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Abstract

In this paper, we consider the damped Navier-Stokes-Bardina model posed on the whole three-
dimensional. These equations arise from some oceanic model and, from the mathematical point of view,
they write down as the well-know Navier-Stokes equations with an additional nonlocal operator in their
nonlinear transport term, and moreover, with an additional damping term depending of a parameter. We
study first the existence and uniqueness of global in time weak solutions in the energy space. Thereafter,
we are interested in describing their long time behavior. For this, we use some tools in the theory of dy-
namical systems to prove the existence of a global attractor, which is compact subset in the energy space
attracting all the weak solutions when the time goes to infinity. Moreover, we derive an upper bound for
the fractal dimension of the global attractor associated to these equations. Finally, for a particular choice
of the damping parameter, we are also able to give an acutely description of its internal structure.

Keywords: Narvier-Stokes equations; Bardina’s model; Global attractor; Stationary solutions; Asymp-
totically and orbital stability.

AMS Classification: 35B40, 35D30.

∗manuel.cortez@epn.edu.ec
†corresponding author: oscar.jarrin@udla.edu.ec

1



1 Introduction

The theory of partial differential equations (PDEs) is a broad research field, rapidly growing in close con-
nections with other mathematical disciplines and applied sciences. The connections between the theories of
dynamical systems and PDEs will be explored from several points of view. Infinite-dimensional dynamical
systems generated by evolutionary PDEs provide the most immediate examples of interplay between the two
theories. Extensions of well established results and techniques from finite-dimensional dynamical systems
(invariant manifolds and bifurcations) have proved very useful in qualitative studies of PDEs. On the other
hand, specific questions for PDEs brought about stimulating problems in the theory of dynamical systems,
such as the existence of finite-dimensional attractors and their behavior under (regular or singular) pertur-
bations. Entire (or eternal) solutions, which emerged as key objects in these problems, have long served as
organizing centers for qualitative investigations of dissipative evolutionary PDEs and they continue to play
an important role in other modern approaches to PDEs.

It is well-known that the dynamic of an incompressible fluid, which we will assume on the whole space
R3, is successfully described by the classical, homogeneous and incompressible Navier-Stokes equations:

∂t~v + div(~v ⊗ ~v)− ν∆~v + ~∇q = 0, div(~v) = 0, (1)

where, ~v : [0,+∞[×R3 → R3 and q : [0,+∞[×R3 → R are the velocity of the fluid and the pressure term
respectively, the parameter ν > 0 represents the kinetic viscosity parameter which we will keep fix. More-
over, the equation div(~v) = 0 describes the fluid’s incompressibility.

Although the Navier-Stokes equations are a relevant physical model used in many applications, see for
instance the book [26], the mathematical theory of these equations is not yet sufficient to prove the global
well-posedness of the so-called Leray’s solutions, and the uniqueness of these solutions remains a very chal-
lenging open question. In order to contour this problem, researchers who are investigating the use of the
Navier-Stokes equations in practical applications [4] have applied some operators to these equations, to
obtain regularized versions of the Navier-Stokes equations where the weak solutions are well-posed.

The idea is to introduce a regularized velocity field ~u(t, x) in terms of the original velocity field ~v(t, x)
given by the equation (1) leading a variety of so-called α− models for the Navier-Stokes equations. See for
instance the Chapter 17 of the book [21]. In this context, for a parameter α > 0, J. Bardina, J. H. Ferziger,
& W. C. Reynolds introduced in [5] the operator (·)α, given by solving the Helmholtz equation:

−α2∆(ϕ)α + (ϕ)α = ϕ.

The operator (·)α is also called the filtering/averaging operator, due to the fact that this operator allows
us to obtain an accurate model describing the large-scale motion of the fluid while filtering or averaging the
fluid motion at scales smaller than α.

On the other hand, from the mathematical point of view, we may observe in the whole space R3, and
denoting by Id the identity operator, the expression (ϕ)α is given by

(ϕ)α = (−α2∆ + Id)
−1ϕ, (2)

where the action of the operator (−α2∆ + Id)
−1, also known as the Bessel Potential, could be easily defined

in the Fourier variable as F
(
(−α2∆ + Id)

−1ϕ
)

(ξ) = (α2|ξ|2 + 1)−1ϕ̂(ξ) for all ϕ ∈ S(R3). For a more ex-
haustive study of Bessel Potentials see the Chapter 6 of the book [14].

Applying the operator (·)α to the Navier-Stokes equations (1), we get the following equations for the
regularized velocity (~v)α, and the regularized pressure (q)α:

∂t(~v)α + div((~v ⊗ ~v))α − ν∆(~v)α + ~∇(q)α = 0, div((~v)α) = 0.
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However, there is still a problem to overcome. These regularized Navier-Stokes equations are not a closed
system in the sense that, due to the regularized nonlinear term: div((~v ⊗ ~v))α, the system does not write
down only in terms of the regularized velocity (~v)α and the regularized pressure (q)α. More precisely, we
have the identity

div((~v ⊗ ~v))α = div ((~v)α ⊗ (~v)a) + div(R(~v,~v)),

where the remainder term

R(~v,~v) = (~v ⊗ ~v)α − (~v)α ⊗ (~v)α,

is known as the Reynolds stress tensor. See, e.g., [7] for more details on this term.

In order to obtain a closed system, W. Layton & R. Lewandowski propose in [19] to approximate the
Reynolds stress tensor as follows:

R(~v,~v) ≈ ((~v)α ⊗ (~v)α)α − (~v)α ⊗ (~v)α.

Hence, replacing this approximation of the term R(~v,~v) in the identity for the nonlinear term above, we
obtain the following approximation for the nonlinear term:

div((~v ⊗ ~v))α ≈ div (((~v)α ⊗ (~v)α)α) .

This approximation of the nonlinear term has been successfully used in many practical applications
[7, 10]; and it finally leads us to the following closed system:

∂t(~u)α + div (((~v)α ⊗ (~v)α)α)− ν∆(~u)α + ~∇(p)α = 0. div((~u)α) = 0.

To simplify the notation, we shall write the regularized functions (~v)α and (q)α as ~u and p respectively; and
we thus obtain the so-called Navier-Stokes-Bardina model:

∂t~u+ div((~u⊗ ~u)α)− ν∆~u+ ~∇p = 0, div(~u) = 0, ~u(0, ·) = ~u0, α > 0, ν > 0. (3)

where the initial ~u0 denotes the (regularized) velocity of the fluid at the time t = 0.

The first mathematical studies for these equations were given by W. Layton & R. Lewandowski in [18]
in the space-periodic case. In this setting, for an initial datum ~u0 ∈ H1(T2), where for L > 0, T3 denotes
the periodic box [0, 2πL]3, and for all time T > 0, it is proven the existence and the uniqueness of a weak
solution (~u, p) which verifies ~u ∈ L∞([0, T [, H1(T3)) ∩L2([0, T [, Ḣ2(T3)). More recently, using a variational
formulation of the equation (3), and some a priori energy estimates, L. C. Berselli & R. Lewandowski ex-
tended in [6] the previous well-posedness results ( given for the periodic case) to the whole space R3. See
also the Chapter 17.5 of the book [21] for an alternative proof of this result. Moreover, in the same work
[6], the regularity of weak solutions is also studied and it is proven that, for all time t > 0, the unique weak
solution (~u(t, ·), p(t, ·)) of the Navier-Stokes-Bardina equations (3) belongs to the Sobolev space Hm(R3) for
all entire m ≥ 0.

On the other hand, another relevant issue for the Navier-Stokes Bardina’s model is the asymptotic
properties of weak solutions when times goes to infinity. From a physical perspective, this problem is also
interesting when the Navier-Stokes Bardina’s model is used to perform numerical simulations related to
the turbulence description [4]. The main idea is to consider an external force term ~f in the equations
Navier-Stokes-Bardina’s model, which is assumed to be a stationary (time-independing) vector field. This
stationarity assumption is a simplification of the physical model. Indeed, the idea behind of this physical
model is that we will assume that a time independing external source acts on the fluid and put its in
a perpetual turbulent state. In this scenario, we are thus interested in understanding the behavior of the
velocity ~u(t, ·) when the time t is large enough. It is also worth mention that if we consider a time-dependent
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force then we will need to find an appropriate time interval in which the fluid is turbulent and this is a
highly non-trivial issue. See the Chapter 1 of [17] for a more detailed discussion. Thus, for a stationary
external force ~f : R3 → R3, we obtain the following forced equations:

∂t~u+ div((~u⊗ ~u)α)− ν∆~u+ ~∇p = ~f, div(~u) = 0, ~u(0, ·) = ~u0, α > 0, ν > 0.

In the space-periodic setting, the long-time behavior of solutions was studied in [7]. In that work, using
the Poincaré inequality the authors obtain good controls on the quantity ‖~u(t, ·)‖H1(T3) when the time t
goes to infinity. More precisely, for a constant η > 0, and for all time t ≥ 0, they get the following estimate:

‖~u(t, ·)‖2L2(T3) + α ‖~u(t, ·)‖2
Ḣ1(T3)

. e−η t
(
‖~u0‖2L2(T3) + α‖~u0‖2Ḣ1(T3)

)
+ ‖~f‖2L2(T3) + α‖~f‖2

Ḣ1(T3)
.

Hence, for t > 0 large enough, we may observe that the norm ‖~u(t, ·)‖H1(T3), expressed by the equivalent

quantity ‖~u(t, ·)‖2L2(T3) + α ‖~u(t, ·)‖2
Ḣ1(T3)

, is controlled uniformly in time by the quantity involving the ex-

ternal force: ‖~f‖2L2(T3) + α‖~f‖2
Ḣ1(T3)

; and this control is one of the key tools to apply the classical theory of

dynamical systems to study the long time behavior of solutions ~u(t, ·). Specifically, the authors prove the
existence of a global attractor for the Navier-Stokes-Bardina equations with space-periodic conditions. In
Section 2 below, we recall the definition of a global attractor and introduce more detail all the tools in the
theory of dynamical systems used to perform this study.

Now, in the non-periodic setting of the whole space R3, and due to the lack of the Poincaré inequality,
we can only obtain the following not so useful estimate in time (see the details in Appendix ())

‖~u(t, ·)‖2L2(R3) + α ‖~u(t, ·)‖2
Ḣ1(R3)

. ‖~u0‖2L2(R3) + α‖~u0‖2Ḣ1(R3)
+ t
(
‖~f‖2L2(R3) + α‖~f‖2

Ḣ1(R3)

)
,

and here we clearly loose any control in time when t goes to infinity. To contour this problematic, some
previous works related to the study of the long-time behavior for the Navier-Stokes equations and related
models [13, 16, 17] suggest to compensate the lack of the Poincaré inequality by adding in the forced equa-
tion a supplementary damping term of the form −β~u, where β > 0 is a damping parameter. It is worth
mention that another (merely technical) damping terms can be considered to study the long-time behavior
of the Navier-Stokes equations on the whole space [9, 20]. However, we will consider here the damping term
−β~u, since this term has a physical meaning as a drag-friction term in some oceanic models [23], and then,
it is also interesting from the physical point of view.

Thus, we shall consider here the following Cauchy problem of the damped Navier-Stokes-Bardina’s model
for incompressible fluids in the whole space R3:

∂t~u+ div((~u⊗ ~u)α)− ν∆~u+ ~∇p = ~f − β~u, α > 0, β > 0, ν > 0,

div(~u) = 0,

~u(0, ·) = ~u0, div(~u0) = 0.

(4)

When β = 0, the system (4) writes down as the classical Navier-Stokes-Bardina’s model. However, all
the results we obtained in this article deeply depend on the the parameter β > 0 and, from now on, we will
focus on this model, where, our main objective is to describe the long-time behavior of its solutions.

2 Statement of the results

Our first main result is devoted to the well-posedness of equations (4) in the energy space.
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Theorem 1 Let ~u0 ∈ H1(R3) be the initial datum such that div(~u0) = 0. Moreover, let ~f ∈ H1(R3) be
a stationary external force such that div(~f) = 0. Then, for all α > 0 and β > 0 there exists a couple of
functions ~u = ~uα,β ∈ L∞([0,+∞[, H1(R3)) ∩ L2

loc([0,+∞[, Ḣ2(R3)), and p = pα,β ∈ L2
loc([0,+∞[, H3(R3)),

such that (~u, p) is the unique weak solution of (4). Moreover, this solution verifies the following energy
equality for all t ≥ 0:

‖~u(t, ·)‖2L2 + α2‖~u(t, ·)‖2
Ḣ1 + 2ν

∫ t

0
‖~u(s, ·)‖2

Ḣ1ds+ 2α2

∫ t

0
‖~u(s, ·)‖2

Ḣ2ds = ‖~u0‖2L2 + α2‖~u0‖2Ḣ1

+ 2

∫ t

0

(
〈~f, ~u(s, ·)〉L2×L2 + α2〈~∇⊗ ~f, ~∇⊗ ~u(s, ·)〉L2×L2

)
ds− 2β

∫ t

0

(
‖~u(s, )‖2L2 + α2‖~u(s, ·)‖2

Ḣ1

)
ds.

(5)

Comparing this result with the classical result on the existence of Leray’s weak solutions for the Navier-
Stokes equations (1), we may observe two main differences. First, we have here the uniqueness of the weak
solution in the energy space, and moreover, this solution verifies an energy equality. These facts are due
to filtering operator (·)α (defined in expression (2)) in the nonlinear transport term. As mentioned, the
filtering operator regularizes the classical nonlinear term in the framework of the non homogeneous Sobolev
spaces, providing the weak solutions of the equations (4) these good properties. In particular, the unique-
ness of weak solutions is the key idea to study their long-time behavior and we will get back to this point later.

Another important contribution of the filtering operator (·)α is the fact that, following some of the ideas
in [6], for t > 0 the regularity (in the spatial variable) of the weak solution ~u(t, ·) constructed in this theorem
could be improved to Sobolev spaces of higher order (provided that the external force is regular enough).
However, the natural regularity given by the energy space is enough to study the asymptotic time behavior
of the solution ~u(t, ·).

Concerning the damping term −β~u, is it worth mention this term allows us to derive the following
controls in time. These estimates will be very useful when we studying the large-time behavior of weak
solutions.

Proposition 1 Within the framework of Theorem 1, the solution ~u(t, ·) verifies the following estimates.

1) For all t ≥ 0:

‖~u(t, ·)‖2L2 + α2‖~u(t, ·)‖2
Ḣ1 ≤

(
‖~u0‖2L2 + α2‖~u0‖2Ḣ1

)
e−β t +

4

β2

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
. (6)

2) For all t ≥ 0 and T ≥ 0:

ν

∫ t+T

t
‖~u(s, ·)‖2

Ḣ1ds+ α2

∫ t+T

t
‖~u(s, ·)‖2

Ḣ2ds ≤
2T

β

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
+ ‖~u(t, ·)‖2L2 + α2‖~u(t, ·)‖2

Ḣ1 .

(7)

The uniqueness of global weak solutions constructed in Theorem 1 will be one of the key tools to study
their long-time asymptotic behavior. Inspired by [16], our approach will be given through the language of
the dynamical systems. Before to state our next result, for the sake of a complete exposition, we will set
first some notations and we will recall some classical definitions in the theory of dynamical systems. We
refer to [24, 25] and the references therein for more details.

From now on, we fix the filtering parameter α > 0. Then, we define the space H1
α(R3) as the Banach

space of divergence free vector fields ~g ∈ H1(R3) with the norm ‖~g‖H1
α

= ‖~g‖L2 + α‖~g‖Ḣ1 . This equivalent
norm on the space H1(R3) naturally appears in the estimate (6), which will be useful in the proof of our
next result below.
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The key link between the equation (4) and the framework of dynamical systems is the fact that for a given
(stationary and divergence free) external force ~f ∈ H1

α(R3), the equation (4) defines a semigroup acting on
the Banach space H1

α(R3). More precisely, for a time t ≥ 0 we define the semigroup S(t) : H1
α(R3)→ H1

α(R3)
as

S(t)~u0 = ~u(t, ·), for all ~u0 ∈ H1
α(R3), (8)

where ~u(t, ·) is the unique global weak solution of equation (4) arising from the initial datum ~u0 and con-
structed in Theorem 1. Due to the uniqueness of weak solutions, it is easy to verify that the family (S(t))t≥0

given in (8) defines a (strongly continuous) semigroup on the Banach space H1
α(R3).

The study of the long-time asymptotics of weak solutions for equation (4) can be treated through the
study of the semigroup S(t) when t → +∞. More precisely, our aim is to prove that this semigroup has a
global attractor whose definition we recall as follows.

Definition 1 Let (S(t))t≥0 be the semigroup given in (8) acting on the Banach space H1
α(R3). A global

attractor for the semigroup (S(t))t≥0 is a set A ⊂ H1
α(R3) which verifies:

1) The set A is compact in H1
α(R3).

2) The set A is strictly invariant: for all time t ≥ 0 we have S(t)A = A.

3) For every bound set B ⊂ H1
α(R3) and for every neighborhood V ⊂ H1

α(R3) of the set A, there exists a
time T = T (B,V) > 0, depending on the set B and the neighborhood V, such that for all time t > T
we have S(t)B ⊂ V.

In this definition we focus on point 3) to remark that, roughly speaking, a global attractor attires the
image through the semigroup S(t) of all bounded set B ⊂ H1

α(R3) when t→ +∞. This property allows us
to have a better comprehension of the long-time behavior of weak solutions for the equation (4). Indeed, we
observe first that for all initial data ~u0 ∈ H1

α(R3), setting the bounded set B = {~u0}, and moreover, setting
V any neighborhood of the attractor A, then we find that the solution ~u(t, ·) of the equation (4) (arising
from the initial datum ~u0) lies in the neighborhood V from a time T = T (~u0,V). Consequently, from any
initial datum ~u0 the solution ~u(t, ·) is as close to the attractor A as we want when t→ +∞.

In our second main result, we prove the existence of a global attractor for the semigroup (S(t))t≥0

associated to equation (4).

Theorem 2 Let ~f ∈ H1(R3) be a stationary and divergence free external force. Let (S(t))t≥0 be the semi-
group associated to (4) defined in (8). Then, this semigroup has a global attractor A~f

, depending on the

external force ~f , given by Definition 1.

