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June 16, 2020

Abstract

We propose a theoretical model of a non-local dipersive-dissipative equation which contains as a
particular case a large class of non-local PDE’s arising from stratified flows. Within this fairly general
framework, we study the spatial behavior of solutions proving some sharp pointwise and averaged decay
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1 Introduction

Stratified flows, which roughly speaking are fluids with a density variation, are everywhere in nature and
play a key role in a range of natural phenomena, from ocean circulation to weather forecasting. Mathemat-
ical models for these flows are helpful in understanding the real world. These models essentially write down
as non-local, dispersive-dissipative type equations, see e.g. the range of equations (6)-(10) below, and these
equations describe the evolution of nonlinear internal long waves considering different physical settings. We
refer to [1, 4, 5, 6, 28, 29, 30, 33] and the references therein for a small sample of the huge existing literature.

In this article, we propose a theoretical equation which contains as a particular case some well-known
relevant physical model arising from stratified fluids. Within the fairly general setting of this equation, we
investigate some sharp properties of the spatial behavior of solutions.

Let us consider the following Cauchy problem for a dispersive-dissipative equation with a non-local
perturbation term: {

∂tu+D(∂xu) + uk∂xu+ η(H∂nxu+Hmu) = 0, η > 0,

u(0, ·) = u0.
(1)

In this equation, the dispersion effects are given by the term D(∂xu), where D is a pseudo-differential
operator D defined in the Fourier variable as follows: for ϕ ∈ S(R)

D̂(ϕ)(ξ) = p(ξ)ϕ̂(ξ). (2)
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The symbol p(ξ) characterizes the linearized dispersion relation of the model equation (1). We consider here
a fairly general symbol p(ξ) verifying the following natural assumptions (see the Section 5 of [1]): p ∈ L∞loc(R)
is a real-valued function, continuous at the origin, smooth outside the origin and with polynomial grow at
infinity, i.e., for a.e. ξ ∈ R we have

|p(ξ)| ≤ c|ξ|σ, with σ > 0. (3)

It is easy to observe that the operator D commutes with differentiation and moreover, since the symbol p(ξ)
is real-valued then D is a self-adjoint operator on its domain in the space L2(R).

Thereafter, for a parameter k ∈ N∗ we consider a fully non-linear term of the form uk∂xu. Writ-
ing uk∂xu = 1

k+1∂x(uk+1), we observe that this non-linear term essentially behaves as the derivative of a
polynomial in u which agrees with the classical assumption in the study of non-linear dispersive waves [1, 33].

Finally, for η > 0 fix, and moreover, for n ∈ N∗ and m = 2, 3, the dissipative effects are given by the
non-local perturbation term η(H∂nxu+Hmu). Here, H denotes the Hilbert transform defined as:

H(ϕ)(x) = p.v.
1

π

∫
R

ϕ(y)

y − x
dy, (4)

where we have Ĥ(ϕ)(ξ) = i sign(ξ)ϕ̂(ξ). Moreover, the operator Hm is defined by the expression

Hmu =

{
(−1)m−1∂mx u, if m = 2,

H∂mx u, if m = 3.
(5)

When n = 1, the term η(H∂xu+Hmu) arises in physical models and it describes the wave’s instability in a
stratified fluid (see the short explanation below equation (6) for more details). However, we will also consider
higher values of the parameter n which, from the mathematical point of view, will play an interesting role
in the spatial decaying properties of solutions.

As already mentioned, equation (1) is a generic model and its major interest bases on the fact that it
contains as a particular case several relevant physical models. In order to motivate the interest of equation
(1) let us examine the following examples. Let us set n = 1:

A) For D = ∂2
x, where p(ξ) = −|ξ|2, k = 1 and m = 3, the equation (1) deals with a non local perturbed

version of the celebrated Korteweg-de Vries (KdV) equation [25]. This equation, also known as the
Ostrovsky, Stepanyams and Tsimring (OST) equation:

∂tu+ ∂3
xu+ u∂xu+ ηH(∂xu+ ∂3

xu) = 0, (6)

describes the radiational instability of long non-linear waves in a stratified flow caused by internal wave
radiation from a shear layer. The parameter η > 0 represents the importance of amplification and
damping relative to dispersion. The fourth term in equation represents amplification, while the fifth
term in equation denotes damping. For a more complete physical description we refer to [28, 29, 30].

B) For D = ∂2
x, k = 2, 3 and m = 3, the equation (1) coincides with the generalized OST-equation:

∂tu+ ∂3
xu+ uk∂xu+ ηH(∂xu+ ∂3

xu) = 0. (7)

This model considers a stronger non-linear dynamics due to the term uk∂xu with k ≥ 2. The values
k = 2 and k = 3 are relevant from the physical point of view in the modelling of surface and volume
water waves respectively [8].

2



C) For D = H∂x, where p(ξ) = |ξ|, k = 1 and m = 3, the equation (1) agrees with a non local perturbed
version of the well-known Benjamin-Ono (BO) equation [4]:

∂tu+H∂2
xu+ u∂xu+ ηH(∂xu+ ∂3

xu) = 0. (8)

This equation is a good approximate model for long-crested unidirectional waves at the interface of
a two-layer system of incompressible inviscid fluids. Moreover, it gives an analogous model of the
OST-equation (6) in deep stratified fluids [4].

D) For D = H∂x, k = 1 and m = 2, the equation (1) becomes the Chen-Lee equation (CL) which deals
with the BO equation with another kind of non-local perturbation:

∂tu+H∂2
xu+ u∂xu+ ηH(∂xu− ∂2

xu) = 0. (9)

Chen-Lee equation was introduced by H. H. Chen and Y. C. Lee in [11] to describe nonlinear dynamical
models of plasma turbulence. See also [12] for more details.

E) For D = (H∂x)1+α with 0 < α < 1, where p(ξ) = |ξ|1+α, k = 1 and m = 3, the equation (1) writes
down as a non local perturbation (since we assume η > 0) of the dispersive generalized BO equation:

∂tu+ (H∂x)1+α∂xu+ u∂xu = 0. (10)

From the physical point of view, this equations models vorticity waves in the coastal zone [34]. On the
other hand, from the mathematical point of view, this equation was studied in [19] as an interesting
intermediate dispersive model between the BO equation (when α = 0) and the KdV equation (when
α = 1). The parameter 0 < α < 1 measures the sharp dispersive effects which are stronger than the
one for the BO equation but weaker than the one for the KdV equation.

Concerning the mathematical study of these equations, as the local and global well-posedness (LWP and
GWP respectively) and some previous results on the spatial decaying properties, there exists a large amount
of works. So, we will give a short overview on the most recent results.

First, let us focus on the non-local perturbations of the KdV equation. For the OST-equation (6), GWP
was proved in Hs(R) with s ≥ 0 in [9] and LWP was obtained in Hs(R) with −3/2 ≤ s < 0 in [14]. Moreover,
the value s = −3/2 is the critical one for the LWP in the Sobolev spaces. Thereafter, the average decay of
solutions was derived in [2] using the weighted space H2 ∩L2((1 + | · |2)dx)(R). On the other hand, respect
to the generalized OST-equation (7), only for the values k = 2 and k = 3, it was shown in [10] the LWP in
Hs(R) for s > 0 and the GWP in L2(R). To the best of our knowledge, the well-posedness issues for k ≥ 4
and the spatially decay properties for k ≥ 2 have not been yet studied.

Now, let us concentrate on the non-local perturbations of the BO equation. The non-local perturbed
BO equation (8) was recently studied in [20] where the GWP was obtained in Hs(R) with s > −3/2. The
value s = −3/2 seems to be critical for the well-posedness in the Sobolev spaces in the sens that the flow
map data−solution for this equation is not C2 from Hs(R) to Hs(R) for s < −3/2. Moreover, similar to
the equation (6), the averaged decay of solutions was studied in the space H2 ∩ L2((1 + | · |2)dx)(R). On
the other hand, for the CL equation (9), the GWP was first proved in [31] for the periodic Sobolev spaces
Hs(T) with s > −1/2. Thereafter, this result was generalized to the non-periodic setting of the whole line
R in [32]. Moreover, in this work it was also proved that the value s = −1/2 seems to the sharp provided
that the flow map data−solution for this equation is not C3 from Hs(R) to Hs(R) for s < −1/2. Finally,
concerning the decay of solutions, always in [32] it was shown that solutions cannot have an averaged decay
at infinity faster than 1/|x|3. More precisely, it is proven that if u(t, x) is a solution of equation (9) which
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verifies u ∈ C([0, T ], H3 ∩ L2(1 + | · |6dx)(R)) then we have u(t, ·) = 0 for all t ∈ [0, T ].

Within the general framework of the equation (1), the aim of this paper is to give a better understand-
ing of the spatial behavior of solutions for all these equations and other related models in the studying of
stratified fluids.

Our methods are technically different with respect to the works mentioned above. Indeed, these results
are obtained through purely dispersive approaches based on Strichartz-type estimates, smoothing effects and
estimates in Bourgain-type spaces. Instead, following some ideas of a previous work [13], using the explicit
definition in the frequency variable and the inverse Fourier transform we derive some sharp estimates (in
the spatial variable) on the kernel associated to the linear part of (1).

Kernels estimates seems to be a useful tool to study the spatial properties of solutions for equation
(1). First, we derive some pointwise decaying rates of solutions which in certain cases are optimal. There-
after, combining the kernel estimates with some well-known tools of modern harmonic analysis, as the
Hardy–Littlewood maximal function operator and the Muckenhoupt weights, we study the average decay
properties of solutions in the improved setting of the weighted Lebesgue spaces Lpwδ(R) for 1 < p < +∞
(see formula (18) for a definition of these spaces). Finally, we are able to construct solutions of with some
pointwise growing rates. To the best of our knowledge, these kind of solutions have not been considered in
the previous works.

Plan of the paper: in Section 3 we derive some kernel estimates. Then, Section 4 is devoted to a
first result on the well-posedness of equation (1). In this framework, we study some pointwise and average
decaying properties of solution in Sections 5 and 6 respectively. Finally, in Section 7 we study some pointwise
growing properties of solutions.

2 Statement of the results

In all the results obtained in this paper, we will observe that the properties of solutions of equation (1), as
the well-posedness issues and the spatial behavior, deeply rely with parameters m and n given in the term
η(H∂nxu+Hmu). From now on we will assume that the parameter n ∈ N∗ verifies

n 6= 5 + 4d, with d = 0, 1, 2, 3, · · · . (11)

This condition on the parameter n seems to be sharp to prove the well-posedness of equation (1) in the clas-
sical Sobolev spaces Hs(R). Roughly speaking, solutions can be written as an explicit integral formulation
(see formula (19)) which involves a kernel depending on m and n. For the values of n which do not verify
(11), the Fourier transform of the kernel behaves at high frequencies as an increasing exponential function
(see the expression (22) below) and then we loose any control on the well-known Hs-norm. Moreover, it is
worth to emphasize that the condition (11) is not too restrictive since all the physical models mentioned
above are not concerned.

2.1 Global well-posedness

To the best of our knowledge, the fairly general equation (1) has not been considered before in the literature
and, in order to provide a more complete study of this equation, we give first the following result concerning
some well-posedness issues in the classical framework of Sobolev spaces.

Theorem 1 In equation (1), let the parameters m = 2, 3, n ∈ N∗ which verifies (11) and k ∈ N∗. Moreover,
for s > 3/2 let u0 ∈ Hs(R) be an initial datum. Then, the equation (1) possess a unique classical solution

u ∈ C([0,+∞[, Hs(R)) ∩ C1(]0,+∞[, C∞(R)).
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Some comments are in order. For the OST equation (6) studied in [14], the non-local perturbed BO equation
(8) treated in [20] and the CL equation (9) studied in [32], this theorem recovers some well-known results
obtained on the GWP and improves the regularity of solutions: here we have u ∈ C1(]0,+∞[, C∞(R)). More-
over, for the generalized OST equation (7) studied in [10], this theorem improves both GWP and regularity
of solutions for the higher non-linearities k ≥ 4. On the other hand, let us mention that under some technical
modifications this theorem could be improved for a large class of initial data u0 belonging to a Besov space
Bs,q

2 (R) with 2 ≤ q ≤ +∞. For a definition and more details on Besov spaces see the book [3].

In the framework of this theorem, we study now some decaying properties of solutions in the spatial
variable.

2.2 Pointwise decaying properties

Before to state our results we need to precise some notation. We denote V ⊂ R a neighborhood of the origin,
and moreover, for k ∈ N we use the standard notation Ck(V ) for the functions k− times differentiable in
the neighborhood V .

In our second result, we study the pointwise spatial decaying of solutions of the general equation (1),
provided that the initial datum u0 verifies a pointwise decay. It is interesting to observe that the parameter
n in the dissipative perturbation term: η(H∂nxu+Hmu), as well as the regularity properties at the origin of
the symbol p(ξ) of the operator D in the dispersive term : D(∂xu), play a fundamental role in the description
of the spatial decaying of solutions.

Theorem 2 Let u0 ∈ Hs(R) (with s > 3/2) be an initial datum and let u(t, x) be the solution of equation
(1) given by Theorem 1. Assume that for a parameter γ > 0 the initial datum verifies

|u0(x)| ≤ c

|x|γ
, |x| → +∞. (12)

For n ∈ N∗ given by (11), if the symbol p(ξ) verifies p ∈ Cn−1(V ) then we have

|u(t, x)| ≤ C0

|x|min(γ,n+1)
, |x| → +∞, (13)

for a constant C0 = C0(u, t) > 0, depending on the solution u and the time t > 0.

Let us make the following remarks. In (13) we may observe that the parameter n controls the decaying
rate of solutions: the function u(t, x) fulfills the decaying given by the initial datum only if γ ≤ n + 1.
But, if the initial datum decays fast enough, when γ > n+ 1, then the solution u(t, x) does not mimic this
decaying and it decays at infinity as 1/|x|n+1. Moreover, we observe that the decaying properties given in
(13) also depend of a equilibrium between the dispersive and dissipative terms in equation (1) in the sense
that for higher values of parameter n (in the dissipative term) the symbol p(ξ) (in the dispersive term) must
be more regular at the origin.

From the physical point of view, the value n = 1 is the most interesting since the non-local perturbation
term η(H∂xu+Hmu) (with m = 2 or m = 3) gives a good model of long non-linear waves deformation in
stratified flows [28, 29, 30]. To illustrate the relevance of Theorem 2 in the studying of some physical models
let us mention the following examples.

• For the OST-equation (6), numerical studies done in [16] by B.F. Feng & T. Kawahara shows that
for every η > 0 there exists a family of solitary waves which experimentally decay as 1/|x|2 when
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|x| → +∞. Thus, setting γ = 2 and assuming that the initial datum verifies |u0(x)| ≤ c/|x|2, then by
(13) we rigorously obtain the decay rate of solutions

|u(t, x)| . 1

|x|2
. (14)

This decay rate was also exhibit in a previous work [13]. Moreover, we observe that this decay rate is
also verified for the case of higher non-linearities in the setting generalized OST-equation (7).

