R)} \frac{d y}{w(y)^{\frac{1}{p-1}}}\right)^{1-\frac{1}{p}}<+\infty . \tag{3}
\end{equation*}
$$

For all $0<R \leq 1$ the inequality $|x-y|<R$ implies $\frac{1}{2}(1+|x|) \leq 1+|y| \leq$ $2(1+|x|)$, thus we can control the left side in (3) for w_{δ} by $4^{\frac{\delta}{p}}$.

For all $R>1$ and $|x|>10 R$, we have that the inequality $|x-y|<R$ implies $\frac{9}{10}(1+|x|) \leq 1+|y| \leq \frac{11}{10}(1+|x|)$, thus we can control the left side in (3) for w_{δ} by $\left(\frac{11}{9}\right)^{\frac{\delta}{p}}$.

Finally, for $R>1$ and $|x| \leq 10 R$, we write

$$
\begin{aligned}
& \left(\frac{1}{|B(x, R)|} \int_{B(x, R)} w(y) d y\right)^{\frac{1}{p}}\left(\frac{1}{|B(x, R)|} \int_{B(0, R)} \frac{d y}{w(y)^{\frac{1}{p-1}}}\right)^{1-\frac{1}{p}} \\
\leq & \left(\frac{1}{|B(0, R)|} \int_{B(x, 11 R)} w(y) d y\right)^{\frac{1}{p}}\left(\frac{1}{|B(0, R)|} \int_{B(0,11 R)} \frac{d y}{w(y)^{\frac{1}{p-1}}}\right)^{1-\frac{1}{p}} \\
= & \left(\frac{1}{R^{3}} \int_{0}^{11 R} r^{2} \frac{d r}{(1+r)^{\delta}}\right)^{\frac{1}{p}}\left(\frac{1}{R^{3}} \int_{0}^{11 R} r^{2}(1+r)^{\frac{\delta}{p-1}} d r\right)^{1-\frac{1}{p}} \\
\leq & c_{\delta, p}\left(\frac{1}{R^{3}} \int_{0}^{11 R} r^{2} \frac{d r}{r^{\delta}}\right)^{\frac{1}{p}}\left(\left(\frac{1}{R^{3}} \int_{0}^{11 R} r^{2} d r\right)^{1-\frac{1}{p}}+\left(\frac{1}{R^{3}} \int_{0}^{11 R} r^{2+\frac{\delta}{p-1}} d r\right)^{1-\frac{1}{p}}\right) \\
= & c_{\delta, p} \frac{11^{3}}{(3-\delta)^{\frac{1}{p}}}\left(\frac{(11 R)^{-\frac{\delta}{p}}}{3^{1-\frac{1}{p}}}+\frac{1}{\left(3+\frac{\delta}{p-1}\right)^{1-\frac{1}{p}}}\right) .
\end{aligned}
$$

The lemma is proved.
Lemma 2 If $0<\delta<3$ and $1<p<+\infty$, then the Riesz transforms R_{i} and the Hardy-Littlewood maximal function operator are bounded on $L_{w_{\delta}}^{p}=$ $L^{p}\left(w_{\delta}(x) d x\right):$

$$
\left\|R_{j} f\right\|_{L_{w_{\delta}}^{p}} \leq C_{p, \delta}\|f\|_{L_{w_{\delta}}^{p}} \text { and }\left\|\mathcal{M}_{f}\right\|_{L_{w_{\delta}}^{p}} \leq C_{p, \delta}\|f\|_{L_{w_{\delta}}^{p}} .
$$

Proof: The boundedness of the Riesz transforms or of the Hardy-Littlewwod maximal function on $L^{p}\left(w_{\gamma} d x\right)$ are basic properties of the Muckenhoupt class \mathcal{A}_{p} (5].

We will use strategically the next corollary, which is specially useful to obtain discretely self-similar solutions.

Corollary 1 (Non-increasing kernels) Let $\theta \in L^{1}\left(\mathbb{R}^{3}\right)$ be a non-negative radial function which is radially non-increasing. Then, if $0<\delta<3$ and $1<p<+\infty$, we have, for $f \in L_{w_{\delta}}^{p}$, the inequality

$$
\|\theta * f\|_{L_{w_{\delta}}^{p}} \leq C_{p, \delta}\|f\|_{L_{w_{\delta}}^{p}}\|\theta\|_{1} .
$$

Proof : We have the well-known inequality for radial non-increasing kernels [4]

$$
|\theta * f(x)| \leq\|\theta\|_{1} \mathcal{M}_{f}(x)
$$

so that we may conclude with Lemma 2,
We illustrate the utility of Lemma 2 with the following corollaries:
Corollary 2 Let $0<\gamma<\frac{5}{2}$ and $0<T<+\infty$. Let \mathbb{F} be a tensor $\mathbb{F}(t, x)=$ $\left(F_{i, j}(t, x)\right)_{1 \leq i, j \leq 3}$ such that $\mathbb{F} \in L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$. Let \mathbf{b} be a time-dependent divergence free vector-field $(\nabla \cdot \mathbf{b}=0)$ such that $\mathbf{b} \in L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$.

Let \mathbf{u} be a solution of the following advection-diffusion problem

$$
\left\{\begin{align*}
& \partial_{t} \mathbf{u}= \Delta \mathbf{u}-(\mathbf{b} \cdot \nabla) \mathbf{u}-\nabla q+\nabla \cdot \mathbb{F} \tag{4}\\
& \nabla \cdot \mathbf{u}=0
\end{align*}\right.
$$

be such that: \mathbf{u} belongs to $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\nabla \mathbf{u}$ belongs to $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$, and the pressure q belongs to $\mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{3}\right)$.

Then, the gradient of the pressure ∇q is necessarily related to \mathbf{u}, \mathbf{b} and \mathbb{F} through the Riesz transforms $R_{i}=\frac{\partial_{i}}{\sqrt{-\Delta}}$ by the formula

$$
\nabla q=\nabla\left(\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(b_{i} u_{j}-F_{i, j}\right)\right)
$$

and $\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(b_{i} u_{j}\right)$ belongs to $L^{3}\left((0, T), L_{w_{\frac{6}{\sigma}}}^{6 / 5}\right)$ and $\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j} F_{i, j}$ belongs to $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$.

Proof: We define

$$
p=\left(\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(b_{i} u_{j}-F_{i, j}\right)\right) .
$$

As $0<\gamma<\frac{5}{2}$ we can use Lemma 2 and (2) to obtain $\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(b_{i} u_{j}\right)$ belongs to $L^{3}\left((0, T), L_{w_{\frac{6 \gamma}{5}}}^{6 / 5}\right)$ and $\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j} F_{i, j}$ belongs to $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$.

Taking the divergence in (4), we obtain $\Delta(q-p)=0$. We take a test function $\alpha \in \mathcal{D}(\mathbb{R})$ such that $\alpha(t)=0$ for all $|t| \geq \varepsilon$, and a test function $\beta \in \mathcal{D}\left(\mathbb{R}^{3}\right)$; then the distribution $\nabla q *(\alpha \otimes \beta)$ is well defined on $(\varepsilon, T-\varepsilon) \times \mathbb{R}^{3}$.

We fix $t \in(\varepsilon, T-\varepsilon)$ and define

$$
A_{\alpha, \beta, t}=(\nabla q *(\alpha \otimes \beta)-\nabla p *(\alpha \otimes \beta))(t, .) .
$$

We have

$$
\begin{align*}
A_{\alpha, \beta, t}= & \left(\mathbf{u} *\left(-\partial_{t} \alpha \otimes \beta+\alpha \otimes \Delta \beta\right)+(-\mathbf{u} \otimes \mathbf{b}+\mathbb{F}) \cdot(\alpha \otimes \nabla \beta)\right)(t, .) \\
& -(p *(\alpha \otimes \nabla \beta))(t, .) . \tag{5}
\end{align*}
$$

Convolution with a function in $\mathcal{D}\left(\mathbb{R}^{3}\right)$ is a bounded operator on $L_{w_{\gamma}}^{2}$ and on $L_{w_{6 \gamma / 5}}^{6 / 5}$ (as, for $\varphi \in \mathcal{D}\left(\mathbb{R}^{3}\right)$ we have $|f * \varphi| \leq C_{\varphi} \mathcal{M}_{f}$). Thus, we may conclude from (5) that $A_{\alpha, \beta, t} \in L_{w_{\gamma}}^{2}+L_{w_{6 \gamma / 5}}^{6 / 5}$. If $\max \left\{\gamma, \frac{\gamma+2}{2}\right\}<\delta<5 / 2$, we have $A_{\alpha, \beta, t} \in L_{w_{68 / 5}}^{6 / 5}$.

In particular, $A_{\alpha, \beta, t}$ is a tempered distribution. As we have

$$
\Delta A_{\alpha, \beta, t}=(\alpha \otimes \beta) *(\Delta(q-p))(t, .)=0
$$

we find that $A_{\alpha, \beta, t}$ is a polynomial. We remark that for all $1<r<+\infty$ and $0<\delta<3$, $L_{w_{\delta}}^{r}$ does not contain non-trivial polynomials. Thus, $A_{\alpha, \beta, t}=0$. We then use an approximation of identity $\frac{1}{\epsilon^{4}} \alpha\left(\frac{t}{\epsilon}\right) \beta\left(\frac{x}{\epsilon}\right)$ and conclude that $\nabla(q-p)=0$.
\diamond
Actually, we can answer a question posed by Bradshaw and Tsai in [2] about the nature of the pressure for self-similar solutions of the Navier-Stokes equations. In effect, we have the next corollary:

Corollary 3 Let $1<\gamma<\frac{5}{2}$ and $0<T<+\infty$. Let \mathbb{F} be a tensor $\mathbb{F}(t, x)=$ $\left(F_{i, j}(t, x)\right)_{1 \leq i, j \leq 3}$ such that $\mathbb{F} \in L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$.

Let \mathbf{u} be a solution of the following problem

$$
\left\{\begin{array}{c}
\partial_{t} \mathbf{u}=\Delta \mathbf{u}-(\mathbf{u} \cdot \nabla) \mathbf{u}-\nabla p+\nabla \cdot \mathbb{F} \\
\nabla \cdot \mathbf{u}=0
\end{array}\right.
$$

be such that : \mathbf{u} belongs to $L^{\infty}\left([0,+\infty), L^{2}\right)_{l o c}$ and $\nabla \mathbf{u}$ belongs to $L^{2}\left([0,+\infty), L^{2}\right)_{\text {loc }}$, and the pressure q is in $\mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{3}\right)$.

We suppose that there exists $\lambda>1$ such that $\lambda^{2} \mathbb{F}\left(\lambda^{2} t, \lambda x\right)=\mathbb{F}(t, x)$ and $\lambda \mathbf{u}\left(\lambda^{2} t, \lambda x\right)=\mathbf{u}(t, x)$. Then, the gradient of the pressure ∇q is necessarily related to \mathbf{u} and \mathbb{F} through the Riesz transforms $R_{i}=\frac{\partial_{i}}{\sqrt{-\Delta}}$ by the formula

$$
\nabla q=\nabla\left(\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(u_{i} u_{j}-F_{i, j}\right)\right)
$$

and $\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(u_{i} u_{j}\right)$ belongs to $L^{4}\left((0, T), L_{w_{\frac{\gamma}{\gamma}}}^{6 / 5}\right)$ and $\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j} F_{i, j}$ belongs to $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$.

Proof : We shall use Corollary 2, and thus we need to show that u belongs to $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2} \cap L^{3}\left((0, T), L_{3 \gamma / 2}^{3}\right)\right)$ and $\nabla \mathbf{u}$ belongs to $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$. In fact,
$\|u\|_{L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)} \leq \sup _{0 \leq t \leq T} \int_{|x|<1}|\mathbf{u}(t, x)|^{2} d x+c \sup _{0 \leq t \leq T} \sum_{k \in \mathbb{N}} \int_{\lambda^{k-1}<|x|<\lambda^{k}} \frac{|\mathbf{u}(t, x)|^{2}}{\lambda^{\gamma k}} d x$
and

$$
\begin{aligned}
\sup _{0 \leq t \leq T} \sum_{k \geq 1} \int_{\lambda^{k-1}<|x|<\lambda^{k}} \frac{|\mathbf{u}(t, x)|^{2}}{\lambda^{\gamma k}} d x & \leq \sup _{0 \leq t \leq T} \sum_{k \in \mathbb{N}} \lambda^{(1-\gamma) k} \int_{\lambda^{-1}<|x|<1}\left|\mathbf{u}\left(\frac{t}{\lambda^{2 k}}, x\right)\right|^{2} d x \\
& \leq c \sup _{0 \leq t \leq T} \int_{\lambda^{-1}<|x|<1}|\mathbf{u}(t, x)|^{2} d x<+\infty
\end{aligned}
$$

For $\nabla \mathbf{u}$, we compute for $k \in \mathbb{N}$,

$$
\int_{0}^{T} \int_{\lambda^{k-1}<|x|<\lambda^{k}}|\nabla \mathbf{u}(t, x)|^{2} d t d x=\lambda^{k} \int_{0}^{\frac{T}{\lambda^{2 k}}} \int_{\frac{1}{\lambda}<|x|<1}|\nabla \mathbf{u}(t, x)|^{2} d x d t
$$

We may conclude that $\nabla \mathbf{u}$ belongs to $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$, since for $\gamma>1$ we have $\sum_{k \in \mathbb{N}} \lambda^{(1-\gamma) k}<+\infty$.

Now, we use the Sobolev embeddings described in next Lemma (Lemma (3)) to get that \mathbf{u} belongs to $L^{2}\left((0, T), L_{w_{3 \gamma} \gamma}^{6}\right)$, and thus (by interpolation with $\left.L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)\right)$ to $L^{4}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$.
In particular, $\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(u_{i} u_{j}\right)$ belongs to $L^{4}\left((0, T), L_{w_{\frac{6 \gamma}{5}}}^{6 / 5}\right)$, since we have

$$
\left\|(\mathbf{u} \otimes \mathbf{u}) w_{\gamma}\right\|_{L^{6 / 5}} \leq\left\|\sqrt{w_{\gamma}} \mathbf{u}\right\|_{L^{2}}\left\|\sqrt{w_{\gamma}} \mathbf{u}\right\|_{L^{3}} \leq\left\|\sqrt{w_{\gamma}} \mathbf{u}\right\|_{L^{2}}^{\frac{3}{2}}\left\|\sqrt{w_{\gamma}} \mathbf{u}\right\|_{L^{6}}^{\frac{1}{2}}
$$

Lemma 3 (Sobolev embeddings) Let $\delta>0$. If $f \in L_{w_{\delta}}^{2}$ and $\nabla f \in L_{w_{\delta}}^{2}$
then $f \in L_{w_{3 \delta}}^{6}$ and

$$
\|f\|_{L_{w_{30}}^{b}} \leq C_{\delta}\left(\|f\|_{L_{w_{\delta}}^{2}}+\|\nabla f\|_{L_{w_{\delta}}}^{L}\right) .
$$

Proof : Since both f and $w_{\delta / 2}$ are locally in H^{1}, we write

$$
\partial_{i}\left(f w_{\delta / 2}\right)=w_{\delta / 2} \partial_{i} f+f \partial_{i}\left(w_{\delta / 2}\right)=w_{\delta / 2} \partial_{i} f-\frac{\delta}{2} \frac{x_{i}}{|x|} w_{\delta / 2} f
$$

and thus

$$
\left\|w_{\delta / 2} f\right\|_{2}^{2}+\left\|\nabla\left(w_{\delta / 2} f\right)\right\|_{2}^{2} \leq\left(1+\frac{\delta^{2}}{2}\right)\left\|w_{\delta / 2} f\right\|_{2}^{2}+2\left\|w_{\delta / 2} \nabla f\right\|_{2}^{2}
$$

Thus, $w_{\delta / 2} f$ belongs to L^{6} (since $H^{1} \subset L^{6}$), or equivalently $f \in L_{w_{38}}^{6}$.