Once we have proven the existence of a global attractor for the equation (4), our general aim is to give
more precisely descriptions of the set A~f

. Thus, to present all our results in an orderly fashion, we divided
them in four sections below.

Fractal dimension of the global attractor

As the global attractor is a compact set of H1
α(R3), it is natural to measure its size in some sense; and this is

the aim of our next result. Specifically, we prove that the global attractor A~f
has a finite fractal dimension,

and moreover, we derive an explicit upper bound for this dimension in terms of the parameter α, β, ν and
the norm of the external force ‖~f‖H1

α
. For this, we will quickly recall the definition of the fractal dimension

through the so-called box-counting method. For more details we refer the reader to [2, 25] and the references
therein.
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Let A~f
⊂ H1

α(R3) be the global attractor associated to equation (4). Then, by the Hausdorff criterion,

for every ε > 0 it can be covered by the finite number of ε−balls in H1
α(R3). Let Nε(A~f

) be the minimal
number of such balls. We thus have the following definition.

Definition 2 The fractal (box-counting) dimension of the attarctor A~f
in H1

α(R3) is defined via the following
expression:

dim
(
A~f

)
= lim sup

ε→0

ln Nε(A~f
)

ln
(

1
ε

) .

In our third result we derive an explicit upper bound of dim
(
A~f

)
.

Theorem 3 Let the assumptions of Theorem (2) hold. Then the fractal dimension of the global attractor
A associates to equation (4) satisfies the following estimate:

dim
(
A~f

)
≤ c(α, β, ν) max

(
‖~f‖14/5

H1
α
, ‖~f‖2H1

α

)
, (9)

where the constant c(α, β, ν) > 0, depending only of the parameters α, β and ν, is explicitly given in the
formula (57).

We observe in this estimate that the fractal dimension of the global attractor A~f
is essentially controlled

for above by the size of the external force ~f in the space H1
α(R3). This type of control was also pointed

out in [16], for the case of the two-dimensional and damped Navier-Stokes equations, while, for the Navier-

Stokes-Bardina’s model in the space-periodic case, similar upper bounds on dim
(
A~f

)
were established in

[7]. Finally, let us mention that this is a first estimation for an upper bound of dim
(
A~f

)
and the optimally

of this upper bound, or moreover the derivation of some lower bounds, are matter of further investigations.

Internal structure of the global attractor

We are also interested in characterizing the global attractor A~f
. By [2],[3] and [24] it is well-known that the

global attractor can be described through a particular kind of solution for the equations (4). Such solutions
are called the eternal solutions which, as we will observe in the following definition, they do not arise from
any initial data and they are actually defined for all time t ∈ R.

Definition 3 Let ~f ∈ H1
α(R3) be a stationary and divergence-free external force. We say a couple (~v, q) is

an eternal solution for the damped Navier-Stokes-Bardina equations with force ~f , if

~v ∈ L∞loc
(
R,H1

α(R3)
)
∩ L2

loc(R, Ḣ2(R3)), q ∈ L2
loc(R, Ḣ3(R3)),

and if (~v, q) is a weak solution of the equations

∂t~v + div((~v ⊗ ~v)α)− ν∆~v + ~∇q = ~f − β~v, div(~v) = 0. (10)

In Proposition 4.2 below, we prove the existence of eternal solutions for the damped Navier-Stokes-
Bardina’s model.

Denoting by E~f the set of all the bounded eternal solutions (~v, q) associated to the force ~f , i.e., the

eternal solutions verifying ~v ∈ L∞(R,H1
α(R3)), by Lemma 2.18 (page 16) in [24], we have that the global

attractor A~f
given by the Theorem 2 has the following structure:

A~f
= E~f

∣∣∣
t=0

. (11)
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In other words, the global attractor A~f
of the equations (4) consists of the set of functions ~v(0, ·), where

~v(t, ·) is an bounded eternal solution of the damped Navier-Stokes-Bardina equations given in Definition 3,
and thus, its internal structure is explicitly described by the identity above.

On the other hand, a particular case of eternal solutions for the damped Navier-Stokes-Bardina equations
are the stationary solutions. These solutions, which will be denoted by (~U, P ), only depend on the spatial
variable and solve the following elliptic equation:{

−ν∆~U + div((~U ⊗ ~U)α) + ~∇P = ~f − β~U, α > 0, β > 0, ν > 0,

div(~U) = 0.
(12)

In our next result, we prove first the existence of stationary solutions, and moreover, we investigate their
relation with the global attractor.

Theorem 4 Let ~f ∈ H1
α(R3) be the external force such that div(~f) = 0. Then, the following statements

hold:

1) There exist ~U ∈ H2(R3) and P ∈ H1(R3) such that the couple (~U, P ) is a solution of the equation
(12).

2) All the stationary solutions verify the estimate: ‖~U‖2H1
α
≤ να2‖~U‖2

Ḣ2 ≤
2

β2
‖~f‖2H1

α
.

3) All the stationary solutions belong to the global attractor A~f
.

We have the following comments. The result given in point 1) establishes the existence of stationary
solutions for the damped Navier-Stokes-Bardina equation with any external force, and thus, this is a general
result for the elliptic equation (12) which is also of independent interest. In Section 6 we comment more in
details our strategy to prove this point which is based in the Scheafer’s fixed point argument. Moreover, it
is worth mention the uniqueness issue for the stationary solutions, in the general case of any external force,
seems to be more delicate and it is matter of further investigations.

On the other hand, in point 2) we show that all the stationary solutions belong to the space H1
α(R3) and

their norms are always controlled by the norm of the external force. Finally, maybe the most interesting
feature on the stationary solutions is given in point 3), where we ensure that all the stationary solutions
fallen inside the global attractor A~f

.

Additional properties of the global attractor driven by the damping parameter

In this section, we study the role of the damping parameter β > 0 in the description of the global attractor
for the equation (4). We start by setting some notation. For the external force ~f ∈ H1

α(R3), and for a
numerical constant c > 0, we introduce the following quantity depending on the damping parameter β > 0:

η(β) =
c

α5/2β
‖~f‖H1

α
− β. (13)

In our next result we prove that in the case when the parameter β > 0 is big enough, in the sense that
this quantity verifies η(β) ≤ 0, we are able to give sharp properties of the global attractor. More precisely,
we will consider first the case when β > 0 is such that η(β) = 0. In this case, we study some kind of stability
of the elements of the global attractor, also called the orbital stability, which its definition we recall below.
For more references see the Section 1.1 of [8].
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We say that ~u0 ∈ H1
α(R3) is orbitally stable if for all ε > 0, there exists δ = δ(ε) > 0, such that for all

~v0 ∈ H1
α(R3) verifying

‖~u0 − ~v0‖H1
α
≤ δ,

then the solutions ~u(t, ·) and ~v(t, ·) to the equation (4) arising from ~u0 and ~v0 respectively, satisfy

sup
t≥0
‖~u(t, ·)− ~v(t, ·)‖H1

α
≤ ε.

On the other hand, when β > 0 is such that η(β) < 0, we go further in the description of the global
attractor A~f

. In this case, surprisingly, the global attractor contains a single element given by the unique

solution of the stationary equation (12).

Summarizing, our result on the role of the damping parameter β > 0 in the description of the global
attractor reads as follows.

Theorem 5 Let A~f
⊂ H1

α(R3) be global attractor of the equations (4) given by Theorem 2. Then, the
following statements hold:

1) If β > 0 is such that η(β) = 0, then all the elements in the attractor A~f
are orbitally stable.

2) If β > 0 is such that η(β) < 0, then the stationary solution (~U, P ) of equation (4) given by Theorem 4
is unique. Moreover, the global attractor A~f

only contains the unique stationary solution of equation

(4).

The result given in point 2) ensures that as long as the damping parameter β is such that η(β) < 0, all the
weak solutions of the damped Navier-Stokes-Bardina equation (4) are attracted by the unique stationary
solution of this equation when the time is large enough. In this case, we are also able to give a sharp
asymptotic profile in time of the solutions to the equation (4).

Proposition 2 Within the framework of point 2) in Theorem 5, let ~U ∈ A~f
be the unique solution of the

stationary problem (12). Then, for all x ∈ R3 fixed, all the solutions of the equation (4) have the following
asymptotic profile in time:

~u(t, x) = ~U(x) +R~u(t, x), t > 0, (14)

where the remainder term R~u(t, x) is a vector field depending on ~u, which verify the following time decaying

‖R~u(t, ·)‖L∞ ≤ C t−3/4, t� 1, (15)

with a constant C > 0 depending on the the parameters α, β, ν, the initial value ~u(0, ·), and ~f , ~U .

The damped Navier-Stokes-Bardina’s model without external force

Finally, in this last part we consider the damped Navier-Stokes-Bardina equations in the particular case of
a zero external force.

∂t~u+ div((~u⊗ ~u)α)− ν∆~u+ ~∇p = −β~u, α > 0, β > 0, ν > 0,

div(~u) = 0,

~u(0, ·) = ~u0, div(~u0) = 0.

(16)

In this case, we give a sharp description of the global attractor associated with the zero force, more
precisely, we show that the global attractor of this equation only contains the zero function. Moreover, we
prove that all the weak solutions to the equation (16) have a fast (exponential) convergence rate to zero
when the time goes to infinity.

9



Proposition 3 For the equation (16), the unique global attractor verifies A0 = {0}. Moreover, all the weak
solutions u(t, x) given by Theorem 1 verify:

‖~u(t, ·)‖Lp ≤ C e−
2β
p
t
, 2 ≤ p < +∞, t� 1,

where the constant C > 0 depends on the initial datum ~u(0, ·) and the parameter p.

3 Global well-posedness in the energy space

Proof of Theorem 1

The proof of this theorem is rather straightforward and it follows essentially the same lines of the classical
framework. The first step is to solve the following integral problem:

~u(t, ·) = eνt∆~u0 +

∫ t

0
eν(t−s)∆ ~fds−

∫ t

0
eν(t−s)∆Pdiv((~u⊗ ~u)α)(s, ·)ds− β

∫ t

0
eν(t−s)∆~u(s, ·)ds, (17)

in the energy space ET = L∞([0, T ], H1(R3)) ∩ L2([0, T ], Ḣ2(R3)) (with 0 < T < +∞) with the norm
‖ · ‖T = ‖ · ‖L∞t H1

x
+ ‖ · ‖L2

t Ḣ
2
x
. We write

‖~u(t, ·)‖T ≤
∥∥∥∥eνt∆~u0 +

∫ t

0
eν(t−s)∆ ~fds

∥∥∥∥
T︸ ︷︷ ︸

(a)

+

∥∥∥∥∫ t

0
eν(t−s)∆Pdiv((~u⊗ ~u)α)(s, ·)ds

∥∥∥∥
T︸ ︷︷ ︸

(b)

+β

∥∥∥∥∫ t

0
eν(t−s)∆~u(s, ·)ds

∥∥∥∥
T︸ ︷︷ ︸

(c)

.

The term (a) is classical to treat. For the term eνt∆~u0 we have the following estimate (see the proof of
Theorem 7.1, page 131 of the book [21]):

‖eνt∆~u0‖ET ≤ c(1 + 1/
√

2ν)‖~u0‖H1 . (18)

Moreover, to study the term

∫ t

0
eν(t−s)∆ ~fds, we shall use the following well-known estimates. See the

Lemma 7.2, page 129 of the book [21].

Lemma 3.1 Let g ∈ L2([0, T ], L2(R3)) and let G(t, x) =

∫ t

0
eν(t−s)∆g(s, x)ds. Then, G(t, x) belongs to the

space ET and we have the following estimates:

1) ‖G(t, ·)‖L∞t L2
x
≤ c
√
T ‖g‖L2

tL
2
x
.

2) ‖G(t, ·)‖L∞t Ḣ1
x
≤ c√

2ν
‖g‖L2

tL
2
x
.

3) ‖G(t, ·)‖L2
t Ḣ

2
x
≤ c

ν
‖g‖L2

tL
2
x
.

Thus, in this lemma we set g = ~f , and moreover, since ~f is a time-independing function then we have∥∥∥∥∫ t

0
eν(t−s)∆ ~fds

∥∥∥∥
ET

≤ c(
√
T + 1/

√
2ν + 1/ν)‖~f‖L2

tL
2
x
≤ c(
√
T + 1/

√
2ν + 1/ν)

√
T‖~f‖L2

≤ c(
√
T + 1/

√
2ν + 1/ν)

√
T‖~f‖H1 . (19)

At this point, we set the time T ≤ 1 and then by the estimates (18) and (19) we can write∥∥∥∥eνt∆~u0 +

∫ t

0
eν(t−s)∆ ~fds

∥∥∥∥
T

≤ c(1 + 1/
√

2ν + 1/ν)(‖~u0‖H1 + ‖~f‖H1) ≤ cν(‖~u0‖H1 + ‖~f‖H1). (20)
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We study now the term (b). We recall first that by (2) we have (~u⊗ ~u)α = (−α2∆ + Id)(~u⊗~u) and then, by
well-known properties of the Bessel potential (−α2∆ + Id)

−1, we can write (−α2∆ + Id)
−1(~u⊗ ~u) = Kα ∗ (~u⊗ ~u),

where the kernel Kα(x) has good decaying properties. In particular we have ‖Kα‖L1 ≤ cα, for a constant
0 < cα < +∞ depending on α > 0 (see the Section 6.1.2 of the book [14] for all the details).

With this remark in mind, we start by estimating the quantity

∥∥∥∥∫ t

0
eν(t−s)∆Pdiv((~u⊗ ~u)α)(s, ·)ds

∥∥∥∥
L∞t L

2
x

.

For 0 < t ≤ T fix, by the Young inequalities, and moreover, by the continuity of the Leray projector in the
Lebesgue spaces, we write∥∥∥∥∫ t

0
eν(t−s)∆Pdiv((~u⊗ ~u)α)(s, ·)ds

∥∥∥∥
L2

≤
∫ t

0
‖eν(t−s)∆Pdiv((~u⊗ ~u)α)(s, ·)‖L2ds

≤
∫ t

0
‖eν(t−s)∆Pdiv(Kα ∗ (~u⊗ ~u))(s, ·)‖L2ds ≤

∫ t

0

∥∥∥Kα ∗
(
eν(t−s)∆Pdiv(~u⊗ ~u)

)
(s, ·)

∥∥∥
L2
ds

≤ cα

∫ t

0

∥∥∥eν(t−s)∆Pdiv(~u⊗ ~u)(s, ·)
∥∥∥
L2
ds ≤ cν,α

∫ t

0
‖div(~u⊗ ~u)(s, ·)‖L2 ds

≤ cν,α

∫ t

0
‖~u⊗ ~u(s, ·)‖Ḣ1ds ≤ cν,α T 1/2 ‖~u⊗ ~u‖L2

t Ḣ
1
x
.

Here we shall need the following technical lemma.

Lemma 3.2 We have ‖~u⊗ ~u‖L2
t Ḣ

1
x
≤ c T 1/4 ‖~u‖2ET .

Proof. Using first the product laws in the homogeneous Sobolev spaces (see the Lemma 7.3, page 130 of the
book [21]) and then, using the Hölder inequalities in the time variable we get ‖~u⊗ ~u‖L2

t Ḣ
1
x
≤ c ‖~u‖

L4
t Ḣ

3/2
x
‖~u‖L4

t Ḣ
1
x
.

Thereafter, to estimate the quantity ‖~u‖
L4
t Ḣ

3/2
x

, we use the interpolation inequalities (first in the spatial vari-

able and then in the temporal variable) and we have ‖~u‖
L4
t Ḣ

3/2
x
≤ c‖~u‖1/2

L∞t Ḣ
1
x
‖~u‖1/2

L2
t Ḣ

2
x
≤ c‖~u‖ET . Finally, the

quantity ‖~u‖L4
t Ḣ

1
x

is directly estimated as follows: ‖~u‖L4
t Ḣ

1
x
≤ c T 1/4‖~u‖L∞t Ḣ1

x
≤ c T 1/4‖~u‖ET . �

With this estimate at hand, and recalling that we have assumed T ≤ 1, we can write∥∥∥∥∫ t

0
eν(t−s)∆Pdiv((~u⊗ ~u)α)(s, ·)ds

∥∥∥∥
L∞t L

2
x

≤ cν,α T 1/4‖~u‖2ET . (21)

We study now the quantity

∥∥∥∥∫ t

0
eν(t−s)∆Pdiv((~u⊗ ~u)α)(s, ·)ds

∥∥∥∥
L∞t Ḣ

1
x

. By point 2) in Lemma 3.1, where

we set now g = Pdiv((~u⊗ ~u)α), and moreover, by Lemma 3.2 we can write∥∥∥∥∫ t

0
eν(t−s)∆Pdiv((~u⊗ ~u)α)(s, ·)ds

∥∥∥∥
L∞t Ḣ

1

≤ cν ‖Pdiv((~u⊗ ~u)α‖L2
tL

2
x
≤ cν ‖Kα ∗ (Pdiv(~u⊗ ~u)) ‖L2

tL
2
x

≤ cν,α ‖~u⊗ ~u‖L2
t Ḣ

1
x
≤ cν,α T 1/4 ‖~u‖2ET . (22)

Finally, we study the quantity

∥∥∥∥∫ t

0
eν(t−s)∆Pdiv((~u⊗ ~u)α)(s, ·)ds

∥∥∥∥
L2
t Ḣ

2
x

. As the previous quantity, by

point 3) in Lemma 3.1 and moreover by Lemma 3.2 we have∥∥∥∥∫ t

0
eν(t−s)∆Pdiv((~u⊗ ~u)α)(s, ·)ds

∥∥∥∥
L2
t Ḣ

2

≤ cν ‖Pdiv((~u⊗ ~u)α‖L2
tL

2
x
≤ cν,α T 1/4 ‖~u‖2ET . (23)
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Thus, gathering the estimates (21), (22) and (23) we obtain∥∥∥∥∫ t

0
eν(t−s)∆Pdiv((~u⊗ ~u)α)(s, ·)ds

∥∥∥∥
ET

≤ cν,α T 1/4 ‖~u‖2ET . (24)

It remains to estimate the term (c). By Lemma 3.1 (where we set now g = ~u, and in point 1) we recall that
T ≤ 1) we write ∥∥∥∥∫ t

0
eν(t−s)∆~u(s, ·)ds

∥∥∥∥
ET

≤ cν ‖~u‖L2
tL

2
t
≤ cν T 1/2 ‖~u‖ET . (25)

Once we have inequalities (20), (24) and (25), for a time T > 0 small enough by the Banach contraction
principle we obtain a local solution ~u ∈ ET of equations (17).