• For the non-local perturbed BO (8) and the CL equation (9), a second work [17] due to B.F. Feng &
T. Kawahara shows numerically that the solitary waves of these equations behave at infinity as 1/|x|2.
Thus, always by (13) we able to exhibit solutions of these equations which a explicit decay rate given
in (14). Moreover, always in [17], it is experimentally shown that if the perturbation parameter η > 0
is large enough then the dispersive term in equations (8) and (9) can be negligible (from the numerical
point of view) and in this setting there exist solitary waves which behave at infinity as 1/|x|. Thus,
setting now γ = 1, by (13) we get solutions of these equations with a pointwise decay of the form

|u(t, x)| . 1

|x|
. (15)

Although the main physical relevance of Theorem 2 is when n = 1, from the mathematical point of view
it is also interesting to study the influence of high values of the parameter n in the decaying behavior of
solutions. As already mentioned, for the values n ≥ 2 the description of the decay of solutions becomes
more complex in the sense that it is also determined by the regularity properties of the symbol p(ξ) at the
origin ξ = 0. Let us illustrate this interesting phenom with some simple examples. For simplicity, we set
γ > 0 large enough, so we let the initial datum decay fast enough, and moreover we set m = 3.

• For n = 2, let us consider the following theoretical non-local perturbation of the dispersive generalized
BO equation (10):

∂tu+ (H∂x)1+α∂xu+ u∂xu+ η(H∂2
xu+H∂3

xu), with 0 < α < 1.

Here we have p(ξ) = |ξ|1+α and then p ∈ (C)1(V ). Thus, by (13) the solutions have the following
spatial behavior

|u(t, x)| . 1

|x|3
, |x| → +∞.

• For n ≥ 3, let us consider the following theoretical perturbed KdV equation:

∂tu+ ∂3
xu+ u∂xu+ η(H∂nxu+H∂3

xu), with 0 < α < 1.

In this case we have p(ξ) = −|ξ|2 and then p ∈ C∞(V ). Thus, by (13) the solutions decay as follows:

|u(t, x)| . 1

|x|n+1
, |x| → +∞.

Now, it is natural to ask if the decay rates (13) are either optimal or they can be improved. In our
third result, assuming some technical restrictions on the parameters m and n, we are able to answer these
questions. As was pointed out the in [13], the zero-mean properties of the initial datum u0 is the key tool
to study these facts.

Theorem 3 Within the framework of Theorem 2, assume that (m,n) 6= (2, 1) and (m,n) 6= (2, 2d) with
d ∈ N∗. Moreover, let 0 < ε ≤ 1.
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1) If the initial datum u0 verifies:

|u0(x)| ≤ c

|x|n+1+ε
, |x| → +∞, and

∫
R
u0(y)dy = 0,

then the solution u(t, x) of equation (1) verifies:

|u(t, x)| ≤ C1

|x|n+1+ε
, |x| → +∞, (16)

for a constant C1 = C1(u, t) > 0.

2) If the initial datum u0 verifies:

|u0(x)| ≤ c

|x|n+1+ε
, |x| → +∞, and

∫
R
u0(y)dy 6= 0,

then the solution u(t, x) of equation (1) verifies:

C2

∣∣∣∣∫
R
u0(y)dy

∣∣∣∣ 1

|x|n+1
≤ |u(t, x)|, |x| → +∞, (17)

for a constant C2 = C2(t) > 0.

In point 1), we may observe here that if the initial datum is a zero-mean function and if it decays fast enough
(we have γ = n+1+ε) then the decay rate obtained in (13) is improved in (16) for 0 < ε ≤ 1. To the best of
our knowledge, the value ε = 1 seems to be the maximal one to improve the decay rates. This is due to the
fact that the solutions of equation (1) are written in a explicit integral formulation (19), where the spatial
decay properties of the kernel eventually block an improvement in the decaying of the solution for ε > 1.
On the other hand, in point 2), we remark that when the initial datum is not a zero-mean function then the
decay rate is optimal. Moreover, even if this datum is a fast-decaying function we have an instantaneous
lost of persistence of solution u(t, x) when t > 0.

It is worth to emphasize that the additional conditions of the parameters m and n stated above are
essentially technical and we refer the reader to Remark 1 in page 28 for the details. However, this additional
conditions are not too restrictive since most of the physical models mentioned in the introduction are
considered in Theorem 3. Indeed, observe that we can set the values m = 3 and n = 1 and then Theorem 3
hols true for the for the relevant physical models given by equations (6), (7) and (8). For these equations,
it is interesting to observe that if we consider a particular initial datum u0 such that u0(x) = c/|x|γ , for
γ > 0 large enough and for |x| large enough; then by point 2) we obtain solutions whit the sharp asymptotic
behavior:

|u(t, x)| ∼ 1

|x|2
, |x| → +∞,

which agrees with the numerical results obtained in [16] and [17]. Finally, let us mentions that among these
physical models we only left open the case of the CL equation (9) which deals with the values m = 2 and
n = 1 that are not included in this theorem.

2.3 Average decaying properties

Our methods also allow us to study the average decay properties of solution u(t, x). These decay properties
are characterized through the weighted Lebesgue space which we introduce as follows: for the parameter
γ > 0 we introduce the weight

wγ(x) =
1

(1 + |x|)γ
, (18)
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and for 1 ≤ p ≤ +∞ we consider the weighted Lebesgue space Lpwγ (R) = Lp(wγ dx). The weighted Lebesgue
spaces give us a fairly general framework to study different decaying properties of solutions of equation
(1). For the classical Lebesgue spaces we have the (evident) embedding Lp(R) ⊂ Lpwγ (R), but the weighted
Lebesgue spaces also contains more sophisticate functional spaces which characterize the average decaying of
functions. Denoting as Lp,∞(R) a Lorentz space (see the book [15] for a complete study of these spaces) we
have the continuous embedding Lp,∞(R) ⊂ Lpwγ (R). Moreover, for 1 < r < p < +∞ we denote as Ṁ r,p(R)
the homogeneous Morrey space (see the Section 8 of the book [26] for a definition and some properties of
these spaces). Then, for 0 < 1 − r/p < γ we have the continuous embedding Ṁ r,p(R) ⊂ Lpwγ (R). In the
setting of the weighted Lebesgue spaces we have the following result.

Theorem 4 Let u0 ∈ Hs(R) (with s > 3/2) be an initial datum and let u(t, x) be the solution of equation
(1) given by Theorem 1. For 1 < p < +∞ and 0 < γ < 1 assume that the initial datum verifies u0 ∈ Lpwγ (R).
Then, for the parameter α > 0 given in (49) which only depends on m = 2, 3 and n given by (11), we have

u ∈ L∞loc
(

]0,+∞[, Lpwγ (R), tα dt
)
.

Remark that the have the continuous embedding L2(1 + |x|2)dx) ⊂ L2
wδ

(R). Thus, for p = 2 this theorem
improves some well-known results on the average decaying properties of solutions for non-local perturbed BO
equation (8) studied in [20], the CL-equation (9) treated in [32] and the OST-equation (6) studied in [2].
For this latter equation, due to the embedding Lp(R) ⊂ Lpwδ(R) for any 1 < p < +∞, this theorem also
improves a recent result on the average decaying properties given in [13]. Moreover, to our knowledge, this
kind of results seems not be studied before for the generalized OST-equation (7).

2.4 Pointwise growing properties

In all our previous results, we consider an initial datum u0 with pointwise or average decaying properties at
infinity. However, it is also interesting to study the persistence problem of solutions for equation (1) when
the initial datum has some growing properties at infinity. For the value k = 1 in the non-linear term in (1),
we are able give a first result on the existence of solutions which fulfill some pointwise growing properties
(in the spatial variable) given by initial datum.

Theorem 5 Let u0 ∈ Ḣ1(R) be an initial datum such that for 0 < γ < 1/2 and for a constant C0 > 0, it
verifies for all x ∈ R:

|u0(x)| ≤ C0(1 + |x|)γ .

Moreover, let 0 < T < +∞. There exists a constant δ = δ(T ) > 0 such that if ‖u0‖Ḣ1 + C0 < δ, then there
exits a unique mild solution u(t, x) of equation (1) (with k = 1) defined on the interval of time [0, T ], such
that for all x ∈ R we have

|u(t, x)| ≤ C(1 + |x|)γ ,

for a constant C = C(u0, u, t) > 0 depending on u0, u and t.

Let us make the following comments. We observe first that this theorem does not come from the setting
of Theorem 1 since, due to the well-known Sobolev embedding, the assumption of the initial datum given
in Theorem 1: u0 ∈ Hs(R) with s > 1/2 implies that u0 ∈ L∞(R) which is not coherent with the growing
properties assumed above. In this theorem, we assume instead u0 ∈ Ḣ1(R) and this hypothesis is essentially
technical. However, it is worth to remark that this hypothesis is coherent with the growing properties
assumed. A simple example of an initial datum verifying all the hypothesis in Theorem 5 is given by

u0(x) =

{
C0(1 + x)γ , x > 0,

0, x ≤ 0.
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Here, as 0 < γ < 1/2 it is easy to see that we have d
dxu0 ∈ L2(R).

To close this section, let us mention that from now on in the following computations, the generic constants
Cη > 0 and cη > 0 may change in each line but they only depend on the fixed parameter η > 0 given in the
dissipative perturbation term in equation (1).

3 Kernel estimates

Remark first that the equation (1) can be written as the equivalent integral formulation

u(t, x) = Km,n(t, ·) ∗ u0(x) +

∫ t

0
Km,n(t− τ) ∗ (uk∂xu)(τ, x)dτ, (19)

where, for t > 0, m = 2, 3, n ∈ N∗, and moreover, for the symbol p(ξ) given in formula (2), the kernel
Km,n(t, x) is defined in the Fourier variable as follows:

K̂m,n(t, ξ) = e−ip(ξ)ξt−η(in+1|ξ|ξn−1+|ξ|m)t. (20)

To make the notation more convenient let us introduce the function

ϕm,n(ξ) = −η(in+1|ξ|ξn−1 + |ξ|m) =

{
η(in+1ξn − (−ξ)m), ξ < 0,

−η(in+1ξn + ξm), ξ ≥ 0.
(21)

With this notation write K̂m,n(t, ξ) = e−ip(ξ)ξt+ϕm,n(ξ)t, hence, as the symbol p(ξ) is a real-valued function
we obtain

|K̂m,n(t, ξ)| = |eϕm,n(ξ) t|.

In this expression we are interesting in the behavior of the quantity ϕm,n(ξ) which comes from the dissipative
perturbation term in equation (1). A simple calculation shows that for m = 2, 3 and for n = 5 + 4d, with
d ∈ N, we have ϕm,n(ξ) = η(|ξ|n − |ξ|m)t, then we get

|eϕm,n(ξ) t| ∼ eη|ξ|n t, |ξ| → +∞, (22)

and thus, for those values of n we loose any control on the function K̂m,n(t, ξ). On the other hand, observe
that for the values of n which verify the condition (11), i.e., n 6= 5 + 4d, for n even we have the identity
ϕm,n(ξ) = η(i|ξ|ξn−1 − |ξ|m), hence we obtain

|eϕm,n(ξ) t| ∼ e−η|ξ|m t, |ξ| → +∞, (23)

moreover, for n odd we have the identity ϕm,n(ξ) = −η(|ξ|n + |ξ|m) and then we get

|eϕm,n(ξ) t| ∼ e−η(|ξ|n+|ξ|m) t, |ξ| → +∞. (24)

In conclusion, when n verifies (11) the function K̂m,n(t, ξ) has good decaying properties and the key idea is
to use them to obtain sharp estimates on the kernel in the spatial variable. Notice that by (11) the kernel
Km,n(t, x) writes down as the convergent integral:

Km,n(t, x) =

∫
R
e2πixξ e−ip(ξ)ξt+ϕm,n(ξ)t dξ. (25)

In the following result we study some spatial decaying properties of the kernel Km,n(t, x), which will be
fundamental in the next sections. As mentioned in Section 2.2, the regularity properties at the origin of the
symbol p(ξ) plays an important role in this study and they vary as long as the parameter n take different
values. Thus, for the sake of clarity, we will consider first the values n = 1, 2 and then the values n ≥ 3.
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Proposition 3.1 Let m = 2, 3 and n ∈ N∗ which verifies (11). There exist two constants Cη > 0 and
cη > 0, depending only on η > 0, such that for all t > 0 and for all x ∈ R it verifies:

1) For n = 1, 2, if the symbol p(ξ) verifies p ∈ Cn−1(V ) then we have: |Km,n(t, x)| ≤ Cη
ecηt

η1/mt1/m
1

1 + |x|n+1
.

2) For n ≥ 3, if symbol p(ξ) verifies p ∈ Cn−1(V ) then we have:

2.1) For n even (n = 2d, with d ∈ N and d ≥ 2): |Km,n(t, x)| ≤ cη
e3ηt

η1/mt1/m
1

1 + |x|n+1−` .

2.2) For n odd (n = 3 + 4d, with d ∈ N): |Km,n(t, x)| ≤ cη
e3ηt

η1/nt1/n
1

1 + |x|n+1−` .

Proof. We start writing

Km,n(t, x) =

∫
ξ<0

e2πixξe−ip(ξ)ξt +ϕm,n(ξ)t dξ +

∫
ξ>0

e2πixξe−ip(ξ)ξt +ϕm,n(ξ)t dξ.

The key idea to study the pointwise spatial behavior of the kernel Km,n(t, x) essentially bases on the
procedure: first, in each term of the right-hand side in this identity, for x 6= 0 we multiply and we divide by
2π ix to obtain:

Km,n(t, x) =
1

2π ix

∫
ξ<0

(2π ix)e2πixξe−ip(ξ)ξt +ϕm,n(ξ)t dξ +
1

2π ix

∫
ξ>0

(2π ix)e2πixξe−ip(ξ)ξt +ϕm,n(ξ)t dξ

=
1

2πix

∫
ξ<0

∂ξ(e
2πixξ)e−ip(ξ)ξt +ϕm,n(ξ)t dξ +

1

2πix

∫
ξ>0

∂ξ(e
2πixξ)e−ip(ξ)ξt +ϕm,n(ξ)t dξ.

(26)

Thereafter, integrating by parts each term we write

Km,n(t, x) =
1

2πix

(
e2πixξe−ip(ξ)ξt +ϕ2,n(ξ)t

∣∣∣0
−∞
−
∫
ξ<0

e2πixξ∂ξ(e
−ip(ξ)ξt +ϕm,n(ξ)t) dξ

)
+

1

2πix

(
e2πixξe−ip(ξ)ξt +ϕm,n(ξ)t

∣∣∣+∞
0
−
∫
ξ>0

e2πixξ∂ξ(e
−ip(ξ)ξt +ϕm,n(ξ)t) dξ

)
=

1

2πix

(
1−

∫
ξ<0

e2πixξ∂ξ(e
−ip(ξ)ξt +ϕm,n(ξ)t) dξ

)
+

1

2πix

(
−1−

∫
ξ>0

e2πixξ∂ξ(e
−ip(ξ)ξt +ϕm,n(ξ)t) dξ

)
=− 1

2πix

(∫
ξ<0

e2πixξ∂ξ(e
−ip(ξ)ξt +ϕm,n(ξ)t) dξ +

∫
ξ>0

e2πixξ∂ξ(e
−ip(ξ)ξt +ϕm,n(ξ)t) dξ

)
.