3 A priori estimates for the advection-diffusion problem.

3.1 Proof of Theorem 2.

Let $0<t_{0}<t_{1}<T$. We take a function $\alpha \in \mathcal{C}^{\infty}(\mathbb{R})$ which is non-decreasing, with $\alpha(t)$ equal to 0 for $t<1 / 2$ and equal to 1 for $t>1$. For $0<\eta<$ $\min \left(\frac{t_{0}}{2}, T-t_{1}\right)$, we define

$$
\alpha_{\eta, t_{0}, t_{1}}(t)=\alpha\left(\frac{t-t_{0}}{\eta}\right)-\alpha\left(\frac{t-t_{1}}{\eta}\right) .
$$

We take as well a non-negative function $\phi \in \mathcal{D}\left(\mathbb{R}^{3}\right)$ which is equal to 1 for $|x| \leq 1$ and to 0 for $|x| \geq 2$. For $R>0$, we define $\phi_{R}(x)=\phi\left(\frac{x}{R}\right)$. Finally, we define, for $\epsilon>0, w_{\gamma, \epsilon}=\frac{1}{\left(1+\sqrt{\left.\left.\epsilon^{2}+\mid x\right)^{2}\right)^{8}}\right.}$. We have $\alpha_{\eta, t_{0}, t_{1}}(t) \phi_{R}(x) w_{\gamma, \epsilon}(x) \in$ $\mathcal{D}\left((0, T) \times \mathbb{R}^{3}\right)$ and $\alpha_{\eta, t_{0}, t_{1}}(t) \phi_{R}(x) w_{\gamma, \epsilon}(x) \geq 0$. Thus, using the local energy
balance (1) and the fact that $\mu \geq 0$, we find

$$
\begin{aligned}
&-\iint \frac{|\mathbf{u}|^{2}}{2} \partial_{t} \alpha_{\eta, t_{0}, t_{1}} \phi_{R} w_{\gamma, \epsilon} d x d s \\
& \leq-\sum_{i=1}^{3} \iint \partial_{i} \mathbf{u} \cdot \mathbf{u} \alpha_{\eta, t_{0}, t_{1}}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
&-\iint|\nabla \mathbf{u}|^{2} \alpha_{\eta, t_{0}, t_{1}} \phi_{R} w_{\gamma, \epsilon} d x d s \\
&+\sum_{i=1}^{3} \iint \frac{|\mathbf{u}|^{2}}{2} b_{i} \alpha_{\eta, t_{0}, t_{1}}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
&+\sum_{i=1}^{3} \iint \alpha_{\eta, t_{0}, t_{1}} p u_{i}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
&-\sum_{i=1}^{3} \sum_{j=1}^{3} \iint F_{i, j} u_{j} \alpha_{\eta, t_{0}, t_{1}}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
&-\sum_{i=1}^{3} \sum_{j=1}^{3} \iint F_{i, j} \partial_{i} u_{j} \alpha_{\eta, t_{0}, t_{1}} \phi_{R} w_{\gamma, \epsilon} d x d s .
\end{aligned}
$$

We remark that, independently from $R>1$ and $\epsilon>0$, we have (for $0<\gamma \leq$ 2)

$$
\left|w_{\gamma, \epsilon} \partial_{i} \phi_{R}\right|+\left|\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right| \leq C_{\gamma} \frac{w_{\gamma}(x)}{1+|x|} \leq C_{\gamma} w_{3 \gamma / 2}(x)
$$

Moreover, we know that u belongs to $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right) \cap L^{2}\left((0, T), L_{w_{3 \gamma}}^{6}\right)$ hence to $L^{4}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$. Since $T<+\infty$, we have as well $\mathbf{u} \in L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$. (This is the same type of integrability as required for \mathbf{b}). Moreover, we have $p u_{i} \in L_{w_{3 \gamma / 2}}^{1}$ since $w_{\gamma} p \in L^{2}\left((0, T), L^{6 / 5}+L^{2}\right)$ and $w_{\gamma / 2} \mathbf{u} \in L^{2}\left((0, T), L^{2} \cap L^{6}\right)$. All those remarks will allow us to use dominated convergence.

We first let η go to 0 . We find that

$$
\begin{aligned}
-\lim _{\eta \rightarrow 0} \iint \frac{|\mathbf{u}|^{2}}{2} & \partial_{t} \alpha_{\eta, t_{0}, t_{1}} \phi_{R} w_{\gamma, \epsilon} d x d s \\
\leq & -\sum_{i=1}^{3} \int_{t_{0}}^{t_{1}} \int \partial_{i} \mathbf{u} \cdot \mathbf{u}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
& -\int_{t_{0}}^{t_{1}} \int|\nabla \mathbf{u}|^{2} \phi_{R} w_{\gamma, \epsilon} d x d s \\
& +\sum_{i=1}^{3} \int_{t_{0}}^{t_{1}} \int \frac{|\mathbf{u}|^{2}}{2} b_{i}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
& +\sum_{i=1}^{3} \int_{t_{0}}^{t_{1}} \int p u_{i}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
& -\sum_{i=1}^{3} \sum_{j=1}^{3} \int_{t_{0}}^{t_{1}} \int F_{i, j} u_{j}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
& -\sum_{i=1}^{3} \sum_{j=1}^{3} \int_{t_{0}}^{t_{1}} \int F_{i, j} \partial_{i} u_{j} \phi_{R} w_{\gamma, \epsilon} d x d s .
\end{aligned}
$$

Let us define

$$
A_{R, \epsilon}(t)=\int|\mathbf{u}(t, x)|^{2} \phi_{R}(x) w_{\gamma, \epsilon}(x) d x .
$$

As we have

$$
-\iint \frac{|\mathbf{u}|^{2}}{2} \partial_{t} \alpha_{\eta, t_{0}, t_{1}} \phi_{R} w_{\gamma, \epsilon} d x d s=-\frac{1}{2} \int \partial_{t} \alpha_{\eta, t_{0}, t_{1}} A_{R, \epsilon}(s) d s
$$

we find that, when t_{0} and t_{1} are Lebesgue points of the measurable function $A_{R, \epsilon}$

$$
\lim _{\eta \rightarrow 0}-\iint \frac{|\mathbf{u}|^{2}}{2} \partial_{t} \alpha_{\eta, t_{0}, t_{1}} \phi_{R} w_{\gamma, \epsilon} d x d s=\frac{1}{2}\left(A_{R, \epsilon}\left(t_{1}\right)-A_{R, \epsilon}\left(t_{0}\right)\right) .
$$

Then, by continuity, we can let t_{0} go to 0 and thus replace t_{0} by 0 in the inequality. Moreover, if we let t_{1} go to t, then by weak continuity, we find that $A_{R, \epsilon}(t) \leq \lim _{t_{1} \rightarrow t} A_{R, \epsilon}\left(t_{1}\right)$, so that we may as well replace t_{1} by $t \in(0, T)$. Thus we find that for every $t \in(0, T)$, we have

$$
\begin{align*}
\int \frac{|\mathbf{u}(t, x)|^{2}}{2} \phi_{R} w_{\gamma, \epsilon} d x & \\
\leq & \int \frac{\left|\mathbf{u}_{0}(x)\right|^{2}}{2} \phi_{R} w_{\gamma, \epsilon} d x \\
& -\sum_{i=1}^{3} \int_{0}^{t} \int \partial_{i} \mathbf{u} \cdot \mathbf{u}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
& -\int_{0}^{t} \int|\nabla \mathbf{u}|^{2} \phi_{R} w_{\gamma, \epsilon} d x d s \\
& +\sum_{i=1}^{3} \int_{0}^{t} \int \frac{|\mathbf{u}|^{2}}{2} b_{i}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \tag{6}\\
& +\sum_{i=1}^{3} \int_{0}^{t} \int p u_{i}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
& -\sum_{i=1}^{3} \sum_{j=1}^{3} \int_{0}^{t} \int F_{i, j} u_{j}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
& -\sum_{i=1}^{3} \sum_{j=1}^{3} \int_{0}^{t} \int F_{i, j} \partial_{i} u_{j} \phi_{R} w_{\gamma, \epsilon} d x d s .
\end{align*}
$$

Thus, letting R go to $+\infty$ and then ϵ go to 0 , we find by dominated convergence that, for every $t \in(0, T)$, we have

$$
\begin{aligned}
&\|\mathbf{u}(t, .)\|_{L_{w_{\gamma}}^{2}}^{2}+2 \int_{0}^{t}\|\nabla \mathbf{u}(s, .)\|_{L_{w_{\gamma}}^{2}}^{2} d s \\
& \leq\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}- \int_{0}^{t} \int \nabla|\mathbf{u}|^{2} \cdot \nabla w_{\gamma} d x d s+\int_{0}^{t} \int\left(|\mathbf{u}|^{2} \mathbf{b}+2 p \mathbf{u}\right) \cdot \nabla\left(w_{\gamma}\right) d x d s \\
&-2 \sum_{i=1}^{3} \sum_{j=1}^{3} \int_{0}^{t} \int F_{i, j}\left(\partial_{i} u_{j}\right) w_{\gamma}+F_{i, j} u_{i} \partial_{j}\left(w_{\gamma}\right) d x d s
\end{aligned}
$$

Now we write

$$
\begin{aligned}
\left.\left|\int_{0}^{t} \int \nabla\right| \mathbf{u}\right|^{2} \cdot \nabla w_{\gamma} d s d s \mid & \leq 2 \gamma \int_{0}^{t} \int|\mathbf{u}||\nabla \mathbf{u}| w_{\gamma} d x d s \\
& \leq \frac{1}{4} \int_{0}^{t}\|\nabla \mathbf{u}\|_{L_{w_{\gamma}}^{2}}^{2} d s+4 \gamma^{2} \int_{0}^{t}\|\mathbf{u}\|_{L_{w_{\gamma}}^{2}}^{2} d s
\end{aligned}
$$

Writing

$$
p_{1}=\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(b_{i} u_{j}\right) \text { and } p_{2}=-\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(F_{i, j}\right)
$$

and using the fact that $w_{6 \gamma / 5} \in \mathcal{A}_{6 / 5}$ and $w_{\gamma} \in \mathcal{A}_{2}$, we get

$$
\begin{aligned}
& \mid \int_{0}^{t} \int\left(|\mathbf{u}|^{2} \mathbf{b}+2 p_{1} \mathbf{u}\right) \cdot \nabla\left(w_{\gamma}\right) d x d s \mid \leq \gamma \int_{0}^{t} \int\left(|\mathbf{u}|^{2}|\mathbf{b}|+2\left|p_{1}\right||\mathbf{u}|\right) w_{\gamma}^{3 / 2} d x d s \\
& \leq \gamma \int_{0}^{t}\left\|w_{\gamma}^{1 / 2} \mathbf{u}\right\|_{6}\left(\left\|w_{\gamma}\left|\mathbf{b}\|\mathbf{u} \mid\|_{6 / 5}+\left\|w_{\gamma} p_{1}\right\|_{6 / 5}\right) d s\right.\right. \\
& \leq C_{\gamma} \int_{0}^{t}\left\|w_{\gamma}^{1 / 2} \mathbf{u}\right\|_{6}\left\|w _ { \gamma } \left|\mathbf{b}\|\mathbf{u} \mid\|_{6 / 5} d s\right.\right. \\
& \leq C_{\gamma} \int_{0}^{t}\left\|w_{\gamma}^{1 / 2} \mathbf{u}\right\|_{6}\left\|w_{\gamma}^{1 / 2} \mathbf{b}\right\|_{3}\left\|w_{\gamma}^{1 / 2} \mathbf{u}\right\|_{2} d s \\
& \leq C_{\gamma}^{\prime} \int_{0}^{t}\left(\|\nabla \mathbf{u}\|_{L_{w_{\gamma}}^{2}}+\|\mathbf{u}\|_{L_{w_{\gamma}}^{2}}\right)\|\mathbf{b}\|_{L_{w_{3 \gamma / 2}}^{3}}\|\mathbf{u}\|_{L_{w_{\gamma}}^{2}} d s \\
& \leq \frac{1}{4} \int_{0}^{t}\|\nabla \mathbf{u}\|_{L_{w_{\gamma}}^{2}}^{2} d s+C_{\gamma}^{\prime \prime} \int_{0}^{t}\|\mathbf{u}\|_{L_{w_{\gamma}}^{2}}^{2}\left(\|\mathbf{b}\|_{L_{w_{3 \gamma / 2}}^{3}}+\|\mathbf{b}\|_{L_{w_{3 \gamma / 2}}^{3}}^{2}\right) d s
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\int_{0}^{t} \int 2 p_{2} \mathbf{u} \cdot \nabla\left(w_{\gamma}\right) d x d s\right| & \leq 2 \gamma \int_{0}^{t} \int\left|p_{2}\right||\mathbf{u}| w_{\gamma} d x d s \\
& \leq \gamma \int_{0}^{t}\|\mathbf{u}\|_{L_{w_{\gamma}}^{2}}^{2}+\left\|p_{2}\right\|_{L_{w_{\gamma}}^{2}}^{2} d s \\
& \leq C_{\gamma} \int_{0}^{t}\|\mathbf{u}\|_{L_{w_{\gamma}}^{2}}^{2}+\|\mathbb{F}\|_{L_{w_{\gamma}}^{2}}^{2} d s .
\end{aligned}
$$

Finally, we have

$$
\begin{aligned}
\mid 2 \sum_{i=1}^{3} \sum_{j=1}^{3} \int_{0}^{t} \int F_{i, j}\left(\partial_{i} u_{j}\right) w_{\gamma}+ & F_{i, j} u_{i} \partial_{j}\left(w_{\gamma}\right) d x d s\left|\leq 2 \int_{0}^{t} \int\right| F \mid(|\nabla \mathbf{u}|+\gamma|\mathbf{u}|) w_{\gamma} d x d s \\
\leq & \frac{1}{4} \int_{0}^{t}\|\nabla \mathbf{u}\|_{L_{w_{\gamma}}^{2}}^{2} d s+C_{\gamma} \int_{0}^{t}\|\mathbf{u}\|_{L_{w_{\gamma}}^{2}}^{2}+\|\mathbb{F}\|_{L_{w_{\gamma}}^{2}}^{2} d s
\end{aligned}
$$

We have obtained

$$
\begin{align*}
& \|\mathbf{u}(t, .)\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{t}\|\nabla \mathbf{u}\|_{L_{w_{\gamma}}^{2}}^{2} d s \\
& \quad \leq\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}+C_{\gamma} \int_{0}^{t}\|\mathbb{F}(s, .)\|_{L_{w_{\gamma}}^{2}}^{2} d s+C_{\gamma} \int_{0}^{t}\left(1+\|\mathbf{b}(s, .)\|_{L_{w_{3 \gamma}}}^{2}\right)\|\mathbf{u}(s, .)\|_{L_{w_{\gamma}}^{2}}^{2} d s \tag{7}
\end{align*}
$$

and Theorem 2 is proven.

3.2 Passive transportation.

From inequality (7), we have the following direct consequence :
Corollary 4 Under the assumptions of Theorem 囩, we have

$$
\sup _{0<t<T}\|\mathbf{u}\|_{L_{w_{\gamma}}^{2}} \leq\left(\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}+C_{\gamma}\|\mathbb{F}\|_{L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)}\right) e^{C_{\gamma}\left(T+T^{1 / 3}\|\mathbf{b}\|_{L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{2}\right)}^{2}\right)}
$$

and

$$
\|\nabla \mathbf{u}\|_{L^{2}\left((0, T), L_{\left.w_{\gamma}\right)}^{2}\right.} \leq\left(\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}+C_{\gamma}\|\mathbb{F}\|_{L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)}\right) e^{C_{\gamma}\left(T+T^{1 / 3}\|\mathbf{b}\|_{L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)}^{2}\right)}
$$

where the constant C_{γ} depends only on γ.
Another direct consequence is the following uniqueness result for the advectiondiffusion problem with a (locally in time), bounded \mathbf{b} :

Corollary 5. Let $0<\gamma \leq 2$. Let $0<T<+\infty$. Let \mathbf{u}_{0} be a divergence-free vector field such that $\mathbf{u}_{0} \in L_{w_{\gamma}}^{2}\left(\mathbb{R}^{3}\right)$ and \mathbb{F} be a tensor $\mathbb{F}(t, x)=\left(F_{i, j}(t, x)\right)_{1 \leq i, j \leq 3}$ such that $\mathbb{F} \in L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$. Let \mathbf{b} be a time-dependent divergence free vector-field $(\nabla \cdot \mathbf{b}=0)$ such that $\mathbf{b} \in L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$. Assume moreover that \mathbf{b} belongs to $L_{t}^{2} L_{x}^{\infty}(K)$ for every compact subset K of $(0, T) \times \mathbb{R}^{3}$.