The second step is to prove that this solution is global in time. Remark first that the solution ~u obtained
above also solves the problem

∂t~u+ P(div((~u⊗ ~u)α))− ν∆~u = ~f − β~u,

in the distributional sense, where, as ~u ∈ ET then each term in this equation belong to the space L2([0, T ], L2(R3)).
By the identity (2) we can write

∂t~u+ P(div((−α2∆ + Id)
−1(~u⊗ ~u))− ν∆~u = ~f − β~u, (26)

and applying the operator (−α∆ + Id) in each term we get that the solution ~u also verifies the following
equation

(−α2∆ + Id)∂t~u = −P(div(~u⊗ ~u)) + ν(−α2∆ + Id)∆~u+ (−α2∆ + Id)~f − β(−α2∆ + Id)~u.

Here each term belong to the space L2([0, T ], H−2(R3)). Now, always by the fact ~u ∈ ET we get ~u ∈
L2([0, T ], H2(R3)) and then we can write

1

2

d

dt

(
‖~u(t, ·)‖2L2 + α2‖~u(t, ·)‖2

Ḣ1

)
=
〈
(−α2∆ + Id)∂t~u(t, ·), ~u(t, ·)

〉
H−2×H2

=− ν‖~u(t, ·)‖2
Ḣ1 − α2‖~u(t, ·)‖2

Ḣ2 + 〈~f, ~u(t, ·)〉L2×L2

+ α2〈~∇⊗ ~f, ~∇⊗ ~u(t, ·)〉L2×L2 − β
(
‖~u(t, ·)‖2L2 + α2‖~u(t, ·)‖2

Ḣ1

)
.

(27)

As the quantity −β
(
‖~u(t, ·)‖2L2 + α2‖~u(t, ·)‖2

Ḣ1

)
is negative, and moreover, applying the Cauchy-Schwarz

inequalities, we obtain

1

2

d

dt

(
‖~u(t, ·)‖2L2+α2‖~u(t, ·)‖2

Ḣ1

)
≤− ν‖~u(t, ·)‖2

Ḣ1 − α2‖~u(t, ·)‖2
Ḣ2 + 〈~f, ~u(t, ·)〉L2×L2 + α2〈~∇⊗ ~f, ~∇⊗ ~u(t, ·)〉L2×L2

≤− ν‖~u(t, ·)‖2
Ḣ1 − α2‖~u(t, ·)‖2

Ḣ2 + ‖~f‖L2‖~u(t, ·)‖L2 + α2‖~f‖Ḣ1‖~u(t, ·)‖Ḣ1

≤− ν‖~u(t, ·)‖2
Ḣ1 − α2‖~u(t, ·)‖2

Ḣ2 + ‖~f‖2L2 + ‖~u(t, ·)‖2L2 + α2‖~f‖2
Ḣ1 + α2‖~u(t, ·)‖2

Ḣ1

≤
(
‖~u(t, ·)‖L2 + α2‖~u(t, ·)‖2

Ḣ1

)
− ν‖~u(t, ·)‖2

Ḣ1 − α2‖~u(t, ·)‖2
Ḣ2 + ‖~f‖2L2 + α2‖~f‖2

Ḣ1 .

Then, applying the Grönwall inequalities, for all t ∈ [0, T ] we have

‖~u(t, ·)‖2L2 + α2‖~u(t, ·)‖2
Ḣ1 ≤

(
‖~u0‖2L2 + α2‖~u0‖2Ḣ1

)
e2t +

∫ t

0
e2(t−s)

(
−2ν‖~u(s, ·)‖2

Ḣ1 − 2α2‖~u(s, ·)‖2
Ḣ2

)
ds

+

∫ t

0
e2(t−s)

(
2‖~f‖2L2 + 2α2‖~f‖2

Ḣ1

)
ds,
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hence we get

‖~u(t, ·)‖2L2 + alpha2‖~u(t, ·)‖2
Ḣ1 ≤

(
‖~u0‖2L2 + α2‖~u0‖2Ḣ1

)
e2t −

∫ t

0

(
2ν‖~u(s, ·)‖2

Ḣ1 + 2α2‖~u(s, ·)‖2
Ḣ2

)
ds

+ e2tt
(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
,

and we thus obtain the following control in time

‖~u(t, ·)‖2L2 + α2‖~u(t, ·)‖2
Ḣ1 +

∫ t

0

(
ν‖~u(s, ·)‖2

Ḣ1 + α2‖~u(s, ·)‖2
Ḣ2

)
ds

≤ e2t
(
‖~u0‖2L2 + α2‖~u0‖2Ḣ1

)
+ e2tt

(
‖~f‖2L2 + t α2‖~f‖2

Ḣ1

)
.

(28)

which allows us to extend the local solution ~u to the interval [0,+∞[.

The third step is to obtain the global energy equality (5). It directly follows by integrating the identity
(27) on the interval of time [0, t].

The fourth step is to recover the pressure p which is always related to the velocity ~u. Indeed, as ~u verifies
the equation (26), and moreover, as we have div(~u) = 0 and div(~f) = 0, then we can write

P
(
∂t~u+ div((−α2∆ + Id)

−1(~u⊗ ~u))− ν∆~u− ~f + β~u
)

= 0,

hence, by the well-known properties of the Leray projector P (see the Lemma 6.3, page 118 of the book [21])
there exists p ∈ D′([0,+∞[×R3) such that we have

∂t~u+ div((−α2∆ + Id)
−1(~u⊗ ~u))− ν∆~u− ~f + β~u = ~∇p.

Applying the divergence operator in each term of this identity, and moreover, denoting by Ri = ∂i√
−∆

the Riesz transforms, we get the following identity

p =
3∑
i=1

3∑
j=1

RiRi
(
(−α2∆ + Id)

−1(uiuj)
)
. (29)

By this identity, the pressure term verifies p ∈ L2
loc([0,+∞[, H3(R3)). Indeed, we shall quickly verify that

~u⊗ ~u ∈ (L2
t )locH

1
x. By Lemma 3.2 we have ~u⊗ ~u ∈ (L2

t )locḢ
1
x. On the other hand, as ~u ∈ (L∞t )locH

1
x then

by the product laws in the non-homogeneous Sobolev spaces (see always the Lemma 7.3, page 130 of the

book [21]) we get ~u⊗ ~u ∈ (L∞t )locH
1/2
x , hence we have ~u⊗ ~u ∈ (L2

t )locL
2
x and thereafter, joint with the fact

that ~u⊗ ~u ∈ (L2
t )loc Ḣ

1
x we finally obtain ~u⊗ ~u ∈ (L2

t )locH
1
x.

The fifth and last step is to prove the uniqueness of solutions. So, let (~u1, p1) ∈ (L∞t )locH
1
x ∩ (L2

t )locḢ
2
x×

(L2
t )locH

3
x and (~u2, p2) ∈ (L∞t )locH

1
x ∩ (L2

t )locḢ
2
x × (L2

t )locH
3
x be two solutions of equation (4) arising from

the initial data ~u0,1 and ~u0,2 respectively. We define ~w = ~u1 − ~u2 and q = p1 − p2, and then we get that the
couple (~w, q) verifies the equation

∂t ~w +
(

(~w · ~∇)~u1 + (~u2 · ~∇)~w
)
α
− ν∆~w + ~∇q = −β ~w, ~w(0, ·) = ~u1(0, ·)− ~u2(0, ·).

Following the computations done in (27) we have

1

2

d

dt

(
‖~w(t, ·)‖2L2 + α2‖~w(t, ·)‖2

Ḣ1

)
+ ν‖~w(t, ·)‖2

Ḣ1+α2‖~w(t, ·)‖2
Ḣ2 = −β

(
‖~w(t, ·)‖2L2 + α2‖~w(t, ·)‖2

Ḣ1

)
−
〈

(~w · ~∇)~u1(t, ·), ~w(t, ·)
〉
Ḣ−1×Ḣ1

,
(30)
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where we must estimate the term
〈

(~w · ~∇)~u1(t, ·), ~w(t, ·)
〉
Ḣ−1×Ḣ1

. For this, we use the Hardy-Littlewood-

Sobolev inequalities and the Hölder inequalities to write∣∣∣∣〈(~w · ~∇)~u1(t, ·), ~w(t, ·)
〉
Ḣ−1×Ḣ1

∣∣∣∣ ≤ c‖(~w · ~∇)~u1(t, ·)‖Ḣ−1‖~w(t, ·)‖Ḣ1 ≤ c‖(~w · ~∇)~u1(t, ·)‖L6/5‖~w(t, ·)‖Ḣ1

≤ c‖~w(t, ·)‖L2‖~∇⊗ ~u1(t, ·)‖L3 ‖~w(t, ·)‖Ḣ1 = (a).

To treat the term ‖~∇⊗ ~u1(t, ·)‖L3 in expression (a), we apply first the interpolation inequalities, and there-
after, by the Hardy-Littlewood-Sobolev we obtain

(a) ≤c ‖~w(t, ·)‖L2 ‖~∇⊗ ~u1(t, ·)‖1/2
L2 ‖~∇⊗ ~u1(t, ·)‖1/2

L6 ‖~w(t, ·)‖Ḣ1

≤c ‖~w(t, ·)‖L2 ‖~∇⊗ ~u1(t, ·)‖1/2
L2 ‖~∇⊗ ~u1(t, ·)‖1/2

Ḣ1
‖~w(t, ·)‖Ḣ1

≤c ‖~w(t, ·)‖L2 ‖~u1(t, ·)‖1/2
Ḣ1
‖~u1(t, ·)‖1/2

Ḣ2
‖~w(t, ·)‖Ḣ1

≤ c

ν
‖~w(t, ·)‖2L2 ‖~u1(t, ·)‖Ḣ1‖~u1(t, ·)‖Ḣ2 +

ν

2
‖~w(t, ·)‖2

Ḣ1

≤ c

ν

(
‖~w(t, ·)‖2L2 + α2‖~w(t, ·)‖2

Ḣ1

)
‖~u1(t, ·)‖Ḣ1‖~u1(t, ·)‖Ḣ2 +

ν

2
‖~w(t, ·)‖2

Ḣ1 .

With this estimate at hand, we get back to (30) where we have

1

2

d

dt

(
‖~w(t, ·)‖2L2 + α2‖~w(t, ·)‖2

Ḣ1

)
+ ν‖~w(t, ·)‖2

Ḣ1 + α2‖~w(t, ·)‖2
Ḣ2 ≤ −β

(
‖~w(t, ·)‖2L2 + α2‖~w(t, ·)‖2

Ḣ1

)
+
c

ν

(
‖~w(t, ·)‖2L2 + α2‖~w(t, ·)‖2

Ḣ1

)
‖~u1(t, ·)‖Ḣ1‖~u1(t, ·)‖Ḣ2 +

ν

2
‖~w(t, ·)‖2

Ḣ1

,

hence we get

1

2

d

dt

(
‖~w(t, ·)‖2L2 + α2‖~w(t, ·)‖2

Ḣ1

)
≤ c

ν

(
‖~w(t, ·)‖2L2 + α2‖~w(t, ·)‖2

Ḣ1

)
‖~u1(t, ·)‖Ḣ1‖~u1(t, ·)‖Ḣ2 .

Thus, applying the Grönwall inequalities we have

‖~w(t, ·)‖2L2 + α2‖~w(t, ·)‖2
Ḣ1 ≤

(
‖~w(0, ·)‖2L2 + α2‖~w(0, ·)‖2

Ḣ1

)
e

c

ν

∫ t

0
‖~u1(s, ·)‖Ḣ1‖~u1(s, ·)‖Ḣ2 ds

.

Moreover, using (28) the term
c

ν

∫ t

0
‖~u1(s, ·)‖Ḣ1‖~u1(s, ·)‖Ḣ2 ds is estimated as follows:

c

ν

∫ t

0
‖~u1(s, ·)‖Ḣ1‖~u1(s, ·)‖Ḣ2 ds ≤ cν,α

(
ν

∫ t

0
‖~u1(s, ·)‖2

Ḣ1ds+ α2

∫ t

0
‖~u1(s, ·)‖2

Ḣ2ds

)
≤cν,α

(
e2t
(
‖~u0,1‖2 + α2‖~u0,1‖2Ḣ1

)
+ e2tt

(
‖~f‖2L2 + t α2‖~f‖2

Ḣ1

))
= c2(α, ν, ~f, ~u0,1, t).

With this estimate, we can write the following inequality:

‖~w(t, ·)‖2L2 + α2‖~w(t, ·)‖2
Ḣ1 ≤

(
‖~w(0, ·)‖2L2 + α2‖~w(0, ·)‖2

Ḣ1

)
ec2(α,ν, ~f,~u0,1,t). (31)

Uniqueness of solutions directly follows from this inequality. Theorem 1 is now proven. �
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Proof of Proposition 1

1) The control (6) directly follows from the identity (27). Indeed, by the Cauchy-Schwarz inequalities,
and as −ν‖~u(t, ·)‖2

Ḣ1 − α2‖~u(t, ·)‖2
Ḣ2 is negative quantity, we write

1

2

d

dt

(
‖~u(t, ·)‖2 + α2‖~u(t, ·)‖2

Ḣ1

)
≤− ν‖~u(t, ·)‖2

Ḣ1 − α2‖~u(t, ·)‖2
Ḣ2 + ‖~f‖L2‖~u(t, ·)‖L2 + α2‖~f‖Ḣ1‖~u(t, ·)‖Ḣ1 − β

(
‖~u(t, ·)‖2L2 + α2‖~u(t, ·)‖2

Ḣ1

)
≤− ν‖~u(t, ·)‖2

Ḣ1 − α2‖~u(t, ·)‖2
Ḣ2 +

2

β
‖~f‖2L2 +

β

2
‖~u(t, ·)‖2L2 +

2α2

β
‖~f‖2

Ḣ1 +
βα2

2
‖~u(t, ·)‖2

Ḣ1

− β
(
‖~u(t, ·)‖2L2 + α2‖~u(t, ·)‖2

Ḣ1

)
≤ 2

β

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
− β

2

(
‖~u(t, ·)‖2L2 + α2‖~u(t, ·)‖2

Ḣ1

)
.

Then, applying the Grönwall inequalities we have

‖~u(t, ·)‖2 + α2‖~u(t, ·)‖2
Ḣ1 ≤

(
‖~u0‖2 + α2‖~u0‖2Ḣ1

)
e−βt +

4

β

∫ t

0
e−β(t−s)

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
ds,

hence, the desired control (6) follows.

2) Always by the identity (27) and the Cauchy-Schwarz inequalities, we have

1

2

d

dt

(
‖~u(t, ·)‖2 + α2‖~u(t, ·)‖2

Ḣ1

)
≤− ν‖~u(t, ·)‖2

Ḣ1 − α2‖~u(t, ·)‖2
Ḣ2 + ‖~f‖L2‖~u(t, ·)‖L2 + α2‖~f‖Ḣ1‖~u(t, ·)‖Ḣ1 − β

(
‖~u(t, ·)‖2L2 + α2‖~u(t, ·)‖2

Ḣ1

)
≤− ν‖~u(t, ·)‖2

Ḣ1 − α2‖~u(t, ·)‖2
Ḣ2 +

2

β
‖~f‖2L2 +

β

2
‖~u(t, ·)‖2L2 +

2α2

β
‖~f‖2

Ḣ1 +
βα2

2
‖~u(t, ·)‖2

Ḣ1

− β
(
‖~u(t, ·)‖2L2 + α2‖~u(t, ·)‖2

Ḣ1

)
≤− ν‖~u(t, ·)‖2

Ḣ1 − α2‖~u(t, ·)‖2
Ḣ2 +

2

β

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
− β

2

(
‖~u(t, ·)‖2 + α2‖~u(t, ·)‖2

Ḣ1

)
≤− ν‖~u(t, ·)‖2

Ḣ1 − α2‖~u(t, ·)‖2
Ḣ2 +

2

β

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
.

Then, integrating in the interval [t, t+ T ] we get

‖~u(t+ T, ·)‖2L2 + α2‖~u(t+ T, ·)‖2
Ḣ1 ≤− ν

∫ t+T

t
‖~u(s, ·)‖2

Ḣ1ds− α2

∫ t+T

t
‖~u(s, ·)‖2

Ḣ2ds

+
2T

β

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
+ ‖~u(t, ·)‖2L2 + α2‖~u(t, ·)‖2

Ḣ1 ,

hence we have the desired control (7) �

4 The global attractor

To prove the existence of a global attractor associated to the equation (4), stated in Theorem 2, we will
use some results arising from the theory of dynamical systems which, for completeness of the paper and the
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reader’s convenience, we shall state below.

We will start by recalling that for the parameter α > 0 fixed, we consider the Banach space H1
α(R3) ={

~g ∈ H1(R3) : div(~g) = 0, ‖~g‖2H1
α

= ‖~g‖2L2 + α2‖~g‖2
Ḣ1 < +∞

}
. Thereafter, for t ≥ 0 let S(t) : H1

α(R3)→
H1
α(R3) be the semigruop associated with equation (4) and defined in (8).

Before to state a general result leading the existence of a global attractor for the semigroup S(t), we
introduce the following definitions we shall need later.

Definition 4.1 (Absorbig set) A closed set B ⊂ H1
α(R3) is an absorbing set for the semigroup S(t) if

for every bounded set B ⊂ H1
α(R3), there exists a time T = T (B) > 0 such that, for all t > T we have

S(t)B ⊂ B.

In this definition, it is worth mention we use the notation S(t)B = {S(t)~u0 : ~u0 ∈ B}.