(27)

Repeating the computations done in (26) and (27) we get

Km,n(t, x) =− 1

(2πix)2

(
e2πixξ∂ξ(e

−ip(ξ)ξt +ϕm,n(ξ)t)
∣∣∣0
−∞
−
∫
ξ<0

e2πixξ ∂2
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ

)
− 1

(2πix)2

(
e2πixξ∂ξ(e

−ip(ξ)ξt +ϕm,n(ξ)t)
∣∣∣+∞
0
−
∫
ξ>0

e2πixξ ∂2
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ

)
.

Now, remark that we have

e2πixξ∂ξ(e
−ip(ξ)ξt +ϕm,n(ξ)t) = e2πixξe−ip(ξ)ξt+ϕm,n(ξ)t(−ip′(ξ)ξt− ip(ξ)t+ ϕ

′
m,n(ξ)t), (28)

hence, by the good decaying properties of the function eϕm,n(ξ)t when |ξ| → +∞ (see the formulas (23) and
(24)) and moreover, as by (21) we have ϕm,n(0) = 0, then we get

e2πixξe−ip(ξ)ξt+ϕm,n(ξ)t(−ip′(ξ)ξ − ip(ξ) + ϕ
′
m,n(ξ))t

∣∣∣0
−∞

= −ip(0−)t+ ϕ
′
m,n(0−)t,
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and

e2πixξe−ip(ξ)ξt+ϕm,n(ξ)t(−ip′(ξ)ξ − ip(ξ) + ϕ
′
m,n(ξ))t

∣∣∣+∞
0

= ip(0+)t− ϕ′m,n(0+)t,

where, for a function f(ξ) we use the standard notation lim
ξ→0−

f(ξ) = f(0−) and lim
ξ→0+

f(ξ) = f(0+).

Thus we can write

Km,n(t, x) =− 1

(2πix)2

(
ip(0−)t− ip(0+)t− ϕ′m,n(0−)t+ ϕ

′
m,n(0+)t

)
+

1

(2πix)2

(∫
ξ<0

e2πixξ ∂2
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ +

∫
ξ>0

e2πixξ ∂2
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ

)
.

(29)

At this point, in order to make a clearer exposition, we will distinguish the following cases of the parameter n.

The case n = 1. Recall that in this case we assume p ∈ C(V ) and then we get p(0−) − p(0+) = 0.
Moreover, the function ϕ

′
m,n(ξ) writes down as:

ϕ
′
m,n(ξ) =

{
η(in+1nξn−1 +m(−ξ)m−1), ξ < 0,

−η(in+1nξn−1 +mξm−1), ξ > 0,
(30)

hence, for n = 1 and m = 2, 3 we have −ϕ′m,1(0−) + ϕ
′
m,1(0+) = 2η. Then, getting back to (29) we can

write:

Km,1(t, x) = − 2ηt

(2πix)2
+

1

(2πix)2

(∫
ξ<0

e2πixξ ∂2
ξ (e−ip(ξ)ξt+ϕm,1(ξ)t) dξ +

∫
ξ>0

e2πixξ ∂2
ξ (e−ip(ξ)ξt+ϕm,1(ξ)t) dξ

)
= − 2ηt

(2πix)2
+ I1. (31)

Once the term − 2ηt

(2πix)2
appears, this fact suggests the estimate |Km,1(t, x)| . 1/|x|2. Indeed, we study

the term I1 above, where, applying the computations done in (26) and (27) we get

I1 =
1

(2πix)3

(
e2πixξ ∂2

ξ (e−ip(ξ)ξt+ϕm,1(ξ)t)
∣∣∣0
−∞
−
∫
ξ<0

e2πixξ∂3
ξ (e−ip(ξ)ξt +ϕm,1(ξ)t) dξ

)
+

1

(2πix)3

(
e2πixξ ∂2

ξ (e−ip(ξ)ξt+ϕm,1(ξ)t)
∣∣∣+∞
0
−
∫
ξ>0

e2πixξ∂3
ξ (e−ip(ξ)ξt +ϕm,1(ξ)t) dξ

)
=

1

(2πix)3
(I1,1 + I1,2).

Now, by the good decaying properties of the function eϕm,1(ξ)t when |ξ| → +∞ (see the expression (24) with
n = 1) and following the same computations done in Lemma 3.1 of [13] we have |I1,1 + I1,2| ≤ Cη ecηt. Then
we obtain the following estimate

|I1| ≤ Cη
ecηt

|x|3
. (32)

Thus, by (31) and (32), for |x| large enough we can write

|Km,1(t, x)| ≤ c 2ηt

|x|2
+ |I1| ≤ c

2ηt

|x|2
+ Cη

ecηt

|x|3
≤ Cη

ecηt

|x|2
+ Cη

e2ηt

|x|3
≤ Cη

ecηt

|x|2
. (33)

Until now we have estimated the kernel Km,1(t, x) for |x| sufficiently large and it remains to obtain an
estimate also valid for |x| small. For this we have write

|Km,1(t, x)| ≤ ‖Km,1(t, ·)‖L∞ ≤ ‖K̂m,1(t, ·)‖L1 , (34)

11



where, by (21) the quantity ‖K̂m,1(t, ·)‖L1 is estimated as follows:

‖K̂m,1(t, ·)‖L1 ≤
∫
R

∣∣∣eϕm,1(ξ)t
∣∣∣ dξ ≤ ∫

R
eη(|ξ|−|ξ|m)tdξ ≤

∫
|ξ|≤22

1/(m−1)
eη(|ξ|−|ξ|m)tdξ

+

∫
|ξ|≥21/(m−1)

eη(|ξ|−|ξ|m)tdξ

≤
∫
|ξ|≤21/(m−1)

eη|ξ|tdξ +

∫
|ξ|≥21/(m+1)

e−η
|ξ|m
2
tdξ

≤ ce21/(m−1)ηt + c
1

(ηt)1/m
≤ Cη

ecηt

(ηt)1/m
.

Hence, for all x ∈ R we get |Km,1(t, x)| ≤ Cη
ecηt

(ηt)1/m
. Finally, gathering this estimate and the estimate

given in (33) we obtain

|Km,1(t, x)| ≤ Cη
ecηt

η1/m t1/m
1

1 + |x|2
. (35)

The case n = 2. Recall that in this case we assume p ∈ C1(V ), hence, in particular we have p(0−)−p(0+) =
0. Moreover, by (30) for n = 2 and m = 2, 3 we have ϕ

′
m,2(0−) = ϕ

′
m,2(0+) = 0. Then, getting back to (29)

we get

Km,2(t, x) =
1

(2πix)2

(∫
ξ<0

e2πixξ ∂2
ξ (e−ip(ξ)ξt+ϕm,2(ξ)t) dξ +

∫
ξ>0

e2πixξ ∂2
ξ (e−ip(ξ)ξt+ϕm,2(ξ)t) dξ

)
.

Here we observe that we can continue with the same process and we apply computations done in (26) and
(27) to obtain

Km,2(t, x) =
1

(2πix)3

(
e2πixξ∂2

ξ (e−ip(ξ)ξt+ϕm,2(ξ)t)
∣∣∣0
−∞
−
∫
ξ<0

e2πixξ ∂3
ξ (e−ip(ξ)ξt+ϕm,2(ξ)t) dξ

)
+

1

(2πix)3

(
e2πixξ∂2

ξ (e−ip(ξ)ξt+ϕm,2(ξ)t)
∣∣∣+∞
0
−
∫
ξ>0

e2πixξ ∂3
ξ (e−ip(ξ)ξt+ϕm,2(ξ)t) dξ

)
.

In order to study these expressions, remark first that we have

∂2
ξ (e−ip(ξ)ξt+ϕm,2(ξ)t) =e−ip(ξ)ξt+ϕm,2(ξ)t

[(
−ip′(ξ)ξt− ip(ξ)t+ ϕ

′
m,2(ξ)t

)2

−ip′′(ξ)ξt− 2ip′(ξ)t+ ϕ
′′
m,2(ξ)t

]
,

(36)

where the function ϕ
′′
m,n(ξ) writes down as:

ϕ
′′
m,n(ξ) =

{
η
(
in+1n(n− 1)ξn−2 −m(m− 1)(−ξ)m−2

)
, ξ < 0,

−η
(
in+1n(n− 1)ξn−2 +m(m− 1)ξm−2

)
, ξ > 0.

(37)

Recalling that by (30) we have ϕ
′
m,2(0−) = ϕ

′
m,2(0+) = 0 and moreover, remarking that by (37) we have

ϕ
′′
m,2(0−) = −η(2i + cm) and ϕ

′′
m,2(0+) = −η(−2i + cm), where cm = 2 if m = 2, and cm = 0 if m = 3,

then, by the good decaying properties of the function eϕm,2(ξ)t when |ξ| → +∞ (see the expression (23) with
n = 2) we get:

e2πixξ∂2
ξ (e−ip(ξ)ξt+ϕm,2(ξ)t)

∣∣∣0
−∞

= −2ip′(0−)t− η(2i+ cm)t,

and

e2πixξ∂2
ξ (e−ip(ξ)ξt+ϕm,2(ξ)t)

∣∣∣+∞
0

= +2ip′(0+)t+ η(−2i+ cm)t,
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and then we can write

Km,2(t, x) =
1

(2πix)3
(−2ip′(0−)t+ 2ip′(0+)t− 4iηt)

− 1

(2πix)3

(∫
ξ<0

e2πixξ ∂3
ξ (e−ip(ξ)ξt+ϕm,2(ξ)t) dξ +

∫
ξ>0

e2πixξ ∂3
ξ (e−ip(ξ)ξt+ϕm,2(ξ)t) dξ

)
.

But, recalling that we have p ∈ C1(V ) we finally obtain

Km,2(t, x) =
−4iηt

(2πix)3
− 1

(2πix)3

(∫
ξ<0

e2πixξ ∂3
ξ (e−ip(ξ)ξt+ϕm,2(ξ)t) dξ +

∫
ξ>0

e2πixξ ∂3
ξ (e−ip(ξ)ξt+ϕm,2(ξ)t) dξ

)
=

−4iηt

(2πix)3
+ I2. (38)

We must study now the term I2. By the good decaying properties of the function eϕm,2(ξ)t (see always the
expression (23) with n = 2) and moreover, following the same computations performed for the term I1 in
(32) the term I2 is estimated as follows:

|I2| ≤ Cη
ecηt

|x|4
. (39)

Then, for |x| large enough we can write

|Km,2(t, x)| ≤ c ηt
|x|3

+ Cη
ecηt

|x|4
≤ Cη

ecηt

|x|3
+ Cη

ecηt

|x|4
≤ Cη

ecηt

|x|3
. (40)

On the other hand, by estimate (34) we have |Km,2(t, x)| ≤ K̂m,2(t, ·)‖L1 , where, by (21) we write

‖K̂m,2(t, ·)‖L1 =

∫
R

∣∣∣e−ip(ξ)ξt+ϕm,2(ξ)t
∣∣∣ dξ =

∫
R

∣∣∣e−ip(ξ)ξt−η(−i|ξ|ξ+|ξ|m|)t
∣∣∣ dξ ≤ ∫

R
e−η|ξ|

m tdξ

≤ c

(ηt)1/m
≤ Cη

ecηt

(ηt)1/m
,

and then, for all x ∈ R we get |Km,2(t, x)| ≤ Cη
ecηt

(ηt)1/m
. Finally, gathering this estimate and estimate (40)

we have

|Km,2(t, x)| ≤ Cη
ecηt

η1/m t1/m
1

1 + |x|3
. (41)

At this point, by estimates (35) and (41) we have proven the point 1) in Proposition 3.1.

The case n ≥ 3. The computations follow the same ideas performed in the previous cases (n = 1 and
n = 2). Recall that in this case we assume p ∈ Cn−1(V ). In particular we have p ∈ C(V ) hence we get
p(0−)− p(0+) = 0. Moreover, by (30) with n ≥ 3 and m = 2, 3, we have ϕ

′
m,n(0−) = ϕ

′
m,n(0+) = 0. Then,

getting back to (29) we obtain

Km,n(t, x) =
1

(2πix)2

(∫
ξ<0

e2πixξ ∂2
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ +

∫
ξ>0

e2πixξ ∂2
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ

)
.

Thereafter, applying the computations done in (26) and (27) we get

Km,n(t, x) =
1

(2πix)3

(
e2πixξ∂2

ξ (e−ip(ξ)ξt+ϕm,n(ξ)t)
∣∣∣0
−∞
−
∫
ξ<0

e2πixξ ∂3
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ

)
+

1

(2πix)3

(
e2πixξ∂2

ξ (e−ip(ξ)ξt+ϕm,n(ξ)t)
∣∣∣+∞
0
−
∫
ξ>0

e2πixξ ∂3
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ

)
.

13



In this expression, by identity (36), the fact that eϕm,n(ξ)t is a fast decaying function when |ξ| → +∞ (see
the expression (23) for n even and the expression (24) for n odd) and moreover, since by (37) we have
ϕ
′′
m,n(0−) = −ηcm and ϕ

′′
m,n(0+) = −ηcm, with cm = 2 if m = 2, and cm = 0 if m = 3, we get

e2πixξ∂2
ξ (e−ip(ξ)ξt+ϕm,2(ξ)t)

∣∣∣0
−∞

= −2ip′(0−)t− ηcm t,

and

e2πixξ∂2
ξ (e−ip(ξ)ξt+ϕm,2(ξ)t)

∣∣∣+∞
0

= +2ip′(0+)t+ ηcm t.

Thus, we can write

Km,n(t, x) =
1

(2π ix)3

(
2it(−p′(0−) + p′(0+))

)
+

1

(2πix)3

(∫
ξ<0

e2πixξ ∂3
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ +

∫
ξ>0

e2πixξ ∂3
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ

)
.

At this point recall that we have p ∈ C1(V ) (since p ∈ Cn−1(V ) and n ≥ 3) and then −p′(0−) + p′(0+) = 0.
Then we obtain

Km,n(t, x) =
1

(2πix)3

(∫
ξ<0

e2πixξ ∂3
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ +

∫
ξ>0

e2πixξ ∂3
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ

)
. (42)

At this point we observe that we can apply the computations done in (26) and (27) iteratively until to obtain
the identity

Km,n(t, x) =
1

(2πix)n+1

(
e2πixξ∂nξ (e−ip(ξ)ξt+ϕm,n(ξ)t)

∣∣∣0
−∞
−
∫
ξ<0

e2πixξ ∂n+1
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ

)
+

1

(2πix)n+1

(
e2πixξ∂nξ (e−ip(ξ)ξt+ϕm,n(ξ)t)

∣∣∣+∞
0
−
∫
ξ>0

e2πixξ ∂n+1
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ

)
.

