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Abstract

We consider parabolic PDEs associated with fractional type operators drifted by non-linear sin-
gular first order terms. When the drift enjoys some boundedness properties in appropriate Lebesgue
and Besov spaces, we establish by exploiting a priori Besov-type estimates, the Hölder continuity
of the solutions. In particular, we handle the almost critical case in whole generality.
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1 Introduction

For a function θ : [0,+∞[×Rn −→ R with n ≥ 2, we consider the following equation:∂tθ −∇ · (A[θ] θ) + Lαθ = 0, div(A[θ]) = 0, 0 < α < 2,

θ(0, x) = θ0(x), x ∈ Rn,
(1.1)

where Lα is an α-stable diffusion operator and where A[θ] = K(θ) is a nonlinear divergence free velocity
field which is given as a vector K of singular integrals of convolution type in the space variable (see
Section 2 below for a precise definition of these objects). Observe that the general singular integral
setting allows to consider a wide range of non-linear drifts with remarkable properties studied in many
books (see e.g. [24, 30, 31]). Also, the divergence free condition for the drift is very natural in problems
arising from fluid dynamics.

When Lα = (−∆)
α
2 we mention as a key example the surface quasi-geostrophic equation (SQG)

where n = 2 and for which we have
K(θ) = [−R2θ,R1θ],

where (Rj)1≤j≤2 denotes the Riesz transforms given by R̂jθ = −i ξj|ξ| θ̂. This equation has been consid-

ered from several points of view by many authors, see for example [4, 5, 6, 13, 11, 14, 22, 21, 29], where
problems of existence, uniqueness and regularity have been studied. Note that other examples of the
previous setting derived from magnetohydrodynamic equations (MHD) have also been studied, see [15].

It is usual to decompose the study of this type of equations following the values of the fractional
power of the Laplacian (or more generally following the smoothness degree α of the operator Lα).
Indeed, if 1 < α < 2 then the regularizing effect of the operator (−∆)

α
2 is strong enough to consider

singular drifts for existence and regularity issues and this case is know as sub-critical, for example
singular drifts in Morrey spaces were considered in [35]. The critical case is given when α = 1, here
the regularizing effect of the diffusion operator coincides with the derivative of the drift and Hölder
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regularity properties of the solutions were obtained in [21] with a drift in the BMO space. Finally,
the super-critical case is given when 0 < α < 1 and some smoothness on the drift is asked in order
to obtain some Hölder regularity for the solutions, see [11]. We can refer as well to the works [28], [9]
for linear equations which clearly emphasize how in the supercritical case the smoothness of the drift
is needed to derive a Schauder type theory.

This division into cases is mainly driven by homogeneity arguments which give a natural framework
to study this type of equations, and this is valid for linear drifts as well as for nonlinear drifts. Indeed,
in the case of linear equations (when the drift A is independent from the solution):∂tψ ±∇ · (Aψ) + Lαψ = 0, div(A) = 0, 0 < α < 2,

ψ(0, x) = ψ0(x), x ∈ Rn,
(1.2)

we proved in [7] that if the drift A is bounded (in the space variable) in Morrey-Campanato1 spaces
M q,a(Rn) where the parameters q, a are related to the dimension n and to the smoothness degree α
of the diffusion operator Lα by the expression

a− n
q

= 1− α, (1.3)

then from an initial data ψ0 ∈ L∞(Rn) it is possible to derive some Hölder regularity Cγ(Rn) for
the solutions of (1.2) where 0 < γ < α. Remark in particular that, following this relationship
above, if 1 < α < 2 then the corresponding space M q,a(Rn) can contain singular objects (recall that
Lq(Rn) ⊂ M q,0(Rn)), while if α = 1 we should have a = n and then the corresponding space is
M q,n(Rn) ' BMO(Rn). Finally, if 0 < α < 1, we have the identification M q,a(Rn) ' C1−α(Rn),
which corresponds with the smoothness asked for the drift in order to obtain a gain of regularity for
the solutions. Thus, in all the cases stated above (sub-critical, critical and super-critical), as long
as the drift is bounded in Morrey-Campanato spaces and satisfies the relationship (1.3) then it is
possible to obtain a gain of regularity for the solutions. However, if this condition is not fulfilled then
counterexamples to this gain of regularity can be produced, see [29].

As we can see, when looking for a gain of regularity, the linear case is very rigid as it is not possible
to by-pass the condition (1.3). However, if we consider nonlinear equations as (1.1) where A = A[θ]

then, by exploiting suitable information, there is a hope to break down this relationship (1.3) in the
following sense:

For an initial data θ0 in some Lebesgue spaces (no regularity asked for the initial data) and for
a nonlinear drift A[θ] that satisfies some boundedness hypotheses, obtain a gain of regularity for the
solutions θ(t, x) (in terms of Hölder spaces in the space variable) for a smoothness degree α smaller
than the one given by the “homogeneity” condition (1.3).

One particular example of this situation is given in the celebrated article [4] that studies the SQG
equation with a initial data θ0 ∈ L2(R2) ⊂M2,0(R2). Following the relationship (1.3) since n = 2 we
should have α = 2, but with a careful treatment of the nonlinear drift it is shown that α = 1 is enough
to obtain a gain of regularity for the solutions. Remark that this was done in two steps: first there
is a “de-singularization” procedure in the space variable from L∞t L

2
x to L∞t L

∞
x and then a hölderian

gain of regularity (in the space variable) is deduced for a corresponding smoothness degree α = 1.

Another example was discussed in [8] in the sub-critical case 5
4 < α < 2 where it was possible to

ask a little less regularity on the drift than the pure Morrey-Campanato condition (1.3). The main

1See [1] and [2] for a precise definition and for more properties of Morrey-Campanato spaces.
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idea of this article was based in the remark that equation (1.1) admits a maximum principle in terms
of Lebesgue spaces:

‖θ(t, ·)‖Lp ≤ ‖θ0‖Lp , (1.4)

for 2 ≤ p < +∞, but it also admits an a priori “energy” estimate given in terms of Besov spaces that
reads as follows:

‖θ(·, ·)‖
Lpt (Ḃ

α
p ,p

p,x )
≤ C‖θ0‖Lp for 2 ≤ p < +∞, (1.5)

which provides us with a small regularity information of order α
p for the solution and this information

can also be recovered for the nonlinear drift: indeed, in the nonlinear setting of equation (1.1), by
assuming some mild boundedness properties for the drift A[θ] in Lebesgue (in the t variable) and Besov
(in the x variable) spaces of the form

‖A[θ](·, ·)‖
Lpt (Ḃ

α
p ,p

p,x )
≤ C‖θ(·, ·)‖

Lpt (Ḃ
α
p ,p

p,x )
,

and coupling this estimate with the previous Besov control (1.5) it was possible to break the homogene-
ity relation (1.3) through an interplay between the Morrey-Campanato and Besov stability properties
of the drift. However, in the quoted work [8] we could only handle the sub-critical case 5

4 < α < 2
up to an additional mollification of the drift in the time variable. Indeed, we missed in [8] an L∞ in
time and Besov in space control which is precisely established here (see Proposition 3.3 below). This
amends the proofs in [8].

The main goal of this article is to break the condition (1.3), in the sense introduced above, for
the nonlinear equation (1.1) in the sub-critical case where α = 1 + ε with ε > 0 meant to be small,
improving in this way the results in [8] and considering the almost critical case for a large class of
non-linear drifts.

The underlying idea is to use the sub-criticality, i.e. the fact that α = 1 + ε > 1, to deduce
a uniform in time gain of regularity in terms of Sobolev or Besov spaces. Then, by using all the a
priori informations available (maximum principle and Besov uniform estimates) we can obtain a better
control of the evolution of the profile of the solutions of the linear equation (1.2) from which we will
deduce, by duality, a gain of regularity for the solutions θ(t, x) of the equation (1.1).

2 Assumptions and Main Results

In order to state our theorems we need to be more precise about the objects that define the equation
(1.1) as some properties of these objects are essential in this work.

(A) The diffusion operator Lα. The Lévy-type operator Lα appearing in equation (1.1) can be
viewed as a natural generalization of the usual fractional Laplacian (−∆)

α
2 . Indeed, for 0 < α < 2

and for a function ϕ : Rn −→ R regular enough, we can define the operator Lα in the Fourier
variable by the expression

L̂αϕ(ξ) = a(ξ)ϕ̂(ξ),

where the symbol a is of the form a(ξ) =

∫
Rn\{0}

(
1− cos(ξ · y)

)
π(y)dy, with a symmetric function

π, i.e. π(y) = π(−y), satisfying for all y ∈ Rn the following bounds:

c1|y|−n−α ≤π(y) ≤ c2|y|−n−α over |y| ≤ 1,

0 ≤π(y) ≤ c2|y|−n−α over |y| > 1.
(2.1)

Here 0 < c1 ≤ c2 are positive constants that are fixed once and for all. The important point here
is that the parameter α (called the smoothness or regularity degree) will rule the smoothness
properties of the operator Lα in the sense that for such α the regularizing effect of Lα is similar
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to the fractional Laplacian (−∆)
α
2 . See [20] for additional properties concerning Lévy operators.

(B) The nonlinear Drift A[θ]. First, for 1 ≤ i ≤ n, we set

Ki(θ)(t, x) = v.p.

∫
Rn
κi(x− y)θ(t, y)dy,

where κi = κi(x) is the associated kernel of the singular integral operator Ki which acts only in
the space variable: in the previous formula the dependence in the time variable only comes from
the solution θ(t, ·). Then we consider the vector

A[θ](t, x) = [K1(θ), · · · ,Kn(θ)](t, x). (2.2)

(C) Boundedness conditions for the nonlinear drift term A[θ]. We set now the properties of
the vector A[θ] given in (2.2) that defines the nonlinear drift in equation (1.1) above.

• Boundedness in Lebesgue spaces: as only integrability in the space variable is studied here,
for 1 < p < +∞ we will need the following general condition

‖A[θ](t, ·)‖Lp ≤ C‖θ(t, ·)‖Lp . (2.3)

Note that the condition (2.3) amounts to ask for the space variable the boundedness assump-
tion ‖Ki(θ)(t, ·)‖Lp ≤ C‖θ(t, ·)‖Lp for all the singular integral operators Ki.

• Boundedness in Besov spaces: we study here the boundedness of the drift in terms of Besov
spaces in the space variable. Thus for 1 < p, q < +∞ and 0 < σ < 2 we will assume the
following boundedness property:

‖A[θ](t, ·)‖Ḃσ,pq ≤ C‖θ(t, ·)‖Ḃσ,pq , (2.4)

and we will also assume the following permutation property:

‖(−∆)
σ
2 A[θ](t, ·)‖Lp = ‖A

[(−∆)
σ
2 θ]

(t, ·)‖Lp , (2.5)

for all 1 < p < +∞ and all 0 < σ < 2.

It is worth noting here that all Calderón-Zygmund operators Ki (such as the Riesz transforms)
satisfy these boundedness conditions and that no regularity is asked in the space variable for Ki.
The positive constants above depend on the operator A and will be fixed once and for all.

(D) The initial condition θ0. We will assume here that the initial data θ0 : Rn −→ R belongs to all
the Lebesgue space Lp(Rn) with 1 ≤ p ≤ p̄ < +∞. Remark in particular that neither regularity
nor boundedness are asked for the initial data. We will adopt from now on the following notation:

1 ≤ µ = max
1≤p≤p̄

‖θ0‖Lp < +∞, (2.6)

and the constant µ will be denoted as the size of the initial data.

Within this framework we can state our results. We first present an existence result which is crucial
for our analysis but somehow standard, see e.g. [7], [8].

Theorem 1 (The NonLinear case) Let n ≥ 2. Under hypotheses (A), (B), (C) and (D), for all
fixed T > 0, there exists a weak solution θ(t, x) to the nonlinear equation (1.1) in L∞([0, T ], Lp(Rn))∩
Lp([0, T ], Ḃ

α
p
,p

p (Rn)) with 2 ≤ p ≤ p̄. Also, for all 0 < t ≤ T the maximum principle holds:

‖θ(t, ·)‖Lp ≤ ‖θ0‖Lp ≤ µ, (2.7)

4



and moreover we have the following Besov-norm a priori control

‖θ‖
Lpt (Ḃ

α
p ,p

p,x )
=

(∫ T

0
‖θ(t, ·)‖p

Ḃ
α
p ,p

p

dt

) 1
p

≤ C‖θ0‖Lp ≤ Cµ. (2.8)

Furthermore, for α = 1 + ε, 0 < ε� 1, if the index of integrability is big enough, say p̄ > n
ε , there is

a unique weak solution satisfying the above properties.

The existence of such solutions, as well as the associated controls (2.7) and (2.8), can be derived
proceeding similarly to Section 3 in [8]. The point is to use compactness arguments through a vanishing
viscosity approach combined with the stability conditions (2.3) and (2.4). Uniqueness is then derived
in a second time, see Proposition 3.1 below, from the fact that any weak solution enjoying the above
properties can be represented with an integral formulation (see Lemma 3.1 below). This feature
specifically comes from the fact that we are considering the sub-critical regime. Observe as well that,
the integrability needed to derive uniqueness goes to infinity when approaching the critical case (i.e.
p̄→ +∞ if ε→ 0).

Note that the restriction 2 ≤ p is mandatory to obtain the Besov-norm control (2.8) which is one
of the key ingredients of this work. Indeed, this Besov-norm a priori information is no longer available
in the case 1 < p < 2, see [6]. Remark also that the Besov regularity given in (2.8) is naturally linked
to the smoothness degree α of the diffusion operator Lα it is maximal and equal to α

2 when p = 2 and
vanishes when p→ +∞.

The main result of the current work is the following theorem.

Theorem 2 (Hölder regularity) Let the dimension n ≥ 2 and consider over Rn the equation (1.1)
where the diffusion operator Lα satisfies (A) for some α such that α = 1 + ε with 0 < ε � 1, the
nonlinear drift A[θ] defined in (B) enjoys the stability properties of (C) and the initial data θ0 satisfies

(D). Consider any weak solution θ of (1.1) in
⋂

2≤p≤p̄

L∞([0, T ], Lp(Rn)) ∩ Lp([0, T ], Ḃ
α
p
,p

p (Rn)), which

for α = 1 + ε is unique if p̄ ≥ n
ε , there exists a time 0 < T0 < T such that for all t > T0 the solution

θ(t, ·) belongs to the Hölder space Cγ(Rn) for some 0 < γ < 1.