Definition 4.2 (Semigroup asymptotically compact) The semigroup S(t) is asymptotically compact
if for any bounded sequence (~u0,n)n∈N in H1

α(R3), and moreover, for any sequence of times (tn)n∈N such that
tn →∞, the sequence (S(tn)~u0,n)n∈N is precompact in H1

α(R3).

Once we have introduced these definitions, we are able to state the following result on the existence of
a global attractor. For a proof of this fact see [25].

Proposition 4.1 Suppose that:

1. The semigroup S(t) has a bounded and closed absorbing set B ⊂ H1
α(R3) given in Definition 4.1.

2. The semigroup S(t) is asymptotically compact in the sense of Definition 4.2.

3. For every fixed t ≥ 0 the map S(t) : B → H1
α(R3) is continuous.

Then, the semigroup S(t) has a global attractor A~f
⊂ H1

α(R3) given in Definition 1.

Proof of Theorem 2

We will prove that the semigroup S(t) associated to equation (4) and defined in (8) verify the points 1., 2.
and 3. in Proposition 4.1. We start by verifying the point 1 with the following result.

Lemma 4.1 Let B =

{
~u0 ∈ H1

α(R3) : ‖~u0‖2H1
α
≤ 8

β2
‖~f‖2H1

α

}
. Then, B is a absorbing set in the sense of

Definition 4.1.

Proof. We observe that B is a bounded and closed set in H1
α(R3) and we will prove that B is moreover

an absorbing set. Indeed, let B ⊂ H1
α(R3) be a bounded set. Then, for R > 0 (large enough) we have

‖~u0‖2H1
α
≤ R2 for all ~u0 ∈ B. On the other hand, by point 1) in Proposition 1, for all ~u0 ∈ B we have

‖S(t)~u0‖2H1
α
≤ ‖~u0‖2H1

α
e−βt +

4

β2
‖~f‖2H1

α
≤ R2e−βt +

4

β2
‖~f‖2H1

α
.

Here, we set a time T = T (B) > 0 such that for all t > T we have R2e−βt ≤ 4

β2
‖~f‖2H1

α
, and then, and for

all ~u0 ∈ B we get S(t)~u0 ∈ B. �
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We verify now the point 2. Let (~u0,n)n∈N be a bounded sequence in H1
α(R3), and moreover, let (tn)n∈N

be a sequence of positive times such that tn → +∞. We must show that the sequence (S(tn)~u0,n)n∈N is
precompact in H1

α(R3) and for this, we will use a energy method. For each n ∈ N, we consider the following
Cauchy problem for the equation (4):{

∂t~un + div ((~un ⊗ ~un)α)− ν∆~un + ~∇pn = ~f − β~un, div(~un) = 0,

~un(−tn, ·) = ~u0,n.
(32)

Let ~un : [−tn,+∞[×R3 → R3 and pn : [−tn,+∞[×R3 → R, be the unique solution of this equation
given by Theorem 1, where it verifies ~un ∈ L∞([−tn,+∞[, H1(R3)) ∩ L2

loc([−tn,+∞[, Ḣ2(R3)) and pn ∈
L2
loc([−tn,+∞[, H3(R3)).

Now, by uniqueness of solution ~un, and moreover, by definition of the semigroup S(t) associated with the
equation (32), defined in (8), for all n ∈ N we have the identity S(tn)~u0,n = ~un(0, ·) and thus, it is enough
to verify that the sequence (~un(0, ·))n∈N is precompact in H1

α(R3). For this, our general strategy is the
following one. First, we prove the existence of a solution (~v, q) to the equation (10), called the eternal given
in Definition 3. Then, we will show that the sequence (~un(0, ·))n∈N strongly converges (via a sub-sequence)
to v(0, ·) in the space H1

α(R3).

We start by the construction of an eternal solution (~v, q).

Proposition 4.2 There exists a couple of functions (~v, q), with ~v ∈ L∞loc(R, H1(R3)) ∩ L2
loc(R, Ḣ2(R3)) and

q ∈ L2
loc(R, Ḣ3(R3)), which is a weak solution of the equation (10).

Proof. This solution will be obtained as the limit of the solutions ~un : [−tn,+∞[×R3 → R3 and pn :
[−tn,+∞[×R3 → R of equations (32) when n→ +∞.

We observe that by point 1) in Proposition 1, for all n ∈ N and for all t ≥ −tn, we have

‖~un(t, ·)‖2L2 + α2‖~un(t, ·)‖2
Ḣ1 ≤

(
‖~u0,n‖2L2 + α2‖~u0,n‖2Ḣ1

)
e−β (t+tn) +

4

β2

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
. (33)

Moreover, by point 2) in Proposition 1, for all t ≥ −tn and T ≥ 0, we have

ν

∫ t+T

t
‖~un(s, ·)‖2

Ḣ1ds+ α2

∫ t+T

t
‖~un(s, ·)‖2

Ḣ2ds ≤
2T

β

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
+ ‖~un(t, ·)‖2L2 + α2‖~un(t, ·)‖2

Ḣ1 .

(34)

By estimate (33), and recalling that the sequence (~u0,n)n∈N is bounded in H1
α(R3), we can write

sup
n∈N

sup
t≥−tn

(
‖~un(t, ·)‖2L2 + α2‖~un(t, ·)‖2

Ḣ1

)
≤R2e−β (t+tn) +

4

β2

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
≤R2 +

4

β2

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
.

(35)

Moreover, by estimate (34) (with T = 1) we get

sup
n∈N

sup
t≥−tn

(
ν

∫ t+1

t
‖~un(s, ·)‖2

Ḣ1ds+ α2

∫ t+1

t
‖~un(s, ·)‖2

Ḣ2ds

)
≤ 2

β

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
+ ‖~un(t, ·)‖2L2 + α2‖~un(t, ·)‖2

Ḣ1

≤ 2

β

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
+R2 +

4

β2

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
.

(36)
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Then, by estimates (35) and (36) and the Banach-Alaoglu theorem, there exists ~v ∈ L∞(R, H1(R3)) ∩
L2
loc(R, Ḣ2(R3)) such that the sequence (~un)n∈N converges (via s sub-sequence) to ~v in the weak-* topology

of the spaces L∞([−τ, τ ], H1(R3)), L2([−τ, τ ], Ḣ1(R3)) and L2([−τ, τ ], Ḣ2(R3)), for all τ > 0.

It remains to prove that the sequence of pressure terms (pn)n∈N converges to a limit q : R × R3 → R.

Recall that by identity (29), for all n ∈ N, we have: pn =

3∑
i=1

3∑
j=1

RiRi
(
(−α2∆ + Id)

−1(un,iun,j)
)
, hence,

for all t ≥ −tn and T ≥ 0, we get∫ t+T

t
‖pn(s, ·)‖2H3ds ≤ cα

∫ t+T

t
‖~un⊗~un(s, ·)‖2H1ds ≤ cα

∫ t+T

t
‖~un⊗~un(s, ·)‖2L2ds+cα

∫ t+T

t
‖~un⊗~un(s, ·)‖2

Ḣ1ds,

where we must study each term in the right side. For the first term, by the product laws in the non-
homogeneous Sobolev spaces (Lemma 7.3, page 130 of [21]), and moreover, by estimate (33) we write

cα

∫ t+T

t
‖~un ⊗ ~un(s, ·)‖2L2ds ≤cα

∫ t+T

t
‖~un ⊗ ~un(s, ·)‖2

H1/2ds ≤ cα
∫ t+T

t
‖~un(s, ·)‖4H1ds

≤cα
∫ t+T

t

(
‖~un(s, ·)‖2L2 + ‖~un(s, ·)‖2

Ḣ1

)2
ds

≤cα
(
max

(
1, 1/α2

))2 ∫ t+T

t

(
‖~un(s, ·)‖2L2 + α2‖~un(s, ·)‖2

Ḣ1

)2
ds

≤Cα T
(
R2 +

4

β2

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

))2

.

We estimate now the second term. Recall first that we have ‖ · ‖ET = ‖ · ‖L∞t H1
x

+ ‖ · ‖L2
t Ḣ

2
x
, and then, by

Lemma 3.2 we get

cα

∫ t+T

t
‖~un ⊗ ~un(s, ·)‖2

Ḣ1ds ≤ cαT 1/2‖~un‖2ET ≤ cα T
1/2

(
sup

t≤s≤t+T
‖~un(s, ·)‖2H1 +

∫ t+T

t
‖~un(s, ·)‖2

Ḣ2ds

)

≤cα
(
max

(
1, 1/α2

))2
T 1/2

(
sup

t≤s≤t+T

(
‖~un(s, ·)‖2L2 + α2‖~un(s, ·)‖2

Ḣ1

)
+ α2

∫ t+T

t
‖~un(s, ·)‖2

Ḣ2ds

)
= (a).

Thereafter, by estimates (33) and (34) we can write

(a) ≤ CαT 1/2

(
2R2 +

8

β2

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
+

2

β

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

))
.

Once we have studied each term, gathering the estimates obtained we finally get∫ t+T

t
‖pn(s, ·)‖2H3ds ≤Cα T

(
R2 +

4

β2

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

))2

+ Cα T
1/2

(
2R2 +

8

β2

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
+

2

β

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

))
.

Hence, taking T = 1 we can write

sup
n∈N

sup
t≥−tn

∫ t+T

t
‖pn(s, ·)‖2H3ds ≤ Cα

(
3R2 +

(
12

β2
+

2

β

)(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

))
,

and always by the Banach-Alaoglu theorem there exists q ∈ L2
loc(R, H3(R3)), such that the sequence (pn)n∈N

converges (through a a subsequence) to a limit q in the weak-* topology of the spaces L2([−τ, τ ], H3(R3)),
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for all τ > 0.

We want to show that the limit (~v, q) verifies the equation (10) in the distributional sense. From equation
(32) we can write

∂t(−α2∆ + Id)~un + div (~un ⊗ ~un)− ν∆(−α2∆ + Id)~un + ~∇(−α2∆ + Id)pn

=(−α2∆ + Id) ~f − β(−α2∆ + Id) ~un,
div(~un) = 0,

and then, it is enough to prove that the non-linear terms div (~un ⊗ ~un) converge to div (~v ⊗ ~v) in the sense
of distributions. For this, we will use the following Rellich-Lions lemma. For a proof see the Theorem 12.1,
page 349, of [21].

Lemma 4.2 Let (gn)n∈N be a sequence of measurable functions on R×R3, such that, for every ϕ ∈ C∞0 (R×
R3), we have:

1. for some positive γ > 0, sup
n∈N
‖ϕgn‖L2

tH
γ
x
< +∞, and

2. for some negative σ < 0, sup
n∈N
‖ϕ∂tgn‖L2

tH
σ
x
< +∞.

Then, the sequence (gn)n∈N strongly converges (via a sub-sequence) to a limit g in the space L2
loc(R× R3).

We will prove now that the sequence (~un)n∈N verifies the points 1 and 2 in this lemma, and for this,
we will extend first these functions to whole real line by setting ~un(t, ·) = 0 for all t < −tn. Then, let
ϕ ∈ C∞0 (R×R3) be a test function, and let τ > 0 be such that ϕ(t, ·) = 0 for all |t| > τ . To verify the point
1, we set γ = 1 to get

‖ϕ~un‖2L2
tH

1
x

=

∫ τ

−τ
‖ϕ(t, ·)~un(t, ·)‖2H1dt =

∫ τ

−τ
‖ϕ(t, ·)~un(t, ·)‖2L2dt+

∫ τ

−τ
‖ϕ(t, ·)~un(t, ·)‖2

Ḣ1
dt

≤cα 2τ(‖ϕ‖L∞ + ‖~∇ϕ‖L∞)

(
sup
−τ≤t≤τ

‖~un(t, ·)‖2L2 + sup
−τ≤t≤τ

α2‖~un(t, ·)‖2
Ḣ1

)
≤C(τ, ϕ, α)

(
sup
−τ≤t≤τ

‖~un(t, ·)‖2L2 + sup
−τ≤t≤τ

α2‖~un(t, ·)‖2
Ḣ1

)
.

Moreover, by estimate (33) we can write

C(τ, ϕ, α)

(
sup
−τ≤t≤τ

‖~un(t, ·)‖2L2 + sup
−τ≤t≤τ

α2‖~un(t, ·)‖2
Ḣ1

)
≤ C(τ, ϕ, α)

(
R2 +

4

β2

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

))
.

(37)

Thus, for all n ∈ N we have

‖ϕ~un‖2L2
tH

1
x
≤ C(τ, ϕ, α)

(
R2 +

4

β2

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

))
.

We verify now the point 2. We observe first that for all n ∈ N we have

ϕ∂t~un = −ϕPdiv ((~un ⊗ ~un)α) + νϕ∆~un + ϕ ~f − βϕ~un,

where, for τ > 0 given above, we will show that each term in the right side is uniformly bounded in the
space L2([−τ, τ ], L2(R3)). Indeed, for the term ϕP div ((~un ⊗ ~un)α), using the product laws in the Sobolev
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spaces, and moreover, by estimate (35) we have

‖ϕP div ((~un ⊗ ~un)α)‖L2
tL

2
x
≤ ‖ϕ‖L∞t,x‖P div ((~un ⊗ ~un)α)‖L2

tL
2
x
≤ C(α,ϕ)‖~un ⊗ ~un‖L2

tH
−1
x

≤ C(α,ϕ)‖~un ⊗ ~un‖L2
tH

1/2
x
≤ C(τ, α, ϕ)‖~un ⊗ ~un‖L∞t H1/2

x

≤ C(τ, α, ϕ)‖~un‖2L∞t H1
x

≤ C(τ, α, ϕ)

(
R2 +

4

β2

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

))
.

For the term νϕ∆~un, using the estimate (36) we can write

ν‖ϕ∆~un‖L2
tL

2
x
≤ ν

α
‖ϕ‖L∞t,xα‖∆~un‖L2

tL
2
x

≤ C(τ, α, ν, ϕ)

(
2

β

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
+R2 +

4

β2

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

))1/2

.

Finally, we may observe that the third and fourth terms: ϕ ~f and βϕ~un, are uniformly bounded in the space
L2([−τ, τ ], L2(R3)), and then, the point 2 hols true for any σ < 0.

We can use now the Lemma 4.2 to conclude that the sequence (~un)n∈N converges to the limit ~v in the
strong topology of the space L2

loc(R × R3). Then, we have that ~un ⊗ ~un strongly converges to ~v ⊗ ~v in the
space L1

loc(R× R3), hence we get that div(~un ⊗ ~un) converges to div(~v ⊗ ~v) in the distributional sense.

At this point, we have proven that (~v, q) verifies (in the sense of distributions) the equation

∂t(−α2∆ + Id)~v + div (~v ⊗ ~v)− ν∆(−α2∆ + Id)~v + ~∇(−α2∆ + Id)q

=(−α2∆ + Id) ~f − β(−α2∆ + Id)~v,
div(~v) = 0,

but, recalling that ~v ∈ L∞loc(R, H1(R3)) ∩ L2
loc(R, Ḣ2(R3)) and q ∈ L2

loc(R, Ḣ3(R3)), we can apply the filter-
ing operator (·)α = (−α∆ + Id)−1 to each term in this equation to finally obtain that (~v, q) verifies the
equation (10). Proposition 4.2 is proven. �

Once we have constructed a solution (~v, q) to the equation (10), we will prove now that the sequence
(~un(0, ·))n∈N strongly converges (through a sub-sequence) to ~v(0, ·) in H1

α(R3). Recall first that this space is
equipped with the norm ‖ · ‖2H1

α
= ‖ · ‖2L2 + α2‖ · ‖2

Ḣ1 . Then, recall moreover that, for all n ∈ N and for all

t ≥ −tn, the solution ~un ∈ L∞([−tn,+∞[, H1(R3)) ∩ L2
loc([−tn,+∞[, Ḣ2(R3)) of equation (32) verifies the

identity (27):

1

2

d

dt
‖~un(t, ·)‖2H1

α
=− ν‖~un(t, ·)‖2

Ḣ1 − α2‖~un(t, ·)‖2
Ḣ2 + 〈~f, ~un(t, ·)〉L2×L2

+ α2〈~∇⊗ ~f, ~∇⊗ ~un(t, ·)〉L2×L2 − β‖~un(t, ·)‖2H1
α
.

We multiply each term in this identity by e2βt, and moreover, we integrate in the interval [−tn, 0] to get:

1

2
‖~un(0, ·)‖2H1

α
−1

2
e−2βtn‖~u0,n‖2H1

α
− β

∫ 0

−tn
e2βt‖~un(t, ·)‖2H1

α
dt = −ν

∫ 0

−tn
e2βt‖~un(t, ·)‖2

Ḣ1dt

− α2

∫ 0

−tn
e2βt‖~un(t, ·)‖2

Ḣ2dt+

∫ 0

−tn
e2βt〈~f, ~un(t, ·)〉L2×L2dt

+ α2

∫ 0

−tn
e2βt〈~∇⊗ ~f, ~∇⊗ ~un(t, ·)〉L2×L2 − β

∫ 0

−tn
e2βt‖~un(t, ·)‖2H1

α
dt,
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hence we obtain

‖~un(0, ·)‖2H1
α

=e−2βtn‖~u0,n‖2H1
α
− 2ν

∫ 0

−tn
e2βt‖~un(t, ·)‖2

Ḣ1dt− 2α2

∫ 0

−tn
e2βt‖~un(t, ·)‖2

Ḣ2dt

+ 2

∫ 0

−tn
e2βt〈~f, ~un(t, ·)〉L2×L2dt+ 2α2

∫ 0

−tn
e2βt〈~∇⊗ ~f, ~∇⊗ ~un(t, ·)〉L2×L2 .