(43)

Here, as we may observe in identities (28) and (36), the expression ∂nξ (e−ip(ξ)ξt+ϕm,n(ξ)t) computes down as

∂nξ (e−ip(ξ)ξt+ϕm,n(ξ)t) = e−ip(ξ)ξt+ϕm,n(ξ)t
[
gn(ξ, p(ξ), ϕm,n(ξ), t)− n ip(n−1)(ξ)t+ ϕ(n)

m,n(ξ)t
]
, (44)

where gn(ξ, p(ξ), ϕm,n(ξ), t) is a polynomial of degree n which depends on ξ, the derivatives p(k)(ξ) and

ϕ
(k)
m,n(ξ) for k = 0, · · · , n− 2, and t, and moreover, it verifies gn(0, p(0), ϕm,n(0), t) = 0. On the other hand,

the function ϕ(n)
m,n(ξ) computes down as:

ϕ(n)
m,n(ξ) =

{
η(in+1n! + cm), ξ < 0,

−η(in+1n! + cm), ξ > 0,
(45)

here, when n = 3 we have cm = 0 if m = 2 and cm = 6 if m = 3, and moreover, when n > 3 we have cm = 0
for m = 2, 3.

Thus, by (44) and (45) we obtain

e2πixξ∂nξ (e−ip(ξ)ξt+ϕm,n(ξ)t)
∣∣∣0
−∞

= −n ip(n−1)(0−)t+ η(in+1n! + cm) t,

and

e2πixξ∂nξ (e−ip(ξ)ξt+ϕm,2(ξ)t)
∣∣∣+∞
0

= n ipn−1(0+)t+ η(in+1n! + cm) t,
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and getting back to (43), as we have p ∈ Cn−1(V ) we are able to write

Km,n(t, x) =
1

(2πix)n+1

(
−n ip(n−1)(0−)t+ n ipn−1(0+)t+ 2η(in+1n! + cm)t

)
− 1

(2πix)n+1

(∫
ξ<0

e2πixξ ∂n+1
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ +

∫
ξ>0

e2πixξ ∂n+1
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ

)
=

cη t

(2πix)n+1
− 1

(2πix)n+1

(∫
ξ<0

e2πixξ ∂n+1
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ +

∫
ξ>0

e2πixξ ∂n+1
ξ (e−ip(ξ)ξt+ϕm,n(ξ)t) dξ

)
=

cη t

(2πix)n+1
+ In. (46)

Thereafter, always by the good decaying properties of the function eϕm,n(ξ)t (see the expression (23) for n
even and the expression (24) for n odd) and moreover, following the computations done for the term I1 in
(32) we have the estimate

|In| ≤ Cη
ecη t

|x|n+2
. (47)

Then, for |x| large enough we obtain

|Km,n(t, x)| ≤ cη t

|x|n+1
+ Cη

ecη t

|x|n+2
≤ Cη

ecη t

|x|n+1
+ Cη

ecη t

|x|n+2
≤ Cη

ecη t

|x|n+1
. (48)

On the other hand, by estimate (33) we have |Km,n(t, x)| ≤ ‖K̂m,n(t, ξ)‖L1 , where the quantity ‖K̂m,n(t, ξ)‖L1

is estimated as follows. For n even, by (23) we have

‖K̂m,n(t, ·)‖L1 ≤
∫
R
e−η|ξ|

m tdξ ≤ c

(ηt)1/m
≤ Cη

ecηt

(ηt)1/m
.

In this case, for all x we have |Km,n(t, x)| ≤ Cη
ecηt

(ηt)1/m
and with this estimate and estimate (48) we obtain

|Km,n(t, x)| ≤ Cη
ecηt

(η1/m t1/m
1

1 + |x|n+1
, which proves the point 2.1) in Proposition 3.1. On the other hand,

for n odd, by (24) we have

‖K̂m,n(t, ·)‖L1 ≤
∫
R
e−η|ξ|

n tdξ ≤ c

(ηt)1/n
≤ Cη

ecηt

(ηt)1/n
.

Here for all x we have |Km,n(t, x)| ≤ Cη
ecηt

(ηt)1/n
and then, by this estimate and by estimate estimate (48) we

get |Km,n(t, x)| ≤ Cη
ecηt

η1/n t1/n
1

1 + |x|n+1
, which proves the point 2.2) in Proposition 3.1. This proposition

in now proven. �

Finally, in order to simplify the notation, for m = 2, 3 and n ∈ N such that (11) is verified, let us define
the parameter α > 0:

α =

{
1/m, if n = 1 or n even: n = 2d with d ∈ N and d ≥ 2,

1/n, if n odd: n = 3 + 4d, with d ∈ N,
(49)

hence, we have 0 < α ≤ 1/2. With this parameter, and the estimates of the kernel Km,n(t, x) given in
Proposition 3.1, from now on we write the following unified kernel estimate:

|Km,n(t, x)| ≤ Cη
ecηt

tα
1

1 + |x|n+1
. (50)
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4 Global well-posedness: proof of Theorem 1

We will start by the following local well-posedness result.

Proposition 4.1 Let s > 3/2 and let u0 ∈ Hs(R) be an initial datum. There exists a time 0 < T0 < +∞
and a function u ∈ C([0, T0], Hs(R)), which is the unique solution of equation (19).

Proof. For a time 0 < T < +∞ (which we will set small enough) we consider the Banach space C([0, T ], Hs(R))
with the usual norm ‖u‖T = sup

0≤t≤T
‖u(t, ·)‖Hs .

For the first term in the right-hand side of (19) we have Km,n(t, ·)∗u0 ∈ C([0, T ], Hs(R)). Indeed, remark
first that by (23) and (24) there exists a constant c = c(m,n, η) > 0, such that for all t > 0 and all ξ ∈ R
we have |K̂m,n(t, ξ)| ≤ c. Then, as u0 ∈ Hs(R) we get

sup
0≤t≤T

‖Km,n(t, ·) ∗ u0‖Hs ≤ c‖u0‖Hs . (51)

It remains to prove the continuity of the quantity ‖Km,n(t, ·) ∗ u0‖Hs on [0, T ]. By convergence dominated
we get directly lim

t→0+
‖Km,n(t, ·) ∗ u0 − u0‖Hs = 0. Moreover, we have the following technical lemma:

Lemma 4.1 Let ε > 0 and let s1 > 0. Then, there exists a constant c1 > 0, which depends on s1, ε and
the parameters m,n, such that for all ε < t1, t2, and for all ψ ∈ Hs(R) we have:

‖Km,n(t1, ·) ∗ ψ −Km,n(t2, ·) ∗ ψ‖Hs+s1 ≤ c1|t1 − t2|1/2‖ψ‖Hs .

Proof. Recall that by (20) and (21) we have K̂m,n(t, ξ) = e−ip(ξ)ξt+ϕm,n(ξ)t. Then we can write

‖Km,n(t1, ·) ∗ ϕ−Km,n(t2, ·) ∗ ϕ‖2Hs+s1 =

∫
R

(1 + |ξ|2)s+s1 |K̂m,n(t1, ξ)− K̂m,n(t2, ξ)|2|ψ̂(ξ)|2d ξ

=

∫
R

(1 + |ξ|2)s+s1 |e(−ip(ξ)ξ+ϕm,n(ξ))t2 |2|e(−ip(ξ)ξ+ϕm,n(ξ))(t1−t2) − 1|2|ψ̂(ξ)|2d ξ = (a),

where we must study the quantity |e(−ip(ξ)ξ+ϕm,n(ξ))(t1−t2) − 1|2. We write

|e(−ip(ξ)ξ+ϕm,n(ξ))(t1−t2) − 1|2 = |e(−ip(ξ)ξ+ϕm,n(ξ))(t1−t2) − 1| |e(−ip(ξ)ξ+ϕm,n(ξ))(t1−t2) − 1|.

Recall that by (23) and (24) the quantity |e(−ip(ξ)ξ+ϕm,n(ξ))(t1−t2) − 1| is uniformly bounded and then we
have

|e(−ip(ξ)ξ+ϕm,n(ξ))(t1−t2) − 1|2 ≤ c|e(−ip(ξ)ξ+ϕm,n(ξ))(t1−t2) − 1|.
Now, by the mean value theorem in the temporal variable, the definition of ϕm,n(ξ) given in (21), and
moreover, by the estimate (3) on the symbol p(ξ) we obtain:

|e(−ip(ξ)ξ+ϕm,n(ξ))(t1−t2) − 1| ≤ c| − ip(ξ)ξ + ϕm,n(ξ)||t1 − t2| ≤ c(|ξ|σ+1 + η|ξ|n + η|ξ|m)|t1 − t2|.

Then we have
|e(−ip(ξ)ξ+ϕm,n(ξ))(t1−t2) − 1|2 ≤ c(|ξ|σ+1 + η|ξ|n + η|ξ|m)|t1 − t2|.

With this estimate, we get back to identity (a) to write

(a) ≤ c|t1 − t2|
∫
R

(1 + |ξ|2)s+s1 |e(−ip(ξ)ξ+ϕm,n(ξ))t2 |2(|ξ|σ+1 + η|ξ|n + η|ξ|m)|ψ̂(ξ)|2d ξ

≤ c|t1 − t2|
∫
R

(1 + |ξ|2)s+s1 |eϕm,n(ξ) t2 |2(|ξ|σ+1 + η|ξ|n + η|ξ|m)|ψ̂(ξ)|2d ξ

≤ c|t1 − t2| sup
ξ∈R

(
(1 + |ξ|2)s1(|ξ|σ+1 + η|ξ|n + η|ξ|m)|eϕm,n(ξ)t2 |2

)
︸ ︷︷ ︸

(b)

‖ψ‖2Hs .
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At this point, recall that by (23) and (24), and moreover, as have t2 > ε then we obtain

(b) ≤ c sup
ξ∈R

(
(1 + |ξ|2)s1(|ξ|σ+1 + η|ξ|n + η|ξ|m) max(e−2η(|ξ|n+|ξ|m)ε, e−2η|ξ|mε

)
= c1 < +∞,

hence the desired estimate follows. �

In this lemma we set s1 = 0 and ψ = u0, hence we obtain Km,n(t, ·) ∗ u0 ∈ C(]0, T ], Hs(R)). Thus, we
finally have Km,n(t, ·) ∗ u0 ∈ C[0, T ], Hs(R)).

We study now the second term in the right-hand side of (19). For this term have the following estimate:

sup
0≤t≤T

∥∥∥∥∫ t

0
Km,n(t− τ, ·) ∗ (uk∂xu)(τ, ·)dτ

∥∥∥∥
Hs

≤ Cη ecη TT 1−α ‖u‖k+1
T , (52)

where the parameter 0 < α ≤ 1/2 is given in (49). Indeed, for 0 < t ≤ T fix we write∥∥∥∥∫ t

0
Km,n(t− τ, ·) ∗ (uk∂xu)(τ, ·)dτ

∥∥∥∥
Hs

≤
∫ t

0

∥∥∥Km,n(t− τ, ·) ∗ (uk ∂xu)(τ, ·)
∥∥∥
Hs
dτ

≤ 1

k + 1

∫ t

0

∥∥∥Km,n(t− τ, ·) ∗ ∂x(uk+1)(τ, ·)
∥∥∥
Hs
dτ ≤ c

k + 1

∫ t

0

∥∥∥Km,n(t− τ, ·) ∗ uk+1(τ, ·)
∥∥∥
Hs+1

dτ.

At this point, we need the following technical lemma:

Lemma 4.2 Let 0 < α ≤ 1/2 be the parameter given in (49) and let s1, s2 ∈ R. The following estimates
follows:

1) For all ψ ∈ Hs1(R) we have ‖Km,n(t, ·) ∗ ψ‖Hs1+s2 ≤ Cη,s2
ecη s2 t

tα s2
‖ψ‖Hs1 .

2) Moreover, all ψ ∈ Ḣs1(R) we have ‖Km,n(t, ·) ∗ ψ‖Ḣs1+s2 ≤ C
′
η,s2

ec
′
η,s2

t

tα s2
‖ψ‖Ḣs1 .

Proof. The proof of points 1) and 2) essentially follows the same lines so it is sufficient to detail the
computations for the point 1). We write

‖Km,n(t, ·) ∗ ψ‖2Hs1+s2 =

∫
Rn

(1 + |ξ|2)s1+s2 |K̂m,n(t, ξ)|2|ψ̂(ξ)|2 dξ

=

∫
R

(1 + |ξ|2)s2 |K̂m,n(t, ξ)|2(1 + |ξ|2)s1 |ψ̂(ξ)|2 dξ ≤

(
sup
ξ∈Rn

(|1 + |ξ|2)s2 |K̂m,n(t, ξ)|2
)

︸ ︷︷ ︸
(b)

‖ψ‖2Hs1 ,

where we must estimate the quantity (b). For this we will consider the following cases of the parameters m
and n. For n even, by (23) for all t > 0 and for all ξ ∈ R we can write

(|1 + |ξ|2)s2 |K̂m,n(t, ξ)|2 ≤ Cs2
(
|K̂m,n(t, ξ)|2 + |ξ|2 s2 |K̂m,n(t, ξ)|2

)
≤ Cη,s2

(
1 + |ξ|2 s2e−2η|ξ|mt

)
≤ Cη,s2

(
1 +
|(ηt)1/mξ|2s2

(ηt)2s2/m
e−2|(ηt)1/mξ|m

)
≤ Cη,s2

(
1 +

1

(ηt)2s2/m

)
≤ Cη,s2

1 + (ηt)2s2/m

(ηt)2s2/m
≤ Cη,s2

ecη,s2 t

t2s2/m
.

Then, for n even we have (b) ≤ Cη,s2
ecη,s2 t

t2s2/m
, and thus we get

‖Km,n(t, ·) ∗ ψ‖Hs1+s2 ≤ Cη,s2
ecη,s2 t

ts2/m
‖ψ‖Hs1 . (53)
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Now, for n odd, by (24) and following the same estimates above, if n ≤ m we have (b) ≤ Cη,s2
ecη,s2 t

t2s2/n
, and

then we obtain:

‖Km,n(t, ·) ∗ ψ‖Hs1+s2 ≤ Cη,s2
ecη,s2 t

ts2/n
‖ψ‖Hs1 . (54)

Moreover, if n > m then we have (b) ≤ Cη,s2
ecη,s2 t

t2s2/n
, and thus we get the same estimate (53). Thus, by

estimates (53) and (54), and moreover, by definition of the parameter α in (49) we obtain the estimate
stated in point 1). �

In the setting of this lemma, we set the parameters s1 = s, s2 = 1 and the function ψ = uk+1. More-
over, as s > 1/2 (since we have s > 3/2) by the Sobolev product laws we can write

c

k + 1

∫ t

0

∥∥∥Km,n(t− τ, ·) ∗ uk+1(τ, ·)
∥∥∥
Hs+1

dτ ≤ Cη
k + 1

∫ t

0

ecη(t−τ)

(t− τ)α
‖uk+1(τ, ·)‖Hsdτ

≤ Cη
ecη T

(k + 1)

∫ t

0

‖uk+1(τ, ·)‖Hs

(t− τ)α
dτ ≤ Cη

ecη T

(k + 1)

∫ t

0

‖u(τ, ·)‖k+1
Hs

(t− τ)α
dτ

≤ Cη
ecη T

(k + 1)

(
sup

0≤t≤T
‖u(τ, ·)‖Hs

)k+1 (∫ t

0

dτ

(t− τ)α

)
≤ Cη

ecη T

(k + 1)
‖u‖k+1

T t1−α ≤ Cηecη T ‖u‖k+1
T t1−α,

hence we obtain (52). Once we dispose of estimates (51) and (52), we set a time 0 < T0 < +∞ small enough
such that

2k+1(c ‖u0‖Hs)k Cηe
cη T0 T 1−α

0 < 1, (55)

and then, the existence and uniqueness of a (local in time) solution u ∈ C([0, T0], Hs(R)) of the integral
equation (19) follow from standard arguments. �

In order to study the regularity (in the spatial variable) of solutions of equation (1), we define the space

H∞(R) as H∞(R) =
⋂
r≥0

Hr(R).