As we can see, when α > 1 and although the initial data is not regular, we can deduce some Hölder
regularity for weak solutions, however this gain of regularity is not instantaneous and some time is
needed in order to obtain the hölder continuity. The main arguments used here to prove this theorem
are the following: first we need to prepare the information available on weak solutions, as at some point

we will require to pass from an Lpt (Ḃ
α
p
,p

p,x ) control given by (2.8) to an L∞t (Ḃ
σ
p
,p

p,x ) estimate. Again, the
mild representation of Lemma 3.1 is here crucial. This first step is not absolutely trivial and the price
to pay in order to obtain an L∞ control in the time variable can be seen in the space variable with a
small loss of the regularity obtained (given by the fact that σ < α), but this small loss of regularity can
still be compensated by the regularity degree α > 1. Then with this L∞-Besov information at hand,
we can study the evolution of weak solutions of the problem (1.1) via a dual equation (see Section
4.1). The main argument relies then in a suitable control of the elements of the Hardy space which
helps us characterize, by duality, the corresponding Hölder spaces.

Let us remark that when α ≤ 1 the regularity loss observed in the first step in order to obtain the
L∞-Besov information seems to be too strong and we believe that a further step is necessary in order
to study the case α = 1 or the case α < 1. Anyhow, we feel that the approach below should work
in the critical case α = 1 should we start form a bounded initial condition (see also e.g. the proof of
Proposition 3.1 for related topics).
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3 Preliminar estimates for the nonlinear system

As already indicated above, a crucial tool for the whole analysis is the integral representation of weak
solutions enjoying the properties indicated in Theorem 1.

Lemma 3.1 (Integral representation of the weak solutions) Let the dimension n ≥ 2 and con-
sider over Rn the equation (1.1) where the diffusion operator Lα satisfies (A) with α = 1 + ε, the
nonlinear drift A[θ] defined in (B) enjoys the stability properties of (C) and the initial data θ0 satisfies
(D). Consider an associated weak solution θ(t, x) to the nonlinear equation (1.1). Then, the following
integral representation of the solution holds. For all t ≥ 0,

θ(t, x) = pαt ∗ θ0(x) +

∫ t

0
pαt−s ∗ ∇ · (A[θ] θ(s, x))ds, (3.1)

where pαt stands for the semi-group kernel associated with the operator Lα at time t.

The proof of this lemma, which mainly relies on properties of the underlying stable-type kernel, is
postponed to Appendix A to focus uniqueness and regularity issues. We anyhow provide now the
proof of uniqueness of the weak solutions in the current setting which can be seen as a first important
consequence of the previous integral representation.

3.1 On uniqueness of the weak solutions

We have the following uniqueness result.

Proposition 3.1 Under the assumptions of Theorem 1, for α = 1 + ε with 0 < ε� 1 and if p̄ > n
ε ,

there exists a unique solution θ of (1.1) in
⋂

2≤p≤p̄

L∞([0, T ], Lp(Rn)) ∩ Lp([0, T ], Ḃ
α
p
,p

p (Rn)).

Proof. Let us start from two weak solutions θ1, θ2 to (1.1) which belong to L∞t (Lpx) ∩ Lpt (Ḃ
α
p
,p

p,x ) with
p ∈ [2, p̄]. Denoting by δθ := θ1 − θ2 and δ(A[θ] θ) = A[θ1] θ1 − A[θ2] θ2 it thus holds from Lemma 3.1
above that for fixed t,

‖δθ(t, ·)‖
Ḃ
α
p ,p

p

≤
∥∥∥∥∫ t

0
(−∆)

1
2 pαt−s ∗ (A[θ1] θ1 − A[θ2] θ2)(s, ·)ds

∥∥∥∥
Ḃ
α
p ,p

p

≤
∥∥∥∥∫ t

0
(−∆)

1
2 pαt−s ∗ δ(A[θ] θ)(s, ·)ds

∥∥∥∥
Ḃ
α
p ,p

p

.

Integrate next with respect to t ∈ [0, T ]. We get:(∫ T

0
‖δθ(t, ·)‖p

Ḃ
α
p ,p

p

dt

) 1
p

≤
∥∥∥∥∫ ·

0
(−∆)

1
2 pα·−s ∗ δ(A[θ] θ)(s, ·)ds

∥∥∥∥
Lpt (Ḃ

α
p ,p

p,x )

.

Hence, (∫ T

0
‖δθ(t, ·)‖p

Ḃ
α
p ,p

p

dt

) 1
p

≤
∥∥∥∥∫ ·

0
(−∆)

α
2 pα·−s ∗ (−∆)

1−α
2 (δ(A[θ] θ)(s, ·))ds

∥∥∥∥
Lpt (Ḃ

α
p ,p

p,x )

.

Let us now recall the thermic characterization of the homogeneous Besov norm (see e.g. Triebel [33]):

‖f‖p
Ḃ
α
p ,p

p

'
∫ +∞

0
τ

(1− α
2p

)p‖∂τhτ ∗ f‖pLp(Rn)

dτ

τ
, (3.2)
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where h stands for the standard (gaussian) heat kernel on Rn. Introduce now

Gαf(t, x) =

∫ t

0
Pαt−sf(s, x)ds,

the parabolic Green kernel, where Pα denotes the semi-group generated by Lα (with density pα). Let
us also define

Ψ(s, ·) = (−∆)
1−α
2 (δ(A[θ]θ))(s, ·), (3.3)

Hence, using the Fubini theorem, we can apply maximal-regularity type inequalities to the kernel
(−∆)

α
2 pα·−s. Precisely we have,

‖δθ‖p
Lpt (Ḃ

α
p ,p

p,x )
≤C

∫ +∞

0
τ

(1− α
2p

)p
∫ T

0

∥∥∥∂τhτ ∗ (−∆)
α
2GαΨ(t, ·)

∥∥∥p
Lp
dt
dτ

τ

≤C
∫ +∞

0
τ

(1− α
2p

)p
∫ T

0
‖(−∆)

α
2Gα

(
Ψ ∗ ∂τhτ

)
(t, ·)‖pLpdt

dτ

τ

=C

∫ +∞

0
τ

(1− α
2p

)p
∫ T

0
‖(−∆)

α
2GαΨ̃τ (t, ·)‖pLpdt

dτ

τ
,

with Ψ̃τ (t, ·) := Ψ∗∂τhτ (t, ·) using the associativity of the convolution product. The maximal regularity
now yields (recall that p ∈ [2, p̄] with p̄ < +∞):

‖δθ‖p
Lpt (Ḃ

α
p ,p

p,x )
≤C

∫ +∞

0
τ

(1− α
2p

)p
∫ T

0
‖Ψ̃τ (t, ·)‖pLpdt

dτ

τ

≤C
∫ +∞

0
τ

(1− α
2p

)p
∫ T

0
‖∂τhτ ∗Ψ(t, ·)‖pLpdt

dτ

τ

≤C
∫ T

0
‖Ψ(t, ·)‖p

Ḃ
α
p ,p

p

dt = C

∫ T

0
‖(−∆)

1
2
−α

2 δ(A[θ]θ)(t, ·)‖
p

Ḃ
α
p ,p

p

dt,

using again the Fubini theorem and (3.2)-(3.3) for the last two inequality. Thus,

‖δθ‖p
Lpt (Ḃ

α
p ,p

p,x )
≤C

∫ T

0
‖δ(A[θ]θ)(t, ·)‖

p

Ḃ
α
p +1−α,p
p

dt. (3.4)

In order to apply a Grönwall type inequality we are thus led to control the Besov norm of the product
of the differences. To this end we will use the following Kato-Ponce type inequality in homogeneous
Besov spaces. From Theorem 2.1 in [25] we get that for p ∈ [1,+∞[ and p ≤ p1, p2, p̃1, p̃2 such that
1
p = 1

p1
+ 1

p2
= 1

p̃1
+ 1

p̃2
and s > 0,

‖fg‖Ḃs,qp ≤ C(‖f‖Ḃs,qp1 ‖g‖L
p2 + ‖g‖Ḃs,qp̃1

‖f‖Lp̃2 ). (3.5)

Write now:
‖δ(A[θ]θ)(t, ·)‖Ḃ

α
p +1−α,p
p

= ‖[A[θ1]θ1 − A[θ2]θ2](t, ·)‖
Ḃ
α
p +1−α,p
p

,

and by the linearity of the quantity A[θ] we have

‖δ(A[θ]θ)(t, ·)‖Ḃ
α
p +1−α,p
p

≤ ‖(A[θ1] − A[θ2])θ1(t, ·)‖
Ḃ
α
p +1−α,p
p

+ ‖A[θ2](θ1 − θ2)(t, ·)‖
Ḃ
α
p +1−α,p
p

thus, using the estimate (3.5) above we obtain

≤ C
(
‖(A[θ1] − A[θ2])(t, ·)‖

Ḃ
α
p +1−α,p
p1

‖θ1‖Lp2 + ‖(A[θ1] − A[θ2])(t, ·)‖Lp2‖θ1‖
Ḃ
α
p +1−α,p
p1

+‖(θ1 − θ2)(t, ·)‖
Ḃ
α
p +1−α,p
p1

‖A[θ2](t, ·)‖Lp2 + ‖(θ1 − θ2)(t, ·)‖Lp2‖A[θ2](t, ·)‖
Ḃ
α
p +1−α,p
p1

)
.
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Recalling the stability of A in Besov and Lp norms (see (2.3) and (2.4)) we derive:

‖δ(A[θ]θ)(t, ·)‖Ḃ
α
p +1−α,p
p

≤C
(
‖(θ1 − θ2)(t, ·)‖

Ḃ
α
p +1−α,p
p1

(‖θ1(t, ·)‖Lp2 + ‖θ2(t, ·)‖Lp2 )

+ ‖(θ1 − θ2)(t, ·)‖Lp2 (‖θ1(t, ·)‖
Ḃ
α
p +1−α,p
p1

+ ‖θ2(t, ·)‖
Ḃ
α
p +1−α,p
p1

)
)
.

Plugging this bound into (3.4) and using the maximum principle (1.4) yields:

‖δθ‖p
Lpt (Ḃ

α
p ,p

p,x )
≤C
(∫ T

0
‖δθ(t, ·)‖p

Ḃ
α
p +1−α,p
p1

(2‖θ0‖Lp2 )pdt

+

∫ T

0
‖δθ(t, ·)‖pLp2 (‖θ1(t, ·)‖p

Ḃ
α
p +1−α,p
p1

+ ‖θ2(t, ·)‖p
Ḃ
α
p +1−α,p
p1

)dt
)
. (3.6)

We also recall the following embedding between homogeneous Besov spaces (see Theorem A in [19] or
(1.1) in [34] and Proposition 2.2 in [27] in the inhomogeneous case see):

Ḃs0
p0,q0 ↪→ Ḃs1

p1,q1 for p0, p1, q0, q1 ∈ [1,+∞], q0 ≤ q1, p0 ≤ p1, s0 > s1 such that s0 − n/p0 = s1 − n/p1.

Apply this estimate with s0 = α
p , s1 = α

p + 1 − α and p0 = p, which gives s0 − s1 = α − 1 = ε =

n( 1
p0
− 1

p1
) ⇐⇒ 1

p1
= 1

p0
− ε

n and q0 = q1 = p, to derive in (3.6)

‖δθ‖p
Lpt (Ḃ

α
p ,p

p,x )
≤C

∫ T

0
‖δθ(t, ·)‖p

Ḃ
α
p ,p

p

(2‖θ0‖Lp2 )pdt+ C

∫ T

0
‖δθ(t, ·)‖pLp2 (‖θ1(t, ·)‖p

Ḃ
α
p ,p

p

+ ‖θ2(t, ·)‖p
Ḃ
α
p ,p

p

)dt

≤C‖θ0‖pLp2
∫ T

0
‖δθ(t, ·)‖p

Ḃ
α
p ,p

p

dt+ C‖δθ‖pL∞t (L
p2
x )

∫ T

0
(‖θ1(t, ·)‖p

Ḃ
α
p ,p

p

+ ‖θ2(t, ·)‖p
Ḃ
α
p ,p

p

)dt

≤C‖θ0‖pLp2
∫ T

0
‖δθ(t, ·)‖p

Ḃ
α
p ,p

p

dt+ C‖δθ‖pL∞t (L
p2
x )

(‖θ1‖p
Lpt (Ḃ

α
p ,p

p,x )
+ ‖θ2‖p

Lpt (Ḃ
α
p ,p

p )
)

≤C‖δθ‖pL∞t (L
p2
x )
, (3.7)

where, for the last inequality, we use the Grönwall lemma (recall the energy estimates (1.5), the
maximum principle (1.4) and the information (2.6)). Recall as well that we have 1

p = 1
p1

+ 1
p2

=
1
p −

ε
n + 1

p2
⇐⇒ p2 = n

ε which is big but finite in the subcritical case. Also, since we have assumed

p̄ > n
ε the quantity ‖δθ‖pL∞t (L

p2
x )

is indeed finite (using again the maximum principle (1.4). To prove

uniqueness it remains to justify that ‖δθ‖L∞t (L
p2
x ) = 0. Write for fixed t:

‖δθ(t, ·)‖Lp2 ≤
∥∥∥∥∫ t

0
∇pαt−s ∗ (A[θ1] θ1 − A[θ2] θ2)(s, ·)ds

∥∥∥∥
Lp2

≤
∫ t

0

∥∥∥∇pαt−s ∗ δ(A[θ] θ)(s, ·)
∥∥∥
Lp2

ds ≤
∫ t

0
‖∇pαt−s‖Lr1‖δ(A[θ] θ)(s, ·)‖Lr2ds, (3.8)

with 1 + 1
p2

= 1
r1

+ 1
r2

with r1 > 1 so that we still have some margin to apply the Hölder inequality for
the contribution ‖δ(A[θ] θ)(s, ·)‖Lr2 in which r2 < p2. From Lemma A.1 in the appendix, observe that

‖∇pαt−s‖Lr1 ≤ C(t− s)
− 1
α
− n
αr′1 ,

1

r1
+

1

r′1
= 1,

which for α = 1 + ε gives an integrable singularity provided r1 is sufficiently close to 1. This is in fact
equivalent to 1

α + n
αr′1

< 1, from which we easily deduce the condition n
ε < r′1 (since α = 1 + ε). Now,

with 1
r2

= 1
p2

+ 1
q2

‖δ(A[θ] θ)(s, ·)‖Lr2 ≤ ‖(A[θ1] − A[θ2])θ1(s, ·)‖Lr2 + ‖(θ1 − θ2)A[θ2](s, ·)‖Lr2
≤ ‖(A[θ1] − A[θ2])(s, ·)‖Lp2‖θ1(s, ·)‖Lq2 + ‖(θ1 − θ2)(s, ·)‖Lp2‖A[θ2](s, ·)‖Lq2 ,
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with q2 = r2p2
p2−r2 . Still from the stability of A (see (2.3) and (2.4)) we get:

‖δ(A[θ] θ)(s, ·)‖Lr2 ≤ ‖(θ1 − θ2)(s, ·)‖Lp2 (‖θ1(s, ·)‖Lq2 + ‖θ2(s, ·)‖Lq2 )

≤ ‖δθ‖L∞t (L
p2
x )(‖θ1‖L∞t (L

q2
x ) + ‖θ2‖L∞t (L

q2
x )),

which plugged into (3.8) yields for t ∈ [0, T ] with fixed T > 0,

‖δθ(t, ·)‖Lp2 ≤ CT ζ‖δθ‖L∞t (L
p2
x )(‖θ1‖L∞t (L

q2
x ) + ‖θ2‖L∞t (L

q2
x )),

for some exponent ζ > 0. By the maximum principle (1.4), the right-hand side above is bounded
as long as we have p2, q2 ≤ p̄. Observe that the relationships 1 + 1

p2
= 1

r1
+ 1

r2
and 1

r2
= 1

p2
+ 1

q2
imply that q2 = r′1, thus by the previous condition n

ε < r′1 we need n
ε < q2. Finally, since p2 = n

ε , we
deduce the condition n

ε < p̄. Thus, we obtain the uniqueness in L∞t (Lp2x ) if T is small enough. From

(3.7) we eventually derive uniqueness in Lpt (Ḃ
α
p
,p

p,x )
⋂

q∈[2,p̄]

L∞t (Lqx). We again emphasize that for a fixed

α = 1 + ε > 0 a spatial integrability of order p̄ := p̄(ε) which goes to infinity when ε goes to zero, is
needed to guarantee uniqueness of the weak solutions in the considered function class. �

3.2 From energy estimates to uniform in time controls

In order to prove our main Theorem 2 we need to perform a previous step which will prepare the
information available on the solutions. Indeed, by estimate (2.8) of Theorem 1 we have for the weak

solutions of equation (1.1) the information θ ∈ Lp([0, T ], Ḃ
α
p
,p

p (Rn)) with 2 ≤ p ≤ p̄ < +∞ and for
some 0 < T < +∞, but this fact is not accurate enough for our purposes as we need some bounded
in time (L∞t )-regularity control. To establish such a result, we will start from a mild representation
of the weak solutions to (1.1). In this sense we have the following results.