In each term of this identity, we take now the lim sup when n→ +∞ to write:

lim sup
n→+∞

‖~un(0, ·)‖2H1
α
≤ lim sup

n→+∞
e−2βtn‖~u0,n‖2H1

α
+ lim sup

n→+∞

(
−2ν

∫ 0

−tn
e2βt‖~un(t, ·)‖2

Ḣ1dt

)
+ lim sup

n→+∞

(
−2α2

∫ 0

−tn
e2βt‖~un(t, ·)‖2

Ḣ2dt

)
+ lim sup

n→+∞

(
2

∫ 0

−tn
e2βt〈~f, ~un(t, ·)〉L2×L2dt

)
+ lim sup

n→+∞

(
2α2

∫ 0

−tn
e2βt〈~∇⊗ ~f, ~∇⊗ ~un(t, ·)〉L2×L2dt

)
,

(38)

where we must study each term in the right side. For the first term, recalling that the sequence (~u0,n)n∈N
is bounded in H1

α(R3), we have
lim sup
n→+∞

e−2βtn‖~u0,n‖2H1
α

= 0. (39)

For the second term, since by estimate (34) we have that the sequence (~un)n∈N converges to ~v in the weak-*
topology of the space L2

loc(R, Ḣ1(R3)), then we can write

lim inf
n→+∞

(
2ν

∫ 0

−tn
e2βt‖~un(t, ·)‖2

Ḣ1dt

)
≥ 2ν

∫ 0

−∞
e2βt‖~v(t, ·)‖2

Ḣ1dt,

hence we have

lim sup
n→+∞

(
−2ν

∫ 0

−tn
e2βt‖~un(t, ·)‖2

Ḣ1dt

)
≤− lim inf

n→+∞

(
2ν

∫ 0

−tn
e2βt‖~un(t, ·)‖2

Ḣ1dt

)
≤− 2ν

∫ 0

−∞
e2βt‖~v(t, ·)‖2

Ḣ1dt.

(40)

For the third term, always by estimate (34), we have that the sequence (~un)n∈N converges to ~v in the weak-*
topology of the space L2

loc(R, Ḣ2(R3)), and we write

lim inf
n→+∞

(
2α2

∫ 0

−tn
e2βt‖~un(t, ·)‖2

Ḣ2dt

)
≥ 2α2

∫ 0

−∞
e2βt‖~v(t, ·)‖2

Ḣ1dt.

Then, we have

lim sup
n→+∞

(
−2α2

∫ 0

−tn
e2βt‖~un(t, ·)‖2

Ḣ2dt

)
≤− lim inf

n→+∞

(
2α2

∫ 0

−tn
e2βt‖~un(t, ·)‖2

Ḣ2dt

)
≤− 2α2

∫ 0

−∞
e2βt‖~v(t, ·)‖2

Ḣ2dt.

(41)

Similarly, by the estimate (33), the sequence (~un)n∈N converges to ~v in the weak-* topology of the space
L2
loc(R, L2(R3)), and moreover, as we also have the weak-* convergence in the space L2

loc(R, Ḣ1(R3)). Then,
for the fourth and fifth terms we have

lim sup
n→+∞

(
2

∫ 0

−tn
e2βt〈~f, ~un(t, ·)〉L2×L2dt

)
= 2

∫ 0

−∞
e2βt〈~f,~v(t, ·)〉L2×L2 dt,

lim sup
n→+∞

(
2α2

∫ 0

−tn
e2βt〈~∇⊗ ~f, ~∇⊗ ~un(t, ·)〉L2×L2

)
= 2α2

∫ 0

−∞
e2βt 〈~∇⊗ ~f, ~∇⊗ ~v(t, ·)〉L2×L2 dt.

(42)
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Thus, gathering the estimates (39), (40), (41) and (42), we get back to (38) to write:

lim sup
n→+∞

‖~un(0, ·)‖2H1
α
≤− 2ν

∫ 0

−∞
e2βt‖~v(t, ·)‖2

Ḣ1dt− 2α2

∫ 0

−∞
e2βt‖~v(t, ·)‖2

Ḣ2dt

+ 2

∫ 0

−∞
e2βt〈~f,~v(t, ·)〉L2×L2 dt+ 2α2

∫ 0

−∞
e2βt 〈~∇⊗ ~f, ~∇⊗ ~v(t, ·)〉L2×L2 dt = (b).

We shall study now the term (b) above. Since the solution (~v, q) of the equation (10) verifies ~v ∈
L∞(R, H1(R3)) ∩ L2

loc(R, Ḣ2(R3)) and q ∈ L2
loc(R, H3(R3)) then, following the same computations done in

(27), we have the following energy equality:

1

2

d

dt
‖~v(t, ·)‖2H1

α
=− ν‖~v(t, ·)‖2

Ḣ1 − α2‖~v(t, ·)‖2
Ḣ2 + 〈~f,~v(t, ·)〉L2×L2 + α2〈~∇⊗ ~f, ~∇⊗ ~v(t, ·)〉L2×L2 − β‖~v(t, ·)‖2H1

α
.

We multiply each term by e2βt, and integrating in the interval ]−∞, 0] we get:

1

2
‖~v(0, ·)‖2H1

α
−β
∫ 0

−∞
e2βt‖~v(t, ·)‖2H1

α
dt = −ν

∫ 0

−∞
e2βt‖~v(t, ·)‖2

Ḣ1dt− α2

∫ 0

−∞
e2βt‖~v(t, ·)‖2

Ḣ2dt

+

∫ 0

−∞
e2βt〈~f,~v(t, ·)〉L2×L2dt+ α2

∫ 0

−∞
e2βt〈~∇⊗ ~f, ~∇⊗ ~v(t, ·)〉L2×L2 − β

∫ 0

−∞
e2βt‖~v(t, ·)‖2H1

α
dt.

From this identity we have (b) = ‖~v(0, ·)‖2H1
α
, and then, getting back to the previous estimate, we obtain

lim sup
n→+∞

‖~un(0, ·)‖2H1
α
≤ ‖~v(0, ·)‖2H1

α
. On the other hand, since by the estimate (33) we know that the se-

quence (~un)n∈N converges (via a sub-sequence) to ~v in the weak-* topology of the space L∞(R, H1(R3)), we
also have the inequality ‖~v(0, ·)‖2H1

α
≤ lim inf

n→+∞
‖~un(0, ·)‖2H1

α
. Then, we obtain the desired strong convergence:

lim
n→+∞

‖~un(0, ·)‖2H1
α

= ‖~v(0, ·)‖2H1
α
, and the point 2 in Proposition 4.1 is now verified.

To verify now the point 3 in Proposition 4.1, we just observe that by estimate (31), where we have
~w(t, ·) = ~u1(t, ·) − ~u2(t, ·) = S(t)~u0,1 − S(t)~u0,2, and ~w(0, ·) = ~u0,1 − ~u0,2, then the continuity of the map
S(t) : B → H1

α(R3) follows directly.

Thus, by Proposition 4.1, the semigroup S(t) has a global attractor A~f
⊂ H1

α(R3). Theorem 2 is now
proven. �

5 Fractal box counting dimension of the attractor

In this section, we prove that the global attractor A~f
⊂ H1

α(R3), constructed in Theorem 2, has finite fractal
box counting dimension and we give an explicit upper bound. In order to estimate the fractal dimension of
the attractor, we will use the following volume contraction method adapted from [16]. See also [12] and [25]
for more details. We start by introducing some definitions that we shall use later.

The first definition concerns the following quasi-differential operator. Let t ≥ 0 be a fixed time and
let ~u0 ∈ A~f

be an initial datum. Moreover, let u(t, ·) be the solution of the equation (4) arising from

the initial datum ~u0 and given by Theorem 1. Thus, for u(t, ·) fixed, let ~v ∈ L∞([0,+∞[,H1
α(R3)) ∩

L2
loc([0,+∞[, Ḣ2(R3)) be the solution of the following linearized version of the equation (4):

∂t~v + P
((

(~v · ~∇)~u+ (~u · ~∇)~v
)
α

)
− ν∆~v = −β~v, div(~v) = 0,

~v(0, ·) = ~v0 ∈ H1
α(R3),

(43)
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where ~v0 denotes the initial datum. The existence and uniqueness of the solution ~v for this equation is
straightforward (since we have a linear equation) and follows the main ideas and estimates in the proof of
Theorem 1. So, we will omit the prove of this fact.

Definition 5.1 (Quasi-differential operator) The quasi-differential operator DS(t, ~u0), depending on
the time t ≥ 0 and the datum ~u0 ∈ A~f

, is the linear and bounded operator DS(t, ~u0) : H1
α(R3) → H1

α(R3)
defined as

DS(t, ~u0)~v0 = ~v(t, ·),
where ~v(t, ·) is the solution of the linearized equation (43).

Once we have defined this operator, our second definition lies with the notion a semigroup uniformly
quasi-differentiable.

Definition 5.2 (Semigroup uniformly quasi-differentiable) For t ≥ 0 fixed, let S(t) be the semi-group
associated to equation (4) and defined in (8). We say that this semigroup is uniformly quasi-differentiable
on the global attractor A~f

⊂ H1
α(R3), if for all ~u0,1, ~u0,2 ∈ A~f

we have

‖S(t)~u0,2 − S(t)~u0,1 −DS(t, ~u0,1)(~u0,2 − ~u0,1)‖H1
α
≤ o

(
‖~u0,2 − ~u0,1‖H1

α

)
,

where the quasi-differential operator DS(t, ~u0,1) is given in Definition 5.1, and moreover, the quantity o(·)
verifies: lim

h→0+
o(h)/h = 0.

Finally, in our last definition, we need to introduce the notion the m− global Lyapunov exponents for a
m ∈ N given. For this, we shall need to precise first some notation. On one hand, we denote by Om, the set
of all the orthonormal families (~wi)1≤i≤m in the space H1

α(R3) dotted with its natural scalar product:

[~wi, ~wj ]α = (~wi, ~wj)L2×L2 + α2
(
~∇⊗ ~wi, ~∇⊗ ~wj

)
L2×L2

. (44)

On the other hand, getting back to the linearized equation (43), we can write

∂t~v = −P
((

(~v · ~∇)~u+ (~u · ~∇)~v
)
α

)
+ ν∆~v − β~v.

and then, from the right side of this identity, and for all ~w ∈ H1
α(R3), we define now the linear operator

L(t, ~u0)~w = −P
((

(~w · ~∇)~u+ (~u · ~∇)~w
)
α

)
+ ν∆~w − β ~w. (45)

Once we have introduced the set Om and the linear operator L(t, ~u0)(·) above, we have the following
definition.

Definition 5.3 (m− global Lyapunov exponents) Let m ∈ N fixed. We define the m− global Lyapunov
exponent `(m) as the quantity:

`(m) = lim sup
T→+∞

(
sup
~u0∈A~f

sup
(~wi)1≤i≤m∈Om

(
1

T

∫ T

0

m∑
i=1

[L(t, ~u0)~wi, ~wi]α dt

))
.

We have now all the tools to state the following technical result that we shall use to derive an upper
bound of the fractal dimension of the attractor A~f

. For a proof of this result see [11].

Theorem 5.1 (Upper bound of the fractal dimension) Let S(t) be the semigruop associated to equa-
tion (4) and defined in (8). Moreover, let A~f

⊂ H1
α(R3) be the global attractor of the semigroup S(t) given

by Theorem 2. Finally, let dim
(
A~f

)
be the fractal box counting dimension of the attractor A~f

given in

Definition 2.

If the following statements hold:
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1. The semigroup S(t) is uniformly quasi-differentiable on the attractor A~f
in the sense of Definition 5.2.

2. The quasi-differential operator DS(t, ~u0)(·) given in Definition 5.1, depends continuously on the initial
datum ~u0 ∈ A~f

.

3. There exists γ ≥ 1, and moreover, there exist two constants c1, c2 > 0 such that, for all m ∈ N, the
m− global Lyapunov exponent `(m) given in Definition 5.3 verifies:

`(m) ≤ −c1m
γ + c2. (46)

Then, we have the following upper bound: dim
(
A~f

)
≤
(
c2

c1

)1/γ

.

Proof of Theorem 3

We must verify that the points 1, 2 and 3 in Theorem 5.1 hold. However, the points 1 and 2 are given in [2]
where it is proven that the semigroup S(t) is even differentiable for all ~u0 ∈ A~f

and the differential operator

DS(t, ~u0) depends continuously on ~u0 ∈ A~f
. So, we will focus on the point 3.

To estimate the m− global Lyapunov exponent `(m) according to the desired estimate (46), we shall
prove the following technical estimates. In the expression of the quantity `(m) given in Definition 5.3, we

derive first an upper bound for the term

m∑
i=1

[L(t, ~u0)~wi, ~wi]α as follows:

Proposition 5.1 Let m ∈ N fixed and let (~wi)1≤i≤m ∈ Om. Moreover, let L(t, ~u0)(·) be the linear operator
given in (45), and let [·, ·]α be the scalar product defined in (44). Then, we have:

m∑
i=1

[L(t, ~u0)~wi, ~wi]α ≤ −βm+ 2
C4
LT

ν12/5α6/5
‖~u(t, ·)‖14/5

Ḣ1
+

3

8
α2‖~u(t, ·)‖2

Ḣ2 , (47)

where CLT > 0 is a numerical constant given in (49).

Proof. By definition of the operator L(t, ~u0)(·), we write

m∑
i=1

[L(t, ~u0)~wi, ~wi]α =

m∑
i=1

[
−P
((

(~wi · ~∇)~u+ (~u · ~∇)~wi

)
α

)
, ~wi

]
α

+

m∑
i=1

[ν∆~wi − β ~wi, ~wi]α = I1 + I2, (48)

where we shall study each term I1 and I2 separately.

For the term I1, as we have div(~wi) = 0 (for 1 ≤ i ≤ m), and moreover, by the well-known properties of
the Leray’s projector P, we can write

I1 =
m∑
i=1

[
−
(

(~wi · ~∇)~u+ (~u · ~∇)~wi

)
α
, ~wi

]
α

Then, we will use the following identity.

Lemma 5.1 By definition of the filtering operator (·)α = (−α2∆ + Id)
−1, and moreover, by definition of

the scalar product [·, ·]α given in (44), for ~g1, ~g2 ∈ H1(R3) we have: [(~g1)α, ~g2]α = (~g1, ~g2)L2×L2.
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Proof. We write [(~g1)α, ~g2]α = [~g1, (~g2)α]α = (~g1, (~g2)α)L2×L2 + α2
(
~∇⊗ ~g1, ~∇⊗ (~g2)α

)
L2×L2

, and integrat-

ing by parts the last term we have

[(~g1)α, ~g2]α = (~g1, (~g2)α)L2×L2 − α2 (~g1,∆(~g2)α)L2×L2 =
(
~g1, (~g2)α − α2∆((~g2)α)

)
L2×L2

=
(
~g1, (−α2∆ + Id)(~g2)α

)
L2×L2 =

(
~g1, (−α2∆ + Id)(−α2∆ + Id)

−1~g2

)
L2×L2 = (~g1, ~g2)L2×L2 .

�

Thus, applying by this identity, and morerover, as we have div(~wi) = 0, we can write

I1 =−
m∑
i=1

(
(~wi · ~∇)~u+ (~u · ~∇)~wi, ~wi

)
L2×L2

= −
m∑
i=1

(
(~wi · ~∇)~u, ~wi

)
L2×L2

−
m∑
i=1

(
(~u · ~∇)~wi, ~wi

)
L2×L2

=
m∑
i=1

(
(~wi · ~∇)~u, ~wi

)
L2×L2

=
m∑
i=1

∫
R3

 3∑
j,k=1

wi,k(∂kuj)wi,j

 dx ≤
m∑
i=1

∫
R3

∣∣∣∣∣∣
3∑

j,k=1

wi,k(∂kuj)wi,j

∣∣∣∣∣∣ dx.
Here, we need to estimate the term

∣∣∣∣∣∣
3∑

j,k=1

wi,k(∂kuj)wi,j

∣∣∣∣∣∣, and following the same computations done in the

estimate (3.5), page 16 in [16], we have

∣∣∣∣∣∣
3∑

j,k=1

wi,k(∂kuj)wi,j

∣∣∣∣∣∣ ≤ |~∇⊗ ~u| |~wi|2.

With this pointwise inequality at hand, we get back to the estimate of the term I1 above, where we can
write

I1 ≤
m∑
i=1

∫
R3

|~∇⊗ ~u||~wi|2dx ≤
∫
R3

|~∇⊗ ~u|

(
m∑
i=1

|~wi|2
)
dx.

Then, applying the Hölder inequalities (with 2/5 + 3/5 = 1) we have∫
R3

|~∇⊗ ~u|

(
m∑
i=1

|~wi|2
)
dx ≤ ‖~∇⊗ ~u‖L5/2

∥∥∥∥∥
m∑
i=1

|~wi|2
∥∥∥∥∥
L5/3

.

In order to estimate the last term in the right we will use the following Lieb-Thirring inequality, for a proof
see the equation (6), page 2 in [22]:∥∥∥∥∥

m∑
i=1

|~wi|2
∥∥∥∥∥
L5/3

≤ CLT

(
m∑
i=1

‖~wi‖2Ḣ1

)3/5

,

where, for the function Gamma Γ(·), the constant CLT > 0 writes down as:

CLT =
3

55/3

(
16π3/2 Γ(7/2)

Γ(5)

)2/3

. (49)

Thus, by the Lieb-Thirring inequality above, and moreover, by the Young inequalities (always with 2/5 +
3/5 = 1), we have

‖~∇⊗ ~u‖L5/2

∥∥∥∥∥
m∑
i=1

|~wi|2
∥∥∥∥∥
L5/3

≤ CLT ‖~∇⊗ ~u‖L5/2

(
m∑
i=1

‖~wi‖2Ḣ1

)3/5

≤ CLT

ν3/5
‖~∇⊗ ~u‖L5/2

(
ν

m∑
i=1

‖~wi‖2Ḣ1

)3/5

≤ 2

5

C
5/2
LT

ν3/2
‖~∇⊗ ~u‖5/2

L5/2 +
3ν

5

m∑
i=1

‖~wi‖2Ḣ1
.
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Now, in the first term to the right hand side, by the interpolation inequalities (with 2/5 = θ/2 + (1− θ)/6,
and θ = 7/10), and moreover, by the Sobolev embedding, we write

2

5

C
5/2
LT

ν3/2
‖~∇⊗ ~u‖5/2

L5/2 +
3ν

5

m∑
i=1

‖~wi‖2Ḣ1
≤ 2

5

C
5/2
LT

ν3/2
‖~∇⊗ ~u‖7/4

L2 ‖~∇⊗ ~u‖
3/4
L6 +

3ν

5

m∑
i=1

‖~wi‖2Ḣ1

≤ 2

5

C
5/2
LT

ν3/2
‖~u‖7/4

Ḣ1

(
4‖~u‖Ḣ2

)3/4
+

3ν

5

m∑
i=1

‖~wi‖2Ḣ1

≤ 25/2

5

C
5/2
LT

ν3/2
‖~u‖7/4

Ḣ1
‖~u‖3/4

Ḣ2
+

3ν

5

m∑
i=1

‖~wi‖2Ḣ1

≤ 2
C

5/2
LT

ν3/2α3/4
‖~u‖7/4

Ḣ1
(α‖~u‖Ḣ2)3/4 +

3ν

5

m∑
i=1

‖~wi‖2Ḣ1

At this point, always in the first term to the right hand side, we apply the Young inequalities (with 1 =
5/8 + 3/8) to get

2
C

5/2
LT

ν3/2α3/4
‖~u‖7/4

Ḣ1
(α‖~u‖Ḣ2)3/4 +

3ν

5

m∑
i=1

‖~wi‖2Ḣ1
≤ 5

8

(
2

C
5/2
LT

ν3/2α3/4
‖~u‖7/4

Ḣ1

)8/5

+
3

8
α2‖~u‖2

Ḣ2 +
3ν

5

m∑
i=1

‖~wi‖2Ḣ1

≤ 2
C4
LT

ν12/5α6/5
‖~u‖14/5

Ḣ1
+

3

8
α2‖~u‖2

Ḣ2 +
3ν

5

m∑
i=1

‖~wi‖2Ḣ1
.