Proposition 4.2 Let u ∈ C([0, T0], Hs(R)) be the solution of equation (19) given by Proposition 4.1. Then,
this solution verifies u ∈ C(]0, T0], H∞(R)). Moreover we have u ∈ C1(]0, T0], C∞(R)) and then u(t, x) is a
classical solution of equation (1).

Proof. We will prove that each term in the integral equation (19) belong to the space C(]0, T0[, H∞(R)). For
the first term in the right-hand side of (19), remark that setting the parameters s1 = s, s2 > 0 and ψ = u0

in the framework of Lemma 4.2 then we have Km,n(t, ·) ∗ u0 ∈ H∞(R) pointwise for all t > 0. Moreover, by
Lemma we get Km,n(t, ·) ∗ u0 ∈ C(]0, T0], H∞(R)).

We study now the second term in the right-hand side of (19). Recall that the solution u of this equation
verifies u(t, ·) ∈ Hs(R) for all 0 ≤ t ≤ T0. With this information, and moreover, for δ > 0 small enough,

first we will prove that for all 0 < t ≤ T0 we have

∫ t

0
Km,n(t− τ, ·) ∗ uk∂xu(τ, ·)dτ ∈ Hs+δ(R). Indeed, in

the setting of Lemma 4.2, we set the parameters s1 = s − 1 > 1/2, s2 = δ + 1 and ψ = uk∂xu. Then we
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write ∥∥∥∥∫ t

0
Km,n(t− τ, ·) ∗ uk∂xu(τ, ·)dτ

∥∥∥∥
Hs+δ

≤
∫ t

0
‖Km,n(t− τ, ·) ∗ uk∂xu(τ, ·)‖Hs+δ

≤
∫ t

0
‖Km,n(t− τ, ·) ∗ uk∂xu(τ, ·)‖H(s−1)+(δ+1) ≤ Cη,δ

∫ t

0

ecη,δ(t−τ)

(t− τ)(δ+1)α
‖uk∂xu(τ, ·)‖Hs−1dτ

≤ Cη,δe
cη,δ T0

∫ t

0

‖uk(τ, ·)‖Hs−1‖∂xu(τ, ·)‖Hs−1

(t− τ)(δ+1)α
dτ ≤ Cη,δ,T0

∫ t

0

‖u(τ, ·)‖kHs−1‖u(τ, ·)‖Hs

(t− τ)(δ+1)α
dτ

≤ Cη,δ,T0

∫ t

0

‖u(τ, ·)‖k+1
Hs

(t− τ)(δ+1)α
dτ ≤ Cη,δ,T0

(
sup

0≤τ≤T0
‖u(τ, ·)‖Hs

)k+1 ∫ t

0

dτ

(t− τ)(δ+1)α
.

Here, as 1/α ≥ 2 (see the expression (49)) then we set 0 < δ < 1/α− 1, hence we have 1− (1 + δ)α > 0, and

then the last integral computes down as

∫ t

0

dτ

(t− τ)(δ+1)α
≤ c t1−(1+δ)α. Then, for all 0 < t ≤ T0 we obtain

∥∥∥∥∫ t

0
Km,n(t− τ, ·) ∗ uk∂xu(τ, ·)dτ

∥∥∥∥
Hs+δ

≤ Cη,δ,T0

(
sup

0≤τ≤T0
‖u(τ, ·)‖Hs

)k+1

t1−(1+δ)α. (56)

We prove now the continuity respect to the temporal variable. Let 0 < t1, t2 ≤ T0 and assume (without loss
of generality) that t2 < t1. We write∥∥∥∥∫ t1

0
Km,n(t1 − τ, ·) ∗ uk∂xu(τ, ·)dτ −

∫ t2

0
Km,n(t2 − τ, ·) ∗ uk∂xu(τ, ·)dτ

∥∥∥∥
Hs+δ

≤
∥∥∥∥∫ t1

0
Km,n(t1 − τ, ·) ∗ uk∂xu(τ, ·)dτ −

∫ t2

0
Km,n(t1 − τ, ·) ∗ uk∂xu(τ, ·)dτ

∥∥∥∥
Hs+δ

+

∥∥∥∥∫ t2

0
Km,n(t1 − τ, ·) ∗ uk∂xu(τ, ·)dτ −

∫ t2

0
Km,n(t2 − τ, ·) ∗ uk∂xu(τ, ·)dτ

∥∥∥∥
Hs+δ

≤
∥∥∥∥∫ t1

t2

Km,n(t1 − τ, ·) ∗ uk∂xu(τ, ·)dτ
∥∥∥∥
Hs+δ

+

∥∥∥∥∫ t2

0
(Km,n(t1 − τ, ·)−Km,n(t2 − τ, ·)) ∗ uk∂xu(τ, ·)dτ

∥∥∥∥
Hs+δ

.

By (56) the first term in the right-hand side is estimated as∥∥∥∥∫ t1

t2

Km,n(t1 − τ, ·) ∗ uk∂xu(τ, ·)dτ
∥∥∥∥
Hs+δ

≤ Cη,δ,T0

(
sup

0≤τ≤T0
‖u(τ, ·)‖Hs

)k+1

|t1 − t2|1−(1+δ)α.

For the second term in the right-hand side, by Lemma 4 we have∥∥∥∥∫ t2

0
(Km,n(t1 − τ, ·)−Km,n(t2 − τ, ·)) ∗ uk∂xu(τ, ·)dτ

∥∥∥∥
Hs+δ

≤ c1|t1 − t2|1/2
∫ t2

0
‖uk∂xu(τ, ·)‖Hs−1dτ

≤ c1|t1 − t2|1/2
(

sup
0≤τ≤T0

‖u(τ, ·)‖Hs

)k+1

T0.

Thus, by these estimates we get

∫ t

0
Km,n(t− τ, ·) ∗ uk∂xu(τ, ·)dτ ∈ C(]0, T0[, Hs+δ(R)) for 0 < δ < 1/α− 1.

At this point, we have proved that u ∈ C(]0, T0[, Hs+δ(R)) and repeating this process (in order to obtain
a gain of regularity for the non linear term) we conclude that u ∈ C(]0, T0[, H∞(R)). Thereafter, we observe
that u(t, x) solves the equation (1) in the classical way and moreover, writing

∂tu = −D(∂xu) + uk∂xu− η(H∂nxu+Hmu),
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we get ∂tu ∈ C(]0, T0[, H∞(R)). From this information we can verify now that we have ∂tu ∈ C(]0, T0[, C∞(R)).
Indeed, we will prove that for all k ∈ N, the function ∂kx∂tu(t, ·) is a Hölder continuous function on R. Let
k ∈ N fix. Then, for 1

2 < s1 < 3
2 we set r = k + s1 and since ∂tu ∈ C(]0, T0[, H∞(R)) then we have

∂kx∂tu(t, ·) ∈ Hs1(R). On the other hand, recall that we have the identification Hs1(R) = Bs1,2
2 (R) (where

Bs1,2
2 (R) denotes a Besov space [3]) and moreover we have the inclusion Bs1,2

2 (R) ⊂ Bs1− 1
2
,∞

∞ (R). Thus

we get ∂kx∂tu(t, ·) ∈ Ḃ
s1− 1

2
,∞

∞ (R). But, by definition of the space Ḃ
s1− 1

2
,∞

∞ (R) (see always [3]) and since
1
2 < s1 <

3
2 , then we have 0 < s1 − 1

2 < 1 and thus ∂nx∂tu(t, ·) is a β- Hölder continuous function with
β = s1 − 1

2 . Then we have ∂tu ∈ C(]0, T0[, C∞(R)) and thus u ∈ C1(]0, T0[, C∞(R)). �

Finally, we prove the global well-posedness. Following similar arguments of [14] (see the proof of Theo-
rem 2, page 9) we have the following result.

Proposition 4.3 Let T ∗ > 0 be the maximal time of existence of a unique solution u ∈ C([0, T ∗[, Hs(R))
for the equation (19) given by Proposition 4.1. Then we have T ∗ = +∞.

Proof. By definition we have:

T ∗ = sup {T > 0 : there exists a unique solutionu ∈ C([0, T [, Hs(R)) of (19) arising from u0}.

We will assume that T ∗ < +∞ which give us a contradiction. First we need to derive an energy estimate
for solution u(t, x) and for this recall that by Proposition 4.2 we know that this solution is regular enough
and then it verify the equation (1) in a classical way. Thus, we can multiply this equation pointwise by u
and integrating in the spatial variable (after some integration by parts) we get:

1

2

d

dt
‖u(t, ·)‖2L2 = −η

∫
R

(H∂nxu+Hmu)u dx, (57)

where we must study the term in the right-hand side. By the Parseval’s identity we write

−η
∫
R

(H∂nxu+Hmu)u dx = −η
∫
R

(in+1|ξ|ξn−1 + |ξ|m)|û|2dξ︸ ︷︷ ︸
(a)

,

and we will estimate the quantity (a) respect to the following values of the parameter n given by (11). For
n = 1 we have

(a) =

∫
R

(|ξ| − |ξ|m)|û|2dξ =

∫
|ξ|≤21/(m−1)

(|ξ| − |ξ|m)|û|2dξ +

∫
|ξ|≥21/(m−1)

(|ξ| − |ξ|m)|û|2dξ

≤
∫
|ξ|≤21/(m−1)

|ξ||û|2dξ −
∫
|ξ|≤21/(m−1)

|ξ|m|û|2dξ −
∫
|ξ|≥21/(m−1)

|ξ||û|2dξ

≤ c

∫
|ξ|≤21/(m−1)

|û|2dξ ≤ c
∫
R
|û|2dξ ≤ c‖u(t, ·)‖2L2 .

Getting back to (57) and using the Gröwall inequality we have, for all t ∈ [0, T ∗[, ‖u(t, ·)‖2L2 ≤ c‖u0‖2L2e
2ηt.

Then, for n = 2d with d ∈ N∗ we write (a) = −
∫
R
in+1|ξ|ξn−1|û|2dξ −

∫
R
|ξ|m|û|2dξ, and since in+1|ξ|ξn−1|û|2

is a odd function we obtain (a) = −
∫
R
|ξ|m|û|2dξ ≤ 0. So, by (57) we have ‖u(t, ·)‖2L2 ≤ c‖u0‖2L2 ≤ c‖u0‖2L2e

2ηt,

for all t ∈ [0, T ∗[.

20



Finally, for n = 3+4d, with d ∈ N, remark that the function in+1|ξ|ξn−1 + |ξ|m writes down as |ξ|n + |ξ|m

and then we have (a) = −
∫
R

(|ξ|n + |ξ|m)|û|2dξ ≤ 0. Thus, always by (57) we obtain the same estimate

above.

We have proven that the solution u(t, x) verifies, for all t ∈ [0, T ∗[, the energy estimate

‖u(t, ·)‖L2 ≤ c‖u0‖L2eηT
∗
, (58)

and with this estimate (assuming that T ∗ < +∞) we will obtain a contradiction as follows: first, we set
the fixed quantity M = c‖u0‖L2eηT

∗
> 0. Then, for any initial datum v0 ∈ Hs(R), recall that by estimate

(55) the time T = T (v0) > 0 of existence of a solution v ∈ C([0, T [, Hs(R)) of equation (19) arising from an
initial datum v0 is controlled as:

2k+1(c ‖u0‖Hs)k Cηe
cη T T 1−α

0 < 1,

hence we write

ecη TT 1−α <
1

2k+1Cη(c ‖v0‖Hs)k
.

Moreover, remark that as we have ‖v0‖L2 ≤ ‖v0‖Hs , then the existence time T = T (v0) may be controlled
by the quantity ‖v0‖L2 as follows:

ecη TT 1−α <
ηα

2k+1Cη(c ‖v0‖L2)k
.

In this estimate we may observe that the existence time T = T (v0) is a decreasing function of ‖v0‖L2 and
then, there exist a time 0 < T1 < T ∗ such that for all initial datum v0 ∈ Hs(R) such that ‖v0‖L2 ≤ M the
associated solution v ∈ C([0, T [, Hs(R)) exists at least on the interval [0, T1] and verifies v ∈ C([0, T1], L2(R)).
Thus, for 0 < ε < T1 and for the solution u(t, x) (arising from u0) we can consider the initial datum
v0 = u(T ∗ − ε, ·) ∈ Hs(R), which by (58) verifies ‖v0‖L2 ≤ M . So, there exists a solution v arising from
v0 = u(T ∗− ε, ·) which is defined at least on [0, T1]. Thus, gathering the functions u(t, x) and v(t, x) we get
a solution

ũ(t, ·) =

{
u(t, ·) for 0 ≤ t ≤ T ∗ − ε,

v(t, ·) for T ∗ − ε ≤ t ≤ T ∗ − ε+ T1,

arising from the datum u0 which is defined on the interval [0, T ∗ − ε + T1]. But, since 0 < ε < T1 we have
T ∗ − ε+ T1 > T ∗ and then we contradict the definition of T ∗. Then we have T ∗ = +∞. �

5 Pointwise decaying properties

5.1 Proof of Theorem 2

Given an initial u0 ∈ Hs(R) (with s > 3/2) by Theorem 1 there exists a unique solution u ∈ C([0,+∞[, Hs(R))
of equation (1). By (12) we assume now that the initial datum verifies moreover u0 ∈ L∞((1 + | · |γ)dx),
with γ > 0, and we will construct a solution u1(t, x) of equation (1) in the functional space

C([0,+∞[, Hs(R)) ∩ Eα,n,γ ,

where, for the parameter 0 < α ≤ 1/2 defined in (49), the parameter n ≥ 1 given by (11) and the parameter
γ > 0 above, the space Eα,n,γ characterizes the pointwise spatial decaying of solutions and it is defined as:

Eα,β,γ =

{
u ∈ S ′([0,+∞[×R) : for all 0 < T < +∞, sup

0<t≤T
tα‖(1 + | · |min(γ,n+1))u(t, ·)‖L∞ < +∞

}
.