Proposition 3.2 (From L∞t (Lpx)- to L∞t (L1
x)) Let the assumptions of Lemma 3.1 be in force and

θ be a weak solution to the nonlinear equation (1.1). Then this weak solution θ belongs to the space
L∞([0, T ], L1(Rn)) and thus by interpolation, it belongs to the spaces L∞([0, T ], Lp(Rn)) with 1 < p < p̄
and where 0 < T < +∞.

Proof. Start from the mild representation (3.1). By the Young inequalities for the convolution, one
obtains

‖θ(t, ·)‖L1 ≤ ‖pαt ∗ θ0‖L1 +

∥∥∥∥∫ t

0
pαt−s ∗ ∇ · (A[θ] θ(s, ·))ds

∥∥∥∥
L1

≤ ‖pαt ‖L1‖θ0‖L1 +

∫ t

0
‖∇pαt−s‖L1‖A[θ] θ(s, ·)‖L1ds

≤ ‖θ0‖L1 + C

∫ t

0
(t− s)−

1
α ‖A[θ]‖L2‖θ(s, ·)‖L2ds

≤ ‖θ0‖L1 + C‖A[θ]‖L∞t (L2
x)‖θ‖L∞t (L2

x)

∫ t

0
(t− s)−

1
αds,

but since α = 1+ε > 1, the integral above is bounded and since we have by (2.3) and by the maximum
principle (2.7) the estimates

‖A[θ]‖L∞t (L2
x) ≤ C‖θ‖L∞t (L2

x) ≤ C‖θ0‖L2 < +∞,

we obtain the following control

‖θ(t, ·)‖L1 ≤ ‖θ0‖L1 + C‖θ0‖2L2t
1− 1

α , (3.9)

which is bounded for 0 ≤ t ≤ T < +∞ and we finally deduce that the weak solution θ belongs to the
space L∞([0, T ], L1(Rn)). �
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Remark 3.1 Note that if 1 < p < 2, then by interpolation, for some 0 < ν < 1 such that 1
p = 1 − ν

2
we have

‖θ‖L∞t (Lpx) ≤ ‖θ‖1−νL∞t (L1
x)
‖θ‖νL∞t (L2

x) ≤ C
(
‖θ0‖L1 + ‖θ0‖2L2

)1−ν‖θ0‖νL2 , (3.10)

where in the last estimate we used (3.9) and the maximum principle (2.7). Note in particular that if
µ ≥ 1, using the hypothesis (D) we have

‖θ‖L∞t (Lpx) ≤ Cµ2. (3.11)

Note that C = C(T ) but we will work with a fixed 0 < T < +∞.

In the next result we will show how to obtain a small gain of regularity for weak solutions.

Proposition 3.3 Let the dimension n ≥ 2 and consider over Rn the equation (1.1) where the diffusion
operator Lα satisfies (A) with α = 1 + ε, the nonlinear drift A[θ] defined in (B) enjoys the stability
properties of (C) and the initial data θ0 satisfies (D). Consider an associated weak solution θ(t, x) to

the nonlinear equation (1.1). Then this weak solution θ belongs to the space L∞([1, N ], Ẇ
σ0
2
,p0(Rn))

where 1 < p0 < 2, with N ≥ 10 and

σ0 = 1 + 3ε = α+ 2ε ≤ 2α. (3.12)

Moreover we have the estimate

‖θ‖
L∞t (Ẇ

σ0
2 ,p0
x )

≤ C
(
‖θ0‖Lp0′‖θ0‖L2 +

(
‖θ0‖L1 + ‖θ0‖2L2

)1−ν‖θ0‖νL2

)
< +∞. (3.13)

Proof. We introduce a positive, smooth cut-off in time function φ ∈ C∞0 (R) such that φ(s) ≡ 0
over [0, 1

2 ] ∩ [N + 1,+∞[, such that φ(s) ≡ 1 over [1, N ] and such that ‖φ‖L∞ = 1 and we define for
(t, x) ∈ R+ × Rn, the function

u(t, x) = φ(t)θ(t, x).

Note that the functions u(t, x) and θ(t, x) coincide if 1 ≤ t ≤ N and moreover u satisfies the following
equation ∂tu−∇ · (A[θ] u) + Lαu− (∂tφ)θ = 0, div(A[θ]) = 0, 0 < α < 2,

u(t, x) = 0, t ∈ [0, 1
2 ].

Similarly to Lemma 3.1, and recalling that (pα)t≥0 stands for the semi-group kernel associated with
the operator Lα, it holds from the Duhamel representation formula that for any t0 ∈ [0, 1

2 ]:

u(t, x) =

∫ t

t0

pαt−s ∗ ∇ · (A[θ] θ(s, x)φ(s))ds+

∫ t

t0

pαt−s ∗ θ(s, x)∂sφ(s)ds.

Since α = 1 + ε for some small 0 < ε < 1. The point is now to investigate, for a fixed 1 < t < N , the
Sobolev Ẇ

σ0
2
,p0-norm in the space variable of the function u(t, ·) where σ0 satisfies (3.12) and where

the parameter p0 satisfies 1 < p0 < 2.

Indeed, write first for fixed t and t0:

‖u(t, ·)‖
Ẇ

σ0
2 ,p0

≤
∥∥∥∥∫ t

t0

(−∆)
σ0
4 pαt−s ∗ ∇ · (A[θ] θ(s, ·)φ(s))ds

∥∥∥∥
Lp0

+

∥∥∥∥∫ t

t0

(−∆)
σ0
4 pαt−s ∗ θ(s, ·)∂sφ(s)ds

∥∥∥∥
Lp0

.

Next we integrate with respect to t0 ∈ [0, 1
2 ] and we obtain:(∫ 1

2

0
‖u(t, ·)‖2

Ẇ
σ0
2 ,p0

dt0

) 1
2

≤
∥∥∥∥∫ t

·
(−∆)

1
2 pαt−s ∗ (−∆)

σ0
4 (A[θ] θ(s, ·)φ(s))ds

∥∥∥∥
L2
t0

(L
p0
x )

+

∥∥∥∥∫ t

·
(−∆)

σ0
4 pαt−s ∗ θ(s, ·)∂sφ(s)ds

∥∥∥∥
L2
t0

(L
p0
x )

.
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Since by (3.12) we have σ0 = 1 + 3ε and thus we can write

(−∆)
σ0
4 = (−∆)

1+3ε
4 = (−∆)

1+ε
4 (−∆)

ε
2 = (−∆)

α
4 (−∆)

ε
2 ,

and it yields

≤
∥∥∥∥∫ t

·
(−∆)

1
2 pαt−s ∗ (−∆)

α
4 (−∆)

ε
2 (A[θ] θ(s, ·)φ(s))ds

∥∥∥∥
L2
t0

(L
p0
x )

+

∥∥∥∥∫ t

·
(−∆)

σ0
4 pαt−s ∗ θ(s, ·)∂sφ(s)ds

∥∥∥∥
L2
t0

(L
p0
x )

≤
∥∥∥∥∫ t

·
(−∆)

1+ε
2 pαt−s ∗ (−∆)

α
4 (A[θ] θ(s, ·)φ(s))ds

∥∥∥∥
L2
t0

(L
p0
x )

+

∥∥∥∥∫ t

·
(−∆)

σ0
4 pαt−s ∗ θ(s, ·)∂sφ(s)ds

∥∥∥∥
L2
t0

(L
p0
x )

≤
∥∥∥∥∫ t

·
(−∆)

α
2 pαt−s ∗ (−∆)

α
4 (A[θ] θ(s, ·)φ(s))ds

∥∥∥∥
L2
t0

(L
p0
x )

+

∥∥∥∥∫ t

·
(−∆)

σ0
4 pαt−s ∗ θ(s, ·)∂sφ(s)ds

∥∥∥∥
L2
t0

(L
p0
x )

.

Now, we can apply maximal-regularity type inequalities to the kernels (−∆)
α
2 pαt−s and (−∆)

σ0
4 pαt−s

(since σ0 ≤ 2α by (3.12)), to obtain(∫ 1
2

0
‖u(t, ·)‖2

Ẇ
σ0
2 ,p0

dt0

) 1
2

≤ C
(∥∥∥(−∆)

α
4 (A[θ] θφ)

∥∥∥
L2
t0

(L
p0
x )︸ ︷︷ ︸

E1

+ ‖θ∂sφ‖L2
t0

(L
p0
x )︸ ︷︷ ︸

E2

)
. (3.14)

For the term E1 above we apply the Leibniz fractional rule (also known as the Kato-Ponce inequality):
Namely, for s > 0, r > 1 and p1, q1, p2, q2 ∈]1,+∞] such that 1

r = 1
p1

+ 1
q1

= 1
p2

+ 1
q2

it holds that for
two functions f, g : Rn −→ R,

‖(−∆)
s
2 (fg)‖Lr ≤ C

(
‖f‖Lp1‖(−∆)

s
2 g‖Lq1 + ‖(−∆)

s
2 f‖Lp2‖g‖Lq2

)
. (3.15)

Inequality (3.15) is a particular case of estimate (1) in [18]. See also [25] for several versions of the
above fractional Leibniz derivation rule. Writing 1

p0
= 1

2 + 1
p0′

(where 1 < p0 < 2 can be very close to

2 and 2 < p0
′ ≤ p̄ can be potentially very large) and taking p1 = p0

′, q1 = 2, p2 = 2, q2 = p0
′, we then

derive from (3.15) and from the definition of E1 given in (3.14) that:

E1 =
∥∥∥(−∆)

α
4 (A[θ] θφ)

∥∥∥
L2
t0

(L
p0
x )

≤ C
(∥∥∥‖(−∆)

α
4 A[θ]‖L2

x
‖θ‖

L
p0
′

x
φ
∥∥∥
L2
t0

+
∥∥∥‖A[θ]‖Lp0′x

‖(−∆)
α
4 θ‖L2

x
φ
∥∥∥
L2
t0

)
,

since φ ∈ L∞ and ‖θ‖
L∞t (L

p0
′

x )
< +∞ we have

E1 ≤ C‖φ‖L∞
(∥∥∥‖(−∆)

α
4 A[θ]‖L2

x

∥∥∥
L2
t0

‖θ‖
L∞t L

p0
′

x
+
∥∥∥‖(−∆)

α
4 θ‖L2

x

∥∥∥
L2
t0

‖A[θ]‖L∞t Lp0
′

x

)
.

Recalling now the estimates ‖φ‖L∞ = 1 as well as the controls (as a consequence of (2.5)-(2.3) and
(2.7))

‖(−∆)
α
4 A[θ]‖L2

x
≤ C‖(−∆)

α
4 θ‖L2

x
and ‖A[θ]‖L∞t (L

p0
′

x )
≤ C‖θ‖

L∞t (L
p0
′

x )
,

we obtain the inequality

E1 ≤ C‖θ‖
L∞t (L

p0
′

x )

∥∥∥‖(−∆)
α
4 θ‖L2

x

∥∥∥
L2
t0

= C‖θ‖
L∞t (L

p0
′

x )
‖θ‖

L2
t (Ḣ

α
2
x )
.

At this point we use the maximum principle (2.7) since p′0 > 2:

‖θ‖
L∞t (L

p0
′

x )
≤ C‖θ0‖Lp0′ ,
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and the a priori inequality (2.8) with p = 2 (since we have the identification Ḃ
α
2
,2

2 (Rn) = Ḣ
α
2 (Rn))

‖θ‖
L2
t (Ḣ

α
2
x )
≤ ‖θ0‖L2 ,

to deduce that we have
E1 ≤ C‖θ0‖Lp0′‖θ0‖L2 .

The term E2 of (3.14) is easier to study and we have, since 1 < p0 < 2, by the expression (3.10) above:

E2 ≤ C‖θ‖L∞t (L
p0
x )‖∂sφ‖L2

t
≤ C

(
‖θ0‖L1 + ‖θ0‖2L2

)1−ν‖θ0‖νL2 .

Thus, coming back to (3.14) we deduce that

‖u(t, ·)‖
Ẇ

σ0
2 ,p0
≤ C‖θ0‖Lp0′‖θ0‖L2 + C

(
‖θ0‖L1 + ‖θ0‖2L2

)1−ν‖θ0‖νL2 .

but since u and θ coincide over the interval [1, N ], we have that θ ∈ L∞([1, N ], Ẇ
σ0
2
,p0) and

‖θ(t, ·)‖
Ẇ

σ0
2 ,p0
≤ C

(
‖θ0‖Lp0′‖θ0‖L2 +

(
‖θ0‖L1 + ‖θ0‖2L2

)1−ν‖θ0‖νL2

)
< +∞, (3.16)

and Proposition 3.3 is proven. �

Remark 3.2 Note that the gain of regularity σ0 given in (3.12) is independent from the value of
1 < p0 < 2. Moreover, if p0 → 2 then p′0 → +∞ and since we have p′0 ≤ p̄ we should have p̄→ +∞.