Let $\left(\mathbf{u}_{1}, p_{1}\right)$ and $\left(\mathbf{u}_{2}, p_{2}\right)$ be two solutions of the following advection-diffusion problem

$$
(A D)\left\{\begin{array}{l}
\partial_{t} \mathbf{u}=\Delta \mathbf{u}-(\mathbf{b} \cdot \nabla) \mathbf{u}-\nabla p+\nabla \cdot \mathbb{F} \\
\nabla \cdot \mathbf{u}=0, \quad \quad \mathbf{u}(0, .)=\mathbf{u}_{0}
\end{array}\right.
$$

be such that, for $k=1$ and $k=2$, :

- \mathbf{u}_{k} belongs to $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\nabla \mathbf{u}_{k}$ belongs to $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$
- the pressure p_{k} is related to $\mathbf{u}_{k}, \mathbf{b}$ and \mathbb{F} through the Riesz transforms $R_{i}=\frac{\partial_{i}}{\sqrt{-\Delta}}$ by the formula

$$
p_{k}=\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(b_{i} u_{k, j}-F_{i, j}\right)
$$

- the map $t \in[0, T) \mapsto \mathbf{u}_{k}(t,$.$) is weakly continuous from [0, T)$ to $L_{w_{\gamma}}^{2}$, and is strongly continuous at $t=0$:

$$
\lim _{t \rightarrow 0}\left\|\mathbf{u}_{k}(t, .)-\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}=0
$$

Then $\mathbf{u}_{1}=\mathbf{u}_{2}$.
Proof: Let $\mathbf{v}=\mathbf{u}_{1}-\mathbf{u}_{2}$ and $q=p_{1}-p_{2}$. Then we have

$$
\left\{\begin{array}{c}
\partial_{t} \mathbf{v}=\Delta \mathbf{v}-(\mathbf{b} \cdot \nabla) \mathbf{v}-\nabla q \\
\nabla \cdot \mathbf{v}=0,
\end{array}\right.
$$

Moreover on every compact subset K of $(0, T) \times \mathbb{R}^{3}, \mathbf{b} \otimes \mathbf{v}$ is in $L_{t}^{2} L_{x}^{2}$, while it belongs globally to $L_{t}^{3} L_{w_{6 \gamma / 5}}^{6 / 5}$. Writing, for $\varphi, \psi \in \mathcal{D}\left((0, T) \times \mathbb{R}^{3}\right)$ such that $\psi=1$ on the neigborhood of the support of φ,

$$
\varphi q=q_{1}+q_{2}=\varphi \sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(\psi b_{i} v_{j}\right)+\varphi \sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left((1-\psi) b_{i} v_{j}\right)
$$

we find that $\left\|q_{1}\right\|_{L^{2} L^{2}} \leq C_{\varphi, \psi}\|\psi \mathbf{b} \otimes \mathbf{v}\|_{L^{2} L^{2}}$ and

$$
\left\|q_{2}\right\|_{L^{3} L^{\infty}} \leq C_{\varphi, \psi}\|\mathbf{b} \otimes \mathbf{v}\|_{L^{3} L_{w_{6 \gamma / 5}}^{6 / 5}}
$$

with

$$
C_{\varphi, \psi} \leq C\|\varphi\|_{\infty}\|1-\psi\|_{\infty} \sup _{x \in \operatorname{Supp} \varphi}\left(\int_{y \in \operatorname{Supp}(1-\psi)}\left(\frac{(1+|y|)^{\gamma}}{|x-y|^{3}}\right)^{6}\right)^{1 / 6}<+\infty
$$

Thus, we may take the scalar product of $\partial_{t} \mathbf{v}$ with \mathbf{v} and find that

$$
\partial_{t}\left(\frac{|\mathbf{v}|^{2}}{2}\right)=\Delta\left(\frac{|\mathbf{v}|^{2}}{2}\right)-|\nabla \mathbf{v}|^{2}-\nabla \cdot\left(\frac{|\mathbf{v}|^{2}}{2} \mathbf{b}\right)-\nabla \cdot(q \mathbf{v})
$$

Thus we are under the assumptions of Theorem 2 and we may use Corollary 4 to find that $\mathbf{v}=0$.

3.3 Active transportation.

We begin with the following lemma:
Lemma 4 Let α be a non-negative bounded measurable function on $[0, T)$ such that, for two constants $A, B \geq 0$, we have

$$
\alpha(t) \leq A+B \int_{0}^{t} \alpha(s)+\alpha(s)^{3} d s
$$

If $T_{0}>0$ and $T_{1}=\min \left(T, T_{0}, \frac{1}{4 B\left(A+B T_{0}\right)^{2}}\right)$, we have, for every $t \in\left[0, T_{1}\right]$, $\alpha(t) \leq \sqrt{2}\left(A+B T_{0}\right)$.

Proof : We write $\alpha \leq 1+\alpha^{3}$. We define

$$
\Phi(t)=A+B T_{0}+B \int_{0}^{t} \alpha^{3} d s \text { and } \Psi(t)=A+B T_{0}+B \int_{0}^{t} \Phi^{3}(s) d s
$$

We have, for $t \in\left[0, T_{1}\right], \alpha \leq \Phi \leq \Psi$. Since Ψ is \mathcal{C}^{1}, we may write

$$
\Psi^{\prime}(t)=B \Phi(t)^{3} \leq B \Psi(t)^{3}
$$

and thus

$$
\frac{1}{\Psi(0)^{2}}-\frac{1}{\Psi(t)^{2}} \leq 2 B t
$$

We thus find

$$
\Psi(t)^{2} \leq \frac{\Psi(0)^{2}}{1-2 B \Psi(0)^{2} t} \leq 2 \Psi(0)^{2}
$$

The lemma is proven.
Corollary 6 Assume that $\mathbf{u}_{0}, \mathbf{u}, p, \mathbb{F}$ and \mathbf{b} satisfy assumptions of Theorem 2, Assume moreover that \mathbf{b} is controlled by \mathbf{u} : for every $t \in(0, T)$,

$$
\|\mathbf{b}(t, .)\|_{L_{w_{3 \gamma / 2}}^{3}} \leq C_{0}\|\mathbf{u}(t, .)\|_{L_{w_{3 \gamma / 2}}^{3}}
$$

Then there exists a constant $C_{\gamma} \geq 1$ such that if $T_{0}<T$ is such that

$$
C_{\gamma}\left(1+C_{0}^{4}\right)\left(1+C_{0}^{4}+\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{T_{0}}\|\mathbb{F}\|_{L_{w_{\gamma}}^{2}}^{2} d s\right)^{2} T_{0} \leq 1
$$

then

$$
\sup _{0 \leq t \leq T_{0}}\|\mathbf{u}(t, .)\|_{L_{w_{\gamma}}^{2}}^{2} \leq C_{\gamma}\left(1+C_{0}^{4}+\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{T_{0}}\|\mathbb{F}\|_{L_{w_{\gamma}}^{2}}^{2} d s\right)
$$

and

$$
\int_{0}^{T_{0}}\|\nabla \mathbf{u}\|_{L_{w_{\gamma}}^{2}}^{2} d s \leq C_{\gamma}\left(1+C_{0}^{4}+\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{T_{0}}\|\mathbb{F}\|_{L_{w_{\gamma}}^{2}}^{2} d s\right)
$$

Proof : We start from inequality (7) :

$$
\begin{aligned}
& \|\mathbf{u}(t, .)\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{t}\|\nabla \mathbf{u}\|_{L_{w_{\gamma}}^{2}}^{2} d s \\
& \quad \leq\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}+C_{\gamma} \int_{0}^{t}\|\mathbb{F}(s, .)\|_{L_{w_{\gamma}}^{2}}^{2} d s+C_{\gamma} \int_{0}^{t}\left(1+\|\mathbf{b}(s, .)\|_{L_{w_{3 \gamma / 2}}^{3}}^{2}\right)\|\mathbf{u}(s, .)\|_{L_{w_{\gamma}}^{2}}^{2} d s
\end{aligned}
$$

We write

$$
\|\mathbf{b}(s, .)\|_{L_{w_{3 \gamma / 2}}^{3}}^{2} \leq C_{0}^{2}\|\mathbf{u}(s, .)\|_{L_{w_{3 \gamma} / 2}^{3}}^{2} \leq C_{0}^{2} C_{\gamma}\|u\|_{L_{w_{\gamma}}^{2}}\left(\|u\|_{L_{w_{\gamma}}^{2}}+\|\nabla \mathbf{u}\|_{L_{w_{\gamma}}^{2}}\right)
$$

This gives

$$
\begin{aligned}
& \|\mathbf{u}(t, .)\|_{L_{w_{\gamma}}^{2}}^{2}+\frac{1}{2} \int\|\nabla \mathbf{u}\|_{L_{w_{\gamma}}^{2}}^{2} d s \\
& \quad \leq\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}+C_{\gamma} \int_{0}^{t}\|\mathbb{F}(s, .)\|_{L_{w_{\gamma}}^{2}}^{2} d s \\
& \quad+C_{\gamma} \int_{0}^{t}\|\mathbf{u}(s, .)\|_{L_{w_{\gamma}}^{2}}^{2}+C_{0}^{2}\|\mathbf{u}(s, .)\|_{L_{w_{\gamma}}^{2}}^{4}+C_{0}^{4}\|\mathbf{u}(s, .)\|_{L_{w_{\gamma}}^{2}}^{6} d s \\
& \quad \leq\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}+C_{\gamma} \int_{0}^{t}\|\mathbb{F}(s, .)\|_{L_{w_{\gamma}}^{2}}^{2} d s+2 C_{\gamma} \int_{0}^{t}\|\mathbf{u}(s, .)\|_{L_{w_{\gamma}}^{2}}^{2}+C_{0}^{4}\|\mathbf{u}(s, .)\|_{L_{w_{\gamma}}^{2}}^{6} d s .
\end{aligned}
$$

For $t \leq T_{0}$, we get

$$
\begin{aligned}
& \|\mathbf{u}(t, .)\|_{L_{w_{\gamma}}^{2}}^{2}+\frac{1}{2} \int\|\nabla \mathbf{u}\|_{L_{w_{\gamma}}^{2}}^{2} d s \\
& \quad \leq\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}+C_{\gamma} \int_{0}^{T_{0}}\|\mathbb{F}\|_{L_{w_{\gamma}}^{2}}^{2} d s+C_{\gamma}\left(1+C_{0}^{4}\right) \int_{0}^{t}\|\mathbf{u}(t, .)\|_{L_{w_{\gamma}}^{2}}^{2}+\|\mathbf{u}(t, .)\|_{L_{w_{\gamma}}^{2}}^{6} d s
\end{aligned}
$$

and we may conclude with Lemma 4 .

4 Stability of solutions for the advection-diffusion problem.

4.1 The Rellich lemma.

We recall the Rellich lemma :
Lemma 5 (Rellich) If $s>0$ and $\left(f_{n}\right)$ is a sequence of functions on \mathbb{R}^{d} such that

- the family $\left(f_{n}\right)$ is bounded in $H^{s}\left(\mathbb{R}^{d}\right)$
- there is a compact subset of \mathbb{R}^{d} such that the support of each f_{n} is included in K
then there exists a subsequence $\left(f_{n_{k}}\right)$ such that $f_{n_{k}}$ is strongly convergent in $L^{2}\left(\mathbb{R}^{d}\right)$.

We shall use a variant of this lemma (see [9]) :
Lemma 6 (space-time Rellich) If $s>0, \sigma \in \mathbb{R}$ and $\left(f_{n}\right)$ is a sequence of functions on $(0, T) \times \mathbb{R}^{d}$ such that, for all $T_{0} \in(0, T)$ and all $\varphi \in \mathcal{D}\left(\mathbb{R}^{3}\right)$

- φf_{n} is bounded in $L^{2}\left(\left(0, T_{0}\right), H^{s}\right)$
- $\varphi \partial_{t} f_{n}$ is bounded in $L^{2}\left(\left(0, T_{0}\right), H^{\sigma}\right)$
then there exists a subsequence $\left(f_{n_{k}}\right)$ such that $f_{n_{k}}$ is strongly convergent in $L_{\mathrm{loc}}^{2}\left([0, T) \times \mathbb{R}^{3}\right)$: if f_{∞} is the limit, we have for all $T_{0} \in(0, T)$ and all $R_{0}>0$

$$
\lim _{n_{k} \rightarrow+\infty} \int_{0}^{T_{0}} \int_{|x| \leq R}\left|f_{n_{k}}-f_{\infty}\right|^{2} d x d t=0
$$

Proof: With no loss of generality, we may assume that $\sigma<\min (1, s)$. Define g by $g_{n}(t, x)=\alpha(t) \varphi(x) f_{n}(t, x)$ if $t>0$ and $g_{n}(t, x)=\alpha(t) \varphi(x) f_{n}(-t, x)$ if $t<0$, where $\alpha \in \mathcal{C}^{\infty}$ on $(0, T)$, is equal to 1 on $\left[0, T_{0}\right]$ and equal to 0 for $t>\frac{T+T_{0}}{2}$, and $\varphi(x)=1$ on $B\left(0, R_{0}\right)$. Then the support of g_{n} is contained in $\left[-\frac{T^{2}+T_{0}}{2}, \frac{T+T_{0}}{2}\right] \times \operatorname{Supp} \varphi$. Moreover, g_{n} is bounded in $L_{t}^{2} H^{s}$ and $\partial_{t} g_{n}$ is bounded in $L^{2} H^{\sigma}$ so that g_{n} is bounded in $H^{\rho}\left(\mathbb{R} \times \mathbb{R}^{3}\right)$ with $\rho=\frac{s}{s+1-\sigma}$ (just write $\left.\left(1+\tau^{2}+\xi^{2}\right)^{\frac{s}{s+1-\sigma}} \leq\left(\left(1+\tau^{2}\right)\left(1+\xi^{2}\right)^{\sigma}\right)^{\frac{s}{s+1-\sigma}}\left(\left(1+\xi^{2}\right)^{s}\right)^{\frac{1-\sigma}{s+1-\sigma}}\right)$.. By the Rellich lemma, we know that there is a subsequence $g_{n_{k}}$ which is strongly convergent in $L^{2}\left(\mathbb{R} \times \mathbb{R}^{3}\right)$, thus a subsequence $f_{n_{k}}$ which is strongly convergent in $L^{2}\left(\left(0, T_{0}\right) \times B\left(0, R_{0}\right)\right)$.