Finally, for the term I1 in (48) we have the estimate

I1 ≤ 2
C4
LT

ν12/5α6/5
‖~u(t, ·)‖14/5

Ḣ1
+

3

8
α2‖~u(t, ·)‖2

Ḣ2 +
3ν

5

m∑
i=1

‖~wi‖2Ḣ1
. (50)

We estimate now the term I2 in (48). By definition of the scalar product [·, ·]α given in (44), and integrating
by parts, we write

I2 =
m∑
i=1

∫
R3

(ν∆~wi − β ~wi) · ~wi dx+ α2
m∑
i=1

∫
R3

~∇⊗ (ν∆~wi − β ~wi) · ~∇⊗ ~wi dx

=ν
m∑
i=1

‖~wi‖2Ḣ1 − β
m∑
i=1

‖~wi‖2L2 − α2ν
m∑
i=1

‖~wi‖2Ḣ2 − α2β
m∑
i=1

‖~wi‖2Ḣ1

=− β
m∑
i=1

(
‖~wi‖2L2 + α2‖~wi‖2Ḣ1

)
− ν

m∑
i=1

‖~wi‖2Ḣ1 − α2ν
m∑
i=1

‖~wi‖2Ḣ2

=− β
m∑
i=1

‖~wi‖2H1
α
− ν

m∑
i=1

‖~wi‖2Ḣ1 − α2ν
m∑
i=1

‖~wi‖2Ḣ2 ,

and recalling that (~wi)1≤i≤m is an orthonormal family in H1
α(R3), we finally get

I2 = −βm− ν
m∑
i=1

‖~wi‖2Ḣ1 − α2ν

m∑
i=1

‖~wi‖2Ḣ2 ≤ −βm− ν
m∑
i=1

‖~wi‖2Ḣ1 . (51)

Once we have the estimates (50) and (51), we get back to (48) to write

m∑
i=1

[L(t, ~u0)~wi, ~wi]α ≤ 2
C4
LT

ν12/5α6/5
‖~u(t, ·)‖14/5

Ḣ1
+

3

8
α2‖~u(t, ·)‖2

Ḣ2 +
3ν

5

m∑
i=1

‖~wi‖2Ḣ1
− βm− ν

m∑
i=1

‖~wi‖2Ḣ1

≤ −βm+ 2
C4
LT

ν12/5α6/5
‖~u(t, ·)‖14/5

Ḣ1
+

3

8
α2‖~u(t, ·)‖2

Ḣ2 ,
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and then we obtain the desired estimate. Proposition 5.1 is proven. �

Once we have the estimate on the quantity
m∑
i=1

[L(t, ~u0)~wi, ~wi]α given in Proposition 5.1, we shall continue

estimating the quantity `(m) given in (5.3). So, for T > 0, we take the time-average 1
T

∫ T
0 (·)dt in each term

of (47) to get

1

T

∫ T

0

m∑
i=1

[L(t, ~u0)~wi, ~wi]α ≤ −βm+ 2
C4
LT

ν12/5α6/5

1

T

∫ T

0
‖~u(t, ·)‖14/5

Ḣ1
dt︸ ︷︷ ︸

(a)

+
3

8
α2 1

T

∫ T

0
‖~u(t, ·)‖2

Ḣ2dt︸ ︷︷ ︸
(b)

, (52)

where we must study now the terms (a) and (b). For the term (a), recalling that ‖ · ‖2H1
α

= ‖ · ‖2L2 +α2‖ · ‖2
Ḣ1 ,

by estimate (6) we have

1

T

∫ T

0
‖~u(t, ·)‖14/5

Ḣ1
dt ≤ 1

α14/5

1

T

∫ T

0

(
α2‖~u(t, ·)‖2

Ḣ1

)7/5
dt ≤ 1

α14/5

1

T

∫ T

0

(
‖~u0‖2H1

α
e−β t +

4

β2
‖~f‖2H1

α

)7/5

dt

≤ 22/5

α14/5

(
‖~u0‖14/5

H1
α

1

T

∫ T

0
e−

7β
5
tdt+

214/5

β14/5
‖~f‖14/5

H1
α

)
≤ 22/5

α14/5
‖~u0‖14/5

H1
α

5

7β T
(1− e−

7β
5
T ) +

216/5

α14/5β14/5
‖~f‖14/5

H1
α
.

Recall also that by definition of the quantity `(m) (see always the expression (5.3)) we have ~u0 ∈ A~f
, and

moreover, as the global attractor A~f
is a compact set in H1

α(R3) (see Definition 1) then there exists M > 0

such that ‖~u0‖H1
α
≤M for all ~u0 ∈ H1

α(R3). Then, by the previous estimate we can write

1

T

∫ T

0
‖~u(t, ·)‖14/5

Ḣ1
dt ≤ 22/5

α14/5

5M14/5

7β T
(1− e−

7β
5
T ) +

216/5

α14/5β14/5
‖~f‖14/5

H1
α
. (53)

In order to estimate the term (b), we will use now the inequality (7) (with t = 0 and T > 0) to write

α2 1

T

∫ T

0
‖~u(t, ·)‖2

Ḣ2dt ≤
2

β
‖~f‖2H1

α
+

1

T
‖~u0‖2H1

α
≤ 2

β
‖~f‖2H1

α
+

1

T
M2. (54)

Gathering the estimates (53) and (54), in (52) we have

1

T

∫ T

0

m∑
i=1

[L(t, ~u0)~wi, ~wi]α dt ≤− βm+ 2
C4
LT

ν12/5α6/5

(
22/5

α14/5

5M14/5

7β T
(1− e−

7β
5
T ) +

216/5

α14/5β14/5
‖~f‖14/5

H1
α

)

+
3

8

(
2

β
‖~f‖2H1

α
+

1

T
M2

)
≤− βm+

1

T

(
2

C4
LT

ν12/5α6/5

22/5

α14/5

5M14/5

7β
(1− e−

7β
5
T ) +

3

8
M2

)
︸ ︷︷ ︸

(c)

+ 2
C4
LT

ν12/5α6/5

216/5

α14/5β14/5
‖~f‖14/5

H1
α

+
3

4β
‖~f‖2H1

α
,

and moreover, we set now the constant

C(α, β, ν) = 2
C4
LT

ν12/5α6/5

216/5

α14/5
+

3

4β
, (55)
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to write
1

T

∫ T

0

m∑
i=1

[L(t, ~u0)~wi, ~wi]α dt ≤ −βm+
1

T
(c) + C(α, β, ν) max

(
‖~f‖14/5

H1
α
, ‖~f‖2H1

α

)
.

Finally, by (5.3) we obtain the estimate

`(m) ≤ −βm+ c(α, β, ν) max
(
‖~f‖14/5

H1
α
, ‖~f‖2H1

α

)
, (56)

which is the desired estimate (46) with c1 = β, γ = 1 and c2 = C(α, β, ν) max
(
‖~f‖14/5

H1
α
, ‖~f‖2H1

α

)
. Thus,

appliying the Theorem 5.1 we get the upper bound for the fractal dimension of the attractor A~f
given in

(9), where the constant c(α, β, ν) is defined through the constant C(α, β, ν), given in (55) as

c(α, β, ν) =
1

β
C(α, β, ν). (57)

Theorem 3 is now proven. �

6 Internal estructure of the global attractor A~f

Proof of Theorem 4

In order to prove this theorem, we will verify each point stated in this result separately.

1) The existence of stationary solutions

Given an external force ~f ∈ H1
α(R3), we will construct a solution (~U, P ) for the stationary problem (12).

We shall start by explaining the strategy of our proof. Since we work on the whole space R3, and moreover,
since we have div(~f) = 0 and div(~U) = 0, then we can apply the Leray’s projector P to the equation (12)
to obtain the following equation:

− ν∆~U + Pdiv((~U ⊗ ~U)α) = ~f − β~U. (58)

From this equation, as div(~U) = 0 we may observe that the velocity ~U formally solves the following equivalent
fixed point problem:

~U = − 1

−ν∆ + βId

[
Pdiv((~U ⊗ ~U)α)

]
+

1

−ν∆ + βId

[
~f
]

= − 1

−ν∆ + βId

[
P
(

(~U · ~∇)~U
)
α

]
+

1

−ν∆ + βId

[
~f
]

= T (~U),

(59)

where the non-local operator
1

−ν∆ + βId
is easily defined in the Fourier variable by its symbol

1

ν|ξ|2 + β
.

Thus, the main idea to construct a solution (~U, P ) to the equation (12) is to solve first this fixed point
problem, and then, the pressure term P is calculated through the velocity ~U by the formula (29).

To solve the fixed point problem (59), we could use the (classical) Picard’s iterative scheme in the space

H2(R3), however, this scheme needs a control on the quantity

∥∥∥∥ 1

−ν∆ + βId

[
~f
]∥∥∥∥

H2

. Moreover, as we have

the estimate

∥∥∥∥ 1

−ν∆ + βId

[
~f
]∥∥∥∥

H2

. ‖~f‖H1 , we observe that the Picard’s iterative scheme ultimately needs
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a control on the quantity ‖~f‖H1 . Consequently, this scheme works for the case of external forces small
enough: ‖~f‖H1 . 1.

Since we want to construct stationary solutions (~U, P ) for any external force ~f ∈ H1
α(R3), we shall use

here a different approach. Instead of the Picard’s fixed point theorem, the key tool to construct a solution
(~U, P ) will be the Sheafer’s fixed point theorem. For a proof see the Theorem 16.1, page 529 of [21].

Theorem 6.1 (Sheafer’s fixed point) Let E be a Banach space and let T : E → E such that:

1) T is a continuous operator.

2) T is a compact operator.

3) There exists a constant M > 0, such that for all λ ∈ [0, 1], if e ∈ E verifies e = λT (e) then we have
‖e‖E ≤M .

Then, there exists e ∈ E such that e = T (e).

It is worth mention this result asserts the existence of at least a fixed point of the operator T , but there is
not any supplementary information on its uniqueness.

We would like to apply this result to the Banach space E =
{
~U ∈ H2 : div(~U) = 0

}
, and the operator

T given in (59), however, there is a technical problem to overcome: to the best of our knowledge, we do not
how to verify that the compactness of the operator T in the space E above. To solve this problem, we will
consider a family of modified operators (Tr)r>0 which verify all the points of the Sheafer’s fixed theorem
above. Then, for all r > 0 fixed, by this theorem we will get a solution ~Ur ∈ E of the equation ~Ur = Tr(~Ur).
Finally, using a Rellich-Lions lemma we will show that the sequence (~Ur)r>0 converges to a solution of the
stationary problem (12).

For r > 0 fixed, we define now the modified operator Tr : E → E as follows. Let θ ∈ C∞0 (R3) be a test
function such that 0 ≤ θ(x) ≤ 1, θ(x) = 1 for |x| < 1, and θ(x) = 0 for |x| > 2. Then, we define the cut-off
function θr(x) = θ(x/r), and moreover, we define Tr by

Tr(~U) = − 1

−ν∆ + βId

[
P
(

(θr ~U · ~∇)(θr ~U)
)
α

]
+

1

−ν∆ + βId

[
~f
]
. (60)

We will prove that this operator verifies the points stated in the Theorem 6.1. For the point 1), for
~U, ~V ∈ E we write

‖Tr(~U)− Tr(~V )‖H2 =

∥∥∥∥− 1

−ν∆ + βId

[
P
(

(θr ~U · ~∇)(θr ~U)− (θr~V · ~∇)(θr~V )
)
α

]∥∥∥∥
H2

=

∥∥∥∥− 1

−ν∆ + βId

[
P
(

((θr(~U − ~V ))~∇)(θr ~U) + ((θr~V ) · ~∇)(θr(~U − ~V ))
)
α

]∥∥∥∥
H2

.

(61)

Using the fact that the symbol of the operator
1

−ν∆ + βId
is a bounded function in the frequency variable,

and moreover, by the well-known properties of the Leray’s projector P, we can write∥∥∥∥− 1

−ν∆ + βId

[
P
(

((θr(~U − ~V ))~∇)(θr ~U) + ((θr~V ) · ~∇)(θr(~U − ~V ))
)
α

]∥∥∥∥
H2

≤c(β, ν)
(∥∥∥(((θr(~U − ~V ))~∇)(θr ~U) + ((θr~V ) · ~∇)(θr(~U − ~V ))

)
α

∥∥∥
H2

)
,
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and then, by definition of the filterig operator (·)α given in formula (2) we can write

‖Tr(~U)− Tr(~V )‖H2 ≤c(β, ν)
(∥∥∥(((θr(~U − ~V ))~∇)(θr ~U) + ((θr~V ) · ~∇)(θr(~U − ~V ))

)
α

∥∥∥
H2

)
≤c(α, β, ν)

∥∥∥((θr(~U − ~V ))~∇)(θr ~U) + ((θr~V ) · ~∇)(θr(~U − ~V ))
∥∥∥
L2
.

Moreover, applying the Hölder inequalities and recalling that the space H2(R3) embeds in the spaces L∞(R3)
and H1(R3), we obtain

c(α, β, ν)
∥∥∥((θr(~U − ~V ))~∇)(θr ~U) + ((θr~V ) · ~∇)(θr(~U − ~V ))

∥∥∥
L2

≤c(α, β, ν)
(∥∥∥θr(~U − ~V )

∥∥∥
L∞

∥∥∥~∇⊗ (θr ~U)
∥∥∥
L2

+
∥∥∥θr~V ∥∥∥

L∞

∥∥∥~∇⊗ (θr(~U − ~V ))
∥∥∥
L2

)
≤c(α, β, ν, θr)

(∥∥∥~U − ~V
∥∥∥
L∞

∥∥∥~U∥∥∥
H1

+
∥∥∥~V ∥∥∥

L∞

∥∥∥~U − ~V
∥∥∥
H1

)
≤c(α, β, ν, θr)

(∥∥∥~U − ~V
∥∥∥
H2

∥∥∥~U∥∥∥
H2

+
∥∥∥~V ∥∥∥

H2

∥∥∥~U − ~V
∥∥∥
H2

)
.

Thus, we are able to write∥∥∥Tr(~U)− Tr(~V )
∥∥∥
H2
≤ c(α, β, ν, θr)

(∥∥∥~U∥∥∥
H2

+
∥∥∥~V ∥∥∥

H2

) ∥∥∥~U − ~V
∥∥∥
H2
,

hence we have the continuity of the operator Tr : E → E.

We verify now the point 2). Let (~Vn)n∈N be a bounded sequence in the space E. Then, this sequence con-
verges to a limit ~V ∈ H2(R3) in the weak topology of the space H2(R3). Moreover, as we have div(~Vn) = 0,
for all n ∈ N, then we get that div(~V ) = 0, and thus we have ~V ∈ E.

We must show that the sequence (Tr(~Vn))n∈N strongly converges (via a sub-sequence) to Tr(~V ) in the

space E. For this, by (61), and moreover, by the well-known properties of operators
1

−ν∆ + βId
, P and

(·)α =
1

−α2∆ + Id
, we can write

‖Tr(~Vn)− Tr(~V )‖H2 =

∥∥∥∥ 1

−ν∆ + βId

[
P
(

((θr(~Vn − ~V ))~∇)(θr~Vn) + ((θr~V ) · ~∇)(θr(~Vn − ~V ))
)
α

]∥∥∥∥
H2

≤cα,β,ν
∥∥∥((θr(~Vn − ~V ))~∇)(θr~Vn) + ((θr~V ) · ~∇)(θr(~Vn − ~V ))

∥∥∥
H−2

≤cα,β,ν
∥∥∥((θr(~Vn − ~V ))~∇)(θr~Vn) + ((θr~V ) · ~∇)(θr(~Vn − ~V ))

∥∥∥
H−1

≤cα,β,ν
∥∥∥((θr(~Vn − ~V ))~∇)(θr~Vn) + ((θr~V ) · ~∇)(θr(~Vn − ~V ))

∥∥∥
Ḣ−1

≤cα,β,ν

∥∥∥((θr(~Vn − ~V ))~∇)(θr~Vn)
∥∥∥
Ḣ−1︸ ︷︷ ︸

(a)

+
∥∥∥((θr~V ) · ~∇)(θr(~Vn − ~V ))

∥∥∥
Ḣ−1︸ ︷︷ ︸

(b)

 ,

(62)

where, we will prove that the terms (a) and (b) converge to zero when n goes to +∞.