Remark 3.3 Recall that by hypothesis (D) we have ‖θ0‖Lp ≤ µ < +∞ for all 1 ≤ p ≤ p̄. Then the
conclusion (3.16) of the previous proposition can be rewritten as

‖θ(t, ·)‖
Ẇ

σ0
2 ,p0
≤ C

(
µ2 +

(
µ+ µ2

)1−ν
µν
)
,

for 1 ≤ t ≤ N and since µ ≥ 1 we have

‖θ(t, ·)‖
Ẇ

σ0
2 ,p0
≤ Cµ2. (3.17)

Corollary 3.1 (From Lp-Besov to L∞-Besov)

1) For some 0 < ε0 < ε such that n(2−p0)
2p0

= ε − ε0, we have θ ∈ L∞([1, N ], Ḣ
α
2

+ε0), in particular
we have

‖θ(t, ·)‖
Ḣ
α
2 +ε0 ≤ Cµ

2.

2) For 0 < ν < 1, we set 2 < pν < p̄ by the condition 1
pν

= 1−ν
p̄ + ν

2 . Then, for the same index

0 < ε0 < ε as in the first point above, we have θ ∈ L∞([1, N ], Ḃ
ν(α

2
+ε0),pν

pν ), i.e. for 1 ≤ t ≤ N :

‖θ(t, ·)‖
Ḃ
ν(α2 +ε0),pν
pν

≤ Cµ2.

3) For 1 < p0 < 2 we have θ ∈ L∞([1, N ], Ḃ
α
2

+ε,p0
2 ):

‖θ(t, ·)‖
Ḃ
α
2 +ε,p0
2

≤ Cµ2.

Proof. For the first point, by the Sobolev embeddings if α
2 + ε0 − n

2 = σ0
2 −

n
p0

and since we have
σ0 = α+ 2ε, we have for 1 ≤ t ≤ N :

‖θ(t, ·)‖
Ḣ
α
2 +ε0 ≤ C‖θ(t, ·)‖Ẇ σ0

2 ,p0
≤ Cµ2. (3.18)

For the second point, by the complex interpolation theory we have, for 0 < ν < 1 and for 1 ≤ t ≤ N :[
L∞t (Lp̄

x) ; L∞t (Ḣ
α
2

+ε0
x )

]
ν

= L∞t (Ẇ
ν(α

2
+ε0),pν

x ) ⊂ L∞t (Ḃ
ν(α

2
+ε0),pν

pν ,x ),
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where 1
pν

= 1−ν
p̄ + ν

p1
and since we have the space inclusion Ẇ s,p ⊂ Ḃs,p

max{2,p} we can write

‖θ‖
L∞t (Ḃ

ν(α2 +ε0),pν
pν ,x )

≤ ‖θ‖
L∞t (Ẇ

ν(α2 +ε0),pν
x )

≤ C‖θ‖1−ν
L∞t (Lp̄

x)
‖θ‖ν

L∞t (Ḣ
α
2 +ε0
x )

≤ C(µ)1−ν(µ2)ν ,

where we used the hypothesis (D) for the first norm, the estimate (3.18) for the second one and we
finally obtain

‖θ‖
L∞t (Ḃ

ν(α2 +ε0),pν
pν ,x )

≤ Cµ2,

since we have µ ≥ 1. For the last point, it is enough to recall that we have the space inclusion

Ẇ
σ0
2
,p0 ⊂ Ḃ

σ0
2
,p0

2 since 1 < p0 < 2. Thus, by (3.17) we have for 1 ≤ t ≤ N

‖θ(t, ·)‖
Ḃ
σ0
2 ,p0

2

≤ ‖θ(t, ·)‖
Ẇ

σ0
2 ,p0
≤ Cµ2,

to conclude recall that by (3.12) we have σ0 = α+ 2ε. �

Remark 3.4 Due to the hypotheses over the drift A stated in (2.4), we have for 1 ≤ t ≤ N :

1) For 0 < ν ≤ 1 and for 2 ≤ pν < p̄ given by the condition 1
pν

= 1−ν
p̄ + ν

2 :

‖A[θ](t, ·)‖
Ḃ
ν(α2 +ε0),pν
pν

≤ C‖θ(t, ·)‖
Ḃ
ν(α2 +ε0),pν
pν

≤ Cµ2. (3.19)

2) For 1 < p0 < 2:

‖A[θ](t, ·)‖
Ḃ
α
2 +ε,p0
2

≤ C‖θ(t, ·)‖
Ḃ
α
2 +ε,p0
2

≤ Cµ2. (3.20)

4 Hölder Regularity

To study the Hölder regularity of a solution θ(t, x) of equation (1.1), we will use the fact that the dual
space of Hardy spaces hs(Rn) are precisely2 the Hölder spaces Cγ(Rn). Indeed, let n

n+1 < s < 1 and
fix γ by the relationship

0 < γ = n(
1

s
− 1) < 1, (4.1)

then the dual of the local Hardy space hs(Rn) is the Hölder space Cγ(Rn), i.e. we have the identification
(hs)′ ' Cγ . We recall that the local Hardy space hs(Rn) is the set of distributions f that admits a

molecular decomposition of the form f =
∑
j∈N

λjψj , where (λj)j∈N is a sequence of numbers such that∑
j∈N
|λj |s < +∞ and (ψj)j∈N is a family of molecules given by the following definition.

Definition 4.1 Set n
n+1 < s < 1, define γ by condition (4.1) and fix a real number ω such that

0 < γ < ω < 1. Consider a real parameter ζ > 0. For 0 < r � 1, we will say that an integrable
function ψ is a small molecule with center x0 ∈ Rn and size ζr if we have∫

Rn
|ψ(x)||x− x0|ωdx ≤ (ζr)ω−γ, for x0 ∈ Rn and ‖ψ‖L∞ ≤

1

(ζr)n+γ
, (4.2)∫

Rn
ψ(x)dx = 0. (4.3)

In the case when 1 ≤ ζr < +∞ (i.e. for big molecules), we only require conditions (4.2) for the
molecule ψ while the moment condition (4.3) is dropped.

2See [16] for a proof of this fact and see [10] and [30] for a detailed treatment on Hardy spaces.
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Remark 4.1 With the identification (hs)′ ' Cγ and using the molecular decomposition of Hardy
spaces, the fact that θ ∈ Cγ is equivalent to the fact that |〈θ, ψ〉Cγ×hs | < +∞ for all molecule ψ.

Remark 4.2 The technical parameter ω satisfies the inequalities 0 < γ < ω and thus gives a maximum
threshold for the Hölder regularity γ. We will always assume that we have

0 < γ < ω < 1 < α = 1 + ε, (4.4)

where α is the smoothness degree associated to the diffusion operator Lα. These inequalities reflect the
fact that it is not possible to obtain (by the method displayed here) a Hölder regularity index γ higher
than the smoothness degree α.

Remark 4.3 Conditions (4.2) imply the estimate ‖ψ‖L1 ≤ C (ζr)−γ (see e.g. Section 4.1, 3) in [7]).
Thus, every molecule belongs to Lq(Rn) with 1 < q < +∞ since we have

‖ψ‖Lq ≤ C(ζr)
−n+n

q
−γ
. (4.5)

Recall also that the Schwartz class S(Rn) is dense in hs(Rn), this fact is of course very useful for
approximation procedures.

We refer to [7] for additional remarks about the former definition. See also [30, Chapter III, §5.7], [31,
Chapter XIV, §6.6] or the article [21].

4.1 The dual equation

Once we have described the elements of the Hardy spaces, we need to derive a dual equation from the
original problem (1.1), and for this we proceed as follows. For Lα with α = 1+ε a Lévy-type operator
satisfying (A), for a nonlinear drift A[θ] given by (B) and satisfying hypothesis (C) and for an initial
data θ0 satisfying (D), it follows from Theorem 1 that we can construct on the interval [0, T ], with

0 < T < +∞ fixed, a corresponding weak solution θ(·, ·) ∈ L∞
(
[0, T ], Lp(Rn)

)
∩ Lp([0, T ], Ḃ

α
p
,p

p (Rn))
to (1.1) that satisfies the inequalities (2.7) and (2.8).

Fix now a time 2 < t ≤ N with N large enough (say N ≥ 10, recall Proposition 3.3), consider ψ0

a molecule in the sense of the Definition 4.1 and consider a dual time variable 0 ≤ s ≤ t. The choice
t > 2 is here arbitrary and mainly performed for simplicity. We could have considered t > t0 > 0
provided µ := µ(t0) is small enough. With all these objects, to each molecule ψ0 we can associate the
following linear dual equation∂sψ(s, x) +∇ · [A[θ](t− s, x)ψ(s, x)] + Lαψ(s, x) = 0, s ∈ [0, t],

ψ(0, x) = ψ0(x),
(4.6)

where Lα is a Lévy-type operator of degree α = 1 + ε that satisfies hypothesis (A) and the drift A
satifies the hypothesis (B) and (C).

As said in the introduction, this equation shares many common features with the nonlinear equation
(1.1). However, since we are in a linear setting, there are some particularities that have to be taken
into account. We state below the main results that are needed for the sequel (the proofs are given [7]
and [8]). From the Proposition 4.1 to the Proposition 4.4 we state these results using for the sake of
simplicity an initial data ψ0 ∈ L1(Rn) ∩ L∞(Rn).

Proposition 4.1 (Existence) Let n ≥ 2. If ψ0 ∈ L1(Rn) ∩ L∞(Rn) is a initial data, Lα is a Lévy-
type operator that satisfy (A) with 0 < α < 2 and if the drift A[θ] satisfies the uniform boundedness
conditions given in Remark 3.4 (equations (3.19) and (3.20)) as well as the controls given in the
hypothesis (C), then there exists a weak solution ψ(s, x) to equation (4.6) in L∞([0, t], Lq(Rn)) with
1 ≤ q ≤ +∞.
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Proposition 4.2 (Maximum principle and Besov information) Under the framework of Propo-
sition 4.1, weak solutions of equation (4.6) satisify the following maximum principle for s ∈ [0, t]:

‖ψ(s, ·)‖Lq ≤ ‖ψ0‖Lq with 1 ≤ q ≤ +∞, (4.7)

and moreover we also have the following Besov a priori control for 2 ≤ q < +∞:

‖ψ‖
Lqt (Ḃ

α
q ,q

q,x )
≤ C‖ψ0‖Lq . (4.8)

Proposition 4.3 (Positivity principle) Let ψ0 ∈ L1(Rn) ∩ L∞(Rn) be an initial data such that
0 ≤ ψ0 ≤ M a.e. where M > 0 is a constant. Under the hypotheses (A) for the operator Lα and
(B)-(C) for the drift A[θ], then the weak solution of equation (4.6) satisfies 0 ≤ ψ(s, x) ≤ M for all
s ∈ [0, t].

We can now state the following result (borrowed from [21]) which is crucial to prove Theorem 2 by
using the Hardy-Hölder duality.

Proposition 4.4 (Transfer Property) Let θ0 be an initial data satisfying (D) and let θ(t, x) be
a weak solution of the equation (1.1) in the interval [0, T ] where the Lévy-type operator Lα and the
nonlinear drift A[θ] satisfy the hypotheses (A), (B) and (C). Let 2 < t ≤ N and let ψ(s, x) be a
solution with a molecular initial data ψ0 of the backward problem (4.6) for 0 ≤ s ≤ t. Then we have
the identity ∫

Rn
θ(t, x)ψ(0, x)dx =

∫
Rn
θ (t− s, x)ψ (s, x) dx. (4.9)

Proof. We first consider the expression

∂s

∫
Rn
θ(t− s, x)ψ(s, x)dx =

∫
Rn
−∂tθ(t− s, x)ψ(s, x) + ∂sψ(s, x)θ(t− s, x)dx.

Using equations (1.1) and (4.6) we obtain

∂s

∫
Rn
θ(t− s, x)ψ(s, x)dx =

∫
Rn

[
−∇ ·

(
A[θ](t− s, x)θ(t− s, x)

)
+ Lαθ(t− s, x)

]
ψ(s, x)

+

[
−∇ ·

(
(A[θ](t− s, x)ψ(s, x)

)
− Lαψ(s, x)

]
θ(t− s, x)dx

=

∫
Rn

[
−∇ ·

(
A[θ](t− s, x)θ(t− s, x)

) ]
ψ(s, x)+

[
−∇ ·

(
A[θ](t− s, x)ψ(s, x)

) ]
θ(t− s, x)dx

+

∫
Rn

(Lαθ(t− s, x))ψ(s, x)− (Lαψ(s, x)) θ(t− s, x)dx. (4.10)

From the symmetry of the operator Lα we have∫
Rn

(Lαθ(t− s, x))ψ(s, x)dx =

∫
Rn

(Lαψ(s, x)) θ(t− s, x)dx,

and thus the second integral of the previous formula is null. Now, since the transport terms A[θ] is
divergence free we obtain∫

Rn

[
∇ ·
(
A[θ](t− s, x)θ(t− s, x)

) ]
ψ(s, x)−

[
−∇ ·

(
A[θ](t− s, x)ψ(s, x)

) ]
θ(t− s, x)dx

= −
∫
Rn

[
A[θ](t− s, x)− A[θ](t− s, x)

]
θ(t− s, x)·∇ψ(s, x)dx = 0

and this integral is null and all the expression (4.10) is equal to zero, so the integral quantity∫
Rn
θ(t− s, x)ψ(s, x)dx, remains constant in time. �
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5 Proof of Theorem 2.

We want to establish the Hölder regularity Cγ(Rn) for the solutions θ of the nonlinear equation (1.1)
and following Remark 4.1 we need to prove that the duality bracket |〈θ(t, ·), ψ0(·)〉Cλ×hs | is finite for
all molecule ψ0. Then by the transfer property given in Proposition 4.4 we have the identity

〈θ(t, ·), ψ0(·)〉Cλ×hs = 〈θ(t− s, ·), ψ(s, ·)〉Lp×Lp′ ,

which transforms a Hölder-Hardy bracket into a pure Lebesgue one for some 2 ≤ p ≤ p̄ and 1
p + 1

p′ = 1.
Applying the maximum principle (2.7) and using the hypothesis (D) in the previous identity we can
deduce the following inequalities

|〈θ(t, ·), ψ0(·)〉Cλ×hs | ≤ ‖θ(t− s, ·)‖Lp‖ψ(s, ·)‖Lp′
≤ ‖θ0‖Lp‖ψ(s, ·)‖Lp′ ≤ µ‖ψ(s, ·)‖Lp′ , (5.1)

where µ is given in (2.6). Thus, in order to prove Theorem 2, we only need to estimate the quantity
‖ψ(s, ·)‖Lp′ that comes from a molecular initial data ψ0.