We then iterate this argument for an increasing sequence of times $T_{0}<$ $T_{1}<\cdots<T_{N} \rightarrow T$ and an increasing sequence of radii $R_{0}<R_{1}<\cdots<$ $R_{N} \rightarrow+\infty$ and finish the proof. by the classical diagonal process of Cantor. \diamond

4.2 Proof of Theorem 3.

Assume that $\mathbf{u}_{0, n}$ is strongly convergent to $\mathbf{u}_{0, \infty}$ in $L_{w_{\gamma}}^{2}$ and that the sequence \mathbb{F}_{n} is strongly convergent to \mathbb{F}_{∞} in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$, and assume that the sequence \mathbf{b}_{n} is bounded in $L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$. Then, by Theorem 2 and Corollary 4. we know that \mathbf{u}_{n} is bounded in $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\nabla \mathbf{u}_{n}$ is bounded in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$. In particular, writing $p_{n}=p_{n, 1}+p_{n, 2}$ with

$$
p_{n, 1}=\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(b_{n, i} u_{n, j}\right) \text { and } p_{n, 2}=-\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(F_{n, i, j}\right)
$$

we get that $p_{n, 1}$ is bounded in $L^{3}\left((0, T), L_{w_{\frac{6 \gamma}{}}}^{6 / 5}\right)$ and $p_{n, 2}$ is bounded in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$. If $\varphi \in \mathcal{D}\left(\mathbb{R}^{3}\right)$, we find that $\varphi \mathbf{u}_{n}$ is bounded in $L^{2}\left((0, T), H^{1}\right)$ and, writing

$$
\partial_{t} \mathbf{u}_{n}=\Delta \mathbf{u}_{n}-\left(\sum_{i=1}^{3} \partial_{i}\left(b_{n, i} \mathbf{u}_{n}\right)+\nabla p_{n, 1}\right)+\left(\nabla \cdot \mathbb{F}_{n}-\nabla p_{n, 2}\right)
$$

$\varphi \partial_{t} \mathbf{u}_{n}$ is bounded in $L^{2} L^{2}+L^{2} W^{-1,6 / 5}+L^{2} H^{-1} \subset L^{2}\left((0, T), H^{-2}\right)$. Thus, by Lemma 6, there exists \mathbf{u}_{∞} and an increasing sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ with values in \mathbb{N} such that $\mathbf{u}_{n_{k}}$ converges strongly to \mathbf{u}_{∞} in $L_{\text {loc }}^{2}\left([0, T) \times \mathbb{R}^{3}\right)$: for every $T_{0} \in(0, T)$ and every $R>0$, we have

$$
\lim _{k \rightarrow+\infty} \int_{0}^{T_{0}} \int_{|y|<R}\left|\mathbf{u}_{n_{k}}(s, y)-\mathbf{u}_{\infty}(s, y)\right|^{2} d y d s=0
$$

As \mathbf{u}_{n} is bounded in $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\nabla \mathbf{u}_{n}$ is bounded in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$, the convergence of $\mathbf{u}_{n_{k}}$ to \mathbf{u}_{∞} in $\mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{3}\right)$ implies that $\mathbf{u}_{n_{k}}$ converges ${ }^{*}$-weakly to \mathbf{u}_{∞} in $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\nabla \mathbf{u}_{n_{k}}$ converges weakly to $\nabla \mathbf{u}_{\infty}$ in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$.

By Banach-Alaoglu's theorem, we may assume that there exists \mathbf{b}_{∞} such that $\mathbf{b}_{n_{k}}$ converges weakly to \mathbf{b}_{∞} in $L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$. In particular $b_{n_{k}, i} u_{n_{k}, j}$ is weakly convergent in $\left(L^{6 / 5} L^{6 / 5}\right)_{\text {loc }}$ and thus in $\mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{3}\right)$; as it is bounded in $L^{3}\left((0, T), L_{w_{\frac{6 \gamma}{\gamma}}}^{6 / 5}\right)$, it is weakly convergent in $L^{3}\left((0, T), L_{w_{\frac{6 \gamma}{5}}}^{6 / 5}\right)$ to $b_{\infty, i} u_{\infty, j}$. Let

$$
p_{\infty, 1}=\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(b_{\infty, i} u_{\infty, j}\right) \text { and } p_{\infty, 2}=-\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(F_{\infty, i, j}\right) .
$$

As the Riesz transforms are bounded on $L_{w_{\frac{6 \gamma}{}}}^{6 / 5}$ and on $L_{w_{\gamma}}^{2}$, we find that $p_{n_{k}, 1}$ is weakly convergent in $L^{3}\left((0, T), L_{w_{\frac{\sigma_{\gamma}}{}}}^{6 / 5}\right)$ to $p_{\infty, 1}$ and that $p_{n_{k}, 2}$ is strongly convergent in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$ to $p_{\infty, 2}$.

In particular, we find that in $\mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{3}\right)$

$$
\partial_{t} \mathbf{u}_{\infty}=\Delta \mathbf{u}_{\infty}-\sum_{i=1}^{3} \partial_{i}\left(b_{\infty, i} \mathbf{u}_{\infty}\right)-\nabla\left(p_{\infty, 1}+p_{\infty, 2}\right)+\nabla \cdot \mathbb{F}_{\infty}
$$

In particular, $\partial_{t} \mathbf{u}_{\infty}$ is locally in $L^{2} H^{-2}$, and thus \mathbf{u}_{∞} has representative such that $t \mapsto \mathbf{u}_{\infty}(t,$.$) is continuous from [0, T)$ to $\mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)$ and coincides with $\mathbf{u}_{\infty}(0,)+.\int_{0}^{t} \partial_{t} \mathbf{u}_{\infty} d s$. In $\mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{3}\right)$, we have that $\mathbf{u}_{\infty}(0,)+.\int_{0}^{t} \partial_{t} \mathbf{u}_{\infty} d s=\mathbf{u}_{\infty}=\lim _{n_{k} \rightarrow+\infty} \mathbf{u}_{n_{k}}=\lim _{n_{k} \rightarrow+\infty} \mathbf{u}_{0, n_{k}}+\int_{0}^{t} \partial_{t} \mathbf{u}_{n_{k}} d s=\mathbf{u}_{0, \infty}+\int_{0}^{t} \partial_{t} \mathbf{u}_{\infty} d s$

Thus, $\mathbf{u}_{\infty}(0,)=.\mathbf{u}_{0, \infty}$, and \mathbf{u}_{∞} is a solution of $\left(A D_{\infty}\right)$.
Next, we define
$A_{n}=-\partial_{t}\left(\frac{\left|\mathbf{u}_{n}\right|^{2}}{2}\right)+\Delta\left(\frac{\left|\mathbf{u}_{n}\right|^{2}}{2}\right)-\nabla \cdot\left(\frac{\left|\mathbf{u}_{n}\right|^{2}}{2} \mathbf{b}_{n}\right)-\nabla \cdot\left(p_{n} \mathbf{u}_{n}\right)+\mathbf{u}_{n} \cdot\left(\nabla \cdot \mathbb{F}_{n}\right)=\left|\nabla \mathbf{u}_{n}\right|^{2}+\mu_{n}$.
As \mathbf{u}_{n} is bounded in $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\nabla \mathbf{u}_{n}$ is bounded in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$, it is bounded in $L^{2}\left((0, T), L_{w_{3 \gamma / 2}}^{6}\right)$ and by interpolation with $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ it is bounded in $L^{10 / 3}\left((0, T), L_{w_{5 \gamma / 3}}^{10 / 3}\right)$. Thus, $u_{n_{k}}$ is locally bounded in $L^{10 / 3} L^{10 / 3}$ and locally strongly convergent in $L^{2} L^{2}$; it is then strongly convergent in $L^{3} L^{3}$. Thus, $A_{n_{k}}$ is convergent in $\mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{3}\right)$ to
$A_{\infty}=-\partial_{t}\left(\frac{\left|\mathbf{u}_{\infty}\right|^{2}}{2}\right)+\Delta\left(\frac{\left|\mathbf{u}_{\infty}\right|^{2}}{2}\right)-\nabla \cdot\left(\frac{\left|\mathbf{u}_{\infty}\right|^{2}}{2} \mathbf{b}_{\infty}\right)-\nabla \cdot\left(p_{\infty} \mathbf{u}_{\infty}\right)+\mathbf{u}_{\infty} \cdot\left(\nabla \cdot \mathbb{F}_{\infty}\right)$.
In particular, $A_{\infty}=\lim _{n_{k} \rightarrow+\infty}\left|\nabla \mathbf{u}_{n_{k}}\right|^{2}+\mu_{n_{k}}$. If $\Phi \in \mathcal{D}\left((0, T) \times \mathbb{R}^{3}\right)$ is nonnegative, we have
$\iint A_{\infty} \Phi d x d s=\lim _{n_{k} \rightarrow+\infty} \iint A_{n_{k}} \Phi d x d s \geq \limsup _{n_{k} \rightarrow+\infty} \iint\left|\nabla \mathbf{u}_{n_{k}}\right|^{2} \Phi d x d s \geq \iint\left|\nabla \mathbf{u}_{\infty}\right|^{2} \Phi d x d s$
(since $\sqrt{\Phi} \nabla \mathbf{u}_{n_{k}}$ is weakly convergent to $\sqrt{\Phi} \nabla \mathbf{u}_{\infty}$ in $L^{2} L^{2}$). Thus, there exists a non-negative locally finite measure μ_{∞} on $(0, T) \times \mathbb{R}^{3}$ such that $A_{\infty}=\left|\nabla \mathbf{u}_{\infty}\right|^{2}+\mu_{\infty}$, i.e. such that
$\partial_{t}\left(\frac{\left|\mathbf{u}_{\infty}\right|^{2}}{2}\right)=\Delta\left(\frac{\left|\mathbf{u}_{\infty}\right|^{2}}{2}\right)-\left|\nabla \mathbf{u}_{\infty}\right|^{2}-\nabla \cdot\left(\frac{\left|\mathbf{u}_{\infty}\right|^{2}}{2} \mathbf{b}_{\infty}\right)-\nabla \cdot\left(p_{\infty} \mathbf{u}_{\infty}\right)+\mathbf{u} \cdot\left(\nabla \cdot \mathbb{F}_{\infty}\right)-\mu_{\infty}$.
Finally, we start from inequality (6) :

$$
\begin{aligned}
\int \frac{\left|\mathbf{u}_{n}(t, x)\right|^{2}}{2} \phi_{R} w_{\gamma, \epsilon} d x & \leq \int \frac{\left|\mathbf{u}_{0, n}(x)\right|^{2}}{2} \phi_{R} w_{\gamma, \epsilon} d x \\
& -\sum_{i=1}^{3} \int_{0}^{t} \int \partial_{i} \mathbf{u}_{n} \cdot \mathbf{u}_{n}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
& -\int_{0}^{t} \int\left|\nabla \mathbf{u}_{n}\right|^{2} \phi_{R} w_{\gamma, \epsilon} d x d s \\
& +\sum_{i=1}^{3} \int_{0}^{t} \int \frac{\left|\mathbf{u}_{n}\right|^{2}}{2} b_{n, i}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
& +\sum_{i=1}^{3} \int_{0}^{t} \int p_{n} u_{n, i}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
& -\sum_{i=1}^{3} \sum_{j=1}^{3} \int_{0}^{t} \int F_{n, i, j} u_{n, j}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
& -\sum_{i=1}^{3} \sum_{j=1}^{3} \int_{0}^{t} \int F_{n, i, j} \partial_{i} u_{n,} \phi_{R} w_{\gamma, \epsilon} d x d s .
\end{aligned}
$$

This gives

$$
\begin{aligned}
\limsup _{n_{k} \rightarrow+\infty} \int \frac{\left|\mathbf{u}_{n_{k}}(t, x)\right|^{2}}{2} \phi_{R} w_{\gamma, \epsilon} d x & +\int_{0}^{t} \int\left|\nabla \mathbf{u}_{n_{k}}\right|^{2} \phi_{R} w_{\gamma, \epsilon} d x d s \\
\leq & \int \frac{\left|\mathbf{u}_{0, \infty}(x)\right|^{2}}{2} \phi_{R} w_{\gamma, \epsilon} d x \\
& -\sum_{i=1}^{3} \int_{0}^{t} \int \partial_{i} \mathbf{u}_{\infty} \cdot \mathbf{u}_{\infty}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
& +\sum_{i=1}^{3} \int_{0}^{t} \int \frac{\left|\mathbf{u}_{\infty}\right|^{2}}{2} b_{\infty, i}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
& +\sum_{i=1}^{3} \int_{0}^{t} \int p_{\infty} u_{\infty, i}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
& -\sum_{i=1}^{3} \sum_{j=1}^{3} \int_{0}^{t} \int F_{\infty, i, j} u_{\infty, j}\left(w_{\gamma, \epsilon} \partial_{i} \phi_{R}+\phi_{R} \partial_{i} w_{\gamma, \epsilon}\right) d x d s \\
& -\sum_{i=1}^{3} \sum_{j=1}^{3} \int_{0}^{t} \int F_{\infty, i, j} \partial_{i} u_{\infty, j} \phi_{R} w_{\gamma, \epsilon} d x d s .
\end{aligned}
$$

As we have

$$
\mathbf{u}_{n_{k}}=\mathbf{u}_{0, n_{k}}+\int_{0}^{t} \partial_{t} \mathbf{u}_{n_{k}} d s
$$

we see that $\mathbf{u}_{n_{k}}(t,$.$) is convergent to \mathbf{u}_{\infty}(t,$.$) in \mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)$, hence is weakly convergent in $L_{\text {loc }}^{2}$ (as it is bounded in $L_{w_{\gamma}}^{2}$), so that:

$$
\int \frac{\left|\mathbf{u}_{\infty}(t, x)\right|^{2}}{2} \phi_{R} w_{\gamma, \epsilon} d x \leq \limsup _{n_{k} \rightarrow+\infty} \int \frac{\left|\mathbf{u}_{n_{k}}(t, x)\right|^{2}}{2} \phi_{R} w_{\gamma, \epsilon} d x
$$

Similarly, as $\nabla \mathbf{u}_{n_{k}}$ is weakly convergent in $L^{2} L_{w_{\gamma}}^{2}$, we have

$$
\int_{0}^{t} \int \frac{\left|\nabla \mathbf{u}_{\infty}(s, x)\right|^{2}}{2} \phi_{R} w_{\gamma, \epsilon} d x d s \leq \limsup _{n_{k} \rightarrow+\infty} \int_{0}^{t} \int \frac{\left|\nabla \mathbf{u}_{n_{k}}(s, x)\right|^{2}}{2} \phi_{R} w_{\gamma, \epsilon} d x d s
$$

Thus, letting R go to $+\infty$ and then ϵ go to 0 , we find by dominated convergence that, for every $t \in(0, T)$, we have

$$
\begin{aligned}
&\left\|\mathbf{u}_{\infty}(t, .)\right\|_{L_{w_{\gamma}}^{2}}^{2}+2 \int_{0}^{t}\left\|\nabla \mathbf{u}_{\infty}(s, .)\right\|_{L_{w_{\gamma}}^{2}}^{2} d s \\
& \leq\left\|\mathbf{u}_{0, \infty}\right\|_{L_{w_{\gamma}}^{2}}^{2}-\int_{0}^{t} \int \nabla\left|\mathbf{u}_{\infty}\right|^{2} \cdot \nabla w_{\gamma} d x d s+\int_{0}^{t} \int\left(\left|\mathbf{u}_{\infty}\right|^{2} \mathbf{b}_{\infty}+2 p_{\infty} \mathbf{u}_{\infty}\right) \cdot \nabla\left(w_{\gamma}\right) d x d s \\
&-2 \sum_{i=1}^{3} \sum_{j=1}^{3} \int_{0}^{t} \int F_{\infty, i, j}\left(\partial_{i} u_{\infty, j}\right) w_{\gamma}+F_{\infty, i, j} u_{\infty, i} \partial_{j}\left(w_{\gamma}\right) d x d s
\end{aligned}
$$

Letting t go to 0 , we find

$$
\limsup _{t \rightarrow 0}\left\|\mathbf{u}_{\infty}(t, .)\right\|_{L_{w_{\gamma}}^{2}}^{2} \leq\left\|\mathbf{u}_{0, \infty}\right\|_{L_{w_{\gamma}}^{2}}^{2}
$$

On the other hand, we know that \mathbf{u}_{∞} is weakly continuous in $L_{w_{\gamma}}^{2}$ and thus we have

$$
\left\|\mathbf{u}_{0, \infty}\right\|_{L_{w_{\gamma}}^{2}}^{2} \leq \liminf _{t \rightarrow 0}\left\|\mathbf{u}_{\infty}(t, .)\right\|_{L_{w_{\gamma}}^{2}}^{2} .
$$

This gives $\left\|\mathbf{u}_{0, \infty}\right\|_{L_{w_{\gamma}}^{2}}^{2}=\lim _{t \rightarrow 0}\left\|\mathbf{u}_{\infty}(t, .)\right\|_{L_{w \gamma}^{2}}^{2}$, which allows to turn the weak convergence into a strong convergence. Theorem 3 is proven.