(59)
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It is worth to mention that the weight in the temporal variable tα is essentially technical (due to the kernel
estimates (50)) and it will be useful to carry up all our estimates. We start by the local in time existence of
solutions. More precisely, for a time 0 < T < +∞, which we shall fix small enough later, we will solve the
equation

u1(t, ·) = Km,n(t, ·) ∗ u0 +

∫ t

0
Km,n(t− τ) ∗ (uk1∂xu1)(τ, ·)dτ, (60)

in the Banach space ET = C([0, T ], Hs(R)) ∩ Eα,n,γ , with the norm

‖u‖ET = sup
0≤t≤T

‖u(t, ·)‖Hs + sup
0<t≤T

tα‖(1 + | · |min(γ,n+1))u(t, ·)‖L∞ . (61)

We study the first term in the right-hand side in (60). Recall that the quantity sup
0≤t≤T

‖Km,n(t, ·) ∗ u0‖Hs

was estimated in (51) and then it remains to estimate the quantity sup
0<t≤T

tα‖(1 + | · |min(γ,n+1))Km,n(t, ·) ∗ u0‖L∞ .

As u0 ∈ L∞((1 + | · |γ)dx) and moreover, by the kernel estimate (50), for t > 0 and x ∈ R fix we write

|Km,n(t, ·) ∗ u0(x)| ≤
∫
R
|Km,n(t, x− y)||u0(y)|dy ≤

∫
R
|Km,n(t, x− y)|1 + |y|γ

1 + |y|γ
|u0(y)|dy

≤ ‖(1 + | · |γ)u0‖L∞
∫
R

|Km,n(t, x− y)|
1 + |y|γ

dy ≤ ‖(1 + | · |γ)u0‖L∞ Cη
ecη t

tα

∫
R

dy

(1 + |x− y|n+1)(1 + |y|γ)

≤ ‖(1 + | · |γ)u0‖L∞ Cη
ecη t

tα
c

1 + |x|min(γ,n+1)
,

hence we have

tα
∥∥∥(1 + | · |min(γ,β))Km,n(t, ·) ∗ u0

∥∥∥
L∞
≤ Cη ecη t‖(1 + | · |γ)u0‖L∞ . (62)

Thus, by estimates (51) and (62) we get

‖Km,n(t, ·) ∗ u0‖ET ≤ Cη e
cη T (‖(1 + | · |γ)u0‖L∞ + ‖u0‖Hs). (63)

We study now the second term in the right-hand side in the equation (60). Remark that since the quantity

sup
0<t≤T

∥∥∥∥∫ t

0
Km,n(t− τ, ·) ∗ (uk1∂xu1)(τ, ·)dτ

∥∥∥∥
Hs

was estimated in (52) it remains to estimate the quantity

sup
0<t≤T

ta
∥∥∥∥(1 + | · |min(γ,n+1))

(∫ t

0
Km,n(t− τ, ·) ∗ (uk∂xu)(τ, ·)dτ

)∥∥∥∥
L∞

. By the kernel estimate (50), for 0 <

τ < t ≤ T and x ∈ R fix we write:

|Km,n(t− τ, ·) ∗ (uk1∂xu1)(τ, x)| ≤
∫
R
|Km,n(t− τ, x− y)||u1(τ, y)|k|∂yu1(τ, y)|dy

≤ Cη

∫
R

ecη(t−τ)

(t− τ)α
1

(1 + |x− y|n+1)
|u1(τ, y)|k|∂yu1(τ, y)|dy

≤ Cη
ecη(t−τ)

(t− τ)α
‖u1(τ, ·)‖k−1

L∞ ‖∂xu1(τ, ·)‖L∞
∫
R

1

(1 + |x− y|n+1)
|u1(τ, y)|dy

≤ Cη
ecη(t−τ)

(t− τ)α
‖u1(τ, ·)‖k−1

L∞ ‖∂xu1(τ, ·)‖L∞‖(1 + | · |min(γ,n+1))u1(τ, ·)‖L∞

×
∫
R

1

(1 + |x− y|n+1)(1 + |y|min(γ,n+1))
dy

≤ Cη
ecη(t−τ)

(t− τ)α
‖u1(τ, ·)‖k−1

L∞ ‖∂xu1(τ, ·)‖L∞‖(1 + | · |min(γ,n+1))u1(τ, ·)‖L∞︸ ︷︷ ︸
(a)

1

1 + |x|min(γ,n+1)
.
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In the last expression we still must estimate the term (a). Recall that as s > 3/2 then we have s− 1 > 1/2
and thus the space Hs−1(R) embeds in the space L∞(R). So we can write

(a) ≤ ‖u1(τ, ·)‖k−1
Hs−1‖∂xu1(τ, ·)‖Hs−1

τα

τα
‖(1 + | · |min(γ,n+1))u1(τ, ·)‖L∞

≤ c

τα
‖u(τ, ·)‖kHs

(
τα‖(1 + | · |min(γ,n+1))u1(τ, ·)‖L∞

)
. (64)

Thus, getting back to the previous estimate we have

‖(1 + |x|min(γ,n+1))|Km,n(t− τ, ·) ∗ (uk1∂xu1)(τ, ·)‖L∞ ≤Cη
ecη(t−τ)

(t− τ)ατα
‖u(τ, ·)‖kHs

×
(
τα‖(1 + | · |min(γ,n+1))u1(τ, ·)‖L∞

)
,

hence we can write

tα
∫ t

0

∥∥∥(1 + | · |min(γ,n+1))
(
Km,n(t− τ, ·) ∗ (uk1∂xu1)(τ, ·)

)∥∥∥
L∞

dτ

≤Cη ecη T tα
∫ t

0

1

(t− τ)α τα
‖u(τ, ·)‖kHs

(
τα‖(1 + | · |min(γ,n+1))u1(τ, ·)‖L∞

)
dτ.

(65)

Now, recalling the definition of the norm ‖ · ‖ET given in (61) we finally get

sup
0<t≤T

tα
∥∥∥∥(1 + | · |min(γ,n+1))

∫ t

0
Km,n(t− τ, ·) ∗ (uk1∂xu1)(τ, ·)dτ

∥∥∥∥
L∞
≤ Cη ecη TT 1−α‖u1‖k+1

ET
.

By this estimate and by estimate (52) we obtain∥∥∥∥∫ t

0
Km,n(t− τ, ·) ∗ (uk1∂xu1)(τ, ·)dτ

∥∥∥∥
ET

≤ Cη ecη T T 1−α ‖u1‖k+1
ET

. (66)

Once we have the estimates (63) and (66), for a time 0 < T0 < +∞ small enough, the existence and unique-
ness of a (local in time) solution u1 ∈ ET of the integral equation (60) follow from well-known arguments.

Now we will show that the solution u1(t, x) is global in time. Recall that by Proposition 4.3 we have
u1 ∈ C([0,+∞[, Hs(R)) and then it remains to prove that the quantity sup

0<t≤T
tα‖(1 + | · |min(γ,n+1))u1(t, ·)‖L∞

is well-defined for all time T > 0.

Let T > 0. For all 0 < t ≤ T , let us define the quantity g(t) = tα‖(1 + | · |min(γ,n+1))u1(t, ·)‖L∞ , and by
equation (60) we write

g(t) = tα
∥∥∥∥(1 + | · |min(γ,n+1))

(
Km,n(t, ·) ∗ u0 +

∫ t

0
Km,n(t− τ) ∗ (uk1∂xu1)(τ, ·)dτ

)∥∥∥∥
L∞

≤ tα
∥∥∥(1 + | · |min(γ,n+1))Km,n(t, ·) ∗ u0

∥∥∥
L∞

+tα
∫ t

0

∥∥∥(1 + | · |min(γ,n+1))
(
Km,n(t− τ) ∗ (uk1∂xu1)(τ, ·)dτ

)∥∥∥
L∞

= I1 + I2,

where we must estimate the terms I1 and I2. For I1, by estimate (62) we have directly the estimate

I1 ≤ Cηecη T ‖(1 + | · |γ)u0‖L∞ = C1(u0, T ). (67)
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For I2, by estimate (65) and recalling the definition of the expression g(t) given above, we have

I2 ≤ Cηecη T
(

sup
0≤τ≤t

‖u1(τ, ·)‖kHs

)
tα
∫ t

0

1

(t− τ)ατα
g(τ)dτ

≤ Cηecη T
(

sup
0≤τ≤T

‖u1(τ, ·)‖kHs

)
tα
∫ t

0

1

(t− τ)ατα
g(τ)dτ

= C2(u, T ) tα
∫ t

0

1

(t− τ)ατα
g(τ)dτ.

(68)

At this point, we need to distinguish two cases for the parameter 0 < α ≤ 1/2.

• For 0 < α < 1/2. By estimates (67) and (68), for all t ∈]0, T ] we obtain the following inequality:

g(t) ≤ C1(u0, T ) + C2(u, T )Tα
∫ t

0

1

(t− τ)α τα
g(τ).

Now, in order to get control (global in time) on the quantity g(t) we will use the following technical
result. For a proof see the Lemma 7.1.2 of the book [23].

Lemma 5.1 (Grönwall’s type inequality I) Let a > 0 and b > 0, such that a + b > 1. Let
g : [0, T ] −→ [0,+∞[ be a function such that verifies:

a) g ∈ L1
loc([0, T ]), tb−1g ∈ L1

loc([0, T ]), and

b) there exists two constants C1 > 0 and C2 > 0, such that for almost all t ∈ [0, T ], we have

g(t) ≤ C1 + C2

∫ t

0
(t− τ)a−1τ b−1g(τ)dτ.

Then, the following statements hold:

1) There exists a continuous and increasing function Θ : [0,+∞[−→ [0,+∞[, defined by

Θ(t) =

+∞∑
k=0

ck t
σk, (69)

where σ = a + b− 1 > 0 and moreover, for the Gamma function Γ(·) the coefficients ck > 0 are

given by the recurrence formula: c0 = 1 and
ck+1

ck
=

Γ(kσ + 1)

Γ(kσ + a + b)
for k ≥ 1.

2) For all time t ∈ [0, T ], we have g(t) ≤ c1Θ

(
c

1
σ
2 t

)
.

In this lemma we set the parameters a = 1−α > 0 and b = 1−α > 0, hence, as 0 < α < 1/2 then we
have a+b > 1. Moreover, it is easy to see that points a) and b) above are verified, where, in point b) we
set the constants C1 = C1(u0, T ) and C2 = C2(u, T )Tα. Thus, by point 2) for σ = 1− 2α > 0 and for

all time t ∈]0, T ] we obtain the control g(t) = tα‖(1 + | · |min(γ,n+1))u1(t, ·)‖L∞ ≤ c1Θ

(
c

1
1−α
2 t

)
, hence

the quantity g(t) does not explode in a finite time. Thus we have u1 ∈ C([0,+∞[, Hs(R)) ∩ Eα,n,γ .

• For α = 1/2. Observe that by estimates (67) and (68), for all 0 < t ≤ T we obtain the following
inequality:

g(t) ≤ C1(u0, T ) + C2(u, T )tα
∫ t

0

1

(t− τ)1/2 τ1/2
g(τ). (70)
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However, we may observe that this case ir more delicate since if in Lemma 5.1 we set a = b = 1/2, then
the required condition a + b > 1 is not verified. To contour this problem, we shall use here another
argument.

We suppose that T ∗<+∞ and we will obtain a contradiction.

version of a Grönwall’s type inequality. For a proof of this technical result see the Lemma 3.4 in [7].

Lemma 5.2 (Grönwall’s type inequality II) Let g : [0, T ] −→ [0,+∞[ be a non-negative and
locally bounded function such that, for all t ∈]0, T ] it verifies:

g(t) ≤ C1 + C2

∫ t

0

1

(t− τ)1/2τ1/2
g(τ)dτ,

for two constants C1,C2 > 0 depending on T . Moreover, let K =

∫ 1

0

d τ

(1− τ)1/2τ1/2
. If C2 < 1/K,

then for all t ∈]0, T ] we have g(t) ≤ C1.

In this lemma, we set the constant C1 = C1(u0, T ). Moreover, in the second term of the right in
(70) we remark that we can set a time 0 < T1 < T/2 such that C2 = C2(u, T )Tα1 < 1/K. Thus, for
all t ∈]0, T1] we have g(t) ≤ C1. Thereafter, we observe that we can repeat this process as follows:
we consider now the initial datum u(T1, ·) and then for all time t ∈ [0, T1] we denote by ũ1(t, x) the
solution of the problem

ũ1(t, x) = Km,n(t, ·) ∗ u1(T1, x) +

∫ t

0
Km,n(t− τ) ∗ (ũk1∂xũ1)(τ, x)d τ.

Then, for the quantity g̃(t) = tα‖(1+|·|min(γ,n+1))ũ1(t, ·)‖L∞ , by estimates (67) and (68), and moreover,
applying the Lemma 5.2, for all t ∈ [0, T1] we have g̃(t) ≤ C1(u(T1, ·), T ). But, by uniqueness of
solutions in the space C([0,+∞[, Hs(R)) we have the identity ũ1(t, x) = u1(t+T1, x) and then we have
g̃(t) = g(t+ T1) ≤ C1(u(T1, ·), T ). Repeating this process a finite number of iterations we arrive to the
time T > 0. Then (when α = 1/2) the quantity g(t) does not explode in a finite time and thus have
u1 ∈ C([0,+∞[, Hs(R)) ∩ Eα,n,γ .

In order to finish this proof, remark that always by uniqueness of solution u(t, x) in the space C([0,+∞[, Hs(R))
we have the identity u = u1 and then the solution u(t, x) belongs to the space Eα,n,γ . By definition of the
space Eα,n,γ given in (59), for all t > 0 and for x ∈ R we can write

|u(t, x)| ≤ 1

tα

(
sup

0<τ≤t
τα‖(1 + | · |min(γ,n+1))u(τ, ·)‖L∞

)
1

1 + |x|min(γ,n+1)
=

C0(u)

tα
1

1 + |x|min(γ,n+1)
, (71)

hence, setting the constant C0(u, t) =
C0(u)

tα
> 0, we obtain the desired estimate (13). Theorem 2 is proven.

�

5.2 Proof of Theorem 3

Recall that for n ≥ 1 given by (11) for ε ∈]0, 1] we have γ = n+ 1 + ε. Since that the solution u(t, x) writes
down as in the integral formulation (19), we start by proving that the first term in the right-hand side in
(19 has the the following asymptotic development:

Km,n(t, ·) ∗ u0(x) = Km,n(t, x)

(∫
R
u0(y)dy

)
+R1(t, x), |x| → +∞, (72)
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with |R1(t, x)| ≤ c(u0, t)

|x|γ
. Indeed, for t > 0 and x ∈ R fix this term can be decomposed as follows:∫

R
Km,n(t, x− y)u0(y)dy = Km,n(t, x)

(∫
R
u0(y)dy

)
+

∫
|y|< |x|

2

(Km,n(t, x− y)−Km,n(t, x))u0(y)dy

+

∫
|y|> |x|

2

Km,n(t, x− y)u0(y)dy −Km,n(t, x)

(∫
|y|> |x|

2

u0(y)dy

)

= Km,n(t, x)

(∫
R
u0(y)dy

)
+ I1 + I2 + I3,

hence, we define R1 = I1 + I2 + I3 and we will verify that the following statement holds:

|R1| ≤
c(u0, t)

|x|γ
, |x| → +∞. (73)

To estimate the term I1 we need the following technical result. Its proof follows the same lines of the proof
of Lemma 4.2 in [13].