Now, due to the maximum principle (applied this time to ψ(s, x)) we can divide our proof into
two steps following the molecule’s size. Indeed, for big molecules, i.e. if ζr ≥ C, we have by (4.5) the
inequality

‖ψ(s, ·)‖Lp′ ≤ ‖ψ0‖Lp′ ≤ C(ζr)
−n+ n

p′−γ < +∞, (5.2)

which is immediately bounded. It only remains to study the Lp
′

control for small molecules and this
is done in the following theorem:

Theorem 3 Let the assumptions of Theorem 2 hold, ψ0 be a small molecule and consider ψ(s, ·) the
associated solution of the backward problem (4.6). There exists a small time 0 < T0 < 1 such that we
have the following control of the Lp

′
-norm of ψ(s, ·):

‖ψ(s, ·)‖Lp′ ≤ CT
−n+ n

p′−γ
0 , T0 ≤ s ≤ t− 2, (5.3)

where 0 < γ < α and where C > 0 is a positive constant.

Proof of Theorem 2. Accepting for a while the previous Theorem 3, we have then a good control
over the quantity ‖ψ(s, ·)‖Lp′ for big and small molecules and getting back to (5.1) we obtain that the
duality bracket |〈θ(t, ·), ψ0〉Cγ×hs | is always bounded for any molecule ψ0. This proves Theorem 2 by
duality and thus the solutions θ(t, x) of the nonlinear equation (1.1) are γ-Hölder regular. �

Remark 5.1 The controls (5.2) and (5.3) reflect a γ-hölderian gain of regularity of the solutions
θ(t, ·) of the equation (1.1), however this gain is not instantaneous and some time t > 2 is needed to
obtain the wished result.

We will prove now Theorem 3 in two steps. First, in Section 5.1 we study the evolution of the profile
of the solutions ψ to the dual equation (4.6) and then in Section 5.2 by a suitable iteration we will
obtain the uniform bound (5.3).

5.1 Molecule’s evolution

The following theorem shows how the molecular properties are deformed with the evolution of the
dual/linear equation (4.6) for a time 0 < s0 � 1.

Theorem 4 Assume that the hypotheses of Theorem 2 for the nonlinear equation (1.1) are in force.
Consider ψ0 a small molecule in the sense of Definition 4.1 for the local Hardy space hs(Rn) where
n
n+1 < s < 1 and let ψ(s0, x) be a solution at time s0 of the dual problem (4.6) associated with this
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molecular initial data ψ0.

Then there exist positive constants K and e small enough such that for all time 0 < s0 ≤ erα, we have
the following estimates: ∫

Rn
|ψ(s0, x)||x− x(s0)|ωdx ≤

(
(ζr)α +Ks0

)ω−γ
α , (5.4)

‖ψ(s0, ·)‖L∞ ≤ 1(
(ζr)α +Ks0

)n+γ
α

, (5.5)

‖ψ(s0, ·)‖L1 ≤ 2v
ω

n+ω
n(

(ζr)α +Ks0

) γ
α

, (5.6)

where γ is defined in (4.1), ω is the technical parameter given in Definition 4.1, α = 1 + ε is the
smoothness degree of the diffusion operator Lα and vn denotes the volume of the n-dimensional unit
ball.

The new molecule’s center x(s0) used in formula (5.4) is given by the evolution of the differential
system x′(s) = Ā[θ](t− s, x(s)) =

∫
Rn

A[θ](t− s, x(s)− y)ϕρ0(y)dy, s ∈ [0, s0],

x(0) = x0,
(5.7)

where ϕρ0(x) = 1
ρn0
ϕ
(
x
ρ 0

)
(recall that A[θ] is given in (2.2)). Here ϕ is a positive function in C∞0 (Rn)

such that supp(ϕ) ⊂ B(0, 1) with ρ0 = ζr � 1.

Proof of the Theorem 4. We will adopt the following strategy: we study first the Concentration
condition (5.4) in Section 5.1.1 and then we prove the Height condition (5.5) in Section 5.1.2. With
these two conditions at hand, the L1 estimate (5.6) will be easily obtained in Section 5.1.3.

5.1.1 Concentration condition

To establish (5.4), we introduce for s ∈ [0, s0] the function Ωs(x) = |x − x(s)|ω. For a given molec-
ular initial data ψ0 we write ψ0(x) = ψ0,+(x) − ψ0,−(x) where the functions ψ0,±(x) ≥ 0 have dis-
joint support and we denote by ψ±(s0, x) two solutions of the dual equation (4.6) at time s0 with
ψ±(0, x) = ψ0,±(x).

The starting point for our study is the following: for all s ∈ [0, s0] we have∫
Rn
|ψ(s0, x)|Ωs0(x)dx =

∫
Rn
|ψ0(x)|Ω0(x)dx+

∫ s0

0
∂s

(∫
Rn
|ψ(s, x)|Ωs(x)dx

)
ds,

now by the positivity principle stated in Proposition 4.3 we have ψ±(s0, x) ≥ 0, then

|ψ(s0, x)| = |ψ+(s0, x)− ψ−(s0, x)| ≤ ψ+(s0, x) + ψ−(s0, x),

and we can thus write∫
Rn
|ψ(s0, x)|Ωs0(x)dx ≤

∫
Rn
|ψ0(x)|Ω0(x)dx

+

∫ s0

0

∣∣∣∣∂s ∫
Rn
ψ+(s, x)Ωs(x)dx

∣∣∣∣ ds+

∫ s0

0

∣∣∣∣∂s ∫
Rn
ψ−(s, x)Ωs(x)dx

∣∣∣∣ ds.
We may assume, without loss of generality, that we have∫ s0

0

∣∣∣∣∂s ∫
Rn
ψ−(s, x)Ωs(x)dx

∣∣∣∣ ds ≤ ∫ s0

0

∣∣∣∣∂s ∫
Rn
ψ+(s, x)Ωs(x)dx

∣∣∣∣ ds, (5.8)
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and for the rest of the proof we will focus on the last term above. Since ψ+(s, ·) is the solution of the
corresponding dual/linear equation (4.6) with initial data ψ0,+(x), for s ∈ [0, s0] we can write

Is :=

∣∣∣∣∂s ∫
Rn
ψ+(s, x)Ωs(x)dx

∣∣∣∣
=

∣∣∣∣∫
Rn

(
−∇ ·

(
A[θ](t− s, x)ψ+(s, x)

)
− Lαψ+(s, x)

)
Ωs(x) + ψ+(s, x)∂sΩs(x)dx

∣∣∣∣ ,
recalling that Ωs(x) = |x− x(s)|ω and reorganizing the previous terms we have

=

∣∣∣∣∫
Rn
−∇Ωs(x) · x′(s)ψ+(s, x)− Ωs(x)∇ ·

(
A[θ](t− s, x)ψ+(s, x)

)
− Ωs(x)Lαψ+(s, x)dx

∣∣∣∣ .
By an integration by parts in the second term above and since the operator Lα is symmetric we have

Is =

∣∣∣∣∫
Rn
−∇Ωs(x) · x′(s)ψ+(s, x) +∇Ωs(x) · A[θ](t− s, x)ψ+(s, x)− LαΩs(x)ψ+(s, x)dx

∣∣∣∣
≤

∣∣∣∣∫
Rn
∇Ωs(x) ·

(
A[θ](t− s, x)− x′(s)

)
ψ+(s, x)dx

∣∣∣∣+

∣∣∣∣∫
Rn
LαΩs(x)ψ+(s, x)dx

∣∣∣∣
≤ Is,1 + Is,2,

and we obtain ∫ s0

0
Isds ≤

∫ s0

0
Is,1ds+

∫ s0

0
Is,2ds. (5.9)

We will study separately each of the quantities

∫ s0

0
Is,1ds and

∫ s0

0
Is,2ds with two different propo-

sitions. The first contribution in (5.9) is studied in Proposition 5.1 below and constitutes the most
technical part of the article since it requires to exploit in a very specific way the Besov stability controls
stated in Corollary 3.1. The contribution of the second term of (5.9) is easier to handle as it relies
essentially on the properties of the operator Lα. It will be treated in Proposition 5.2.

Proposition 5.1 For the term

∫ s0

0
Is,1ds, under conditions (CB) and (CE) stated below, we have

∫ s0

0
Is,1ds ≤ Θ1 r

ω−γ−α × s0, (5.10)

where Θ1 is a small constant.

Proof of Proposition 5.1. With ρ0 = ζr � 1, we consider the following dyadic decomposition

Rn = Bρ0 ∪
⋃
k≥1

Ek where

Bρ0 = {x ∈ Rn : |x− x(s)| ≤ ρ0} and

Ek = {x ∈ Rn : 2k−1ρ0 < |x− x(s)| ≤ 2kρ0}, for k ≥ 1.
(5.11)
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Then we write

Is,1 =

∣∣∣∣∫
Rn
∇Ωs(x) ·

(
A[θ](t− s, x)− x′(s)

)
ψ+(s, x)dx

∣∣∣∣
=

∣∣∣∣∣∣
∫
Rn

1Bρ0 +
∑
k≥1

1Ek

∇Ωs(x) ·
(
A[θ](t− s, x)− x′(s)

)
ψ+(s, x)dx

∣∣∣∣∣∣
≤

∣∣∣∣∫
Rn

(
1Bρ0∇Ωs(x) ·

(
A[θ](t− s, x)− Ā[θ](t− s, ·)

))
ψ+(s, x)dx

∣∣∣∣︸ ︷︷ ︸
Is,Bρ0

(5.12)

+

∣∣∣∣∣∣
∫
Rn

∑
k≥1

1Ek,s∇Ωs(x) ·
(
A[θ](t− s, x)− Ā[θ](t− s, ·)

)ψ+(s, x)dx

∣∣∣∣∣∣︸ ︷︷ ︸
Is,E

, (5.13)

recalling (5.7) for the last inequality. Thus we obtain∫ s0

0
Is,1ds ≤

∫ s0

0
Is,Bρ0ds+

∫ s0

0
Is,Eds. (5.14)

The analysis of the terms appearing in (5.12) and (5.13) and represented in the previous right hand
side is rather similar. The first key argument to handle those contributions is provided by Lemma
5.1, which precisely allows to control, on the elements of the previous spatial partition, a Lebesgue
norm involving the difference of the drifts by a scaled Besov norm of the drift (which is again stable
in this norm, see (2.4)). The controls obtained in Lemma 5.1 are then used in Lemmas 5.2 and 5.3 to
consider specifically the spatial domains appearing respectively in (5.12) and (5.13).

Lemma 5.1 (From Lebesgue to Besov) Let 1 < p < +∞ and assume that the nonlinear drift A[θ]

satisfies the hypothesis (B)-(C). If moreover the term Ā[θ] is defined as in equation (5.7), then we
have the following estimates over the sets Bρ0 and Ek, with k ≥ 1, defined in expression (5.11):

∥∥A[θ](t− s, ·)− Ā[θ](t− s, ·)
∥∥
Lp(Bρ0 )

≤ Cρ
σ
p

0 ‖A[θ](t− s, ·)‖
Ḃ
σ
p ,p

p

(5.15)

‖A[θ](t− s, ·)− Ā[θ](t− s, ·)‖Lp(Ek) ≤ C(2kρ0)
σ
p (2k)

n
p ‖A[θ](t− s, ·)‖

Ḃ
σ
p ,p

p

, (5.16)

for some regularity index 0 < σ.

The proof of this result is given in Lemma 4.1 of [8].
With this previous lemma, we are going to estimate each term of (5.14). Although the general
treatment of these terms is quite similar, some particularities must be taken into account. For the
ball Bρ1 we have the following result.

Lemma 5.2 (Controls for the integrands over the ball Bρ0) With the notation of (5.11) and
(5.12) the following control holds for the small ball Bρ0:∫ s0

0
Is,Bρ0ds ≤ Θ1,1 r

ω−γ−α × s0, (5.17)

where the technical quantity Θ1,1 = Θ1,1(µ, ζ, r) defined in the expression (5.20) below can be made
small.
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Proof of Lemma 5.2. We have

Is,Bρ0 =

∣∣∣∣∫
Rn

(
1Bρ0∇Ωs(x) ·

(
A[θ](t− s, x)− Ā[θ](t− s, x)

))
ψ+(s, x)dx

∣∣∣∣ ,
and for 1 < q0, q

′
0 < +∞ with 1

q0
+ 1

q′0
= 1 we have

Is,Bρ0 ≤
∥∥1Bρ0∇Ωs(·) ·

(
A[θ](t− s, ·)− Ā[θ](t− s, ·)

)∥∥
Lq
′
0
‖ψ+(s, ·)‖Lq0 ,

but since |∇Ωs(x)| = c|x− x(s)|ω−1, we can write

Is,Bρ0 ≤ C
∥∥| · −x(s)|ω−1

∣∣A[θ](t− s, ·)− Ā[θ](t− s, ·)
∣∣∥∥
Lq
′
0 (Bρ0 )

‖ψ+(s, ·)‖Lq0 .

We need now to control the two previous Lebesgue norms and we need to handle the term |x−x(s)|ω−1

which is integrable over the ball Bρ0 under some conditions. Indeed, taking

1

q′0
=

1

a0
+

1

p0
where 1 < a0 <

n

1− ω
and 2 ≤ p0 < +∞, (5.18)

we thus derive from the Hölder inequality

Is,Bρ0 ≤ C‖| · −x(s)|ω−1‖La0 (Bρ0 )

∥∥A[θ](t− s, ·)− Ā[θ](t− s, ·)
∥∥
Lp0 (Bρ0 )

‖ψ+(s, ·)‖Lq0 ,

and after integration we obtain

Is,Bρ0 ≤ Cρ
ω−1+ n

a0
0

∥∥A[θ](t− s, ·)− Ā[θ](t− s, ·)
∥∥
Lp0 (Bρ0 )

‖ψ+(s, ·)‖Lq0 .

At this point, we apply the estimate (5.15) of Lemma 5.1 with

1

p0
=

1− ν0

p̄
+
ν0

2
and σ = p0ν0(

α

2
+ ε0) for some 0 < ν0 ≤ 1, (5.19)

to obtain

Is,Bρ0 ≤ Cρ
ω−1+ n

a0
0

(
ρ
ν0(α

2
+ε0)

0 ‖A[θ](t− s, ·)‖
Ḃ
ν0(

α
2 +ε0),p0

p0

)
‖ψ+(s, ·)‖Lq0

≤ Cρ
ω−1+ n

a0
+ν0(α

2
+ε0)

0 ‖A[θ](t− s, ·)‖
Ḃ
ν0(

α
2 +ε0),p0

p0

‖ψ+(s, ·)‖Lq0 .