5 Solutions of the Navier-Stokes problem with initial data in $L_{w_{\gamma}}^{2}$.

We now prove Theorem [1. The idea is to approximate the problem by a Navier-Stokes problem in L^{2}, then use the a priori estimates (Theorem (2) and the stability theorem (Theorem 3) to find a solution to the Navier-Stokes problem with data in $L_{w_{\gamma}}^{2}$).

5.1 Approximation by square integrable data.

Lemma 7 (Leray's projection operator) Let $0<\delta<3$ and $1<r<$ $+\infty$. If \mathbf{v} is a vector field on \mathbb{R}^{3} such that $\mathbf{v} \in L_{w_{\delta}}^{r}$, then there exists a unique decompostion

$$
\mathbf{v}=\mathbf{v}_{\sigma}+\mathbf{v}_{\nabla}
$$

such that

- $\mathbf{v}_{\sigma} \in L_{w_{\delta}}^{r}$ and $\nabla \cdot \mathbf{v}_{\sigma}=0$.
- $\mathbf{v}_{\nabla} \in L_{w_{\delta}}^{r}$ and $\nabla \wedge \mathbf{v}_{\nabla}=0$.

We shall write $\mathbf{v}_{\sigma}=\mathbb{P} \mathbf{v}$, where \mathbb{P} is Leray's projection operator.
Similarly, if \mathbf{v} is a distribution vector field of the type $\mathbf{v}=\nabla \cdot \mathbb{G}$ with $\mathbb{G} \in L_{w_{\delta}}^{r}$ then there exists a unique decompostion

$$
\mathbf{v}=\mathbf{v}_{\sigma}+\mathbf{v}_{\nabla}
$$

such that

- there exists $\mathbb{H} \in L_{w_{\delta}}^{r}$ such that $\mathbf{v}_{\sigma}=\nabla \cdot \mathbb{H}$ and $\nabla \cdot \mathbf{v}_{\sigma}=0$.
- there exists $q \in L_{w_{\delta}}^{r}$ such that $\mathbf{v}_{\nabla}=\nabla q$ (and thus $\nabla \wedge \mathbf{v}_{\nabla}=0$).

We shall still write $\mathbf{v}_{\sigma}=\mathbb{P} \mathbf{v}$. Moreover, the function q is given by

$$
q=-\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(G_{i, j}\right)
$$

Proof : As $w_{\delta} \in \mathcal{A}_{r}$ the Riesz transforms are bounded on $L_{w_{\delta}}^{r}$. Using the identity

$$
\Delta \mathbf{v}=\nabla(\nabla \cdot \mathbf{v})-\nabla \wedge(\nabla \wedge \mathbf{v})
$$

we find (if the decomposition exists) that
$\Delta \mathbf{v}_{\sigma}=-\nabla \wedge\left(\nabla \wedge \mathbf{v}_{\sigma}\right)=-\nabla \wedge(\nabla \wedge \mathbf{v})$ and $\Delta \mathbf{v}_{\nabla}=\nabla\left(\nabla \cdot \mathbf{v}_{\nabla}\right)=\nabla(\nabla \cdot \mathbf{v})$.
This proves the uniqueness. By linearity, we just have to prove that $\mathbf{v}=$ $0 \Longrightarrow \mathbf{v}_{\nabla}=0$. We have $\Delta \mathbf{v}_{\nabla}=0$, and thus \mathbf{v}_{∇} is harmonic; as it belongs to \mathcal{S}^{\prime}, we find that it is a polynomial. But a polynomial which belongs to $L_{w_{\delta}}^{r}$ must be equal to 0 . Similarly, if $\mathbf{v}_{\nabla}=\nabla q$, then $\Delta q=\nabla \cdot \mathbf{v}_{\nabla}=\nabla \cdot \mathbf{v}=0$; thus q is harmonic and belongs to $L_{w_{\delta}}^{r}$, hence $q=0$.

For the existence, it is enough to check that $v_{\nabla, i}=-\sum_{j=1}^{3} R_{i} R_{j} v_{j}$ in the first case and $\mathbf{v}_{\nabla}=\nabla q$ with $q=\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(G_{i, j}\right)$ in the second case fulfill the conclusions of the lemma.

Lemma 8 Let $0<\gamma \leq 2$. Let \mathbf{u}_{0} be a divergence-free vector field such that $\mathbf{u}_{0} \in L_{w_{\gamma}}^{2}\left(\mathbb{R}^{3}\right)$ and \mathbb{F} be a tensor $\mathbb{F}(t, x)=\left(F_{i, j}(t, x)\right)_{1 \leq i, j \leq 3}$ such that $\mathbb{F} \in L^{2}\left((0,+\infty), L_{w_{\gamma}}^{2}\right)$. Let $\phi \in \mathcal{D}\left(\mathbb{R}^{3}\right)$ be a non-negative function which is equal to 1 for $|x| \leq 1$ and to 0 for $|x| \geq 2$. For $R>0$, we define $\phi_{R}(x)=\phi\left(\frac{x}{R}\right), \mathbf{u}_{0, R}=\mathbb{P}\left(\phi_{R} \mathbf{u}_{0}\right)$ and $\mathbb{F}_{R}=\phi_{R} \mathbb{F}$. Then $\mathbf{u}_{0, R}$ is a divergencefree square integrable vector field and $\lim _{R \rightarrow+\infty}\left\|\mathbf{u}_{0, R}-\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}=0$. Similarly, \mathbb{F}_{R} belongs to $L^{2} L^{2}$ and $\lim _{R \rightarrow+\infty}\left\|\mathbb{F}_{R}-\mathbb{F}\right\|_{L^{2}\left((0,+\infty), L_{w_{\gamma}}^{2}\right)}=0$.

Proof : By dominated convergence, we have $\lim _{R \rightarrow+\infty}\left\|\phi_{R} \mathbf{u}_{0}-\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}=0$.
We conclude by writing $\mathbf{u}_{0, R}-\mathbf{u}_{0}=\mathbb{P}\left(\phi_{R} \mathbf{u}_{0}-\mathbf{u}_{0}\right)$.

5.2 Leray's mollification.

We want to solve the Navier-Stokes equations with initial value \mathbf{u}_{0} :

$$
(N S)\left\{\begin{array}{l}
\partial_{t} \mathbf{u}=\Delta \mathbf{u}-(\mathbf{u} \cdot \nabla) \mathbf{u}-\nabla p+\nabla \cdot \mathbb{F} \\
\nabla \cdot \mathbf{u}=0, \quad \quad \mathbf{u}(0, .)=\mathbf{u}_{0}
\end{array}\right.
$$

We begin with Leray's method [11] for solving the problem in L^{2} :

$$
\left(N S_{R}\right)\left\{\begin{array}{c}
\partial_{t} \mathbf{u}_{R}=\Delta \mathbf{u}_{R}-\left(\mathbf{u}_{R} \cdot \nabla\right) \mathbf{u}_{R}-\nabla p_{R}+\nabla \cdot \mathbb{F}_{\mathbb{R}} \\
\nabla \cdot \mathbf{u}_{R}=0, \quad \mathbf{u}_{R}(0, .)=\mathbf{u}_{0, R}
\end{array}\right.
$$

The idea of Leray is to mollify the non-linearity by replacing $\mathbf{u}_{R} \cdot \nabla$ by $\left(\mathbf{u}_{R} * \theta_{\epsilon}\right) \cdot \nabla$, where $\theta(x)=\frac{1}{\epsilon^{3}} \theta\left(\frac{x}{\epsilon}\right), \theta \in \mathcal{D}\left(\mathbb{R}^{3}\right), \theta$ is non-negative and radially decreasing and $\int \theta d x=1$. We thus solve the problem

$$
\left(N S_{R, \epsilon}\right)\left\{\begin{array}{cc}
\partial_{t} \mathbf{u}_{R, \epsilon}=\Delta \mathbf{u}_{R, \epsilon}-\left(\left(\mathbf{u}_{R, \epsilon} * \theta_{\epsilon}\right) \cdot \nabla\right) \mathbf{u}_{R, \epsilon}-\nabla p_{R, \epsilon}+\nabla \cdot \mathbb{F}_{R} \\
\nabla \cdot \mathbf{u}_{R, \epsilon}=0, & \mathbf{u}_{R, \epsilon}(0, .)=\mathbf{u}_{0, R}
\end{array}\right.
$$

The classical result of Leray states that the problem $\left(N S_{R, \epsilon}\right)$ is wellposed :
Lemma 9 Let $\mathbf{v}_{0} \in L^{2}$ be a divergence-free vector field. Let $\mathbb{G} \in L^{2}\left((0,+\infty), L^{2}\right)$. Then the problem

$$
\left(N S_{\epsilon}\right)\left\{\begin{array}{cc}
\partial_{t} \mathbf{v}_{\epsilon}=\Delta \mathbf{v}_{\epsilon}-\left(\left(\mathbf{v}_{\epsilon} * \theta_{\epsilon}\right) \cdot \nabla\right) \mathbf{v}_{\epsilon}-\nabla q_{\epsilon}+\nabla \cdot \mathbb{G} \\
\nabla \cdot \mathbf{v}_{\epsilon}=0, & \mathbf{v}_{\epsilon}(0, .)=\mathbf{v}_{0}
\end{array}\right.
$$

has a unique solution \mathbf{v}_{ϵ} in $L^{\infty}\left((0,+\infty), L^{2}\right) \cap L^{2}\left((0,+\infty), \dot{H}^{1}\right)$. Moreover, this solution belongs to $\mathcal{C}\left([0,+\infty), L^{2}\right)$.

5.3 Proof of Theorem 1 (local existence)

We use Lemma 9 and find a solution $\mathbf{u}_{R, \epsilon}$ to the problem $\left(N S_{R, \epsilon}\right)$. Then we check that $\mathbf{u}_{R, \epsilon}$ fulfills the assumptions of Theorem 2 and of Corollary 6]:

- $\mathbf{u}_{R, \epsilon}$ belongs to $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\nabla \mathbf{u}_{R, \epsilon}$ belongs to $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$
- the map $t \in[0,+\infty) \mapsto \mathbf{u}_{R, \epsilon}(t,$.$) is weakly continuous from [0,+\infty)$ to $L_{w_{\gamma}}^{2}$, and is strongly continuous at $t=0$:

$$
\lim _{t \rightarrow 0}\left\|\mathbf{u}_{R, \epsilon}(t, .)-\mathbf{u}_{0, R}\right\|_{L_{w_{\gamma}}^{2}}=0
$$

- on $(0, T) \times \mathbb{R}^{3}, \mathbf{u}_{R, \epsilon}$ fulfills the energy equality :

$$
\partial_{t}\left(\frac{\left|\mathbf{u}_{R, \epsilon}\right|^{2}}{2}\right)=\Delta\left(\frac{\left|\mathbf{u}_{R, \epsilon}\right|^{2}}{2}\right)-\left|\nabla \mathbf{u}_{R, \epsilon}\right|^{2}-\nabla \cdot\left(\frac{|\mathbf{u}|^{2}}{2} \mathbf{b}_{R, \epsilon}\right)-\nabla \cdot\left(p_{R, \epsilon} \mathbf{u}_{R, \epsilon}\right)+\mathbf{u}_{R, \epsilon} \cdot\left(\nabla \cdot \mathbb{F}_{R}\right) .
$$

with $\mathbf{b}_{R, \epsilon}=\mathbf{u}_{R, \epsilon} * \theta_{\epsilon}$.

- $\mathbf{b}_{R, \epsilon}$ is controlled by $\mathbf{u}_{R, \epsilon}$: for every $t \in(0, T)$,

$$
\left\|\mathbf{b}_{R, \epsilon}(t, .)\right\|_{L_{w_{3 \gamma / 2}}^{3}} \leq\left\|\mathcal{M}_{\mathbf{u}_{R, \epsilon}(t,)}\right\|_{L_{w_{3 \gamma / 2}}^{3}} \leq C_{0}\left\|\mathbf{u}_{R, \epsilon}(t, .)\right\|_{L_{w_{3 \gamma / 2}}^{3}}
$$

Thus, we know that, for every time T_{0} such that

$$
C_{\gamma}\left(1+C_{0}^{4}\right)\left(1+C_{0}^{4}+\left\|\mathbf{u}_{0, R}\right\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{T_{0}}\left\|\mathbb{F}_{R}\right\|_{L_{w_{\gamma}}^{2}}^{2} d s\right)^{2} T_{0} \leq 1
$$

we have

$$
\sup _{0 \leq t \leq T_{0}}\left\|\mathbf{u}_{R, \epsilon}(t, .)\right\|_{L_{w_{\gamma}}^{2}}^{2} \leq C_{\gamma}\left(1+C_{0}^{4}+\left\|\mathbf{u}_{0, R}\right\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{T_{0}}\left\|\mathbb{F}_{R}\right\|_{L_{w_{\gamma}}^{2}}^{2} d s\right)
$$

and

$$
\int_{0}^{T_{0}}\left\|\nabla \mathbf{u}_{R, \epsilon}\right\|_{L_{w_{\gamma}}^{2}}^{2} d s \leq C_{\gamma}\left(1+C_{0}^{4}+\left\|\mathbf{u}_{0, R}\right\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{T_{0}}\left\|\mathbb{F}_{R}\right\|_{L_{w_{\gamma}}^{2}}^{2} d s\right)
$$

Moreover, we have that

$$
\left\|\mathbf{u}_{0, R}\right\|_{L_{w_{\gamma}}^{2}} \leq C_{\gamma}\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}} \text { and }\left\|\mathbb{F}_{R}\right\|_{L_{w_{\gamma}}^{2}} \leq\|\mathbb{F}\|_{L_{w_{\gamma}}^{2}}
$$

so that

$$
\begin{aligned}
\left\|\mathbf{b}_{R, \epsilon}\right\|_{L^{3}\left(\left(0, T_{0}\right), L_{w_{3 \gamma / 2}}^{3}\right.} & \leq C_{\gamma}\left\|\mathbf{u}_{R, \epsilon}\right\|_{L^{3}\left(\left(0, T_{0}\right), L_{w_{3 \gamma / 2}}^{3}\right.} \\
& \leq C_{\gamma}^{\prime} T_{0}^{\frac{1}{12}}\left(\left(1+\sqrt{T_{0}}\right)\left\|\mathbf{u}_{R, \epsilon}\right\|_{L^{\infty}\left(\left(0, T_{0}\right), L_{w_{\gamma}}^{2}\right)}+\left\|\nabla \mathbf{u}_{R, \epsilon}\right\|_{L^{2}\left(\left(0, T_{0}\right), L_{w_{\gamma}}^{2}\right)}\right) \\
& \leq C_{\gamma}^{\prime \prime} \sqrt{1+C_{0}^{4}+\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{T_{0}}\|\mathbb{F}\|_{L_{w_{\gamma}}^{2}}^{2} d s .}
\end{aligned}
$$

Let $R_{n} \rightarrow+\infty$ and $\epsilon_{n} \rightarrow 0$. Let $\mathbf{u}_{0, n}=\mathbf{u}_{0, R_{n}}, \mathbb{F}_{n}=\mathbb{F}_{R_{n}}, \mathbf{b}_{n}=\mathbf{b}_{R_{n}, \epsilon_{n}}$ and $\mathbf{u}_{n}=\mathbf{u}_{R_{n}, \epsilon_{n}}$. We may then apply Theorem 3, since $\mathbf{u}_{0, n}$ is strongly convergent to \mathbf{u}_{0} in $L_{w_{\gamma}}^{2}, \mathbb{F}_{n}$ is strongly convergent to \mathbb{F} in $L^{2}\left(\left(0, T_{0}\right), L_{w_{\gamma}}^{2}\right)$, and the sequence \mathbf{b}_{n} is bounded in $L^{3}\left(\left(0, T_{0}\right), L_{w_{3 \gamma / 2}}^{3}\right)$. Thus there exists p, \mathbf{u}, \mathbf{b} and an increasing sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ with values in \mathbb{N} such that

- $\mathbf{u}_{n_{k}}$ converges *-weakly to \mathbf{u} in $L^{\infty}\left(\left(0, T_{0}\right), L_{w_{\gamma}}^{2}\right), \nabla \mathbf{u}_{n_{k}}$ converges weakly to $\nabla \mathbf{u}$ in $L^{2}\left(\left(0, T_{0}\right), L_{w_{\gamma}}^{2}\right)$
- $\mathbf{b}_{n_{k}}$ converges weakly to \mathbf{b} in $L^{3}\left(\left(0, T_{0}\right), L_{w_{3 \gamma / 2}}^{3}\right), p_{n_{k}}$ converges weakly to p in $L^{3}\left(\left(0, T_{0}\right), L_{w_{\frac{6 \gamma}{\gamma}}}^{6 / 5}\right)+L^{2}\left(\left(0, T_{0}\right), L_{w_{\gamma}}^{2}\right)$
- $\mathbf{u}_{n_{k}}$ converges strongly to \mathbf{u} in $L_{\mathrm{loc}}^{2}\left(\left[0, T_{0}\right) \times \mathbb{R}^{3}\right)$.