Lemma 5.3 Let the parameter 0 < α ≤ 1/2 given in (49). Within the framework of Proposition 3.1, for
all time t > 0 this kernel Km,n(t, x) satisfies Km,n(t, ·) ∈ C1(R) and we have the following estimates:

1) For all x 6= 0, |∂xKm,n(t, x)| ≤ Cη
ecη t

|x|n+2
.

2) For all x ∈ R, |∂xKm,n(t, x)| ≤ Cη
ecη t

t2α
1

1 + |x|n+2
.

As Km,n(t, ·) ∈ C1(R), by the Taylor expansion we write Km,n(t, x− y)−Km,n(t, x) = −y∂xKm,n(t, x− θy)
for some 0 < θ < 1. Then, by this identity and the estimate given in point 1) above, in the term I1 we
obtain

I1 ≤
∫
|y|< |x|

2

|(Km,n(t, x− y)−Km,n(t, x))||u0(y)|dy ≤
∫
|y|< |x|

2

|y||∂xKm,n(t, x− θy)||u0(y)|dy

≤ Cηe
cη t

∫
|y|< |x|

2

|y||u0(y)|
|x− θy|n+2

dy.

We study now the expression
1

|x− θy|β+1
. As we have 0 < θ < 1 and moreover, as we have |y| < |x|

2 , then we

can write |x− θy| ≥ |x| − θ|y| ≥ |x| − |y| ≥ |x|2 ; and thus we get
1

|x− θy|n+2
≤ c 1

|x|n+2
. With this inequality

and recalling that the initial datum verifies |u0(y)| ≤ c

1 + |y|γ
(with γ = n+ 1 + ε) we can write

Cηe
cη t

∫
|y|< |x|

2

|y||u0(y)|
|x− θy|n+2

dy ≤ Cηe
cη t

|x|n+2

∫
|y|< |x|

2

|y|
1 + |y|n+1+ε

dy ≤ Cηe
cη t

|x|n+2

∫
R

|y|
1 + |y|n+1+ε

dy ≤ Cη
ecη t

|x|n+2
.

Thus, as γ ≤ n+ 2 then we have

I1 ≤
Cηe

cη t

|x|n+2
≤ Cηe

cη t

|x|γ
, |x| → +∞. (74)

For the term I2, as we have |u0(y)| ≤ c

|y|γ
(for |y| large enough) and moreover, as we have |y| > |x|

2 , then

we write

I2 ≤
∫
|y|> |x|

2

|Km,n(t, x− y)||u0(y)|dy ≤ c
∫
|y|> |x|

2

|Km,n(t, x− y)|
|y|γ

dy ≤ c

|x|γ

∫
|y|> |x|

2

|Km,n(t, x− y)|

≤ c

|x|γ
‖Km,n(t, ·)‖L1 ,
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but, by (50) we have ‖Km,n(t, ·)‖L1 ≤ Cη e
cη t

tα , and then we can write

I2 ≤ Cη
ecη t

tα
1

|x|γ
, |x| → +∞. (75)

Finally, in order to study the term I3, recall first that always by (50) for |x| enough enough we have

|Km,n(t, x)| ≤ Cη
ecη t

tα
1

|x|n+1
. Moreover, recall that the initial datum verifies |u0(y)| ≤ c

1 + |y|γ
(with γ =

n+ 1 + ε). Then we write

I3 ≤ Cη
ecη t

tα
1

|x|n+1

∫
|y|> |x|

2

|u0(y)|dy ≤ Cη
ecη t

tα
1

|x|n+1

∫
|y|> |x|

2

1

1 + |y|n+1+ε
dy

≤ Cη
ecη t

tα
1

|x|n+1+ε

∫
|y|> |x|

2

1

1 + |y|n+1
dy ≤ Cη

ecη t

tα
1

|x|γ

∫
R

1

1 + |y|n+1
dy ≤ Cη

ecη t

tα
1

|x|γ
. (76)

Thus, the desired estimate (73) follows from (74), (75) and (76), and we have the asymptotic development
given in (72).

We prove now that the second term in the right-hand side of (19) verifies:∣∣∣∣∫ t

0
Km,n(t− τ, ·) ∗ (uk∂xu)(τ, x)dτ

∣∣∣∣ ≤ C1(u, t)

|x|n+2
, |x| → +∞. (77)

For t > 0 and x ∈ R fix we write∫ t

0
Km,n(t− τ) ∗ (uk∂xu)(τ, x)dτ =

1

k + 1

∫ t

0
∂xKm,n(t− τ, ·) ∗ uk+1(τ, x)dτ

=
1

k + 1

∫ t

0

∫
R
∂xKm,n(t− τ, x− y)uk+1(τ, y)dy

=
1

k + 1

∫ t

0

∫
R
∂xKm,n(t− τ, x− y)u2(τ, y)uk−1(τ, y)dy = (a).

Then, by point 2) of Lemma 5.3 and recalling that by estimate (71) (with γ = n + 1 + ε) we have the

pointwise estimate: |u(τ, y)|2 ≤ C2
0(u)

τ2α (1 + |y|2(n+1))
, we obtain

(a) ≤ Cη
C2

0(u)

k + 1

∫ t

0

ecη(t−τ)

(t− τ)2α τ2α

∫
R

1

1 + |x− y|n+2

1

1 + |y|2(n+1)
|uk−1(τ, y)|dy dτ

≤ Cη
C2

0(u)

k + 1

∫ t

0

ecη(t−τ)

(t− τ)2α τ2α
‖u(τ, ·)‖k−1

L∞ dτ

(∫
R

1

1 + |x− y|n+2

1

1 + |y|2(n+1)
dy

)
≤ Cη

C2
0(u) ecη t

k + 1

∫ t

0

‖u(τ, ·)‖k−1
L∞

(t− τ)2α τ2α
dτ

(∫
R

1

1 + |x− y|n+2

1

1 + |y|2(n+1)
dy

)
= (b).

Now, recall that as s > 3/2 then Hs(R) embeds in L∞(R) and then we can write

(b) ≤ Cη
C2

0(u) ecη t

k + 1

∫ t

0

‖u(τ, ·)‖k−1
Hs

(t− τ)2α τ2α
dτ

(
1

1 + |x|n+2

)
≤ Cη

C2
0(u) ecη t

k + 1

(
sup

0<τ<t
‖u(τ, ·)‖Hs

)k−1(∫ t

0

dτ

(t− τ)2α τ2α

)
1

1 + |x|n+2
.

At this point we must estimate the integral in the temporal variable. For this recall the assumption on the
parameters m and n: (m, k) 6= (2, 1) and (m,n) 6= (2, 2d) with d ∈ N∗. For those values of m and n, by
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definition of parameter 0 < α ≤ 1/2 given in (49) we obtain 0 < α ≤ 1/3 and then this integral computes

down as

∫ t

0

dτ

(t− τ)2α τ2α
≤ c

t4α−1
. At this point, before to continue with the proof of this theorem it is

worth to do the following remark.

Remark 1 For the values (m,n) = (2, 1) or (m,n) = (2, 2d) (with d ∈ N∗) always by definition of parameter

α given in (49) we have α = 1/2. Then our method breaks down since the integral

∫ t

0

dτ

(t− τ)2α τ2α
diverges.

Let us continue with the proof of this theorem. With these estimates on the terms (a) and (b) above,
for all t > 0 and for |x| large enough we can write∣∣∣∣∫ t

0
Km,n(t− τ) ∗ (uk∂xu)(τ, x)dτ

∣∣∣∣ ≤ CηC2
0(u) ecη t

k + 1
t4α−1

(
sup

0<τ<t
‖u(τ, ·)‖Hs

)k−1 1

1 + |x|n+2

≤ Cη
C2

0(u) ecη t

k + 1
t4α−1

(
sup

0<τ<t
‖u(τ, ·)‖Hs

)k−1 1

|x|n+2
=

C1(u, t)

|x|n+2
,

hence, as γ ≤ n+ 2 we get (77).

Now, for the expression R1(t, x) given in (73) we set

R(t, x) = R1(t, x) +

∫ t

0
Km,n(t− τ) ∗ (uk∂xu)(τ, x)dτ, (78)

and then we write

u(t, x) = Km,n(t, x)

(∫
R
u0(y)dy

)
+R(t, x), (79)

where, by estimates (73) and (77) we have the estimate

|R(t, x)| ≤ C1(u0, u, t)

|x|γ
, |x| → +∞. (80)

With this information, we are able to prove the points 1) and 2) stated in Theorem 3.

1) If the initial datum verifies

∫
R3

u0(y)dy = 0, then by (79) we get |u(t, x)| = |R(t, x)|. From this identity

and by estimate (80) (recalling that γ = n+ 1 + ε) we obtain the desired estimate (16).

2) We get back to the identity (79), where we assume now that the initial datum verifies

∫
R3

u0(y)dy 6= 0.

From this identity we write:

|u(t, x)| =

∣∣∣∣Km,n(t, x)

(∫
R
u0(y)dy

)
+R(t, x)

∣∣∣∣ =

∣∣∣∣Km,n(t, x)

(∫
R
u0(y)dy

)
− (−R(t, x))

∣∣∣∣
≥ |Km,n(t, x)|

∣∣∣∣∫
R
u0(y)dy

∣∣∣∣− |R(t, x)|.

At this point, we have the following estimate for the kernel Km,n(t, x).

Lemma 5.4 For t > 0 fix, there exists a quantity M = M(t) > 0 such that for all |x| > M we have

|Km,n(t, x)| ≥ cη t

2|x|n+1
, for a constant cη > 0 depending on η > 0.

28



Proof. For n = 1, by identity (30) we write

|Km,1(t, x)| =
∣∣∣∣− 2ηt

(2πix)2
+ I1

∣∣∣∣ =

∣∣∣∣ 2ηt

(2πix)2
− I1

∣∣∣∣ ≥ ∣∣∣∣ 2ηt

(2πix)2

∣∣∣∣− |I1| =
cη t

|x|2
− |I1|.

Moreover, by (32) we have |I1| = o
(
1/|x|2

)
when |x| → +∞, and then for the quantity cη t/2 > 0

there exists M > 0 such that for all |x| > M we have |I1| ≤
cη t

2|x|2
. Thus, getting back to the previous

estimate we can write
cη t

|x|2
− |I1| ≥

cη t

2|x|2
and we obtain the estimate from below |Km,1(t, x)| ≥ cη t

2|x|2
for all |x| > M . The case n = 2 follows the same lines with estimates (38) and (39). Moreover, the
case n ≥ 3 follows the same argument with estimates (46) and (47). �

Once we dispose of this lemma, for all |x| > M we can write |u(t, x)| ≥ cη t

2|x|n+1

∣∣∣∣∫
R
u0(y)dy

∣∣∣∣− |R(t, x)|.

Thereafter, remark that by estimate (80), with γ = n+1+ε and 0 < ε ≤ 1, we have |R(t, x)| = o

(
1

|x|n+1

)
when |x| → +∞. Then, for the quantity

cη t

4

∣∣∣∣∫
R
u0(y)dy

∣∣∣∣ > 0, there exists quantity N = N(η, u0, t) >

0 such that for all |x| > N we have |R(t, x)| ≤ cη t

4

∣∣∣∣∫
R
u0(y)dy

∣∣∣∣ 1

|x|n+1
. Thus, for all |x| > max(M,N)

we finally obtain the estimate from below

|u(t, x)| ≥ cη t

4 |x|n+1

∣∣∣∣∫
R
u0(y)dy

∣∣∣∣ ,
hence, setting the constant C2 = cη t/4 > 0, the desired estimate (17) follows. Theorem 3 is now
proven. �

6 Average decaying properties: proof of Theorem 4

To prove this theorem we will follow some of the ideas of the proof of Theorem 2. We assume that for
1 < p < +∞ and for 0 < γ < 1 the initial datum u0 ∈ Hs(R) (with s > 3/2) verifies u0 ∈ Lpwγ (R). First, we
will construct a solution

u1 ∈ C([0,+∞[, Hs(R)) ∩ L∞loc
(

]0,+∞[, Lpwγ (R), tα dt
)
,

of equation (60). Here, for the parameter 0 < α ≤ 1/2 given in (49) the weight in the temporal variable tα

is essentially technical and it will be useful to carry up all our estimates.

We start by the local in time existence of the solution u1(t, x) and for this, for a time 0 < T0 < +∞
small enough, we will solve the equation (60) in the Banach space

FT0 = C([0, T0), Hs(R)) ∩ L∞(]0, T0], Lpwγ (R), tα dt),

with the norm
‖u‖FT = sup

0≤t≤T0
‖u(t, ·)‖Hs + sup

0<t≤T0
tα‖u(t, ·)‖Lpwγ .

For the first term in the right-hand side of (60), recall that the quantity sup
0≤t≤T

‖Km,n(t, ·) ∗ u0‖Hs was

estimated in (51) and then it remains to estimate the quantity sup
0<t≤T0

tα‖Km,n(t, ·) ∗ u0‖Lpwγ . This estimate

bases on the following technical lemma.
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Lemma 6.1 For ψ ∈ Lpwγ (R), and for all t > 0 we have ‖Km,n(t, ·) ∗ ψ‖Lpwγ ≤ Cη
ecη t

tα
‖ψ‖Lpwγ .

Proof. By estimate (50), for t > 0 and x ∈ R fix we have the following pointwise estimate

|Km,n(t, ·) ∗ ψ(x)| ≤ (|Km,n(t, ·)| ∗ |ϕ|)(x) ≤ Cη
ecη t

tα

[(
1

1 + | · |n+1

)
∗ |ψ|

]
(x).

Moreover, since the function
1

1 + | · |n+1
belongs to the space L1(R) and it is a radially decreasing function

then, by the Hardy–Littlewood maximal function operator M (see the Section 2 of the book [21] for a
definition) we can write the pointwise estimate

Cη
ecη t

tα

[(
1

1 + | · |β

)
∗ |ψ|

]
(x) ≤ Cη

ecη t

tα

∥∥∥∥ 1

1 + | · |n+1

∥∥∥∥
L1

M|ψ|(x) ≤ Cη
ecη t

tα
M|ψ|(x).

Thus we obtain

‖Km,n(t, ·) ∗ ψ‖Lpwγ ≤ Cη
ecη t

tα
∥∥M|ψ|∥∥Lpwγ .