Now, we integrate in the time variable this expression to obtain∫ s0

0
Is,Bρ0ds ≤ Cρ

ω−1+ n
a0

+ν0(α
2

+ε0)

0

∫ s0

0
‖A[θ](t− s, ·)‖

Ḃ
ν0(

α
2 +ε0),p0

p0

‖ψ+(s, ·)‖Lq0ds,

at this point we use the uniform in time estimates ‖ψ+(s, ·)‖Lq0 ≤ ‖ψ(s, ·)‖Lq0 ≤ ‖ψ0‖Lq0 given by
the maximum principle (4.7) and the estimates ‖A[θ](t− s, ·)‖

Ḃ
ν0(

α
2 +ε0),p0

p0

≤ Cµ2 given in (3.19) (recall

that 2 < t ≤ N and 0 ≤ s ≤ s0 with 0 < s0 � 1) to write∫ s0

0
Is,Bρ0ds ≤ Cρ

ω−1+ n
a0

+ν0(α
2

+ε0)

0 ‖A[θ]‖
L∞s (Ḃ

ν0(
α
2 +ε0),p0

p0,x
)
‖ψ0‖Lq0

∫ s0

0
ds

≤ Cρ
ω−1+ n

a0
+ν0(α

2
+ε0)

0 µ2‖ψ0‖Lq0 × s0.

We recall now that ρ0 = ζr � 1, see (5.11), and that ‖ψ0‖Lq0 ≤ C(ζr)
−n+ n

q0
−γ

by (4.5) and we get∫ s0

0
Is,Bρ0ds ≤ Cµ

2(ζr)
ω−1+ n

a0
+ν0(α

2
+ε0)−n+ n

q0
−γ × s0.
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Since n
a0
− n+ n

q0
= − n

p0
by (5.18), as we have 1− 1

q0
= 1

q′0
, we can rewrite the previous inequality as

follows ∫ s0

0
Is,Bρ0ds ≤ Cµ

2(ζr)
ν0ε0
2 × (ζr)

ω−γ−1− n
p0

+ν0
α+ε0

2 × s0.

Now we define Θ1,1 by the expression

Θ1,1 = Cµ2(ζr)
ν0ε0
2 ζ

ω−γ−1− n
p0

+ν0
α+ε0

2 , (5.20)

and since ρ0 = ζr � 1 this quantity can be made very small and we have∫ s0

0
Is,Bρ0ds ≤ Θ1,1r

ω−γ−1− n
p0

+ν0
α+ε0

2 × s0,

thus, if we have the condition α ≥ 1 + n
p0
− ν0

α+ε0
2 which is equivalent to

α ≥ p0(2− ν0ε0) + 2n

p0(2 + ν0)
, (5.21)

we have r
ω−γ−1− n

p0
+ν0

α
2 ≤ rω−γ−α and we finally obtain∫ s0

0
Is,Bρ0ds ≤ Θ1,1r

ω−γ−α × s0,

and the proof of Lemma 5.2 is finished. �

Remark 5.2 In the proof of Lemma 5.2 we used the following conditions on the parameters:

p0 > 2, p̄ > 2,

1 < q′0 ≤ 2 ≤ q0 < +∞ with 1
q0

+ 1
q′0

= 1,

1
q′0

= 1
a0

+ 1
p0

with 1 < a0 <
n

1−ω ,

1
p0

= 1−ν0
p̄ + ν0

2 and σ = p0ν0(α2 + ε0) for some 0 < ν0 ≤ 1,

α ≥ p0(2−ν0ε0)+2n
p0(2+ν0) .

(CB)

We now study the quantity

∫ s0

0
Is,Eds over the set E =

⋃
k≥1

Ek.

Lemma 5.3 (Controls for the integrands over the Dyadic coronas
⋃
k≥1Ek)∫ s0

0
Is,Eds ≤ Θ1,2 r

ω−γ−α × s0,

where the technical quantity Θ1,2 = Θ1,2(µ, ζ, r) defined in the expression (5.22) below can be made
small.

Proof of Lemma 5.3. Since the set E =
⋃
k≥1

Ek is the union of disjoint dyadic coronas (see (5.11)),

we will need to derive estimates over each of the sets (Ek)k≥1 and thus to deal with some convergence
issues. For this we write now, from the definition in (5.13):

Is,E =

∣∣∣∣∣∣
∫
Rn

∑
k≥1

1Ek∇Ωs(x) ·
(
A[θ](t− s, x)− x′(s)

)ψ+(s, x)dx

∣∣∣∣∣∣
≤

∑
k≥1

∣∣∣∣∫
Rn

(
1Ek∇Ωs(x) ·

(
A[θ](t− s, x)− x′(s)

))
ψ+(s, x)dx

∣∣∣∣ .
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Now, by the Hölder inequality with 1
q1

+ 1
q′1

= 1 and 1 < q1 < 2 < q′1 < +∞, we have

Is,E ≤
∑
k≥1

∥∥∇Ωs(·) ·
(
A[θ](t− s, ·)− x′(s)

)∥∥
Lq
′
1 (Ek)

‖ψ+(s, ·)‖Lq1 ,

and since |∇Ωs(x)| = c|x− x(s)|ω−1 and x′(s) = Ā[θ](t− s, x), we can write

Is,E ≤
∑
k≥1

∥∥| · −x(s)|ω−1|A[θ](t− s, ·)− Ā[θ](t− s, ·)|
∥∥
Lq
′
1 (Ek)

‖ψ+(s, ·)‖Lq1 .

Since by the definition (5.11) of the dyadic corona Ek we have |x− x(s)|ω−1 ≤ C(2kρ0)ω−1, we have

Is,E ≤ C
∑
k≥1

(2kρ0)ω−1
∥∥A[θ](t− s, ·)− Ā[θ](t− s, ·)

∥∥
Lq
′
1 (Ek)

‖ψ+(s, ·)‖Lq1 ,

and with the help of the control (5.16) given in Lemma 5.1 with

1

q′1
=

1− ν1

p̄
+
ν1

2
and σ = q′1ν1(

α

2
+ ε0) for some 0 < ν1 < 1,

we can write

Is,E ≤ C
∑
k≥1

(2kρ0)ω−1
(

(2kρ0)ν1(α
2

+ε0)(2k)
n
q′1 × ‖A[θ](t− s, ·)‖

Ḃ
ν1(

α
2 +ε0),q

′
1

q′1

)
‖ψ+(s, ·)‖Lq1

≤ C‖A[θ](t− s, ·)‖
Ḃ
ν1(

α
2 +ε0),q

′
1

q′1

‖ψ+(s, ·)‖Lq1ρ
ω−1+ν1(α

2
+ε0)

0

∑
k≥1

2
k
(
ω−1+ν1(α

2
+ε0)+ n

q′1

)
,

and the condition
ω − 1 + ν1(

α

2
+ ε0) +

n

q′1
< 0,

guarantees that the previous sum converges. Now integrating with respect to the time variable we
have ∫ s0

0
Is,Eds ≤ Cρ

ω−1+ν1(α
2

+ε0)

0

∫ s0

0
‖A[θ](t− s, ·)‖

Ḃ
ν1(

α
2 +ε0),q

′
1

q′1

‖ψ+(s, ·)‖Lq1ds.

Since we have ‖ψ+(s, ·)‖Lq1 ≤ ‖ψ(s, ·)‖Lq1 ≤ ‖ψ0‖Lq1 by the maximum principle (4.7) and we have
the estimates ‖A[θ](t − s, ·)‖

Ḃ
ν1(

α
2 +ε0),q

′
1

q′1

≤ Cµ2 given in (3.19) (recall that t ∈ [1, N ] and 0 ≤ s ≤ s0

with 0 < s0 � 1), we thus get∫ s0

0
Is,Eds ≤ Cρ

ω−1+ν1(α
2

+ε0)

0 µ2‖ψ0‖Lq1
∫ s0

0
ds = Cρ

ω−1+ν1(α
2

+ε0)

0 µ2‖ψ0‖Lq1 × s0.

We recall now that ρ0 = ζr � 1 and that by (4.5) we have ‖ψ0‖Lq1 ≤ C(ζr)
−n+ n

q1
−γ

, so we can write∫ s0

0
Is,Eds ≤ Cµ2(ζr)

ω−1+ν1(α
2

+ε0)−n+ n
q1
−γ × s0.

Now we define Θ1,2 by the expression

Θ1,2 = Cµ2(ζr)
ν1ε0
2 ζ

ω−1+ν1
α+ε0

2
−n+ n

q1
−γ
, (5.22)

which can be made small since ζr � 1, and we have∫ s0

0
Is,Eds ≤ Θ1,2r

ω−1+ν1(
α+ε0

2
)−n+ n

q1
−γ × s0.
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Note now that if the condition

α ≥ q′1(2− ν1ε0) + 2n

q′1(2 + ν1)
, (5.23)

holds, we then have r
ω−1+ν1(

α+ε0
2

)−n+ n
q1
−γ ≤ rω−γ−α. We thus finally obtain∫ s0

0
Is,Eds ≤ Θ1,2r

ω−γ−α × s0,

and Lemma 5.3 is proven. �

Remark 5.3 In the proof of Lemma 5.3 we used the following conditions on the parameters:

p̄ > 2,

1
q1

+ 1
q′1

= 1 and 1 < q1 < 2 < q′1 < +∞,

1
q′1

= 1−ν1
p̄ + ν1

2 and σ = q′1ν1(α2 + ε0) for some 0 < ν1 < 1,

ω − 1 + ν1(α2 + ε0) + n
q′1
< 0,

α ≥ q′1(2−ν1ε0)+2n
q′1(2+ν1)

.

(CE)

End of the proof of Proposition 5.1. From the estimates of Lemma 5.2 and 5.3, and under the
conditions stated in (CB) and (CE) for the involved parameters, we then derive:∫ s0

0
Is,1ds ≤

∫ s0

0
Is,B + Is,E ds ≤ (Θ1,1 + Θ1,2)× rω−γ−α × s0,

and setting Θ1 := Θ1,1 + Θ1,2 � 1, this completes the proof of Proposition 5.1. �

The contribution Is,2 in (5.9) only depends on the operator. Precisely, we get:

Proposition 5.2 For the second integral

∫ s0

0
Is,2ds in (5.9), we have:

∫ s0

0
Is,2ds ≤ Θ2 × rω−γ−α × s0,

where Θ2 = Θ2(ζ) is given by

Θ2(ζ) = C

(
ζm0(ω−α+n)−n−γ + ζ

m0(1+ε)[ω−α− n
p1

]−n+ n
p′1
−γ

+ ζ
m1[ω−α+ n

p2
]−n+ n

p′2
−γ
)
,

and the parameters above satisfy0 < m0 < 1 < m1, 1 < p1, p
′
1, p2, p

′
2 < +∞ and 1

p1
+ 1

p′1
= 1

p2
+ 1

p′2
= 1,

n
α−ω < p1, p2 < +∞ and ε = ln(1−ζ(m1−m0)(p1(ω−α)+n))

(p1(ω−α)+n)m0 ln(ζ) ,
(C2)

and Θ2 is such that the quantity Θ2(ζ)
ζω−γ−α can be made very small for ζ large enough.

Proof of Proposition 5.2. It is enough to follow essentially the same ideas used for Proposition 5.1
with minor modifications which make computations much easier: indeed, for ζ � 1, 0 < r < 1 and
0 < m0 < 1 < m1, we define r0, r1 by the expressions

r0 = ζm0r ≤ 1, r1 = ζm1r ≤ 1, (5.24)
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and we consider the decomposition Rn = Br0 ∪ C(r0,r1) ∪
( ⋃
k≥1

Ek
)

where Br0 , C(r0,r1) and Ek are defined

in a very similar way as in (5.11) but replacing ρ0, ρ1 by r0, r1. Indeed we have

Br0 = {x ∈ Rn : |x− x(s)| ≤ r0}

C(r0,r1) = {x ∈ Rn : r0 < |x− x(s)| ≤ r1} and

Ek = {x ∈ Rn : 2k−1r1 < |x− x(s)| ≤ 2kr1}, for k ≥ 1.

We thus can write

Is,2 =

∣∣∣∣∫
Rn
LαΩs(x)ψ+(s, x)dx

∣∣∣∣
≤

∣∣∣∣∫
Rn
1Br0
LαΩs(x)ψ+(s, x)dx

∣∣∣∣+

∣∣∣∣∫
Rn
1C(r0,r1)L

αΩs(x)ψ+(s, x)dx

∣∣∣∣
+

∣∣∣∣∣∣
∫
Rn

∑
k≥1

1EkL
αΩs(x)ψ+(s, x)dx

∣∣∣∣∣∣ . (5.25)

• For the first term of (5.25) we write∣∣∣∣∫
Rn
1Br0
LαΩs(x)ψ+(s, x)dx

∣∣∣∣ ≤ ‖Lα| · −x(s)|ω‖L1(Br0 )‖ψ+(s, ·)‖L∞ ,

note that the last term above is equivalent up to a change of variables to

∫
B(0,r0)

|Lα|x|ω|dx,

and by classical homogeneity arguments (see the book [17]) we have
∣∣Lα|x|ω∣∣ = C|x|ω−α and we

obtain ‖Lα|x − x(s)|ω‖L1(Br0 ) ≤ Crω−α+n
0 . Thus by the maximum principle, by the molecular

hypothesis (4.2) and by the definition of r0 given in (5.24) we obtain∣∣∣∣∫
Rn
1Br0
LαΩs(x)ψ+(s, x)dx

∣∣∣∣ ≤ Cζm0(ω−α+n)−n−γ × rω−γ−α. (5.26)

• For the second term of (5.25), we set 1 < p1, p
′
1 < +∞ such that 1

p1
+ 1

p′1
= 1 and n

α−ω < p1 < +∞,

and we write∣∣∣∣∫
Rn
1C(r0,r1)L

αΩs(x)ψ+(s, x)dx

∣∣∣∣ ≤ ‖LαΩs(x)‖Lp1 (C(r0,r1))
‖ψ+(s·)‖

Lp′1

≤ ‖LαΩs(x)‖Lp1 (C(r0,r1))
‖ψ0‖Lp′1

,

where we used the maximum principle for the function ψ+(s, ·). Now, by homogeneity we have

‖LαΩs(x)‖Lp1 (C(r0,r1))
= C‖| · −x(s)|ω−α‖Lp1 (C(r0,r1))

≤ C(r
p1(ω−α)+n
0 − r

p1(ω−α)+n
1 )

1
p1 and if we

consider

ε =
ln(1− ζ(m1−m0)(p1(ω−α)+n))

(p1(ω − α) + n)m0 ln(ζ)
,

we have then by the definition of r0 and r1 given in (5.24):

(r
p1(ω−α)+n
0 − r

p1(ω−α)+n
1 )

1
p1 = ζ

m0(1+ε)[ω−α− n
p1

]
r
ω−α+ n

p1 ,

and thus using (4.5) to estimate the molecular initial data ‖ψ0‖Lp′1
we have∣∣∣∣∫

Rn
1C(r0,r1)L

αΩs(x)ψ+(s, x)dx

∣∣∣∣ ≤ Cζ
m0(1+ε)[ω−α− n

p1
]
r
ω−α+ n

p1 × (ζr)
−n+ n

p′1
−γ

≤ Cζ
m0(1+ε)[ω−α− n

p1
]−n+ n

p′1
−γ
× rω−γ−α. (5.27)
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• For the last term of (5.25), by the Hölder inequality with 1 < p2, p
′
2 < +∞ such that 1

p2
+ 1

p′2
= 1

and ω − α+ n
p2
< 0 and by homogeneity arguments, we have∣∣∣∣∣∣

∫
Rn

∑
k≥1

1EkL
αΩs(x)ψ+(s, x)dx

∣∣∣∣∣∣ ≤
∑
k≥1

‖| · −x(s)|ω−α‖Lp2 (Ek)‖ψ+(s, ·)‖
Lp′2

≤ C
∑
k≥1

(2kr1)
ω−α+ n

p2 ‖ψ+(s, ·)‖
Lp′2

,

note that by the condition ω − α+ n
p2

the previous sum is convergent. Now, by the definition of
r1 given in (5.24), by the maximum principle for ψ+(s, ·) and by (4.5) we obtain∣∣∣∣∣∣

∫
Rn

∑
k≥1

1EkL
αΩs(x)ψ+(s, x)dx

∣∣∣∣∣∣ ≤ Cr
ω−α+ n

p2
1 × (ζr)

−n+ n
p′2
−γ

≤ Cζ
m1[ω−α+ n

p2
]−n+ n

p′2
−γ
× rω−γ−α. (5.28)

Thus, with estimates (5.26), (5.27) and (5.28) we obtain the following control for (5.25):

Is,2 ≤ C
(
ζm0(ω−α+n)−n−γ + ζ

m0(1+ε)[ω−α− n
p1

]−n+ n
p′1
−γ

+ ζ
m1[ω−α+ n

p2
]−n+ n

p′2
−γ
)
× rω−γ−α,

which becomes after an integration in the time variable∫ s0

0
Is,2ds ≤ C

(
ζm0(ω−α+n)−n−γ + ζ

m0(1+ε)[ω−α− n
p1

]−n+ n
p′1
−γ

+ ζ
m1[ω−α+ n

p2
]−n+ n

p′2
−γ
)
× rω−γ−α × s0.