Moreover, \mathbf{u} is a solution of the advection-diffusion problem

$$
\left\{\begin{array}{c}
\partial_{t} \mathbf{u}=\Delta \mathbf{u}-(\mathbf{b} \cdot \nabla) \mathbf{u}-\nabla p+\nabla \cdot \mathbb{F} \\
\nabla \cdot \mathbf{u}=0, \quad \mathbf{u}(0, .)=\mathbf{u}_{0}
\end{array}\right.
$$

and is such that :

- the map $t \in\left[0, T_{0}\right) \mapsto \mathbf{u}(t,$.$) is weakly continuous from \left[0, T_{0}\right)$ to $L_{w_{\gamma}}^{2}$, and is strongly continuous at $t=0$:

$$
\lim _{t \rightarrow 0}\left\|\mathbf{u}(t, .)-\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}=0
$$

- there exists a non-negative locally finite measure μ on $\left(0, T_{0}\right) \times \mathbb{R}^{3}$ such that

$$
\partial_{t}\left(\frac{|\mathbf{u}|^{2}}{2}\right)=\Delta\left(\frac{|\mathbf{u}|^{2}}{2}\right)-|\nabla \mathbf{u}|^{2}-\nabla \cdot\left(\frac{|\mathbf{u}|^{2}}{2} \mathbf{b}\right)-\nabla \cdot(p \mathbf{u})+\mathbf{u} \cdot(\nabla \cdot \mathbb{F})-\mu
$$

Finally, as $\mathbf{b}_{n}=\theta_{\epsilon_{n}} *\left(\mathbf{u}_{n}-\mathbf{u}\right)+\theta_{\epsilon_{n}} * \mathbf{u}$, we see that $\mathbf{b}_{n_{k}}$ is strongly convergent to \mathbf{u} in $L_{\mathrm{loc}}^{3}\left(\left[0, T_{0}\right) \times \mathbb{R}^{3}\right)$, so that $\mathbf{b}=\mathbf{u}$: thus, \mathbf{u} is a solution of the Navier-Stokes problem on $\left(0, T_{0}\right)$. (It is easy to check that

$$
p=\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(u_{i} u_{j}-F_{i, j}\right)
$$

as $u_{i, n_{k}} u_{j, n_{k}}$ is weakly convergent to $u_{i} u_{j}$ in $L^{4}\left(\left(0, T_{0}\right), L_{w_{\frac{6 \gamma}{\gamma}}}^{6 / 5}\right)$ and $\left.w_{\frac{6 \gamma}{5}} \in \mathcal{A}_{6 / 5}\right)$.

5.4 Proof of Theorem 1 (global existence)

In order to finish the proof, we shall use the scaling properties of the NavierStokes equations: if $\lambda>0$, then \mathbf{u} is a solution of the Cauchy initial value problem for the Navier-Stokes equations on $(0, T)$ with initial value \mathbf{u}_{0} and forcing tensor \mathbb{F} if and only if $\mathbf{u}_{\lambda}(t, x)=\lambda \mathbf{u}\left(\lambda^{2} t, \lambda x\right)$ is a solution of the Navier-Stokes equations on $\left(0, T / \lambda^{2}\right)$ with initial value $\mathbf{u}_{0, \lambda}(x)=\lambda \mathbf{u}_{0}(\lambda x)$ and forcing tensor $\mathbb{F}_{\lambda}(t, x)=\lambda^{2} \mathbb{F}\left(\lambda^{2} t, \lambda x\right)$.

We take $\lambda>1$ and for $n \in \mathbb{N}$ we consider the Navier-Stokes problem with initial value $\mathbf{v}_{0, n}=\lambda^{n} \mathbf{u}_{0}\left(\lambda^{n} \cdot\right)$ and forcing tensor $\mathbb{F}_{n}=\lambda^{2 n} \mathbb{F}\left(\lambda^{2 n} \cdot, \lambda^{n} \cdot\right)$. Then we have seen that we can find a solution \mathbf{v}_{n} on $\left(0, T_{n}\right)$, with

$$
C_{\gamma}\left(1+\left\|\mathbf{v}_{0, n}\right\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{+\infty}\left\|\mathbb{F}_{n}\right\|_{L_{w_{\gamma}}^{2}}^{2} d s\right)^{2} T_{n}=1
$$

Of course, we have $\mathbf{v}_{n}(t, x)=\lambda^{n} \mathbf{u}_{n}\left(\lambda^{2 n} t, \lambda^{n} x\right)$ where \mathbf{u}_{n} is a solution of the Navier-Stokes equations on ($0, \lambda^{2 n} T_{n}$) with initial value \mathbf{u}_{0} and forcing tensor F

Lemma 10

$$
\lim _{n \rightarrow+\infty} \frac{\lambda^{n}}{1+\left\|\mathbf{v}_{0, n}\right\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{+\infty}\left\|\mathbb{F}_{n}\right\|_{L_{w_{\gamma}}^{2}}^{2} d s}=+\infty
$$

Proof : We have

$$
\left\|\mathbf{v}_{0, n}\right\|_{L_{w_{\gamma}}^{2}}^{2}=\int\left|\mathbf{u}_{0}(x)\right|^{2} \lambda^{n(\gamma-1)} \frac{(1+|x|)^{\gamma}}{\left(\lambda^{n}+|x|\right)^{\gamma}} w_{\gamma}(x) d x
$$

We have

$$
\lambda^{n(\gamma-1)} \leq \lambda^{n}
$$

as $\gamma \leq 2$ and we have, by dominated convergence,

$$
\lim _{n \rightarrow+\infty} \int\left|\mathbf{u}_{0}(x)\right|^{2} \frac{(1+|x|)^{\gamma}}{\left(\lambda^{n}+|x|\right)^{\gamma}} w_{\gamma}(x) d x=0
$$

Similarly, we have

$$
\int_{0}^{+\infty}\left\|\mathbb{F}_{n}\right\|_{L_{w_{\gamma}}^{2}}^{2} d s=\int_{0}^{+\infty} \int|\mathbb{F}(s, x)|^{2} \lambda^{n(\gamma-1)} \frac{(1+|x|)^{\gamma}}{\left(\lambda^{n}+|x|\right)^{\gamma}} w_{\gamma}(x) d x d s=o\left(\lambda^{n}\right)
$$

Thus, $\lim _{n \rightarrow+\infty} \lambda^{2 n} T_{n}=+\infty$.
Now, for a given $T>0$, if $\lambda^{2 n} T_{n}>T$ for $n \geq n_{T}$, then \mathbf{u}_{n} is a solution of the Navier-Stokes problem on $(0, T)$. Let $\mathbf{w}_{n}(t, x)=\lambda^{n_{T}} \mathbf{u}_{n}\left(\lambda^{2 n_{T}} t, \lambda^{n_{T}} x\right)$.

For $n \geq n_{T}, \mathbf{w}_{n}$ is a solution of the Navier-Stokes problem on $\left(0, \lambda^{-2 n_{T}} T\right)$ with initial value $\mathbf{v}_{0, n_{T}}$ and forcing tensor $\mathbb{F}_{n_{T}}$. As $\lambda^{-2 n_{T}} T \leq T_{n_{T}}$, we have

$$
C_{\gamma}\left(1+\left\|\mathbf{v}_{0, n_{T}}\right\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{+\infty}\left\|\mathbb{F}_{n_{T}}\right\|_{L_{w_{\gamma}}^{2}}^{2} d s\right)^{2} \lambda^{-2 n_{T}} T \leq 1 .
$$

By corollary 6, we have

$$
\sup _{0 \leq t \leq \lambda^{-2 n_{T} T}}\left\|\mathbf{w}_{n}(t, .)\right\|_{L_{w_{\gamma}}^{2}}^{2} \leq C_{\gamma}\left(1+\left\|\mathbf{v}_{0, n_{T}}\right\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{\lambda^{-2 n_{T} T}}\left\|\mathbb{F}_{n_{T}}\right\|_{L_{w_{\gamma}}^{2}}^{2} d s\right)
$$

and

$$
\int_{0}^{\lambda^{-2 n_{T} T}}\left\|\nabla \mathbf{w}_{n}\right\|_{L_{w_{\gamma}}^{2}}^{2} d s \leq C_{\gamma}\left(1+\left\|\mathbf{v}_{0, n_{T}}\right\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{\lambda^{-2 n_{T} T}}\left\|\mathbb{F}_{n_{T}}\right\|_{L_{w_{\gamma}}^{2}}^{2} d s\right)
$$

We have

$$
\left\|\mathbf{w}_{n}\right\|_{L_{w_{\gamma}}^{2}}^{2}=\int\left|\mathbf{u}_{n}\left(\lambda^{2 n_{T}} t, x\right)\right|^{2} \lambda^{n_{T}(\gamma-1)} \frac{(1+|x|)^{\gamma}}{\left(\lambda^{n_{T}}+|x|\right)^{\gamma}} w_{\gamma}(x) d x \geq \lambda^{n_{T}(\gamma-1)}\left\|\mathbf{u}_{n}\left(\lambda^{2 n_{T}} t, .\right)\right\|_{L_{w_{\gamma}}^{2}}^{2} .
$$

and

$$
\begin{aligned}
\int_{0}^{\lambda^{-2 n_{T} T}}\left\|\nabla \mathbf{w}_{n}\right\|_{L_{w_{\gamma}}^{2}}^{2} d s & =\int_{0}^{T} \int\left|\nabla \mathbf{u}_{n}(s, x)\right|^{2} \lambda^{n_{T}(\gamma-1)} \frac{(1+|x|)^{\gamma}}{\left(\lambda^{n_{T}}+|x|\right)^{\gamma}} w_{\gamma}(x) d x d s \\
& \geq \lambda^{n_{T}(\gamma-1)} \int_{0}^{T}\left\|\nabla \mathbf{u}_{n}\right\|_{L_{w_{\gamma}}^{2}}^{2} d s .
\end{aligned}
$$

Thus, we have a uniform control of \mathbf{u}_{n} and of $\nabla \mathbf{u}_{n}$ on $(0, T)$ for $n \geq n_{T}$. We may then apply the Rellich lemma (Lemma 6) and Theorem 3 to find a subsequence $\mathbf{u}_{n_{k}}$ that converges to a global solution of the Navier-Stokes equations. Theorem 1 is proven.

6 Solutions of the advection-diffusion problem with initial data in $L_{w_{\gamma}}^{2}$.

The proof of Theorem 1 on the Navier-Stokes problem can be easily adapted to the case of the advection-diffusion problem :

Theorem 4 Let $0<\gamma \leq 2$. Let $0<T<+\infty$. Let \mathbf{u}_{0} be a divergence-free vector field such that $\mathbf{u}_{0} \in L_{w_{\gamma}}^{2}\left(\mathbb{R}^{3}\right)$ and \mathbb{F} be a tensor $\mathbb{F}(t, x)=\left(F_{i, j}(t, x)\right)_{1 \leq i, j \leq 3}$
such that $\mathbb{F} \in L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$. Let \mathbf{b} be a time-dependent divergence free vector-field $(\nabla \cdot \mathbf{b}=0)$ such that $\mathbf{b} \in L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$.

Then the advection-diffusion problem

$$
(A D)\left\{\begin{array}{l}
\partial_{t} \mathbf{u}=\Delta \mathbf{u}-(\mathbf{b} \cdot \nabla) \mathbf{u}-\nabla p+\nabla \cdot \mathbb{F} \\
\nabla \cdot \mathbf{u}=0, \quad \quad \mathbf{u}(0, .)=\mathbf{u}_{0}
\end{array}\right.
$$

has a solution \mathbf{u} such that :

- \mathbf{u} belongs to $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\nabla \mathbf{u}$ belongs to $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$
- the pressure p is related to \mathbf{u}, \mathbf{b} and \mathbb{F} through the Riesz transforms $R_{i}=\frac{\partial_{i}}{\sqrt{-\Delta}}$ by the formula

$$
p=\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(b_{i} u_{j}-F_{i, j}\right)
$$

- the map $t \in[0, T) \mapsto \mathbf{u}(t,$.$) is weakly continuous from [0, T)$ to $L_{w_{\gamma}}^{2}$, and is strongly continuous at $t=0$:

$$
\lim _{t \rightarrow 0}\left\|\mathbf{u}(t, .)-\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}=0
$$

- there exists a non-negative locally finite measure μ on $(0, T) \times \mathbb{R}^{3}$ such that

$$
\partial_{t}\left(\frac{|\mathbf{u}|^{2}}{2}\right)=\Delta\left(\frac{|\mathbf{u}|^{2}}{2}\right)-|\nabla \mathbf{u}|^{2}-\nabla \cdot\left(\frac{|\mathbf{u}|^{2}}{2} \mathbf{b}\right)-\nabla \cdot(p \mathbf{u})+\mathbf{u} \cdot(\nabla \cdot \mathbb{F})-\mu
$$

Proof : Again, we define $\phi_{R}(x)=\phi\left(\frac{x}{R}\right), \mathbf{u}_{0, R}=\mathbb{P}\left(\phi_{R} \mathbf{u}_{0}\right)$ and $\mathbb{F}_{R}=\phi_{R} \mathbb{F}$. Moreover, we define $\mathbf{b}_{R}=\mathbb{P}\left(\phi_{R} \mathbf{b}\right)$. We then solve the mollified problem

$$
\left(A D_{R, \epsilon}\right)\left\{\begin{array}{c}
\partial_{t} \mathbf{u}_{R, \epsilon}=\Delta \mathbf{u}_{R, \epsilon}-\left(\left(\mathbf{b}_{R} * \theta_{\epsilon}\right) \cdot \nabla\right) \mathbf{u}_{R, \epsilon}-\nabla p_{R, \epsilon}+\nabla \cdot \mathbb{F}_{R, \epsilon} \\
\nabla \cdot \mathbf{u}_{R, \epsilon}=0,
\end{array}\right.
$$

for which we easily find a unique solution $\mathbf{u}_{R, \epsilon}$ in $L^{\infty}\left((0, T), L^{2}\right) \cap L^{2}\left((0, T), \dot{H}^{1}\right)$. Moreover, this solution belongs to $\mathcal{C}\left([0, T), L^{2}\right)$.