Now, by Lemma 1 of [18] we have that, for 0 < γ < 1 and for 1 < p < +∞, the weight wγ(x) =
1

(1 + |x|)γ
belongs to the Muckenhoupt class Ap(R) (see the book [22] for a definition). Moreover, by well-known
properties of the Muckenhoupt class [22] we have that the Hardy–Littlewood maximal function operatorM

is bounded in Lpwγ (R) and finally we can write Cη
ecη t

tα
∥∥M|ψ|∥∥Lpwγ ≤ Cη ecη ttα

‖ψ‖Lpwγ . �

By this lemma, with ψ = u0, and by estimate (51) we get:

‖Km,n(t, ·) ∗ u0‖FT0 ≤ Cη e
cη T (‖u0‖Hs + ‖u0‖Lpwγ ). (81)

We study now the second term in the right-hanf side of (60). As before, we know that the quantity

sup
0<t≤T0

∥∥∥∥∫ t

0
Km,n(t− τ, ·) ∗ (uk1∂xu1)(τ, ·)dτ

∥∥∥∥
Hs

was estimated in (52) so it remains to estimate the quantity

sup
0<t≤T0

tα
∥∥∥∥∫ t

0
Km,n(t− τ, ·) ∗ (uk1∂xu1)(τ, ·)dτ)

∥∥∥∥
Lpwγ

. For 0 < t < T0 fix, and by Lemma 6.1 we write

tα
∥∥∥∥∫ t

0
Km,n(t− τ, ·) ∗ (uk1∂xu1)(τ, ·)dτ

∥∥∥∥
Lpwγ

≤ tα
∫ t

0

∥∥∥Km,n(t− τ, ·) ∗ (uk1∂xu1)(τ, ·))
∥∥∥
Lpwγ

dτ

≤ Cη t
α

∫ t

0

ecη(t−τ)

(t− τ)α
‖uk1∂xu1)(τ, ·)‖Lpwγ dτ

≤ Cη e
cηT0tα

∫ t

0

1

(t− τ)α
‖u1(τ, ·)‖Lpwγ ‖u

k−1
1 (t, ·)‖L∞‖∂xu1(t, ·)‖L∞dτ = (a).

But, recalling that as s− 1 > 1/2 then the spaces Hs(R) and Hs−1(R) embed in the space L∞(R), then we
have

(a) ≤ ≤ Cη ecη T0tα
∫ t

0

1

(t− τ)α
‖u1(τ, ·)‖Lpwγ ‖u1(τ, ·)‖kHsdτ

≤ Cη e
cη T0tα

∫ t

0

1

(t− τ)ατα
(τα ‖u1(τ, ·)‖Lpwγ )‖u1(τ, ·)‖kHsdτ = (b). (82)

Moreover, recalling the definition of the norm ‖ · ‖FT given above, we get

(b) ≤ Cη ecη T0tα
(∫ t

0

1

(t− τ)ατα
dτ

)
‖u1‖k+1

FT
≤ Cη ecη T0t1−α‖u1‖k+1

FT
≤ Cη ecη T0 T 1−α

0 ‖u1‖k+1
FT

.
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With this estimate and by estimate (52) we finally write∥∥∥∥∫ t

0
Km,n(t− τ, ·) ∗ (uk1∂xu1)(τ, ·)dτ

∥∥∥∥
FT0

≤ Cη ecη T0 T 1−α
0 ‖u1‖k+1

FT
(83)

Thus, by estimates (81) and (83) the existence and uniqueness of a solution u1 ∈ FT0 for the equation (60)
follow from well-know arguments.

Recall that by Proposition 4.3 we have u1 ∈ C([0,+∞[, Hs(R)), and the it remains to verify that the
quantity g(t) = tα‖u1(t, ·)‖Lpwγ does not explode in a finite time. For this, for a time 0 < T < +∞ large

enough and for 0 < t < T , by Lemma 6.1 and by estimate (82) we can write

h(t) ≤ tα‖Km,n(t, ·) ∗ u0‖Lpwγ + tα
∥∥∥∥∫ t

0
Km,n(t− τ, ·) ∗ (uk1∂xu1)(τ, ·)dτ

∥∥∥∥
Lpwγ

≤ Cη e
cη T ‖u0‖Lpwγ + Cη e

cη T tα
∫ t

0

1

(t− τ)ατα
(τα ‖u1(τ, ·)‖Lpwγ )‖u1(τ, ·)‖kHsdτ

≤ Cη e
cη T ‖u0‖Lpwγ + Cη e

cη T

(
sup

0≤τ≤T
‖u1(τ, ·)‖kHs

)
tα
∫ t

0

1

(t− τ)ατα
g(τ)dτ

≤ C1(u0, T ) + C2(u, T ) tα
∫ t

0

1

(t− τ)ατα
g(τ)dτ,

and we conclude following the same arguments done at the end of the proof of Theorem 2 where we have
treated the cases 0 < α < 1/2 (using the Lemma 5.1) and α = 1/2 (using the Lemma 5.2) separately.

We have thus u1 ∈ C([0,+∞[, Hs(R)) ∩ L∞loc
(
]0,+∞[, Lpwγ (R), tα dt

)
. Then, always by uniqueness of

solution u(t, x) in the space C([0,+∞[, Hs(R)) we have the identity u = u1 and then, the solution u(t, x)

verifies u ∈ L∞loc
(

]0,+∞[, Lpwγ (R), tα dt
)

. This theorem in proven. �

7 Pointwise growing properties: proof of Theorem 5

As the initial datum u0 ∈ Ḣ1(R) verifies |u0(x)| ≤ C0(1 + |x|)γ , then we get

∥∥∥∥ 1

(1 + | · |)γ
u0

∥∥∥∥
L∞
≤ C0 < +∞.

Thus, we will solve the integral problem

u(t, x) = Km,n(t, ·) ∗ u0(x) +

∫ t

0
Km,n(t− τ) ∗ (u ∂xu)(τ, x)dτ, (84)

in the Banach space GT = {u ∈ Ḣ1(R) : ‖u‖GT < +∞}, where, for a time 0 < T < +∞ arbitrary large and
fix, and moreover, for the parameter 0 < α ≤ 1/2 given in (49), we define the norm

‖u‖GT = sup
0<t≤T

‖u(t, ·)‖Ḣ1 + sup
0<t≤T

tα
∥∥∥∥ 1

(1 + | · |)γ
u(t, ·)

∥∥∥∥
L∞

.

Remark that the first term of this norm is technical and it will be useful to treat the second term in the
right-hand side of the integral formulation above. On the other hand, observe that the second term in this
norm characterizes the pointwise spatial growing of the solution u(t, x). Finally, the weight in time tα is
always a technical requirement to carry up of computations.
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We start by estimating the first term in the right-hand side of (84). Recall first that for all t > 0 and all

ξ ∈ R by estimates (23) and (24) we have |K̂m,n(t, ξ)| ≤ c, and then we write

‖Km,n(t, ·) ∗ u0‖Ḣ1 ≤ c ‖u0‖Ḣ1 . (85)

Next, by the kernel estimates (50), for 0 < t ≤ T and x ∈ R fix we have the pointwise estimates:

|Km,n(t, ·) ∗ u0(x)| ≤
∫
R
|Km,n(t, x− y)||u0(y)|dy ≤ Cη

ecη t

tα

∫
R

|u0(y)|
1 + |x− y|n+1

dy

≤ Cη
ecη t

tα

∫
R

(1 + |y|)γ |u0(y)|
(1 + |y|)γ(1 + |x− y|n+1)

dy ≤ Cη
ecη t

tα
C0

∫
R

(1 + |y|)γ

1 + |x− y|n+1
dy,

where the last expression computes down as

∫
R

(1 + |y|)γ

1 + |x− y|n+1
dy ≤ cγ(1 + |x|)γ . Indeed, we write∫

R

(1 + |y|)γ

1 + |x− y|n+1
dy ≤ cγ

∫
R

(1 + |x− y|)γ + (1 + |x|)γ

1 + |x− y|n+1
dy

≤ ≤ cγ
∫
R

(1 + |x− y|)γ

1 + |x− y|n+1
dy + cγ(1 + |x|)γ

∫
R

1

1 + |x− y|n+1
dy

≤ cγ(1 + |x|)γ
(∫

R

(1 + |x− y|)γ

1 + |x− y|n+1
dy +

∫
R

1

1 + |x− y|n+1
dy

)
,

where, as n ≥ 1, and moreover, as we have 0 < γ < 1/2, then the both integrals above converge. Thus,
getting back to the previous estimate we get

tα
∥∥∥∥ 1

(1 + | · |)γ
Km,n(t, ·) ∗ u0

∥∥∥∥
L∞
≤ Cη ecη T C0. (86)

Thereafter, by (85) and (86) we obtain

‖Km,n(t, ·) ∗ u0‖GT ≤ Cη,γ e
cη T (‖u0‖Ḣ1 + C0). (87)

We study now the second term in the right-hand side of (84). For the first term in the norm ‖ · ‖GT we have∥∥∥∥∫ t

0
Km,n(t− τ, ·) ∗ (u∂xu)(τ, ·)dτ

∥∥∥∥
Ḣ1

=
1

2

∥∥∥∥∫ t

0
Km,n(t− τ, ·) ∗ ∂x(u2)(τ, ·)dτ

∥∥∥∥
Ḣ1

≤
∫ t

0
‖Km,n(t− τ, ·) ∗ u2(τ, ·)‖Ḣ2dτ.

Then, in point 2) of Lemma 4.2 we set the parameters s1 = 3/2, s2 = 1/2 and moreover ψ = u2, hence we
can write ∫ t

0
‖Km,n(t− τ, ·) ∗ u2(τ, ·)‖Ḣ2dτ ≤ C

′
η

∫ t

0

ec
′
η(t−τ)

(t− τ)α/2
‖u2(τ, ·)‖Ḣ3/2dτ

≤ C
′
η e

c
′
η T

∫ t

0

1

(t− τ)α/2
‖u2(τ, ·)‖Ḣ3/2dτ.

Moreover, by the product laws of the homogeneous Sobolev spaces we have ‖u2(τ, ·)‖Ḣ3/2 ≤ c‖u(τ, ·)‖2
Ḣ1 .

With this estimate, and recalling the definition of the norm ‖ · ‖GT , from the last expression we get

C
′
η e

c
′
η T

∫ t

0

1

(t− τ)α/2
‖u2(τ, ·)‖Ḣ3/2dτ ≤ C

′
η e

c
′
η T

∫ t

0

1

(t− τ)α/2
‖u(τ, ·)‖2

Ḣ1dτ

≤ C
′
η e

c
′
η T

(
sup

0≤τ≤T
‖u(τ, ·)‖Ḣ1

)2 ∫ t

0

dτ

((t− τ)α/2)

≤ C
′
η e

c
′
η TT 1−α/2‖u‖2GT .
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By these estimates we have

sup
0≤t≤T

∥∥∥∥∫ t

0
Km,n(t− τ, ·) ∗ (u∂xu)(τ, ·)dτ

∥∥∥∥
Ḣ1

≤ C ′η ec
′
η TT 1−α/2‖u‖2GT . (88)

We estimate now the secod term in the norm ‖ · ‖GT . By the kernel estimates (50), and moreover, by the
definition of the norm ‖ · ‖GT , for 0 < t ≤ T and x ∈ R fix we have the following pointwise estimates:∣∣∣∣∫ t

0
Km,n(t− τ, ·) ∗ (u∂xu)(τ, x)dτ

∣∣∣∣ ≤ ∫ t

0

∫
R
|Km,n(t− τ, x− y)||u(τ, y)||∂yu(τ, y)|dy dτ

≤ Cη

∫ t

0

ecη(t−τ)

(t− τ)α

(∫
R

1

1 + |x− y|n+1
|u(τ, y)||∂yu(τ, y)|dy

)
dτ

≤ Cηe
cη T

∫ t

0

1

(t− τ)α

(∫
R

(1 + |y|)γ

1 + |x− y|n+1

|u(τ, y)|
(1 + |y|)γ

|∂yu(τ, y)|dy
)
dτ

≤ Cηe
cη T

∫ t

0

1

(t− τ)α

∥∥∥∥ 1

(1 + | · |)γ
u(τ, ·)

∥∥∥∥
L∞

(∫
R

(1 + |y|)γ

1 + |x− y|n+1
|∂yu(τ, y)|dy

)
dτ

≤ Cηe
cη T

∫ t

0

1

(t− τ)α τα

(
τα
∥∥∥∥ 1

(1 + | · |)γ
u(τ, ·)

∥∥∥∥
L∞

)(∫
R

(1 + |y|)γ

1 + |x− y|n+1
|∂yu(τ, y)|dy

)
dτ

≤ Cη e
cη T

(
sup

0≤τ≤T
τα
∥∥∥∥ 1

(1 + | · |)γ
u(τ, ·)

∥∥∥∥
L∞

)∫ t

0

1

(t− τ)α τα

(∫
R

(1 + |y|)γ

1 + |x− y|n+1
|∂yu(τ, y)|dy

)
dτ

≤ Cη e
cη T ‖u‖GT

∫ t

0

1

(t− τ)α τα

(∫
R

(1 + |y|)γ

1 + |x− y|n+1
|∂yu(τ, y)|dy

)
dτ = (a).

At this point, we must study the integral in the spatial variable. Applying first the Cauchy-Schwarz in-
equalities we write∫

R

(1 + |y|)γ

1 + |x− y|n+1
|∂yu(τ, y)|dy ≤

(∫
R

(1 + |y|)2γ

1 + |x− y|2(n+1)
dy

)1/2(∫
R
|∂yu(τ, y)|dy

)1/2

≤
(∫

R

(1 + |y|)2γ

1 + |x− y|2(n+1)
dy

)1/2

‖u(τ, ·)‖Ḣ1 ≤ cγ(1 + |x|)γ ‖u(τ, ·)‖Ḣ1 .

Thus, getting back to the term (a), by this estimate and always by the definition of ‖ · ‖GT , we obtain

(a) ≤ Cη,γ(1 + |x|)γ ecη T ‖u‖GT
∫ t

0

1

(t− τ)α τα
‖u(τ, ·)‖Ḣ1dτ

≤ Cη,γ(1 + |x|)γ ecη T ‖u‖GT

(
sup

0≤τ≤T
‖u(τ, ·)‖Ḣ1

)∫ t

0

dτ

(t− τ)α τα

≤ Cη,γ(1 + |x|)γ ecη T ‖u‖2GT t
1−2α.

By these estimates we get

sup
0≤t≤T

tα
∥∥∥∥( 1

(1 + | · |)γ

)∫ t

0
Km,n(t− τ, ·) ∗ (u∂xu)(τ, x)dτ

∥∥∥∥
L∞
≤ Cη,γecη T T 1−α ‖u‖2GT . (89)

Finally, by estimates (88) and (89) we have∥∥∥∥∫ t

0
Km,n(t− τ, ·) ∗ (u∂xu)(τ, x)dτ

∥∥∥∥
GT

≤ Cη,γ ecη T max(T 1−α/2, T 1−α) ‖u‖2GT . (90)
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Now, with the estimates (87) and (83) we set the quantity δ as δ =
1

4Cη,γ ecη T
> 0, and if the initial datum

verifies ‖u0‖Ḣ1 + C0 < δ then the existence and uniqueness of a solution u ∈ GT of equation (60) follow
from standard arguments. Theorem 5 is now proven. �
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