Moreover, if we set

Θ2(ζ) = C

(
ζm0(ω−α+n)−n−γ + ζ

m0(1+ε)[ω−α− n
p1

]−n+ n
p′1
−γ

+ ζ
m1[ω−α+ n

p2
]−n+ n

p′2
−γ
)
, (5.29)

we finally obtain ∫ s0

0
Is,2ds ≤ Θ2 × rω−γ−α × s0.

To finish Proposition 5.2 it only remains to show that the quantity

Θ2(ζ)

ζω−γ−α
, (5.30)

can be made small if ζ is big enough: for this we only have to check the sign of the powers of ζ of this
quantity, and from (5.29) above we obtain the conditions

m0(ω − α+ n)− n+ α− ω < 0,

m0(1 + ε)[ω − α− n
p1

]− n+ n
p′1

+ α− ω < 0,

m1[ω − α+ n
p2

]− n+ n
p′2

+ α− ω < 0.

(A )

�

Remark 5.4 Not that, unlike Proposition 5.1, the constraints (A ) above are essential to absorb the
constants that appear in the computations.
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We finish now the proof of the evolution of the concentration condition (5.4) and from equation (5.8)
we write: ∫

Rn
|ψ(s0, x)|Ωs0(x)dx ≤

∫
Rn
|ψ0(x)|Ω0(x)dx+

∫ s0

0

∣∣∣∣∂s ∫
Rn
ψ+(s, x)Ωs(x)dx

∣∣∣∣ ds
+

∫ s0

0

∣∣∣∣∂s ∫
Rn
ψ−(s, x)Ωs(x)dx

∣∣∣∣ ds.
Recall that

∫
Rn
|ψ0(x)|Ω0(x)dx = (ζr)ω−γ (since the initial data is a molecule). Since the time sensitiv-

ities of the positive and negative parts of ψ are controlled in a similar way, we derive from Propositions
5.1, 5.2 that setting Θ := Θ1 + Θ2 � 1:∫

Rn
|ψ(s0, x)|Ωs0(x)dx ≤ (ζr)ω−γ + 2

(
Θ× rω−γ−α × s0

)
≤ (ζr)ω−γ

(
1 + 2

Θ

ζω−γ
s0

rα
)
.

Recalling that Ωs0(x) = |x− x(s0)|ω and that we assumed 0 ≤ s0 ≤ erα we can choose e small enough
to have: ∫

Rn
|ψ(s0, x)||x− x(s0)|ωdx ≤ (ζr)ω−γ

(
1 + 4

α

ω − γ
Θ

ζω−γ
s0
rα

)ω−γ
α

≤
(

(ζr)α + 4
α

ω − γ
Θ

ζω−γ−α
s0

)ω−γ
α

≤
(
(ζr)α +Ks0

)ω−γ
α , (5.31)

since we can set Θ
ζω−γ−α small enough in order to satisfy

4
α

ω − γ
Θ

ζω−γ−α
≤ K, (5.32)

where K in (5.31) is a (small) constant that intervenes in the height condition. Indeed, we have

Θ

ζω−γ−α
=

Θ1

ζω−γ−α
+

Θ2

ζω−γ−α
,

and we note that the term Θ1
ζω−γ−α can be made very small as by (5.20), this quantity is governed by

the parameter 0 < r � 1, moreover, by (5.30) we have that Θ2
ζω−γ−α can also made very small and this

concludes the proof of the concentration condition (5.4) of Theorem 4. �

5.1.2 Height condition

We study in this section the Height condition (5.5) given by the expression

‖ψ(s0, ·)‖L∞ ≤
1(

(ζr)α +Ks0

)n+γ
α

.

To establish the control of the theorem we aim at proving that

d

ds
‖ψ(s, ·)‖L∞ ≤ −K

(n+ γ

α

)
((ζr)α +Ks)−(ω−γ)/(n+ω) ‖ψ(s, ·)‖1+α/(n+ω)

L∞ . (5.33)

Indeed, integrating (5.33) yields∫ s0

0

d

ds

(
‖ψ(s, ·)‖−α/(n+ω)

L∞

)
ds ≥

∫ s0

0

d

ds

(
[(ζr)α +Ks](n+γ)/(n+ω)

)
ds,

‖ψ(s0, ·)‖−α/(n+ω)
L∞ ≥ [(ζr)α +Ks0](n+γ)/(n+ω) +

(
‖ψ(0, ·)‖−α/(n+ω)

L∞ − [(ζr)α](n+γ)/(n+ω)
)

≥ [(ζr)α +Ks0](n+γ)/(n+ω).
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Recalling the initial height condition ‖ψ(0, ·)‖L∞ ≤ (ζr)−(n+γ) for the last inequality, we therefore
derive

‖ψ(s0, ·)‖L∞ ≤ ((ζr)α +Ks0)−(n+γ)/α,

which is the required control.

Assume that the molecules we are working with are smooth enough and in particular continuous.
Following an idea of [14] (Section 4, p. 522–523) (see also [20], p. 346), we will denote for s ∈ [0, s0]
by xs the point of Rn such that ψ(s, xs) = ‖ψ(s, ·)‖L∞ . Thus we can write, by the properties (2.1) of
the function π,

d

ds
‖ψ(s, ·)‖L∞ ≤ −

∫
Rn

[ψ(s, xs)− ψ(s, xs − y)]π(y) dy

≤ −c1
∫
{|xs−y|<1}

ψ(s, xs)− ψ(s, y)

|xs − y|n+α
dy ≤ 0. (5.34)

To establish the differential inequality (5.33) for s ∈ [0, s0], let us first consider a corona centered in
x̄s defined by C(R, ρR) = {y ∈ Rn : R ≤ |xs − y| ≤ ρR}, where the parameter R > 0 to be specified
later on is such that 0 < ρR < 1 with ρ > 2. Then,∫

{|xs−y|<1}

ψ(s, xs)− ψ(s, y)

|xs − y|n+α
dy ≥

∫
C(R,ρR)

ψ(s, xs)− ψ(s, y)

|xs − y|n+α
dy.

Define now the sets B1 and B2 by

B1 = {y ∈ C(R, ρR) : ψ(s, xs)− ψ(s, y) ≥ 1
2ψ(s, xs)},

B2 = {y ∈ C(R, ρR) : ψ(s, xs)− ψ(s, y) < 1
2ψ(s, xs)},

such that C(R, ρR) = B1 ∪B2. We obtain then the inequalities∫
C(R,ρR)

ψ(s, xs)− ψ(s, y)

|xs − y|n+α
dy ≥

∫
B1

ψ(s, xs)− ψ(s, y)

|xs − y|n+α
dy ≥ ψ(s, xs)

2ρn+αRn+α
|B1|

=
ψ(s, xs)

2ρn+αRn+α
(|C(R, ρR)| − |B2|) ≥

ψ(s, xs)

2ρn+αRn+α

(
vn(ρn−1)Rn − |B2|

)
, (5.35)

where vn denotes the volume of the unit ball.

To continue, we need to estimate the quantity |B2| in the right-hand side of (5.35) in terms of
ψ(s, xs) and R. We will distinguish two cases and prove the following estimates:

1) If |xs − x(s)| > 2ρR or |xs − x(s)| < R/2, then

C1

(
(ζr)α +Ks

)(ω−γ)/α
ψ(s, xs)

−1R−ω ≥ |B2|. (5.36)

2) If R/2 ≤ |xs − x(s)| ≤ 2ρR, then(
C2

(
(ζr)α +Ks

)(ω−γ)/α
Rn−ω ψ(s, xs)

−1
)1/2 ≥ |B2|. (5.37)

For these two controls, our starting point is the concentration condition established in Theorem 4,
eq. (5.4); indeed we can write(

(ζr)α +Ks
)(ω−γ)/α ≥

∫
Rn
|ψ(s, y)| |y − x(s)|ω dy ≥

∫
B2

|ψ(s, y)| |y − x(s)|ω dy

≥ ψ(s, xs)

2

∫
B2

|y − x(s)|ω dy. (5.38)

We just need to estimate the last integral following the cases given above.
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• Indeed, if |xs − x(s)| > 2ρR then we have

min
y∈B2⊂C(R,ρR)

|y − x(s)|ω ≥ (ρR)ω = ρω Rω,

while if |xs−x(s)| < R/2, one has min
y∈B2⊂C(R,ρR)

|y − x(s)|ω ≥ Rω

2ω
. Applying these results to (5.38)

we obtain (
(ζr)α +Ks

)(ω−γ)/α ≥ ψ(s, xs)

2
ρω Rω |B2|

and (
(ζr)α +Ks

)(ω−γ)/α ≥ ψ(s, xs)

2

Rω

2ω
|B2|,

and since ρ > 2 we have the first desired estimate:

C1

(
(ζr)α +Ks

)(ω−γ)/α

ψ(s, xs)Rω
≥ |B2|, with C1 = 21+ω.

• For the second case, since R/2 ≤ |xs − x(s)| ≤ 2ρR, we can write using the Cauchy–Schwarz
inequality, ∫

B2

|y − x(s)|ω dy ≥ |B2|2
(∫

B2

|y − x(s)|−ω dy
)−1

. (5.39)

Now, observe that in this case we have B2 ⊂ B(x(s), 5ρR) and then∫
B2

|y − x(s)|−ω dy ≤
∫
B(x(s),5ρR)

|y − x(s)|−ω dy ≤ vn(5ρR)n−ω.

Getting back to (5.39) we have∫
B2

|y − x(s)|ω dy ≥ |B2|2 v−1
n (5ρR)−n+ω,

and we use this estimate in (5.38) to obtain

C2

(
(ζr)α +Ks

)(ω−γ)/(2α)
Rn/2−ω/2

ψ(s, xs)1/2
≥ |B2|, where C2 = (2 · 5n−ωvn ρn−ω)1/2.

Now, with estimates (5.36) and (5.37) at our disposal we can write

• if |xs − x(s)| > 2ρR or |xs − x(s)| < R/2 then∫
C(R,ρR)

ψ(s, xs)− ψ(s, y)

|xs − y|n+α
dy

≥ ψ(s, xs)

2 ρn+αRn+α

(
vn(ρn − 1)Rn −

C1

(
(ζr)α +Ks

)(ω−γ)/α

ψ(s, xs)
R−ω

)
,

• if R/2 ≤ |xs − x(s)| ≤ 2ρR,∫
C(R,ρR)

ψ(s, xs)− ψ(s, y)

|xs − y|n+α
dy

≥ ψ(s, xs)

2 ρn+αRn+α

(
vn(ρn − 1)Rn −

C2

(
(ζr)α +Ks

)(ω−γ)/(2α)
Rn/2−ω/2

ψ(s, xs)1/2

)
.
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If we set
R =

(
(ζr)α +Ks

)(ω−γ)/(α(n+ω))
ψ(s, xs)

−1/(n+ω),

since we are working with small molecules we have 0 < R � 1, and we obtain for all the previous
cases the following estimate:∫

C(R,ρR)

ψ(s, xs)− ψ(s, xs)

|xs − y|n+α
dy

≥
(vn (ρn − 1)−

√
2vn (5ρ)(n−ω)/2

2 ρn+α

) (
(ζr)α +Ks

)−(ω−γ)/(n+ω)
ψ(s, xs)

1+α/(n+ω).

At this point, once the dimension n and the parameters α, ω are fixed, we obtain that the quantity

C =
vn (ρn − 1)−

√
2vn (5ρ)(n−ω)/2

2× ρn+α
,

can be made a small positive constant provided ρ is large enough. Thus, and for all possible cases
considered before, we have the following estimate for (5.34):

d

ds
‖ψ(s, ·)‖L∞ ≤ −c1 × C×

(
(ζr)α +Ks

)−(ω−γ)/(n+ω) ‖ψ(s, ·)‖1+α/(n+ω)
L∞ .

We recall now that the constant K given in (5.32) can be small enough to write

d

ds
‖ψ(s, ·)‖L∞ ≤ −K

(n+ γ

α

)(
(ζr)α +Ks

)−(ω−γ)/(n+ω) ‖ψ(s, ·)‖1+α/(n+ω)
L∞ ,

which is exactly formula (5.33).

The proof of the height condition is finished for regular molecules. In order to obtain the global
result, remark that, for viscosity solutions we have ∆ψ(s0, x) ≤ 0 at the points x where ψ(s0, ·) reaches
its maximum value so we only need to study the term Lαψ(s0, x) as it was done here. We refer to [14]
and [7] for more details.

Remark 5.5 The constants obtained here do not depend on the molecule’s size but only on the di-
mension n and on parameters ω, γ and α.

5.1.3 L1 estimate

The L1 control (5.6) is now a direct consequence of an optimization over the parameter D below
(splitting threshold):∫

Rn
|ψ(s0, x)|dx =

∫
{|x−x(s0)|<D}

|ψ(s0, x)|dx+

∫
{|x−x(s0)|≥D}

|ψ(s0, x)|dx

≤ vnD
n‖ψ(s0, ·)‖L∞ +D−ω

∫
Rn
|ψ(s0, x)||x− x(s0)|ωdx.