Again, $\mathbf{u}_{R, \epsilon}$ fulfills the assumptions of Theorem 2:

- $\mathbf{u}_{R, \epsilon}$ belongs to $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\nabla \mathbf{u}_{R, \epsilon}$ belongs to $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$
- the map $t \in[0, T) \mapsto \mathbf{u}_{R, \epsilon}(t,$.$) is weakly continuous from [0, T)$ to $L_{w_{\gamma}}^{2}$, and is strongly continuous at $t=0$:

$$
\lim _{t \rightarrow 0}\left\|\mathbf{u}_{R, \epsilon}(t, .)-\mathbf{u}_{0, R}\right\|_{L_{w_{\gamma}}^{2}}=0
$$

- on $(0, T) \times \mathbb{R}^{3}, \mathbf{u}_{R, \epsilon}$ fulfills the energy equality :

$$
\begin{aligned}
& \partial_{t}\left(\frac{\left|\mathbf{u}_{R, \epsilon}\right|^{2}}{2}\right)=\Delta\left(\frac{\left|\mathbf{u}_{R, \epsilon}\right|^{2}}{2}\right)-\left|\nabla \mathbf{u}_{R, \epsilon}\right|^{2}-\nabla \cdot\left(\frac{|\mathbf{u}|^{2}}{2} \mathbf{b}_{R, \epsilon}\right)-\nabla \cdot\left(p_{R, \epsilon} \mathbf{u}_{R, \epsilon}\right)+\mathbf{u}_{R, \epsilon} \cdot\left(\nabla \cdot \mathbb{F}_{R}\right) . \\
& \text { with } \mathbf{b}_{R, \epsilon}=\mathbf{b}_{R} * \theta_{\epsilon}
\end{aligned}
$$

Thus, by Corollary 4 we know that,

$$
\sup _{0<t<T}\left\|\mathbf{u}_{R, \epsilon}\right\|_{L_{w_{\gamma}}^{2}} \leq\left(\left\|\mathbf{u}_{0, R}\right\|_{L_{w_{\gamma}}^{2}}+C_{\gamma}\left\|\mathbb{F}_{R}\right\|_{L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)}\right) e^{C_{\gamma}\left(T+T^{1 / 3}\left\|\mathbf{b}_{R, \epsilon}\right\|_{L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right.}^{2}\right)}
$$

and
$\left\|\nabla \mathbf{u}_{R, \epsilon}\right\|_{L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)} \leq\left(\left\|\mathbf{u}_{0, R}\right\|_{L_{w_{\gamma}}^{2}}+C_{\gamma}\left\|\mathbb{F}_{R}\right\|_{L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right.}\right) e^{C_{\gamma}\left(T+T^{1 / 3}\left\|\mathbf{b}_{R, \epsilon}\right\|_{L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{2}\right.}^{2}\right)}$
where the constant C_{γ} depends only on γ.
Moreover, we have that

$$
\left\|\mathbf{u}_{0, R}\right\|_{L_{w_{\gamma}}^{2}} \leq C_{\gamma}\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}\| \| \mathbb{F}_{R}\left\|_{L_{w_{\gamma}}^{2}} \leq\right\| \mathbb{F} \|_{L_{w_{\gamma}}^{2}}
$$

and

$$
\left.\left\|\mathbf{b}_{R, \epsilon}\right\|_{L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)} \leq\left\|\mathcal{M}_{\mathbf{b}_{R}}\right\|_{L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right.}^{3} \leq C_{\gamma}^{\prime}\|\mathbf{b}\|_{L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right.}\right)
$$

Let $R_{n} \rightarrow+\infty$ and $\epsilon_{n} \rightarrow 0$. Let $\mathbf{u}_{0, n}=\mathbf{u}_{0, T_{n}}, \mathbb{F}_{n}=\mathbb{F}_{R_{n}}, \mathbf{b}_{n}=\mathbf{b}_{R_{n}, \epsilon_{n}}$ and $\mathbf{u}_{n}=\mathbf{u}_{R_{n}, \epsilon_{n}}$. We may then apply Theorem 3, since $\mathbf{u}_{0, n}$ is strongly convergent to \mathbf{u}_{0} in $L_{w_{\gamma}}^{2}, \mathbb{F}_{n}$ is strongly convergent to \mathbb{F} in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$, and the sequence \mathbf{b}_{n} is strongly convergent to \mathbf{b} in $L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$. Thus there exists p, \mathbf{u} and an increasing sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ with values in \mathbb{N} such that

- $\mathbf{u}_{n_{k}}$ converges *-weakly to \mathbf{u} in $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right), \nabla \mathbf{u}_{n_{k}}$ converges weakly to $\nabla \mathbf{u}$ in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$
- $p_{n_{k}}$ converges weakly to p in $L^{3}\left((0, T), L_{w_{\frac{6 \gamma}{5}}}^{6 / 5}\right)+L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$
- $\mathbf{u}_{n_{k}}$ converges strongly to \mathbf{u} in $L_{\mathrm{loc}}^{2}\left([0, T) \times \mathbb{R}^{3}\right)$.

We then easily finish the proof.

7 Application to the study of λ-discretely selfsimilar solutions

We may now apply our results to the study of λ-discretely self-similar solutions for the Navier-Stokes equations.

Definition 1 Let $\mathbf{u}_{0} \in L_{\text {loc }}^{2}\left(\mathbb{R}^{3}\right)$. We say that \mathbf{u}_{0} is a λ-discretely self-similar function $(\lambda-D S S)$ if there exists $\lambda>1$ such that $\lambda \mathbf{u}_{0}(\lambda x)=\mathbf{u}_{0}$.
A vector field $\mathbf{u} \in L_{\mathrm{loc}}^{2}\left([0,+\infty) \times \mathbb{R}^{3}\right)$ is λ-DSS if there exists $\lambda>1$ such that $\lambda \mathbf{u}\left(\lambda^{2} t, \lambda x\right)=\mathbf{u}(t, x)$.

A forcing tensor $\mathbb{F} \in L_{\mathrm{loc}}^{2}\left([0,+\infty) \times \mathbb{R}^{3}\right)$ is λ-DSS if there exists $\lambda>1$ such that $\lambda^{2} \mathbb{F}\left(\lambda^{2} t, \lambda x\right)=\mathbb{F}(t, x)$.

We shall speak of self-similarity if $\mathbf{u}_{0}, \mathbf{u}$ or \mathbb{F} are λ-DSS for every $\lambda>1$.

Examples :

- Let $\gamma>1$ and $\lambda>1$. Then, for two positive constants $A_{\gamma, \lambda}$ and $B_{\gamma, \lambda}$, we have : if $\mathbf{u}_{0} \in L_{\text {loc }}^{2}\left(\mathbb{R}^{3}\right)$ is λ-DSS, then $\mathbf{u}_{0} \in L_{w_{\gamma}}^{2}$ and

$$
A_{\gamma, \lambda} \int_{1<|x| \leq \lambda}\left|\mathbf{u}_{0}(x)\right|^{2} d x \leq \int\left|\mathbf{u}_{0}(x)\right|^{2} w_{\gamma}(x) d x \leq B_{\gamma, \lambda} \int_{1<|x| \leq \lambda}\left|\mathbf{u}_{0}(x)\right|^{2} d x
$$

- $\mathbf{u}_{0} \in L_{\text {loc }}^{2}$ is self-similar if and only if it is of the form $\mathbf{u}_{0}=\frac{\mathbf{w}_{0}\left(\frac{x}{x \mid}\right)}{|x|}$ with $\mathbf{w}_{0} \in L^{2}\left(S^{2}\right)$.
- \mathbb{F} belongs to $L^{2}\left((0,+\infty), L_{w_{\gamma}}^{2}\right)$ with $\gamma>1$ and is self-similar if and only if it is of the form $\mathbb{F}(t, x)=\frac{1}{t} \mathbb{F}_{0}\left(\frac{x}{\sqrt{t}}\right)$ with $\int\left|\mathbb{F}_{0}(x)\right|^{2} \frac{1}{|x|} d x<+\infty$.

Proof :

- If \mathbf{u}_{0} is λ-DSS and if $k \in \mathbb{Z}$ we have

$$
\int_{\lambda^{k}<|x|<\lambda^{k+1}}\left|\mathbf{u}_{0}(x)\right|^{2} w_{\gamma}(x) d x \leq \frac{\lambda^{k}}{\left(1+\lambda^{k}\right)^{\gamma}} \int_{1<|x|<\lambda}\left|\mathbf{u}_{0}(x)\right|^{2} d x
$$

with $\sum_{k \in \mathbb{Z}} \frac{\lambda^{k}}{\left(1+\lambda^{k}\right)^{\gamma}}<+\infty$ for $\gamma>1$.

- If \mathbf{u}_{0} is self-similar, we have $\mathbf{u}_{0}(x)=\frac{1}{|x|} \mathbf{u}_{0}\left(\frac{x}{|x|}\right)$. From this equality, we find that, for $\lambda>1$

$$
\int_{1<|x|<\lambda}\left|\mathbf{u}_{0}(x)\right|^{2} d x=(\lambda-1) \int_{S^{2}}\left|\mathbf{u}_{0}(\sigma)\right|^{2} d \sigma
$$

- If \mathbb{F} is self-similar, then it is of the form $\mathbb{F}(t, x)=\frac{1}{t} \mathbb{F}_{0}\left(\frac{x}{\sqrt{t}}\right)$. Moreover, we have
$\int_{0}^{+\infty} \int|\mathbb{F}(t, x)|^{2} w_{\gamma}(x) d x d s=\int_{0}^{+\infty} \int\left|\mathbb{F}_{0}(x)\right|^{2} w_{\gamma}(\sqrt{t} x) d x \frac{d t}{\sqrt{t}}=C_{\gamma} \int\left|\mathbb{F}_{0}(x)\right|^{2} \frac{d x}{|x|}$
with $C_{\gamma}=\int_{0}^{+\infty} \frac{1}{(1+\sqrt{\theta})^{\gamma}} \frac{d \theta}{\sqrt{\theta}}<+\infty$.
In this section, we are going to give a new proof of the results of Chae and Wolf [3] and Bradshaw and Tsai [2] on the existence of λ-DSS solutions of the Navier-Stokes problem (and of Jia and Šverák [6] for self-similar solutions) :

Theorem 5 Let $4 / 3<\gamma \leq 2$ and $\lambda>1$. If \mathbf{u}_{0} is a λ-DSS divergence-free vector field (such that $\mathbf{u}_{0} \in L_{w_{\gamma}}^{2}\left(\mathbb{R}^{3}\right)$) and if \mathbb{F} is a λ-DSS tensor $\mathbb{F}(t, x)=$ $\left(F_{i, j}(t, x)\right)_{1 \leq i, j \leq 3}$ such that $\mathbb{F} \in L_{\text {loc }}^{2}\left([0,+\infty) \times \mathbb{R}^{3}\right)$, then the Navier-Stokes equations with initial value \mathbf{u}_{0}

$$
(N S)\left\{\begin{array}{l}
\partial_{t} \mathbf{u}=\Delta \mathbf{u}-(\mathbf{u} \cdot \nabla) \mathbf{u}-\nabla p+\nabla \cdot \mathbb{F} \\
\nabla \cdot \mathbf{u}=0, \quad \quad \mathbf{u}(0, .)=\mathbf{u}_{0}
\end{array}\right.
$$

has a global weak solution \mathbf{u} such that:

- \mathbf{u} is a λ-DSS vector field
- for every $0<T<+\infty$, \mathbf{u} belongs to $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\nabla \mathbf{u}$ belongs to $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$
- the map $t \in[0,+\infty) \mapsto \mathbf{u}(t,$.$) is weakly continuous from [0,+\infty)$ to $L_{w_{\gamma}}^{2}$, and is strongly continuous at $t=0$:

$$
\lim _{t \rightarrow 0}\left\|\mathbf{u}(t, .)-\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}=0
$$

- the solution \mathbf{u} is suitable : there exists a non-negative locally finite measure μ on $(0,+\infty) \times \mathbb{R}^{3}$ such that

$$
\partial_{t}\left(\frac{\left.\mathbf{u}\right|^{2}}{2}\right)=\Delta\left(\frac{|\mathbf{u}|^{2}}{2}\right)-|\nabla \mathbf{u}|^{2}-\nabla \cdot\left(\left(\frac{|\mathbf{u}|^{2}}{2}+p\right) \mathbf{u}\right)+\mathbf{u} \cdot(\nabla \cdot \mathbb{F})-\mu
$$

7.1 The linear problem.

Following Chae and Wolf, we consider an approximation of the problem that is consistent with the scaling properties of the equations: let θ be a nonnegative and radially decreasing function in $\mathcal{D}\left(\mathbb{R}^{3}\right)$ with $\int \theta d x=1$; We define $\theta_{\epsilon, t}(x)=\frac{1}{(\epsilon \sqrt{t})^{3}} \theta\left(\frac{x}{\epsilon \sqrt{ } t}\right)$. We then will study the "mollified" problem

$$
\left(N S_{\epsilon}\right)\left\{\begin{array}{c}
\partial_{t} \mathbf{u}_{\epsilon}=\Delta \mathbf{u}_{\epsilon}-\left(\left(\mathbf{u}_{\epsilon} * \theta_{\epsilon, t}\right) \cdot \nabla\right) \mathbf{u}_{\epsilon}-\nabla p_{\epsilon}+\nabla \cdot \mathbb{F} \\
\nabla \cdot \mathbf{u}=0, \\
\mathbf{u}(0, .)=\mathbf{u}_{0}
\end{array}\right.
$$

and begin with the linearized problem

$$
\left(L N S_{\epsilon}\right)\left\{\begin{array}{cc}
\partial_{t} \mathbf{v}=\Delta \mathbf{v}-\left(\left(\mathbf{b} * \theta_{\epsilon, t}\right) \cdot \nabla\right) \mathbf{v}-\nabla q+\nabla \cdot \mathbb{F} \\
\nabla \cdot \mathbf{v}=0, & \mathbf{v}(0, .)=\mathbf{u}_{0}
\end{array}\right.
$$

Lemma 11 Let $1<\gamma \leq 2$. Let $\lambda>1$ Let \mathbf{u}_{0} be a λ-DSS divergencefree vector field such that $\mathbf{u}_{0} \in L_{w_{\gamma}}^{2}\left(\mathbb{R}^{3}\right)$ and \mathbb{F} be a λ-DSS tensor $\mathbb{F}(t, x)=$ $\left(F_{i, j}(t, x)\right)_{1 \leq i, j \leq 3}$ such that, for every $T>0, \mathbb{F} \in L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$. Let \mathbf{b} be a λ-DSS time-dependent divergence free vector-field $(\nabla \cdot \mathbf{b}=0)$ such that, for every $T>0, \mathbf{b} \in L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$.

Then the advection-diffusion problem

$$
\left(L N S_{\epsilon}\right)\left\{\begin{array}{c}
\partial_{t} \mathbf{v}=\Delta \mathbf{v}-\left(\left(\mathbf{b} * \theta_{\epsilon, t}\right) \cdot \nabla\right) \mathbf{v}-\nabla q+\nabla \cdot \mathbb{F} \\
\nabla \cdot \mathbf{v}=0, \\
\mathbf{v}(0, .)=\mathbf{u}_{0}
\end{array}\right.
$$

has a unique solution \mathbf{v} such that:

- for every positive T, \mathbf{v} belongs to $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\nabla \mathbf{v}$ belongs to $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$
- the pressure p is related to \mathbf{v}, \mathbf{b} and \mathbb{F} through the Riesz transforms $R_{i}=\frac{\partial_{i}}{\sqrt{-\Delta}}$ by the formula

$$
p=\sum_{i=1}^{3} \sum_{j=1}^{3} R_{i} R_{j}\left(\left(b_{i} * \theta_{\epsilon, t}\right) v_{j}-F_{i, j}\right)
$$

- the map $t \in[0,+\infty) \mapsto \mathbf{v}(t,$.$) is weakly continuous from [0,+\infty)$ to $L_{w_{\gamma}}^{2}$, and is strongly continuous at $t=0$:

$$
\lim _{t \rightarrow 0}\left\|\mathbf{v}(t, .)-\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}=0
$$

This solution \mathbf{v} is a λ-DSS vector field.
Proof: As we have $\left|\mathbf{b}(t,). * \theta_{\epsilon, t}\right| \leq \mathcal{M}_{\mathbf{b}(t, .)}$ and thus

$$
\left\|\mathbf{b}(t, .) * \theta_{\epsilon, t}\right\|_{L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)} \leq C_{\gamma}\|\mathbf{b}\|_{L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)}
$$

we see that we can use Theorem 4 to get a solution \mathbf{v} on $(0, T)$.
As clearly $\mathbf{b} * \theta_{\epsilon, t}$ belongs to $L_{t}^{2} L_{x}^{\infty}(K)$ for every compact subset K of $(0, T) \times \mathbb{R}^{3}$, we can use Corollary 5 to see that \mathbf{v} is unique.