For the term (a), by the Hardy-Littlewood-Sobolev inequalities, by the Hölder inequalities, and moreover,
recalling that the sequence (~Vn)n∈N is bounded in H2(R3), we can write

(a) ≤ c
∥∥∥((θr(~Vn − ~V ))~∇)(θr~Vn)

∥∥∥
L6/5
≤ c

∥∥∥(θr(~Vn − ~V )
∥∥∥
L3

∥∥∥~∇⊗ (θr~Vn)
∥∥∥
L2

≤ c(θr)
∥∥∥(θr(~Vn − ~V )

∥∥∥
L3
‖~Vn‖H1 ≤ c(θr)

∥∥∥(θr(~Vn − ~V )
∥∥∥
L3
‖~Vn‖H2 ≤ c(θr)

∥∥∥(θr(~Vn − ~V )
∥∥∥
L3
.
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We will prove now the term in the right side converges to zero when n goes to +∞. For this we have the
following technical result.

Lemma 6.1 For r > 0 fixed, the sequence (θr~Vn)n∈N strongly converges (through a sub-sequence) to θr~V in
the space Lp(R3) with 2 ≤ p < +∞.

Proof. We observe first that the sequence (θ2r
~Vn)n∈N is also bounded in the space H2(R3), and more-

over, by definition of the cut-off function θ2r we have supp
(
θ2r

~Vn

)
⊂ B(0, 4r), for all n ∈ N. Then, by

the Rellich-Lions lemma there exists ~W ∈ H2(R3) such that the sequence (θ2r
~Vn)n∈N strongly converges

(through a sub-sequence) to ~W in L2(R3). Moreover, the sequence (θ2r
~Vn)n∈N strongly converges to ~W in

Lp(R3) with 2 ≤ p ≤ +∞. On the other hand, as we have θ2r = 1 on supp(θr) then we obtain that the
sequence (θr~Vn)n∈N strongly converges to θr ~W in Lp(R3) with 2 ≤ p < +∞. Finally, we will prove the
identity θr ~W = θr~V . For this, just recall that ~Vn converges to ~V in the weak topology of H2(R3) and then it
also converges to ~V in the weak topology of L2(R3). Hence we get that the sequence θr~Vn weakly converges
to θr~V in L2(R3). Thus, since θr~Vn strongly converges θr ~W in L2(R3) then we have θr ~W = θr~V . �

We study now the term (b). We will need here the following identity.

Lemma 6.2 Let ~A = (A1, A2, A3), ~B = (B1, B2, B3) be two vector fields. If div( ~A) = 0 then we have

((θr ~A) · ~∇)(θr ~B) = div(θ2
r
~A⊗ ~B)− θr(~∇θr · ~A) ~B.

Proof. We write

((θr ~A) · ~∇)(θr ~B) =
3∑
i=1

θrAi∂i(θr ~B) =
3∑
i=1

∂i

(
θ2
rAi ~B

)
−

3∑
i=1

θr∂i(θrAi) ~B = div(θ2
r
~A⊗ ~B)−

3∑
i=1

θr∂i(θrAi) ~B

=div(θ2
r
~A⊗ ~B)−

3∑
i=1

θr(∂iθr)Ai −
3∑
i=1

θ2
r(∂iAi) ~B = div(θ2

r
~A⊗ ~B)− θr(~∇θr · ~A) ~B. �

By this lemma, setting ~A = ~V and ~B = ~Vn − ~V , in the term (b) we have

(b) =
∥∥∥div(θ2

r
~V ⊗ (~Vn − ~V ))

∥∥∥
Ḣ−1

+
∥∥∥θr(~∇θr · ~V )(~Vn − ~V )

∥∥∥
Ḣ−1

= (b1) + (b2),

and then, we must study the terms (b1) and (b2) separately. For the term (b1) we write

(b1) ≤ c
∥∥∥θ2

r
~V ⊗ (~Vn − ~V ))

∥∥∥
L2
≤
∥∥∥θr~V ∥∥∥

L∞

∥∥∥θr(~Vn − ~V )
∥∥∥
L2
≤ c

∥∥∥~V ∥∥∥
H2

∥∥∥θr(~Vn − ~V )
∥∥∥
L2

where, by Lemma 6.1 we conclude that this term tends to zero when n goes to +∞. On the other hand, to
estimate the term (b2), we use again the Hardy-Littlewood-Sobolev inequalities and the Hölder inequalities
to write

(b2) ≤c
∥∥∥θr(~∇θr · ~V )(~Vn − ~V )

∥∥∥
L6/5
≤
∥∥∥~∇θr · ~V ∥∥∥

L3

∥∥∥θr(~Vn − ~V )
∥∥∥
L2
,

where, always by Lemma 6.1, we also conclude that this term tends to zero when n goes to +∞.

Once we have shown that the (a) and (b) converge to zero, by (62) we obtain that Tr(~Vn) strongly
converges to Tr(~V ) in the space E, and then, the operator Tr is compact.
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We verify now the point 3). Let λ ∈ [0, 1], and ~U ∈ E such that it verifies ~U = λTr(~U). Then, by
definition of the operator Tr given in (60), we get that ~U solves the equation:

−ν∆~U + β~U + λP
(

(θr ~U · ~∇)(θr ~U)
)
α

= λ ~f.

Moreover, applying the operator (−α2∆ + Id) to each term in this equation, and recalling that we have
(·)α = (−α2∆ + Id)−1, we obtain that ~U also solves the equation:

να2∆2~U − (ν + βα2)∆~U + β~U + λP(θr ~U · ~∇)(θr ~U) = −α2λ∆~f + λ ~f.

In this equation, we multiply first by ~U and then we integrate on the whole space R3. After some integration
by parts, and moreover, as we have div(~U) = 0, we finally get

να2‖~U‖2
Ḣ2 + (ν + βα2)‖~U‖2

Ḣ1 + β‖~U‖2L2 = α2λ

∫
R3

~∇⊗ ~f · ~∇⊗ ~U dx+ λ

∫
R3

~f · ~U dx.

In the term in the right side, by the Cauchy-Schwarz inequalities, using the fact that λ ∈ [0, 1], and moreover,
by the Young inequalities, we write

−α2 λ

∫
R3

~f ·∆~U dx+ λ

∫
R3

~f · ~U dx ≤α2λ ‖~f‖
Ḣ1 ‖~U‖Ḣ1 + λ ‖~f‖L2 ‖~U‖L2

≤α2‖~f‖Ḣ1 ‖~U‖Ḣ1 + ‖~f‖L2 ‖~U‖L2

≤α
2

2β
‖~f‖2

Ḣ1 +
βα2

2
‖~U‖2

Ḣ1 +
1

2β
‖~f‖2L2 +

β

2
‖~U‖2L2 .

(63)

Getting back to the last identity, we obtain

να2

2
‖~U‖2

Ḣ2 + (ν +
βα2

2
)‖~U‖2

Ḣ1 +
β

2
β‖~U‖2L2 ≤

1

2β

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
, (64)

hence we have

β‖~U‖2L2 + να2‖~U‖2
Ḣ2 ≤

1

β

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
.

Finally, we can write

‖~U‖2H2 ≤
1

min(β, να2)β

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
, (65)

where, setting the constant M2 =
1

min(β, να2)β

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
, the point 3) is now verified.

We may apply the Theorem 6.1 to obtain a solution ~Ur ∈ E of the problem ~Ur = Tr(~Ur), for all r > 0
fixed. We will show now that the family (~Ur)r>0 converges (in the distributional sense) to a solution of the
equation (12) when the parameter r goes (via a sub-sequence) to infinity.

We observe first that by estimate (65) the family (~Ur)r>0 in uniformly bounded in the space H2(R3).
Thus, for all ϕ ∈ C∞0 (R3) we have: sup

r>0
‖ϕ ~Ur‖H2 < +∞, and then, by the Rellich-Lions lemma there exists

~U ∈ H2
loc(R3) and a sub-sequence (rn)n∈N, such that rn → +∞ when n→ +∞, and such that ~Urn strongly

converges to ~U in the space Lploc(R
3) for 2 ≤ p < +∞. Moreover, as div(~Urn) = 0 for all n ∈ N we have

div(~U) = 0, and always by the uniform boundness of the sequence ~Urn in the space H2(R3), by the Banach-
Alaoglu theorem we obtain that ~U ∈ H2(R3).

In order to prove that ~U ∈ H2(R3) is a solution of the equation (12), we recall that as we have ~Urn =
Trn(~Urn), then ~Urn solves the equation

να2∆2~Urn − (ν + βα2)∆~Urn + β~Urn + P(θrn ~Urn · ~∇)(θrn ~Urn) = −α2∆~f + ~f.
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Moreover, since we have div(~Urn) = 0 and div(~f) = 0, then ~Urn verifies the equation

P
(
να2∆2~Urn − (ν + βα2)∆~Urn + β~Urn + (θrn ~Urn · ~∇)(θrn ~Urn) + α2∆~f − ~f

)
= 0,

where, by well-known properties of the Leray’s projector, for all n ∈ N we have

~∇∧
(
να2∆2~Urn − (ν + βα2)∆~Urn + β~Urn + (θrn ~Urn · ~∇)(θrn ~Urn) + α2∆~f − ~f

)
= 0. (66)

Here, we will prove that the non-linear term (θrn ~Urn · ~∇)(θrn ~Urn) converges in the distributional sense
to the non-linear term (~U · ~∇)~U when n→ +∞. Indeed, we observe first that as div(~Urn) = 0, then we can
write

(θrn ~Urn · ~∇)(θrn ~Urn) = θrn

(
(~Urn · ~∇)(θrn ~Urn)

)
= θrndiv

(
~Urn ⊗ (θrn ~Urn)

)
.

Thereafter, as ~Urn strongly converges to ~U in the space L4
loc(R3), and moreover, as we have θrn(x) = 1 when

|x| < rn, then θrn ~Urn also strongly converges to ~U in L4
loc(R3). We get that ~Urn ⊗ (θrn ~Urn) converges to

~U ⊗ ~U in the strong topology of the space L2
loc(R3), hence we conclude the desired convergence. We thus

have the following limit in the distributional sense:

lim
rn→+∞

(
να2∆2~Urn − (ν + βα2)∆~Urn + β~Urn + (θrn ~Urn · ~∇)(θrn ~Urn) + α2∆~f − ~f

)
= να2∆2~U − (ν + βα2)∆~U + β~U + (~U · ~∇)~U + α2∆~f − ~f.

Thus, by (66) we get

~∇∧
(
να2∆2~U − (ν + βα2)∆~U + β~U + (~U · ~∇)~U + α2∆~f − ~f

)
= 0,

and then, there exists Q ∈ D′(R3) such that

να2∆2~U − (ν + βα2)∆~U + β~U + (~U · ~∇)~U + α2∆~f − ~f = ~∇Q.

Moreover, as ~U ∈ H2(R3) and ~f ∈ H1(R3), we observe that the term in the left side of this equation belongs
to the space H−2(R3), hence ~∇Q ∈ H−2(R3).

From this equation we can write

− ν(−α2∆ + Id)∆~U + β(−α2∆ + Id)~U + (~U · ~∇)~U − ~∇Q = (−α2∆2 + Id)~f, (67)

then, applying the filtering operator (·)α = (−α2∆ + Id)
−1 to each term, and defining the pressure P as

P = −(−α2∆2 + Id)
−1Q ∈ H1(R3), we finally obtain that the couple (~U, P ) is a solution of equation (12).

2) The energy estimate

As we have ~U ∈ H2(R3) and P ∈ H1(R3), then we can multiply each term in the equation (67) by ~U .
Thereafter, we integrate on R3 and after some integration by parts we obtain

να2‖~U‖2
Ḣ2 + (ν + βα2)‖~U‖2

Ḣ1 + β‖~U‖2L2 = α2

∫
R3

~∇⊗ ~f · ~∇⊗ ~U dx+

∫
R3

~f · ~U dx.

Moreover, the term in the right side was estimated in (63) (where we set λ = 1) and we have (64). From
this estimate we can write now

β

2
‖~U‖2L2 +

βα2

2
‖~U‖2

Ḣ1 +
να2

2
‖~U‖2

Ḣ2 ≤
1

2β

(
‖~f‖2L2 + α2‖~f‖2

Ḣ1

)
,

hence, recalling that ‖ · ‖2H1
α

= ‖ · ‖2L2 + α2‖ · ‖2
Ḣ1 , we finally obtain the desired energy estimate

‖~U‖2H1
α
≤ να2‖~U‖2

Ḣ2 ≤
2

β2
‖~f‖2H1

α
.
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3) All the stationary solutions belong to the global attractor

To prove this point, we just recall that by (11) the global attractor A~f
⊂ H1

α(R3) is the set of functions

~v(0, ·), where ~v ∈ L∞
(
R,H1

α(R3)
)

is an eternal solution of the equation (10). On the other hand, by the

energy estimate proven in the point 2), we know that all the solutions ~U ∈ H2(R3) of the stationary problem
(12) verify ~U ∈ H1

α(R3), and moreover, as they do not depend on the time variable, they also are a particular
case of bounded in time eternal solutions, and we can write ~U(0, ·) = ~U . Consequently, all the solutions
~U ∈ H2(R3) of the equation (12) belong to the global attractor A~f

. Theorem 4 is now proven. �

7 Additional properties of the global attractor driven by the damping
parameter

Proof of Theorem 5

The proof of this theorem bases on the following result concerning the long-time behavior of two solutions
of the equation (4).

Proposition 7.1 Let ~f1, ~f2 ∈ H1
α(R3) be two divergence-free external forces and let ~u0,1, ~u0,2 ∈ H1

α(R3) be
two initial data. Moreover, let (~u1, p1) (~u2, p2) ∈ L∞t H1

α ∩ (L2
loc)t Ḣ

2
x × (L2

loc)tH
1
x, be two global in time

solutions of the equation (4) arising from the data (~u0,1, ~f1) and (~u0,2, ~f2) respectively.

Moreover, for a numerical constant c > 0, and the parameters α > 0 and β > 0, we define the quantity
η(β) as:

η(β) = 2

(
−β

2
+

c

α5/2β
‖~f1‖H1

α

)
,

Then, for all time t ≥ 0, the following estimate holds:

‖~u1(t, ·)− ~u2(t, ·)‖2H1
α
≤ ‖~u0,1 − ~u0,2‖2H1

α
eη(β) t +

1

β
‖~f1 − ~f2‖2H1

α

1

η(β)

(
eη(β) t − 1

)
. (68)

Proof. From the solutions (~u1, p1) ∈ L∞t H1
α ∩ (L2

t )loc Ḣ
2
x × (L2

t )locH
1
x and (~u2, p2) ∈ L∞t H1

α ∩ (L2
t )loc Ḣ

2
x ×

(L2
t )locH

1
x, we define ~w = ~u1−~u2 and q = p1−p2. We observe that (~w, q) ∈ L∞t H1

α∩ (L2
t )locḢ

2
x× (L2

t )locH
1
x,

solves the equation:

∂t ~w +
(

(~w · ~∇)~u1 + (~u2 · ~∇)~w
)
α
− ν∆~w + ~∇q = ~f1 − ~f2 − β ~w, div(~w) = 0, ~w(0, ·) = ~u1(0, ·)− ~u2(0, ·).

Moreover, performing the same computations done in (27), for t ≥ 0, we have the following energy equality:

1

2

d

dt
‖~w(t, ·)‖2H1

α
=− ν‖~w(t, ·)‖2

Ḣ1 − α2‖~w(t, ·)‖2
Ḣ2 − β‖~w(t, ·)‖2H1

α
−
〈
~f1 − ~f2, ~w

〉
L2×L2

+ α2
〈
~∇⊗ (~f1 − ~f2), ~∇⊗ ~w

〉
L2×L2

−
〈

(~w · ~∇)~u1(t, ·), ~w(t, ·)
〉
Ḣ−1×Ḣ1

.
(69)

We study now the term
〈

(~w · ~∇)~u1(t, ·), ~w(t, ·)
〉
Ḣ−1×Ḣ1

. More precisely, as div(~w) = 0 and integrating by

parts, we can write〈
(~w · ~∇)~u1(t, ·), ~w(t, ·)

〉
Ḣ−1×Ḣ1

=

3∑
i,j=1

〈wj(∂ju1,i), wi)〉Ḣ−1×Ḣ1 =

3∑
i,j=1

〈(∂jwju1,i), wi)〉Ḣ−1×Ḣ1

=−
3∑

i,j=1

〈wju1,i, ∂jwi)〉L2×L2 = −
3∑

i,j=1

∫
R3

wj u1,i ∂jwi dx.
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By the Parseval’s identity and the Cauchy-Schwarz inequality we obtain

−
3∑

i,j=1

∫
R3

wju1,i ∂jwi dx =−
3∑

i,j=1

∫
R3

ŵj ̂u1,i∂jwi dξ = −
3∑

i,j=1

∫
R3

|ξ|ŵj |ξ|−1( ̂u1,i∂jwi) dξ

≤‖~w(t, ·)‖Ḣ1‖~u1(t, ·)(~∇⊗ ~w)(t, ·)‖Ḣ−1 .

Then, applying the Hardy-Littlewood-Sobolev inequalities, the Hölder inequalities (with 5/6 = 1/3 + 1/2),
and moreover, recalling that ‖ · ‖2H1

α
= ‖ · ‖2L2 + α2‖ · ‖Ḣ1 , we have

‖~w(t, ·)‖Ḣ1‖~u1(~∇⊗ ~w)‖Ḣ−1 ≤c‖~w(t, ·)‖Ḣ1‖~u1(~∇⊗ ~w)‖L6/5 ≤ c‖~w(t, ·)‖Ḣ1‖~u1(t, ·)‖L3‖~∇⊗ ~w(t, ·)‖L2

≤c‖~w(t, ·)‖2
Ḣ1‖~u1(t, ·)‖L3 ≤ c α2‖~w(t, ·)‖2

Ḣ1

1

α2
‖~u1(t, ·)‖L3

≤c ‖~w(t, ·)‖2H1
α

1

α2
‖~u1(t, ·)‖L3 .