Now using the Concentration condition and the Height condition one has:∫
Rn
|ψ(s0, x)|dx ≤ vn

Dn

((ζr)α +Ks0)
n+γ
α

+D−ω((ζr)α +Ks0)
ω−γ
α ,

where vn denotes the volume of the unit ball. An optimization over the real parameter D yields:

‖ψ(s0, ·)‖L1 ≤
2v

ω
n+ω
n(

(ζr)α +Ks0

) γ
α

.

Theorem 4 is now completely proven. �
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5.2 Iteration

Once we have a good control over the quantities ‖ψ(s0, ·)‖L1 and ‖ψ(s0, ·)‖L∞ (from (5.6) and (5.5)),
by interpolation we obtain the following bound

‖ψ(s0, ·)‖Lp′ ≤ ‖ψ(s0, ·)‖
1
p′

L1‖ψ(s0, ·)‖
1− 1

p′
L∞ ≤ C

[(
(ζr)α +Ks0

) 1
α

]−n+ n
p′−γ

.

We thus see with Theorem 4 that it is possible to control the Lp
′

norm of the molecules ψ from 0
to a small time s0, and applying inductively the same arguments we can extend the control from
time s0 to time s1 with a small increment s1 − s0 ∼ erα. Now we can see that the smallness of the
parameters e, r and of the time increments s0, s1−s0, ..., sN−sN−1 can be compensated by the number
of iterations N : fix a small 0 < r < 1 and iterate as explained before. Since each small time increment
s0, s1− s0, ..., sN − sN−1 has order erα, we have sN ∼ Nerα. Thus, we will stop the iterations as soon
as Nerα ≥ T0. The number of iterations N = N(e, r) will depend on the smallness of the molecule’s
size r and on the size of the initial data µ (controlled by the smallness of e), and it is enough to
consider N(e, r) ∼ T0

erα in order to obtain this lower bound for N(e, r). Proceeding this way we will

obtain ‖ψ(sN , ·)‖Lp′ ≤ CT
−n+ n

p′−γ
0 < +∞, for all molecules of size r. Observe that once this estimate

is available, for larger times it is enough to apply the maximum principle.

Finally, and for all r > 0, we obtain after a time T0 a Lp
′

control for small molecules and we finish
the proof of the Theorem 3. �

A Mild representation of weak solutions: proof of Lemma 3.1

We aim at proving that any weak solution θ to (1.1) which belongs to L∞t (Lpx)∩Lpt (Ḃ
α
p
,p

p,x ), p ∈ [2,+∞[
actually satisfies the Duhamel type representation (3.1). Fix T > 0 and start from the identity:∫

Rn
θ0(y)ϕ(0, y)dy =

∫ T

0

∫
Rn
θ(s, y)(−∂s+Lα)ϕ(s, y)dyds+

∫ T

0

∫
Rn

A[θ]θ(s, y) ·∇ϕ(s, y)dyds, (A.1)

which holds for all ϕ ∈ C∞0 (]− T, T [×Rn). Similarly, for almost any t ∈]0, T [,∫
Rn
θ0(y)ϕ(0, y)dy =

∫
Rn
θ(t, y)ϕ(t, y)dy +

∫ t

0

∫
Rn
θ(s, y)(−∂s + Lα)ϕ(s, y)dyds

+

∫ t

0

∫
Rn

A[θ]θ(s, y) · ∇ϕ(s, y)dyds. (A.2)

Observe that, for a fixed pair (t, x) ∈ R+×Rn, the mild representation (3.1) would formally follow from
(A.2) taking therein ϕ(s, y) as a smooth compactly supported approximation of pαt−s(y − x) recalling
that

(−∂s + Lα)pαt−s(y − x) = δt(s)δx(y) (A.3)

and passing to the limit. We actually claim that, in the current subcritical regime (recall that we have
α = 1 + ε > 0) and thanks to the available controls (maximum principle, Besov energy estimates) this
procedure can actually be justified and yields (3.1) for almost any (t, x) ∈ R+ × Rn. Precisely, define
for a fixed (t, x) ∈ R∗+ × Rn and ε > 0 the function (s, y) 7→ ϕε,(t,x)(s, y) = pα,εt−s+ε(y − x) where for

τ > 0, pα,ετ (z) =
(
pατ (·)1|·|≤ε−(2+β)

)
∗ φε2(z) for some β > 0 and where for η > 0, φη is a standard

mollifier. Then ϕε,(t,x) can be extended into a function in C∞0 ([−T, T [×Rn) and from (A.2):∫
Rn
θ0(y)pαt (y − x)dy =θ(t, x) +

∫ t

0

∫
Rn

A[θ]θ(s, y) · ∇pαt−s(y − x)dyds

+Rε(t, x). (A.4)
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This will precisely give (3.1) provided we prove that Rε(t, x) tends to 0 with ε for almost any (t, x) ∈
]0, T ]× Rn. Write recalling (A.3):

Rε(t, x) =

∫
Rn
θ(t, y)ϕε,(t,x)(t, y)dy − θ(t, x) +

∫ t

0

∫
Rn
θ(s, y)(−∂s + Lα)ϕε,(t,x)(s, y)dyds

+

∫ t

0

∫
Rn

A[θ]θ(s, y) ·
(
∇ϕε,(t,x)(y)−∇pαt−s(y − x)

)
dyds =:

3∑
i=1

Rε,i(t, x).

Before going further we state a Lemma giving some quantitative controls for the stable like heat-kernel
and its spatial sensitivities.

Lemma A.1 (Controls for the stable-like heat kernel) Let (A) be in force and pα denote the
heat-kernel associated with Lα. There exists a function p̄ satisfying that for all z ∈ Rn, p̄(z) ≤
c(1 + |z|)−(n+α) for some constant C ≥ 1 (observe that p̄ ∈ L1(Rn)) and C ≥ 1 such that for all
v > 0, z̄ ∈ Rn, and any β, γ ∈ {0, 1}, i ∈ {1, · · · , n},

v
n
α |(∂βv ∂γxip

α
v )(x)|

x=v
1
α z̄
≤ Cv−(β+ γ

α
)p̄(z̄). (A.5)

Also, for all ȳ ∈ Rn, z̄ ∈ B(0, R), ε > 0:

v
n
α

∣∣(∂βv ∂γxipαv )(x+ ε2z̄)− (∂βv ∂
γ
xip

α
v )(x)

∣∣
x=v

1
α ȳ
≤ Cε2v−(β+ γ

α
+ 1
α

)p̄(ȳ). (A.6)

The above results can be derived from the controls for the stable-like heat kernel and its sensitivities.
In the isotropic stable case we can e.g. refer to [23]. The general case considered in Assumption
(A), where the tails of the Lévy measure are upper-bounded by a stable one (which e.g. include
the truncated stable kernel) could be handled following the approach introduced in [?], consisting in
precisely splitting the Lévy measure into its small and large jumps part for the analysis of general
stable heat kernels, and extended to the tempered case in [?].

Observe first that Rε,1(t, x) = θ(t, ·)∗pα,εε (x)−θ(t, x). It is then clear that ‖Rε,1‖Lp([0,T ],Lp(Rn)) −→
ε→0

0. Indeed,

‖Rε,1‖Lp([0,T ],Lp(Rn)) ≤ ‖θ ∗ pαε − θ‖Lp([0,T ],Lp(Rn)) + ‖θ‖Lp([0,T ],Lp(Rn))‖pα,εε − pαε ‖L1(Rn).

The convergence to zero of the first term in the right-hand side follows from the fact that pαε is an
approximation of the identity whereas for the second one we have:

‖pα,εε − pαε ‖L1 =

∫
Rn
|(pαε 1|·|≤ε−(2+β) − pαε ) ∗ φε2(y) + (pαε ∗ φε2 − pαε )(y)|dy

≤
∫
|z|≥ε−(2+β)

pαε (z)dz +

∫
Rn
|(pαε ∗ φε2 − pαε )(y)|dy =: P ε1 + P ε2 .

Thus, from (A.5) in Lemma A.1, taking v = ε, β = 0 therein,

P ε1 ≤ C
∫
|z̄|≥ε−(2+β+ 1

α )
p̄(z̄)dz̄ −→

ε→0
0.

Similarly, for φε2(·) = 1
ε2n
φ( ·

ε2
) for a compactly supported in B(0, R) (centered ball of radius R) non

negative smooth φ such that

∫
Rn
φ(z)dz =

∫
B(0,R)

φ(z)dz = 1, we have

P ε2 ≤
∫
Rn

∣∣∣∣∫
Rn

(
pαε (ε

1
α ȳ + z)− pαε (ε

1
α ȳ)
)
φε2(z)dz

∣∣∣∣ εnαdȳ
≤
∫
Rn

∫
Rn

∣∣pαε (ε
1
α ȳ + ε2z̄)− pαε (ε

1
α ȳ)
∣∣φ(z̄)dz̄ε

n
αdȳ.
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Still from Lemma A.1, equation (A.6) with v = ε, β = γ = 0 then gives P ε2 −→
ε→0

0 and therefore yields

the stated convergence for Rε,1. Write now,

Rε,2(t, x) =

∫ t

0
θ(s, ·) ∗ (−∂s + Lα)pα,εt−s+ε(x)ds =

∫ t

0
θ(s, ·) ∗ (−∂s + Lα)[pα,εt−s+ε − pαt−s+ε](x)ds,

recalling (A.3) for the last equality. Then

‖Rε,2‖Lp([0,T ],Lp(Rn)) ≤ C‖θ‖Lp([0,T ],Lp(Rn))

∫ T

0

∫ t

0
‖(−∂s + Lα)[pα,εt−s+ε − pαt−s+ε]‖L1(Rn)dsdt. (A.7)

We can then reproduce the previous analysis and write:

‖(∂s + Lα)pα,εt−s+ε − (∂s + Lα)pαt−s+ε‖L1(Rn)

=

∫
Rd
|(∂s + Lα)(pαt+s−ε1|·|≤ε−(2+β) − pαt−s+ε) ∗ φε2(y) + (∂s + Lα)(pαt−s+ε ∗ φε2 − pαt−s+ε)(y)|dy

≤
∫
|z|≥ε−(2+β)

(|∂spαt−s+ε(z)|+ |pαt−s+ε(z)|‖Lαφε2‖L1)dz +

∫
Rn
|(∂s + Lα)(pαt−s+ε ∗ φε2 − pαt−s+ε)(y)|dy

=:Qε1 +Qε2.

Let us first consider here Qε1. Equation (A.5) with v = t− s+ ε and β = 1, γ = 0 yields

(t− s+ ε)
n
α |∂spαt−s+ε(x̄)|

x̄=(t−s+ε)
1
α z̄
≤ C(t− s+ ε)−1p̄(z̄). (A.8)

By homogeneity, we also get ‖Lαφε2‖L1 ≤ Cε−2α. Hence,

Qε1 ≤ C
∫
|z̄|≥(t−s+ε)−

1
α ε−(2+β)

((t− s+ ε)−1 + ε−2α)p̄(z̄)dz̄.

Recalling now that p̄(z̄) ≤ C(1 + |z̄|)−(n+α) we get:

Qε1 ≤ C(εα(2+β) + (t− s+ ε)εαβ) −→
ε→0

0.

Write now for Qε2,

Qε2 ≤
∫
Rn

∣∣∣∣∫
Rn

(∂s + Lα)
(
pαt−s+ε(x̄+ z)− pαt−s+ε(x̄)

)
φε2(z)dz

∣∣∣∣
x̄=(t−s+ε)

1
α ȳ

(t− s+ ε)
n
αdȳ

≤
∫
Rn

∫
Rn

∣∣(∂s + Lα)(pαt−s+ε(x̄+ ε2z̄)− pαt−s+ε(x̄)
∣∣
x̄=(t−s+ε)

1
α ȳ
φ(z̄)dz̄(t− s+ ε)

n
αdȳ.

Similarly to the previous controls on the heat kernel we derive from (A.6) with v = t−s+ε, β = 1, γ = 0
(recall that z̄ ∈ B(0, R)) and (A.3):

(t− s+ ε)
n
α |(∂s + Lα)(pαt−s+ε(x̄+ ε2z̄)− pαt−s+ε(x̄))

∣∣
x̄=(t−s+ε)

1
α ȳ
≤ C(t− s+ ε)−(1+ 1

α
)p̄(ȳ)ε2, (A.9)

which again readily gives Qε2 ≤ Cε1− 1
α . Plugging the above controls into (A.7) we derive the required

convergence for the term Rε,2. Let us now turn to Rε,3.

‖Rε,3‖L1([0,T ],L1(Rn)) ≤
∥∥∥∥∫ ·

0

∫
Rn

A[θ]θ(s, y) ·
(
∇ϕε,(t,·)(y)−∇pαt−s(y − ·)

)
dyds

∥∥∥∥
L1([0,T ],L1(Rn))

≤
∫ T

0

∫ t

0
‖A[θ]θ(s, ·)‖L1‖∇pα,εt−s+ε −∇pαt−s+ε‖L1dsdt

≤‖θ‖L∞t (L2
x)‖A[θ]‖L∞t (L2

x)

∫ T

0

∫ t

0
‖∇pα,εt−s+ε −∇pαt−s+ε‖L1dsdt

≤C‖θ0‖2L2

∫ T

0

∫ t

0
‖∇pα,εt−s+ε −∇pαt−s+ε‖L1dsdt,
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using (2.3) and by maximum principle (2.7) for the last inequality. The contribution of the term
‖∇pα,εt−s+ε − ∇pαt−s+ε‖L1 can be handled just as the corresponding one for R2,ε, i.e. the quantity
‖(−∂s+Lα)[pα,εt−s+ε−pαt−s+ε]‖L1(Rn) in (A.7), noting that the associated time singularity will be milder.

Namely, its order will be (t− s+ ε)−
1
α (usual time singularity associated with the spatial gradient of

the stable heat-kernel) instead of (t − s + ε)−1 (usual time singularity for the time derivative or the
fractional operator applied to the heat kernel) for the previous case. Applying (A.6) with β = 0, γ = 1,
the associated controls then write

(t− s+ ε)
n
α |∇pαt−s+ε(x̄)|

x̄=(t−s+ε)
1
α z̄
≤ C(t− s+ ε)−

1
α p̄(z̄),

(t− s+ ε)
n
α |∇(pαt−s+ε(x̄+ ε2z̄)− pαt−s+ε(x̄)

∣∣
x̄=(t−s+ε)

1
α ȳ
≤ C(t− s+ ε)−

2
α p̄(ȳ)ε2,

instead of (A.8), (A.9).
This gives the convergence to 0 of Rε,3 and gives the representation (3.1) for almost all (t, x) ∈
[0, T ]×Rd. In the current sub-critical regime, the existence of a continuous in time version is immediate.
This therefore completes the proof of Lemma 3.1. �
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(2015).
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Stéphane Menozzi

Laboratoire de Modélisation
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