Let $\mathbf{w}(t, x)=\frac{1}{\lambda} \mathbf{v}\left(\frac{t}{\lambda^{2}}, \frac{x}{\lambda}\right)$. As $b * \theta_{\epsilon, t}$ is still λ-DSS, we see that \mathbf{w} is solution of $\left(L N S_{\epsilon}\right)$ on $(0, T)$, so that $\mathbf{w}=\mathbf{v}$. This means that \mathbf{v} is λ-DSS.

7.2 The mollified Navier-Stokes equations.

The solution \mathbf{v} provided by Lemma 11 belongs to $L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right.$) (as \mathbf{v} belongs to $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\nabla \mathbf{v}$ belongs to $\left.L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)\right)$. Thus we have a mapping $L_{\epsilon}: \mathbf{b} \mapsto \mathbf{v}$ which is defined from

$$
X_{T, \gamma}=\left\{\mathbf{b} \in L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right) / \mathbf{b} \text { is } \lambda-\mathrm{DSS}\right\}
$$

to $X_{T, \gamma}$ by $L_{\epsilon}(\mathbf{b})=\mathbf{v}$.
Lemma 12 For $4 / 3<\gamma, X_{T, \gamma}$ is a Banach space for the equivalent norms $\|\mathbf{b}\|_{L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)}$ and $\|\mathbf{b}\|_{L^{3}\left(\left(0, T / \lambda^{2}\right), \times B\left(0, \frac{1}{\lambda}\right)\right)}$.

Proof : We have

$$
\int_{0}^{T} \int_{B(0,1)}|\mathbf{b}(t, x)|^{3} d x d t=\lambda^{2} \int_{0}^{\frac{T}{\lambda^{2}}} \int_{B\left(0, \frac{1}{\lambda}\right)}|\mathbf{b}(t, x)|^{3} d x d t
$$

and, for $k \in \mathbb{N}$,

$$
\int_{0}^{T} \int_{\lambda^{k-1}<|x|<\lambda^{k}}|\mathbf{b}(t, x)|^{3} d x d t=\lambda^{2 k} \int_{0}^{\frac{T}{\lambda^{2 k}}} \int_{\frac{1}{\lambda}<|x|<1}|\mathbf{b}(t, x)|^{3} d x d t
$$

We may conclude, since for $\gamma>4 / 3$ we have $\sum_{k \in \mathbb{N}} \lambda^{k\left(2-\frac{3 \gamma}{2}\right)}<+\infty$.
Lemma 13 For $4 / 3<\gamma \leq 2$, the mapping L_{ϵ} is continuous and compact on $X_{T, \gamma}$.

Proof : Let \mathbf{b}_{n} be a bounded sequence in $X_{T, \gamma}$ and let $\mathbf{v}_{n}=L_{\epsilon}\left(\mathbf{b}_{n}\right)$. We remark that the sequence $\mathbf{b}_{n}(t,). * \theta_{\epsilon, t}$ is bounded in $X_{T, \gamma}$. Thus, by Theorem 2 and Corollary 4, the sequence \mathbf{v}_{n} is bounded in $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\nabla \mathbf{v}_{n}$ is bounded in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$.

We now use Theorem 3 and get that then there exists $q_{\infty}, \mathbf{v}_{\infty}, \mathbf{B}_{\infty}$ and an increasing sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ with values in \mathbb{N} such that

- $\mathbf{v}_{n_{k}}$ converges ${ }^{*}$-weakly to \mathbf{v}_{∞} in $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right), \nabla \mathbf{v}_{n_{k}}$ converges weakly to $\nabla \mathbf{v}_{\infty}$ in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$
- $\mathbf{b}_{n_{k}} * \theta_{\epsilon, t}$ converges weakly to \mathbf{B}_{∞} in $L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$,
- the associated pressures $q_{n_{k}}$ converge weakly to q_{∞} in $L^{3}\left((0, T), L_{w_{\frac{6 \gamma}{\gamma}}}^{6 / 5}\right)+$ $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$
- $\mathbf{v}_{n_{k}}$ converges strongly to \mathbf{v}_{∞} in $L_{\text {loc }}^{2}\left([0, T) \times \mathbb{R}^{3}\right)$: for every $T_{0} \in(0, T)$ and every $R>0$, we have

$$
\lim _{k \rightarrow+\infty} \int_{0}^{T_{0}} \int_{|y|<R}\left|\mathbf{v}_{n_{k}}(s, y)-\mathbf{v}_{\infty}(s, y)\right|^{2} d s d y=0
$$

As $\sqrt{w_{\gamma}} \mathbf{v}_{n}$ is bounded in $L^{\infty}\left((0, T), L^{2}\right)$ and in $L^{2}\left((0, T), L^{6}\right)$, it is bounded in $L^{10 / 3}\left((0, T) \times \mathbb{R}^{3}\right)$. The strong convergence of $\mathbf{v}_{n_{k}}$ in $L_{\text {loc }}^{2}\left([0, T) \times \mathbb{R}^{3}\right)$ then implies the strong convergence of $\mathbf{v}_{n_{k}}$ in $L_{\mathrm{loc}}^{3}\left((0, T) \times \mathbb{R}^{3}\right)$.

Moreover, \mathbf{v}_{∞} is still λ-DSS (a property that is stable under weak limits).We find that $\mathbf{v}_{\infty} \in X_{T, \gamma}$ and that

$$
\lim _{n_{k} \rightarrow+\infty} \int_{0}^{\frac{T}{\lambda^{2}}} \int_{B\left(0, \frac{1}{\lambda}\right)}\left|\mathbf{v}_{n_{k}}(s, y)-\mathbf{v}_{\infty}(s, y)\right|^{3} d s d y=0
$$

This proves that L_{ϵ} is compact.
If we assume moreover that \mathbf{b}_{n} is convergent to \mathbf{b}_{∞} in $X_{T, \gamma}$, then necessarily we have $\mathbf{B}_{\infty}=\mathbf{b}_{\infty} * \theta_{\epsilon, t}$, and $\mathbf{v}_{\infty}=L_{\epsilon}\left(\mathbf{b}_{\infty}\right)$. Thus, the relatively compact sequence \mathbf{v}_{n} can have only one limit point; thus it must be convergent. This proves that L_{ϵ} is continuous.

Lemma 14 Let $4 / 3<\gamma \leq 2$. If, for some $\mu \in[0,1]$, \mathbf{v} is a solution of $\mathbf{v}=\mu L_{\epsilon}(\mathbf{v})$ then

$$
\|\mathbf{v}\|_{X_{T, \gamma}} \leq C_{\mathbf{u}_{0}, \mathbb{F}, \gamma, T}
$$

where the constant $C_{\mathbf{u}_{0}, \mathbb{F}, \gamma, T}$ depends only on $\mathbf{u}_{0}, \mathbb{F}, \gamma$ and T (but not on μ nor on ϵ).

Proof: We have $\mathbf{v}=\mu \mathbf{w}$; with

$$
\left\{\begin{array}{c}
\partial_{t} \mathbf{w}=\Delta \mathbf{w}-\left(\left(\mathbf{v} * \theta_{\epsilon, t}\right) \cdot \nabla\right) \mathbf{w}-\nabla q+\nabla \cdot \mathbb{F} \\
\nabla \cdot \mathbf{w}=0, \\
\mathbf{w}(0, .)=\mathbf{u}_{0}
\end{array}\right.
$$

Multiplying by μ, we find that

$$
\left\{\begin{array}{c}
\partial_{t} \mathbf{v}=\Delta \mathbf{v}-\left(\left(\mathbf{v} * \theta_{\epsilon, t}\right) \cdot \nabla\right) \mathbf{v}-\nabla(\mu q)+\nabla \cdot \mu \mathbb{F} \\
\nabla \cdot \mathbf{v}=0, \\
\mathbf{v}(0, .)=\mu \mathbf{u}_{0}
\end{array}\right.
$$

We then use Corollary 6. We choose $T_{0} \in(0, T)$ such that

$$
C_{\gamma}\left(1+\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{T_{0}}\|\mathbb{F}\|_{L_{w_{\gamma}}^{2}}^{2} d s\right)^{2} T_{0} \leq 1
$$

Then, as

$$
C_{\gamma}\left(1+\left\|\mu \mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{T_{0}}\|\mu \mathbb{F}\|_{L_{w_{\gamma}}^{2}}^{2} d s\right)^{2} T_{0} \leq 1
$$

we know that

$$
\sup _{0 \leq t \leq T_{0}}\|\mathbf{v}(t, .)\|_{L_{w_{\gamma}}^{2}}^{2} \leq C_{\gamma}\left(1+\mu^{2}\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}+\mu^{2} \int_{0}^{T_{0}}\|\mathbb{F}\|_{L_{w_{\gamma}}^{2}}^{2} d s\right)
$$

and

$$
\int_{0}^{T_{0}}\|\nabla \mathbf{v}\|_{L_{w_{\gamma}}^{2}}^{2} d s \leq C_{\gamma}\left(1+\mu^{2}\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}+\mu^{2} \int_{0}^{T_{0}}\|\mathbb{F}\|_{L_{w_{\gamma}}^{2}}^{2} d s\right)
$$

In particular, we have

$$
\int_{0}^{T_{0}}\|\mathbf{v}\|_{L_{w_{3 \gamma / 2}}^{3}}^{3} d s \leq C_{\gamma} T_{0}^{1 / 4}\left(1+\left\|\mathbf{u}_{0}\right\|_{L_{w_{\gamma}}^{2}}^{2}+\int_{0}^{T_{0}}\|\mathbb{F}\|_{L_{w_{\gamma}}^{2}}^{2} d s\right)^{\frac{3}{2}}
$$

As \mathbf{v} is λ-DSS, we can go back from T_{0} to T.
Lemma 15 Let $4 / 3<\gamma \leq 2$. There is at least one solution \mathbf{u}_{ϵ} of the equation $\mathbf{u}_{\epsilon}=L_{\epsilon}\left(\mathbf{u}_{\epsilon}\right)$.

Proof : Obvious due to the Leray-Schauder principle (and the Schaefer theorem), since L_{ϵ} is continuous and compact and since we have uniform a priori estimates for the fixed points of μL_{ϵ} for $0 \leq \mu \leq 1$.

7.3 Proof of Theorem 5.

We may now finish the proof of Theorem [5. We consider the solutions \mathbf{u}_{ϵ} of $\mathbf{u}_{\epsilon}=L_{\epsilon}\left(\mathbf{u}_{\epsilon}\right)$.

By Lemma 14, \mathbf{u}_{ϵ} is bounded in $L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$, and so is $\mathbf{u}_{\epsilon} * \theta_{\epsilon, t}$. We then know, by Theorem 2 and Corollary 4, that the familly \mathbf{u}_{ϵ} is bounded in $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right)$ and $\nabla \mathbf{u}_{\epsilon}$ is bounded in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$.

We now use Theorem 3 and get that then there exists $p, \mathbf{u}, \mathbf{B}$ and a decreasing sequence $\left(\epsilon_{k}\right)_{k \in \mathbb{N}}$ (converging to 0) with values in $(0,+\infty)$ such that

- $\mathbf{u}_{\epsilon_{k}}$ converges ${ }^{*}$-weakly to \mathbf{u} in $L^{\infty}\left((0, T), L_{w_{\gamma}}^{2}\right), \nabla \mathbf{u}_{\epsilon_{k}}$ converges weakly to $\nabla \mathbf{u}$ in $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$
- $\mathbf{u}_{\epsilon_{k}} * \theta_{\epsilon_{k}, t}$ converges weakly to \mathbf{B} in $L^{3}\left((0, T), L_{w_{3 \gamma / 2}}^{3}\right)$
- the associated pressures $p_{\epsilon_{k}}$ converge weakly to p in $L^{3}\left((0, T), L_{w_{\frac{\epsilon_{\gamma}}{5}}}^{6 / 5}\right)+$ $L^{2}\left((0, T), L_{w_{\gamma}}^{2}\right)$
- $\mathbf{u}_{\epsilon_{k}}$ converges strongly to \mathbf{u} in $L_{\mathrm{loc}}^{2}\left([0, T) \times \mathbb{R}^{3}\right)$.

Moreover we easily see that $\mathbf{B}=\mathbf{u}$. Indeed, we have that $\mathbf{u} * \theta_{\epsilon, t}$ converges strongly in $L_{\text {loc }}^{2}\left((0, T) \times \mathbb{R}^{3}\right)$ as ϵ goes to 0 (since it is bounded by $\mathcal{M}_{\mathbf{u}}$ and converges, for each fixed t, strongly in $L_{\text {loc }}^{2}\left(\mathbb{R}^{3}\right)$); moreover, we have $\left|\left(\mathbf{u}-\mathbf{u}_{\epsilon}\right) * \theta_{\epsilon, t}\right| \leq \mathcal{M}_{\mathbf{u}-\mathbf{u}_{\epsilon}}$, so that the strong convergence of $\mathbf{u}_{\epsilon_{k}}$ to \mathbf{u} is kept by convolution with $\theta_{\epsilon, t}$ as far as we work on compact subsets of $(0, T) \times \mathbb{R}^{3}$ (and thus don't allow t to go to 0).

Thus, Theorem 5 is proven.

References

[1] A. Basson, Solutions spatialement homogènes adaptées des équations de Navier-Stokes, Thèse, Université d'Évry, 2006.
[2] Z. Bradshaw and T.P. Tsai, Discretely self-similar solutions to the Navier-Stokes equations with data in L_{loc}^{2}, to appear in Analysis and PDE.
[3] D. Chae and J. Wolf, Existence of discretely self-similar solutions to the Navier-Stokes equations for initial value in $L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{3}\right)$, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), 1019-1039..
[4] L. Grafakos, Classical harmonic analysis (2nd ed.), Springer, 2008.
[5] L. Grafakos, Modern harmonic analysis (2nd ed.), Springer, 2009.
[6] H. Jia and V. Šverák, Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions, Invent. Math. 196 2014, 233-265.
[7] N. Kikuchi and G. Seregin, Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality, in Nonlinear equations and spectral theory. Amer. Math. Soc. Transl. Ser. 2, 220, M.S. Birman and N.N. Uraltseva eds., 2007, 141-164.
[8] P.G. Lemarié-Rieusset, Solutions faibles d'énergie infinie pour les équations de Navier-Stokes dans \mathbb{R}^{3}, C. R. Acad. Sci. Paris, Serie I. 328 (1999), 1133-1138.
[9] P.G. Lemarié-Rieusset, Recent developments in the Navier-Stokes problem, CRC Press, 2002.
[10] P.G. Lemarié-Rieusset, The Navier-Stokes problem in the 21st century, Chapman \& Hall/CRC, (2016).
[11] J. Leray, Essai sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math. 63 (1934), 193-248.

[^0]: *LaMME, Univ Evry, CNRS, Université Paris-Saclay, 91025, Evry, France
 ${ }^{\dagger}$ e-mail : pedro.fernandez@univ-evry.fr, pedrodalgo16@gmail.com
 ${ }^{\ddagger}$ LaMME, Univ Evry, CNRS, Université Paris-Saclay, 91025, Evry, France
 ${ }^{\S}$ e-mail : pierregilles.lemarierieusset@univ-evry.fr