We still need to estimate the term
1

α2
‖~u1(t, ·)‖L3 . By the interpolation inequalities (with 1/3 = θ/2 + (1−

θ)/6, and θ = 1/2) and applying again the Hardy-Littlewood-Sobolev inequalities, we can write

1

α2
‖~u1(t, ·)‖L3 ≤

c

α2
‖~u1(t, ·)‖1/2

L2 ‖~u1(t, ·)‖1/2
L6 ≤

c

α2
‖~u1(t, ·)‖1/2

L2 ‖~u1(t, ·)‖1/2
Ḣ1

≤ c

α5/2
‖~u1(t, ·)‖1/2

L2 α
1/2‖~u1(t, ·)‖1/2

Ḣ1
≤ c

α5/2
‖~u1(t, ·)‖H1

α
.

Now, by the point 1) in the Proposition 1 we obtain

c

α5/2
‖~u1(t, ·)‖H1

α
≤ c

α5/2

(
‖~u0,1‖H1

α
e−

β
2
t +

2

β
‖~f1‖H1

α

)
.

On the other hand, we recall that for any external force ~f ∈ H1
α(R3), by Lemma 4.1 we have that the set

B =

{
~u ∈ H1

α(R3) : ‖~u‖2H1
α
≤ 8

β2
‖~f‖2H1

α

}
, is a absorbing set in the sense of Definition 4.1. Then, for any

initial datum ~u0 ∈ H1
α(R3), the solution ~u(t, x) arising from (~u0, ~f) always lies in the set B from a time large

enough. Thus, getting back to the solution ~u1(t, x), without lost of generality we may suppose that the

initial datum ~u0,1 belongs to the absorbing set B =
{
~u ∈ H1

α(R3) : ‖~u‖2H1
α
≤ 8

β2 ‖~f1‖2H1
α

}
, and we can write

the estimate ‖~u0,1‖H1
α
≤
√

8

β
‖~f1‖H1

α
.

We thus have

c

α5/2
‖~u1(t, ·)‖H1

α
≤ c

α5/2

(√
8

β
‖~f1‖H1

α
e−

β
2
t +

2

β
‖~f1‖H1

α

)
≤ c

α5/2β2
‖~f1‖H1

α
,

and then, we can write
1

α2
‖~u1(t, ·)‖L3 ≤

c

α5/2β
‖~f1‖H1

α
.

Finally, gathering these inequalities we get the following estimate∣∣∣∣〈(~w · ~∇)~u1(t, ·), ~w(t, ·)
〉
Ḣ−1×Ḣ1

∣∣∣∣ ≤ ‖~w(t, ·)‖2H1
α

c

α5/2β
‖~f1‖H1

α
.

With this estimate at hand, we get back to the energy equality (69) to write

1

2

d

dt
‖~w(t, ·)‖2H1

α
≤− ν‖~w(t, ·)‖2

Ḣ1 − α2‖~w(t, ·)‖2
Ḣ2 − β‖~w(t, ·)‖2H1

α
−
〈
~f1 − ~f2, ~w

〉
L2×L2

+ α2
〈
~∇⊗ (~f1 − ~f2), ~∇⊗ ~w

〉
L2×L2

+ ‖~w(t, ·)‖2H1
α

c

α5/2β
‖~f1‖H1

α
.
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As the first and second term in the right side are negatives, we have

1

2

d

dt
‖~w(t, ·)‖2H1

α
≤− β‖~w(t, ·)‖2H1

α
−
〈
~f1 − ~f2, ~w

〉
L2×L2

+ α2
〈
~∇⊗ (~f1 − ~f2), ~∇⊗ ~w

〉
L2×L2

+ ‖~w(t, ·)‖2H1
α

c

α5/2β
‖~f1‖H1

α
.

Then, applying first the Cauchy-Schwarz inequalities and thereafter the Young inequalities, we get

1

2

d

dt
‖~w(t, ·)‖2H1

α
≤− β‖~w(t, ·)‖2H1

α
+

1

2β
‖~f1 − ~f2‖2L2 +

β

2
‖~w(t, ·)‖2L2 +

α2

2β
‖~f1 − ~f2‖2Ḣ1 +

α2β

2
‖~w(t, ·)‖2

Ḣ1

+ ‖~w(t, ·)‖2H1
α

c

α5/2β
‖~f1‖H1

α

≤− β‖~w(t, ·)‖2H1
α

+
β

2

(
‖~w(t, ·)‖2L2 + α2‖~w(t, ·)‖2

Ḣ1

)
+

1

2β

(
‖~f1‖2L2 + α2‖~f1‖2Ḣ1

)
+ ‖~w(t, ·)‖2H1

α

c

α5/2β
‖~f1‖H1

α

≤
(
−β

2
+

c

α5/2β
‖~f1‖H1

α

)
‖~w(t, ·)‖2H1

α
+

1

2β
‖~f1 − ~f2‖2H1

α
,

hence, we write

d

dt
‖~w(t, ·)‖2H1

α
≤ 2

(
−β

2
+

c

α5/2β
‖~f1‖H1

α

)
‖~w(t, ·)‖2H1

α
+

1

β
‖~f1 − ~f2‖2H1

α
.

We set now the quantity η(β) = 2

(
−β

2
+

c

α5/2β
‖~f1‖H1

α

)
, and using the Grönwall inequalities we finally

obtain the desired estimate (68). Proposition 7.1 is now proven. �

With Proposition 7.1 at hand, we are able to prove each point stated in Theorem 5. For this, we recall
the definition of the expression η(β) given in (13).

1) The orbital stability when η(β) = 0.

In the framework of Proposition 7.1, firs we set ~f1 = ~f2 = ~f , and we get the estimate

‖~u1(t, ·)− ~u2(t, ·)‖2H1
α
≤ ‖~u0,1 − ~u0,2‖2H1

α
eη(β) t.

Then, we take η(β) = 0 to obtain the following control

‖~u1(t, ·)− ~u2(t, ·)‖2H1
α
≤ ‖~u0,1 − ~u0,2‖2H1

α
,

hence, the result stated in this point follows directly.

2) The characterization of the global attractor when η(β) < 0.

In the first step, we will prove that the uniqueness of the stationary solution constructed in point 1)
of the Theorem 4. Let (~U1, P1), (~U2, P2) ∈ H2(R3) × H1(R3) be two solutions of the stationary prob-
lem (12) associated with the same external force ~f . As ~U1 and ~U2 are time-independing functions we
have ∂t~U1 = 0 and ∂t~U2 = 0, and thus, (~U1, P1), (~U2, P2) are also two solutions of the equation (4),
arising from the initial data ~U1 and ~U2 respectively and with external force ~f . Moreover, we also have
(~U1, P1), (~U2, P2) ∈ L∞t H1

x ∩ (L2
loc)t Ḣ

2
x × (L2

loc)tH
1
x.
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By Proposition 7.1 ( with ~f1 = ~f2 = ~f) we can write: ‖~U1 − ~U2‖H1
α
≤ ‖~U1 − ~U2‖H1

α
eη(β) t. Moreover,

as we have η(β) < 0, for a time t > 0 large enough we can write ‖~U1 − ~U2‖H1
α
≤ 1

2
‖~U1 − ~U2‖H1

α
, hence we

obtain the identity ~U1 = ~U2. Finally, as the pressure term is always related to the velocity field by (29) we
also obtain the identity P1 = P2.

In the second step, we prove now that the singleton {~U} is also a global attractor for the equation (4)
given in Definition 1. The first point in Definition 1 is evident, so we will focus on the second point. Let
t ≥ 0. We will prove the identity S(t){~U} = {~U}. Let ~u ∈ S(t){~U}, i.e., ~u(t, ·) is the solution of the equation
(4), at the time t and arising from the initial datum ~U . But, as explained above, we also have that ~U is
a solution of the equation (4) which arises from ~U . Then, by Proposition 7.1 ( with ~u1,0 = ~u0,2 = ~U and
~f1 = ~f2 = ~f) we can write ‖~u(t, ·)− ~U‖H1

α
≤ ‖~U − ~U‖H1

α
eη(β) t, hence we get ~u = ~U . On the other hand, we

also have ~U ∈ S(t){~U}, and it directly follows from the fact that taking ~U as an initial datum in equation
(4) then, for all time t ≥ 0, the same function ~U is the unique solution for this problem. We verify now the
third point in Definition 1. Let ~u0 ∈ H1

α(R3) an initial datum and let ~u ∈ L∞t H1
α ∩ (L2

loc)t Ḣ
2
x be the unique

solution of equation (4), arising from ~u0 and associated with the force ~f , which is given by Theorem 1. On
the other hand, let ~U ∈ H2(R3) be the unique stationary solution of the problem (4) associated with the
same force ~f . Thus, always by Proposition 7.1 (with ~f1 = ~f2 = ~f), for all time t ≥ 0 we have the estimate

‖~u(t, ·)− ~U‖H1
α
≤ ‖~u0 − ~U‖H1

α
eη(β),t, η(β) < 0. (70)

By this estimate, we may observe that the unique stationary solution ~U is asymptotically stable. Actually
we have a stronger stability property in the sense that, for any initial datum ~u0 the unique solution ~u(t, ·)
arising from ~u0 strongly converges to the stationary solution ~U when t→ +∞, and thus, the third point in
Definition 1 holds.

In the third and last step, we will prove the identity {~U} = A~f
. Indeed, on the one hand, we have that

{~U} is a global attractor of the equation (4). On the other hand, recall that by the Theorem 2 we also have
the global attractor A~f

given by this theorem. But, by Lemma 2.18, page 16 in [24], we have the uniqueness

of the global attractor, provided it satisfies all the points in Definition 1, hence we conclude that {~U} = A~f
.

Theorem 5 is now proven. �

Proof of Proposition 2

Let ~U ∈ A~f
be the unique solution of the equation (12), and let ~u ∈ L∞t (H1

α)x ∩ (L2
t )loc Ḣ

2
x be a solution

of the equation (4) arising from an initial datum ~u0 ∈ H1
α(R3). We define the term R~u = ~u− ~U which, to

simplify the notation, we shall write as R.

In order to prove (15), we observe first that as the stationary solution verifies ∂t~U = 0, then it is also a
solution of the equation (4) with initial datum ~U . Thus, the term R solves the following equation:

∂tR− ν∆R+ P
(

((~u · ~∇)~u− (~U · ~∇)~U)α

)
+ βR = 0, R(0, ·) = ~u0 − ~U, (71)

and consequently R(t, x) can be written as the integral form:

R(t, x) = eνt∆(~u0 − ~U)− β
∫ t

0
eν(t−s)R(s, x)ds−

∫ t

0
eν(t−s)P

(
((~u · ~∇)~u− (~U · ~∇)~U)α

)
(s, x)ds. (72)
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For all t > 0, we write

‖R(t, ·)‖L∞ ≤ ‖eνt∆(~u0 − ~U)‖L∞ + β

∫ t

0

∥∥∥eν(t−s)R(s, ·)
∥∥∥
L∞

ds

+

∫ t

0

∥∥∥eν(t−s)P
(

((~u · ~∇)~u− (~U · ~∇)~U)α

)
(s, ·)

∥∥∥
L∞

ds = I1(t) + I2(t) + I3(t),

(73)

where, we will prove now that each term above verify ‖Ii(t)‖L∞ ≤ C t−3/4, with t � 1. We mention here
C > 0 is a generically constant which may change from one estimate to other, but it does not depend on
the time variable.

For the first term I1(t), by well-known properties of the heat kernel hνt(x), and moreover, by the Young
inequalities (with 1 + 1/∞ = 1/2 + 1/2), we directly have

I1(t) ≤ ‖hνt‖L2‖~u0 − ~U‖L2 ≤
cν

t3/4
‖~u0 − ~U‖H1

α
≤ C t−3/4. (74)

Thereafter, to study the second term I2(t) we write

I2(t) ≤ β
∫ t/2

0

∥∥∥eν(t−s)R(s, ·)
∥∥∥
L∞

ds+ β

∫ t

t/2

∥∥∥eν(t−s)R(s, ·)
∥∥∥
L∞

ds = I2,1(t) + I2,2(t).

To estimate the term I2,1(t), using again the Young inequalities, using the identity R = ~u− ~U , and moreover,
by the estimate (70) (where we have η(β) < 0), we can write

I2,1(t) ≤ β
∫ t/2

0
‖hν(t−s)‖L2‖~u(s, ·)− ~U‖L2ds ≤ cβ,ν

∫ t/2

0

1

(t− s)3/4
‖~u(s, ·)− ~U‖L2ds

≤
cβ,ν

t3/4

∫ t/2

0
‖~u(s, ·)− ~U‖L2ds ≤

cβ,ν

t3/4

∫ t/2

0
‖~u(s, ·)− ~U‖H1

α
ds ≤

cβ,ν

t3/4
‖~u0 − ~U‖H1

α

∫ t/2

0
eη(β) sds ≤ C t−3/4.

These same facts also allow us to treat the term I2,2(t), where, for t� 1 we have

I2,2(t) ≤ β
∫ t

t/2
‖hν(t−s)‖L2‖~u(s, ·)− ~U‖L2ds ≤ cβ,ν

∫ t

t/2
(t− s)−3/4eη(β)sds ≤ cβ,ν eη(β)t/2

∫ t

t/2
(t− s)−3/4ds

≤ Ceη(β)t/2t1/4 ≤ C t−3/4.

We thus have
I2(t) ≤ C t−3/4, t� 1. (75)

Finally, to estimate the first term I3(t), we recall first that the filtering operator (·)α given in (2) can be
also defined by a convolution product with a kernel Kα [14]. This kernel has good decaying properties in the
spatial variable and moreover we have ‖Kα‖Lp < +∞, for 1 ≤ p < +∞. Thus, by the Young inequalities
(with 1 + 1/∞ = 5/6 + 1/6), and by the boundness of the Leray’s projector in the Lebesgue spaces, we have

I3 ≤
∫ t

0

∥∥∥(eν(t−s)P
(

(~u · ~∇)~u− (~U · ~∇)~U
)

(s, ·)
)
α

∥∥∥
L∞

ds

=

∫ t

0

∥∥∥Kα ∗
(
eν(t−s)P

(
(~u · ~∇)~u− (~U · ~∇)~U

)
(s, ·)

)∥∥∥
L∞

ds

≤ ‖Kα‖L6

∫ t

0

∥∥∥eν(t−s)P
(

(~u · ~∇)~u− (~U · ~∇)~U
)

(s, ·)
∥∥∥
L6/5

ds

≤ cα
∫ t

0

∥∥∥eν(t−s)
(

(~u · ~∇)~u− (~U · ~∇)~U
)

(s, ·)
∥∥∥
L6/5

ds = (a).
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Here, as we have div(~u) = 0 and div(~U) = 0, and moreover, applying again the Young inequalities (with
1 + 5/6 = 1 + 5/6), we can write

(a) = cα

∫ t

0

∥∥∥eν(t−s)div
(
~u⊗ ~u− ~U ⊗ ~U

)
(s, ·)

∥∥∥
L6/5

ds ≤ cα
∫ t

0
‖~∇hν(t−s)‖L6/5

∥∥∥(~u⊗ ~u− ~U ⊗ ~U
)

(s, ·)
∥∥∥
L1
ds = (b).

Recalling that R = ~u − ~U then we have ~u⊗ ~u− ~U ⊗ ~U = R⊗ ~u+ ~U ⊗R, and moreover, by the Hölder
inequalities (with 1 = 1/2 + 1/2), we write

(b) ≤ cα,ν
∫ t

0
(t− s)−3/4

∥∥∥(R⊗ ~u+ ~U ⊗R
)

(s, ·)
∥∥∥
L1
ds

≤ cα,ν
∫ t

0
(t− s)−3/4‖R(s, ·)‖L2

(
‖~u(s, ·)‖L2 + ‖~U‖L2

)
ds

≤ cα,ν
∫ t

0
(t− s)−3/4‖(~u− ~U)(s, ·)‖L2

(
‖~u(s, ·)‖L2 + ‖~U‖L2

)
ds

≤ cα,ν
∫ t

0
(t− s)−3/4‖(~u− ~U)(s, ·)‖H1

α

(
‖~u(s, ·)‖H1

α
+ ‖~U‖H1

α

)
ds = (c).

In this last expression, by (70) we have ‖(~u− ~U)(s, ·)‖H1
α
≤ ‖~u0 − ~U‖H1

α
eη(β)s (with η(β) < 0). More-

over, by point 1) of Proposition 1 we have ‖~u(s, ·)‖2H1
α
≤ ‖~u0‖2H1

α
e−βs +

1

β2
‖~f‖2H1

α
, hence we can write

‖~u(s, ·)‖H1
α
≤ ‖~u0‖H1

α
+ ‖~f‖H1

α
. Thus, gathering these estimates, for t� 1 we obtain

(c) ≤ C
∫ t

0
(t− s)−3/4eη(β)sds = C

∫ t/2

0
(t− s)−3/4eη(β)sds+ C

∫ t

t/2
(t− s)−3/4eη(β)sds ≤ C t−3/4.

I3(t) ≤ C t−3/4, t� 1. (76)

Once we have the estimates (74), (75) and (76), we get back to (73), hence we finally get the desired
estimate (15). Proposition 2 is proven. �

8 The damped Navier-Stokes-Bardina’s model without external force

Proof of Proposition 3

When ~f = 0, we observe first that ~U = 0 is a solution of the stationary problem (12), and moreover, by
point 2) of Theorem 5 is the unique one since here we have η(β) = −β < 0. We thus have A~f

= {0}.

On the other hand, for any initial datum ~u0 ∈ H1
α(R3), let ~u(t, ·) be the solution of the equation (4) given

by Theorem 1. Then, by (70) we have ‖~u(t, ·)‖H1
α
≤ ‖~u0‖H1

α
e−β t, hence we can write ‖~u(t, ·)‖L2 ≤ ‖~u0‖H1

α
e−β t.

Moreover, by Proposition 2 (with ~U = 0) we also have ‖~u(t, ·)‖L∞ ≤ C t−3/4 ≤ C, with t � 1. Thus, for
2 ≤ p < +∞, by the interpolation inequalities we write

‖~u(t, ·)‖Lp ≤ c‖~u(t, ·)‖2/p
L2 ‖~u(t, ·)‖1−2/p

L∞ ≤ C(p, ~u0) e
− 2β

p
t
.

Proposition 3 is proven. �
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